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Abstract— Point source estimation consists of detecting and
localizing a concentrated diffusive source as well as estimating
its intensity and induced field from pointwise-in-time-and-space
measurements of sensors deployed over the area of interest. The
spatiotemporal dynamics of the diffused field is modeled by a
partial differential equation (PDE) and a finite element (FE)
method is employed for spatially discretizing the PDE model.
Source identifiability, i.e. the possibility of detecting the source
and uniquely identifying its location and intensity, is analysed in
a system-theoretic framework. Further, a novel multiple model
filtering approach to source estimation is presented and its
effectiveness is demonstrated via a simulation experiment.

I. INTRODUCTION

The estimation of diffusive sources (e.g. of heat, polluting
agents, toxic biochemical substances, etc.) has recently re-
ceived great attention within both the signal processing and
control communities for at least two reasons: i) the low-cost
availability of wireless sensors measuring the induced field
(e.g. temperature, concentration) which can be deployed at
low cost and in large number over the area to be monitored;
ii) the strategic importance of such a task in homeland
security, environmental and industrial monitoring, military
situation awareness for a wide range of applications (e.g. fire
detection, pollution monitoring, detection and localization
of terrorist biochemical attacks, etc.). By source estimation,
in this paper, we refer to the joint task of detecting its
presence, localizing it, estimating its intensity and monitoring
the induced field. To this end, two mainstream approaches
can be found in the literature. A first approach [1]-[3] models
the source-induced field in steady-state, thus disregarding its
transient time evolution, and therefore yields a parametric
(static) estimation problem. It is worth to point out that, for
slowly diffusing sources, this can imply a very long, possibly
unacceptable, detection/localization delay. Conversely, the
second approach [4]-[7] is to explicitly take into account
the spatiotemporal diffusion dynamics thus yielding a state
(dynamic) estimation problem.

In order to allow faster detection/localization of slowly
diffusing sources, this paper will follow the latter, dynamic,
approach. In particular, the spatiotemporal diffusion dynam-
ics is modelled by an advection-diffusion partial differen-
tial equation (PDE) with appropriate boundary conditions
and a point (concentrated) source is considered. The finite
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element (FE) method is exploited for spatial discretiza-
tion of the PDE. After time-discretization, the original
infinite-dimensional boundary value problem is, therefore,
transformed into a finite-dimensional, possibly large-scale,
discrete-time linear system with state vector consisting of
the field values in the vertices of the FE mesh, input vector
representing the source intensity and input matrix depending
on the source location. In this framework, this paper provides
two major contributions to the source estimation problem.
First, inspired by the classic notion of structural identifia-
bility [8]-[9] considered as an a priori analysis for exper-
iment design [9], this work defines the concept of source
identifiability, i.e. the possibility of detecting the source and
uniquely determining its position and intensity from available
pointwise-in-time-and-space field measurements.

Specifically, system-theoretic conditions for identifiability
are derived in terms of rank tests on suitable polynomial
matrices for both cases in which the source intensity is
regarded as an unknown input or is modeled as the output of
an appropriate exosystem. Then, a multiple-model Kalman
filtering approach to source estimation is undertaken by
considering all hypotheses (modes) corresponding to the
source location in any possible element of the FE mesh
plus a further hypothesis accounting for the possible source
absence. Both cases of motionless source with unknown
position and of moving source are addressed, resorting to
the static Multiple Model (MM) and, respectively, dynamic
Interacting Multiple Model (IMM) algorithms. It is worth
pointing out that the source estimation/identification problem
has been also addressed in [10] as an inverse PDE problem,
while in the present work it is regarded as a hybrid state
estimation problem making use of space discretization.

