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A STRATEGY FOR NON-STRICTLY CONVEX TRANSPORT COSTS

AND THE EXAMPLE OF ‖X−Y ‖P IN R
2∗

GUILLAUME CARLIER† , LUIGI DE PASCALE‡ , AND FILIPPO SANTAMBROGIO§

Abstract. This paper deals with the existence of optimal transport maps for some optimal
transport problems with a convex but non-strictly convex cost. We give a decomposition strategy
to address this issue. As a consequence of our procedure, we have to treat some transport problems,
of independent interest, with a convex constraint on the displacement. To illustrate possible results
obtained through this general approach, we prove existence of optimal transport maps in the case
where the source measure is absolutely continuous with respect to the Lebesgue measure and the
transportation cost is of the form h(‖x−y‖), with h strictly convex increasing and ‖.‖ an arbitrary
norm in R

2.
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1. Introduction

Given two Borel probability measures µ and ν on R
d and a transport cost c : Rd→

R the corresponding Monge problem consists in minimizing the average transport cost
∫

Rd

c(x−T (x))µ(dx)

among all Borel transport maps T , i.e., maps pushing forward µ to ν (which as usual
is denoted by T#µ=ν). It is a highly nonconvex problem (whose admissible set may
even be empty if µ has atoms for instance) and it is therefore relaxed to the Monge-
Kantorovich problem that consists in minimizing

∫

Rd×Rd

c(x−y)γ(dx,dy)

over Π(µ,ν), the set of Borel transport plans, i.e., of Borel probability measures on
R

d×R
d having µ and ν as marginals. To prove existence of an optimal transport map

one thus aims to prove that there is an optimal plan γ (existence of such plans holds
under very mild assumptions since the Monge-Kantorovich problem is linear) that is
in fact induced by a transport map i.e., of the form γ=(id,T )#µ. To achieve this goal,
one strongly uses the relations with the dual problem that consists in maximizing

∫

Rd

φdµ+

∫

Rd

ψdν

subject to the constraint that φ(x)+ψ(y)≤ c(x−y). An optimal pair (φ,ψ) for the
dual is called a pair of Kantorovich potentials. It is very well known (under reasonable
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ITALY (depascal@dm.unipi.it). http://www.dm.unipi.it/∼depascal/
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assumptions on the measures) that when c is strictly convex then this strategy gives an
optimal transport (see [11] or section 2 below where the argument is briefly recalled;
we also refer to the book [14] for a general overview and recent developments of
optimal transport theory).

It is also well-known that lack of strict convexity makes the existence of an optimal
transport much more delicate. Even the important case (originally considered by
Monge) where c is a norm was well understood only in recent years ([10, 4, 3, 2, 7, 6, 8]).
In the case of the Euclidean norm, for example, the direction of the displacement (we
call displacements the vectors y−x for (x,y) in the support of an optimal γ, which
becomes T (x)−x in the case where this plan is induced by a transport map T ) is
determined by a Kantorovich potential φ: the whole space is decomposed, up to a
negligible set, into a family of segments, called transport rays and parallel at each
point to the gradient of φ, such that (x,y)∈ sptγ implies that x and y lay on the same
segment of this family. This fixes the direction of y−x but not the value of |y−x|. As
a consequence, two important features of the problem may be underlined: on the one
hand, the lack of strict convexity in the radial direction gives rise to an indeterminacy
of the displacement length, but on the other hand, the problem on transport rays is
one dimensional and, thus, much simpler. These observations lead to a method of
proof, originally due to Sudakov [13], consisting of reduction to a one-dimensional
problem on each transport ray (where the solution may be given by the monotone
transport, for instance) and then gluing the solutions together. The most involved
part of the proof consisted in proving that the transport rays have enough regularity
so that the disintegrated measures on such rays are non-atomic (see [4, 6] for such a
proof).

