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Abstract. We review some classical results and more recent insights about the regu-

larity theory for local minimizers of the Mumford and Shah energy and their connections

with the Mumford and Shah conjecture. We discuss in details the links among the latter,

the porosity of the jump set and the higher integrability of the approximate gradient.

In particular, higher integrability turns out to be related with an explicit estimate on

the Hausdorff dimension of the singular set and an energetic characterization of the

conjecture itself.
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1. Introduction

The Mumford and Shah model is a prominent example of variational problem in image

segmentation (see [69]). It is an algorithm able to detect the boundaries of the contours

of the objects in a black and white digitized image. Representing the latter by a greyscale

function g ∈ L∞(Ω, [0, 1]), a smoothed version of the original image is then obtained by

minimizing the functional

(v,K)→ F (v,K,Ω) + γ

ˆ
Ω\K
|v − g|2dx, (1.1)

with

F (v,K,Ω) :=

ˆ
Ω\K
|∇v|2 dx+ βH1(K), (1.2)

where Ω ⊆ R2 is an open set, K is a relatively closed subset of Ω with finite H1 measure,

v ∈ C1(Ω \ K), β and γ are nonnegative parameters to be tuned suitably according to

the applications. In our discussion we can set β = 1 without loss of generality.

The role of the squared L2 distance in (1.1) is that of a fidelity term in order that the

output of the process is close in an average sense to the original input image g. The set

K represents the set of contours of the objects in the image, the length of which is kept
1
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controlled by the penalization of its H1 measure to avoid over segmentation, while the

Dirichlet energy of v favors sharp contours rather than zones where a thin layer of gray

is used to pass smoothly from white to black or vice versa.

We stress the attention upon the fact that the set K is not assigned a priori and it is

not a boundary in general. Therefore, this problem is not a free boundary problem, and

new ideas and techniques had to be developed to solve it. Since its appearance in the

late 80’s to today the research on the Mumford and Shah problem, and on related fields,

has been very active and different approaches have been developed. In this notes we shall

focus mainly on that proposed by De Giorgi and Ambrosio. This is only due to a matter

of taste of the Author and it is also dictated by understandable reasons of space. Even

more, it is not possible to be exhaustive in our (short) presentation, therefore we refer

to the books by Ambrosio, Fusco and Pallara [7] and David [26] for the proofs of many

results we shall only quote, for a more detailed account of the several contributions in

literature, for the many connections with other fields and for complete lists of references

(see also the recent survey [53] that covers several parts of the regularity theory that are

not presented here).

Going back to the Mumford and Shah minimization problem and trying to follow the

path of the Direct Method of the Calculus of Variations, it is clear that a weak formu-

lation calls for a function space allowing for discontinuities of co-dimension 1 in which

an existence theory can be established. Therefore, by taking into account the structure

of the energy, De Giorgi and Ambrosio were led to consider the space SBV of Special

functions of Bounded Variation, i.e. the subspace of BV functions with singular part of

the distributional derivative concentrated on a 1-dimensional set called in what follows

the jump set (throughout the paper we will use standard notations and results concerning

the spaces BV and SBV , following the book [7]).

The purpose of the present set of notes is basically to resume and collect several of the

regularity properties known at present for Mumford and Shah minimizers. More precisely,

Section 2 is devoted to recalling basic facts about the functional setting of the problem

and its weak formulation. The celebrated De Giorgi, Carriero and Leaci [33] regularity

result implying the equivalence between the strong and weak formulations, is discussed in

details. In subsection 2.3 we provide a recent proof by De Lellis and Focardi valid in the

2d case that gives an explicit constant in the density lower bound, and in subsection 2.4

we discuss the almost monotonicity formula by Bucur and Luckhaus. Next, we state the

Mumford and Shah conjecture. The understanding of such a claim is the goal at which

researchers involved in this problem are striving for. In this perspective well-established



FINE REGULARITY RESULTS FOR MUMFORD-SHAH MINIMIZERS 3

and more recent fine regularity results on the jump set of minimizers are discussed in Sec-

tion 3. Furthermore, we highlight two different paths that might lead to the solution in

positive of the Mumford and Shah conjecture: the complete characterization of blow ups

in subsection 2.6 and a sharp higher integrability of the (approximate) gradient in The-

orem 3.11 together with the uniqueness of blow up limits. In particular, we discuss in

details the latter by following the ideas introduced by Ambrosio, Fusco and Hutchinson [4]

linking higher integrability of the gradient of a minimizer with the size of the singular set

of the minimizer itself, i.e. the subset of points of the jump set having no neighborhood in

which the jump set itself is a regular curve. An explicit estimate shows that the bigger the

integrability exponent of the gradient is, the lower the Hausdorff dimension of the singular

set is (cf. Theorem 3.10). Pushing forward this approach, an energetic characterization

of a slightly weaker form of the Mumford and Shah conjecture can be found beyond the

scale of Lp spaces (cf. Theorem 3.11). In particular, the quoted estimate on the Hausdorff

dimension of the full singular set reduces to the higher integrability property of the gra-

dient and a corresponding estimate on a special subset of singular points: those for which

the scaled Dirichlet energy is infinitesimal. The latter topic is dealt with in full details

in Section 4 in the setting of Caccioppoli partitions as done by De Lellis and Focardi in

[35]. The analysis of Section 4 allowed the same Authors to prove the higher integrability

property in 2-dimensions as explained in Section 5. A different path leading to higher

integrability in any dimension is to exploit the porosity of the jump set. This approach,

due to De Philippis and Figalli [37], is the object of Section 7. Some preliminaries on

porous sets are discussed in Section 6.

To conclude this introduction it is worth mentioning that the Mumford and Shah energy

and the theory developed in order to study it, have been employed in many other fields.

The applications to Fracture Mechanics, both in a static setting and for quasi-static

irreversible crack-growth for brittle materials according to Griffith are important instances

of that (see in particular [12], [7, Section 4.6.6] and [15], [21], [60]). It is also valuable to

recall that several contributions in literature are devoted to the asymptotic analysis or

the variational approximation of free discontinuity energies by means of De Giorgi’s Γ-

convergence theory. We refer to the books by Braides [13, 14, 15] for the analysis of several

interesting problems arising from models in different fields (for a quick introduction to

Γ-convergence see [40], for a more detailed account consult the treatise [20]).

The occasion to write this set of notes stems from the course “Fine regularity results

for Mumford-Shah minimizers: higher integrability of the gradient and estimates on the

Hausdorff dimension of the singular set” taught by the Author in July 2014 at Centro

De Giorgi in Pisa within the activities of the “School on Free Discontinuity problems”,
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ERC Research Period on Calculus of Variations and Analysis in Metric Spaces. The

material collected here covers entirely the six lectures of the course, additional topics and

some more recent insights are also included for the sake of completeness and clarity. It

is a pleasure to acknowledge the hospitality of Centro De Giorgi and to gratefully thank

N. Fusco and A. Pratelli, the organizers of the school, for their kind invitation. Let me also

thank all the people in the audience for their attention, patience, comments and questions.

In particular, the kind help of R. Cristoferi and E. Radici who read a preliminary version

of these notes is acknowledged. Nevertheless, the Author is the solely responsible for all

the inaccuracies contained in them.

2. Existence Theory and first Regularity results

In this section we shall overview the first basic issues of the problem. More generally

we discuss the n-dimensional case, though we shall often make specific comments related

to the 2-dimensional setting of the original problem (and sometimes to the 3d case as

well). We shall freely use the notation for BV functions and Caccioppoli sets adopted

in the book by Ambrosio, Fusco and Pallara [7]. We shall always refer to it also for the

many results that we shall apply or even only quote without giving a precise citation.

2.1. Functional setting of the problem. A function v ∈ L1(Ω) belongs to BV (Ω) if

and only if Dv is a (vector-valued) Radon measure on the non empty open subset Ω of

Rn. The distributional derivative of v can be decomposed according to

Dv = ∇vLn Ω + (v+ − v−)νv Hn−1 Sv +Dcv,

where

(i) ∇v is the density of the absolutely continuous part of Dv with respect to Ln Ω

(and the approximate gradient of v in the sense of Geometric Measure Theory as

well);

(ii) Sv is the set of approximate discontinuities of v, an Hn−1-rectifiable set (so that

Ln(Sv) = 0) endowed with approximate normal νv for Hn−1 a.e. on Sv;

(iii) v± are the approximate one-sided traces left by v Hn−1 a.e. on Sv;

(iv) Dcv is the rest in the Radon-Nikodym decomposition of the singular part of Dv

after the absolutely continuous part with respect to Hn−1 Sv has been identified.

Thus, it is a singular measure both with respect to Ln Ω and to Hn−1 Sv (for

more details see [7, Proposition 3.92]).
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By taking into account the structure of the energy in (1.1), only volume and surface

contributions are penalized, so that it is natural to introduce the following subspace of

BV .

Definition 2.1 ([32], Section 4.1 [7]). v ∈ BV (Ω) is a Special function of Bounded

Variation, in short v ∈ SBV (Ω), if Dcv = 0, i.e. Dv = ∇vLn Ω+(v+−v−)νv Hn−1 Sv.

No Cantor staircase type behavior is allowed for these functions. Simple examples are

collected in the ensuing list:

(i) if n = 1 and Ω = (α, β), SBV
(
(α, β)

)
is easily described in view of the well

known decomposition of BV functions of one variable. Indeed, any function in

SBV
(
(α, β)

)
is the sum of a W 1,1

(
(α, β)

)
function with one of pure jump, i.e.∑

i∈N aiχ(αi,αi+1), with α = α0, αi < αi+1 < β, (ai)i∈I ∈ `∞;

(ii) W 1,1(Ω) ⊂ SBV (Ω). Clearly, Dv = ∇vLn Ω. In this case ∇v coincides with the

usual distributional gradient;

(iii) let (Ei)i∈I , I ⊆ N , be a Caccioppoli partition of Ω, i.e. Ln
(
Ω \ ∪iEi

)
= 0 and

Ln(Ei ∩ Ej) = 0 if i 6= j, with the Ei’s sets of finite perimeter such that∑
i∈I

Per(Ei) <∞.

Then, v =
∑

i∈I ai χEi ∈ SBV (Ω) if (ai)i∈I ∈ `∞. In this case, if JE := ∪i∂∗Ei
denotes the set of interfaces of E , with ∂∗Ei the essential boundary of Ei, then

Hn−1(Sv \ JE ) = 0 and

Dv = (v+ − v−)νv Hn−1 JE .

Functions of this type have zero approximate gradient, they are called piecewise

constant and form a subspace denoted by SBV0(Ω) (cf. [7, Theorem 4.23]);

(iv) the function v(ρ, θ) :=
√
ρ · sin(θ/2) for θ ∈ (−π, π) and ρ > 0 is in SBV (Br) for

all r > 0. In particular, v ∈ SBV (Br) \
(
W 1,1(Br)⊕ SBV0(Br)

)
.

A general receipt to construct interesting examples of SBV functions can be obtained as

follows (see [7, Proposition 4.4]).

Proposition 2.2. If K ⊂ Ω is a closed set such that Hn−1(K) < +∞ and v ∈ W 1,1 ∩
L∞(Ω \K), then v ∈ SBV (Ω) and

Hn−1(Sv \K) = 0. (2.1)

Clearly, property (2.1) above is not valid for a generic member of SBV , but it does for

a significant class of functions: local minimizers of the energy under consideration (see

below for the definition), actually satisfying even a stronger property (cf. Proposition 2.9).
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2.2. Tonelli’s Direct Method and Weak formulation. The difficulty in applying the

Direct Method is related to the surface term for which it is hard to find a topology ensuring

at the same time lower semicontinuity and pre-compactness for minimizing sequences.

Using the Hausdorff local topology requires a very delicate study of the latter ones to rule

out typical counterexamples as shown by Maddalena and Solimini in [56]. Here, we shall

follow instead the original approach by De Giorgi and Ambrosio [32].

Keeping in mind the example in Proposition 2.2, the weak formulation of the problem

under study is obtained naively by taking K = Sv. Loosely speaking in this approach

the set of contours K is identified by the (Borel) set Sv of (approximate) discontinuities

of the function v that is not fixed a priori. This is the reason for the terminology free

discontinuity problem coined by De Giorgi. The (weak counterpart of the) Mumford and

Shah energy F in (1.2) of a function v in SBV (Ω) on an open subset A ⊆ Ω then reads

as

F (v, A) = MS(v, A) + γ

ˆ
A

|v − g|2dx, (2.2)

where

MS(v, A) :=

ˆ
A

|∇v|2dx+Hn−1(Sv ∩ A). (2.3)

For the sake of simplicity in case A = Ω we drop the dependence on the set of integration.

In passing, we note that, the class {v ∈ BV (Ω) : Dv = Dcv} of Cantor type functions

is dense in BV w.r.to the L1 topology, thus it is easy to infer that

inf
BV (Ω)

F = 0,

so that the restriction to SBV is needed in order not to trivialize the problem.

Ambrosio’s SBV closure and compactness theorem (see [7, Theorems 4.7 and 4.8])

ensures the existence of a minimizer of F on SBV .

Theorem 2.3 (Ambrosio [2]). Let (vj)j ⊂ SBV (Ω) be such that

sup
j

(
MS(vj) + ‖vj‖L∞(Ω)

)
<∞,

then there exists a subsequence (vjk)k and a function v ∈ SBV (Ω) such that vjk → v

Lp(Ω), for all p ∈ [1,∞).

Moreover, we have the separated lower semicontinuity estimatesˆ
Ω

|∇v|2dx ≤ lim inf
k

ˆ
Ω

|∇vjk |2dx (2.4)

and

Hn−1(Sv) ≤ lim inf
k
Hn−1(Svjk ). (2.5)
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Ambrosio’s theorem is the natural counterpart of Rellich-Kondrakov theorem in Sobolev

spaces. Indeed, for Sobolev functions, it reduces essentially to that statement provided

that an Lp rather than an L∞ bound is assumed. More generally, Ambrosio’s theorem

holds true in the bigger space GSBV . In particular, (2.4) and (2.5) display a separate

lower semicontinuity property for the two terms of the energy in a way that the two terms

cannot combine to create neither a contribution for the other nor a Cantor type one.

By means of the chain rule formula for BV functions one can prove that the functional

under consideration is decreasing under truncation, i.e. for all k ∈ N

F (τk(v)) ≤ F (v) ∀v ∈ SBV (Ω),

if τk(v) := (v ∧ k) ∨ (−k).

Therefore, being g ∈ L∞(Ω), we can always restrict ourselves to minimize it over the ball

in L∞(Ω) of radius ‖g‖L∞(Ω). In conclusion, Theorem 2.3 always provides the existence

of a (global) minimizer for the weak formulation of the problem.

Once the existence has been checked, necessary conditions satisfied by minimizers are

deduced. Supposing g ∈ C1(Ω), by means of internal variations, i.e. constructing com-

petitors to test the minimality of u by composition with diffeomorphisms of Ω arbitrarily

close to the identity of the type Id + ε φ, the Euler-Lagrange equation takes the form

ˆ
Ω\Su

((
|∇u|2 + γ(u− g)2

)
divφ− 2〈∇u,∇u · ∇φ〉 − 2γ (u− g)〈∇g, φ〉

)
dx

+

ˆ
Su

divSuφ dHn−1 = 0 (2.6)

for all φ ∈ C1
c (Ω,Rn), divSuφ denoting the tangential divergence of the field φ on Su (cf.

[7, Theorem 7.35]).

Instead, by using outer variations, i.e. range perturbations of the type u+ ε(v − u) for

v ∈ SBV (Ω) such that spt(u− v) ⊂⊂ Ω and Sv ⊆ Su, we findˆ
Ω

(
〈∇u,∇(v − u)〉+ γ (u− g) (v − u)

)
dx = 0. (2.7)

2.3. Back to the strong formulation: the density lower bound. Existence of min-

imizers for the strong formulation of the problem is obtained via a regularity property

enjoyed by (the jump set of) the minimizers of the weak counterpart. The results ob-

tained in this framework will be instrumental also to establish way much finer regularity

properties in the ensuing sections.