II. PROBLEM FORMULATION

Let us consider a diffusion process governed by a PDE of
the form

∂x

∂t
+A(x) = f in Ω (1)

with possibly inhomogeneous boundary condition

B(x) = g on ∂Ω . (2)

where: x(p, t) is the space-time dependent scalar field of
interest (e.g. concentration, temperature), defined over the
space-time domain Ω×R; the space domain Ω is supposed to
be bounded and with smooth boundary ∂Ω; p ∈ Ω denotes
the d-dimensional (d ∈ {1, 2, 3}) position vector; t ∈ R
denotes time; A(·) and B(·) are the advection-diffusion and,
respectively, Robin operators defined as A(x) = −λ∇2x +
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vT∇x and B(x) = ∂x/∂n + βx. λ is a constant diffusion
coefficient; v(p) is the advection velocity vector; β(p) ≥ 0
is a, possibly space-dependent, coefficient; ∂x/∂n = nT∇x,
n being the outward pointing unit normal vector of the
boundary ∂Ω; g(p, t) is the forcing term acting on the
boundary ∂Ω.

The term f(p, t) is the point source input modeled
as f(p, t) = 0 if no source exists, or f(p, t) =
u(t) δ

(
p− p0(t)

)
otherwise, with unknown intensity u(t)

and position p0(t) ∈ Ω. The aim is to detect the source
presence and jointly estimate u(t),p0(t), x(p, t) given mea-
surements

yk,i = hi (x (si, tk)) + vk,i (3)

provided by sensors i ∈ S 4= {1, . . . , S}, located at positions
si ∈ Ω, at discrete sampling instants tk, k ∈ Z+ =
{1, 2, . . . }, such that 0 < t1 < t2 < · · · .

The above stated dynamic estimation problem is clearly
infinite-dimensional. It will be shown in the next section
how it can be approximated into a finite-dimensional one
by exploiting the finite element (FE) method.

III. FINITE ELEMENT APPROXIMATION

The PDE (1) with boundary condition (2) can be recast
into the following integral form:∫

Ω

∂x

∂t
ϕ dp−λ

∫
Ω

∇2x ϕdp+

∫
Ω

vT ∇x ϕdp =

∫
Ω

fϕ dp

where ϕ(p) is a generic space-dependent weight function.
By applying Green’s identity and thanks to (2), one obtains:∫

Ω

∂x

∂t
ϕ dp + λ

∫
Ω

∇Tx∇ϕdp +

∫
Ω

vT ∇x ϕdp

− λ
∫
∂Ω

(g − βx)ϕdp =

∫
Ω

f ϕ dp

By subdividing the domain Ω into a suitable set of non
overlapping elements and by defining a suitable set of basis
functions φj(p), j = 1, . . . , n, on them, it is possible to
write an approximation of the unknown function x(p, t) as

x(p, t) =

n∑
j=1

φj(p)xj(t) = φT (p) x(t) (4)

where: xj(t) is the unknown expansion coefficient of func-
tion x(p, t) relative to time t and basis function φj(p);
φ(p)

4
= col{φj(p)}nj=1 and x(t)

4
= col{xj(t)}nj=1.

The choices of the basis functions φj and of the elements
are key points of the FE method. Typically, the elements
(triangles or quadrilaterals in 2D, polyhedral in 3D) define
a FE mesh with vertices pj ∈ Ω, j = 1, . . . , n. Then each
basis function φj is a piece-wise polynomial which vanishes
outside the FEs around pj and such that φj(pi) = δij , δij
denoting the Kronecker delta.

By choosing the test function ϕ equal to the selected basis
functions, the Galerkin weighted residual method is applied
and the following equation is obtained [11]-[12]

[∫
Ω

φ(p)φT (p)dp

]
︸ ︷︷ ︸

M

ẋ(t) +

[
λ

∫
Ω

∇φ(p)∇φT (p)dp

]
︸ ︷︷ ︸

S

x(t)

+

[∫
Ω

φ(p) vT (p)∇φT (p) dp

]
︸ ︷︷ ︸

G

x(t)

+

[
λ

∫
∂Ω

β(p)φ(p)φT (p) dp

]
︸ ︷︷ ︸

Qβ

x(t) =

=

[∫
Ω

φ(p) δ(p− p0)dp

]
︸ ︷︷ ︸

φ(p0)

u(t) +

[
λ

∫
∂Ω

φ(p)φT (p)dp

]
︸ ︷︷ ︸

Q1

g(t)

(5)
where in the integrals on the contour ∂Ω it is as-
sumed that the various functions are the restrictions to
∂Ω of the original functions defined over Ω, and that
for g(p, t) an expansion akin to (4) holds, i.e. g(p, t) =∑n
j=1 φj(p) gj(t) = φT (p) g(t).
It is evident how all integrals in the LHS (5) depend

only on basis functions and can be computed a priori. In
particular, the first two integrals yields the well known mass
and stiffness matrices M and S [11]. Matrices G, Qβ and
Q1 are non standard but can be easily computed in simplex
coordinates for first order triangular elements [11], [13].

