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Abstract

The theory of slice regular functions of a quaternionic variable extends the notion of holomorphic
function to the quaternionic setting. This fast growing theory is already rich of many results and has sig-
nificant applications. In this setting, the present paper isdevoted to introduce and study the quaternionic
counterparts of Hardy spaces of holomorphic functions of one complex variable. The basic properties of
the theory of quaternionic Hardy spaces are investigated, and in particular a Poisson-type representation
formula, the notions of outer function, singular function and inner function are given. A quaternionic (par-
tial) counterpart of the classicalHp-factorization theorem is proved. This last result assumesa particularly
interesting formulation for a large subclass of slice regular functions, where it is obtained in terms of an
outer function, a singular function and a quaternionic Blaschke product.

Mathematics Subject Classification (2010):30G35, 30H10
Keywords: Functions of hypercomplex variables, Hardy spaces of regular functions, quaternionic outer

functions and inner functions.

1 Introduction

The theory of slice regular functions of a quaternionic variable (often simply called regular functions) was
introduced in [22], [23], and represents a natural quaternionic counterpart of the theory of complex holo-
morphic functions. This recent theory has been growing veryfast: a detailed presentation appears in the
monograph [21], while an extension to the case of real alternative algebras is discussed in [26]. The the-
ory of regular functions is presently expanding in many directions, and it has in particular been applied to

∗The authors acknowledge the support of G.N.S.A.G.A. of INdAM and MIUR (PRIN Research Project “Varietà reali e comp-
lesse: geometria, topologia e analisi armonica”). The third author also acknowledges the support of MIUR (FIRB Research Project
“Geometria differenziale e teoria geometrica delle funzioni”).
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the study of a non-commutative functional calculus, (see for example the monograph [13] and the refer-
ences therein) and to contribute to the problem of the construction and classification of orthogonal complex
structures in open subsets of the space of quaternions (see [20]).

Let H denote the skew field of quaternions. SetS = {q ∈ H : q2 = −1} to be the2−sphere of purely
imaginary units inH, and forI ∈ S letLI be the complex planeR+ RI, so that

H =
⋃

I∈S

LI .

The natural domains of definition for slice regular functions are calledslice symmetric domains(see [21]).
In this paper we will consider slice regular functions defined on the open unit ballB = {q ∈ H : |q| < 1},
which is a particular example of slice symmetric domain.

Definition 1.1. A functionf : B → H is said to be(slice) regularif, for all I ∈ S, its restrictionfI to
BI = B ∩ LI is holomorphic, i.e., it has continuous partial derivatives and satisfies

∂If(x+ yI) :=
1

2

( ∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ BI .

As shown in [23], if the domain of definition is the open unit ball B of H, the class of regular functions
coincides with the class of convergent power series of type

∑
n≥0 q

nan, with all an ∈ H.
One of the most fertile chapters of the theory of complex holomorphic functions consists of the theory of

Hardy spaces. This theory contains results of great significance that led to important general achievements
and subtle applications. In this paper we define the quaternionic counterpart of complex Hardy spaces, and
investigate their basic and fundamental properties. Our definition is the following.

Definition 1.2. Letf : B → H be a regular function and let0 < p < +∞. Set

||f ||p = sup
I∈S

lim
r→1−

(
1

2π

∫ 2π

0

|f(reIθ)|pdθ

) 1

p

,

and set
||f ||∞ = sup

q∈B

|f(q)|.

Then, for any0 < p ≤ +∞, we define the quaternionic Hardy spaceHp(B) as

Hp(B) = {f : B → H | f is regular and||f ||p < +∞}.

In Section 3 we study the main properties and features of the quaternionicHp-norms, we motivate the chosen
definition and establish the initial properties of the quaternionicHp spaces. In Section 4 we investigate the
boundary behavior of functionsf in Hp(B), obtaining that for almost everyθ ∈ R, the limit

lim
r→1−

f(reIθ) = f̃I(e
Iθ)

exists for allI ∈ S and in this case it belongs toLp(∂BI). We then investigate the properties of the
boundary values of the∗-product of two functions, each belonging to someHp(B) space. In section 5
possible analogues ofouterandinner functions andsingularfactors onB are given, whose definitions (when

2



compared with those used in the complex case) clearly resentof the peculiarities of the non commutative
quaternionic setting. Our results here include factorization properties ofHp functions. We are able to
identify theBlaschke factorof a functionf in Hp(B), built from the zero set off ; then we can exhibit a
complete factorization result, in terms of an outer, a singular and a Blaschke factor, for a subclass of regular
functions, namely for the one-slice-preserving functions.

The cases ofH2(B) (defined already in [1]) andH∞(B) are special cases, as in the complex setting.
The Hardy spacesH2(B) have been also treated in [3, 4, 6, 7], and the spaceH∞(B) briefly appears in
[6]. The case of Hardy spacesH2 defined on the half-space is considered in [4, 7], where the aspect of the
reproducing kernels is also investigated. Integral representations of slice hyperholomorphic functions have
been recently studied in [17].

The "slicewise" approach has been also used in [14, 15, 16, 18] to treat quaternionic Bergman spaces,
and in [5, 10] to introduce and discuss the analogs of Besov, Bloch, Dirichlet and Fock spaces. Hardy and
Dirichlet spaces in the more general setting of Clifford valued monogenic functions are studied for example
in [9].

2 Preliminaries

We recall in this section some preliminary definitions and results that are essential for the comprehension of
the rest of the paper. All these preliminaries are stated, for the sake of simplicity, in the particular case of the
open unit ball even if they hold in the more general setting ofslice symmetric domains. The related proofs
can be found in the literature, and in particular in [21]. Letus begin with a basic result that establishes the
connection between the class of regular functions and the class of complex holomorphic functions of one
complex variable.

Lemma 2.1(Splitting Lemma). If f is a regular function onB, then for everyI ∈ S and for everyJ ∈ S, J
orthogonal toI, there exist two holomorphic functionsF,G : BI → LI , such that for everyz = x+yI ∈ BI ,
we have

fI(z) = F (z) +G(z)J.

We can recover the values of a regular function defined onB from its values on a single sliceLI (see
[12, 11]).

Theorem 2.2(Representation Formula). Let f be a regular function onB and let I ∈ S. Then, for all
x+ yJ ∈ B with J ∈ S, the following equality holds

f(x+ yJ) =
1

2
[f(x+ yI) + f(x− yI)] +

JI

2
[f(x− yI)− f(x+ yI)] .

In particular the functionf is affineon each sphere of the formx + yS contained inB, namely there exist
b, c ∈ H such thatf(x+ yJ) = b+ Jc for all J ∈ S .

Thanks to the Representation Formula it is possible to provethat we can estimate the maximum modulus of
a function with its maximum modulus on each slice, (see [25]). In the special case of a regular functionf
that maps a sliceLI to itself, we obtain that the maximum (and minimum) modulus of f is actually attained
on the preserved slice.

Proposition 2.3. Let f be a regular function onB such thatf(BI) ⊂ LI for someI ∈ S. Then, for any
x+ yS ⊂ B,

max
J∈S

|f(x+ yJ)| = max{|f(x+ yI)|, |f(x− yI)|}
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and
min
J∈S

|f(x+ yJ)| = min{|f(x+ yI)|, |f(x− yI)|}.

Holomorphic functions defined on a discBI , in the complex planeLI , extend uniquely toB.

Lemma 2.4(Extension Lemma). Let I ∈ S. If fI : BI → H is holomorphic, then setting

f(x+ yJ) =
1

2
[fI(x+ yI) + fI(x− yI)] + J

I

2
[fI(x − yI)− fI(x+ yI)]

extendsfI to a regular functionf : B → H. Moreoverf is the unique extension and it is denoted byext(fI).

The pointwise product of two regular functions is not, in general, regular. To guarantee the regularity we
have to use a different multiplication operation, the∗-product, which extends the one classically defined for
(polynomials and) power series with coefficients in a non-commutative field.

Definition 2.5. Let f, g be regular functions onB. ChooseI, J ∈ S with I ⊥ J and letF,G,H,K be
holomorphic functions fromBI to LI such thatfI = F + GJ, gI = H +KJ . Consider the holomorphic
function defined onBI by

fI ∗ gI(z) =
[
F (z)H(z)−G(z)K(z̄)

]
+
[
F (z)K(z) +G(z)H(z̄)

]
J.

Its regular extensionext(fI ∗ gI) is called theregular product(or ∗-product) of f andg and it is denoted by
f ∗ g.

Notice that the∗-product is associative but generally is not commutative. Its connection with the usual
pointwise product is stated by the following result.

Proposition 2.6. Letf andg be regular functions onB. Then

f ∗ g(q) =

{
f(q)g(f(q)−1qf(q)) if f(q) 6= 0
0 if f(q) = 0

(1)

In particular f ∗ g(q) = 0 if and only iff(q) = 0 or f(q) 6= 0 andg(f(q)−1qf(q)) = 0.

The regular product coincides with the pointwise product for the special class of regular functions defined
as follows.

Definition 2.7. A regular functionf : B → H such thatf(BI) ⊆ LI for all I ∈ S is called aslice preserving
regular function.

Lemma 2.8. Let f, g be regular functions onB. If f is slice preserving, thenfg is a regular function onB
andf ∗ g = fg = g ∗ f .

The following operations are naturally defined in order to study the zero set of regular functions.

Definition 2.9. Let f be a regular function onB and suppose that forz ∈ BI , the splitting off with
respect toJ (J ∈ S orthogonal toI) is fI(z) = F (z) + G(z)J . Consider the holomorphic function
f c
I (z) = F (z) − G(z)J. The regular conjugateof f is the function defined byf c(q) = ext(f c

I )(q). The
symmetrizationof f is the function defined byf s(q) = f ∗ f c(q) = f c ∗ f(q). Bothf c andf s are regular
functions onB.
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We now recall a result (proven in [29]) that relates the norm of a regular functionf : B → H and that of its
regular conjugate.