We start off analyzing the scaling of the energy in order to understand the local behavior

of minimizers. This operation has to be done with some care since the volume and
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length terms in MS scale differently under affine change of variables of the domain. Let

v ∈ SBV (Bρ(x)), set

vx,ρ(y) := ρ−1/2v(x+ ρ y), (2.8)

then vx,ρ ∈ SBV (B1), with

MS(vx,ρ, B1) = ρ1−nMS(v,Bρ(x))

and ˆ
B1

|vx,ρ − gx,ρ|2dz = ρ−1−n
ˆ
Bρ(x)

|v − g|2dy.

Thus,

ρ1−n
(

MS(v,Bρ(x)) +

ˆ
Bρ(x)

|v − g|2dz
)

= MS(vx,ρ, B1) + ρ2

ˆ
B1

|vx,ρ − gx,ρ|2dy.

By taking into account that g ∈ L∞ and that along the minimization process we are

actually interested only in functions satisfying the bound ‖v‖L∞(Ω) ≤ ‖g‖L∞(Ω), we get

ρ2

ˆ
B1

|vx,ρ − gx,ρ|2dy ≤ 2ρ ‖g‖2
L∞(Ω) = O(ρ) ρ ↓ 0.

This calculation shows that, at the first order, the leading term in the energy F computed

on Bρ(x) is that related to the MS functional, the other being a contribution of higher

order that can be neglected in a preliminary analysis.

Motivated by this, we introduce a notion of minimality involving only the leading part

of the energy. This corresponds to setting γ = 0 in the definition of F (cf. (2.2)).

Definition 2.4. A function u ∈ SBV (Ω) with MS(u) <∞1 is a local minimizer of MS if

MS(u) ≤ MS(v) whenever {v 6= u} ⊂⊂ Ω.

In what follows, u will always denote a local minimizer of MS unless otherwise stated,

and the class of all local minimizers shall be denoted by M(Ω). Actually, we shall often

refer to local minimizers simply as minimizers if no confusion can arise. In particular,

regularity properties for minimizers of the whole energy can be obtained by perturbing the

theory developed for local minimizers (see for instance Corollary 2.13 and Theorem 2.16

below).

Harmonic functions with small oscillation are minimizers as a simple consequence of

(2.7).

1The finite energy condition is actually not needed due to the local character of the notion introduced,

it is assumed only for the sake of simplicity.
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Proposition 2.5 (Chambolle, see Proposition 6.8 [7]). If u is harmonic in Ω′, then

u ∈M(Ω), for all Ω ⊂⊂ Ω′, provided(
sup

Ω
u− inf

Ω
u
)
‖∇u‖L∞(Ω) ≤ 1. (2.9)

Proof. Let A ⊂⊂ Ω. By Theorem 2.3 it is easy to show the existence of a minimizer w ∈
SBV (Ω) of the Dirichlet problem min {MS(v) : v ∈ SBV (Ω), v = u on Ω \ A}. More-

over, by truncation infΩ u ≤ w ≤ supΩ u Ln a.e. on Ω.

By the arbitrariness of A, the local minimality of u follows provided we show that

MS(u,Ω) ≤ MS(w,Ω). To this aim, we use the Euler-Lagrange condition (2.7) with

γ = 0, namelyˆ
Ω

〈∇w,∇(u− w)〉 dx = 0⇐⇒
ˆ

Ω

|∇w|2 dx =

ˆ
Ω

〈∇w,∇u〉 dx,

to get

MS(u,Ω) ≤ MS(w,Ω)⇐⇒
ˆ

Ω

〈∇u,∇(u− w)〉 dx ≤ Hn−1(Sw)

⇐⇒
ˆ

Ω

∇u · dD(u− w)−
ˆ
Sw

〈∇u, νw〉(w+ − w−)dHn−1 ≤ Hn−1(Sw).

An integration by parts, the harmonicity of u and the equality w = u on Ω \ A giveˆ
Ω

∇u · dD(u− w) = −
ˆ

Ω

(u− w)4u dx = 0,

and therefore

MS(u,Ω) ≤ MS(w,Ω)⇐⇒ −
ˆ
Sw

〈∇u, νw〉(w+ − w−)dHn−1 ≤ Hn−1(Sw).

The conclusion follows from condition (2.9) as infΩ u ≤ w ≤ supΩ u Ln a.e. on Ω. �

By means of the slicing theory in SBV , i.e. the characterization of SBV via restrictions

to lines, one can also prove that pure jumps, i.e. functions as

aχ{〈x−xo,ν〉>0} + bχ{〈x−xo,ν〉<0} (2.10)

for a and b ∈ R and ν ∈ Sn−1, are local minimizers as well (cf. [7, Proposition 6.8]]).

Further examples shall be discussed in what follows (cf. subsection 2.5).

As established in [33] in all dimensions (and proved alternatively in [23] and [25] in

dimension two), if u ∈ M(Ω) then the pair (u,Ω ∩ Su) is a minimizer of F for γ = 0.

The main point is the identity Hn−1(Ω ∩ Su \ Su) = 0, which holds for every u ∈ M(Ω).

The groundbreaking paper [33] proves this identity via the following density lower bound

estimate (see [7, Theorem 7.21]).
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Theorem 2.6 (De Giorgi, Carriero and Leaci [33]). There exist dimensional constants

θ, % > 0 such that for every u ∈M(Ω)

MS(u,Br(z)) ≥ θ rn−1 (2.11)

for all z ∈ Ω ∩ Su, and all r ∈ (0, % ∧ dist(z, ∂Ω)).

Building upon the same ideas, in [17] it is proved a slightly more precise result (see

again [7, Theorem 7.21]).

Theorem 2.7 (Carriero and Leaci [17]). There exists a dimensional constant θ0, %0 > 0

such that for every u ∈M(Ω)

Hn−1(Su ∩Br(z)) ≥ θ0 r
n−1 (2.12)

for all z ∈ Ω ∩ Su, and all r ∈ (0, %0 ∧ dist(z, ∂Ω)).

In particular, from the latter we infer the so called elimination property for Ω ∩ Su,
i.e. if Hn−1(Su ∩Br(z)) < θ0

2n−1 r
n−1 then actually Su ∩Br/2(z) = ∅.

Given Theorem 2.6 or 2.7 for granted we can easily prove the equivalence of the strong

and weak formulation of the problem by means of the ensuing density estimates.

Lemma 2.8. Let µ be a Radon measure on Rn, B be a Borel set and s ∈ [0, n] be such

that

lim sup
r↓0

µ(Br(x))

ωsrs
≥ t for all x ∈ B.

Then, µ(B) ≥ tHs(B).

Proposition 2.9. Let u ∈M(Ω), then Hn−1(Ω∩Su \Su) = 0. In particular,
(
u,Ω∩Su)

is a local minimizer for F (with γ = 0).

Proof of Proposition 2.9. In view of Theorem 2.7 we may apply the density estimates of

Lemma 2.8 to µ = Hn−1 Su and to the Borel set Su \ Su with t = θ0. Therefore, we

deduce that

θ0Hn−1(Ω ∩ Su \ Su) ≤ µ(Ω ∩ Su \ Su) = 0.

Clearly, MS(u) = F (u,Ω ∩ Su), and the conclusion follows at once. �

The argument for (2.11) used by De Giorgi, Carriero and Leaci in [33], and similarly

in [17] for (2.12), is indirect: it relies on Ambrosio’s SBV compactness theorem and

Poincaré-Wirtinger type inequality in SBV established in [33] (see also [7, Theorem 4.14]

and [8, Proposition 2] for a version in which boundary values are preserved) to analyze

blow up limits of minimizers (see subsection 2.6 for the definition of blow ups) with

vanishing jump energy and prove that they are harmonic functions (cf. [7, Theorem
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7.21]). A contradiction argument shows that on small balls the energy of local minimizers

inherits the decay properties as that of harmonic functions. Actually, the proof holds true

for much more general energies (see [43], [7, Chapter 7]).

In the paper [34] an elementary proof valid only in 2-dimensions and tailored on the

MS energy is given. No Poincaré-Wirtinger inequality, nor any compactness argument

are required. Moreover, it has the merit to exhibit an explicit constant. Indeed, the

proof in [34] is based on an observation of geometric nature and on a direct variational

comparison argument. It also differs from those exploited in [23] and [25] to derive (2.12)

in the 2-dimensional case.

Theorem 2.10 (De Lellis and Focardi [34]). Let u ∈M(Ω). Then

MS(u,Br(z)) ≥ r (2.13)

for all z ∈ Ω ∩ Su and all r ∈ (0, dist(z, ∂Ω)).

More precisely, the set Ωu := {z ∈ Ω : (2.13) fails} is open and Ωu = Ω \ Su2.

To the aim of establishing Theorem 2.10 we prove a consequence of (2.6), a monotonicity

formula discovered independently by David and Léger in [27, Proposition 3.5] and by

Maddalena and Solimini in [57]. The proof we present here is that given in [34, Lemma 2.1]

(an analogous result holds true in any dimension with essentially the same proof).

Lemma 2.11. Let u ∈ M(Ω), Ω ⊂ R2, then for every z ∈ Ω and for L1 a.e. r ∈
(0, dist(z, ∂Ω))

r

ˆ
∂Br(z)

((
∂u

∂ν

)2

−
(
∂u

∂τ

)2
)
dH1 +H1(Su ∩Bz(r)) =

ˆ
Su∩∂Br(z)

|〈ν⊥u (x), x〉|dH0(x),

(2.14)
∂u
∂ν

and ∂u
∂τ

being the projections of ∇u in the normal and tangential directions to ∂Br(z),

respectively.3

Proof of Lemma 2.11. With fixed a point z ∈ Ω, r > 0 with Br(z) ⊆ Ω, we consider

special radial vector fields ηr,s ∈ Lip ∩ Cc(Br(z),R2), s ∈ (0, r), in the first variation

formula (2.6) (with γ = 0). Moreover, for the sake of simplicity we assume z = 0, and

drop the subscript z in what follows. Let

ηr,s(x) := xχ[0,s](|x|) +
|x| − r
s− r

x χ(s,r](|x|),

2Actually, the very same proof shows also that Ωu = Ω \ Ju, where Ju is the subset of points of Su for

which one sided traces exist. Recall that Hn−1(Sv \ Jv) = 0 for all v ∈ BV (Ω).
3For ξ ∈ R2, ξ⊥ is the vector obtained by an anticlockwise rotation.
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then a routine calculation leads to

∇ηr,s(x) := Idχ[0,s](|x|) +

(
|x| − r
s− r

Id +
1

s− r
x

|x|
⊗ x
)
χ(s,r](|x|)

L2 a.e. in Ω. In turn, from the latter formula we infer for L2 a.e. in Ω

divηr,s(x) = 2χ[0,s](|x|) +

(
2
|x| − r
s− r

+
|x|
s− r

)
χ(s,r](|x|),

and, if νu(x) is a unit vector normal field in x ∈ Su, for H1 a.e. x ∈ Su

divSuηr,s(x) = χ[0,s](|x|) +

(
|x| − r
s− r

+
1

|x|(s− r)
|〈x, ν⊥u 〉|2

)
χ(s,r](|x|).

Consider the set I := {ρ ∈ (0, dist(0, ∂Ω)) : H1(Su ∩ ∂Bρ) = 0}, then (0, dist(0, ∂Ω)) \ I
is at most countable being H1(Su) < +∞. If ρ and s ∈ I, by inserting ηs in (2.6) we find

1

s− r

ˆ
Br\Bs

|x||∇u|2dx− 2

s− r

ˆ
Br\Bs

|x|〈∇u,
(

Id− x

|x|
⊗ x

|x|

)
∇u〉dx

= H1(Su ∩Bs) +

ˆ
Su∩(Br\Bs)

|x| − r
s− r

dH1 +
1

s− r

ˆ
Su∩(Br\Bs)

|x||〈 x
|x|
, ν⊥u 〉|2dH1.

Next we employ Co-Area formula and rewrite equality above as

1

s− r

ˆ r

s

ρ dρ

ˆ
∂Bρ

|∇u|2dH1 − 2

s− r

ˆ r

s

ρ dρ

ˆ
∂Bρ

∣∣∣∣∂u∂τ
∣∣∣∣2 dH1

= H1(Su ∩Bs) +

ˆ
Su∩(Br\Bs)

|x| − r
s− r

dH1 +
1

s− r

ˆ r

s

dρ

ˆ
Su∩∂Bρ

|〈x, ν⊥u 〉|dH0

where ν := x/|x| denotes the radial unit vector and τ := ν⊥ the tangential one. Lebesgue

differentiation theorem then provides a subset I ′ of full measure in I such that if r ∈ I ′

and we let s ↑ t− it follows

−r
ˆ
∂Br

|∇u|2dH1 + 2r

ˆ
∂Br

∣∣∣∣∂u∂τ
∣∣∣∣2 dH1 = H1(Su ∩Br)−

ˆ
Su∩∂Br

|〈x, ν⊥u 〉|dH0.

Formula (2.14) then follows straightforwardly. �

We are now ready to prove Theorem 2.10.

Proof of Theorem 2.10. Given u ∈M(Ω), z ∈ Ω and r ∈ (0, dist(z, ∂Ω)) let

ez(r) :=

ˆ
Br(z)

|∇u|2dx, `z(r) := H1(Su ∩Br(z)),

and

mz(r) := MS(u,Br(z)), hz(r) := ez(r) +
1

2
`z(r).

Clearly, mz(r) = ez(r) + `z(r) ≤ 2hz(r), with equality if and only if ez(r) = 0.



FINE REGULARITY RESULTS FOR MUMFORD-SHAH MINIMIZERS 13

Introduce the set S?u of points x ∈ Su for which

lim
r↓0

H1(Su ∩Br(x))

2r
= 1 . (2.15)

Since Su is rectifiable, H1(Su \ S?u) = 0. Next let z ∈ Ω be such that

mz(R) < R for some R ∈ (0, dist(z, ∂Ω)). (2.16)

We claim that z 6∈ S?u.
W.l.o.g. we take z = 0 and drop the subscript z in e, `,m and h.

In addition we can assume e(R) > 0. Otherwise, by the Co-Area formula and the trace

theory of BV functions, we would find a radius r < R such that u|∂Br is a constant (cf.

the argument below). In turn, u would necessarily be constant in Br because the energy

decreases under truncations, thus implying z 6∈ S?u. We can also assume `(R) > 0, since

otherwise u would be harmonic in BR and thus we would conclude z 6∈ S?u.
We start next to compare the energy of u with that of an harmonic competitor on a

suitable disk. The inequality `(R) ≤ m(R) < R is crucial to select good radii.

Step 1: For any fixed r ∈ (0, R − `(R)), there exists a set Ir of positive length in (r, R)

such that
h(ρ)

ρ
≤ 1

2
· e(R)− e(r)
R− r − (`(R)− `(r))

for all ρ ∈ Ir. (2.17)

Define Jr := {t ∈ (r, R) : H0(Su ∩ ∂Bt) = 0}. We claim the existence of J ′r ⊆ Jr with

L1(J ′r) > 0 and such thatˆ
∂Bρ

|∇u|2dH1 ≤ e(R)− e(r)
R− r − (`(R)− `(r))

for all ρ ∈ J ′r. (2.18)

Indeed, we use the Co-Area formula for rectifiable sets (see [7, Theorem 2.93]) to find

L1((r, R)\Jr) ≤
ˆ

(r,R)\Jr
H0(Su∩∂Bt)dt =

ˆ
Su∩(BR\Br)

∣∣∣∣〈ν⊥u (x),
x

|x|
〉
∣∣∣∣ dH1(x) ≤ `(R)−`(r).

In turn, this inequality implies L1(Jr) ≥ R − r − (`(R)− `(r)) > 0, thanks to the choice

of r. Then, define J ′r to be the subset of radii ρ ∈ Jr for whichˆ
∂Bρ

|∇u|2dH1 ≤
 
Jr

(ˆ
∂Bt

|∇u|2dH1

)
dt .