Then, by regularly discretizing in time (5) with sampling
interval δt (i.e. tk = k δt) and approximating the time deriva-
tive with the finite difference ẋ(t) ' (xk+1 − xk)/δt, the
following discrete-time linear descriptor system is obtained:

M

(
xk+1 − xk

δt

)
+ Sxk+1

+ Gxk+1 + Qβxk+1 ' φ(p0)uk + Q1gk+1 (6)

from which one obtains the discrete-time model

xk+1 = Axk + B(p0)uk + bk + wk (7)

where uk = u (tk+1), wk is a process disturbance taking
into account also the space-time discretization errors, and

A =
[
I + δt M−1 (S + G + Qβ)

]−1

B(p0) =
[
I + δt M−1 (S + G + Qβ)

]−1
M−1δt φ(p0)

bk =
[
I + δt M−1 (S + G + Qβ)

]−1
M−1δt Q1gk+1

For a quantitative characterization of such errors, the reader
can refer to [14]. Notice that, in equation (7), the intensity
uk and the position p0 of the point source input are unknown
and hence must be estimated together with the state vector
xk. As for the intensity uk, different models are possible:
(a) uk is treated as an unknown input for which no informa-
tion on the possible time evolution is available [15], [16];

(b) uk is unknown but a dynamic model for its time evolu-
tion is available, i.e., it is supposed that uk is generated as
the output of an auxiliary linear system (called exosystem).

qk+1 = F qk + ζk

uk = H qk
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where qk is the exosystem state and ζk the disturbance
input. Here, without loss of generality the pair (F,H) is
supposed to be observable.

For instance, if it is known that the unknown intensity uk can
vary slowly with time, its time evolution can be modeled as a
random walk by letting F = H = 1 and taking ζk as a zero-
mean white noise. Of course, the preferable model depends
on the situation under consideration and, specifically, on
possible physical insights on the source intensity.

IV. SOURCE IDENTIFIABILITY

In this section, an analysis on the possibility of correctly
identifying the unknown source location p0 and intensity uk
is provided both in cases (a) and (b). As usually done in ob-
servability/identifiability analysis, the study is carried out in
the ideal noise-free case by supposing that the measurements
yk are generated by

xk+1 = Axk + B(p0)uk
yk = C xk

(8)

Accordingly, in case (b), the intensity dynamics will be
supposed to be noise-free by letting

qk+1 = F qk
uk = H qk

(9)

Notice that the known input bk is not considered in equation
(8) since, thanks to the superposition principle for linear
systems, its contribution is immaterial to the source iden-
tification problem.

Let now S be the linear space of all real-valued sequences
on the nonnegative integers Z+ and let us denote by U ⊆ S
the set of all possible time-evolutions of the intensity uk
which are consistent with the available model. Clearly, in
case (a) we simply have U = S, while in case (b) U is the
set of all the possible output behaviors of system (9). Let
also denote by y(x0,p

0, u) the output behavior of system
(8) when the initial state is x0, the source location is p0

and the source intensity evolves according to the sequence
u. The following notion can be introduced.

Definition 1: The point source is said to be identifiable if
y(x0,p

0, u) 6= y(x̄0, p̄
0, ū) for any pair of source locations

p0, p̄0 ∈ Ω, any pair of initial states x0, x̄0, and any nonzero
pair of intensity sequences u, ū ∈ U , with (p0, u) 6= (p̄0, ū).