Proposition 2.10. Letf be a regular function onB. For any sphere of the formx+ yS contained inB, the
following equalities hold true

max
I∈S

|f(x+ yI)| = max
I∈S

|f c(x + yI)| and min
I∈S

|f(x+ yI)| = min
I∈S

|f c(x+ yI)|.

Before we give the complete characterization of the zero setof a regular function, let us recall another result
in this setting, consequence of the Representation Formula2.2.

Proposition 2.11. Letf be a regular function onB such thatf(BI) ⊂ LI for someI ∈ S. If f(x+yJ) = 0
for someJ ∈ S \ {±I}, thenf(x+ yK) = 0 for anyK ∈ S.

Theorem 2.12(Zero set structure). Let f be a regular function onB. If f does not vanish identically, then
its zero set consists of the union of isolated points and isolated2-spheres of the formx+ yS with x, y ∈ R,
y 6= 0.

Spheres of zeros of real dimension2 are a peculiarity of regular functions.

Definition 2.13. Letf be a regular function onB. A2-dimensional spherex+ yS ⊂ B of zeros of f is called
a spherical zeroof f . Any pointx + yI of such a sphere is called ageneratorof the spherical zerox+ yS.
Any zero off that is not a generator of a spherical zero is called anisolated zero(or a non spherical zeroor
simply azero) of f .

An appropriate notion of multiplicity, introduced in [24] for the case of regular quaternionic polynomials,
can be given for zeros of regular functions.

Definition 2.14. Let f be a regular function onB and letx + yS ⊂ B with y 6= 0. Let m,n ∈ N and
p1, . . . , pn ∈ x+ yS (with pi 6= pi+1 for all i ∈ {1, . . . , n− 1}) be such that

f(q) =
(
(q − x)2 + y2

)m
(q − p1) ∗ (q − p2) ∗ · · · ∗ (q − pn) ∗ g(q)

for some regular functiong : B → H which does not have zeros inx+ yS. Then2m is called thespherical
multiplicity of x + yS andn is called theisolated multiplicityof p1. On the other hand, ifx ∈ R, then we
call isolated multiplicityof f at x the numberk ∈ N such that

f(q) = (q − x)kh(q)

for some regular functionh : B → H which does not vanish atx.

The regular conjugate, and the symmetrization, of a regularfunctionf onB allow the definition of itsregular
reciprocalf−∗ defined onB \ Zfs as

f−∗ = (f s)−1f c,

whereZfs denotes the zero set of the symmetrizationf s. This naturally leads to the definition ofregular
quotientof regular functions, for more details see [21].

Proposition 2.15. Letf andg be regular functions onB. If Tf : B \ Zfs → B \ Zfs is defined as

Tf (q) = f c(q)−1qf c(q),

then
f−∗ ∗ g(q) = f(Tf (q))

−1g(Tf(q)) for every q ∈ B \ Zfs .

Furthermore,Tf andTfc are mutual inverses so thatTf is a diffeomorphism.
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Regular Moebius transformations are interesting examplesof regular quotients (see [30]).

Definition 2.16. A regular Moebius transformationis a regular functionM : B → B of the form

M(q) = (1− qa)−∗ ∗ (q − a)u

wherea ∈ B andu ∈ ∂B.

In particular, these transformations are regular bijections of the open unit ball onto itself and, by direct
computation, it is possible to prove that they map the boundary of the unit ball to itself.

Proposition 2.17. A functionM is a regular bijection fromB to itself if and only ifM is a regular Moebius
transformation.

3 The quaternionic spacesHp(B)

In this section we give a definition of quaternionic Hardy spaces. The first natural step is to define an
appropriate Hardy-type norm. Letp ∈ (0,+∞), r ∈ [0, 1), andI ∈ S. For any regular functionf in the
unit ballB, let (fI)r be the function defined on the unit circle∂BI by

(fI)r(e
Iθ) = f(reIθ)

and letMp(fI , r) be the integral mean

Mp(fI , r) =

(
1

2π

∫ π

−π

|(fI)r(e
Iθ)|pdθ

) 1

p

=

(
1

2π

∫ π

−π

|f(reIθ)|pdθ

) 1

p

. (2)

If p = +∞, setM∞(f, r) to be defined as

M∞(f, r) = sup
|q|<r

|f(q)|

for 0 < r < 1 (and|f(0)| for r = 0).

Proposition 3.1. Let f : B → H be a regular function. Then for anyp ∈ (0,+∞) and for any imaginary
unit I ∈ S, the functionr 7→ Mp(fI , r) is increasing. Forp = +∞, the functionr 7→ M∞(f, r) is
increasing as well.

Proof. The last part of the statement follows directly from the Maximum Modulus Principle for regular
functions, [21]. To prove the first part, fixp ∈ (0,+∞) andI ∈ S. We will prove that the function

g : BI → R, g : z 7→ |fI(z)|
p,

is a subharmonic function, and then the statement will follow from classical results, see for instance Theorem
17.5 in [28]. In order to obtain the subharmonicity ofg(z), we will first show that

h : BI → R, h : z 7→ log(|fI(z)|) (3)

is a subharmonic function. Then, sinceg(z) = eph(z) is the composition of an increasing convex function
with a subharmonic function, we will conclude that alsog is subharmonic (see e.g., Theorem 17.2 in [28]).
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Supposef 6≡ 0 (otherwise the statement is trivially true). Thenh(z) is an upper semicontinuous function.
Moreover in the set{z ∈ BI | fI(z) 6= 0} the functionh is subharmonic. In fact we have that

∆h(z) = 4
∂

∂z

∂

∂z
log(|fI(z)|) = 2

∂

∂z

∂

∂z
log(|F (z)|2 + |G(z)|2)

whereF,G are the splitting (holomorphic) functions offI with respect toJ ∈ S, J orthogonal toI. Hence
(omitting the variablez)

∆h = 2

(
|F ′|2 + |G′|2

) (
|F |2 + |G|2

)
−
(
F ′F +G′G

) (
FF ′ +GG′

)

(|F |2 + |G|2)2
. (4)

Schwarz inequality yields thath(z) is subharmonic wherefI is non vanishing. It remains to show thath

is still subharmonic in a neighborhood of each zero offI . Recall that the zero set of a regular function
intersected with a sliceLI , is a discrete subset ofLI (see Theorem 2.12). Then for any zeroz0 of fI , there
exists a neighborhoodUI ⊂ BI wherez0 is the only point wherefI vanishes. Hence we have that for allr

such thatz0 +BI(0, r) ⊂ UI the submean property is trivially satisfied

−∞ = h(z0) ≤
1

2π

∫

∂BI(0,r)

h(z0 + reIθ)dθ.

Since this condition implies the subharmonicity ofh nearz0, we can conclude the proof.

Remark 3.2. The previous result is the analogue of the first statement of the Hardy convexity Theorem in
the complex setting, see Theorem 1.5 in [19].

Remark 3.3. We point out that, despite what happens in the complex case, where the functionz 7→
log(|g(z)|) is actually harmonic for any non vanishing holomorphic function g, the functionh defined in
equation (3) is only subharmonic in general. In fact∆h = 0 if and only if the vector(F (z), G(z)) ∈ (LI)

2,
identified by the restriction of the regular functionfI , is parallel to the vector(F ′(z), G′(z)) identified by
the derivative offI . This happens for example if

{
F ′(z) = kF (z)
G′(z) = kG(z)

for somek ∈ LI . In this caseF andG are exponential (or constant) functions,
{

F (z) = F (0)ekz

G(z) = G(0)ekz .

Thanks to Proposition 3.1, we can give the following Definition.

Definition 3.4. Letf : B → H be a regular function. Ifp ∈ (0,+∞), for anyI ∈ S, we set

||fI ||p = lim
r→1−

Mp(fI , r) = lim
r→1−

(
1

2π

∫ 2π

0

|f(reIθ)|pdθ

) 1

p

and

||f ||p = sup
I∈S

||fI ||p = sup
I∈S

lim
r→1−

(
1

2π

∫ 2π

0

|f(reIθ)|pdθ

) 1

p

.

If p = +∞, we set

||f ||∞ = lim
r→1−

M∞(f, r) = lim
r→1−

sup
|q|<r

|f(q)| = sup
q∈B

|f(q)|.
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Remark 3.5. Notice that||f ||∞ is the uniform norm off onB. Moreover, if we set for anyI ∈ S

||fI ||∞ = sup
z∈BI

|f(z)|,

then we have
||f ||∞ = sup

I∈S

||fI ||∞.

The set where the uniform norm is taken will beBI when considering the restrictionfI (or its splitting
components), andB when considering the functionf .

Definition 3.6. Letp ∈ (0,+∞]. We define the quaternionic Hardy spaceHp(B) as

Hp(B) = {f : B → H | f is regular and ||f ||p < +∞} .

Remark 3.7. For anyp ∈ (0,+∞], the spaceHp(B) is a real vector space. Furthermore if (and only if)
p ≥ 1 the function|| · ||p satisfies the triangle inequality, and hence it is a norm onHp(B). Moreover, the
same relations of inclusions that hold for complexHp spaces, hold in the quaternionic setting. In fact, for
anyp, q such that0 < p < q ≤ +∞, thanks to the classical Jensen inequality we have that

Hq(B) ⊂ Hp(B).

The inclusion is continuous for1 ≤ p < q ≤ +∞.

In analogy with the complex case, the spaceH2(B) is special. Indeed the2-norm turns out to be induced
by an inner product (see [2]).