Formula (2.18) follows by the Co-Area formula and the estimate L1(Jr) ≥ R−r−(`(R)−
`(r)).

We define Ir as the subset of radii ρ ∈ J ′r satisfying both (2.14) and (2.18). Therefore,
ˆ
∂Bρ

(
∂u

∂τ

)2

dH1 =
1

2

ˆ
∂Bρ

|∇u|2dH1 +
`(ρ)

2ρ
∀ρ ∈ Ir. (2.19)
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Clearly, Ir has full measure in J ′r, so that L1(Ir) > 0.

For any ρ ∈ Ir, we let w be the harmonic function in Bρ with trace u on ∂Bρ. Then,

as ∂w
∂τ

= ∂u
∂τ
H1 a.e. on ∂Bρ, the local minimality of u entails

m(ρ) ≤
ˆ
Bρ

|∇w|2dx ≤ ρ

ˆ
∂Bρ

(
∂u

∂τ

)2

dH1 (2.19)
=

ρ

2

ˆ
∂Bρ

|∇u|2dH1 +
`(ρ)

2
.

The inequality (2.17) follows from the latter inequality and from (2.18):

h(ρ) = e(ρ) +
`(ρ)

2
≤ ρ

2

ˆ
∂Bρ

|∇u|2dH1 ≤ ρ

2
· e(R)− e(r)
R− r − (`(R)− `(r))

.

Step 2: We now show that 0 6∈ S?u.
Let ε ∈ (0, 1) be fixed such that m(R) ≤ (1−ε)R, and fix any radius r ∈ (0, R− `(R)−

1
1−εe(R)). Step 1 and the choice of r then imply

h(ρ)

ρ
≤ 1

2

e(R)− e(r)
R− r − (`(R)− `(r))

≤ e(R)

2(R− `(R)− r)
<

1− ε
2

,

in turn giving m(ρ) ≤ 2h(ρ) < (1 − ε)ρ. Let ρ∞ := inf{t > 0 : m(t) ≤ (1 − ε)t},
then ρ∞ ∈ [0, ρ]. Note that if ρ∞ were strictly positive then actually ρ∞ would be a

minimum. In such a case, we could apply the argument above and find ρ̃ ∈ (r∞, ρ∞),

with r∞ ∈ (0, ρ∞ − `(ρ∞) − 1
1−εe(ρ∞)), such that m(ρ̃) < (1 − ε)ρ̃ contradicting the

minimality of ρ∞. Hence, there is a sequence ρk ↓ 0+ with m(ρk) ≤ (1 − ε)ρk. Then,

clearly condition (2.15) is violated, so that 0 6∈ S?u.

Conclusion: We first prove that Ωu is open. Let z ∈ Ωu and let R > 0 and ε > 0 be such

that mz(R) ≤ (1− ε)R and BεR(z) ⊂ Ω. Let now x ∈ BεR(z), then

mx(R− |x− z|) ≤ mz(R) ≤ (1− ε)R < R− |x− z|,

therefore x ∈ Ωu.

As Ωu is open and S?u ∩ Ωu = ∅ by Step 2, we infer Ω ∩ S?u ⊆ Ω \ Ωu. Moreover, let

z /∈ S?u and r > 0 be such that Br(z) ⊆ Ω \ S?u. Since H1(Su \ S?u) = 0, u ∈ W 1,2(Br(z))

and thus u is an harmonic function in Br(z) by minimality. Therefore z ∈ Ωu, and in

conclusion Ω \ Ωu = Ω ∩ S?u = Ω ∩ Su. �

A simple iteration of Theorem 2.10 gives a density lower bound as in (2.12) with an

explicit constant θ0 (see [34, Corollary 1.2]).

Corollary 2.12 (De Lellis and Focardi [34]). If u ∈ M(Ω), then H1(Ω ∩ SSu \ Ju) = 0

and

H1(Su ∩Br(z)) ≥ π

223
r (2.20)
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for all z ∈ Ω ∩ SSu and all r ∈ (0, dist(z, ∂Ω)).

A similar result can be established for quasi-minimizers of the Mumford and Shah

energy, the most prominent examples being minimizers of the functional F in equation

(1.1). More precisely, a quasi-minimizer is any function u in SBV (Ω) with MS(u) < ∞
satisfying for some α > 0 and cα ≥ 0 for all balls Bρ(z) ⊂ Ω

MS(u,Bρ(z)) ≤ MS(w,Bρ(z)) + cα ρ
1+α

whenever {w 6= u} ⊂⊂ Bρ(z).

One can then prove the ensuing infinitesimal version of (2.13) (cf. with [34, Corollary

1.3]).

Corollary 2.13 (De Lellis and Focardi [34]). Let u be a quasi-minimizers of the Mumford

and Shah energy, then

Ω ∩ Ju = Ω ∩ Su =

{
z ∈ Ω : lim inf

r↓0+

mz(r)

r
≥ 2

3

}
. (2.21)

The proof of this corollary, though, needs a blow up analysis and a new SBV Poincaré-

Wirtinger type inequality of independent interest, obtained by improving upon some ideas

contained in [41] (cf. with [34, Theorem B.6]); it is, therefore, much more technical.

Let us remark that it is possible to improve slightly Theorem 2.10 by combining the

ideas of its proof hinted to above with the SBV Poincaré-Wirtinger type inequality in

[34, Theorem B.6], and show that actually

Ω \ Su = {x ∈ Ω : mx(r) ≤ r for some r ∈ dist(x, ∂Ω)}

(see [34, Remark 2.3]).

A natural question is the sharpness of the estimates (2.13) and (2.20). The analysis

performed by Bonnet [10] suggests that π/223 in (2.20) should be replaced by 1, and 1

in (2.13) by 2. Note that the square root function u(ρ, θ) =
√

2
π
ρ · sin(θ/2) satisfies

MS(u,Bρ(0)) = H1(Su ∩ Bρ(0)) = ρ for all ρ > 0 (its minimality will be discussed

in subsection 2.5). Thus both the constants conjectured above would be sharp by [26,

Section 62]. Unfortunately, none of them have been proven so far.

We point out that Bucur and Luckhaus [16], independently from [35], have been able to

improve the ideas in Theorem 2.10 carrying on the proof without the 2-dimensional limita-

tion via a delicate induction argument. Their approach leads to a remarkable monotonic-

ity formula for (a truncated version of) the energy valid for a broad class of approximate

minimizers that shall be the topic of the next subsection 2.4.

To conclude this paragraph we notice that the derivation of an energy upper bound for

minimizers on balls is much easier as a result of a simple comparison argument.
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Proposition 2.14. For every u ∈M(Ω) and Br(z) ⊆ Ω

MS(u,Br(z)) ≤ nωn r
n−1. (2.22)

Proof. Let ε > 0, consider uε := uχΩ\Br−ε(z) and test the minimality of u with uε. Con-

clude by letting ε ↓ 0. �

2.4. Bucur and Luckhaus’ almost monotonicity formula. Let us start off by intro-

ducing the notion of almost-quasi minimizers of the MS energy.

Definition 2.15. Let Λ ≥ 1, α > 0 and cα ≥ 0, a function u ∈ SBV (Ω) with MS(u) <∞
is a (Λ, α, cα)-almost-quasi minimizer in Ω, we write u ∈ M{Λ,α,cα}(Ω), if for all balls

Bρ(z) ⊂ Ω

MS(u,Bρ(z)) ≤
ˆ
Bρ(z)

|∇v|2 dx+ ΛHn−1
(
Sv ∩Bρ(z)

)
+ cα ρ

n−1+α,

whenever {u 6= v} ⊂⊂ Ω.

Clearly, minimizers are (1, α, cα)-almost minimizers for all α and cα as in the definition

above. Almost-quasi minimizers has turned out to be useful in studying the regularity

properties of solutions to free boundary - free discontinuity problems with Robin condi-

tions (cf. [16, Section 4]). We are now ready to state the Bucur and Luckhaus’ almost

monotonicity formula.

Theorem 2.16 (Bucur and Luckhaus [16]). There is a (small) dimensional constant

C(n) > 0 such that for all u ∈M{Λ,α,cα}(Ω) and z ∈ Ω the function(
0, dist(z, ∂Ω)

)
3 r 7−→ Ez(r) :=

(MS(u,Br(z))

rn−1
∧ C(n)

n− 1
Λ2−n

)
+ (n− 1)

cα
α
rα (2.23)

is non decreasing.

To explain the strategy of proof of Theorem 2.16 we need to state two additional

results on SBV functions defined on boundaries of balls. The first is related to the

approximation with H1 functions, the second to the problem of lifting. The tangential

gradient on boundaries of balls shall be denoted by ∇τ in what follows.

Lemma 2.17. Let n ≥ 2, then there is a (small) dimensional constant C(n) > 0 such

that for all v ∈ SBV (∂Br) with

E(v, ∂Br) :=

ˆ
∂Br

|∇τv|2dHn−1 +Hn−2(Sv ∩ ∂Br) ≤ C(n) Λ2−n rn−2, (2.24)

there exists w ∈ H1(∂Br) such that

E(w, ∂Br) + (n− 1)
Λ

r
Hn−1

(
{x ∈ ∂Br : v 6= w}

)
≤ E(v, ∂Br). (2.25)
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Lemma 2.18. Let n ≥ 2, suppose v ∈ SBV (∂Br) satisfies (2.24) in Lemma 2.17. Then

there exists ŵ ∈ H1(Br) harmonic in Br such that

MS(ŵ, Br) + ΛHn−1
(
{x ∈ ∂Br : v 6= ŵ}

)
≤ r

n− 1
E(v, ∂Br). (2.26)

The proof of Theorem 2.16 is based on a cyclic induction argument that starts with the

validation of Lemma 2.17 in R2 and then runs as follows:

Lemma 2.17 in Rn⇒Lemma 2.18 in Rn⇒Theorem 2.16 in Rn⇒Lemma 2.17 in Rn+1.

The first inductive step can be established by using the geometric argument in the proof

of Theorem 2.10 with the constant C(2) being any number in (0, 1).

Before proving all the implications above we establish the essential closure of Su for

almost-quasi minimizers as a consequence of Theorem 2.16.

Theorem 2.19. Let u ∈ M{Λ,α,cα}(Ω), for some Λ ≥ 1, α > 0 and cα ≥ 0. Then,

Hn−1
(
Ω ∩ Su \ Su

)
= 0.

Proof. Consider the subset S?u of points in Su with density one, i.e. x ∈ Su such that

lim
ρ↓0

Hn−1
(
Su ∩Bρ(x)

)
ωn−1ρn−1

= 1

(cf. (2.15) in Theorem 2.10), then clearly S?u = Su. Theorem 2.16 yields for x ∈ S?u

Ex(ρ) ≥ lim
ρ↓0

Ex(ρ) ≥ ωn−1 ∧
C(n)

n− 1
Λ2−n ∀ρ ∈

(
0, dist(x, ∂Ω)

)
.

By approximation it is then easy to deduce the same estimate for all points x ∈ Ω ∩ Su.
In turn, this implies that Ω ∩ Su \ Su ⊂ Au := {y ∈ Ω \ Su : lim infρEx(ρ) > 0}.

In particular, the density estimates in Lemma 2.8 applied to the measure induced on

Borel sets by MS(u, ·) gives that Hn−1(Au) = 0, and the conclusion Hn−1
(
Ω∩Su \Su

)
= 0

follows at once (cf. the proof of Proposition 2.9). �

Density lower bounds for MS(u, ·) as in Theorem 2.6 or for Hn−1 Su as in Theorem 2.7

can also be recovered. Either by means of Theorem 2.16 and of a decay lemma due

to De Giorgi, Carriero and Leaci or in an alternative direct way that provides explicit

constants (cf. [7, Lemma 7.14] and [16, Section 3.3], respectively).

Let us now turn to the proofs of the implications among Theorem 2.16, Lemma 2.17

and Lemma 2.18. Recall that we have already commented on the validity of Lemma 2.17

in case n = 2.
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Proof of Lemma 2.17 in Rn⇒ Lemma 2.18 in Rn. Denote by w the function provided by

Lemma 2.17 and by ŵ its harmonic extension to Bρ. Note that4

n− 1

ρ

ˆ
Bρ

|∇ŵ|2dx ≤
ˆ
∂Bρ

|∇τ ŵ|2dHn−1 ≤ E(w, ∂Bρ).

Hence, by (2.25) we conclude that

MS(ŵ, Bρ) + ΛHn−1
(
{x ∈ ∂Bρ : v 6= ŵ}

)
≤ ρ

n− 1

(
E(w, ∂Bρ) + (n− 1)

Λ

ρ
Hn−1

(
{x ∈ ∂Bρ : v 6= ŵ}

))
≤ ρ

n− 1
E(v, ∂Bρ).

�

Proof of Lemma 2.18 in Rn⇒ Theorem 2.16 in Rn. Set I :=
(
0, dist(0, ∂Ω)

)
, then the

energy function mz(ρ) := MS(u,Bρ(z)) : I → [0,+∞) is non-decreasing and thus it

belongs to BVloc(I). Note that

Ez(ρ) =
(mz(ρ)

ρn−1
∧ C(n)

n− 1
Λ2−n

)
+ (n− 1)

cα
α
ρα, (2.27)

therefore, Ez ∈ BVloc(I). Denoting by m′z and Dsmz, respectively, the density of the

absolutely continuous part and the singular part of Dmz with respect to L1 I in the

Radon-Nikodym decomposition, the Leibnitz rule for BV functions (cf. [7, Example 3.97])

yields

D
(mz(ρ)

ρn−1

)
=
(m′z(ρ)

ρn−1
− (n− 1)

mz(ρ)

ρn

)
+

1

ρn−1
Dsmz(ρ).

Therefore, the latter equality, (2.27) and the Chain Rule formula for Lipschitz functions

[7, Theorem 3.99] imply that Ez is non-decreasing if and only if the density E ′z of the

absolutely continuous part of the distributional derivative DEz is non-negative.

By the locality of the distributional derivative (see [7, Remark 3.93]) it holds that

E ′z(ρ) = (n− 1) cαρ
α−1 > 0 at L1 a.e. ρ ∈ I for which

mz(ρ) ≥ C(n)

n− 1
Λ2−nρn−1.

Instead, at L1 a.e. ρ ∈ I at which

mz(ρ) <
C(n)

n− 1
Λ2−nρn−1 (2.28)

we have

E ′z(ρ) =
m′z(ρ)

ρn−1
− (n− 1)

mz(ρ)

ρn
+ (n− 1) cαρ

α−1.

4The first inequality follows, for instance, from Almgren’s monotonicity formula for the frequency

function (cf. [39, Exercise 20 pg. 525]) and a direct comparison argument with the one-homogeneous

extension of the boundary trace. Alternatively, one can expand ŵ in spherical harmonics.
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Suppose by contradiction that E ′z < 0 on some subset J of I of positive measure, i.e.

m′z(ρ) < (n− 1)
mz(ρ)

ρ
− (n− 1) cαρ

n−2+α. (2.29)

Since for L1 a.e. in I by the slicing theory u|∂Bρ ∈ SBV (∂Bρ) (cf. [7, Section 3.11]) and

by the Co-Area formula E(u, ∂Bρ) ≤ m′z(ρ) (cf. [7, Theorem 2.93]), we conclude that for

L1 a.e. ρ ∈ J

E(u, ∂Bρ) ≤ m′z(ρ)
(2.28),(2.29)

< C(n) Λ2−n ρn−2 − (n− 1) cα ρ
n−2+α.

Hence, with fixed ρ ∈ J as above, Lemma 2.18 provides an harmonic function ŵ ∈ H1(Bρ)

satisfying (2.26). In turn, the latter inequality and the assumption E ′z(ρ) < 0 give

MS(ŵ, Bρ) + ΛHn−1({x ∈ ∂Bρ : u 6= ŵ})
(2.26)

≤ ρ

n− 1
E(u, ∂Bρ) ≤

ρ

n− 1
m′z(ρ)

(2.29)
< mz(ρ)− cαρ

n−1+α,

leading to a contradiction to the almost-quasi minimality of u in Ω by taking the trial

function ŵ χBρ(z) + uχΩ\Bρ(z). �

To conclude the cyclic induction argument we set some notation: in the following proof

we denote by Bρ the (n+ 1)-dimensional ball of radius ρ and by Bn
ρ its intersection with

the hyperplane Rn×{0}. Moreover, we still denote by E the n dimensional version of the

boundary energy in (2.24).

