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Abstract

The theory of slice regular functions of a quaternionic ahie extends the notion of holomorphic
function to the quaternionic setting. This fast growingdteis already rich of many results and has sig-
nificant applications. In this setting, the present papelei®ted to introduce and study the quaternionic
counterparts of Hardy spaces of holomorphic functions & complex variable. The basic properties of
the theory of quaternionic Hardy spaces are investigatedl jraparticular a Poisson-type representation
formula, the notions of outer function, singular functiaranner function are given. A quaternionic (par-
tial) counterpart of the classical”-factorization theorem is proved. This last result assuangarticularly
interesting formulation for a large subclass of slice ragtilinctions, where it is obtained in terms of an
outer function, a singular function and a quaternionic Bii&® product.
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1 Introduction

The theory of slice regular functions of a quaternionic able (often simply called regular functions) was
introduced in[[22],[[28], and represents a natural quaseinicounterpart of the theory of complex holo-
morphic functions. This recent theory has been growing Yasy. a detailed presentation appears in the
monograph[[211], while an extension to the case of real aitara algebras is discussed n[26]. The the-
ory of regular functions is presently expanding in many aimns, and it has in particular been applied to
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the study of a non-commutative functional calculus, (seesf@mple the monograph [13] and the refer-
ences therein) and to contribute to the problem of the coctstm and classification of orthogonal complex
structures in open subsets of the space of quaternions28pe [

Let H denote the skew field of quaternions. Set {q € H : ¢> = —1} to be the2—sphere of purely
imaginary units i, and for! € S let L; be the complex plan® + R, so that

H:UL,.

Ies

The natural domains of definition for slice regular functi@re calledslice symmetric domain(see [21]).
In this paper we will consider slice regular functions defiloe the open unitbalb = {¢ € H : |¢| < 1},
which is a particular example of slice symmetric domain.

Definition 1.1. A functionf : B — H is said to be(slice) regularif, for all I € S, its restriction f; to
B; = BN L; is holomorphigi.e., it has continuous partial derivatives and satisfies

1,0

forall x + yI € B;.

As shown in [23], if the domain of definition is the open uniflbB of H, the class of regular functions
coincides with the class of convergent power series of ype , ¢"a,,, with all a,, € H.

One of the most fertile chapters of the theory of complex magphic functions consists of the theory of
Hardy spaces. This theory contains results of great sigmifie that led to important general achievements
and subtle applications. In this paper we define the quaieicicounterpart of complex Hardy spaces, and
investigate their basic and fundamental properties. Ofimitien is the following.

Definition 1.2. Let f : B — H be a regular function and ldt < p < +o00. Set

1 2T 10 %
= sup lim (- Pdy
151l =sup tim (5 [ Irtrepan) "
and set

I flloo = sup | f(q)]-
qeB
Then, for anyd < p < +oo, we define the quaternionic Hardy spalié (B) as
HPB)={f:B— H| fisregularand|f||, < 4+o0}.

In Sectior 8 we study the main properties and features ofihegnionicZ”-norms, we motivate the chosen
definition and establish the initial properties of the quaitsnic H? spaces. In Sectidd 4 we investigate the
boundary behavior of functionsin H?(B), obtaining that for almost evety< R, the limit

lim f(re!?) = fi(e!?)

exists for all7 € S and in this case it belongs t6?(0B;). We then investigate the properties of the
boundary values of the-product of two functions, each belonging to soi&(B) space. In sectiofl 5
possible analogues ofiterandinnerfunctions andingularfactors orB are given, whose definitions (when



compared with those used in the complex case) clearly redahe peculiarities of the non commutative
quaternionic setting. Our results here include factoidmaproperties ofH? functions. We are able to
identify the Blaschke factoof a functionf in H?(BB), built from the zero set of; then we can exhibit a
complete factorization result, in terms of an outer, a siaigand a Blaschke factor, for a subclass of regular
functions, namely for the one-slice-preserving functions

The cases ofi?(B) (defined already inJ1]) andi>°(B) are special cases, as in the complex setting.
The Hardy space#l?(B) have been also treated in [3,[4,6, 7], and the spgdee(B) briefly appears in
[6]. The case of Hardy spacés? defined on the half-space is considerediri[4, 7], where thec®f the
reproducing kernels is also investigated. Integral reprtedions of slice hyperholomorphic functions have
been recently studied in [1L7].

The "slicewise" approach has been also usedih[[14, 15, J8p1Bat quaternionic Bergman spaces,
and in [5,10] to introduce and discuss the analogs of BeslogB Dirichlet and Fock spaces. Hardy and
Dirichlet spaces in the more general setting of Clifforduea monogenic functions are studied for example

in [9].

2 Preliminaries

We recall in this section some preliminary definitions arglies that are essential for the comprehension of
the rest of the paper. All these preliminaries are statedhtsake of simplicity, in the particular case of the
open unit ball even if they hold in the more general settinglice symmetric domains. The related proofs
can be found in the literature, and in particularfin][21]. Lstbegin with a basic result that establishes the
connection between the class of regular functions and tes @f complex holomorphic functions of one
complex variable.

Lemma 2.1(Splitting Lemma) If f is a regular function o, then for every € S and for every € S, J
orthogonal to/, there exist two holomorphic functiofsG : By — Lj, such thatforevery = x+yI € By,
we have

f1(z) = F(2) + G(2)J.
We can recover the values of a regular function defineddnom its values on a single slicé; (see

Theorem 2.2 (Representation Formula).et f be a regular function o8 and let/ € S. Then, for all
x +yJ € Bwith J € S, the following equality holds

Pl ) = 3 [f+ )+ —yD) + 5 [fe —yl) ~ fa+yD)].

In particular the functionf is affineon each sphere of the form+ yS contained inB, namely there exist
b,c € Hsuchthatf(x +yJ) =b+ Jc forall J€S§S.

Thanks to the Representation Formula it is possible to piteatewe can estimate the maximum modulus of
a function with its maximum modulus on each slice, ($eé [2B{)the special case of a regular functifn
that maps a slicé ; to itself, we obtain that the maximum (and minimum) modultig & actually attained
on the preserved slice.

Proposition 2.3. Let f be a regular function o such thatf(B;) c L; for somel € S. Then, for any
r+yS CB,
max |f(z +yJ)| = max{|f(z +yI)|, |f(x - yD)l}
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and
min|f(z + yJ)| = min{|f (@ +y1)|, | (= = yD)}.
Holomorphic functions defined on a diBg, in the complex plané ;, extend uniquely t@.

Lemma 2.4(Extension Lemma)Let! € S. If f; : By — H is holomorphic, then setting

£+ yd) = lfaGe +yI) + frle = D]+ T3 a(e = yI) = frle + )]

extendsf; to a regular functionf : B — H. Moreoverf is the unique extension and it is denotedky( f1).

The pointwise product of two regular functions is not, in ge, regular. To guarantee the regularity we
have to use a different multiplication operation, thproduct, which extends the one classically defined for
(polynomials and) power series with coefficients in a nomuouwtative field.

Definition 2.5. Let f, g be regular functions of. Choosel,J € Swith I L J and letF,G, H, K be
holomorphic functions fror®; to L; such thatf; = F + GJ,g; = H + K J. Consider the holomorphic
function defined oif3; by

fr+01(2) = [F)H(z) - GEKE)| + [F()K(2) + GR)HE)| J.
Its regular extensionxt(f; * gs) is called theregular producfor x-produc} of f andg and it is denoted by
fxg.

Notice that thex-product is associative but generally is not commutativs. cbnnection with the usual
pointwise product is stated by the following result.

Proposition 2.6. Let f andg be regular functions of8. Then

Fxglq) = { g(Q)g(f(Q)_1Qf(Q)) :]t ;EZ% 7:é 8 (1)

In particular f * g(q) = 0 ifand only if f(¢) = 0 or f(q) # 0andg(f(q)~tqf(q)) = 0.