Proposition 3.8. Let f ∈ H2(B) and letf(q) =
∑

n≥0 q
nan be its power series expansion. Then the

2-norm off ,

||f ||2 = sup
I∈S

lim
r→1−

(
1

2π

∫ π

−π

|f(reIθ)|2dθ

) 1

2

,

coincides with (∑

n≥0

|an|
2
) 1

2

.

By polarization we obtain that, for anyI ∈ S

lim
r→1−

1

2π

∫ π

−π

g(reIθ)f(reIθ)dθ =
∑

n≥0

bnan = 〈f, g〉

that recalls the classic Hermitian product of the spaceH2(D).
Looking at the definition of complex Hardy spaces, one could wonder why, instead of the integral mean

Mp(fI , r) defined in (2), taken on a circle, we did not choose the classical integral mean taken on a3-
dimensional sphere. In fact consider

Np(f, r) =

(
1

2π2r3

∫

rS3
|f(q)|pdσ3(rS

3)

) 1

p

, (5)
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whereσ3(rS
3) is the usual hypersurface measure of the3-dimensional sphererS3 and 2π2r3 is the 3-

dimensional volume of the3-dimensional sphererS3. If we then set

Np(f) = sup
0<r<1

Np(f, r),

it turns out that the class of regular functionsf such thatNp(f) is finite does not coincide with the space
Hp(B) defined earlier. Indeed, using an appropriate change of variable in the integral appearing in (5), it is
possible to prove thatNp(f) ≤ ||f ||p for any regular functionf and anyp ∈ (0 +∞), thus showing that if
f ∈ Hp(f) then alsoNp(f) is finite. To show that the two classes of functions do not coincide, it is possible
to exhibit explicit examples. For instance, the function

f(q) = (1− q)−∗

is such thatNp(f) < +∞ but it does not belong toHp(B) for all 2 ≤ p ≤ +∞. This example suggests
us that a definition of a quaternionicHp space that relies upon theNp norm is not convenient. In fact, the
function (1 − q)−1 has real coefficients, and therefore, its restriction toBI = B ∩ LI is the holomorphic
functionfI(z) = (1 − z)−1. It is well known thatfI(z) does not belong toHp(BI) for all 2 ≤ p ≤ +∞,
hence it would be weird if its regular extension were in the quaternionicHp space. Recently, a normalized
integral mean on3-spheres has been introduced to define a norm onH2(B), [8].

Our choice (2) of thep-integral mean allows the slicewise approach to the theory of Hp spaces. Let us
begin by studying how||f ||p of a regular functionf is related with the value of||fI ||p on the sliceLI .

Proposition 3.9. A regular functionf is in Hp(B) for somep ∈ (0,+∞], if and only if there existsI ∈ S

such that||fI ||p is bounded.

Proof. Let p ∈ (0,+∞) and suppose first that||f ||p < +∞. Then trivially, for anyI ∈ S,

||fI ||p ≤ sup
I∈S

||fI ||p = ||f ||p < +∞.

To see the other implication, letJ ∈ S be such that||fJ ||p is finite, and use the Representation Formula 2.2
to write

||f ||pp = sup
I∈S

lim
r→1−

1

2π

∫ π

−π

∣∣∣∣
1

2

(
f(reJθ) + f(re−Jθ)

)
+

IJ

2

(
f(re−Jθ)− f(reJθ)

)∣∣∣∣
p

dθ

≤ sup
I∈S

lim
r→1−

1

2π

∫ π

−π

(
1

2

(∣∣f(reJθ)
∣∣+
∣∣f(re−Jθ)

∣∣+
∣∣f(re−Jθ)

∣∣ +
∣∣f(reJθ)

∣∣)
)p

dθ

= lim
r→1−

1

2π

∫ π

−π

(∣∣f(reJθ)
∣∣+
∣∣f(re−Jθ)

∣∣)p dθ

(6)

where the last integral does not depend onI ∈ S. If p ≥ 1, taking into account the convexity of the map
x 7→ xp on the positive real axis, we get that

||f ||pp ≤ lim
r→1−

2p−1

2π

∫ π

−π

(∣∣f(reJθ)
∣∣p +

∣∣f(re−Jθ)
∣∣p
)
dθ = 2p||fJ ||

p
p < +∞.

On the other hand, if0 < p < 1, taking into account the subadditivity on the positive realaxis of the map
x 7→ xp (it is concave and maps0 to 0), we have

||f ||pp ≤ lim
r→1−

1

2π

∫ π

−π

(∣∣f(reJθ)
∣∣p +

∣∣f(re−Jθ)
∣∣p
)
dθ = lim

r→1−

1

π

∫ π

−π

∣∣f(reJθ)
∣∣p dθ = 2||fJ ||

p
p < +∞.
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Let p = +∞. On one side, iff is bounded, then for anyI ∈ S

||fI ||∞ = sup
z∈BI

|fI(z)| ≤ sup
q∈B

|f(q)| = ||f ||∞ < +∞.

On the other side, using the Representation Formula 2.2, ifJ ∈ S is such that||fJ ||∞ < +∞ it is easy to
see that

||f ||∞ ≤ 2||fJ ||∞ < +∞.

Remark 3.10. In particular, we get that if||fJ ||p < +∞ for someJ ∈ S, we have the following inequalities

||fJ ||p ≤ ||f ||p ≤ 2
1

p ||fJ ||p, if p ∈ (0, 1), ||fJ ||p ≤ ||f ||p ≤ 2||fJ ||p, if p ∈ [1,+∞].

The key fact that allows us to apply classical results to the splitting components of a function inHp(B)
is the following.

Proposition 3.11. Let f ∈ Hp(B) for somep ∈ (0,+∞]. Then for anyI ∈ S, if the splitting off onLI

with respect toJ ∈ S, J ⊥ I, is fI(z) = F (z) +G(z)J , then the holomorphic functionsF andG are both
in Hp(BI).

Proof. Let I ∈ S and consider, for anyz ∈ BI , the splittingfI(z) = F (z) +G(z)J . Then, for anyz ∈ BI ,

|fI(z)| =
√
|F (z)|2 + |G(z)|2 ≥ max{|F (z)|, |G(z)|}. (7)

Hence, forp ∈ (0,+∞),

+∞ > ||f ||pp = lim
r→1−

1

2π

∫ π

−π

∣∣fI(reIθ)
∣∣p dθ ≥ lim

r→1−

1

2π

∫ π

−π

∣∣F (reIθ)
∣∣p dθ = ||F ||pp

and analogously+∞ > ||f ||pp ≥ ||fI ||
p
p ≥ ||G||pp. Forp = +∞, formula (7) directly implies that

||F ||∞ ≤ ||fI ||∞ ≤ ||f ||∞ < +∞ and ||G||∞ ≤ ||fI ||∞ ≤ ||f ||∞ < +∞.

Notice that Remark 3.10 and Proposition 3.11 imply that, forall p ∈ [1,+∞], the spaceHp(B) is a
Banach space.

The natural guess that if a function is inHp(B) then its regular conjugate is inHp(B) as well, is in fact
true.

Proposition 3.12. Let p ∈ (0,+∞] and letf ∈ Hp(B). Then also the regular conjugatef c belongs to
Hp(B).

Proof. If p = +∞ the proof follows directly by Proposition 2.10. Consider thenp ∈ (0,+∞). For any
I ∈ S, if f splits onBI asf(z) = F (z) + G(z)J, then, recalling Definition 2.9, we get that on the same
slicef c can be written as

f c
I (z) = F (z)−G(z)J.

10



Therefore, for0 ≤ r < 1,

Mp(f
c
I , r)

p =
1

2π

∫ π

−π

∣∣∣F (re−Iθ)−G(reIθ)J
∣∣∣
p

dθ =
1

2π

∫ π

−π

(∣∣∣F (re−Iθ)
∣∣∣
2

+
∣∣G(reIθ)

∣∣2
) p

2

dθ.

If 0 < p < 2, thanks to the subadditivity on the positive real axis of themapx 7→ xp/2, we get

Mp(f
c
I , r)

p ≤
1

2π

∫ π

−π

(∣∣∣F (re−Iθ)
∣∣∣
p

+
∣∣G(reIθ)

∣∣p
)
dθ = Mp(F, r)

p +Mp(G, r)p.

Proposition 3.11 yields that bothF andG belong toHp(BI), hence

||f c
I ||

p
p = lim

r→1−
Mp(f

c
I , r)

p ≤ lim
r→1−

(Mp(F, r)
p +Mp(G, r)p) = ||F ||pp + ||G||pp < +∞

and therefore we obtain thatf c(q) ∈ Hp(B).
If 2 ≤ p < +∞, thanks to the convexity of the mapx 7→ xp/2, we can boundMp(f

c
I , r) as follows

Mp(f
c
I , r)

p ≤
2

p

2
−1

2π

∫ π

−π

(∣∣∣F (re−Iθ)
∣∣∣
p

+
∣∣G(reIθ)

∣∣p
)
dθ = 2

p

2
−1 (Mp(F, r)

p +Mp(G, r)p) .

Hence, as before,
||f c

I ||
p
p ≤ 2

p
2
−1
(
||F ||pp + ||G||pp

)
< +∞,

which concludes the proof.

For the symmetrization of a function inHp(B) the following result holds true.

Proposition 3.13. For anyp ∈ (0,+∞), if f ∈ Hp(B), then the symmetrizationf s ∈ H
p

2 (B). Moreover if
f ∈ H∞(B) then alsof s does.

