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Abstract
Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to

their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the prepara-

tion of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical ap-

plications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the anti-

microbial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with

nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by

“activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the

antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation

conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns)

or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli

and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average

diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal ac-

tivity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activi-

ty was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more

effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum

inhibitory concentration (MIC) values in a restricted range of 1.0–3.7 µg/mL. An explanation is proposed for this result based on

the increased surface reactivity of the metal surface due to the presence of positively charged active sites.
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Introduction
The interest in nanoscale metal particles is constantly growing

as they find wide application in diverse fields ranging from

sensing [1-3], medicine [4], catalysis [5-8], to astrobiology

[9,10] and many others. In particular, silver nanoparticles

(AgNPs) have increasingly gained importance as promising

new antimicrobial agents with application in several biomedi-

cal fields, in water and air filtration, as well as in conservation

of cultural heritage [11-14]. Although the mode of action of

AgNPs against microorganisms is not yet fully understood, it is

generally believed that different mechanisms determine the anti-

microbial activity of AgNPs based on both the release of silver

ions and the nanoparticle characteristics [15,16]. Some of these

proposed mechanisms include: (a) the direct contact between

NPs and the microbial cell, which disturbs the power functions

of the cell membrane and causes structural damage; (b) the gen-

eration of reactive oxygen species (ROS), which damage the

cell membrane; and (c) the interference with DNA replication

and inhibition of enzymes and other proteins [13,17-20]. These

multiple, synergic mechanisms of cytotoxic activity reduce the

likelihood that the microorganisms develop resistance against

the silver compounds [21]. Consequently, AgNPs are very

attractive as antimicrobials, due to the worldwide crisis of

bacterial resistance to conventional, narrow-target antibiotics

[19].

AgNPs have been synthesized by following various physical,

chemical and biological pathways [22,23]. Their microscopic,

physical and chemical properties have been found to be closely

related to the experimental preparation procedures, the interac-

tion of metal ions with reducing agents, as well as the adsorp-

tion of stabilizers [22]. Furthermore, the presence of residual

reagents or by-products from these methods can lead to the irre-

producibility of desired NP characteristics [24], while their

potential toxicity hinders further biological applications [25].

These drawbacks can be overcome by synthesizing the NPs

using pulsed laser ablation in liquid (PLAL). In fact, PLAL is a

physical approach that permits preparation of stable metal col-

loids in pure solvents without the use of capping or stabilizing

agents [26,27]. The NPs are obtained by focusing a pulsed laser

beam onto a metallic target immersed in a liquid, which can be

a pure solvent or a solution containing capping and stabilizing

molecules, when required. In the first case, the surface of

PLAL-synthesized NPs is considered to be “clean” and the col-

loids will be free from reaction by-products. With this method,

it is possible to isolate the effect of Ag on living cells (and, in

particular, on bacteria) from that of other compounds.

Most of the studies on the bactericidal effect of AgNPs concern

NPs obtained by wet chemical methods. From studies using

AgNPs with different sizes, it has been demonstrated that their

antibacterial activity decreases with increasing particle size. The

effect of 1–100 nm AgNPs on Gram-negative bacteria was

studied by Morones et al. with HR-TEM analysis [13]. They

concluded that only AgNPs with a diameter <10 nm are able to

interact with the bacteria. Additionally, bacterial growth inhibi-

tion was shown to be more effective with AgNPs with an

average diameter of less than 10 nm. The lowest minimum

inhibitory concentration (MIC) values for Gram-positive as well

as Gram-negative bacteria were correlated to the smallest nano-

particles used (5 nm and 7 nm) in different studies [28-30].