In words, identifiability of the point source corresponds
to the fact that different sources (in terms of location and
intensity) always give rise to different output behaviors or,
equivalently, corresponds to the invertibility of the mapping
from (p0, u) to the output sequence y. Notice that, in the
above definition, we exclude the trivial case in which both
u and ū are zero, but we allow that either u or ū be zero so
as to account for the possibility of distinguishing between
presence or absence of the source input.

Since only the observable part of (8) influences the output
behavior y, it is convenient to consider an alternative rep-
resentation of system (8) obtained by means of the Kalman

observability decomposition. This amounts to considering an
invertible transformation matrix T such that

T−1AT =

[
A11 0
A21 A22

]
, T−1B =

[
B1(p0)
B2(p0)

]
CT = [C1 0] . (10)

with (A11,C1) observable. Of course, when C is chosen so
that (A,C) is observable, we have A11 = A and C1 = C.
All the results of this section will refer to the system (8) or
(8)-(9) in the case (b), under the observability decomposition
(10). By exploiting standard results on observability and left
invertibility of linear systems, the following theorem can now
be stated.

Theorem 1: For any pair of distinct source locations
p0, p̄0 ∈ Ω, consider the polynomial matrix

Ψ(z,p0, p̄0) =

[
zI−A11 B1(p0) B1(p̄0)

C1 0 0

]
with z ∈ C. Then, the following facts hold:

(i) in case (a), the source is identifiable if and only if

rank
{
Ψ(z,p0, p̄0)

}
= no + 2. (11)

for any z ∈ C and for any p0, p̄0 ∈ Ω with p0 6= p̄0.
Here no is the dimension of the observable part of (8);

(ii) in case (b), the source is identifiable if and only if the
rank condition (11) holds for any z ∈ sp{F} and for
any p0, p̄0 ∈ Ω with p0 6= p̄0. Here, sp{F} stands for
the spectrum of the matrix F. �

Notice that the only difference between cases (a) and (b)
is that in the latter case only the values of z corresponding
to eigenvalues of the exosystem have to be considered in the
rank test. Further, in this case, the identifiability condition
can be rephrased in terms of system gains as follows.

Corollary 1: Consider case (b) and suppose that sp{A}
and sp{F} are disjoint. Then, the source is identifiable if
and only if

rank
[

C(zI−A)−1B(p0), C(zI−A)−1B(p̄0)
]

= 2

for any z ∈ sp{F} and any p0, p̄0 ∈ Ω with p0 6= p̄0. �

From Theorem 1 and Corollary 1, it is evident that at least
2 sensors are needed in order to guarantee distinguishability
of two source locations p0, p̄0. However, this is just a lower
bound since, in general, a larger number of sensors may be
needed. The main drawback of the derived rank conditions is
that they have to be satisfied for any pair of source locations
p0, p̄0 belonging to the space domain Ω. This means that, in
order to verify whether a given set of sensors ensures source
identifiability, an infinite number of conditions have to be
checked, which clearly makes the test impractical. A first,
approximated, approach to sidestep such a difficulty would
amount to restricting the attention only to a finite number
of possible source locations, for example corresponding to
the vertices pi of the FE mesh. A second, more theoretically
sound approach consists in looking for alternative conditions
by exploiting the structure of the system matrices resulting
from application of the FE method.
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With this respect, consider the most typical situation in
which the elements are chosen as d-dimensional simplexes
(i.e., intervals when d = 1, triangles when d = 2, or
tetrahedrons when d = 3) and the basis functions φj(p) are
piecewise linear. Further, let E1, . . . , Ev denote the elements
of the considered mesh and, for a generic element Ej , let
Vj ⊂ {1, . . . , n} be the set of indices corresponding to the
vertices of Ej . Notice that, for a d-dimensional simplex, Vj
contains exactly d+1 elements. Then, in this case, the input
matrix B(p0) can be written as a convex combination of the
input matrices associated to the vertices of the element Ej
containing p0, i.e.,

B(p0) =
∑
i∈Vj

ωi(p
0)B(pi) (12)

where ωi(p
0) ≥ 0 and

∑
i∈Vj ωi(p

0) = 1. This makes it
possible to derive sufficient conditions for source identifia-
bility which has to be checked only for each pair of elements.
To this end, for a generic element Ej , let B(Ej) denote the
matrix obtained by row juxtaposition of the column matrices
B(pi) with i ∈ Vj , and let B1(Ej) be obtained in an
analogous way from the matrices B1(pi) with i ∈ Vj . Then,
the following result holds.