In the present paper, we consider a convex but non-strictly convex c. We propose
to perform a decomposition that takes advantage of the fact that, whenever the dis-
placement is not fully determined, it means that it lies in some face of c, but on such
a face the cost is affine, and is therefore unchanged if we replace the transport plan
by another one which has the same marginals and satisfies the further constraint that
the displacement belongs to the face. In this spirit, our strategy can be compared to
Sudakov’s, yet it is different since there is no real analogue of transport rays here.
Instead, our approach, detailed in section 2, involves “face restricted problems” that
are optimal transport problems with convex constraints on the displacement. Such
constrained problems have, we believe, their own interest and motivations (e.g., due
to connections with L∞ transportation problems as studied in [9]) and we will address
some of them in section 3. We will avoid here subtle disintegration arguments to glue
together the face restricted problems in general but will instead illustrate in section 4
how our method easily produces an optimal transport map in the case of c(z)=h(‖z‖)
with h strictly convex increasing and ‖·‖ an arbitrary norm in R

2. The contributions
of this paper are then:

• a general decomposition strategy to deal with convex but non-strictly convex
costs,

• a contribution to constrained transport problems,

• the proof of existence of optimal transport maps for a class of costs in R
2.
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2. Strategy of decomposition

In this section, we outline a possible procedure to study existence of an optimal
transport for the Monge-Kantorovich problem

min

{
∫

Rd×Rd

c(x−y)γ(dx,dy) : γ∈Π(µ,ν)

}

,

where c is convex but not strictly convex. Not all of the steps listed below can always
be carried out in full generality. In the following sections, we will detail some cases
where this is possible and illustrate some applications.

The decomposition is based on the following steps.

• Consider an optimal plan γ and look at the optimality conditions by means
of a solution (φ,ψ) of the dual problem. From the fact that

φ(x)+ψ(y)= c(x−y) on sptγ and φ(x)+ψ(y)≤ c(x−y)

one deduces that if x is a differentiability point for φ (which is denoted x∈
Diff(φ)),

∇φ(x)∈∂c(x−y),

which is equivalent to

x−y∈∂c∗(∇φ(x)). (2.1)

Let us define

Fc :={∂c∗(p) : p∈R
d},

which is the set of all values of the multi-valued subdifferential map of c∗

(for the standard convex analysis notions of subdifferential and Legendre
Transform, we refer to [12]). These values are those convex sets where the
function c is affine, and they will be called faces of c. Indeed, to explain why
the faces of a convex function c are the values of the subdifferential of its
Legendre transform c∗, let us mention that c is affine on a region K if and
only if a common vector belongs to the subdifferential of all the points of
K. Hence, we can say x∈F⇔v∈∂f(x), which becomes x∈F⇔x∈∂f∗(v)
(thanks to the crucial result in convex analysis v∈∂f(x)⇔x∈∂f∗(v)); this
means F =∂f∗(v).
Thanks to (2.1), for every fixed x all the points y such that (x,y) belongs to
the support of an optimal transport plan are such that the difference x−y
belong to a same face of c. When c∗ is differentiable (which is the same as
c being strictly convex), these faces are singleton and then this is the way to
obtain a transport map, since only one y is admitted for every x.
Equation (2.1) also enables one to classify the points x as follows. For every
K ∈Fc we define the set

XK :={x∈Diff(φ) : ∂c∗(∇φ(x))=K}.

Hence γ may be decomposed into several subplans γK according to the crite-
rion x∈XK . If K varies among all possible faces this decomposition covers
γ−almost all pairs (x,y) (if φ is differentiable µ−a.e.). Moreover, if (x,y)
belongs to sptγ and x to Diff(φ), then x∈XK implies x−y∈K.
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If the set Fc is finite or countable, we can define

γK :=γ|XK×Rd ,

which is the simpler case. Actually, in this case, the marginal measures
µK and νK of γK (i.e., its images under the maps (x,y) 7→x and (x,y) 7→y,
respectively) are submeasures of µ and ν, respectively. In particular µK

inherits absolute continuity from µ. This is often useful for proving existence
of transport maps.
If Fc is uncountable, in some cases one can still rely on a countable decom-
position by considering the set Fmulti

c :={K ∈Fc : K is not a singleton}. If
Fmulti

c is countable, then one can separate those x such that ∂c∗(∇(φ(x)) is
a singleton (where a transport already exists) and look at a decomposition
for K ∈Fmulti

c only.
In some other cases, it could be useful to bundle together different possible
K’s so that the decomposition is countable, even if coarser. We will give an
example of this last type in section 4.