Proof. Let f ∈ Hp(B) for some0 < p < +∞. For anyr ∈ [0, 1), I ∈ S (such thatf(reIθ) 6= 0) we have
∣∣f s(reIθ)

∣∣ =
∣∣f ∗ f c(reIθ)

∣∣ =
∣∣f(reIθ)f c(f(reIθ)−1reIθf(reIθ))

∣∣ =
∣∣f(reIθ)f c(reJθ)

∣∣

for someJ ∈ S. Hence, recalling Proposition 2.10,

∣∣f s(reIθ)
∣∣ ≤ sup

I∈S

∣∣f(reIθ)
∣∣ sup
J∈S

∣∣f c(reJθ)
∣∣ =

(
sup
I∈S

∣∣f(reIθ)
∣∣
)2

=
∣∣∣f(reK(r,θ)θ)

∣∣∣
2

(8)

for a suitableK(r, θ) ∈ S which depends onr, θ but does not depend onI (sinceS is compact). For such a
K(r, θ) inequality (8) implies

M p

2

(f s
I , r)

p

2 =
1

2π

∫ π

−π

∣∣f s(reIθ)
∣∣ p2 dθ ≤

1

2π

∫ π

−π

∣∣∣f(reK(r,θ)θ)
∣∣∣
p

dθ.

Let nowL be any (fixed) imaginary unit independent ofK(r, θ). Thanks to the Representation Formula 2.2
we can write

f(reK(r,θ)θ) =
1

2

(
f(reLθ) + f(re−Lθ)

)
+

K(r, θ)L

2

(
f(re−Lθ)− f(reLθ)

)
,
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and hence we have

M p

2

(f s
I , r)

p
2 ≤

1

2π

∫ π

−π

(∣∣(f(reLθ)
∣∣ +
∣∣f(re−Lθ)

∣∣)p dθ.

Then, ifp ∈ (0, 1), we get that

M p

2

(f s
I , r)

p

2 ≤ 2||fL||
p
p ≤ 2||f ||pp < +∞,

and ifp ∈ [1,+∞), we get that

M p

2

(f s
I , r)

p

2 ≤ 2p||fL||
p
p ≤ 2p||f ||pp < +∞.

In both cases, taking the limit forr → 1−, and the supremum inI ∈ S, we get thatf s ∈ H
p

2 (B).
If insteadf ∈ H∞(B), we observe that inequality (8) directly implies that, for any q ∈ B,

|f s(q)| ≤ sup
q∈B

|f(q)|2 = ||f ||2∞.

The Hölder inequality leads to the following result concerning the∗-product of regular functions.

Proposition 3.14. Let p, q ∈ [1,+∞] be conjugate exponents1p + 1
q = 1. If f ∈ Hp(B) andg ∈ Hq(B),

thenf ∗ g ∈ H1(B) andg ∗ f ∈ H1(B) .

Proof. If f ≡ 0 (or g ≡ 0) there is nothing to prove. Otherwise, let us consider the case in whichp, q ∈
(1,+∞). Fix I ∈ S. For allr ∈ [0, 1) andθ ∈ [−π, π) such thatf(reIθ) 6= 0, set

J(r, θ) = (f(reIθ))−1If(reIθ) ∈ S

so that recalling Proposition 2.6 we can write

f ∗ g(reIθ) = f(reIθ)g(reJ(r,θ)θ). (9)

The functiong can be represented as

g(reJ(r,θ)θ) =
1

2
(g(reIθ) + g(re−Iθ)) +

J(r, θ)I

2
(g(re−Iθ)− g(reIθ))

and hence, using the convexity of the functionx 7→ xq for x ≥ 0 (sinceq > 1),

|g(reJ(r,θ)θ)|q ≤ 2q−1(|g(reIθ)|q + |g(re−Iθ)|q). (10)

Now, using the Hölder inequality and equations (9), (10) we obtain

1

2π

∫ π

−π

|f ∗ g(reIθ)|dθ ≤
( 1

2π

∫ π

−π

|f(reIθ)|pdθ
) 1

p
( 1

2π

∫ π

−π

|g(reJ(r,θ)θ)|qdθ
) 1

q

≤
( 1

2π

∫ π

−π

|f(reIθ)|pdθ
) 1

p
( 2q
2π

∫ π

−π

|g(reIθ)|qdθ
) 1

q

,

(11)

which leads to
||f ∗ g||1 ≤ 2||f ||p||g||q < +∞.

For the remaining cases (p = 1, q = +∞ andp = +∞, q = 1) the proofs follow the same lines.

Corollary 3.15. Letp ∈ [2,+∞]. If f andg belong toHp(B), thenf ∗ g ∈ H1(B) andg ∗ f ∈ H1(B) .

Proof. If 1
p +

1
q = 1 andp ≥ 2, then1 ≤ q ≤ 2. ThereforeHp(B) ⊂ Hq(B) and henceg belongs toHq(B).

Theorem 3.14 leads to the conclusion.
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4 Boundary values of regular functions

A very important result, that in the classic case is quite laborious to reach, states that all functions inHp(B)
have radial limit along almost any ray.

Proposition 4.1. Letf ∈ Hp(B) for somep ∈ (0,+∞]. Then for anyI ∈ S, the limit

lim
r→1−

f(reIθ) = f̃(eIθ)

exists for almost everyθ ∈ [0, 2π).

Proof. Let I ∈ S. Write the splitting off onBI asfI(z) = F (z) + G(z)J , then Proposition 3.11 yields
that the holomorphic functionsF andG are both inHp(BI). Classical results in the theory ofHp spaces
(see e.g. [27]) yield that the radial limits

lim
r→1−

F (reIθ) = F̃ (eIθ) and lim
r→1−

G(reIφ) = G̃(eIφ)

exist respectively for almost everyθ and for almost everyφ. Therefore the radial limit

lim
r→1−

f(reIθ) = lim
r→1−

(F (reIθ) +G(reIθ)J) = F̃ (reIθ) + G̃(reIθ)J = f̃(eIθ)

exists for almost everyθ ∈ [0, 2π).

Remark 4.2. The previous result is slightly stronger than its complex counterpart: in fact, iff ∈ Hp(B) for
somep ∈ (0,+∞], then oneachslice, the radial limit off exists along almost any ray.

From now on, we will denote bỹf the radial limit of a functionf ∈ Hp(B). As it happens in the
complex case, the functioñf is measurable on∂B.

Proposition 4.3. Letf ∈ Hp(B) for somep ∈ (0,+∞]. Then for almost everyθ ∈ [−π, π), the limit

lim
r→1−

f(reIθ) = f̃(eIθ)

exists for everyI ∈ S. Namely, the radial limit off exists at all points of the spherecos θ + (sin θ)S
(contained in the boundary ofB) for almost everyθ ∈ [−π, π).

Proof. ChooseI, J ∈ S and use the Representation Formula forf

f(reJθ) =
1

2

[
f(reIθ) + f(re−Iθ)

]
+

JI

2

[
f(re−Iθ)− f(reIθ)

]
.

Since for almost everyθ ∈ [−π, π) the radial limitf̃ exists both ateIθ and ate−Iθ, then formula

f̃(eJθ) =
1

2

[
f̃(eIθ) + f̃(e−Iθ)

]
+

JI

2

[
f̃(e−Iθ)− f̃(eIθ)

]
.

leads to the conclusion.

Moreover, we will show that radial limits of a (non identically zero) function inHp(B) can not vanish
on a subset of positive measure of the boundary of the ball.
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Proposition 4.4. Let f ∈ Hp(B) for somep ∈ (0,+∞], f 6≡ 0. Then, for anyI ∈ S, for almost every
θ ∈ [−π, π),

lim
r→1−

f(reIθ) = f̃(eIθ) 6= 0.

Proof. Choose anyJ ∈ S orthogonal toI. If f splits onBI asfI(z) = F (z) + G(z)J, then the splitting
componentsF andG are inHp(BI) and (thanks to the Identity Principle for regular functions, see [21]) at
least one of them is not identically vanishing. Suppose thatF 6≡ 0 onBI . The classical result stated, e.g., in
Theorem 17.18, [28], yields thatlimr→1− F (reIθ) = F̃ (eIθ) 6= 0 for almost everyθ ∈ [−π, π). Thanks to
the orthogonality ofI andJ , we easily conclude that for almost everyθ ∈ [−π, π),

f̃(eIθ) = F̃ (eIθ) + G̃(eIθ)J 6= 0.

This easy consequence of the previous result will be used in the sequel.

Remark 4.5. If f ∈ Hp(B) for somep ∈ (0,+∞], f 6≡ 0, we have that for anyI ∈ S and for almost every
θ ∈ [−π, π), there existsr0 > 0 such thatf(reIθ) 6= 0 for all r ∈ [r0, 1).

Let us define the∗-product and the∗-inverse for radial limits. To this aim we prove the following
statement.

Proposition 4.6. Letf ∈ Hp(B), f 6≡ 0, andg ∈ Hq(B) for somep, q ∈ (0,+∞], and letf̃ andg̃ be their
(almost everywhere) radial limits. For anyI ∈ S, for almost everyθ ∈ [−π, π),

lim
r→1−

f ∗ g(reIθ) = f̃(eIθ)g̃(f̃(eIθ)−1eIθf̃(eIθ)).

Moreover, for anyI ∈ S, we have thatlimr→1− f−∗ ∗ g(reIθ) exists (possibly infinite) for almost every
θ ∈ [−π, π), and when finite,

lim
r→1−

f−∗ ∗ g(reIθ) = f̃(f̃ c(eIθ)−1eIθf̃ c(eIθ))−1g̃(f̃ c(eIθ)−1eIθf̃ c(eIθ)).

Proof. Proposition 4.4 yields that iff is not vanishing identically, then for anyI ∈ S, f̃(eIθ) 6= 0 for almost
everyθ ∈ [−π, π), and the same holds forf c. Set

T (q) = f(q)−1qf(q).