The regular product coincides with the pointwise productlfie special class of regular functions defined
as follows.

Definition 2.7. A regular functionf : B — H such thatf(B;) C L; forall I € Sis called aslice preserving
regular function.

Lemma 2.8. Let f, g be regular functions oifs. If f is slice preserving, thefig is a regular function o3
andfxg=fg=gx*f.

The following operations are naturally defined in order tagtthe zero set of regular functions.

Definition 2.9. Let f be a regular function o and suppose that for € B;, the splitting of f with
respect toJ (J € S orthogonal tol) is f;(z) = F(z) + G(z)J. Consider the holomorphic function
ff(z) = F(Z) — G(z)J. Theregular conjugatef f is the function defined by“(q) = ext(f{)(q). The
symmetrizatiorof f is the function defined bf(q) = f * f(q) = f* f(q). Both f¢ and f* are regular
functions orB.




We now recall a result (proven in [29]) that relates the nofra cegular functionf : B — H and that of its
regular conjugate.

Proposition 2.10. Let f be a regular function ofi8. For any sphere of the form + yS contained inB, the
following equalities hold true
max |f(z +yI)| = max|f*(z +yI)| and min|f(z+yl)| = min|f*(z+yI)|.

Before we give the complete characterization of the zerofsetregular function, let us recall another result
in this setting, consequence of the Representation Foffadila

Proposition 2.11. Let f be a regular function of8 such thatf (B;) C L; forsomel € S. If f(x+yJ) =0
for someJ € S\ {+I}, thenf(z + yK) =0foranyK €S.

Theorem 2.12(Zero set structure)Let f be a regular function o. If f does not vanish identically, then
its zero set consists of the union of isolated points anéisdR-spheres of the form + yS with z,y € R,

y #0.

Spheres of zeros of real dimensi@are a peculiarity of regular functions.

Definition 2.13. Let f be a regular function of8. A2-dimensional sphere +yS C B of zeros of fis called
a spherical zerof f. Any pointz + yI of such a sphere is calledgeneratoof the spherical zera + 3S.
Any zero off thatis not a generator of a spherical zero is calledisolated zerdor a non spherical zeror
simply azerg of f.

An appropriate notion of multiplicity, introduced ih [24dif the case of regular quaternionic polynomials,
can be given for zeros of regular functions.

Definition 2.14. Let f be a regular function o8 and letz + yS C B withy # 0. Letm,n € N and
P1s--->Pn €+ yS (Withp; # P, forall i € {1,...,n — 1}) be such that
Fl@)=((g—=2)*+y*)" (a—p1)* (g —p2) %% (g = pa) ¥ 9(q)

for some regular functiop : B — H which does not have zeros:ir4- yS. Then2m is called thespherical
multiplicity of x + yS andn is called theisolated multiplicityof p;. On the other hand, if € R, then we
call isolated multiplicityof f at 2 the numbek € N such that

f(a) = (g —2)"h(q)
for some regular functioh : B — H which does not vanish at

The regular conjugate, and the symmetrization, of a reduitation f onB allow the definition of itsegular
reciprocal f ~* defined orB \ Z;- as

f—* _ (fs)—lfc7
whereZ;- denotes the zero set of the symmetrizatfdn This naturally leads to the definition cégular
quotientof regular functions, for more details sée][21].

Proposition 2.15. Let f andg be regular functions of. If Ty : B\ Z;- — B\ Zy- is defined as
Ty(q) = (@) "af*(a),
then

F=xg(a) = f(Ty(a))"9(Ty(q)) forevery qeB\ Zy-.
Furthermore, I’y andT’r- are mutual inverses so thdt is a diffeomorphism.



Regular Moebius transformations are interesting exangflesgular quotients (seg [30]).

Definition 2.16. A regular Moebius transformatias a regular functionM : B — B of the form
M(q) = (1 —qa)"" = (¢ — a)u

wherea € B andu € 0B.

In particular, these transformations are regular bijectiof the open unit ball onto itself and, by direct
computation, it is possible to prove that they map the bognaithe unit ball to itself.

Proposition 2.17. A functionM is a regular bijection fron to itself if and only ifA is a regular Moebius
transformation.

3 The quaternionic spacedi”(B)

In this section we give a definition of quaternionic Hardysgm The first natural step is to define an
appropriate Hardy-type norm. Lgte (0,+c0), r € [0,1), andl € S. For any regular functiorf in the
unit ball B, let (f7), be the function defined on the unit ciréi®; by

(f1)r(e"?) = f(re'®)
and letM,(fr,r) be the integral mean

i) = (2 [ 1empan)’ = (& [ seeran)” @

—T

If p= 400, setM(f,r) to be defined as

Moo(f,7) = sup |f(q)|

lgl<r
for0 < r < 1 (and|f(0)| for r = 0).

Proposition 3.1. Let f : B — H be a regular function. Then for any< (0, +00) and for any imaginary
unit I € S, the functionr — M, (fr,r) is increasing. Forp = +o0, the functionr — My (f,7) is
increasing as well.

Proof. The last part of the statement follows directly from the Maxm Modulus Principle for regular
functions, [21]. To prove the first part, fixe (0, +oc0) andI € S. We will prove that the function

g:]BI_)Rv g:ZH|fI(Z)|p7

is a subharmonic function, and then the statement will fofimm classical results, see for instance Theorem
17.5in [28]. In order to obtain the subharmonicitygdt), we will first show that

h:Br =R, h:z—=log(|fr(2)]) (3)

is a subharmonic function. Then, singg:) = e?"(*) is the composition of an increasing convex function
with a subharmonic function, we will conclude that alsis subharmonic (see e.g., Theorem 17.27n [28]).



Supposef # 0 (otherwise the statement is trivially true). Thi(x) is an upper semicontinuous function.
Moreover in the sefz € B; | f1(z) # 0} the functions is subharmonic. In fact we have that

Ah(z) = 42 L log(|71(2)]) = 202 2 log(IF()* +1G(=)]?)

whereF, G are the splitting (holomorphic) functions @f with respect ta/ € S, J orthogonal tol. Hence
(omitting the variabler)

(|F'>+|G'1?) (IF]*+1G|?) — (F'F +G'G) (FF' + GG)
(1F]2+1G12)*

Schwarz inequality yields thdi(z) is subharmonic wher¢; is non vanishing. It remains to show that

is still subharmonic in a neighborhood of each zerofpf Recall that the zero set of a regular function

intersected with a slicé;, is a discrete subset df; (see Theoreh 2.12). Then for any zegoof f;, there

exists a neighborhoad; C B; wherez, is the only point wherg vanishes. Hence we have that forall
such thaty + B;(0,r) C Uy the submean property is trivially satisfied

Ah =2 : (4)

1
—00 = h(zg) < —/ h(zo + re’?)dd.
27 JaB,(0,r)
Since this condition implies the subharmonicityrofiearz,, we can conclude the proof. O

Remark 3.2. The previous result is the analogue of the first statemertteofHardy convexity Theorem in
the complex setting, see Theorem 1.51in [19].

Remark 3.3. We point out that, despite what happens in the complex cakerenthe functiorz
log(|g(z)|) is actually harmonic for any non vanishing holomorphic fiimre g, the functioni defined in
equation[(B) is only subharmonic in general. In fAdt = 0 if and only if the vecto( F'(z), G(z)) € (Lr)?,
identified by the restriction of the regular functigp, is parallel to the vectofF’(z), G’'(z)) identified by
the derivative off;. This happens for example if

{ F'(z) = kF(2)
G'(z) = kG(z)

for somek € L;. In this casel” andG are exponential (or constant) functions,

{ F(z) = F(0)e**
G(z) = G(0)er>.
Thanks to Propositiodn 3.1, we can give the following Defoniti
Definition 3.4. Let f : B — H be a regular function. Ip € (0,4o00), for anyI € S, we set
1 v
15l = tim 811 =t (52 [ e )

and

) 1 27 D
WW%WMM4WM%—/INWW@-
Ies 1esr—1- \ 27 Jo
If p = +o00, we set
[ flloo = Jim My (f,r) = lim sup |f(q)] = sup|f(q)].

r=17 |q|<r qEB



Remark 3.5. Notice that|| f|| is the uniform norm off onB. Moreover, if we set forany € S

I f1lloc = sup [£(2)],

z€Br

then we have
[ flloo = sup || fr]|oo-
Ies

The set where the uniform norm is taken will B¢ when considering the restrictiofy (or its splitting
components), an8 when considering the functiofu

Definition 3.6. Letp € (0, +oc]. We define the quaternionic Hardy spaéé(B) as
HPB)={f:B — H| fisregularand ||f]|, < +o0}.