Proof of Theorem 2.16 in Rn⇒ Lemma 2.17 in Rn+1. Up to a scaling argument we may

assume the radius r in the statement of Lemma 2.17 to be 1.

Then, consider v ∈ SBV (∂B1) such that

E(v, ∂B1) ≤ C Λ1−n (2.30)

for some constant C > 0.

Claim: There exists C(n + 1) > 0 such that if v satisfies (2.30) with C ∈ (0, C(n + 1)],

every minimizer w ∈ SBV (∂B1) of the problem

inf
ζ∈SBV (∂B1)

F (ζ, ∂B1)

actually belongs to H1(∂B1), where for all open sets A ⊆ ∂B1 and ζ ∈ SBV (∂B1) if

E(ζ, A) is defined as in (2.24) by integrating ζ on A, then

F (ζ, A) := E(ζ, A) + nΛHn
(
{x ∈ A : ζ 6= v}

)
. (2.31)
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Given the claim above for granted we conclude the thesis of Lemma 2.17 straightforwardly

by comparing the values of the energy F (·, ∂B1) in (2.31) on w and v respectively, namely

ˆ
∂B1

|∇τw|2dHn + nΛHn
(
{x ∈ ∂B1 : w 6= v}

)
≤
ˆ
∂B1

|∇τv|2dHn +Hn−1(Sv).

We are then left with proving the claim above. Suppose by contradiction that for

some constant C > 0 some minimizer w of (2.31) satisfies Hn−1(Sw) > 0. Note that C

can be taken arbitrarily small, it shall be chosen suitably in what follows. Even more,

assume that the north pole N := (0, . . . , 0, 1) ∈ ∂B1 is a point of density one for Sw.

Set λ := 2 −
√

3 and denote by π : ∂B1 ∩ Bλ(N ) → Bn
1/2 the orthogonal projection,

then π ∈ Lip1(∂B1 ∩ Bλ(N ), Bn
1/2) and π−1 ∈ Lip`(B

n
1/2, ∂B1 ∩ Bλ(N )), for some ` > 0.

Actually, as π ∈ C1(∂B1 ∩Bλ(N ), Bn
1/2) and π−1 ∈ C1(Bn

1/2, ∂B1 ∩Bλ(N ))

Lip
(
π, π−1(Bn

ρ )
)
→ 1, Lip

(
π−1, Bn

ρ

)
→ 1 as ρ ↓ 0. (2.32)

For ζ ∈ SBV (∂B1 ∩ Bλ(N )) let ζ := ζ ◦ π−1, then ζ ∈ SBV (Bn
1/2) and Sζ = π(Sζ).

Moreover, for all ρ ∈ (0, 1/2), we have

Hn−1
(
Sζ ∩Bn

ρ

)
≤ Hn−1

(
Sζ ∩ π−1(Bn

ρ )
)
≤ `n−1Hn−1(Sζ ∩Bn

ρ ), (2.33)

and by the generalized Area Formula (see [7, Theorem 2.91])

ˆ
Bnρ

|∇ζ|2dy ≤ k1(ρ)

ˆ
π−1(Bnρ )

|∇τζ|2dHn, (2.34)

and

ˆ
π−1(Bnρ )

|∇τζ|2dHn ≤ k2(ρ)

ˆ
Bnρ

|∇ζ|2dy, (2.35)

for some k1(ρ) and k2(ρ) > 0, with k1(ρ), k2(ρ) ↓ 1 as ρ ↓ 0 by (2.32). In particular, for

some τn > 0, 0 ≤ k1(ρ) ∨ k2(ρ) ≤ 1 + τnρ as ρ ↓ 0.

We next prove that w is a (Λ1, 1, c1)-almost-quasi minimizer on Bn
1/2 of the n-dimensional

Mumford and Shah energy for Λ1 := `n−1 and a suitable c1 = c1(n, `,Λ) > 0. Indeed,

recalling that Λ ≥ 1, if ζ is a test function for w, i.e. {y ∈ Bn
1/2 : ζ 6= w} ⊂⊂ Bn

ρ ,

ρ ∈ (0, 1/2), we deduce from (2.33), (2.34), (2.35) and the minimality of w for the energy
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in (2.31) that

MS(w,Bn
ρ ) ≤

ˆ
Bnρ

|∇w|2dx+Hn−1(Sw ∩Bn
ρ ) +Hn({y ∈ Bn

ρ : w 6= v})

≤ k1(ρ)

ˆ
π−1(Bnρ )

|∇τw|2dHn +Hn−1
(
Sw ∩ π−1(Bn

ρ )
)

+Hn
(
{x ∈ π−1(Bn

ρ ) : w 6= v}
)

≤ k1(ρ)F (w, π−1(Bn
ρ )) ≤ k1(ρ)F (ζ, π−1(Bn

ρ )) (2.36)

≤ k1(ρ)
(
k2(ρ)

ˆ
Bnρ

|∇ζ|2dx+ Λ1Hn−1(Sζ ∩Bn
ρ ) + nΛ Λ

n
n−1

1 Hn({y ∈ Bn
ρ : ζ 6= v})

)
≤ (1 + τn ρ)2

( ˆ
Bnρ

|∇ζ|2dx+ Λ1Hn−1(Sζ ∩Bn
ρ )
)

+ (1 + τn)nωn Λ Λ
n
n−1

1 ρn, (2.37)

being Hn({y ∈ Bn
ρ : ζ 6= v}) ≤ ωnρ

n.

Next we note that w satisfies the energy upper bound F (w, π−1(Bn
ρ )) ≤ knρ

n−1, for

all ρ ∈ (0, 1/2) and for some kn > 0, by a direct comparison argument similar to that in

Proposition 2.14. Therefore, (2.36) yields

MS(w,Bn
ρ ) ≤ (1 + τn)knρ

n−1.

Hence, we may assume F (ζ, π−1(Bn
ρ )) ≤ 2(1 + τn)knρ

n−1 being otherwise the conclusion

obvious. The latter condition and (2.37) then imply w ∈ M{Λ1,1,c1}
(
Bn

1/2

)
with c1 :=

(1 + τn)
(
nωn Λ Λ

n
n−1

1 + 2(1 + τn)kn
)
.

By inductive assumption, Theorem 2.16 implies in particular that(MS(w,Bn
ρ )

ρn−1
∧ C(n)

n− 1
Λ2−n

1

)
+ (n− 1)c1ρ

≥ lim
ρ↓0

((MS(w,Bn
ρ )

ρn−1
∧ C(n)

n− 1
Λ2−n

1

)
+ (n− 1)c1ρ

)
≥ ωn−1 ∧

C(n)

n− 1
Λ2−n

1 =: βn. (2.38)

In the last inequality we have used that N is a point of density one for Sw and (2.32).

Given any ρ ∈ (0, βn
2(n−1)c1

∧ 1/2), inequality (2.38) yields

MS(w,Bn
ρ )

ρn−1
≥ βn

2
.

On the other hand, repeating the argument leading to the first and the second inequality

in (2.36) imply for any ρ ∈ (0, βn
2(n−1)c1

∧ 1/2)

MS(w,Bn
ρ )

ρn−1
≤ (1 + τnρ)

E(v, ∂B1)

ρn−1

(2.30)

≤ C (1 + τnρ) (ρΛ)1−n.

Thus, with fixed ρ ∈ (0, βn
2(n−1)c1

∧ 1/2), we infer a contradiction from the last two estimates

by choosing the constant C = C(ρ) > 0 in (2.30) so that C (1 + τn) (ρΛ)1−n < βn/2. �
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2.5. The Mumford-Shah Conjecture. Having established the existence of strong (lo-

cal) minimizers, it is elementary to infer that u is harmonic on Ω \ Su. Hence, we will

focus in the rest of the note on the regularity properties of the set Ω ∩ Su that will be

instrumental also to gain further regularity on u itself (cf. Theorem 3.3).

The interest of the researchers in this problem is motivated by the Mumford and Shah

conjecture (in 2-dimensions) that we recall below for the readers’ convenience.

Conjecture 2.20 (Mumford and Shah [69]). If u ∈ M(Ω), Ω ⊆ R2, then Ω ∩ Su is the

union of (at most) countably many injective C1 arcs γi : [ai, bi] → Ω with the following

properties:

(c1) Any compact K ⊂ Ω intersects at most finitely many arcs;

(c2) Two arcs can have at most an endpoint p in common, and if this is the case, then

p is in fact the endpoint of three arcs, forming equal angles of 2π/3.

So according to this conjecture only two possible singular configurations occur: either

three arcs meet in an end forming angles equal to 2π/3, or an arc has a free end in Ω. In

what follows, we shall call triple junction the first configuration and crack-tip the second.

A suitable theory of calibrations for free discontinuity problems established by Alberti,

Bouchitté and Dal Maso [1] shows that the model case of triple junction functions,

aχ{ϑ∈(−π/6,π/2]} + b χ{ϑ∈(π/2,7π/6]} + c χ{ϑ∈(7π/6,11π/6]} (2.39)

with |a−b| · |a−c| · |b−c| > 0, is indeed a local minimizer (for more results on calibrations

in the setting of free discontinuity problems see [22, 65, 66, 67, 68]).

Instead, Bonnet and David [11] have shown that the model crack-tip functions, i.e. func-

tions that up to rigid motions can be written as

C ±
√

2

π
ρ · sin(θ/2) (2.40)

for θ ∈ (−π, π), ρ > 0 and some constant C ∈ R, are global minimizers of the Mumford

and Shah energy5.

More recently, second order sufficient conditions for minimality have been investigated.

More precisely, Bonacini and Morini in [9] for suitable critical points, strictly stable and

regular in their terminology, have proved that strict local minimality is implied by strict

positivity of the second variation. This approach in the case of triple junctions is currently

under investigation [19].

5 The prefactor
√

2
π results from a simple calculation to ensure stationarity for a crack-tip function

by plugging it in the Euler-Lagrange equation (2.6).
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Conjecture 2.20 has been first proven in some particular cases in the ensuing weaker

form.

Conjecture 2.21. If u ∈M(Ω), Ω ⊆ R2, then Ω∩Su is the union of (at most) countably

many injective C0 arcs γi : [ai, bi] → Ω which are C1 on ]ai, bi[ and satisfy the two

conditions of conjecture 2.20.

The subtle difference between conjecture 2.20 and conjecture 2.21 above is in the fol-

lowing point: assuming conjecture 2.21 holds, if y0 = γi(ai) is a “loose end” of the arc γi,

i.e. it does not belong to any other arc, then the techniques in [10] show that any blow up

limit, i.e. any limit of subsequences of the family (uy0,ρ)ρ as in (2.8), is a crack-tip but do

not ensure the uniqueness of the limit itself (for more details on the notion of blow up see

the proof of Proposition 4.11).

2.6. Blow up analysis and the Mumford and Shah conjecture. The Mumford

and Shah conjecture, in the form stated in conjecture 2.21, has been attacked first in the

contribution by Bonnet [10]. Bonnet’s approach is based on a weaker notion of minimality

for the strong formulation of the problem, that includes a topological condition to be

satisfied by the competitors, though still sufficient to develop a regularity theory.

Definition 2.22. Let Ω ⊆ R2 be an open set, a pair (u,K), K ⊂ Ω closed and u ∈
W 1,2

loc

(
Ω \ K

)
, is a Bonnet minimizer of F in Ω if F (u,K,Ω) ≤ F (v, L,Ω) among all

couples (v, L), L ⊂ Ω closed and v ∈ W 1,2
loc

(
Ω \L

)
, such that there is a ball Bρ(x) ⊂ Ω for

which

(i) u = v and K = L on Ω \Bρ(x),

(ii) any pair of points in Ω \
(
K ∪ Bρ(x)

)
that lie in different connected components

of Ω \K are also in different connected components of Ω \ L.

Moreover, in case Ω = R2, we say that (u,K) is a global minimizer of F .

In particular, under the assumption that Ω ∩ Su has a finite number of connected

components Bonnet has classified all the blow up limits of minimizers as in Definition 2.22,

and then also of local minimizers, as

(i) constant functions,

(ii) pure jumps (cf. (2.10)),

(iii) triple junction functions (cf. (2.39)),

(iv) crack-tip functions (cf. (2.40)),

establishing conjecture 2.21 in such a restricted framework. In particular, as already

mentioned, Bonnet’s result does not deal with the stronger conjecture 2.20 as it cannot
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exclude the possibility that γi “spirals” around y0 infinitely many times (compare with

the discussion at the end of [10, Section 1]). The method of Bonnet relies on a key

monotonicity formula for the rescaled Dirichlet energy that so far has no counterpart in

general. Recently, Lemenant [52] has exhibited another monotone quantity that plays

the role of the rescaled Dirichlet energy in higher dimensions in case Ω ∩ Su is contained

in a sufficiently smooth cone. In view of this, a rigidity result for Ω ∩ Su in the 3-

dimensional case can be deduced. Let us also point out that the almost monotonicity

formula established by Bucur and Luckhaus in Theorem 2.16 is of little use in the blow up

analysis due to the truncation with the constant C(n).

The contributions of Léger [50] and of David and Léger [27] improve upon Bonnet’s

results: the former addressing the case of Ω∩Su satisfying a suitable flatness assumption,

the latter identifying pure jumps and triple junction functions as the only minimizers in

the sense of Bonnet for which R2 \ Su is not connected. All these efforts are directed to

push forward Bonnet’s ideas. Indeed, [26, Proposition 71.2] shows in general, i.e. with no

extra connectedness assumptions on Ω∩Su, that the complete classification of the blow up

limits of local minimizers as in the list above turns out to be a viable strategy to establish

conjecture 2.20. More precisely, coupling the latter piece of information with a detailed

local description of the geometry of Ω∩Su, that is the topic of the ensuing subsection 3.1,

would yield the conclusion. A further interesting consequence of the analysis in the paper

[27] is that the Mumford and Shah conjecture turns out to be equivalent to the uniqueness

(up to rotations and translations) of crack-tips as global minimizers of the MS energy as

conjectured by De Giorgi in [30].

However, we shall not enter here into this streamline of results but rather refer for more

details on them to the monograph [26] and to the recent review paper [53].

Instead, a different (but related) perspective to the goal of understanding conjec-

ture 2.20 is taken in what follows. We shall link the latter to a sharp higher integrability

property of the approximate gradient following Ambrosio, Fusco and Hutchinson [4]. In

order to do this, in the next section we review the state of the art about the regularity

properties of Ω ∩ Su.

3. Regularity of the jump set

The aim of this section is to survey on the regularity of Ω∩Su. In subsection 3.1 we shall

first recall classical and more recent ε-regularity results, and then state an estimate on the

size of the subset of singular points in Ω∩Su that will be dealt with in details in Section 4.

In particular, in subsection 3.2 the links of the higher integrability of the gradient with

the Mumford and Shah conjecture 2.20 will be highlighted following the approach of
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Ambrosio, Fusco and Hutchinson [4]. A slight improvement of the latter ideas leads to an

energetic characterization of the conjecture 2.21 as exposed in subsection 3.3.

3.1. ε-regularity theorems. The starting point to address the regularity of Ω ∩ Su for

local minimizers is the ensuing ε-regularity result.

Theorem 3.1 (Ambrosio, Fusco and Pallara [5]). Let u ∈M(Ω), then there exists Σu ⊂
Ω ∩ Su relatively closed in Ω with Hn−1(Σu) = 0, and such that Ω ∩ Su \ Σu is locally a

C1,γ hypersurface for all γ ∈ (0, 1) and C1,1 if n = 2.