In contrast, only a few investigations have been performed that

analyze the bactericidal properties of AgNPs produced by

PLAL. In spite of the superior surface cleanliness and the

absence of capping agents, which could induce a potential

shielding effect on the antimicrobial activity, the obtained MIC

values were notably in the same range as those of the AgNPs

prepared by wet chemical methods [31]. As a matter of fact, as

very recently observed by some of us [32], AgNPs synthesized

by PLAL in pure water are coated by a thin oxide layer that, in

the case of Raman experiments, impairs their ability to induce a

strong increase of the Raman response of molecular adsorbates

in the SERS (Surface Enhanced Raman Scattering) effect. A

strong SERS signal from such AgNPs can be obtained by “acti-

vating” the NP surface by addition of a small quantity of LiCl to

the colloid. In addition, a sizeable catalytic effect has also been

observed in chloride-activated Ag colloids [24]. It is therefore

reasonable to expect that such surface effects can also influence

the antimicrobial activity of the AgNPs. With this in mind,

AgNPs with an average diameter less than 10 nm were synthe-

sized either by ns or ps PLAL in pure water or in aqueous solu-

tions of LiCl using a 1064 nm ablation wavelength. Then, the

obtained AgNPs were characterized and tested for antimicrobi-

al activity against Escherichia coli and Bacillus subtilis as refer-

ences for Gram-negative and Gram-positive bacteria, respec-

tively.

Results
AgNP characterization
AgNPs were prepared by PLAL. The experimental setup has

been previously described by Giorgetti et al. [31], and the spe-

cific fabrication conditions are reported in the Experimental

section. The list of samples with their characteristics is shown

in Table 1.

Figure 1 reports the UV–vis absorption spectra of the colloidal

AgNPs samples obtained with ps laser ablation (Figure 1a) and

with ns (Figure 1b) pulses, namely ps and ns samples. In partic-

ular, the figure compares the spectra of the samples obtained in
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Table 1: Summary of AgNP colloids and of their characteristics.

Sample Absorbance at
400 nm

(OPL = 1 mm)

Pulse width
(s)

Pulse
energy
(mJ)

Fluence on
target

(J/cm2)

Zeta potential
(mV)

Average NP
diameter

(σ− /σ+)a (nm)

Ag
concentration

(μg/mL)

AgNPsH2Ops 0.9 25 × 10−12 15 0.7 −33 ± 8 (57%)
−53 ± 5 (43%)

2.2 (1.5/4.4) 84.1

AgNPsH2Ons 2.3 25 × 10−9 100 4 −50 ± 7 (51%)
−25 ± 6 (49%)

2.2 (1.3/3.0) 184.4

AgNPsLiClps 0.4 25 × 10−12 15 0.7 −55 ± 7 (100%) 3.3 (2.1/6.2) 47.0
AgNPsLiClns 1.5 25 × 10−9 100 4 −35 ± 7 (61%)

−68 ± 7 (39%)
0.9 (0.5/1.2)
6.1 (3.1/6.4)

74.1

aThe left (σ−) and right (σ+) 1/e half widths of the size distribution, respectively.

Figure 1: UV–vis absorption spectra of AgNPs in colloidal suspensions obtained with (a) ps and (b) ns laser ablation.

pure water (red line) with those of the samples prepared in

1 mM LiCl aqueous solution (blue line). In the latter case, the

plasmon resonance appears blue-shifted in both ps and ns sam-

ples. Such a shift could be attributed either to a change in the

dielectric constant of the liquid environment or, more reason-

ably, to the different oxidation grade of the NP surfaces, where

the NPs obtained in the presence of LiCl would be less oxidized

[32].

In addition, the plasmon bands of the silver nanoparticles ob-

tained by ps ablation in both pure water and LiCl solution

appear significantly red-shifted compared to those observed for

colloids obtained by ns ablation. This result could also be attri-

buted to a difference in silver oxide content on the AgNPs. It is

known that thermal evaporation dominates in the process of ns

ablation [33], while a nonthermal mechanism (attributable to

photoionization [34]) is predominant in the ps ablation process.