Remark 3.7. For anyp € (0, +oc], the spacdi?(B) is a real vector space. Furthermore if (and only if)
p > 1 the function|| - ||, satisfies the triangle inequality, and hence it is a nornHé(B). Moreover, the
same relations of inclusions that hold for compléX spaces, hold in the quaternionic setting. In fact, for
anyp, g such that) < p < ¢ < +o0, thanks to the classical Jensen inequality we have that

HY(B) C H?(B).
The inclusion is continuous far< p < ¢ < +oo.

In analogy with the complex case, the spat&B) is special. Indeed thzznorm turns out to be induced
by an inner product (sekl[2]).

Proposition 3.8. Let f € H?*(B) and let f(q) = >, -, ¢"a, be its power series expansion. Then the
2-norm of f, -

1

. I 2
I5lke =sup tim (5 [ irre)Pas) "

(o)

n>0

coincides with

=

By polarization we obtain that, for anye S

lim7 i/ g(’rele)f(’l’ele)do = Zaan = <fa g>

r—1- 27 o >0
n=z

that recalls the classic Hermitian product of the spHE€D).

Looking at the definition of complex Hardy spaces, one cowddaer why, instead of the integral mean
M, (fr,7) defined in [2), taken on a circle, we did not choose the clakgitegral mean taken on &
dimensional sphere. In fact consider

N7.1) = (o [ 1@ aoa(r5%) ©



whereos(rS?) is the usual hypersurface measure of shdimensional sphereS?® and 2723 is the 3-
dimensional volume of tha-dimensional sphereS3. If we then set

Np(f) = sup Np(f,7),
0<r<1
it turns out that the class of regular functiofisuch thatV, () is finite does not coincide with the space
HP(B) defined earlier. Indeed, using an appropriate change cilviarin the integral appearing ol (5), it is
possible to prove thav, (f) < ||f]|, for any regular functiorf and anyp € (0 + oo), thus showing that if
f € HP(f)then alsaV,(f) is finite. To show that the two classes of functions do notcidig, it is possible
to exhibit explicit examples. For instance, the function

flg=1-q) "

is such thatV,(f) < +oco but it does not belong té/” (B) for all 2 < p < +o0. This example suggests
us that a definition of a quaternioni€” space that relies upon thé, norm is not convenient. In fact, the
function (1 — ¢)~! has real coefficients, and therefore, its restrictiofo= B N L; is the holomorphic
function f;(z) = (1 — z)~L. Itis well known thatf;(z) does not belong té7?(B;) for all 2 < p < +o0,
hence it would be weird if its regular extension were in thatgunionicl/? space. Recently, a normalized
integral mean o-spheres has been introduced to define a norf 6(B), [8].

Our choice[(R) of the-integral mean allows the slicewise approach to the thebif’ospaces. Let us
begin by studying howj f||,, of a regular functiory is related with the value dff;||, on the sliceL;.

Proposition 3.9. A regular functionf is in H?(B) for somep € (0, o0}, if and only if there exist$ € S
such that| f;||, is bounded.

Proof. Letp € (0, 4+00) and suppose first thtf ||, < +oco. Then trivially, for anyl € S,

fzllp < sup | f1llp = Il £llp < +oo.
IeS

To see the other implication, let € S be such thal|f,||, is finite, and use the Representation Forrula 2.2
to write

p

1
J do

1 =sup tiw o= [ |5 (5e?) + e ) +

—-1- 27 J_ .

(f(’l’ei'w) _ f(,,,eJG))

<sup tim o= [ ( (76 ”>!+\f<re-"9>\+!f<re-J9>!+!f<reJ9>\)) a ()

Jesr—1— 27
1
= lim _/ (|fre?®)] + | f(re="%)|)" db
r—1- 2
where the last integral does not dependloa S. If p > 1, taking into account the convexity of the map
x — P on the positive real axis, we get that
-1

112 < hm ﬁ/ (‘f J")‘p-i-‘f(re_"@)‘p) do = 2P||f1]|h < +oo.

On the other hand, i < p < 1, taking into account the subadditivity on the positive r@ébk of the map
x — P (it is concave and magsto 0), we have

71 < i o [ (1re) " e ) do =t 2 [ e o =2l < +oc,

r—1- T J_ o

9



Letp = +00. On one side, iff is bounded, then for any € S

[f1llec = sup [f1(2)] < sup[f(g)] = [[f|lcc < +o0.
z€Br qeB

On the other side, using the Representation Forfnula 2.24fS is such that| f /||~ < +oc it is easy to
see that
£ loo < 2| fl]oo < +o00.

O

Remark 3.10. In particular, we get thatiff fs||, < +oo for someJ € S, we have the following inequalities

1£lly < [1Fllp < 2211 fallps iTp € 0,1 I1fslly < NIfllp < 211 fllp, i p € [1,400].

The key fact that allows us to apply classical results to gitieg components of a function if/? (B)
is the following.

Proposition 3.11. Let f € H?(B) for somep € (0,+oc]. Then for anyl € S, if the splitting of f on L;
with respectta € S, J L I,is fi(z) = F(z) + G(z)J, then the holomorphic functiorfs and G are both
in H?(By).

Proof. LetI € S and consider, for any € By, the splittingf;(z) = F(z) + G(z)J. Then, for any: € By,

[f1(2)] = VIF(2)]2 +]G(2)]? > max{| F(2)], |G(2)[}. (7)

Hence, fop € (0, +o00),

1" 1"
+m>W%:g¥—/‘ﬁW%VMZMn—/]ﬂm%ﬁwﬂW%

2T r—1- 21
and analogously-co > || f||2 > || f1|[5 > ||G|[E. Forp = +oo, formula [7) directly implies that
1Flloo < If1lloc < Iflloc <400 and [|Gllec < [|filloo < [[f]loc < +o0.
O

Notice that Remark=3.10 and Propositlon 3.11 imply that,dbp € [1, +oo], the spaced?(B) is a
Banach space.

The natural guess that if a function is#f (B) then its regular conjugate is H?(B) as well, is in fact
true.

Proposition 3.12. Letp € (0,+o0] and letf € HP(B). Then also the regular conjugat belongs to
HP(B).

Proof. If p = +oo the proof follows directly by Propositidn 2110. Consideettlp € (0, +oc). For any
I €58, if fsplitsonB; as f(z) = F(z) + G(z)J, then, recalling Definitioh 2]9, we get that on the same
slice f¢ can be written as L

fi(z) = F(z) = G(2)J.

10



Therefore, fol) <r < 1,

/ F(re—19) — G(rew)J‘p de = %/ (‘F(re‘”)‘2 + ‘G(rew)]?) ’ de.

-7

1

T

My (ff,m)"
If 0 < p < 2, thanks to the subadditivity on the positive real axis ofrti@px — 2P/, we get

1 U

My(ff,1)" < 5= /_ (}F(re—w)‘p + |G(re”’)\”) 0 = M, (F,r)P + M, (G, 7).