• This decomposition reduces the transport problem to a superposition of trans-
port problems of the type

min

{
∫

Rd×Rd

c(x−y)γ(dx,dy) :γ∈Π(µK ,νK), sptγ⊂{(x,y) : x−y∈K}

}

.

The advantage is that the cost c restricted to K is easier to study. For
instance, if K is a face of c, then c is affine on K and in this case the transport
cost does not depend any more on the transport plan.

• If K is a face of c the problem is reduced to finding a transport map from µK

to νK satisfying the constraint x−T (x)∈K, knowing a priori that a transport
plan satisfying the same constraint exists.
In some cases (for example if K is a convex compact set with non-empty
interior) this problem may be reduced to an L∞ transport problem. In fact,
if one denotes by || · ||K the (gauge-like) “norm” such that K={x : ||x||K ≤1},
one has

min
{

max{||x−y||K , (x,y)∈ sptγ},γ∈Π(µ,ν)
}

≤1 (2.2)

and the question is whether the same result would be true if one restricted the
admissible set to transport maps only (passing from Kantorovich to Monge,
say). The answer would be positive if a solution of (2.2) were induced by a
transport map T (which is true if µK ≪Ld and K=B(0,1), see [9], but is
not known in general). Moreover, the answer is also positive in R where the
monotone transport solves all the Lp problems, and hence the L∞ as well.

• A positive answer may be also given if one is able to select, for instance by a
secondary minimization, a particular transport plan satisfying sptγ⊂{(x,y) :
x−y∈K} which is induced by a map. This leads to the very natural question
of solving

min

{
∫

Rd×Rd

[
1

2
|x−y|2+χK(x−y)]dγ : γ∈Π(µ,ν)

}

,

or, more generally, transport problems where the cost function involves convex
constraints on x−y. These problems are studied in section 3. For instance,
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in the quadratic case above, we can say that the optimal transport T exists
and is given by T (x)=x−projK(∇φ(x)) (projK denoting projection on K),
provided two facts hold:

– µ is absolutely continuous, so that we can assure the existence of a
(possibly approximate) gradient of φ up to a µ−negligible set, under
mild regularity assumptions on φ;

– an optimal potential φ does actually exist, in a class of functions (Lips-
chitz, BV) which are differentiable almost everywhere, at least in a weak
sense.

• In order to apply the study of convex-constrained problems to the original
problem with c(x−y), the first issue (i.e., absolute continuity) does not pose
any problem if the decomposition is finite or countable, while it is nontrivial
in the case of disintegration, and presents the same kind of difficulties as
in Sudakov’s solution of Monge’s problem. For interesting papers related to
these kinds of problems, see for instance [5, 6].

• As far as the second issue is concerned, this is much more delicate, since in
general there are no existence results for potentials with non-finite costs. In
particular, a counterexample has been provided by Caravenna when c(x,y)=
|x−y|+χK(x−y) where K=R

+×R
+⊂R

2 and it is easily adapted to the
case of quadratic costs with convex constraints. On the other hand, it is easy
to think that the correct space to set the dual problem in Kantorovich theory
for these kinds of costs would be BV since the constraints on x−y enable one
to control the increments of the potentials φ and ψ on some directions, thus
giving some sort of monotonicity. Yet, this is not sufficient for finding a bound
in BV if an L∞ estimate is not available as well, and the counterexample that
we mentioned — which gives infinite values to both φ and ψ — exactly proves
that these kinds of estimates are hard to prove.

Remark 2.1. An interesting example that could be approached by decomposition as
we propose here is that of crystalline norms (a problem that has been already solved
by a different method in [2]). In this case, the faces of the cost c are polyhedral cones
but, if the support of the two measures are bounded, we can suppose that they are
compact convex polyhedra. This means, thanks to the considerations above, that it
is possible to perform a finite decomposition and to reduce the problem to some L∞

minimizations for norms whose unit balls are polyhedra. In particular, solving the
L∞ problem for crystalline norms is enough to solve the usual L1 optimal transport
problem for the crystalline norms.