Because Ag2O dissociates above 550 K, it is reasonable to

expect more silver oxide in ps-ablated material. Moreover, the

presence of a larger content of silver oxide on the surface of

ps-ablated nanoparticles with respect to those ns-ablated was

previously ascertained by means of UV–vis absorption experi-

ments and theoretical modelling for Ag colloids obtained by

laser ablation [32].

In order to study the long-term colloidal stability and the elec-

trical characteristics of the NP surface, the zeta potential was

measured. The obtained values are reported in Table 1. Apart

from the AgNPsLiClps sample, all samples exhibited a bimodal

distribution of the zeta potential. In all cases, the zeta potential

is strongly negative, indicating excellent long-term stability of

the NPs, as already assessed by Giorgetti et al. [32]. Further-

more, as expected, the adsorption of chloride ions shifts the zeta

potential of the samples obtained in LiCl solution towards more

negative values. The negative zeta potential of the colloids ob-

tained in water is due to the adsorption of hydroxide anions

from the aqueous medium, whereas for the colloids obtained in

LiCl solution it is due to the preferential adsorption of chloride

anions on the silver surface [35].

We have also performed a TEM investigation on the AgNPs

obtained in the four different procedures: by ps or ns laser abla-

tion and in pure water or in LiCl solution. The reported TEM

images represent the most significant images for the four sam-
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Figure 2: Typical TEM image and size (average diameter) distribution of (a) AgNPsH2Ops and (b) AgNPsLiClps.

Figure 3: Typical TEM image and size (average diameter) distribution of (a) AgNPsH2Ons and (b) AgNPsLiClns.

ples, and the size distribution (reported as inserts in the same

figures) were obtained from the diameter evaluation of more

than 2000 nanoparticles. Figure 2a shows the morphological

characteristics of the sample AgNPsH2Ops. Apart from a small

amount of large NPs with average diameter around 10 nm, the

majority of NPs are small, with a 2.2 nm diameter and

σ− = 1.5 nm and σ+ = 4.4 nm, which are the left and right 1/e

half widths of the size distribution, respectively. The addition of

LiCl to the ps ablation environment increases the presence of

large NPs in the sample. Figure 2b shows a typical TEM micro-

graph of the sample AgNPsLiClps and the corresponding size

distribution, which includes a non-negligible amount of NPs

larger than 10 nm. In this case, the statistical analysis of TEM

data returned a size distribution with peak diameter of 3.3 nm,

σ− = 1 nm and σ+ = 3 nm.

Analogous to the corresponding ps sample, the AgNPsH2Ons

sample exhibited a monomodal size distribution, as shown

in Figure 3a (diameter 2.2 nm; σ− = 1.3 nm; σ+ = 3.0 nm). Also,

for samples produced with ns PLAL, the addition of LiCl to the

ablation environment caused an increase in NP size, more

markedly than for the ps-ablated sample. The ns-ablated sam-

ple had a bimodal size distribution, where larger NPs (diameter

6.1 nm; σ− = 3.1 nm; σ+ = 6.4 nm) were statistically more

prominent than smaller NPs (diameter 0.9 nm; σ− = 0.5 nm;

σ+ = 1.2 nm), as reported in Figure 3b.

Bacterial susceptibility to AgNPs
The four Ag colloidal dispersions, as obtained from laser abla-

tion, were used for the antibacterial tests and their MIC and

minimum bactericidal concentration (MBC) values were ob-

tained against E. coli and B. subtilis. To have a known antimi-

crobial as a reference, we also tested ampicillin against the two

bacteria. The results are shown in Table 2.

In order to detect the time of appearance of the AgNPs bacteri-

cidal effects, E. coli cultures with and without AgNPs at the

MBC value were prepared in microtiter plates and their optical
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Table 2: MIC and MBC values of the four AgNPs samples against E. coli XL1Blue and B. subtilis 168 (obtained at least by two independent experi-
ments, each in duplicate).