Propositio 3111 yields that both andG belong toH?(B;), hence

151l = Tin My(f5,m)P < Tim (My(F,r)? + My(G, 1)) = [|FIlg + 1G] < +oc

r—1-

and therefore we obtain thit(¢) € H?(B).
If 2 < p < +oo, thanks to the convexity of the map— =P/, we can bound/,(ff,r) as follows

c 2%_1
My(ffr)P <

| ([T 4 [6tet®) ) do = 25 (0, (.7 + My (G ).
Hence, as before,

£ < 227 (IIF[IE + [|G[) < +oo,
which concludes the proof. O

For the symmetrization of a function iE?(B) the following result holds true.

Proposition 3.13. For anyp € (0, +o0), if f € HP(B), then the symmetrizatiof® € H % (B). Moreover if
f € H>(B) then alsof* does.

Proof. Let f € H?(B) for some0 < p < +oc. Foranyr € [0,1), 1 € S (such thatf (re!?) # 0) we have
[fo e )| = [ fx fore'®)| = [f(re!®) Fo(f(re!®) el f(re!®)| = | f(re!?) fo(re”)]
for someJ € S. Hence, recalling Propositién 2110,
2 2
[£2(re™®)]| < sup| f(re’)| sup [ £<(re”?)| = <sup \f(re“’>|> = |feRtrm)] ®)
IesS JeSs IesS

for a suitableK (r, #) € S which depends on, § but does not depend dn(sinceS is compact). For such a
K(r,0) inequality [8) implies

2 (" z 1 [" - p
My(fr)E = oo [ 1P| e < _/ FreK 000" ag.

T 2r ).
Let now L be any (fixed) imaginary unit independentig{r, ). Thanks to the Representation Forn{uld 2.2
we can write

K(r,0)L

K(r,0)0y _
f(re ) 2

(f(re®) + flre™ ™)) + (f(re™t) = f(re™)),

N =
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and hence we have

My (f7,m)% < i/” (|(Fre™®)] + | f(re=P8)|)P do.

2 J_,
Then, ifp € (0, 1), we get that
My (f7,r)% < 2||follf < 21} < +oo,
andifp € [1, +00), we get that
My (f3,r)% < 2| frlll < 2°|If |15 < +oc.

In both cases, taking the limit for — 1~, and the supremum ih € S, we get thatf® € Hz (B).
Ifinsteadf € H>(B), we observe that inequality](8) directly implies that, foya € B,

[f*(@)] < sup[f(g)]* = [|f]]%
qeB

The Holder inequality leads to the following result conéegthex-product of regular functions.

Proposition 3.14. Letp, ¢ € [1, +oc] be conjugate exponen%s+ % =1.If f € H?(B) andg € H(B),
thenf g€ H'(B)andg* f € H'(B) .

Proof. If f = 0 (or g = 0) there is nothing to prove. Otherwise, let us consider tlse ¢a whichp, ¢ €
(1,400). Fix I € S. Forallr € [0,1) andd € [, «) such thatf (rel?) # 0, set

J(r,0) = (f(re'®) ' If(re®) € §
so that recalling Propositidn 2.6 we can write

I g(re®) = fref®)g(re’ 07, (9)
The functiong can be represented as

o(re” %) = Lglre®) + g(re=1")) + LD (g(re19) — grety)

and hence, using the convexity of the functiors x? for x > 0 (sinceq > 1),
l9(re” %)% < 297 (g(re" ) + [g(re™"")[%). (10)
Now, using the Holder inequality and equatidnis (@)] (10) Ww&am

L[ 16 I 10 (1" J(r,0)0 7
il < (— P il 7, q
5 | 1reatet®lan < (5 [ iseypas)” (5 [ latre? ) ras)

—T

1 T 1 2q T 1 (11)
< [ — 10\ |p L 16y|q q
< (52 [ ireerypan)” (5 [ latreryan)
which leads to
1S * gl < 2[[fllpllgllq < oo
For the remaining cases & 1, ¢ = +o0o andp = +o0, ¢ = 1) the proofs follow the same lines. O

Corollary 3.15. Letp € [2,+o0]. If f andg belong toH?(B), thenf x g € H!(B) andg * f € H*(B) .

Proof. If 1 +% = landp > 2,thenl < ¢ < 2. ThereforeH?(B) C H(B) and henceg belongs taf ¢(B).
Theoreni.3.14 leads to the conclusion. O
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4 Boundary values of regular functions

A very important result, that in the classic case is quit@tadus to reach, states that all functiongHift (B)
have radial limit along almost any ray.

Proposition 4.1. Let f € H?(IB) for somep € (0, +o0]. Then for anyl € S, the limit

lim f(rel?) = f(e'?)

r—1-
exists for almost every € [0, 27).

Proof. Let I € S. Write the splitting off onB; as f;(z) = F(z) + G(z)J, then Proposition 311 yields
that the holomorphic functiong andG are both inH?(B;). Classical results in the theory éf? spaces
(see e.g.[[27]) yield that the radial limits

lim F(re!®) = F(e'?) and lim G(re'?) = G(e!?)

r—1- r—1-

exist respectively for almost evefyand for almost every. Therefore the radial limit

lim f(re!®) = lim (F(re!?) + G(re!?)J) = F(re'®) + G(re'?)J = f(e'?)

r—1- r—1-
exists for almost everg§ € [0, 27). O

Remark 4.2. The previous result is slightly stronger than its complexrderpart: in fact, iff € H?(B) for
somep € (0, +o0], then oneachslice, the radial limit off exists along almost any ray.

From now on, we will denote by the radial limit of a functionf & HP(B). As it happens in the
complex case, the functiohis measurable oaB.

Proposition 4.3. Let f € H?(B) for somep € (0, +o00]. Then for almost ever§ € [, ), the limit

lim f(rel?) = f(e'?)

r—1-
exists for everyl € S. Namely, the radial limit off exists at all points of the spheresf + (sin)S
(contained in the boundary @) for almost every € [—, 7).

Proof. Choosel, J € S and use the Representation Formulasfor

JI

f(re’) = ;

[f(rew) + f(?“e_w)] + [f(re_w) - f(rew)} )

N | =

fle’?) =

Since for almost ever§ € [, 7) the radial limit f exists both at’? and ate—!?, then formula
1
2

[F() + Fle)] + 2 [fle™®) — fle™)].
leads to the conclusion. O

Moreover, we will show that radial limits of a (non identilyatero) function inH?(B) can not vanish
on a subset of positive measure of the boundary of the ball.

13



Proposition 4.4. Let f € H?(B) for somep € (0,+o0], f # 0. Then, for anyl € S, for almost every
0 € [—m,m), .
lim f(rel?) = f(e'%) #0.

r—1-

Proof. Choose any/ € S orthogonal tol. If f splits onB; as f;(z) = F(z) + G(z)J, then the splitting
component$’ andG are inH?(B;) and (thanks to the Identity Principle for regular functipsese [21]) at
least one of them is not identically vanishing. Supposefhat 0 onB;. The classical result stated, e.g., in
Theorem 17.18[[28], yields théin,_,, - F(re!?) = F(e!?) # 0 for almost every € [—, ). Thanks to
the orthogonality of and.J, we easily conclude that for almost evéhg [—7, 7),

F(e1%) = F(e'?) + G(e'?)T # 0.

This easy consequence of the previous result will be usdtkisequel.

Remark 4.5. If f € H?(B) for somep € (0, +oc], f # 0, we have that for any € S and for almost every
6 € [—m, ), there exists, > 0 such thatf (re’?) # 0 for all r € [rg, 1).

Let us define thes-product and the«-inverse for radial limits. To this aim we prove the followin
statement.

Proposition 4.6. Let f € H?(B), f # 0, andg € H4(B) for somep, ¢ € (0, +00], and letf andj be their
(almost everywhere) radial limits. For arfy< S, for almost every) € [—7, 7),

tin £ glre!®) = F(e")G(F(e) el F(e!?)),

Moreover, for anyl € S, we have thatim,_,,— = x g(re!?) exists (possibly infinite) for aimost every
0 € [—m, ), and when finite,

lim f=*xg(re’®) = F(fe(e!?) el fo(e!) T G(fe(e) e fo(e).

r—1-

Proof. Propositiol 4.4 yields that jf is not vanishing identically, then for ardyc S, f(e”’) # 0 for alImost
everyd € [—m, ), and the same holds fg. Set

T(q) = f(a) " af(q).