More precisely, there exist ε0 = ε0(n), ρ0 = ρ0(n) > 0 such that

Σu = {z ∈ Ω ∩ Su : D(z, ρ) + A (z, ρ) ≥ ε0 ∀ρ ∈ (0, ρ0 ∧ dist(z, ∂Ω))} (3.1)

where

Du(z, ρ) := ρ1−n
ˆ
Bρ(z)

|∇u|2dy, (scaled Dirichlet energy)

Au(z, ρ) := ρ−n−1 min
T∈Π

ˆ
Su∩Bρ(z)

dist2(y, T )dHn−1(y), (scaled mean flatness),

with Π the class of (n− 1)-affine planes.

For more details on Theorem 3.1 we refer to [7, Chapter 8], that is entirely devoted to

the proof of it, and to [44] for a hint of the strategy of proof. Here we shall only comment

on the quantities involved in (3.1).

First note that the affine change of variables mapping Bρ(x) into B1 shows that Du(x, ·)
and Au(x, ·) are equal to the Dirichlet energy and the mean flatness on B1 of the rescaled

maps ux,ρ in (2.8), respectively.

Further, the scaled mean flatness measures in an average sense the deviation of Ω∩ Su
from being flat in z. For instance, if Ω ∩ Su is a C1 hypersurface in a neighborhood of z

it is easy to check that Au(z, ρ) = o(1) as ρ ↓ 0. Actually , the density lower bound in

Theorem 2.7 and the density upper bound in Proposition 2.14 allow us to show that the

rescaled mean flatness Au is equivalent to its L∞ version, namely

Au,∞(z, ρ) := ρ−1 min
T∈Π

sup
y∈Su∩Bρ(z)

dist(y, T ).

Proposition 3.2. Let u ∈M(Ω), then for all z ∈ Su and Bρ(z) ⊂ Ω we have

θ0

2n+1
A n+1
u,∞ (z, ρ/2) ≤ Au(z, ρ) ≤ nωn A 2

u,∞(z, ρ).

where θ0 is the constant in Theorem 2.7.
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Proof. The estimate from above easily follows by the very definitions of Au and Au,∞ by

taking into account (2.22).

Let then T̄ be the affine hyperplane through z giving the minimum in the definition of

Au(z, ρ). If ȳ ∈ Su ∩ Bρ/2(z) is a point of almost maximum distance from T̄ , i.e. for a

fixed δ ∈ (0, 1)

d := dist(ȳ, T̄ ) ≥ (1− δ) sup
y∈Su∩Bρ/2(z)

dist(y, T̄ ),

then we can estimate as follows thanks to (2.12)

Au(z, ρ) ≥ ρ−n−1

ˆ
Su∩Bd/2(ȳ)

dist2(y, T̄ )dHn−1(y) ≥ ρ−n−1 d
2

4
Hn−1

(
Su ∩Bd/2(ȳ)

)
≥ ρ−n−1 θ0

(d
2

)n+1

≥ (1− δ)n+1 θ0

2n+1
A n+1
u,∞ (z, ρ/2).

The conclusion follows at once as δ ↓ 0. �

The local graph property of Ω ∩ Su established in Theorem 3.1, the Euler-Lagrange

condition and the regularity theory for elliptic PDEs with Neumann boundary conditions

determine the regularity of u close to Ω ∩ Su (see [7, Theorem 7.49] or [26, Proposition

17.15] if n = 2).

Theorem 3.3 (Ambrosio, Fusco and Pallara [6]). Let u ∈M(Ω) and A∩Su, A ⊂ Ω open,

be the graph of a C1,γ function φ, γ ∈ (0, 1). Then, φ ∈ C∞ and u has C∞ extension on

each side of A ∩ Su.

Actually, Koch, Leoni and Morini [46] proved that if A ∩ Su is C1,γ then it is actually

analytic, as conjectured by De Giorgi (cf. [29, 31]).

Going back to the regularity issue for Su we resume below the outcomes of a different

approach developed by David in the 2-dimensional case. In this setting it is also possible to

address the situation in which Ω∩Su is close in the Hausdorff distance to a triple-junction

(cf. Section 6 for more comments in this respect).

Theorem 3.4 (David [25], Corollary 51.17 and Theorem 53.4 [26]). There exists ε > 0

and an absolute constant c ∈ (0, 1) with the following properties. If u ∈ M(Ω), z ∈ Su,

Br(z) ⊂ Ω and C is either a line or a triple junction such thatˆ
Br(z)

|∇u|2 dx+ distH(Su ∩Br(z),C ∩Br(z)) ≤ ε r, (3.2)

then there exists a C1-diffeomorphism φ of Br(z) onto its image with

Su ∩Bcr(z) = φ (C ) ∩Bcr(z).
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In addition, for any given δ ∈ (0, 1/2), there is ε > 0 such that, if (3.2) holds, then

Su ∩ (B(1−δ)r(z) \Bδr(z)) is δ-close, in the C1 norm, to C ∩ (B(1−δ)r(z) \Bδr(z)).

Remark 3.5. The last sentence of Theorem 3.4 is not contained in [26, Corollary 51.17,

Theorem 53.4]. However it is a simple consequence of the theory developed in there. By

scaling, we can assume r = 1 and x = 0. Fix a cone C , a δ > 0 and a sequence

{uk} ⊂ M(B1) for which the left hand side of (3.2) goes to 0. If C is a segment, then it

follows from [26] (or [7]) that there are uniform C1,α bounds on Suk ∩B1−δ. We can then

use the Ascoli-Arzelà Theorem to conclude that Suk is converging in C1 to C .

In case the minimal cone C is a triple junction, then observe that C ∩ (B1 \ Bδ/2)

consists of a three distinct segments at distance δ/2 from each other. Covering each of

these segments with balls of radius comparable to δ and centered in a point belonging to the

segment itself, we can argue as above and conclude that, for k large enough, Suk ∩ (B1−δ \
Bδ) consist of three arcs, with uniform C1,α estimates. Once again the Ascoli-Arzelà

Theorem shows that Suk ∩ (B1−δ \Bδ) is converging in C1 to C ∩ (B1−δ \Bδ).

Remark 3.6. Actually assumption (3.2) can be relaxed toˆ
Br(x)

|∇u|2 dx ≤ ε r

(see [26, Proposition 60.1] or Theorem 4.3 below).

Remarkably, Lemenant [51] extended such a result to the 3-dimensional case with suit-

able changes in the statement (see also [53] for a sketch of the proof).

The techniques developed by David are also capable to describe in details the structure

of Su around points that corresponds to the model case of crack-tips despite uniqueness

of blow ups is not ensured.

Theorem 3.7 (David, Theorem 69.29 [26]). For all ε0 > 0 there exists ε > 0 such that if

u ∈M(Ω) and

distH(Su ∩Br(z), σ) < ε r

for some radius σ of Br(z) ⊂ Ω, then Su∩Br/2(z) consists of a single connected arc which

joins some point y0 ∈ Br/4(z) with ∂Br/2(z) and which is smooth in Br/2(z) \ {y0}.
More precisely, there is a point y0 ∈ Br/4(z) such that

Su ∩Br/2(z) =
{
y0 + ρ(cosα(ρ), sinα(ρ))

}
for some smooth function α : (0, r/2)→ R which satisfies

ρ|α′(ρ)| ≤ ε0 for all ρ ∈ (0, r/2), lim
ρ↓0

ρ|α′(ρ)| = 0. (3.3)
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In addition, there is a constant C such that, up to a change of sign,

u
(
y0 + ρ(cos θ, sin θ)

)
=

√
2

π
ρ sin

(θ − α(ρ)

2

)
+ C + ρ

1/2ω(ρ, θ)

for all ρ ∈ (0, r/2) and θ ∈ (α(ρ)− π, α(ρ) + π), with limρ↓0 supθ |ω(ρ, θ)| = 0. Finally,

lim
ρ↓0

1

ρ

ˆ
Bρ(y0)

|∇u|2dx = lim
ρ↓0

1

ρ
H1(Su ∩Bρ(y0)) = 1.

As remarked above, the latter theorem does not guarantee that such arc is C1 up to

the loose end y0: in particular it leaves the possibility that the arc spirals infinitely many

times around it. Hence, it does not establish the uniqueness of the blowup in the point

y0.

3.2. Higher integrability of the gradient and the Mumford and Shah conjec-

ture. Theorem 3.1, or better the characterization of the singular set Σu in (3.1), can be

employed to subdivide Σu as follows: Σu = Σ
(1)
u ∪ Σ

(2)
u ∪ Σ

(3)
u , where

Σ(1)
u := {x ∈ Σu : lim

ρ↓0
Du(x, ρ) = 0},

Σ(2)
u := {x ∈ Σu : lim

ρ↓0
Au(x, ρ) = 0},

Σ(3)
u := {x ∈ Σu : lim inf

ρ↓0
Du(x, ρ) > 0, lim inf

ρ↓0
Au(x, ρ) > 0}.

According to the Mumford and Shah conjecture 2.20 we should have Σ
(3)
u = ∅ if n = 2.

Furthermore, being inspired by the 2d case, we shall refer to Σ
(1)
u as the set of triple

junctions, and to Σ
(2)
u as the set of crack-tips. Actually, in 2-dimensions we will fully

justify the latter terminology in Proposition 4.11 (see also Remark 4.10).

In the general n-dimensional setting De Giorgi conjectured that Hn−2(Σu ∩ Ω′) < ∞
for all Ω′ ⊂⊂ Ω (cf. [31, conjecture 6]). In particular, the validity of the latter conjecture

would imply dimHΣu ≤ n− 2.

A first breakthrough in this direction has been obtained by Ambrosio, Fusco and

Hutchinson in [4].

Theorem 3.8 (Ambrosio, Fusco and Hutchinson, [4]). For every u ∈M(Ω)

dimHΣ(1)
u ≤ n− 2.

Actually, the set Σ
(1)
u turns out to be countable in 2-dimensions (see Remark 4.10

below).

In the same paper [4], Ambrosio, Fusco and Hutchinson investigated the connection

between the higher integrability of ∇u and the Mumford and Shah conjecture.
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If conjecture 2.20 does hold, then ∇u ∈ Lploc for all p < 4 (cf. with [4, Proposition 6.3]

under C1,1 regularity assumptions on Su, see also Theorem 3.11 below). It was indeed

conjectured by De Giorgi in all space dimensions that ∇u ∈ Lploc for all p < 4 (cf. with

[31, conjecture 1]). So far only a first step into this direction has been established.

Theorem 3.9. There is p > 2 such that ∇u ∈ Lploc(Ω) for all u ∈M(Ω) and for all open

sets Ω ⊆ Rn.

A proof of Theorem 3.9 in 2-dimension has been given by De Lellis and Focardi in

[35], shortly after De Philippis and Figalli established the result without any dimensional

limitation in [37]. The exponent p in both papers is not explicitly computed despite some

suggestions to do that are also proposed.

The higher integrability can be translated into an estimate for the size of the singular

set Σu of Su (see [4, Corollary 5.7]) that improves upon the conclusion of Theorem 3.1

(cf. [61], [62], [47] and the survey [63] for related issues for minima of variational integrals

and for solutions to nonlinear elliptic systems in divergence form).

Theorem 3.10 (Ambrosio, Fusco and Hutchinson [4]). If u ∈M(Ω) and |∇u| ∈ Lploc(Ω)

for some p > 2, then

dimHΣu ≤ max{n− 2, n− p/2} ∈ (0, n− 1). (3.4)

The estimate dimHΣu < n − 1 has also been established by David [25] for n = 2, and

lately by Rigot [71] and by Maddalena and Solimini [55] in general by establishing the

porosity of Ω ∩ Su. Despite this, it was not related to the higher integrability property

of the gradient. In Section 6 below we shall comment more in details on how porosity

implies such an estimate and moreover on how porosity can be employed to prove the

higher integrability of the gradients of minimizers following De Philippis and Figalli [37]

(see Section 7).

For the time being few remarks are in order:

(i) the upper bound p < 4 is motivated not only because we need the rhs in the

estimate (3.4) to be positive if n = 2, but also because explicit examples show

that it is the best exponent one can hope for: consider in 2 dimensions a crack-tip

minimizer (Bonnet and David [11]), i.e. a function that up to a rigid motion can

be written as

u(ρ, θ) = C ±
√

2

π
ρ · sin(θ/2)
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for θ ∈ (−π, π) and ρ > 0, and some constant C ∈ R. Simple calculations imply

that crack-tip minimizers satisfy

|∇u| ∈ Lploc \ L
4
loc(R2) for all p < 4;

(ii) If we were able to prove the higher integrability property for every p < 4 then

we would infer that dimHΣu ≤ n − 2, and actually in 2-dimensions dimHΣu = 0.

Clearly, this would be a big step towards the solution in positive of the Mumford

and Shah conjecture. For further progress in this direction see Theorem 3.11

below.

Given Theorems 3.8 and 3.9 for granted, Theorem 3.10 is a simple consequence of soft

measure theoretic arguments. We shall establish Theorem 3.8 in Section 4. Instead, here

we prove Theorem 3.10 to underline the role of the higher integrability that, in turn, shall

be established in Sections 5 and 7 following two different paths.

Proof of Theorem 3.10. Suppose that |∇u| ∈ Lploc(Ω) for some p > 2, then for all s ∈
(n− p/2, n− 1) the set

Λs :=

{
x ∈ Ω : lim sup

ρ
ρ−s

ˆ
Bρ(x)

|∇u|pdy =∞

}
satisfies Hs(Λs) = 0 by elementary density estimates for the Radon measure

µ(A) :=

ˆ
A

|∇u|pdy A ⊆ Ω open subset.

Indeed, for all δ > 0, Proposition 2.9 gives that

δHs(Λs) ≤ µ(Λs) ≤ µ(Ω) <∞.

Therefore, Hs(Λs) = 0.

Hence, if we rewrite Σu as the disjoint union of Σu ∩ Λs and of Σu \ Λs, we deduce

Hs(Σu ∩ Λs) = 0 and thus the estimate dimH(Σu ∩ Λs) ≤ s.

Furthermore, it is easy to prove that Σu \ Λs ⊆ Σ
(1)
u . If x ∈ Σu \ Λs by the higher

integrability and Hölder inequality it follows that

Du(x, ρ) = ρ1−n
ˆ
Bρ(x)

|∇u|2dy ≤ ω
1− 2

p
n ρ

2
p

(
s−n+ p

2

) (
ρ−s

ˆ
Bρ(x)

|∇u|pdy

) 2
p
ρ↓0+−→ 0,

since s > n−p/2. By taking into account Theorem 3.8 we have that dimH(Σu\Λs) ≤ n−2.

In conclusion, we infer that for all s ∈ (n− p/2, n− 1)

dimHΣu = max{dimH(Σu ∩ Λs), dimH(Σu \ Λs)} ≤ max{n− 2, s},

by letting s ↓ (n− p/2) we are done. �
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3.3. An energetic characterization of the Mumford and Shah conjecture 2.21.

Let us go back to the upper bound p < 4 in the higher integrability result. We consider

again the crack-tip function in item (i) after Theorem 3.10. A simple calculation shows

that its gradient belongs to Lploc \ L4
loc(R2) for all p < 4. Beyond the scale of Lp spaces

something better holds true: |∇u| ∈ L4,∞
loc (R2). The latter is a weak-Lebesgue space,

i.e. if U ⊆ R2 is open then f ∈ L4,∞
loc (U) if and only if for all U ′ ⊂⊂ U there exists

K = K(U ′) > 0 such that

L2
(
{x ∈ U ′ : |f(x)| > λ}

)
≤ Kλ−4 for all λ > 0.

As a side effect of the considerations in [35] one deduces an energetic characterization of

the modified Mumford and Shah conjecture 2.21 (see [35, Proposition 5]). Indeed, the

validity of the latter is equivalent to a sharp integrability property of the gradient of the

minimizers.

Theorem 3.11 (De Lellis and Focardi [35]). If Ω ⊆ R2, conjecture 2.21 is true for

u ∈M(Ω) if and only if ∇u ∈ L4,∞
loc (Ω).