Thanks to Remark 4.5,T (reIθ) = f(reIθ)−1reIθf(reIθ) is well defined for anyI ∈ S, for almost every
θ ∈ [−π, π), and for1− r sufficiently small. Moreover the radial limit

lim
r→1−

T (reIθ) = f̃(eIθ)−1eIθf̃(eIθ) =: T̃ (eIθ)

exists for anyI ∈ S and almost everyθ ∈ [−π, π). Given anyI ∈ S, if f(reIθ) 6= 0 setJ(r, θ) =
f(reIθ)−1If(reIθ) ∈ S; then, for almost everyθ the radial limit

lim
r→1−

J(r, θ) = J̃(θ)

exists and belongs toS. Hence we can write

T̃ (eIθ) = lim
r→1−

T (reIθ) = lim
r→1−

(
r cos θ + r sin θ(f(reIθ)−1If(reIθ)

)
= cos θ + (sin θ)J̃(θ) = eJ̃(θ)θ.
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Using the Representation Formula 2.2 twice, for almost every θ we can write

lim
r→1−

g(T (reIθ)) = lim
r→1−

(g(reJ(r,θ)θ))

= lim
r→1−

(
1

2

(
g(reIθ) + g(re−Iθ)

)
+

J(r, θ)I

2

(
g(re−Iθ)− g(reIθ)

))

=
1

2

(
g̃(eIθ) + g̃(e−Iθ)

)
+

J̃(θ)I

2

(
g̃(e−Iθ)− g̃(eIθ)

)

= lim
r→1−

(
1

2

(
g(reIθ) + g(re−Iθ)

)
+

J̃(θ)I

2

(
g(re−Iθ)− g(reIθ)

)
)

= lim
r→1−

g(reJ̃(θ)θ) = g̃(eJ̃(θ)θ) = g̃(T̃ (eIθ)).

Hence, recalling Proposition 2.6, we have

lim
r→1−

f ∗ g(reIθ) = lim
r→1−

f(reIθ)g(T (reIθ)) = f̃(eIθ)g̃(T̃ (eIθ)).

The same arguments apply also to the proof for the regular quotient.

We are now ready to give the announced definitions.

Definition 4.7. Let f ∈ Hp(B) andg ∈ Hq(B) for somep, q ∈ (0,+∞]. For anyI ∈ S, for almost every
θ ∈ [−π, π), let f̃(eIθ) andg̃(eIθ) be the radial limits off andg. We define the∗-product off̃ andg̃ as

f̃ ∗ g̃(eIθ) = lim
r→1−

f ∗ g(reIθ)

for almost everyθ. If moreoverf̃(eIθ) 6= 0 at all pointseIθ where it is defined, then we can define the
∗-quotient off̃ andg̃ as

f̃−∗ ∗ g̃(eIθ) = lim
r→1−

f−∗ ∗ g(reIθ)

for almost everyθ. In particular, if g ≡ 1, we obtain the definition of the∗-inverse off̃ .

Thanks to the existence of the radial limit it is possible to obtain integral representations for functions in
Hp(B) for p ∈ [1,+∞].

Theorem 4.8. If f ∈ Hp(B) for p ∈ [1,+∞], then, for anyI ∈ S, fI is the Poisson integral and the Cauchy
integral of its radial limit f̃I , i.e.,

fI(re
Iθ) =

1

2π

∫ π

−π

1− r2

1− 2r cos(θ − t) + r2
f̃I(e

It)dt

and

fI(z) =
1

2πI

∫

∂BI

dζ

ζ − z
f̃I(ζ).

Proof. The proof is an application of the corresponding results forholomorphic functions to the splitting
components offI .

Our next goal is to show that, for anyp ∈ (0,+∞], the radial limitsf̃I of the restrictions of a functionf
in Hp(B), areLp functions on the circle∂BI .
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Definition 4.9. Let g be a (quaternion valued) function defined (almost everywhere) on∂BI and such that
|g| is measurable. Ifp ∈ (0,+∞) we set||g||Lp to be the integral mean

||g||Lp =

(
1

2π

∫ π

−π

|g(eIθ)|pdθ

) 1

p

,

If p = +∞, we set
||g||L∞ = ess sup

θ∈(−π,π)

|g(eIθ)|.

For anyp ∈ (0,+∞], we denote byLp(∂BI) the standardLp space,

Lp(∂BI) = {g : ∂BI → H | |g| is measurable and||g||Lp < +∞}.

Let us now point out that, if(fI)r(eIθ) = f(reIθ), then

||(fI)r||Lp =

(
1

2π

∫ π

−π

|f(reIθ)|pdθ

) 1

p

= Mp(fI , r)

for all r ∈ [0, 1) and allI ∈ S.

Proposition 4.10. Let f ∈ Hp(B) for somep ∈ (0,+∞). Then, for anyI ∈ S, f̃I − (fI)r belongs to
Lp(∂B) and

lim
r→1−

||f̃I − (fI)r||Lp = 0.

Proof. An application of the analogous result in the complex case (seeTheorem 2.6 in [19]) to the splitting
components offI leads to the conclusion.

Now we are able to prove the desired result.

Proposition 4.11. Let f ∈ Hp(B) for somep ∈ (0 +∞]. Then, for anyI ∈ S, the functionf̃I : ∂BI → H

defined for almost everyθ ∈ [0, 2π), by

f̃(eIθ) = lim
r→1−

f(reIθ),

does belong toLp(∂BI) and
||f̃I ||Lp = ||fI ||p.

Proof. The proof is a direct consequence of Proposition 4.10 and of the Poisson integral representation
stated in Theorem 4.8.

5 Factorization theorems

In the classical setting it is possible to decompose a holomorphic function inHp(D) into its innerandouter
factors, see Chapter 5 of [27]. The quaternionic counterparts are defined as follows.

Definition 5.1. A regular functionE ∈ H1(B) is anouter functionif for anyf ∈ H1(B) such that|Ẽ(q)| =
|f̃(q)| for almost anyq ∈ ∂B, we have

|E(q)| ≥ |f(q)| for anyq ∈ B.
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In the complex setting, the definition of outer function can be given equivalently in terms of a never-vanishing
holomorphic function, expressed by means of an integral representation (see [27], Chapter 5). This corre-
spondence fails to be true for regular functions, since in general we can not reproduce the same construction.

Definition 5.2. A regular functionI ∈ H∞(B) is an inner functionif |I(q)| ≤ 1 for any q ∈ B and
|Ĩ(q)| = 1 for almost anyq ∈ ∂B.

We recall that, in the complex setting, each inner function can be factored into a product of two distinct
types of inner functions, namely aBlaschke productand asingular function. Let us define the quaternionic
analogues of singular functions, and then study the analogues of Blaschke products.

Definition 5.3. An inner functionf ∈ H∞(B) is a singular functionif f is non-vanishing onB.

In the complex setting there are two possible approaches to the factorization of anHp function (compare
[19, 27]). The first one is to begin by the extraction of the outer factor, thus obtaining the inner one. At this
point, extracting the zeros one separates the Blaschke product and the singular part. The other possibility is
to start with the extraction of the zeros, thus identifying the Blaschke product, and then separate the outer
factor from the singular one. In the quaternionic setting, since we can not reproduce the construction of the
outer factor, let us begin with the extraction of the zeros ofa functionf in Hp(B) for p ∈ (0,+∞].
Thanks to the characterization of the zero set of regular functions (see Theorem 2.12), recalling Definitions
2.13 and 2.14, we can build a sequence representing the zerosof f .

Definition 5.4. Letf be a regular function.Thesequence of zerosof f is a sequence{an}n∈N, contained in
the zero set off , composed as follows: the isolated zeros are listed according to their isolated multiplicity;
the spherical zeros are represented by any element that generates the2-sphere of zeros together with its
conjugate, listed according to their spherical multiplicity. Namely, ifaℓ generates a spherical zero (not
containingaℓ−1) with spherical multiplicity2m, thenaℓ+2k = aℓ andaℓ+2k+1 = aℓ for all k = 0, . . . ,m−
1.

In analogy with the complex case, we can give the following two definitions (previously introduced in [2]).

Definition 5.5. Let a be a point inB. TheBlaschke factorassociated witha is the regular Moebius trans-
formation defined as

Ma(q) = (1− qa)−∗ ∗ (a− q)
a

|a|
if a 6= 0, and Ma(q) = q if a = 0.

Definition 5.6. If {an}n∈N is a sequence of points inB such that the infinite regular product

B(q) =
∏
*

n≥0

Man
(q)

converges uniformly on compact subsets ofB, thenB is calledBlaschke product, and it defines a regular
function onB (see [21]).

Quaternionic Blaschke products are also treated in [3, 4, 7]. Blaschke products are examples of inner
functions.

Theorem 5.7. Let
B(q) =

∏
*

n≥0

Man
(q)

be a Blaschke product. Then|B(q)| ≤ 1 for anyq ∈ B and|B̃(q)| = 1 for almost anyq ∈ ∂B.
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Proof. Fork ∈ N consider the finite (regular) productBk,

Bk(q) =

k∏
*

n=0

Man
(q) =

k∏

n=0

Man
(Tn(q)),

whereT0(q) = q andTℓ is defined iteratively (outside the zero set ofBℓ−1), in view of Proposition 2.6, by

Tℓ(q) =




ℓ−1∏
*
j=0

Maj
(q)




−1

q

ℓ−1∏
*

j=0

Maj
(q) =




ℓ−1∏

j=0

Maj
(Tj(q))




−1

q

ℓ−1∏

j=0

Maj
(Tj(q)).

for any ℓ = 1, . . . , k. Since|Tn(q)| = |q| < 1 for any q ∈ B and since each factorMan
is bounded in

modulus by1 onB (see Proposition 2.17), we get that we can bound each finite product,

|Bk(q)| =

k∏

n=0

|Man
(Tn(q))| < 1.

Thanks to the uniform convergence on compact subsets of the finite products toB we get that

|B(q)| ≤ 1 for anyq ∈ B.