Thanks to Remark 4.5 (re’?) = f(re!?)~1rel? f(re!?) is well defined for anyl € S, for almost every
0 € [—m, ), and forl — r sufficiently small. Moreover the radial limit

lim T(re'®) = f(e') "'l f(!?) =: T(ew)

r—1-
exists for anyl € S and almost every € [—x, 7). Given anyl € S, if f(rel?) # 0 setJ(r,0) =
f(rel®)=11 f(rel?) € S; then, for almost every the radial limit

lim J(r,0) = J(6)

r—1-

exists and belongs t. Hence we can write

T(e!?) = lim T(re!?) = lim (rcos® +rsind(f(re’®) ' If(re’®)) = cos6 + (sin 0).J(0) = O

r—1- r—1-

14



Using the Representation Form[lal2.2 twice, for almostye#eve can write

lim g(T(re’®)) = lim (g(re’9%))

- i
=t (G o0e) + gtre) + 2 glre 1) - (e )
= %(g(e“’) +9(e") + N(Z)I ((e™") = g(e™))
= lim (—(gwew) +glre ) + L O (g re=ro) g(rew»)
= lim g(re” @) = j(e”®) = §(T(e")).

Hence, recalling Propositién 2.6, we have

lim fxg(re’) = lim f(re'®)g(T(re')) = f(e')3(T(")).

r—1- r—1-

The same arguments apply also to the proof for the regularenio O
We are now ready to give the announced definitions.

Definition 4.7. Let f € H?(B) andg € HY(BB) for somep, ¢ € (0, +oc]. ForanyI < S, for almost every
0 € [-m, ), let f(e!?) andg(e!?) be the radial limits off andg. We define the-product off andj as

f*g(e”’) = lim f*g(re?)
r—1-
for almost every. If moreoverf(e!?) # 0 at all pointse’” where it is defined, then we can define the
x-quotient off andg as

o g(e”) = lim f~"x g(rew)

r—1-

for almost every. In particular, if g = 1, we obtain the definition of theinverse off.

Thanks to the existence of the radial limit it is possible Ibtedn integral representations for functions in
HP(B) forp € [1, +o0].

Theorem 4.8.1f f € HP(B) forp € [1, +oc], then, foranyl € S, f; is the Poisson integral and the Cauchy
integral of its radial limit f;, i.e.,

f] (7‘610) 1 /7" 1-— 7‘2 f] (eft)dt

T or _x 1 —=2rcos(0 —t) +r?
and ) %
fr(z) = 5= - C_ZfI(C)-

Proof. The proof is an application of the corresponding resultshf@omorphic functions to the splitting
components of. O

Our next goal is to show that, for apye (0, +0o0], the radial limitsf; of the restrictions of a functioyi
in H?(B), areL? functions on the circléB;.
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Definition 4.9. Letg be a (quaternion valued) function defined (almost everyg)h@ndB; and such that
|g| is measurable. Ip € (0, +o00) we set|g||.» to be the integral mean

1

1 (7 »
lallr = (5= [ lateryras)”
™ —T

[lg||n =ess sup |g(e
oc(—m,m)

If p = +o00, we set

For anyp € (0, 4+oc], we denote by.?(9B;) the standard.” space,
LP(0Br) = {g: 0By — H | |g| is measurable and|g||» < +o0}.

Let us now point out that, iff7),(e’?) = f(re!?), then

0ler = (5= [ e pas)” = g

—T

forallr € [0,1)and alll € S.

Proposition 4.10. Let f € H”(B) for somep € (0,+0c). Then, for anyl € S, f; — (f1), belongs to
L?(0B) and .

lim |[fr = (f1)rllLr = 0.

r—1

Proof. An application of the analogous result in the complex case{heorem 2.6 iri [19]) to the splitting
components of; leads to the conclusion. O

Now we are able to prove the desired result.

Proposition 4.11. Let f € HP(B) for somep € (0 + oc]. Then, for anyl € S, the functionf; : 9B; — H
defined for almost evey € [0, 27), by

f(e'?) = lim f(re),

r—1-
does belong td?(0B;) and .
el = [ f1llp-
Proof. The proof is a direct consequence of Proposifionl4.10 anthefPoisson integral representation
stated in Theorein4.8. O

5 Factorization theorems

In the classical setting it is possible to decompose a hotphiofunction inH? (D) into itsinnerandouter
factors, see Chapter 5 6f [27]. The quaternionic countésae defined as follows.

Definition 5.1. A regular function® € H'(B) is anouter functiorif for any f € H'(B) such that £(q)| =
|f(q)] for almost any; € 0B, we have

|E(q)| > |f(q)] foranygq € B.
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In the complex setting, the definition of outer function cargiven equivalently in terms of a never-vanishing
holomorphic function, expressed by means of an integrabssmtation (se¢ [27], Chapter 5). This corre-
spondence fails to be true for regular functions, since imega we can not reproduce the same construction.

Definition 5.2. A regular functionZ € H>(B) is aninner functionif |Z(¢)| < 1 for anyq € B and
|Z(¢q)| = 1 for almost any; € JB.

We recall that, in the complex setting, each inner functian be factored into a product of two distinct
types of inner functions, namelyBlaschke producand asingular function Let us define the quaternionic
analogues of singular functions, and then study the anabgiiBlaschke products.

Definition 5.3. An inner functionf € H>(B) is asingular functionf f is non-vanishing oii.

In the complex setting there are two possible approachéetfattorization of ati{? function (compare
[19,[27]). The first one is to begin by the extraction of thespdiaictor, thus obtaining the inner one. At this
point, extracting the zeros one separates the Blaschkeipradd the singular part. The other possibility is
to start with the extraction of the zeros, thus identifyihg Blaschke product, and then separate the outer
factor from the singular one. In the quaternionic settingce we can not reproduce the construction of the
outer factor, let us begin with the extraction of the zeroa fifnctionf in H?(B) for p € (0, +o00].

Thanks to the characterization of the zero set of regulastfons (see Theorem 2112), recalling Definitions
213 and 214, we can build a sequence representing theafefos

Definition 5.4. Let f be a regular function.Theequence of zerax f is a sequencéa,, },cn, contained in
the zero set of, composed as follows: the isolated zeros are listed acogrth their isolated multiplicity;
the spherical zeros are represented by any element thatrageisethe2-sphere of zeros together with its
conjugate, listed according to their spherical multiptici Namely, ifa; generates a spherical zero (not
containinga,_1) with spherical multiplicity2m, thenag, o, = ay andagyop+1 =aeforallk =0,...,m—

1.

In analogy with the complex case, we can give the following tlefinitions (previously introduced inl[2]).

Definition 5.5. Leta be a point inB. TheBlaschke factoassociated withu is the regular Moebius trans-
formation defined as

M,(q)=(1—qa) ™ *(a— q)ﬁ ifa#0, and M,(q)=q ifa=0.
Definition 5.6. If {a,, },en IS a sequence of points i such that the infinite regular product
B(g) = [ Ma.(q)

n>0

converges uniformly on compact subset&pthen B is calledBlaschke productand it defines a regular
function onB (see [21]).

Quaternionic Blaschke products are also treatedlinl[B] 4BW¥schke products are examples of inner
functions.