Theorem 2: Let the input matrices be as in (12) and, for
any pair of distinct elements Ej , E` of the mesh, consider the
polynomial matrix

Ψj`(z) =

[
zI−A11 B1(Ej) B1(E`)

C1 0 0

]
with z ∈ C. Then, the following facts hold:

(i) in case (a), the source is identifiable if

rank {Ψj`(z)} = no + |Vj ∪ V`| (13)

for any z ∈ C and for any Ej , E` with j 6= `;
(ii) in case (b), the source is identifiable if the rank condi-

tion (13) holds for any z ∈ sp{F} and for any Ej , E`
with j 6= `. �

Notice that in condition (13), the term |Vj ∪V`| represents
the number of distinct vertices in Ej ∪E`. As a consequence,
|Vj ∪ V`| ≤ 2(d + 1) where the equality holds if and only
if Ej and E` have no common vertices. Hence, Theorem 2
suggests that, in the d-dimensional case, 2(d + 1) sensors
may be needed in order to have source identifiability.

Remark 1: The rank condition of Theorem 2 provides a
computationally feasible way to verify whether a given set
of sensors guarantees source identifiability, since it has to
be checked only for a finite number of cases, i.e., for each
pair of distinct elements. Additional insights can be gained
by recalling that system (8) can also be written as a linear
descriptor system [see (6)]

Exk+1 = Mxk + δtφ(p0)uk
yk = C xk

(14)

where the matrices E, M and φ(p0) have very specific
structures. In particular, the non-zero elements of the ma-
trices E, M correspond to connected vertices in the graph

associated to the FE mesh. Further, for any mesh vertex pi,
φ(pi) coincides with ei, the i-th vector of the canonical
basis. If it is assumed that system (14) is observable, it can
be easily shown that in condition (13) the matrix Ψj`(z) can
be replaced by

Ψ̃j`(z) =

[
zE−M φ(Ej) φ(E`)

C 0 0

]
where φ(Ej) denotes the matrix obtained by row juxtaposi-
tion of the column matrices φ(pi) = ei with i ∈ Vj . Hence,
if it is further assumed that the sensor locations coincide with
vertices of the FE mesh, it is possible to relate the rank of the
matrix Ψ̃j`(z) to the topology of the FE mesh as well as to
the sensor locations. In fact, results on the rank of matrices of
the form of Ψ̃j`(z) for systems like (14) defined over graphs
have been recently obtained in the literature [17]. While such
results are only generic (i.e., they hold for almost all the
dynamical systems compatible with the graph topology, but
counterexamples can exist), nevertheless they provide useful
guidelines on where to place the sensors inside the domain
Ω. The interested reader is referred to [17] for further details
on this issue.

V. SOURCE ESTIMATION

Based on the fact that distinct source locations correspond
to different process behaviors, and thanks to finite element
approximation, the key idea of the proposed source estima-
tion algorithms relies upon the assumption that system (7),
at each time step, obeys to one of a finite set of diffusion
models. To this end, the Multiple Model (MM) approach [18]
provides a suitable tool, as it accounts for the uncertainty
about the system input location, assuming that the real
evolution of the system follows one of the possible modes of
operation. In particular, the idea is to match each hypothesis
of source being located in a generic element of the mesh,
to a distinct operating mode of the system. This makes it
possible to run in parallel a finite number of mode-matched
Kalman filters, one for each element of the generated mesh.
Hence, each mode mj associated to the hypothesis that a
point source is located in p0, contained in element Ej , is
characterised by the following mode-matched model

xk+1 = Axk + B(Ej)ω(p0)uk + wk, j = 1, 2, ..., v
yk = C xk + vk

(15)
where ω(p0) is the (d + 1)-dimensional column vector of
coefficients ωi(p0), i ∈ Vj , introduced in section IV. It is
worth noting that in order to be able to detect new sources,
an extra source-free operating mode, based on the assumption
that no point source is present, needs to be added to the set
of possible modes of the MM algorithm. Thus, including the
no-source mode, from now on denoted as mr for r = v+ 1,
and recalling the mesh generates elements E1, ..., Ev , the set
of possible modes becomes r-dimensional.