HenceB ∈ H∞(B) and therefore for anyI ∈ S, for almost anyθ ∈ [−π, π) there exists the radial limit

lim
r→1−

B(reIθ) = B̃(eIθ).

The same clearly holds true for any finite productBk ∈ H∞(B). For anyk ∈ N, the following regular
function

B−∗
k ∗B(q) =

∏
*

n≥k+1

Man
(q)

is a Blaschke product (and hence a bounded regular function)and

lim
k→∞

B−∗
k ∗B(q) = 1

uniformly on compact subsets ofB. Observe that, for anyk ∈ N, the finite regular productBk (as well as its
regular conjugateBc

k) is regular up to the closure ofB. Moreover, bothBk andBc
k only have finitely many

zeros in the interior ofB. Hence (see Proposition 2.15) the function

τk(q) =
(
Bc

k(q)
)−1

qBc
k(q)

is a diffeomorphism of a neighborhood (for instance a spherical shell) of∂B onto itself, it maps the boundary
of B onto itself and it has inverse given by

τ−1
k (q) = (Bk(q))

−1qBk(q).

Let I ∈ S. Proposition 2.15 yields that we can write

1

2π

∫ π

−π

∣∣B−∗
k ∗B(τ−1

k (reIθ))
∣∣dθ =

1

2π

∫ π

−π

∣∣Bk(re
Iθ)
∣∣−1∣∣B(reIθ)

∣∣dθ

≤
1

2π

∫ π

−π

(
max

θ∈[−π,π]

∣∣Bk(re
Iθ)
∣∣−1)∣∣B(reIθ)

∣∣dθ.
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SinceBk is a finite Blaschke product, it maps∂B to itself and

lim
r→1−

∣∣Bk(re
Iθ)
∣∣ =

∣∣B̃k(e
Iθ)
∣∣ = 1,

for anyθ. Hence, for anyε > 0 there existsr(ε) such that for anyr(ε) ≤ r < 1

max
θ∈[−π,π]

∣∣Bk(re
Iθ)
∣∣−1

≤ 1 + ε.

Therefore, for anyε > 0 there existsr sufficiently close to1 such that

1

2π

∫ π

−π

∣∣B−∗
k ∗B(τ−1

k (reIθ))
∣∣dθ ≤

1 + ε

2π

∫ π

−π

∣∣B(reIθ)
∣∣dθ ≤

1 + ε

2π

∫ π

−π

∣∣B̃(eIθ)
∣∣dθ ≤ 1 + ε (12)

where we use Proposition 3.1 and the fact that||B̃||L∞ = ||B||∞ ≤ 1. Set

Jk(r, θ) =
(
Bk(re

Iθ)
)−1

IBk(re
Iθ) ∈ S,

so that
τ−1
k (reIθ) = r cos θ + (r sin θ)Jk(r, θ).

Using the Representation Formula 2.2 we can then write
∣∣B−∗

k ∗B(τ−1
k (reIθ))

∣∣ =
∣∣B−∗

k ∗B(reJk(r,θ)θ)
∣∣

=

∣∣∣∣
1

2

(
B−∗

k ∗B(reIθ)+B−∗
k ∗B(re−Iθ)

)
+

Jk(r, θ)I

2

(
B−∗

k ∗B(re−Iθ)−B−∗
k ∗B(reIθ)

)∣∣∣∣.

SinceBk is a diffeomorphism of (a neighborhood of)∂B onto itself, we get that for everyθ the limit

lim
r→1−

Jk(r, θ) = J̃k(θ)

exists. Hence, recalling Proposition 4.6 and 4.11, applying twice the Representation Formula 2.2, we get

lim
r→1−

1

2π

∫ π

−π

∣∣B−∗
k ∗B(τ−1

k (reIθ))
∣∣dθ

=
1

2π

∫ π

−π

∣∣∣∣
1

2

(
B̃−∗

k ∗B̃(eIθ)+B̃−∗
k ∗B̃(e−Iθ)

)
+

J̃k(θ)I

2

(
B̃−∗

k ∗B̃(e−Iθ)−B̃−∗
k ∗B̃(eIθ)

)∣∣∣∣dθ

= lim
r→1−

1

2π

∫ π

−π

∣∣∣∣
1

2

(
B−∗

k ∗B(reIθ)+B−∗
k ∗B(re−Iθ)

)

+
J̃k(θ)I

2

(
B−∗

k ∗B(re−Iθ)−B−∗
k ∗B(reIθ)

)∣∣∣∣dθ

= lim
r→1−

1

2π

∫ π

−π

∣∣B−∗
k ∗B(reJ̃k(θ)θ)

∣∣dθ =
1

2π

∫ π

−π

∣∣B̃−∗
k ∗ B̃(τ̃−1

k (eIθ))
∣∣dθ

whereτ̃−1
k is the radial limit ofτ−1

k (see Proposition 4.6). Recalling inequality (12), we get then that for any
ε > 0

1

2π

∫ π

−π

∣∣B̃−∗
k ∗ B̃(τ̃−1

k (eIθ))
∣∣dθ = lim

r→1−

1

2π

∫ π

−π

∣∣B−∗
k ∗B(τ−1

k (reIθ))
∣∣dθ

≤
1 + ε

2π

∫ π

−π

∣∣B̃(eIθ)
∣∣dθ ≤ 1 + ε.

19



Now we want to take the limit fork → +∞ of the previous inequality. For almost everyθ, the limit

lim
k→+∞

τ̃−1
k (eIθ) = lim

k→+∞

(
B̃k(e

Iθ)
)−1

eIθB̃k(e
Iθ) =

(
B̃(eIθ)

)−1
eIθB̃(eIθ) = τ̃−1(eIθ)

does exist and it coincides with

lim
k→+∞

τ̃−1
k (eIθ) = lim

k→+∞
(cos θ + (sin θ)J̃k(θ)) = cos θ + (sin θ)J̃(θ),

which implies thatJ̃k(θ) converges for almost everyθ. Using again the Representation Formula 2.2, we
have then that

lim
k→+∞

∣∣B̃−∗
k ∗ B̃(τ̃−1

k (eIθ))
∣∣

= lim
k→+∞

∣∣∣∣
1

2

(
B̃−∗

k ∗B̃(eIθ)+B̃−∗
k ∗B̃(e−Iθ)

)
+

J̃k(θ)I

2

(
B̃−∗

k ∗B̃(e−Iθ)−B̃−∗
k ∗B̃(eIθ)

)∣∣∣∣.

Recalling thatB−∗
k ∗B converges uniformly on compact sets to the function constantly equal to1, and that

J̃k(θ) converges, we obtain
lim

k→+∞

∣∣B̃−∗
k ∗ B̃(τ̃−1

k (eIθ))
∣∣ ≡ 1.

Therefore we get that, for anyε > 0,

1 = lim
k→+∞

1

2π

∫ π

−π

∣∣B̃−∗
k ∗ B̃(τ̃−1

k (eIθ))
∣∣dθ ≤

1 + ε

2π

∫ π

−π

∣∣B̃(eIθ)
∣∣dθ ≤ 1 + ε,

that finally implies ∣∣B̃(eIθ)
∣∣ = 1

for almost everyθ.

In order to show that the sequence of zeros of a functionf in Hp(B) is such that the Blaschke product
associated with it is convergent, we will use classical results in the theory of complexHp spaces, that apply
to the symmetrization off .

Remark 5.8. Recall that the symmetrizationf s of a regular functionf behaves exactly as a holomorphic
function on any sliceLI . Hence, iff s is in Hp(B) (and therefore inHp(BI)) for somep ∈ (0,+∞], and
f s 6≡ 0, classical results (see e.g. Theorem 15.23 in [28]) yield that, if {aIn}n≥0 is the sequence of zeros of
f s in BI , listed according to their multiplicity, then the Blaschkecondition

∑

n≥0

(1 − |aIn|) < +∞

is fulfilled.

Consequently,

Proposition 5.9. Let p ∈ (0,+∞], f ∈ Hp(B), f 6≡ 0 and let{bn}n∈N be its sequence of zeros. Then
{bn}n∈N satisfies the Blaschke condition

∑

n≥0

(1− |bn|) < +∞.
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Proof. Let us consider the symmetrization off , f s. Thanks to Proposition 3.13 and Remark 5.8, for any
I ∈ S, if {aIn}n∈N is the sequence of zeros off s onBI , then it satisfies the Blaschke contidion. Ifbn =
b1,n + b2,nIn, let us setbIn = b1,n + b2,nI for all n ∈ N. Then|bn| = |bIn| for all n ∈ N, and{bIn}n∈N ⊆
{aIn}n∈N. Therefore (recalling that|aIn| < 1)

∑

n≥0

(1− |bn|) =
∑

n≥0

(
1− |bIn|

)
≤
∑

n≥0

(
1− |aIn|

)
< +∞.

The previous result implies that the Blaschke product builtfrom the zeros of a regular functionf ∈ Hp(B)
for somep ∈ (0,+∞] does converge uniformly on compact sets (compare with [2]).

Proposition 5.10. Let f be inHp(B) for somep ∈ (0,+∞] and let{an}n≥0 be its sequence of zeros. If
Man

(q) denotes the Blaschke factor associated withan,

Man
(q) = (1− qan)

−∗ ∗ (an − q)
an

|an|

(Man
(q) = q if an = 0), then the Blaschke product

B(q) =
∏
*

n≥0

Man
(q)

converges uniformly on compact sets ofB. Moreover, the functionB is regular onB.

Proof. In [21] the convergence of infinite quaternionic∗- products of regular functions is presented in detail.
In particular the convergence ofB(q) is equivalent to the convergence of

∑
n≥0 |1−Man

(q)|. With this in
mind, the proof can be found in [2].