The characterization above would hold for the original Mumford and Shah conjec-

ture 2.20 if C1 regularity of Su up to crack-tip points had been established.

To prove Theorem 3.11 we need the following preliminary observation.

Lemma 3.12. Let f ∈ L4,∞
loc (Ω), Ω ⊆ R2, then for all ε > 0 the set

Dε :=

{
x ∈ Ω : lim inf

r

1

r

ˆ
Br(x)

f 2(y) dy ≥ ε

}
(3.5)

is locally finite.

Proof. We shall show in what follows that if f ∈ L4,∞(Ω) then Dε is finite, an obvious

localization argument then proves the general case.

Let ε > 0 and consider the set Dε in (3.5) above. First note that, for any Br(x) ⊂ Ω

and any λ > 0 we have the estimateˆ
{y∈Br(x): |f(y)|≥λ}

f 2(y) dy ≤
ˆ
{y∈Ω: |f(y)|≥λ}

f 2(y) dy

= 2

ˆ +∞

λ

tL2
(
{y ∈ Ω : |f(y)| ≥ t}

)
dt ≤

ˆ +∞

λ

2K

t3
dt =

K

λ2
.

(3.6)

If x ∈ Dε and r > 0 satisfy ˆ
Br(x)

f 2(y) dy ≥ ε

2
r, (3.7)



32 MATTEO FOCARDI

choosing λ = 2(K/rε)1/2 in (3.6) we conclude
ˆ
{y∈Br(x): |f(y)|< 2(K

rε
)1/2}

f 2(y) dy ≥ ε

4
r. (3.8)

Furthermore, the trivial estimateˆ
{y∈Br(x): |f(y)|<λ}

f 2(y) dy < πλ2r2,

implies for λ = (ε/8πr)1/2

ˆ
{y∈Br(x): |f(y)|<( ε

8πr
)1/2}

f 2(y) dy <
ε

8
r. (3.9)

By collecting (3.8) and (3.9) we infer
ˆ
{y∈Br(x): ( ε

8πr
)1/2≤|f(y)|< 2(K

rε
)1/2}

f 2(y) dy ≥ ε

8
r,

that in turn implies

L2
(
{y ∈ Br(x) : |f(y)| ≥ (

ε

8πr
)1/2}

)
≥ ε2r2

32K
. (3.10)

Let {x1, . . . , xN} ⊆ Dε and r > 0 be a radius such that the balls Br(xi) ⊆ Ω are disjoint

and (3.7) holds for each xi. Then, from (3.10) and the fact that f ∈ L4,∞(Ω), we infer

N
ε2r2

32K
≤ L2

(
{y ∈ Ω : |f(y)| ≥ (

ε

8πr
)1/2}

)
≤ K(8πr)2

ε2
=⇒ N ≤ 211K2π2

ε4
,

and the conclusion follows at once. �

We are now ready to give the proof of Theorem 3.11. The “if” direction is achieved by

first proving that Su has locally finitely many connected components and then invoking

the regularity theory developed by Bonnet [10]. In turn, the proof that the connected

components are locally finite is a fairly simple application of David’s ε-regularity theory

(see Theorem 3.4). Vice versa, the “only if” direction is proved by means of Bonnet

blow up analysis and standard elliptic regularity theory.

Proof of Theorem 3.11. To prove the direct implication we assume without loss of gen-

erality that Ω = BR for some R > 1, being the result local. In addition, we may also

suppose that Su ∩ ∂B1 = {y1, . . . , yM}. Theorem 3.4 and Theorem 4.3 in Section 4 below

yield that there exists some ε0 > 0 such that for all points x ∈ BR \Dε0 the set Su∩Br(x)

is either empty or diffeomorphic to a minimal cone, for some r > 0. In particular, in the

latter event Br(x) \ Su is not connected.
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Supposing that Dε0 ∩B1 = {x1, . . . , xN}, and setting

Ωk := B1−1/k \
N⋃
i=1

B1/k(xi) ,

a covering argument and the last remark give that for every x ∈ Ωk ∩ Su there is a

continuous arc γk : [0, 1]→ Su with γk(0) = x and γk(1) = y ∈ ∂Ωk. Then, the sequence

(γ̃k)k∈N of reparametrizations of the γk’s by arc length converges to some arc γ : [0, 1]→ Su

with γ(0) = x and γ(1) ∈ {x1, . . . , xN , y1, . . . , yM}.
From this, we deduce that B1 ∩ Su has a finite number of connected components.

Bonnet’s regularity results [10, Theorems 1.1 and 1.3] then provide the thesis.

To conclude we prove the opposite implication. To this aim we consider Ω′ ⊂⊂ Ω′′ ⊂
⊂ Ω and suppose that Su ∩ Ω′′ is a finite union of C1 arcs of finite length. Denote by

{x1, . . . , xN} the end points of the arcs in Ω′ and let r > 0 be such that B4r(xi) ⊆ Ω′

for all i, and B4r(xi) ∩ B4r(xj) = ∅ if i 6= j. Theorem 3.3 implies that ∇u has a C0,α

extension on both sides of (Ω′′∩Su)\∪iBr(xi) for all α < 1. In particular, ∇u is bounded

on Ω′ \ ∪iB2r(xi).

Next consider the sequence rk = r/2k−1, k ≥ 0, and fix i ∈ {1, . . . , N}. Then, by

[26, Proposition 37.8] (or [10, Theorem 2.2]) we can extract a subsequence kj ↑ ∞ along

which the blow up functions uj(x) := r
−1/2
kj

(
u(xi + rkjx) − cj(x)

)
converge to some w

in W 1,2
loc (B4 \ K), for some piecewise constant function cj : Ω \ Suj → R, and (Suj)j∈N

converges to some set K in the Hausdorff metric.

By Bonnet’s blow up theorem [10, Theorem 4.1] only two possibilities occur: either xi is

a triple junction point, i.e., K is a triple junction and w is locally constant on B4\K, or xi

is a crack-tip, i.e., up to a rotation K = {(x, 0) : x ≤ 0} and w(ρ, θ) = C±
√

2
π
ρ · sin(θ/2)

for θ ∈ (−π, π), ρ > 0 and some constant C ∈ R (note that in this argument we do not

need to know that the blow up limit is unique).

In both cases, we claim that ∇uj has a C0,α extension on the closure of each connected

component of Uj := (B3 \ B1) \ Suj with supj ‖∇uj‖L∞(Uj) ≤ C. This follows as in

[7, Theorem 7.49] (or [26, Proposition 17.15], see also Remark 3.5) locally straightening

Suj ∩ (B4 \B1/2) onto K∩ (B4 \B1/2) via a C1,α conformal map, a reflection argument and

standard Schauder estimates for the laplacian. Scaling back the previous estimate gives

|∇u(x)| ≤ C |x− xi|−1/2 for x ∈ ∪j∈N(B3rkj
(xi) \Brkj

(xi)),

in turn from this, the maximum principle and Hopf’s lemma we infer

|∇u(x)| ≤ C r
−1/2
k for x ∈ B2r(xi) \Brk(xi).

The latter inequality finally implies ∇u ∈ L4,∞(B2r(xi)).
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Eventually, we are able to conclude ∇u ∈ L4,∞(Ω′), being on one hand ∇u bounded on

Ω′ \ ∪iB2r(xi), and on the other hand belonging to L4,∞(∪iB2r(xi)). �

4. Hausdorff dimension of the set of triple-junctions

In order to prove Theorem 3.8 we need to analyze the asymptotic behavior of MS-

minimizer in points of vanishing Dirichlet energy. This issue has been first investigated

in [4, Proposition 5.3, Theorem 5.4]. Those results hinge upon the notion of Almgren’s

area minimizing sets, i.e. a Hn−1 rectifiable set S ⊂ B1 such that

Hn−1(S) ≤ Hn−1(ϕ(S)), ∀ϕ ∈ Lip(Rn,Rn), {ϕ 6= Id} ⊂⊂ B1.

Following this approach to infer Theorem 3.8 requires a delicate study of the behavior of

the composition of SBV functions with Lipschitz deformations that are not necessarily

one-to-one, and some specifications on the regularity theory for Almgren’s area mini-

mizing sets are needed (cf. [4]). Therefore, following Ambrosio, Fusco and Hutchinson,

Theorem 3.10 is a straightforward corollary of a much deeper and technically demanding

result (given the higher integrability for granted).

Instead, in Theorem 4.3 below (cf. [35, Proposition 5.1]) we set the analysis into the

more natural framework of Caccioppoli partitions.

Definition 4.1. A Caccioppoli partition of Ω is a countable partition E = {Ei}∞i=1 of Ω

in sets of (positive Lebesgue measure and) finite perimeter with
∑∞

i=1 Per(Ei,Ω) <∞.

For each Caccioppoli partition E the set of interfaces is given by JE :=
⋃
i ∂
∗Ei.

The partition E is said to be minimal if

Hn−1(JE ) ≤ Hn−1(JF )

for all Caccioppoli partitions F for which
∑∞

i=1 Ln ((Fi4Ei) ∩ (Ω \ Ω′)) = 0, for some

open subset Ω′ ⊂⊂ Ω.

There is an important correspondence between Caccioppoli partitions and the subspace

SBV0 of “piecewise constant” SBV functions recalled as prototype example in subsec-

tion 2.1, in such a way that minimizing the Mumford and Shah energy over SBV0 corre-

sponds exactly to the minimal area problem for Caccioppoli partitions (see [7, Theorems

4.23, 4.25 and 4.39]).

Existence of minimal Caccioppoli partitions is guaranteed by Ambrosio’s SBV closure

and compactness Theorem 2.3 without imposing any L∞ bound simply by composition

with arctan(t), provided the partitions are either equi-finite or ordered, i.e. if E = {Ei}∞i=1

then Ln(Ei) ≥ Ln(Ej) for j ≥ i.
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A regularity theory for minimal Caccioppoli partitions has been established by Massari

and Tamanini [58]. We limit ourselves here to the ensuing statement.

Theorem 4.2 (Massari and Tamanini [58]). Let E be a minimal Caccioppoli partition in

Ω,

ωn−1 ≤ lim inf
r↓0

Hn−1(JE ∩Br(x))

rn−1
≤ lim sup

r↓0

Hn−1(JE ∩Br(x))

rn−1
≤ nωn.

In particular, JE is essentially closed, i.e. Hn−1
(
(Ω ∩ JE ) \ JE

)
= 0.

Moreover, there exists a relatively closed subset ΣE of JE such that JE \ ΣE is a C1,1/2

hypersurface and dimHΣE ≤ n− 2. If, in addition, n = 2, then ΣE is locally finite.

We are now ready to prove a compactness result for sequences of MS-minimizers with

vanishing L1-gradient energy.

Theorem 4.3 (De Lellis and Focardi [35]). Let (uk)k∈N ⊂M(B1) be such that

lim
k
‖∇uk‖L1(B1) = 0. (4.1)

Then, (up to the extraction of a subsequence not relabeled for convenience) there exists

a minimal Caccioppoli partition E = {Ei}i∈N such that (Suk)k∈N converges locally in the

Hausdorff distance on B1 to JE and for all open sets A ⊆ B1

lim
k

MS(uk, A) = lim
k
Hn−1(Suk ∩ A) = Hn−1(JE ∩ A). (4.2)

Though this last statement is, intuitively, quite clear, it is technically demanding, be-

cause we do not have any a priori control of the norms ‖uk‖L1 , thus preventing the

use of Ambrosio’s (G)SBV compactness theorem. We can not even expect to gain pre-

compactness via De Giorgi’s SBV Poincaré-Wirtinger type inequality, since the latter

holds true in a regime of small jumps rather than of small gradients as the current one.

Proof of Theorem 4.3. The sequence (uk)k∈N does not satisfy, a priori, any Lp bound, thus

in order to gain some insight on the asymptotic behavior of the corresponding jump sets

we first construct a new sequence (wk)k∈N with null gradients introducing an infinitesimal

error on the length of the jump set of wk with respect to that of uk. Then, we investigate

the limit behavior of the corresponding Caccioppoli partitions.

Step 1. There exists a sequence (wk)k∈N ⊆ SBV (B1) satisfying

(i) ∇wk = 0 Ln a.e. on B1,

(ii) ‖uk − wk‖L∞(B1) ≤ 2‖∇uk‖
1/2

L1(B1),

(iii) Hn−1 (Swk \ (Suk ∪Hk)) = 0 for some Borel measurable set Hk, with Hn−1(Hk) =

o(1) as k ↑ ∞.
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Note that in turn item (iii) implies that

MS(wk) = Hn−1(Swk) ≤ Hn−1(Suk) + o(1) ≤ MS(uk) + o(1). (4.3)

In Step 2 below we shall eventually show that |MS(wk)−MS(uk)| ≤ o(1).

Recall that the BV Co-Area formula (see [7, Theorem 3.40]) establishesˆ
B1

|∇uk|dx = |Duk|(B1 \ Suk) =

ˆ
R

Per ({uk ≥ t} \ Suk) dt. (4.4)

Denote by Iki a partition of R of intervals of equal length ‖∇uk‖
1/2

L1(B1). Equation (4.4)

and the Mean value Theorem provide the existence of levels tki ∈ Iki satisfying

∞∑
i=1

Per
(
{uk ≥ tki } \ Suk

)
≤ ‖∇uk‖

1/2

L1(B1). (4.5)

Then define the functions wk to be equal to tki on {uk ≥ tki }\{uk ≥ tki+1}. The choice of the

Iki ’s, (4.5) and the very definition yield that wk belongs to SBV (B1) and that it satisfies

properties (i) and (ii). To conclude, note that Hn−1
(
Swk \ (∪i∂∗{uk ≥ tki } ∪ Suk)

)
= 0 by

construction, thus item (iii) follows at once from (4.5).

Step 2. Compactness for the jump sets.

Each function wk determines a Caccioppoli partition Ek = {Ek
i }i∈N of B1 (see [18,

Lemma 1.11]). In addition, upon reordering the sets Ek
i ’s, we may assume that Ln(Ek

i ) ≥
Ln(Ek

j ) if i < j. Then, the compactness theorem for Caccioppoli partitions (see [54,

Theorem 4.1, Proposition 3.7] and [7, Theorem 4.19]) provides us with a subsequence

(not relabeled) and a Caccioppoli partition E := {Ei}i∈N such that

lim
j

∞∑
i=1

Ln(Ek
i4Ei) = 0, and

∞∑
i=1

Per(Ei, A) ≤ lim inf
k

∞∑
i=1

Per(Ek
i , A) (4.6)

for all open subsets A in B1. We claim that E determines a minimal Caccioppoli partition

and in proving this we will also establish (4.2).

We start off observing that the first identity (4.6) and the Co-Area formula yield the

existence of a set I ⊂ (0, 1) of full measure such that

lim inf
k

∞∑
i=1

Hn−1
(
(Ek

i4Ei) ∩ ∂Bρ

)
= 0 ∀ρ ∈ I . (4.7)

Define the measures µk as µk(A) := MS(uk, A) + MS(wk, A) (A being an arbitrary Borel

subset of B1). Proposition 2.14 and item (iii) in Step 1 ensure that, upon the extraction

of a further subsequence, µk converges weakly∗ to a finite measure µ on B1. W.l.o.g. we

may assume that for all ρ ∈ I we have, in addition, µ(∂Bρ) = 0.
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Let us now fix a Caccioppoli partition F := {Fi}i∈N suitable to test the minimality

of E , i.e.
∑∞

i=1 Ln
(
(Fi4Ei) ∩ (B1 \Bt)

)
= 0 for some t ∈ (0, 1). Moreover, we may also

suppose that
∑∞

i=1Hn−1 ((Fi4Ei) ∩ ∂Bρ) = 0 for all ρ ∈ I ∩ (t, 1). Let then ρ and r be

radii in I ∩ (t, 1) with ρ < r and assume, after passing to a subsequence (not relabeled)

that the inferior limit in (4.7) is actually a limit for these two radii. We define

ωk :=

wk on B1 \Bρ

tki on Fi ∩Bρ.