Bearing in mind the previous points about source detection
and localisation, the additional joint source intensity and state
estimation can be carried out by constructing an augmented
system for the MM estimator, as the aggregate of the
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original system (15) and a suitable model for the unknown
input time evolution. To this end, let us introduce ηk =
col
(
ωi(p

0)uk, i ∈ Vj
)

so that B(p0)uk = B(Ej)ηk. Then,
the augmented system for a generic mode mj originated from
(15), takes the following form for j = 1, 2, ..., v[

xk+1

ηk+1

]
=

[
A B(Ej)
0 I

] [
xk
ηk

]
+

[
wk

ζk

]
yk = [C 0]

[
xk
ηk

]
+ vk

(16)
whereas, for j = r

xk+1 = Axk + wk

yk = C xk + vk
(17)

Note that in (16) the dynamics of the source intensity uk
are assumed to follow a discrete-time random walk. As a
result, the joint source and field estimation problem can be
reduced to the joint estimation of xk and ηk for each time
step k. Assuming the source may move within the domain,
i.e. the correct operating mode may switch over time, it is
convenient to employ a dynamic MM technique, e.g. Inter-
acting Multiple Model (IMM) [18], which allows for mode
jumps, limiting at the same time the number of hypotheses
to the number of filters. Otherwise, the source of interest
is assumed motionless, i.e. fixed in an unknown position
of the monitored area. In this case a static MM estimator,
which assumes there is a single operating mode throughout
the entire process, can be suitably employed to address the
considered estimation problem. Next, a brief summary of a
centralised approach to the static MM called Finite Element
Static Multiple Model (FE-SMM) and dynamic FE-IMM is
shown, wherein the measurements of all sensors are collected
and jointly processed in the correction step of each mode-
matched filter. For further details on multiple-model filtering
algorithms, the reader is referred to [18].

A. Static case: FE-SMM
The FE-SMM algorithm runs a bank of r FE Kalman filters
matched to the modes mj in (16), for 1 ≤ j < r, or (17)
for j = r. Each filter updates the state estimate, covariance
and mode probability relative to mode mj by processing
the entire set of gathered measurements yk,i, i ∈ S. Once
initialised, mode-matched filters run independently with no
interaction. At the end of each cycle, the mode with max-
imum probability will be considered as the operating one.
As a consequence, the associated mode-conditioned estimate
will be directly used for field and source intensity estimation.
Further, exploiting the structure of the FE approximation, the
source location can be estimated as a convex combination of
the position of the vertices of the element Ej matched to the
estimated operating mode, i.e.

p̂0 =
∑
i∈Vj

ω̂i pi

ω̂i =
η̂ik
ûk
, i ∈ Vj , ûk =

∑
i∈Vj

η̂ik

(18)

B. Dynamic case: FE-IMM
The idea is to run an IMM estimator for the aug-
mented system (16) with mode-to-mode transitions mod-
elled by means of a homogeneous Markov chain
with known constant transition probabilities πij =
prob

(
mk = mi |mk−1 = mj

)
, i, j ∈ {1, 2, ..., r} where

mk ∈
{
mj
}r
j=1

represents the modal state (i.e. the mode
in operation) at time k. Differently from the static MM
algorithm, at the beginning of each sampling interval, the
r filters interact in a mixing step which produces the so
called mixed initial conditions, i.e. different combinations
of the previous model-conditioned estimates and associated
covariances. It must also be noted that, since the source-free
mode mr has a different (lower) state dimension with respect
to modes mj , j 6= r, the state estimate and covariance of
the former must be padded with zeros in order to match the
higher dimension of the latter during the mixing step.