Remark 2.2. A simple example that can be completely solved in any dimension
through this strategy is the Monge problem for the cost c(z)=(|z|−1)2+, which van-
ishes for displacements smaller than one. In this case it is easy to see that Fmulti

c has
only one element, which is given by the Euclidean ball B(0,1). The associated L∞

problem has been solved in [9] and this is enough to prove the existence of an optimal
transport.

3. Constrained transport problems

In this section we see two useful examples of transport problem under the con-
straint x−y∈K. Since the cost we use, due to this constraint, is lower semicontinuous
but not finitely valued it is well-known that duality holds (the minimum of the Kan-
torovich problem coincides with the supremum of the dual one), but existence of
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optimizers in the dual problem is not guaranteed. As we underlined in section 2, this
is a key point and what we present here will always assume that this existence holds
true. In section 4 we will show a relevant example in which this is actually the case.

3.1. Strictly convex costs with convex constraints

We start from a general and abstract transport problem with convex constraints;
in order to present these constraints we introduce the characteristic function χK of a
convex set K defined as

χK(x)=

{

0 if x∈K,

+∞ otherwise.

The first case we consider is the one where the cost function is strictly convex, which
makes the problem easier to solve.

Theorem 3.1. Let µ, ν be two probability measures on R
d, K a closed and convex

subset of Rd and h :Rd→R a strictly convex function. Let c(z)=h(z)+χK(z): then

the transport problem

min

{
∫

Rd×Rd

c(x−y)γ(dx,dy), γ∈Π(µ,ν)

}

admits a unique solution, which is induced by a transport map T , provided that a

transport plan with finite cost exists and the dual problem admits a solution (φ,ψ)
where φ is approximately differentiable µ−a.e.

Proof. As usual, consider an optimal transport plan γ and optimal potentials φ
and ψ. The optimality conditions on optimal transport plans and optimal potentials
for this problem read as

φ(x)+ψ(y)=h(x−y) on sptγ⊂{x−y∈K}

and

φ(x)+ψ(y)≤h(x−y) for all (x,y) : x−y∈K

and, if φ is differentiable at x, they lead to

∇φ(x)∈∂c(x−y)=∂h(x−y)+NK(x−y), (3.1)

where NK(z) :={l∈R
d : l ·(y−z)≤0, ∀y∈K} is the normal cone to K at z (but the

same may be easily checked in case φ is only approximately differentiable). We used
the fact that the subdifferential of the sum h and χK is the sum of their subdifferentials
since h is real-valued and hence continuous (see [12]). Equation (3.1) is satisfied by
the true gradient of φ if it exists but it stays true for the approximate gradient if φ is
only approximately differentiable.

Whenever a vector l and a point z̄∈K satisfy

l∈∂h(z̄)+NK(z̄),

thanks to the convexity of h and K this gives that z̄ minimizes K ∋ z 7→h(z)− l ·z.
Since h is strictly convex this gives the uniqueness of z̄, which will depend on l. We
will denote it by z̄(l).
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In this case, we get x−y= z̄(∇φ(x)), which is enough to identify y=T (x) :=
x− z̄(∇φ(x)) and proves existence of a transport map which is necessarily unique.

Remark 3.2. Notice that, in the case h(z)= 1
2 |z|

2 the point z̄(l) will be the projection
of l on K, which gives the nice formula

T (x)=x−projK(∇φ(x)),

i.e., a generalization of the usual formula for the optimal transport in the quadratic
case.

Remark 3.3. Notice also that the abstract assumption that the potential φ is dif-
ferentiable µ−a.e. is usually enforced by assuming that µ is absolutely continuous
and proving that one can choose a potential φ which is either Lipschitz continuous or
BV .