Antimicrobial
E. coli B. subtilis

MIC (μg/mL) MBC (μg/mL) MIC (μg/mL) MBC (μg/mL)

AgNPsH2Ops 8.4 8.4 1.7 1.7
AgNPsH2Ons 9.2 18.4 9.2 18.4
AgNPsLiClps 1.6 2.4 1.0 1.0
AgNPsLiClns 3.7 3.7 1.5 1.5
Ampicillin 14.5 14.5 50.0 75.0

Table 3: Viable count of E. coli cultures grown in microtiter plates in the absence and in the presence of AgNPs (MBC value) at different incubation
times.

Incubation time (min) E. coli (CFU/mL) E. coli + AgNpsH2Ons (CFU/mL) E. coli + AgNpsLiClns (CFU/mL)

0 3.5 × 106 2.8 × 106 3.2 × 106

45 3.3 × 106 2.5 × 106 2.4 × 106

120 5.4 × 106 1.7 × 106 2.0 × 106

180 4.3 × 107 2.3 × 105 1.5 × 104

1440 8.0 × 108 <10a <10a

aAbsence of CFUs growth by plating 0.1 mL of the undiluted culture.

density and viable count were determined at time zero and after

45 min, 2 h, 3 h and 24 h of incubation at 37 °C. The results of

the viable count E. coli cultures are reported in Table 3 for

ns-ablated AgNPs. E. coli cultures tested with AgNPsH2Ons

(18.4 μg/mL) and AgNPsLiClns (3.7 μg/mL) did not show any

increase of optical density at any monitored time, while E. coli

cultures without additives showed an optical density increase

starting from 2 h, until reaching a plateau, as confirmed at 24 h

(not shown). According to Table 3, there was a reduction in

E. coli viability in the presence of AgNPs, starting after 2 h and

more evident after 3 h of incubation, until no viable cells were

detectable at 24 h.

Discussion
The PLAL preparation method produced AgNPs with a small

average diameter (<10 nm, in all cases) and a narrow statistical

distribution. Furthermore, their surface cleanliness and the

absence of stabilizers or reaction by-products in the colloids

allowed the effect of Ag on the bacteria to be isolated and the

effect of surface activation by chloride anions on the antimicro-

bial activity to be studied.

We tested the antimicrobial activity of all the AgNPs prepara-

tions presented in Table 1 against two bacteria: E. coli, as a

reference for Gram-negatives, and B. subtilis, as a reference for

Gram-positives. We found antibacterial activity against both

microorganisms by all four NPs formulations. Regarding their

effect on growth inhibition, we obtained MIC values ranging

from 1.0 to 8.4 µg/mL with ps-ablated AgNPs. These values

were lower for both microorganisms than those obtained with

ns-ablated AgNPs (either in water or in LiCl solution). More-

over, AgNPs obtained in the LiCl solution were more effective

on both microorganisms than those obtained in pure H2O with

MIC values in a restricted range of 1.0–3.7 µg/mL (the lowest

values obtained for B. subtilis at 1.0 and 1.5 µg/mL for ps- and

ns-ablated samples, respectively). A similar trend was found

with the MBC values, where the lowest values were obtained on

both microorganisms with ps-ablated AgNPs in LiCl solution.

In general, all of the colloids tested were more effective than the

antibiotic tested as a reference (Table 2).

After storing the AgNPs colloidal dispersions for about two

months, we repeated the same tests previously performed with

fresh samples. The MIC values were confirmed, indicating good

stability of the antimicrobial properties.

As previously reported in the literature, AgNPs toxicity depends

on various factors, such as size, surface charge, shape, and

capping agent [20]. Since PLAL-synthesized NPs are uncapped

and spherical, the two last parameters are not considered in the

following discussion. Concerning size, it was reported that the

activity of AgNPs against both Gram-negative and Gram-posi-

tive bacteria increases with decreasing particle diameter [13,28-

30]. The bactericidal activity is at least partly related to the
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direct interaction of the NPs with the cell membrane. In this

respect, Morones et al. [13] demonstrated that with Gram-nega-

tive bacteria, this type of interaction is size dependent, and it

occurs when NPs exhibit a diameter of ≈1–10 nm. In the cur-

rent study, all our colloids fall in this size range, thus support-

ing the observed antimicrobial activity.