Note that ωk ∈ SBV (B1) with ∇ωk = 0 Ln a.e. on B1, and since t < ρ ∈ I it follows

Hn−1
(
Sωk \

(
(JF ∩Bρ) ∪ (∪i∈N(Ek

i4Ei) ∩ ∂Bρ) ∪ (Swk ∩ (B1 \Bρ))
))

= 0.

Consider ϕ ∈ Lip ∩ Cc(B1, [0, 1]) with ϕ|Br ≡ 1, and |∇ϕ| ≤ (1 − r)−1 on B1, and set

vk := ϕωk + (1 − ϕ)uk. Clearly, vk is admissible to test the minimality of uk. Then,

simple calculations lead to

MS(uk) ≤ MS(vk)

≤ MS(ωk) + 2MS(uk, B1 \Br) +
2

(1− r)2
‖uk − ωk‖2

L2(B1\Br)

≤ Hn−1 (JF ) +
∑
i∈N

Hn−1
(
(Ek

i4Ei) ∩ ∂Bρ

)
+Hn−1

(
Swk \Bρ

)
+2MS(uk, B1 \Br) +

2

(1− r)2
‖uk − wk‖2

L2(B1\Br)

≤ Hn−1 (JF ) +
∑
i∈N

Hn−1
(
(Ek

i4Ei) ∩ ∂Bρ

)
+ 3µk(B1 \Bρ)

+
2

(1− r)2
‖uk − wk‖2

L∞(B1). (4.8)

Note that in the third inequality we have used that ωk and wk coincide on B1 \ Bρ, and

that ρ < r. By letting k ↑ ∞ in (4.8), we infer

Hn−1(JE ) ≤ lim inf
j
Hn−1(Suk) ≤ lim inf

j
MS(uk) ≤ lim sup

j
MS(uk)

≤ lim sup
k

MS(vk) ≤ Hn−1 (JF ) + 3µ(B1 \Bρ),

where we have used that r and ρ belong to I, inequality (4.3), the convergence µk ⇀
∗ µ,

the estimate supk MS(uk, B1 \ Bt) ≤ nωn(1 − tn−1) for all t ∈ (0, 1), that is derived as

inequality (2.22) in Proposition 2.14, and the limit (4.7). Finally, by letting ρ ∈ I tend
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to 1− we conclude

Hn−1(JE ) ≤ lim inf
k
Hn−1(Suk) ≤ lim inf

k
MS(uk) ≤ lim sup

k
MS(uk) ≤ Hn−1 (JF ) , (4.9)

which proves the minimality of E . In addition, choosing E = F , we infer (4.2) for A = B1.

Actually, for E = F the same same argument employed above gives (4.2) (it suffices to

take vk = ϕwk + (1− ϕ)uk).

In particular, JE is essentially closed (by Theorem 4.2) and it satisfies a density lower

bound estimate. Using this and the De Giorgi, Carriero, Leaci density lower bound in

formula (2.20) we conclude that (Suk)k∈N converges to JE in the local Hausdorff topology

on B1. �

Interesting (immediate) consequences of Theorem 4.3 are contained in the ensuing two

statements.

Corollary 4.4. Let (uk)k∈N ⊂M(B1) be as in the statement of Theorem 4.3, then

lim
k
‖∇uk‖L2(B1) = 0, and Hn−1 Suk

∗→ Hn−1 JE .

Actually, Hn−1 Suk → Hn−1 JE in the narrow convergence of measures, i.e. in the

duality with Cb(Ω).

Proof. It is an easy consequence of the equalities in (4.2). �

Corollary 4.5. Let x ∈ Σ
(1)
u and ρk ↓ 0, then (up to subsequences not relabeled) there

exists a minimal Caccioppoli partition E such that (Sux,ρk )k∈N, ux,ρk defined in (2.8),

converges locally in the Hausdorff distance to JE and

Hn−1 Sux,ρk
∗→ Hn−1 JE .

Remark 4.6. Under the assumptions of Corollary 4.5, it is natural to expect the limit

partition E to be conical, i.e. E = {Ei}∞i=1 with the Ei’s cones with vertices in the origin,

as a result of the blow up procedure. In general this latter property can be proven only

for suitable sequences ρk ↓ 0 by combining a blow up argument and Theorem 4.3 (cf. [4,

Proposition 5.8]).

Actually, in 2-dimensions the result is true for every sequence ρk ↓ 0 since a structure

theorem for minimal Caccioppoli partitions assures that (locally) they are minimal con-

nections (cf. Proposition 5.3). The lack of monotonicity formulas for the Mumford and

Shah problem prevents the derivation of such a statement in the general case.

A more precise result in the 2d case will be established in Proposition 4.11. Note that

no uniqueness is ensured for the limits except for 2d in view of David’s ε-regularity result
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(see Theorem 3.4), and in 3d in view of the analogous result established by Lemenant in

[51].

By means of Theorems 4.2, 4.3 and standard blow up arguments we are able to establish

Theorem 3.8. Let us first recall a technical lemma.

Lemma 4.7 (Section 3.6 [74]). Let s ≥ 0, then

(i) Hs(Σ) = 0⇐⇒ Hs,∞(Σ) = 0, for all sets Σ ⊆ Rn;

(ii) if Σj and Σ are compact sets such that supΣj
dist
(
·,Σ
)
↓ 0 as j ↑ ∞, then

Hs,∞(Σ) ≥ lim sup
j
Hs,∞(Σj);

(iii) if Hs(Σ) > 0, then for Hs-a.e. x ∈ Σ

lim sup
ρ↓0+

Hs,∞(Σ ∩Bρ(x))

ωsρs
≥ 2−s.

The strategy of proof below is essentially that by Ambrosio, Fusco and Hutchinson as

reworked by De Lellis, Focardi and Ruffini in light of [36, Theorem 4.2].

Proof of Theorem 3.8. We argue by contradiction: suppose that there exists s > n − 2

such that Hs
(
Σ

(1)
u

)
> 0. From this we infer that Hs,∞(Σ(1)

u

)
> 0, and moreover that for

Hs-a.e. x ∈ Σ
(1)
u it holds

lim sup
ρ↓0+

Hs,∞(Σ
(1)
u ∩Bρ(x))

ρs
≥ ωs

2s
(4.10)

(see for instance [7, Theorem 2.56 and formula (2.43)]). Without loss of generality, suppose

that (4.10) holds at x = 0, and consider a sequence ρk ↓ 0 for which

Hs,∞(Σ(1)
u ∩Bρk) ≥

ωs
2s+1

ρsk for all k ∈ N. (4.11)

Theorem 4.3 provides a subsequence, not relabeled for convenience, and a minimal Cac-

cioppoli partition E such that

lim
k
Hn−1(Suk ∩ A) = Hn−1(JE ∩ A) for all open sets A ⊆ B1. (4.12)

and that

ρ−1
k Su → JE locally Hausdorff. (4.13)

In turn, from the latter we claim that if F is any open cover of ΣE ∩ B1, then for some

h0 ∈ N

ρ−1
k Σ(1)

u ∩B1 ⊆ ∪F∈FF for all k ≥ k0. (4.14)
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Indeed, if this is not the case we can find a sequence xkj ∈ ρ−1
kj

Σ
(1)
u ∩ B1 converging to

some point x0 /∈ ΣE . If T E
x0

is the tangent plane to JE at x0 (which exists by the property

of ΣE in Theorem 4.2), then for some ρ0 we have

ρ−1−n
ˆ
Bρ(x0)∩JE

dist2(y, T E
x0

)dHn−1 < ε0, for all ρ ∈ (0, ρ0).

In turn, from the latter inequality and the convergence in (4.12), it follows that, for

ρ ∈ (0, ρ0 ∧ 1),

lim sup
j↑∞

ρ−1−n
ˆ
Bρ(xkj )∩ρ−1

kj
Su

dist2(y, T E
x0

) dHn−1 < ε0.

Therefore, as xkj ∈ ρ−1
kj

Σ
(1)
u , we get for j large enough

lim sup
ρ↓0

(
D(xkj , ρ) + A (xkj , ρ)

)
< ε0,

a contradiction in view of the characterization of the singular set in (3.1).

To conclude, we note that by (4.14) we get

Hs,∞(ΣE ∩B1) ≥ lim sup
k↑∞

Hs,∞(ρ−1
k Σ(1)

u ∩B1);

given this, (4.11) and (4.13) yield that

Hs(ΣE ∩B1) ≥ Hs,∞(ΣE ∩B1) ≥ lim sup
k↑∞

Hs,∞(ρ−1
k Σ(1)

u ∩B1) ≥ ωs
2s+1

,

thus contradicting Theorem 4.2. �

Corollary 4.8. If Ω ⊆ R2 and u ∈M(Ω), then Σ
(1)
u is at most countable.

Proof. This claim follows straightforwardly from the compactness result Theorem 4.3,

David’s ε-regularity Theorem 3.4, and a direct application of Moore’s triod theorem show-

ing that in the plane every system of disjoint triods, i.e. unions of three Jordan arcs that

have all one endpoint in common and otherwise disjoint, is at most countable (see [64,

Theorem 1] and [70, Proposition 2.18]). �

Remark 4.9. Analogously, in 3-dimensions the set of points with blow up a T cone,

i.e. a cone with vertex the origin constructed upon the 1-skeleton of a regular tetrahedron,

is at most countable. The latter claim follows thanks to Theorem 4.3, the 3d extension of

David’s ε-regularity result by Lemenant in [51, Theorem 8], and a suitable extension of

Moore’s theorem on triods established by Young in [76].

Let us point out that we employ topological arguments to compensate for the lack of

monotonicity formulas. The latter would allow one to exploit Almgren’s stratification type
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results and get, actually, a more precise picture of the set Σ
(1)
u (cf. with [75, Theorem 3.2]

and [42]).

Remark 4.10. In 2d Theorem 4.2 provides the local finiteness of the singular set for

minimal Caccioppoli partitions, the blow up limits of ρ−1(Su − x) in points x ∈ Σ
(1)
u .

This conclusion is far from being established for the set Σ
(1)
u itself. With the results

at hand one can prove that every convergent sequence (xj)j∈N ⊂ Σ
(1)
u has a limit x0 /∈(

Σ
(1)
u ∪Σ

(2)
u

)
. To show this, first note that x0 /∈ Σ

(1)
u thanks to item (iii) in Proposition 5.3

or Theorem 3.4; moreover x0 /∈ Σ
(2)
u thanks to item (ii) in Proposition 4.11 below and

Theorem 3.7. Similarly, any converging sequence (xj)j∈N ⊂ Σ
(2)
u has a limit x0 /∈

(
Σ

(1)
u ∪

Σ
(2)
u

)
. Therefore, in both instances, it might happen that the limit point x0 belong to

Σ(3)
u = {x ∈ Σu : lim inf

ρ↓0
Du(x, ρ) > 0, lim inf

ρ↓0
Au(x, ρ) > 0}.

We conclude the section by justifying the denomination used for the sets Σ
(1)
u and Σ

(2)
u

in 2-dimensions.

Proposition 4.11. Let Ω ⊆ R2 and u ∈M(Ω), then

(i) x ∈ Σ
(1)
u if and only if every blow up of u in x is a triple junction function;

(ii) x ∈ Σ
(2)
u if and only if every blow up of u in x is a crack-tip function.

Proof. We start off recalling that (u,Ω∩Su) is an essential pair, i.e.H1(Su∩Br(x)) > 0 for

all x ∈ Su and Br(x) ⊆ Ω (see Theorem 2.6). Then the existence and several properties

of blow up limits are guaranteed by [26, Propositions 37.8, 40.9, Corollary 38.48]. More

precisely, with fixed a point x ∈ Ω and a sequence ρk ↓ 0, up to subsequences not relabeled,

we may assume that the sets Kk := ρ−1
k (Su−x) locally Hausdorff converges in R2 to some

closed set K as k ↑ ∞. Then there is a subsequence (not relabeled for convenience) and

continuous piecewise constant functions ck on R2\Kk, such that the pairs (ux,ρk , Kk) with

ux,ρk(y) := ρ
−1/2
k

(
u(x+ ρk y)− ck(y)

)
satisfy:

(a) (ux,ρk)k converges to some w in W 1,2
loc (R2 \K)6,

(b) (w,K) is a global Bonnet minimizer according to Definition 2.22, and an essential

pair (see [26, Remark 54.8]),

(c) for L1 a.e. r > 0

lim
k

ˆ
Br\Kk

|∇ux,ρk |2dy =

ˆ
Br\K

|∇w|2dy, lim
k
H1
(
Br \Kk

)
= H1

(
Br \K

)
.

6 As (Kk)k locally Hausdorff converges to K, every O ⊂⊂ R2 \K is contained for k sufficiently big in

ρ−1k (Ω− x) \K, so that the convergence of (ux,ρk) in W 1,2(O) is well defined.
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To prove the direct implication in case (i) note that by Corollary 4.5, the jump set of

any blow up limit in a point x ∈ Σ
(1)
u is a minimal Caccioppoli partition E , and that 0 is

a singular point for it (cf. the argument leading to (4.14) in the proof of Theorem 3.8).

Finally, Proposition 5.3 below ensures then that JE is (locally) a triple junction around

0.

For the direct implication in item (ii), as by the very definition of Σ
(2)
u for L1 a.e. r > 0

lim
k

Au(x, r ρk) = lim
k

Aux,ρk
(0, r) = Aw(0, r) = 0,

Sw is actually contained in a 1-dimensional vector space. In this case a result by Léger

[50] ensures that Sw is either empty or a line or a half line (cf. [26, Theorem 64.1]).

Therefore, the energy upper bound in (2.22) and item (iii) above yield for L1 a.e. r > 0

lim
k

Du(x, r ρk) = lim
k

Dux,ρk
(0, r) = Dw(0, r) ∈ [ε0, 2π r]. (4.15)

The possibility that Sw = ∅ is ruled out as follows: in such a case |∇w|2 would be

subharmonic on R2, being w harmonic there, and thus we would deduce that

sup
Br/2

|∇w|2 ≤ 4

πr2

ˆ
Br

|∇w|2dx
(2.22)

≤ 8

r
.

By letting r ↑ ∞ we would conclude w to be constant, in contrast to (4.15). Analogously,

if Sw would be a line, w would be harmonic in R2 \ Sw. Considering the restriction of

w to one of the two half-spaces forming R2 \ Sw and performing an even reflection, since
∂w
∂ν

= 0 on Sw we would get an harmonic function w̃ on R2 satisfying for all r > 0ˆ
Br

|∇w̃|2dx ≤ 4πr.

Arguing as before w̃ would be constant. Hence, w would be locally constant on R2 \ Sw,

leading again to a contradiction to (4.15). Therefore, Sw is a half-line, that up to a rotation

can be written as Sw = {(x, 0) : x ≤ 0}. Then the map w̃ : {z ∈ C : Rez ≥ 0} → R
defined by w̃(z) := w(z2) is harmonic, ∂w̃

∂ν
= 0 on {Rez = 0} and it satisfies

ˆ r

0

ˆ π/2

−π/2

(
ρ
∣∣∣∂w̃
∂r

∣∣∣2 +
1

ρ

∣∣∣∂w̃
∂θ

∣∣∣2)dρ dθ =

ˆ
Br2

|∇w|2 ≤ 2πr2. (4.16)

In view of (4.16), the even extension of w̃ on B1, that we still denote by w̃, has Fourier

decomposition

w̃(r, θ) = α0 + β1 r sin θ.

Changing back coordinates and taking into account the minimality of w we get

w(r cos θ, r sin θ) = α0 ±
√

2

π
r sin

θ

2
,
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the conclusion follows at once.

The reverse implications in both cases are easily concluded. Indeed, in case (i) if (ρk)k

satisfies

lim
k

Du(x, ρk) = lim sup
ρ↓0

Du(x, ρ),

then the blow up limit w of (ux,ρk)k is a triple junction function by assumption. By taking

into account item (c) above we infer for L1 a.e. r > 0

lim
k

Du(x, rρk) = lim
k

Dux,ρk
(0, r) = Dw(0, r) = 0,

thus implying that x ∈ Σ
(1)
u .