Theorem 5.7. Let
B(g) = [ Ma.(q)

n>0

be a Blaschke product. ThéB(q)| < 1 for anyq € B and|B(q)| = 1 for almost any; € JB.
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Proof. Fork € N consider the finite (regular) produBt;,

k k

B (q) = H Man (q) = H Man (Tn(q))v
n=0

whereTy(q) = ¢ andT} is defined iteratively (outside the zero seti®f 1), in view of Propositiof 216, by

-1 o -1 o
@=(ﬁﬂ%@0 qﬁﬂ%ww:OIMA@@O g [ Ma, (1))
j=0 j=0

=0 =0

forany?¢ = 1,...,k. Since|T,(q)] = |gq| < 1 for anyq € B and since each factav/,  is bounded in
modulus byl onB (see Proposition 2.17), we get that we can bound each firotupt,

|Bk |—H|Man n( |<1

Thanks to the uniform convergence on compact subsets ofrite firoducts taB we get that
|[B(q)| <1 foranyq € B.
HenceB € H*>(B) and therefore for any € S, for alimost any € [—, ) there exists the radial limit

lim B(re'?) = B(e'?).

r—1-
The same clearly holds true for any finite prodit € H>°(B). For anyk € N, the following regular
function

By*«B(g)= [ Ma.(q

n>k+1
is a Blaschke product (and hence a bounded regular funeiwah)

lim B, "+ B(q) =1

k—o00

uniformly on compact subsets Bf Observe that, for any € N, the finite regular produds;, (as well as its
regular conjugatéy) is regular up to the closure @. Moreover, bothB,, and By, only have finitely many
zeros in the interior oB. Hence (see Propositién 2]15) the function

7(0) = (Bi(0)) " ¢Bi(q)

is a diffeomorphism of a neighborhood (for instance a splaéshell) ofoB onto itself, it maps the boundary
of B onto itself and it has inverse given by

7% (@) = (Bi(9)) ' ¢Bx(q).
LetI € S. Proposition 2.T5 yields that we can write

o Lo )
o _F‘Bk *B(Tkl(rew))‘dez %/_F‘Bk(rew)‘ 1|B(T810)‘d9
1 /7 B
<gp | (pamex |Bulre™)[7)|B(re!?)]do.
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SinceBy is a finite Blaschke product, it map® to itself and
lim ‘Bk(rem)’ = ‘Ek(em)‘ =1,
r—1-
for any6. Hence, for any > 0 there exists:(¢) such that for any () <r < 1

max |Bk(7°ew)|_1 <l+e.
oc[—m,m)

Therefore, for any > 0 there exists: sufficiently close tal such that

L - —1(,. 10 l+e [T 10 Lte [T 5 16
o _F|Bk * B(r ' (re'”))]dd < o / |B(re'”)|do < 5 [B(e!)|do <1+¢  (12)

—T -7

where we use PropositiGi 3.1 and the fact that|,~ = ||B|- < 1. Set

Ji(r,0) = (Bk(rew))_llBk(rew) €S,

so that
7t (re!?) = rcosf + (rsin)Jy(r, 0).
Using the Representation Form[lal2.2 we can then write
|B;* * B(T;l(’f‘ele))‘ = |B,§* * B(re‘]’“(r’e)e)|
r,0)I

— '%(Bk_**B(rew)—i—Bk_**B(re_w)) + %

SinceBy, is a diffeomorphism of (a neighborhood @fB onto itself, we get that for everythe limit

lim Jk(T, 6‘) = jk(e)
r—1-

(By**B(re %)= B; *«B(re'?))|.

exists. Hence, recalling Proposition 4.6 and #.11, applyivice the Representation Form{lal2.2, we get
1 ™
lim 2—/ |B, " * B(Tk_l(rew))‘cw

1 (™1

2
~ (B ** B(re')+ B, * * B(re_w))

I 1 /7r 1
= 1nam —
r—1- 27 - 2

(E,;**E(ew)-kékf**g(e—w)) n jk(@)[

(E;**E(e_w)—f?;**é(ew)) ‘db‘

—T

Ji(0)I
2

+ (By* * B(re %) — B, * « B(re'?)) ‘d@

K

1 j L M5 5
= lim — ‘B;**B(re‘]’“(e)e)|d9:2—/ |B;**B(7~'I;1(ew))|d9
™ TJ—n

r—1— 27 J_

where7, ' is the radial limit ofr, ' (see Proposition4.6). Recalling inequalliyl(12), we getithat for any

e>0

1™ o~ =~ 1 "
5 | 1B B ) las = i o /_F |B* = B(ry (re!®))|d6
- 1+e

< 2W/ |B(e")[d6 < 1+e.
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Now we want to take the limit fok — +o0o of the previous inequality. For almost evetythe limit

: ~— 0 : n oL 10 0 B 10N\~ 10 73/,10 ~— 0
Jim A7) = lim (Br(e!®) e Bul(e!?) = (B(e")) el B(e!) = 771"

does exist and it coincides with

lim 7, '(e!%) = lim (cos@ + (sinf)Jy(0)) = cos@ + (sin6).J(6),

k—+oo k——+oo
which implies thatfk(e) converges for almost everyy Using again the Representation Forniuld 2.2, we
have then that
lim |B; "+ B(7, ' (e!?))

k—+oo

= i | (BB By e B ) + MO (B« Ble 1)~ By« B(e))|
—+00

Recalling thatB,_* * B converges uniformly on compact sets to the function cotigtagual tol, and that
Ji(9) converges, we obtain
lim |B.**B(7, (") = 1.

k—+oo

Therefore we get that, for any> 0,

k——+o0 27 2

1 ("~ =~ 1 L.
1= lim _/ |B,* + B(7, (")) |do < +€/ |B(e'?)|do <1 +e,

that finally implies .
‘B(el‘g)‘ =1
for almost every.
O

In order to show that the sequence of zeros of a funcfiom H?(B) is such that the Blaschke product
associated with it is convergent, we will use classical lissn the theory of compleX/? spaces, that apply
to the symmetrization of.

Remark 5.8. Recall that the symmetrizatioft® of a regular functiory’ behaves exactly as a holomorphic
function on any slicd.;. Hence, iff* is in H?(B) (and therefore irf?(B;)) for somep € (0, +o0], and
f* # 0, classical results (see e.g. Theorem 15.237nh [28]) yiedd, i {a’ },,>¢ is the sequence of zeros of
f*in By, listed according to their multiplicity, then the Blaschd@ndition

> (= ah) < +o0
n>0

is fulfilled.

Consequently,

Proposition 5.9. Letp € (0,+oc], f € HP(B), f # 0 and let{b, },en be its sequence of zeros. Then
{bn } nen satisfies the Blaschke condition

> (1= b)) < +oo.

n>0
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Proof. Let us consider the symmetrization 6f £°. Thanks to Proposition 3.1.3 and Remfrkl 5.8, for any
I €S, if {al},en is the sequence of zeros ¢f onB;, then it satisfies the Blaschke contidion.bjf =
bin + banly, letus sebl = by, + by, I foralln € N. Then|b,| = |bZ| for all n € N, and{b. },.en C
{al},en. Therefore (recalling that’ | < 1)

D=y =Y (= 1bnl) <D (1 lah]) < +oe.

n>0 n>0 n>0
O

The previous result implies that the Blaschke product litoln the zeros of a regular functighe H?(B)
for somep € (0, +o00] does converge uniformly on compact sets (compare With [2]).

Proposition 5.10. Let f be in H?(B) for somep € (0, +oo| and let{a, },>0 be its sequence of zeros. If
M, (¢) denotes the Blaschke factor associated with

M., (Q) =(1- qﬁn)_* * (an — q)—
(M,, (¢) = qif a,, = 0), then the Blaschke product

B(g) = [ Ma.(q)

n>0
converges uniformly on compact set®ofMoreover, the functiom® is regular onB.

Proof. In [21] the convergence of infinite quaternioricproducts of regular functions is presented in detail.
In particular the convergence &f(¢) is equivalent to the convergenceXf, -, |1 — M, (¢)|. With this in
mind, the proof can be found ihl[2]. - O

We point out that the convergence Bfg) depends only on the modyti,,|, n € N. This means that we
can build a Blaschke produét(q) having exactly the same sequence of z€los}, <y Of @ given regular

function f € HP?(B) (see also[][2]). In fact, in order to build such a Blaschke pmcﬁ(q), we have to
consider the product of Blaschke factors associated witalde conjugates of the points,, lying on the
same2-spheres:,, + y,,S generated by, taking into account Propositién 2.6.