Beyond size effects, surface charge is considered an important

parameter for AgNP activity and colloidal stability. The zeta-

potential values of our colloids were always very negative, with

the most negative values exhibited by the samples obtained in

the presence of LiCl due to the effect of the chloride anions that

are strongly adsorbed on the particle surface [35].

In the case of the samples obtained in pure water with ps and ns

ablation, no significant difference was found in the NP size. The

UV–vis absorption spectra, instead, evidenced a larger content

of oxidized silver on the surface of the ps-ablated nanoparticles.

This results in the release of more silver ions, which is recog-

nized to be quite important for the antimicrobial activity

[15,16]. For the colloids obtained in LiCl solutions obtained

from both ps and ns ablation, the higher antimicrobial activity

compared with that shown by the corresponding colloid ablated

in pure water could be explained on the basis of the increased

surface activity. This is evidenced by the increase of both the

SERS and catalytic performance of the chloride-activated

AgNPs [24]. Actually, the strong adsorption of chloride anions

induces the formation of positive surface charges that represent

the active sites of the silver surface for the interaction of the

nanoparticles with the surrounding environment [35]. These

active sites, which really are to be considered positively charged

as ascertained for Ag colloids by spectroscopic and theoretical

studies [27,35-38], could be efficient for the adsorption of

ligand molecules as well as for the action against the microbial

cells. Hence, the same mechanism involved in the SERS en-

hancement of adsorbates and also in the catalytic activity could

be responsible for the increased antimicrobial activity observed

for the Ag colloids ablated in chloride solution. These positive

charges on the surface of AgNPs prepared in LiCl solution

could effectively interact with the negatively charged cell sur-

faces of the examined bacteria.

Since the lack of standardized methods and materials was raised

as an issue concerning the evaluation of the antibacterial effect

of AgNPs [11], we have compared our data with those obtained

in other works, where similar microbial tests on similar organ-

isms were used. Most of the previous studies were performed

on AgNPs obtained by chemical methods. Among studies with

AgNPs with an average diameter less than 10 nm, the lowest

MIC values obtained (to our knowledge) ranged from 6 to

40 µg/mL on E. coli strains and from 30 to 40 µg/mL on

B. subtilis strains [28-30,39]. Only a few studies on the antibac-

terial properties of PLAL-produced AgNPs are available.

Among these, the only data (to the best of our knowledge) on

bacterial growth inhibition by the broth dilution method are re-

ported by Pandey et al. [31], who found MIC values of 2 µg/mL

against E. coli and 5 µg/mL against B. subtilis using AgNPs

synthesized by PLAL in aqueous medium (10 ns pulse width)

with diameters ranging from 9 to 27 nm.

In comparison to the data available on small AgNPs of 3–7 nm,

the MIC values of our colloids were comparable [28,29] or

lower [30,39] than those previously reported. The MIC values

for the AgNPsLiCl sample (1 µg/mL for B. subtilis; 1.6 µg/mL

for E. coli) were the lowest. In particular, for almost all the NP

preparations, we found lower MIC values with B. subtilis than

with E. coli. On the other hand, some authors observed a greater

antibacterial effect of the AgNPs on Gram-positive than on

Gram-negative, or vice versa [40]. Other authors found some

strain-specific variation in the sensitivity to AgNPs. Ruparelia

et al. [39] reported MIC values ranging from 40 to 180 µg/mL

for different strains of E. coli and the same MIC value

(40 µg/mL) for B. subtilis and for the most sensitive E. coli

strain.

Concerning the AgNPs bactericidal effect, we found that MIC

and MBC values were similar (at most doubled) or identical for

each NP preparation on each tested microorganism, in agree-

ment with that found on E. coli and B. subtilis by other authors

[30,39].