3.2. Strictly convex costs of one variable and convex constraints. Let
µ≪L2 and ν be two probability measures in R

2, let K be a convex subset of R2 such

that
◦

K 6=∅, and consider the cost

c(x−y)=h(x1−y1)+χK(x−y),

for an increasing and strictly convex function h :R→R.

Theorem 3.4. Assume that there exist γ∈Π(µ,ν) and φ,ψ Lipschitz such that

φ(x)+ψ(y)≤ c(x−y) ∀x,y (3.2)

φ(x)+ψ(y)= c(x−y) γ−a.e. (3.3)

Then there exists an optimal transport map for the cost c between µ and ν.

Remark 3.5. The assumption above implies that γ is an optimal plan and the pair
(φ,ψ) is optimal for the dual problem. In order to have the existence of an optimal γ
it is enough to assume that there exists at least one σ∈Π(µ,ν) such that

∫

R2×R2

c(x−y)σ(dx,dy)<∞.

Again we recall that this assumption is not enough to have the existence of an optimal
couple for the dual problem.

Proof. As L2(R2 \Diff(φ))=0, then µ(R2 \Diff(φ))=0 and we can restrict our
attention to the points of differentiability of φ. For each (x,y)∈ spt(γ) such that
x∈Diff(φ) by (3.2) and (3.3) we obtain

∇φ(x)∈h′(x1−y1)e1+NK(x−y). (3.4)

By the convexity of the functions involved (3.4) is equivalent to

x−y∈argmin
z

{h(z1)−∇φ(x) ·z+χK(z)}.

Let S be the set of those x such that the set on the right-hand side of (3.4) is a
singleton

argmin
z

{h(z1)−∇φ(x) ·z+χK(z)}={p},
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then, for x∈S, y is uniquely determined by

y=x−p.

Let us consider a decomposition of γ in two parts: γ=γ|S×R2 +γ|Sc×R2 . The first part
of the decomposition is already supported on the graph of a Borel map. As far as the
second part is concerned, we will prove the existence of a transport map which gives
the same cost and the same marginals. This will be done by a sort of one-dimensional
decomposition according to the following observations.

Whenever the set on the right-hand side of (3.4) is not a singleton, then, by the
convexity of the function h(z1)−∇φ(x) ·z, it is a convex subset of K. Even more, by
the strict convexity of h, there exists a number m(∇φ(x)), such that

argmin
z

{h(z)−∇φ(x) ·z+χK(z)}⊂{z ·e1=m(∇φ(x))}
⋂

K.

We claim that if argminz{h(z)−∇φ(x) ·z+χK(z)} has more than one element then x
is a local maximum of φ on the line x+ te2. In fact, assume that there exist two points
y=(m(∇φ(x)),y2) and ỹ=(m(∇φ(x)), ỹ2) such that x−y∈argminz{h(z)−∇φ(x) ·
z+χK(z)} and x− ỹ∈argminz{h(z)−∇φ(x) ·z+χK(z)} and assume without loss of
generality that ỹ2<y2. As x−y∈K, then x+ te2−y∈K for small and positive t
(because it belongs to the segment [x−y,x− ỹ]), then

φ(x+ te2)+ψ(y)≤h(x1−m(∇φ(x)))

φ(x)+ψ(y)=h(x1−m(∇φ(x)))

and substracting the second equation from the first

φ(x+ te2)−φ(x)≤0.

The same inequality is obtained for small, negative t using ỹ.
We now introduce the setMn of local maxima of radius 1

n
: Mn :={x : φ(x+ te2)≤

φ(x) ∀t∈ [− 1
n
, 1
n
]}. The set Mn is closed. Let M i

n :=Mn∩{x : x ·e2∈ [ i
n
, i+1

n
]}. It

is a general fact that, whenever a real function is restricted to the intersection I of
its set of local maxima of radius r with a set whose diameter is no more than r,
then this function is constant on I. Actually, if a,b∈ I, the value at a cannot be
smaller than the value of b due to the local maximality of a which arrives up to
b, and since the roles of a and b may be interchanged then the value is the same.
In our case, this means that φ is vertically constant on M i

n. Thus, there exists a
function φ̃ depending only on the variable x1 such that φ̃ coincide with φ on M i

n.
Then on the intersection of the set of the Lebesgue points of (M i

n) with Diff(φ), we
have ∇φ=app∇φ=app∇φ̃ and the latter approximate gradient depends only on x1
which implies that ∇φ is vertically constant on a subset of full measure of M i

n. The
disjoint union Sc=∪n,i[S

c∩(M i
n \Mn−1)] induces the decomposition

γ|Sc×R2 =
∑

n,i

γn,i,

where γn,i :=γ|[Sc∩(Mi
n\Mn−1)]×R2 .