Proposition 5.11. Let {a, } nen be the sequence of zeros of a regular functioe H?(B) for somep €
(0, +oc]. Then there exists a Blaschke prodiifly) having the same sequence of zeros.

Proof. We will give the proofin the case in which all the zeros (bathlated and spherical) have multiplicity
1. In this case, we can assume, without loss of generality,dha a;, for all j, 5 € N. Our aim is now
to build a sequencgh,, }.cn, where each,, is a conjugate ofi,,, such that the Blaschke product associated

with it R
B(g) = [ M. ()
n>0

has{a, }cn as its sequence of zeros. The convergence of the Blaschétegiiis guaranteed by Proposition
[E.T0. Since the regular multiplication does not conjugagezieros of the first function in theproduct, the
first term of the sequence will be equaldg,

bo = ag.
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For the second term, we need to filndsuch that

by

My, (q) * My, (q) = May(q) * (1 — gby) ™" % (by — Q)W

vanishes af = a;. Notice that, for any: € N,

(1= qbr) ™" * (bx — q) = (br — q) * (1 — gbx) ",

because ~ ~
(bk — q) % (1 — gbr) = (1 — gby) * (bx — q).
Hence

My, (q) * My, (q) = Mo, (q) % (b1 — q) (1 — qz—,l)f*lb_il

and, thanks to Proposition 2.6, we can write

Mbo (q) * Mbl (q) = (Mao (q)(bl -1 (q))) * ((1 - qzl)_*%) )

where
T1(q) = (May(q)) " aMay(q).

Therefore, if we want that this product vanisheggtwe can set
by =Ti(ar),

well defined since; # ag. We can iterate this process, setting, for any 1,

so that

k=0 k=0
n—1 B
- (( 1 1, <q>) (b Tn<q>>> (=g
k=0 n
Hence, if we want that
n—1
< * Mm(f])) * My, (q)
k=0
vanishes a = a,,, we have to set
bn - Tn(an)a

well defined since:,, # a,,_1. In the case in which some of the zerosfofiave multiplicities greater than
1, the proof follows the same lines; one has only to take intmant that:

22



1. to each isolated zerg of f of multiplicity p > 1 there corresponds the (regular) power of a Blaschke
factorM;]?(q) which vanishes &i; with multiplicity p;

2. to each spherical zero gfcontainingay, @, and having multiplicityp > 1 there corresponds the slice
preserving facto( My, « Mg, (q))*? = (Mj; (q))".

O

Remark 5.12. Since we transform the zeros @fby conjugation, all real and spherical zerosfoére not
modified by this process.

We can now prove our first result in the direction of finding etéaization for functions inf7? (B).

Theorem 5.13. Let f € HP(B) for somep € (0, +o0]. Then we can factof as

fla) =h+g(q)
whereh andg are regular functions of® such thath(¢q) # 0 for anyq € B andg is a Blaschke product.

Proof. As in the proof of Proposition 5.11, we give the proof for these in which all zeros of have
multiplicity 1 and the sequence of zerfs, }..cn Of f is an injective sequence. Let us split the sequence of
zeros as

{an}neN = {O‘n}neN U {Bn}neN

where{a, } ,en is the sequence corresponding to spherical zeros, Whilé,. < is the sequences of isolated
ones. Sinc€«, e is contained in the sequence of zeros of the funcfipdearly

S0 ) < 370 fau]) < +oo.
n>0 n>0

Hence the Blaschke product associated With },,cn
Ba(q) = H Ma, (q)
n>0

converges uniformly on compact sets thus defining a reguihentfon, vanishing exactly at the spherical zeros
of f. The functionB,, (¢) is slice preserving, in fact it contains only factors of thee M, * Mz, = M, .
Let f5(q) be the function defined as

f8(q) = By * f(q) = Balq) ™' f(q),
so that we can write
f(q) = Ba(q)fs(q)-

Since the poles oB, * are spherical zeros df, thenf; is regular orB and its sequence of zeros coincides
with {3, }».en. The idea is now to “make spherical” all the zerosfef In order to do it, we want to find a
Blaschke producBE such that

fa = Bz(q)
vanishes at all spheres generated By },<n, namely such that the sequence of zerogof B5(q) is

{ﬁmﬁn}neN-
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We can buildB; following the lines of the proof of Propositign 5]11. If

Bs(q) = [{ M. (),

n>0
we can define the sequenge, }..cy iteratively as follows. The first quaterniomy, is such that

fax My (q) = fa* (o —q) x (1 —q70) " %

vanishes a = 3, and atg = 3,,. Sincef;s vanishes ay = 3, and f does not vanish at = 3,, if Ty is
defined as

To(q) = (f5(a) " afs(a),

then we can write

Firs Mool = (75(@) o = Toa) (1= 770) ™" 2.

Hence, if we set

Y0 = To(Bo),
we have that

fs* M,, (9)

vanishes both at = 3, and atg = 3,. As we have done in order to prove Proposifion .11, we caatée
the process, setting, for amy> 1,

SinceT,, is well defined orﬁn, if we set _
Tn = Tn(ﬂn)
we get that
n—1
<fﬂ * H M'Yk) * M'Yn (q)
k=0

vanishes both at = 3, and aty = j3,,. The convergence of the infinite prod@ﬁ(q) is guaranteed by the

fact that it is the Blaschke product associated with the sece{T,,(3,,) }.cy Where each elemefit,(3,,)
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has the same modulus 6f,, and eachs,, is contained in the sequence of zeros of a functiof/it{B).
Hence

fa = Bz(q)

is a regular function that has only spherical zeros, anceigience of zeros i§3,,, 3,, }nen. Therefore, if

we set N
Bala) = T (M5, + M5 ) (@) = T] M3, (a),
n>0 n>0
then we can write B B
fs * Bg(a) = Bg * h(q) = Bg(q)h(q), (13)

for some functiom, never vanishing and regular @ To prove the regularity of, it suffices to observe
that sinceBg has real coefficients, it is regular and it has exactly theesaetos offs x Bz(q), then the
regular quotient

By* s (fs % Bg)(a) = (Bs(9) ™" (f5 * B3)(q)

is well defined (and regular) on the entire Hall Consider the regular conjugateﬁyg, andx-multiply on
the right byB% all terms of equality[{113). We obtain

fp * By x B5(a) = Bg(a)h * BS(q),

that can also be written as N
Bi(a)fs(q) = Ba(a)h * Bg(q).

Now notice thatB%(q) = f}ﬂ(q) because they both are Blaschke products associated tortieesgdnerical

zeros. Therefore we infer
fa(a) = h* B5(q),

that, for f, means
f(q) = Ba(q)h * B5(q) = h* Bo x Bg(q).

Settingg(q) = By * B%(q) leads to the conclusion of the proof. O

Once “extracted” the zeros of a function ifi*(B), we would like to identify its outer factor and its
singular part.

Proposition 5.14. Let f € H?(B) for somep € [1,+oc] be such thatf —* € HY(B) Where% + % =1.
Thenf is an outer function.

Proof. Letg € H”(B) be such thalj| = | f| almost everywhere ofiB. The regular functiom = f~* x g
belongs toH *(B) thanks to Proposition 3.14. Therefore recalling ProposE.6, we get that for almost
everyd € [—m, ),

lim |h(7’619)| = lim [f™* *g(rem)|
r—1- r—1—
= |f(fe(e®) el Fe(e) M g(Fe(e!) et Fe(e!”)).
Sincef andg coincide almost everywhere at the boundary, we get thatifoost every € [—7, 7),

lim |h(re’®)] =1.

r—1-
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Therefore the Poisson integral representation formulaaguees that
Ih(g)] <1
for anyq € B. With the same notation of Propositibn 2.15, we obtain thaafl ¢ € B

1> | = g(a)| = |£(Tr(@)| " g(Tr(a))l.