We point out that the convergence ofB(q) depends only on the moduli|an|, n ∈ N. This means that we
can build a Blaschke product̂B(q) having exactly the same sequence of zeros{an}n∈N of a given regular
function f ∈ Hp(B) (see also [2]). In fact, in order to build such a Blaschke product B̂(q), we have to
consider the product of Blaschke factors associated with suitable conjugates of the pointsan, lying on the
same2-spheresxn + ynS generated byan, taking into account Proposition 2.6.

Proposition 5.11. Let {an}n∈N be the sequence of zeros of a regular functionf ∈ Hp(B) for somep ∈

(0,+∞]. Then there exists a Blaschke productB̂(q) having the same sequence of zeros.

Proof. We will give the proof in the case in which all the zeros (both isolated and spherical) have multiplicity
1. In this case, we can assume, without loss of generality, that aj 6= ak for all j, k ∈ N. Our aim is now
to build a sequence{bn}n∈N, where eachbn is a conjugate ofan, such that the Blaschke product associated
with it

B̂(q) =
∏
*

n≥0

Mbn(q)

has{an}n∈N as its sequence of zeros. The convergence of the Blaschke product is guaranteed by Proposition
5.10. Since the regular multiplication does not conjugate the zeros of the first function in the∗-product, the
first term of the sequence will be equal toa0,

b0 = a0.
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For the second term, we need to findb1 such that

Mb0(q) ∗Mb1(q) = Ma0
(q) ∗ (1− qb1)

−∗ ∗ (b1 − q)
b1

|b1|

vanishes atq = a1. Notice that, for anyk ∈ N,

(1− qbk)
−∗ ∗ (bk − q) = (bk − q) ∗ (1− qbk)

−∗,

because
(bk − q) ∗ (1− qbk) = (1− qbk) ∗ (bk − q).

Hence

Mb0(q) ∗Mb1(q) = Ma0
(q) ∗ (b1 − q) ∗ (1− qb1)

−∗ b1

|b1|
,

and, thanks to Proposition 2.6, we can write

Mb0(q) ∗Mb1(q) = (Ma0
(q)(b1 − T1(q))) ∗

(
(1 − qb1)

−∗ b1

|b1|

)
,

where
T1(q) = (Ma0

(q))−1
qMa0

(q).

Therefore, if we want that this product vanishes ata1, we can set

b1 = T1(a1),

well defined sincea1 6= a0. We can iterate this process, setting, for anyn ≥ 1,

Tn(q) =

(
n−1∏
*

k=0

Mbk(q)

)−1

q

(
n−1∏
*

k=0

Mbk(q)

)
,

so that
(

n−1∏
*

k=0

Mbk(q)

)
∗Mbn(q) =

(
n−1∏
*

k=0

Mbk(q)

)
∗ (bn − q) ∗ (1− qbn)

−∗ bn

|bn|

=

((
n−1∏
*

k=0

Mbk(q)

)
(bn − Tn(q))

)
∗

(
(1− qbn)

−∗ bn

|bn|

)

Hence, if we want that (
n−1∏
*

k=0

Mbk(q)

)
∗Mbn(q)

vanishes atq = an, we have to set
bn = Tn(an),

well defined sincean 6= an−1. In the case in which some of the zeros off have multiplicities greater than
1, the proof follows the same lines; one has only to take into account that:
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1. to each isolated zeroaj of f of multiplicity p > 1 there corresponds the (regular) power of a Blaschke
factorM∗p

bj
(q) which vanishes atbj with multiplicity p;

2. to each spherical zero off containingak, ak and having multiplicityp > 1 there corresponds the slice
preserving factor(Mbk ∗Mbk

(q))∗p = (M s
bk
(q))p.

Remark 5.12. Since we transform the zeros off by conjugation, all real and spherical zeros off are not
modified by this process.

We can now prove our first result in the direction of finding a factorization for functions inHp(B).

Theorem 5.13. Letf ∈ Hp(B) for somep ∈ (0,+∞]. Then we can factorf as

f(q) = h ∗ g(q)

whereh andg are regular functions onB such thath(q) 6= 0 for anyq ∈ B andg is a Blaschke product.

Proof. As in the proof of Proposition 5.11, we give the proof for the case in which all zeros off have
multiplicity 1 and the sequence of zeros{an}n∈N of f is an injective sequence. Let us split the sequence of
zeros as

{an}n∈N = {αn}n∈N ∪ {βn}n∈N

where{αn}n∈N is the sequence corresponding to spherical zeros, while{βn}n∈N is the sequences of isolated
ones. Since{αn}n∈N is contained in the sequence of zeros of the functionf , clearly

∑

n≥0

(1− |αn|) ≤
∑

n≥0

(1 − |an|) < +∞.

Hence the Blaschke product associated with{αn}n∈N

Bα(q) =
∏
*

n≥0

Mαn
(q)

converges uniformly on compact sets thus defining a regular function, vanishing exactly at the spherical zeros
of f . The functionBα(q) is slice preserving, in fact it contains only factors of the typeMαn

∗Mαn
= M s

αn
.

Let fβ(q) be the function defined as

fβ(q) = B−∗
α ∗ f(q) = Bα(q)

−1f(q),

so that we can write
f(q) = Bα(q)fβ(q).

Since the poles ofB−∗
α are spherical zeros off , thenfβ is regular onB and its sequence of zeros coincides

with {βn}n∈N. The idea is now to “make spherical” all the zeros offβ . In order to do it, we want to find a
Blaschke productBβ such that

fβ ∗Bβ(q)

vanishes at all spheres generated by{βn}n∈N, namely such that the sequence of zeros offβ ∗Bβ(q) is

{βn, βn}n∈N.
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We can buildBβ following the lines of the proof of Proposition 5.11. If

Bβ(q) =
∏
*

n≥0

Mγn
(q),

we can define the sequence{γn}n∈N iteratively as follows. The first quaternion,γ0, is such that

fβ ∗Mγ0
(q) = fβ ∗ (γ0 − q) ∗ (1− qγ0)

−∗ γ0

|γ0|

vanishes atq = β0 and atq = β0. Sincefβ vanishes atq = β0 andf does not vanish atq = β0, if T0 is
defined as

T0(q) = (fβ(q))
−1

qfβ(q),

then we can write

fβ ∗Mγ0
(q) = (fβ(q) (γ0 − T0(q))) ∗

(
(1− qγ0)

−∗ γ0

|γ0|

)
.

Hence, if we set
γ0 = T0(β0),

we have that
fβ ∗Mγ0

(q)

vanishes both atq = β0 and atq = β0. As we have done in order to prove Proposition 5.11, we can iterate
the process, setting, for anyn ≥ 1,

Tn(q) =

(
fβ ∗

n−1∏
*

k=0

Mγk
(q)

)−1

q

(
fβ ∗

n−1∏
*

k=0

Mγk
(q)

)

so that
(
fβ ∗

n−1∏
*

k=0

Mγk

)
∗Mγn

(q) =

(
fβ ∗

n−1∏
*

k=0

Mγk

)
∗ (γn − q) ∗

(
(1− qγn)

−∗ γn

|γn|

)

=

((
fβ ∗

n−1∏
*

k=0

Mγk

)
(γn − Tn(q))

)
∗

(
(1− qγn)

−∗ γn

|γn|

)
.

SinceTn is well defined onβn, if we set
γn = Tn(βn)

we get that (
fβ ∗

n−1∏
*

k=0

Mγk

)
∗Mγn

(q)

vanishes both atq = βn and atq = βn. The convergence of the infinite productBβ(q) is guaranteed by the

fact that it is the Blaschke product associated with the sequence{Tn(βn)}n∈N where each elementTn(βn)

24



has the same modulus ofβn, and eachβn is contained in the sequence of zeros of a function inHp(B).
Hence

fβ ∗Bβ(q)

is a regular function that has only spherical zeros, and its sequence of zeros is{βn, βn}n∈N. Therefore, if
we set

B̃β(q) =
∏
*

n≥0

(
Mβn

∗Mβn

)
(q) =

∏
*

n≥0

M s
βn
(q),

then we can write
fβ ∗Bβ(q) = B̃β ∗ h(q) = B̃β(q)h(q), (13)

for some functionh, never vanishing and regular onB. To prove the regularity ofh, it suffices to observe
that sinceB̃β has real coefficients, it is regular and it has exactly the same zeros offβ ∗ Bβ(q), then the
regular quotient

B̃−∗
β ∗ (fβ ∗Bβ)(q) = (B̃β(q))

−1(fβ ∗Bβ)(q)

is well defined (and regular) on the entire ballB. Consider the regular conjugate ofBβ, and∗-multiply on
the right byBc

β
all terms of equality (13). We obtain

fβ ∗Bβ ∗Bc
β
(q) = B̃β(q)h ∗Bc

β
(q),

that can also be written as
Bs

β
(q)fβ(q) = B̃β(q)h ∗Bc

β
(q).

Now notice thatBs
β
(q) = B̃β(q) because they both are Blaschke products associated to the same spherical

zeros. Therefore we infer
fβ(q) = h ∗Bc

β
(q),

that, forf , means
f(q) = Bα(q)h ∗Bc

β
(q) = h ∗Bα ∗Bc

β
(q).

Settingg(q) = Bα ∗Bc
β
(q) leads to the conclusion of the proof.

Once “extracted” the zeros of a function inHp(B), we would like to identify its outer factor and its
singular part.

Proposition 5.14. Let f ∈ Hp(B) for somep ∈ [1,+∞] be such thatf−∗ ∈ Hq(B) where 1
p + 1

q = 1.
Thenf is an outer function.