Denote µn,i and νn,i to be the marginals of γn,i. Clearly µn,i is absolutely con-
tinuous with respect to L2. Consider the disintegration according to x1

µn,i=an,i(x1) ·L
1⊗µx1

n,i,
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with µx1

n,i≪L1 for almost every x1, where an,i(x1) ·L
1 is the projection of µn,i on the

first variable (which is absolutely continuous as well). Analogously, we define νy1

n,i as
the disintegration of νn,i with respect to y1.

Let (x,y)∈ sptγn,i: by definition of m(∇φ(x)), we necessarily have y1=x1−
m(∇φ(x)). Since sptγn,i⊂M i

n, we know that both φ and ∇φ are vertically con-
stant on sptγn,i, which implies that m(∇φ(x)) actually depends on x1 only. If we
denote Tn,i to be the function associating to x1 the number x1−m(∇φ(x)), we have
sptγn,i∩{(x,y) : x ·e1=x1}⊂{(x,y) : y ·e1=Tn,i(x1)}.

Let us now disintegrate γn,i with respect to x1 and let us denote γx1

n,i to be this
disintegration (that is γx1

n,i is a measure on variables (x2,y1,y2) and γn,i=an,i(x1) ·

L1⊗γx1

n,i). It follows from what we have shown above that the marginal of γx1

n,i on
the y1 variable is δTn,i(x1). Hence, the measure γx1

n,i, is completely determined by the
other marginal, that we will call ηx1

n,i, so that γx1

n,i= δTn,i(x1)⊗η
x1

n,i. The measures ηx1

n,i

are measures on variables (x2,y2), and we define θx1

n,i to be the marginal of ηx1

n,i on
variable y2. By construction, we thus have:

∫

u(x1)v(y1)w(y2)γn,i(dx,dy)=

∫

u(x1)v(Tn,i(x1))
(

∫

w(y2)θ
x1

n,i(dy2)
)

an,i(x1)dx1

(3.5)
for all test-functions u, v and w.

It is then enough to replace γn,i with a new transport plan of the form (id×
Sn,i)#µn,i with the following properties:

Sn,i(x1,x2)=(Tn,i(x1),S
x1

n,i(x2)),

(Sx1

n,i)#µ
x1

n,i=θ
x1

n,i, x2−S
x1

n,i(x2)∈Kx1−Tn,i(x1),

where we denote, for every t, the section of K at level t by Kt :={s : (t,s)∈K}. The
fact that (id×Sn,i)#µn,i actually is a transport plan between µn,i to νn,i easily follows
from its construction and (3.5).

Since the h-part of the cost only depends on x1−y1 and γn,i and the transport
plan issued by the map Sn,i realize the same displacements as far as the first coordi-
nates are concerned, this part of the cost does not increase. Moreover, the constraint
(x1−y1,x2−y2)∈K, which amounts to the requirement that x2−y2 belongs to a
segment Kx1−y1

, is preserved, thanks to the last condition above. Hence, the two
transport plans have exactly the same cost.