Sincef~* € HY(B) then f has no zeros andfl; is a diffeomorphism 0B, yielding

l9(a)] < |f(q)
for anyq € B. We thus conclude thatis an outer function. O

Remark 5.15. In the case of a regular functigh : B — H that is continuous and non-vanishing up to
the boundary of3, the previous result implies thgtis an outer function (sinc¢ and f—* both belong to
H>(B)).

For regular functions that preserve a sliEg, the factorization can be done in a stronger and more
satisfactory fashion, that very much resembles its compbexterpart.

Theorem 5.16.Let f € H?(B) for somep € (0, +o0], be such thaf mapsB; to L; for somel € S. Then
we can factorf as

flg) = ExI(q),

whereE is an outer function ini/? (B) such that | = | f| almost everywhere on the boundaf andZ is
a inner function.

Proof. The restriction off to B; is a (complex) holomorphic functiofi; : B; — L; mappingz — f1(2).
Let us define the functiof’; : B; — L to be

T 16
Ez(z)zexp(i/ ‘ +210g|FI(619)|d9>7

21 J_ el — 2

namely the outer factor of;. From factorization results in the complex setting, (sadrfstancel[27]), we
know that we can write
F] (Z) = E](Z)I](Z)

whereZ;(z) is the inner factor of7. In particular, since bot; andZ; mapB; to L;, we can also write
F[(Z) = E](Z)I](Z) = E[(Z) *I](Z)

Hence
f(q) = ext(f1)(q) = ext(F1)(q) = ext(Er * I1)(q) = ext(ET) * ext(Z)(q)

where the last equality is due to the Identity Principle fegular functions,[[21]. Let us sdf(q) =
ext(Fr)(q) andZ(q) = ext(Zr)(q). SinceE;(z) # 0 for all z € By, Propositiof 2111 yields that also
E is never vanishing of. To estimate the modulus &, recall that a function that maps the sli€e to
itself has the following properties (see Proposifiod 2.3)

max |Z(z +yJ)| = max{|Z(z + yI)|, |Z(z — yD)I} = max{|Zy(z +yD)|, [Tr(z —yD)}  (14)
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and
min |Z(z +yJ)| = min{|Z(z + yI)l, |Z(z — yI)|} = min{|Zr(z +yI)], [Zr(z — yI)|}

for all =,y such thatz + yI € B;. By classical results, the inner functid@n is bounded in modulus by
and its uniform norm equals therefore we get, thanks o {14)

IIZ]|oo = sup [Z(q)| = sup |Z;(2)| = ||Z1][c = 1.
qeB z€Br
As a consequence
IZ(a) <1 (15)
for all ¢ € B. Moreover, since#fﬂ equalsl almost everywhere on the bounddi;, we have that, for
almost every: + yI such thate? + % =1,
max{ﬁj(x +yl)|, |f1(x - yI)|} = min {|f1(:c +yl)|, |f1(x - yI)|} =1.
Therefore, for almost every + yJ such thats? + 32 = 1,

max [T+ o) = pig[Fe +n| =1

namely for almost every € 0B, |f(q)| = 1. To obtain the wanted properties of the modulugipfet us
denote byl the transformation
T(q) = (E°(q))"'¢E“(q).

SinceE* is non-vanishing o, 7' is a diffeomorphism oB with inverse
T q) = (E(q)) " aB(q)-
Then, thanks to Propositign 2115 and to inequalify (15), ae\write
1> |Z(T )| = B~ = [T )| = |E" @) f(a)] = [E@)]| [ f(a)] (16)

for anyq € B. Hence
|E(q)| = |f(q)| foranyq € B.

The study of the behavior of the modulplg| at the boundary, requires some more effort. First of all,
classical results on outer functions (see elgl [27]) impt£; € HP(B;). Then, thanks to Proposition
[3:9 we get that? € HP(B). Therefore, for any/ € S, the functionE has radial limitE for almost any

x +yJ € OB;. Hence, also the transformati@ir(¢) = (E(q)) 'qE(q) does. This allows us to prove
that7'—! maps almost everg-spherer + yS C 0B one-to-one onto itself. In fact, for almost every sphere
x+yS C B the functionF is defined at all points of + yS (see Proposition4.3). For such a spheseyS,
thanks to the Representation Forniuld 2.2 and to the facftipmeserved. ;, there exisb, c € L; such that

E(x+yJ)=b+Jc foranyJ eS.
Takez + yK € = +yS, with K # I. We are going to show that we can find the odlye S such that
T-1(x+yJ)=x+ yK. Thisis possible if and only if

(E(a: +yJ))_1 qE(x +yJ) = (b+Jo) Ha+yJ)(b+ Jc) =z + yK.
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Sincex, y are real numbers, this is equivalent to
J(b—cK) = ¢+ bK.
Now, sinceK # I and since), ¢ € Ly, necessarily — cK # 0. Hence
J= (K +c)(b—cK)"

solves our problem. Thanks to this property of the riiag, we get thatl = |f(f\:1(q))| for almost every
q € JB. The radial limit version of equatiofi (IL6), holding for alst@veryg € 9B,

1= |[Z(T-1(q)| = |E(q)| 1] (q)]
leads to the equality _ -
1E(q)| = |£(q)l 17)

for almost every; € 9B, which leads also t§E||, = ||E||z» = ||f]|z» = ||f||,- We want to show now
that £ is an outer function. To this aim, lgte H?(B) be such that

|E(q)| = [3(q)| (18)

for almost allg € 9B. If we restrict ¥ andg to B;, and recall the definition oF;, we can write (see
Propositiod 4.B8)

1 /" .
log |Ey (re!?)| = %/ Po(0— 1) log |fi (") dt
. (19)
1 N
P(0 — t)log |gr(e")|dt > log|gr(re'”)|

:% -

whereP.(¢) is the Poisson kernel and where last inequality is due todbbamonicity oflog |¢;| (see the
proof of Propositio 3]1). As a consequence we get that

1> |Er(2)| 7 Hgr(2)] = |E; " = g1(2)| = (B * 9)1(2)]

for all z € B;. SinceE* x g is regular onB, using Propositiof 3]9 we obtain that * x g belongs to
H®°(B). Then the radial limit of£~* x g exists at almost every point 6f8. Equation[(IB) and Proposition
[4:8 guarantee that for everfye S

lim |[E~* % g(re’®)| = |[E—* * g(e”®)| = 1

r—1-

for almost every € [—, 7). Hence, by Propositidn 4111,
IIE™" # glloo = [|IE=* x gllL> = 1.

Recalling now thatl'~1(q) = (E(q)) 'qE(q) is a diffeomorphism of8, thanks to Proposition 2.1.5 we
obtain

1> [E~xg(T" ()] = |[E" (@)9(9)] = |E(@)| " 1g(q)]
ie.,

[E(q)] = |9(q)
for all ¢ € B. This concludes the proof. O
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Corollary 5.17. Let f € H?(B) for somep € (0, +oc], be such thaf mapsB; to L; for somel € S. Then
there exist an outer functioB € H?(B), a singular functionS € H>°(B) and a Blaschke produd such
that

fla) = E=S+«B(q)
forall ¢ € B.

Proof. Theoren{5.16 allows us to factgr = E = Z as a*-product of an outer functiofy and an inner
functionZ. Theoren{5.13 guarantees now the existence of a Blaschkiigtr and a non-vanishing
function S such thatZ = S x B. Following the lines of the proof of Theordm 5116 that led wshow that
the outer factor off belongs toH?(B), one can prove that belongs toH>°(B) and hence is a singular
function. O

We point out that the Beurling-Lax type Theoremih [2], anel Krein-Langer type factorization theorem
that appears in[3,4], are naturally connected to our facdtion results.
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