Proof. Let g ∈ Hp(B) be such that|g̃| = |f̃ | almost everywhere on∂B. The regular functionh = f−∗ ∗ g
belongs toH1(B) thanks to Proposition 3.14. Therefore recalling Proposition 4.6, we get that for almost
everyθ ∈ [−π, π),

lim
r→1−

|h(reIθ)| = lim
r→1−

|f−∗ ∗ g(reIθ)|

= |f̃(f̃ c(eIθ)−1eIθf̃ c(eIθ))|−1|g̃(f̃ c(eIθ)−1eIθf̃ c(eIθ))|.

Sincef andg̃ coincide almost everywhere at the boundary, we get that for almost everyθ ∈ [−π, π),

lim
r→1−

|h(reIθ)| = 1.
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Therefore the Poisson integral representation formula guarantees that

|h(q)| ≤ 1

for anyq ∈ B. With the same notation of Proposition 2.15, we obtain that for all q ∈ B

1 ≥ |f−∗ ∗ g(q)| = |f(Tf (q))|
−1|g(Tf(q))|.

Sincef−∗ ∈ Hq(B) thenf has no zeros andTf is a diffeomorphism ofB, yielding

|g(q)| ≤ |f(q)|

for anyq ∈ B. We thus conclude thatf is an outer function.

Remark 5.15. In the case of a regular functionf : B → H that is continuous and non-vanishing up to
the boundary ofB, the previous result implies thatf is an outer function (sincef andf−∗ both belong to
H∞(B)).

For regular functions that preserve a sliceLI , the factorization can be done in a stronger and more
satisfactory fashion, that very much resembles its complexcounterpart.

Theorem 5.16.Letf ∈ Hp(B) for somep ∈ (0,+∞], be such thatf mapsBI toLI for someI ∈ S. Then
we can factorf as

f(q) = E ∗ I(q),

whereE is an outer function inHp(B) such that|Ẽ| = |f̃ | almost everywhere on the boundary∂B andI is
a inner function.

Proof. The restriction off to BI is a (complex) holomorphic functionFI : BI → LI mappingz 7→ fI(z).
Let us define the functionEI : BI → LI to be

EI(z) = exp

(
1

2π

∫ π

−π

eIθ + z

eIθ − z
log |FI(e

Iθ)|dθ

)
,

namely the outer factor ofFI . From factorization results in the complex setting, (see for instance [27]), we
know that we can write

FI(z) = EI(z)II(z)

whereII(z) is the inner factor ofFI . In particular, since bothEI andII mapBI to LI , we can also write

FI(z) = EI(z)II(z) = EI(z) ∗ II(z).

Hence
f(q) = ext(fI)(q) = ext(FI)(q) = ext(EI ∗ II)(q) = ext(EI) ∗ ext(II)(q)

where the last equality is due to the Identity Principle for regular functions, [21]. Let us setE(q) =
ext(EI)(q) andI(q) = ext(II)(q). SinceEI(z) 6= 0 for all z ∈ BI , Proposition 2.11 yields that also
E is never vanishing onB. To estimate the modulus ofI, recall that a function that maps the sliceLI to
itself has the following properties (see Proposition 2.3)

max
J∈S

|I(x + yJ)| = max{|I(x+ yI)|, |I(x − yI)|} = max{|II(x + yI)|, |II(x− yI)|} (14)
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and
min
J∈S

|I(x+ yJ)| = min{|I(x + yI)|, |I(x − yI)|} = min{|II(x + yI)|, |II(x− yI)|}

for all x, y such thatx + yI ∈ BI . By classical results, the inner functionII is bounded in modulus by1
and its uniform norm equals1, therefore we get, thanks to (14)

||I||∞ = sup
q∈B

|I(q)| = sup
z∈BI

|II(z)| = ||II ||∞ = 1.

As a consequence
|I(q)| ≤ 1 (15)

for all q ∈ B. Moreover, since|ĨI | equals1 almost everywhere on the boundary∂BI , we have that, for
almost everyx+ yI such thatx2 + y2 = 1,

max
{
|ĨI(x+ yI)|, |ĨI(x − yI)|

}
= min

{
|ĨI(x+ yI)|, |ĨI(x− yI)|

}
= 1.

Therefore, for almost everyx+ yJ such thatx2 + y2 = 1,

max
J∈S

∣∣∣Ĩ(x+ yJ)
∣∣∣ = min

J∈S

∣∣∣Ĩ(x+ yJ)
∣∣∣ = 1

namely for almost everyq ∈ ∂B, |Ĩ(q)| = 1. To obtain the wanted properties of the modulus ofE, let us
denote byT the transformation

T (q) = (Ec(q))−1qEc(q).

SinceEc is non-vanishing onB, T is a diffeomorphism ofB with inverse

T−1(q) = (E(q))−1qE(q).

Then, thanks to Proposition 2.15 and to inequality (15), we can write

1 ≥ |I(T−1(q))| =
∣∣E−∗ ∗ f(T−1(q))

∣∣ =
∣∣E−1(q)f(q)

∣∣ =
∣∣E(q)|−1|f(q)

∣∣ (16)

for anyq ∈ B. Hence
|E(q)| ≥ |f(q)| for anyq ∈ B.

The study of the behavior of the modulus|Ẽ| at the boundary, requires some more effort. First of all,
classical results on outer functions (see e.g. [27]) imply thatEI ∈ Hp(BI). Then, thanks to Proposition
3.9 we get thatE ∈ Hp(B). Therefore, for anyJ ∈ S, the functionE has radial limitẼ for almost any
x + yJ ∈ ∂BJ . Hence, also the transformationT−1(q) = (E(q))−1qE(q) does. This allows us to prove

that T̃−1 maps almost every2-spherex + yS ⊂ ∂B one-to-one onto itself. In fact, for almost every sphere
x+yS ⊂ ∂B the functionẼ is defined at all points ofx+yS (see Proposition 4.3). For such a spherex+yS,
thanks to the Representation Formula 2.2 and to the fact thatE preservesLI , there existb, c ∈ LI such that

Ẽ(x+ yJ) = b+ Jc for anyJ ∈ S.

Takex + yK ∈ x + yS, with K 6= I. We are going to show that we can find the onlyJ ∈ S such that
T̃−1(x+ yJ) = x+ yK. This is possible if and only if

(
Ẽ(x+ yJ)

)−1

qẼ(x+ yJ) = (b+ Jc)−1(x+ yJ)(b+ Jc) = x+ yK.
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Sincex, y are real numbers, this is equivalent to

J(b− cK) = c+ bK.

Now, sinceK 6= I and sinceb, c ∈ LI , necessarilyb− cK 6= 0. Hence

J = (bK + c)(b− cK)−1

solves our problem. Thanks to this property of the mapT−1, we get that1 = |Ĩ(T̃−1(q))| for almost every
q ∈ ∂B. The radial limit version of equation (16), holding for almost everyq ∈ ∂B,

1 = |Ĩ(T̃−1(q))| = |Ẽ(q)|−1|f̃(q)|

leads to the equality
|Ẽ(q)| = |f̃(q)| (17)

for almost everyq ∈ ∂B, which leads also to||E||p = ||Ẽ||Lp = ||f̃ ||Lp = ||f ||p. We want to show now
thatE is an outer function. To this aim, letg ∈ Hp(B) be such that

|Ẽ(q)| = |g̃(q)| (18)

for almost allq ∈ ∂B. If we restrictE andg to BI , and recall the definition ofEI , we can write (see
Proposition 4.3)

log |EI(re
Iθ)| =

1

2π

∫ π

−π

Pr(θ − t) log |f̃I(e
It)|dt

=
1

2π

∫ π

−π

Pr(θ − t) log |g̃I(e
It)|dt ≥ log |gI(re

Iθ)|

(19)

wherePr(t) is the Poisson kernel and where last inequality is due to the subharmonicity oflog |gI | (see the
proof of Proposition 3.1). As a consequence we get that

1 ≥ |EI(z)|
−1|gI(z)| = |E−∗

I ∗ gI(z)| = |(E−∗ ∗ g)I(z)|

for all z ∈ BI . SinceE−∗ ∗ g is regular onB, using Proposition 3.9 we obtain thatE−∗ ∗ g belongs to
H∞(B). Then the radial limit ofE−∗ ∗ g exists at almost every point of∂B. Equation (18) and Proposition
4.6 guarantee that for everyJ ∈ S

lim
r→1−

|E−∗ ∗ g(reJθ)| = |Ẽ−∗ ∗ g(eJθ)| = 1

for almost everyθ ∈ [−π, π). Hence, by Proposition 4.11,

||E−∗ ∗ g||∞ = ||Ẽ−∗ ∗ g||L∞ = 1.

Recalling now thatT−1(q) = (E(q))−1qE(q) is a diffeomorphism ofB, thanks to Proposition 2.15 we
obtain

1 ≥
∣∣E−∗ ∗ g(T−1(q))

∣∣ =
∣∣E−1(q)g(q)

∣∣ =
∣∣E(q)|−1|g(q)

∣∣

i.e.,
|E(q)| ≥ |g(q)|

for all q ∈ B. This concludes the proof.
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Corollary 5.17. Letf ∈ Hp(B) for somep ∈ (0,+∞], be such thatf mapsBI toLI for someI ∈ S. Then
there exist an outer functionE ∈ Hp(B), a singular functionS ∈ H∞(B) and a Blaschke productB such
that

f(q) = E ∗ S ∗B(q)

for all q ∈ B.

Proof. Theorem 5.16 allows us to factorf = E ∗ I as a∗-product of an outer functionE and an inner
function I. Theorem 5.13 guarantees now the existence of a Blaschke productB and a non-vanishing
functionS such thatI = S ∗ B. Following the lines of the proof of Theorem 5.16 that led us to show that
the outer factor off belongs toHp(B), one can prove thatS belongs toH∞(B) and hence is a singular
function.

We point out that the Beurling-Lax type Theorem in [2], and the Krein-Langer type factorization theorem
that appears in [3, 4], are naturally connected to our factorization results.
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