We are only left to find, for every x1, the map Sx1

n,i. For this, it is enough to choose
the monotone transport map from µx1

n,i to θx1

n,i. This map is well defined because
the first measure is absolutely continuous (in particular, there are no atoms). The
constraint is preserved because γx1

n,i satisfied it, and the monotone transport map is
optimal for any convex transport cost of x2−y2: if one applies it to the convex function
χKx1−y1

, this proves that if a transport plan satisfies the constraint x2−y2∈Kx1−y1
,

then the same is true for the one induced by a monotone increasing map.
Notice that the whole map Sn,i we are using is measurable since in every ambigu-

ous case we chose the monotone transport map.
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4. Application: c(x−y)=h(‖x−y‖) in R
2

Theorem 4.1. Let µ, ν be probability measures compactly supported in R
2, with

µ≪L2, let || · || be an arbitrary norm of R
2, and let h :R+→R

+ to be a strictly

convex and increasing function. Denote c to be the function c(z)=h(||z||), which is

still a convex function. Then the transport problem

min

{
∫

Rd×Rd

c(x−y)γ(dx,dy), γ∈Π(µ,ν)

}

admits at least a solution which is induced by a transport map T .

Proof. The strategy to prove this theorem is almost the one described in section
2, with the additional trick of bundling together some faces of the convex function
h(||x−y||). The boundary of the unit ball of the norm || · || has a countable number of
flat parts (they are countable since each one has a positive length, otherwise it would
not be a flat part, and we cannot have more than a countable quantity of disjoint
positive length segments in the boundary). We call Fi, with i=1,2, . . . the closures of
these flat parts and we then associate to each face Fi the cone Ki={tz, t≥0, z∈Fi}.

Consider an optimal transport plan γ and a pair of Kantorovich potentials (φ,ψ)
(these objects exist since the cost is continuous). From the general theory of optimal
transport and what we underlined in section 2, φ is locally Lipschitz and if (x,y)∈ sptγ
and x is a differentiability point of φ, then ∇φ(x)∈∂c(x−y). This may be re-written
as

x−y∈∂c∗(∇φ(x)).

We classify the points x according to ∂c∗(∇φ(x)). This subdifferential may be either a
singleton or a segment (it cannot be a set of dimension two because otherwise c would
be affine on a set with non-empty interior, which is in contradiction with the strict
convexity of h). We call X0 the set of those x such that ∂c∗(∇φ(x)) is a singleton.
If, instead, it is a segment, it is a segment of points which share a single vector in the
subdifferential of c. This means, thanks to the shape of c, that it is necessarily an
homothety of one face Fi:

x−y∈∂c∗(∇φ(x))= t(x)Fi(x)⊂Ki(x).

We denote Xi to be the set of points x where ∂c∗(∇φ(x)) is an homothety of Fi.
The disjoint decomposition given by the sets Xi induces a corresponding decom-

position γ=
∑

i≥0γi where γi=γ|Xi×R2 . Each sub-transport plan γi is an optimal
transport plan between its marginals µi and νi, which are submeasures of µ and ν,
respectively. In particular, each measure µi is absolutely continuous.

Consider the optimal transport problem for the cost c. We now build a solution
induced by a transport map by modifying γ in the following way: γ0 is already induced
by a transport map since for every x we only have one y; every γi for i≥1 will be
replaced by a new transport plan with the same marginals which does not increase
the cost, thanks to Theorem 3.4. Since γi sends µi to νi, is optimal for the cost c,
and satisfies the additional condition sptγi⊂{(x,y) : x−y∈Ki}, it is also optimal for
the cost c(x−y)+χKi

(x−y). The advantage of this new cost is that c depends on
one variable only, when restricted to Ki. Actually there exists a new basis (e1,e2)
such that ||z||= z1 for every z∈Ki which is written as (z1,z2) in this new basis (the
direction of the vector e1 being the normal direction to Fi). Theorem 3.4 precisely
states that the optimal transport problem for a cost which is given by a strictly
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convex function of one variable plus a constraint imposing that x−y belongs to a
given convex set admits a solution induced by a transport map, provided the first
measure is absolutely continuous and some γ, φ and ψ satisfying equations (3.2) and
(3.3) exist. This last assumption is exactly satisfied by taking γi and the original
potentials φ and ψ for the problem with cost c from µ to ν, since they satisfied

φ(x)+ψ(y)≤h(||x−y||)≤h(||x−y||)+χKi
(x−y),

φ(x)+ψ(y)=h(||x−y||)=h(||x−y||)+χKi
(x−y) on sptγKi

.
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