According to Agnihotri et al. [30], the minimum time necessary

to achieve bacteriostatic as well as bactericidal effect (≥99.9%

of bacteria are killed) by AgNPs is expected to occur within 3 h.

We then tested the time of appearance of the bacteriostatic as

well as bactericidal effects of ns-ablated AgNPs at their MBC

value on E. coli cells. We found that both AgNPs produced in

H2O and AgNPs produced in LiCl displayed almost similar

antibacterial activity: growth inhibition (bacteriostatic effect)

occurs immediately after incubation and remains unchanged

after 24 h, while the NP killing effect begins after about 2 h and

increases at 3 h, with no detectable CFUs after 24 h of incuba-

tion (Table 3). Hence, according to our data on ns-ablated

AgNPs, the minimum time necessary to achieve bactericidal

effect was longer than 3 h. Nevertheless, such AgNPs are very

quick at inhibiting bacterial proliferation, when compared to

other PLAL-synthesized AgNPs. For example, Pandey et al.

[31] observed the growth of different bacterial strains in liquid

medium in the presence of PLAL-synthesized ns-ablated

AgNPs (diameter 9–27 nm) by measuring the optical density

(OD) up to 24 h of incubation. Even if bacterial growth was

reduced with respect to the control (without AgNPs), E. coli
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grew in the first five hours, then its growth curve showed an

abrupt decrease at nearly 5.5 h, while B. subtilis continued to

grow until 24 h. Grade et al. [41] monitored the growth of dif-

ferent bacterial strains in liquid medium for 20 h by measuring

the OD at 600 nm in the presence of PLAL-prepared ns-ablated

AgNPs (diameter 17 nm) at the lowest concentration that

inhibits the growth of all the tested bacteria on solid medium

(35 µg/mL). They found no reduction of the OD for E. coli

compared with the control (culture without AgNPs).

Conclusion
We have synthetized AgNPs with a small average diameter and

a narrow size distribution using the pulsed laser ablation in

liquid method (PLAL). The diameter of the resulting nanoparti-

cles lies in the size range known to have the highest antimicro-

bial activity. The AgNPs are effective against both Gram-nega-

tive and Gram-positive bacteria, showing MIC values at least

comparable or lower than those reported for AgNPs obtained by

wet chemical methods as well as by PLAL. An explanation is

proposed for the higher antimicrobial activity exhibited by Ag

colloids ablated in chloride solution in comparison with col-

loids ablated in pure water. This explanation is based on the in-

creased surface reactivity of the metal surface due to the pres-

ence of positively charged active sites. The higher antimicrobi-

al activity shown by the ps-ablated colloids with respect to the

ns-ablated colloids could, instead, be justified by the larger

amount of oxidized silver present on the particle surface.

Experimental
Preparation of AgNPs
The ablation step was performed with two different lasers: a

mode-locked Nd:YAG laser emitting ps pulses at 1064 nm

(EKSPLA PL2143A, repetition rate 10 Hz, pulse width 25 ps)

and a Q-switched Nd:YAG laser emitting ns pulses at 1064 nm

(Quanta System CLS 400, repetition rate 10 Hz, pulse width

25 ns). The pulse energy and spot size at the target were fixed at

15 mJ and 1.4 mm and 100 mJ and 1.6 mm, for ps and ns abla-

tion, respectively. The ablation was performed either in doubly

deionized water (18.2 MΩ·cm at 25 °C) or in 1 mM water solu-

tions of LiCl, in a 1 × 1 cm quartz cell and the liquid column

above the target was 2 cm. Taking water absorption at 1064 nm

into account, the laser fluence at the target corresponds to

0.7 J/cm2 and 4 J/cm2 for ps and ns PLAL, respectively. The Ag

target was purchased from Goodfellow and the LiCl from

Sigma-Aldrich (purity 99%). Prior to ablation, all the materials

required for the process were sterilized in an autoclave.