The proposed source estimator uses v + 1 Kalman filters,
where v is the number of elements of the FE mesh. More
precisely, v out of the v+1 Kalman filters have an (n+d+1)-
dimensional state, where n is the number of vertices of the
FE grid and d ∈ {1, 2, 3} the dimension of the domain of
interest, while the remaining Kalman filter associated to the
no-source mode has n-dimensional state. Since v = O(n),
d � n and |S| � n, each Kalman filter has O(n3)
complexity, and the overall computational complexity is
O(n4). It is also worth pointing out that the modal Kalman
filters can be run in a fully parallel fashion, being mindful
however, that the IMM mixing step requires an exchange of
information between the bank of filters.

VI. NUMERICAL EXAMPLES

The proposed FE-IMM, described in Section V-B, is
validated via simulations. Consider a scenario concerning a
moving source estimation for a diffusion process governed by
the 2D case of (1) with A(x) = −λ

(
∂2x/∂ξ2 + ∂2x/∂η2

)
and mixed boundary conditions

∂x/∂n + β1x = g1 on ∂Ω1 (19)
∂x/∂n = 0 on ∂Ω2 ; (20)

This model describes, for instance, transient contaminant
transport in water bodies. Parameters β1 = ν

λ and g1 = ν
λ xe

are such that (19) describes an outward/inward diffusive
flux across ∂Ω1 (boundary 10 in Fig.1), proportional to the
concentration difference x−xe between internal and external
environments (external concentration xe = 0 is assumed
known, ν = 1). The homogeneous Neumann boundary
condition (20) assumes there is no flux across ∂Ω2, i.e. it
is considered impermeable to the contaminant. Further, (1)
implicitly assumes λ is constant, here taken as λ = 0.1. A
network of 6 sensors is randomly deployed inside the spatial
2D domain Ω to sample the concentration field of interest,
with sampling interval Ts = 1 [s] and standard deviation
of measurement noise σv = 0.005. As shown in Fig. 1, a
triangular mesh (116 nodes, 196 elements) is generated over
Ω for the finite-dimensional approximation of the monitored
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Fig. 1: Source moves from 1 to 4 in the monitored area Ω.
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Fig. 2: Simulation results in the case of dynamic source.

field. As true initial field condition, we consider x0 =
0, whereas the estimator starts from x̂1|0 = 10 · 1 with
covariance P1|0 = 1002 I. Moreover, the source intensity
estimate is initialised as û1|0 = 10, with associated initial
covariance matrix Pu

1|0 = 1002 I, while the true average
intensity of the source is 30. The standard deviation of the
process noise for the simulator is set as σw = 1.5, whereas
for the MM filters σ̂w = 5. The variance of the disturbance
input is set to σ2

ζ = 0.04. All simulation results are averaged
over 100 Monte Carlo trials.

The source, activated at time 100 [s], is moving along
the path 1 − 2 − 3 − 4 (see Fig. 1), sojourning 100 time
steps in each intermediate location, before turning off at
time 500. From 500 to 600 the simulation continues with
no source. Jump probabilities are πii = 0.85∀i = 1, ..., r,
πir = 0.05, i = 1, ..., v, while the remaining 0.1 probability
is equally distributed among all elements Ej adjacent to Ei.

The Root Mean Square Errors (RMSE) relative to the
source position, intensity and source-induced field, are re-
ported, as performance indices, in Fig. 2. These are obtained
via comparison of the estimated quantities with a simu-
lated system (ground truth), which implements a finer mesh
(427 nodes, 784 elements) and runs at a higher sampling
frequency of 10Hz, in order to take into account model
uncertainty. Results show that both the estimators succeed in
localizing the unknown source (Fig. 2a) and estimating the
corresponding intensity (Fig. 2b) in a very short time and

with remarkable accuracy. The field estimation error (Fig.
2c) presents visible peaks in correspondence of either source
activation or change of position, but it promptly stabilizes
once the input has been detected.

VII. CONCLUSIONS

The paper has addressed the problem of detecting a diffu-
sive point source and jointly estimating its location, intensity
and induced field from pointwise-in-time-and-space field
measurements of sensors deployed over the monitored area.
This has been made possible by combining the finite-element
method for discretising in space the diffusion dynamics and
the multiple-model Kalman filtering approach. Future work
will concern the multi-source case.
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