The TEM samples were obtained by dropping a small amount

of colloid onto carbon-coated copper grids and allowing it to

evaporate. The images were recorded with a Philips CM12 at

120 kV. The nanoparticle mean diameter was determined by

fitting the measured statistical distributions (obtained with more

than 2000 counts) with a lognormal function having σ− and σ+

1/e left and right half widths, respectively.

ICP-AES measurements of the Ag concentration in the colloids

were performed with a Varian 720-ES inductively coupled

plasma atomic emission spectrometer.

The zeta potential of the colloids in water and in chloride solu-

tion was measured with a ZetasizerNano ZS90 (Malvern Instru-

ments). The errors in the zeta-potential values are the standard

deviation of the mean value, as obtained by the software

supplied with the Malvern instrument.

Bacterial strains and growth conditions
The Escherichia coli strain XL1Blue (Stratagene, La Jolla, CA,

USA) and the Bacillus subtilis strain 168 [42] were used to test

the antimicrobial activity of AgNP preparations as representa-

tives of Gram-negative and Gram-positive bacteria, respective-

ly.

The cells of both bacteria were grown aerobically at 37 °C:

E. coli in liquid or solid Luria broth (LB) complex medium

[43], B. subtilis 168 in Nutrient Broth (NB, OXOID) and

Nutrient Agar (NA, OXOID).

Measurement of antimicrobial activity
E. coli XL1Blue and B. subtilis 168 were used to test the bacte-

rial inhibitory activity of the four AgNP preparations by deter-

mining their MIC and MBC. As an antimicrobial reference,

ampicillin was used for both E. coli and B. subtilis. To deter-

mine the MIC, the broth microdilution method in standard

microtiter plates was used as previously described [44]. In this

case, bacterial cells were grown in LB or NB and collected at

the exponential growth phase to be diluted in LB 2× or NB 2×

until the OD at 590 nm was 0.05, corresponding to a cell densi-

ty of approximately (2–4) × 106 colony forming units (CFUs)

per mL. The antimicrobials were serially diluted in sterile water

(AgNPs-H2O, ampicillin) or in sterile 1 mM aqueous LiCl solu-

tions (AgNPs-LiCl) and then added to an equal volume of bac-

terial suspension in LB 2× or NB 2× for a final volume of

250 µL in each microtiter well to obtain the desired final con-

centration. Initial tenfold dilutions were used to identify the

range of concentrations including the MIC for each antimicrobi-

al; then, starting from this range, 1:2, 1:2.5 and 1:3 serial dilu-

tions were used to identify the MIC value with higher accuracy.

The viable count of the initial bacterial inoculum was deter-

mined by serial dilutions and plating. Microtiter plates were in-

cubated at 37 °C, with shaking at 100 rpm; the plates were read

at 590 nm in a microtiter plate reader (Immunella S, GDV,

Rome, Italy) at time zero and after 24 h of incubation. The MIC
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was considered as the lowest concentration of an antimicrobial

agent that completely inhibited growth by optical density

measurement (no absorbance increase was observed in the

microtiter well after 24 h of incubation). For each test, at least

two independent experiments were performed in duplicate.

Growth control, consisting of a bacterial inoculum in LB or NB

medium, both in water and in 1 mM LiCl solution with no test

compounds, and sterility controls, consisting of growth medi-

um and medium plus AgNPs at the tested concentrations, were

always included in each test.

To determine the MBC, after 24 h of incubation for the MIC de-

termination, the cultures in microtiter wells with an antimicrobi-

al concentration higher or equal to the MIC value were serially

diluted, plated on solid LB or NA without antimicrobials, and

incubated 24 h at 37 °C. Then, the survivors were counted as

CFU/mL. The MBC was identified as the lowest concentration

of the antibacterial agent that reduced the viability of the initial

bacterial inoculum by ≥99.9%.
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