Similarly, one can prove the reverse implication in case (ii). �

Actually, in the first instance of Proposition 4.11 uniqueness of the blow up limit is

ensured by Theorem 3.4. As already remarked, case (ii) is still open.

5. Higher integrability of the gradient in dimension 2

The higher integrability of the gradient has been first established by De Lellis and

Focardi [35] in dimension 2. Following a classical path, the key ingredient to establish

Theorem 3.9 is a reverse Hölder inequality for the gradient, which we state independently

(see [35, Theorem 1.3]).

Theorem 5.1 (De Lellis and Focardi [35]). For all q ∈ (1, 2) there exist ρ ∈ (0, 1) and

C > 0 such that

‖∇u‖L2(Bρ) ≤ C‖∇u‖Lq(B1) for any u ∈M(B1). (5.1)

Using the obvious scaling invariance of (2.3), Theorem 5.1 yields a corresponding reverse

Hölder inequality for balls of arbitrary radius. Theorem 3.9 is then a consequence of a by

now classical result.

Theorem 5.2 (Giaquinta and Modica [49]). Let v ∈ Lqloc(Ω), q > 1, be nonnegative such

that for some constants β > 0, λ ≥ 1 and R0 > 0( 
Br(z)

vq dy

)1/q

≤ β

 
Bλ r(z)

v dy

for all z ∈ Ω, r ∈
(
0, R0 ∧ dist(z, ∂Ω)

)
.

Then v ∈ Lploc(Ω) for some p > q and there is C = C(β, n, q, p, λ) > 0 such that( 
Br(z)

vp dy

)1/p

≤ C

( 
B2r(z)

vq dy

)1/q

.
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The exponent p could be explicitly estimated in terms of q, C and ρ. However, since our

argument for Theorem 5.1 is indirect, we do not have any explicit estimate for C (ρ can

instead be computed). Hence, combining Theorem 3.9 with [4] we can only conclude that

the dimension of the singular set of Su is strictly smaller than 1. Guy David pointed out

that the corresponding dimension estimate could be made explicit. In fact, he suggested to

the Authors of [35] that also the constant C in Theorem 5.1 might be estimated: a viable

strategy would combine the core argument of this paper with some ideas from [26] (the

proof of Theorem 5.1 given here makes already a fundamental use of the paper [26], but

depends only on the ε-regularity theorems for “triple junctions” and “segments” stated

in Section 3). However, the resulting estimate would give an extremely small number,

whereas the proof would very likely become much more complicated.

In spite of the dimensional restriction, the indirect proof has as interesting side results

Theorem 4.3 and its related consequences highlighted in Section 4. No dimensional limi-

tation is present in Theorem 4.3, instead dimension 2 enters dramatically in the proof of

Theorem 5.1 as the structure of minimal Caccioppoli partitions in R2 can be described

precisely via minimal connections. Recall that a minimal connection of {q1, . . . , qN} ⊂ R2

is any minimizer of the Steiner problem

min
{
H1(Γ) : Γ closed and connected, and q1, . . . , qN ∈ Γ

}
.

Proposition 5.3 (Proposition 11, Lemma 12 [35]). Let E be a minimal Caccioppoli

partition in Ω ⊂ R2, then

(i) H0(JE ∩ ∂Bρ(x)) < +∞ if Bρ(x) ⊂⊂ Ω;

(ii) H0(K ∩ ∂Bρ(x)) ≥ 2 for each connected component K of JE ∩ Bρ(x), and it is a

minimal connection of K ∩ ∂Bρ(x);

(iii) if Ω = B1, then there exists ρ0 ∈ (0, 1) such that for all t ∈ (0, ρ0)

H0(JE ∩ ∂Bt) ≤ 3, and H1(JE ∩Bt) ≤ 3t.

We are now ready to sketch the proof of Theorem 5.1 in 2-dimensions following De

Lellis and Focardi [35].

Proof of Theorem 5.1. We fix an exponent q ∈ (1, 2) and a suitable radius ρ (whose choice

will be specified later) for which (5.1) is false, that is

‖∇uk‖L2(Bρ) ≥ k‖∇uk‖Lq(B1) for a sequence (uk)k∈N ∈M(B1). (5.2)

Since the Mumford and Shah energy of any u ∈ M(B1) can be easily bounded a priori

by 2π (cf. Proposition 2.14), we have ‖∇uk‖Lq(B1) → 0. Theorem 4.3 and Proposition 5.3

then show that:
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(i) The L2 energy of the gradients of uk converge to 0;

(ii) Suk converge in the local Hausdorff metric to the (closure of) set of interfaces of a

minimal Caccioppoli partition JE ;

(iii) H0(JE ∩ ∂Bt) ≤ 3 for t ∈ (0, ρ0).

An elementary argument shows the existence of t ≥ ρ0/4 such that

(a) either JE ∩Bt = ∅;
(b) or JE ∩ Bt is a segment and ∂Bt \ JE is the union of two arcs each with length

< 4π
3
t;

(c) or JE ∩Bt is a triple junction and ∂Bt \JE the union of three arcs each with length

< (2π − 1
8
)t.

In any case we set ρ := ρ0/9 (cf. with (5.2)). By Theorem 3.4 (we keep the notation

introduced there), we may find a constant β ∈ (0, 1/3) such that for all k sufficiently big

one of the following alternatives happens

(a1) Suk ∩Bt = ∅;
(b1) For each s ∈ ((1 − β)t, t), ∂Bs \ Suk is the union of two arcs γk1 and γk2 each

with length < (2π − 1
9
)s, whereas Suk ∩ Bs is connected and divides Bs in two

components Bk
1 , Bk

2 with ∂Bk
i = γki ∪ (Suk ∩Bs);

(c1) For each s ∈ ((1− β)t, t), ∂Bs \ Suk is the union of three arcs γk1 , γk2 and γk3 each

with length < (2π − 1
9
)s, whereas Suk ∩ Bs is connected and divides Bs in three

connected components Bk
1 , Bk

2 and Bk
3 with ∂Bk

i ⊂ γki ∪ (Suk ∩Bs).

Choose then r ∈ (2/3t, t) and a subsequence (not relabeled) such that

gk := uk|∂Br ∈ W 1,q(γ,H1) for any connected component of ∂Br \ Suk

and ˆ
∂Br\Suk

|g′k|qdH1 ≤ 3

t

ˆ
Bt

|∇uk|q dx ≤
12

ρ0

ˆ
B1

|∇uk|q dx.

Let us first deal with the (easier) case (a). By compactness, as JE ∩Bt = ∅ then

Suk ∩Bt = ∅ for k � 1.

Hence, being uk ∈M(B1) we get that uk is the harmonic extension of its trace in Bt. In

conclusion, as ρ = ρ0/9 < 2/3 t < r we have

ˆ
Bρ0/9

|∇uk|2dx ≤
ˆ
Br

|∇uk|2dx ≤ C min
λ
‖gk − λ‖2

H1/2(∂Br)

W 1,q ↪→H1/2

≤ C

(ˆ
∂Br

|g′k|q dH1

)2/q

≤ C

(
12

ρ0

ˆ
B1

|∇uk|q dx
)2/q

,
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for some C > 0 (independent of k), contradicting (5.2).

In case (b) or (c) hold the construction is similar. Denote by Kk the minimal connection

relative to Suk ∩ ∂Br. Then Kk splits Br into two (case (b1)) or three (case (c1)) regions

denoted by Bi
r. Let γi be the arc of ∂Br contained in the boundary of Bi

r. Having all the

arcs length uniformly bounded from below, it is easy to check that for all i we can find a

function wik ∈ W 1,2(Br) with boundary trace gk and satisfying for some absolute constant

C > 0 ˆ
Br

|∇wik|2 dx ≤ C

(ˆ
γi
|g′k|q dH1

)2/q

(5.3)

(cf. [35, Lemma 7]). Denote by wk the function equal to wik on Bi
k, then wk ∈ SBV (Br)

and Swk ⊆ Kk. The minimality of uk implies then that

ˆ
Bρ0/9

|∇uk|2 ≤
ˆ
Br

|∇uk|2 ≤
ˆ
Br

|∇wk|2 +H1(Kk)−H1(Suk ∩Br)

≤
ˆ
Br

|∇wk|2
(5.3)

≤ C

(ˆ
∂Br\Suk

|g′k|q dH1

)2/q

≤ C

(
12

ρ0

ˆ
B1

|∇uk|q dx
)2/q

,

contradicting (5.2). �

6. Higher integrability of the gradient in any dimension: Porosity of

the Jump set

A central role in establishing the higher integrability of the gradient in any dimension

shall be played by the following improvement of Theorem 3.1.

Theorem 6.1 (Rigot [71], Maddalena and Solimini [55]). There are dimensional constants

ε(n), C0(n) > 0 such that for every ε ∈ (0, ε(n)) there exists αε ∈ (0, 1/2) such that

if u ∈ M(B2) and Bρ(x) ⊂ Ω, with x ∈ Su and ρ ∈ (0, 1), then there exists a ball

Br(y) ⊂ Bρ(x) with radius r ∈ (αερ, ρ) such that

(i) Du(y, r) + Au(y, r) < ε0, ε0 > 0 the constant in Theorem 3.1;

(ii) Su ∩Br(y) is a C1,γ graph, for all γ ∈ (0, 1), containing y;

(iii)

r‖∇u‖2
L∞(Br(y)) ≤ C0 ε. (6.1)

We can restate the result above by saying that Σu is (αε, 1)-porous in Su according to

the following definition.

Definition 6.2. Given a metric space (X, dX), a subset K is (α, δ)-porous in X, with

α ∈ (0, 1/2) and δ > 0, if for every x ∈ X and ρ ∈ (0, δ) we can find y ∈ Bρ(x) and
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r ∈ (αρ, ρ) such that

Br(y) ⊂ Bρ(x) \K.

Clearly, in our case X = Su, K = Σu and dX is the metric induced by the Euclidean one.

The Hausdorff dimension estimate in the papers by David [25], Rigot [71] and Maddalena

and Solimini [55] follows from the porosity property in Theorem 6.1 and Theorem 6.4

below.

To this aim we recall that, given an Alfhors regular metric space (X, dX) of dimension

`, i.e. (X, dX) is complete and there is Λ > 0 such that

Λ−1r` ≤ H`(Br(z)) ≤ Λr` for all z ∈ X and r > 0,

the lower/upper Minkowski dimension of K is defined as

dimMK := inf{s ∈ (0, `] : Ms
∗(K) = 0}, dimMK := inf{s ∈ (0, `] : M∗ s(K) = 0},

where the lower/upper Minkowski content is given by

Ms
∗(K) := lim inf

r↓0

H`
(
(K)r

)
r`−s

, M∗ s(K) := lim sup
r↓0

H`
(
(K)r

)
r`−s

.

and

(K)r := {x ∈ X : dX(x,K) < r}. (6.2)

Let us first relate the 2-dimensions introduced above.

Lemma 6.3. For all sets K ⊂ X

dimHK ≤ dimMK.

Proof. We may assume dimMK < ` since otherwise the inequality is trivial.

Let N(K, r) be the minimal number of balls of radius r covering K, and P (K, r) be

the maximal number of disjoint balls with centers belonging to K, then

N(K, 2r) ≤ P (K, r)7.

Indeed, set N := N(K, 2r), P := P (K, r) and let B = {Br(xi)}Pi=1 be the corresponding

maximal family of disjoint balls with xi ∈ K. If there exists x ∈ K \ ∪Pi=1B2r(xi), then

{Br(x)} ∪B is a disjoint family of balls with centers on K, a contradiction.

Therefore, for all s ∈ (dimMK, `)

Nω`r
` ≤ Pω`r

` ≤ H`
(
(K)r

)
=⇒ Nω`r

s ≤
H`
(
(K)r

)
r`−s

,

from which one easily conclude that 2−s ω`
ωs
Hs(K) ≤Ms

∗(K) = 0. �

7One can also prove that P (K, r) ≤ N(K, r/2)
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We are now ready to state an estimate on the Hausdorff dimension of porous sets.

Theorem 6.4 (David and Semmes [28]). If (X, dX) is Alfhors regular of dimension `,

then every (α, δ)-porous subset K of X of diameter d satisfies

H`
(
(K)r

)
≤ C r`−η ∀r ∈ (0, d),

for some constant C = C(`, δ, d) > 0 and η = η(α, d,Λ) ∈ [0, `). Hence,

dimHK ≤ dimMK ≤ η.

The higher integrability property of the gradient for MS-minimizers will be (essentially)

a consequence of the result above. Actually, we cannot take advantage directly of The-

orem 6.4 since we are not able to relate (Σu)r and {|∇u|2 ≥ r−1}. Therefore, we shall

prove a suitable version of Theorem 6.4 and establish its links with the higher integrability

property in the Section 7 following the approach by De Philippis and Figalli [37].

In passing, we mention that recently porosity has been employed in several instances

to estimate the Hausdorff dimension of singular sets of solutions to variational problems

(cf. [45], [48], [38]).

In the rest of the present section we shall comment on porosity in the more standard

Euclidean setting, i.e. X = Rn, and prove analogous results to those of interest for us.

This is done to get more acquainted with porosity and it is intended as a warm up to the

proof of Theorem 3.9 by De Philippis and Figalli.

Let then K ⊆ Rn be a (α, δ)-porous set. Few remarks are in order:

(i) By Lebesgue’s differentiation theorem clearly Ln(K) = 0;

(ii) K is nowhere dense, i.e. intK = ∅, since the latter is equivalent to: for every

x ∈ X and ρ > 0 there exists y ∈ X and r > 0 such that Br(y) ⊂ Bρ(x) \K.

(iii) Zaj́ıček [77] actually proved that there are non-porous sets which are nowhere

dense and with zero Lebesgue measure.

An elementary covering argument actually provides an estimate on the Hausdorff dimen-

sion of K and therefore improves item (i) above.

Proposition 6.5 (Salli [72]). Suppose that K is a bounded (α, δ)-porous set in Rn with

diamK ≤ d, then

Ln
(
(K)r

)
≤ C rn−γ ∀r ∈ (0, d). (6.3)

for some constants C = C(n, δ, d) > 0 and γ = γ(α, n) < n. In particular,

dimHK ≤ dimMK ≤ γ. (6.4)
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Proof. The building step of the argument goes as follow: consider a cube Q of diamQ < δ

and center xQ, then by taking into account the (α, δ)-porosity of K, we find a point yQ

such that BαdiamQ/2
√
n(yQ) ⊂ BdiamQ/2

√
n(xQ) \K. If {Qi}i is a covering of Q of kn sub

cubes with diamQi = diamQ/k, k ∈ N, then at least one of those cubes does not intersect

K if k is sufficiently big. Indeed, it suffices to impose

α diamQ > 2
diamQ

k
⇐⇒ α k > 2.

Hence, we may choose k = k(α) for which the previous condition is satisfied.

Therefore, given a covering of K of m = m(δ, d) cubes with diameter δ/2, we can

construct another covering made of m(kn − 1) = mkγ cubes of diameter δ/2k, where

γ = γ(α, n) ∈ (0, n) is such that kγ = kn − 1.

Clearly, we can iterate this procedure in each of the new cubes, so that for all N ∈ N
we may find a covering of K made of mkN γ cubes {Qk

i (x
k
i )}mk

N γ

i=1 of diameter δ/2kN . In

particular, each ball Bδ/4kN (xki ) contains Qk
i , and their union covers K. Thus,

(K)δ/4kN ⊂ ∪mk
N γ

i=1 Bδ/2kN (xki ).

Hence

Ln
(
(K)δ/4kN

)
≤ ωnmk

N γ

(
δ

2kN

)n
= o(1) N ↑ ∞.

Estimate (6.3) follows at once by a simple dyadic argument on the radii, i.e. given r > 0

choosing k such that r ∈ [ δ
2kN+1 ,

δ
2kN

).

Instead, estimate (6.4) is an easy consequence of Lemma 6.3. �

Remark 6.6. Theorem 6.4 can be proved exactly as Proposition 6.5 once the existence

of a family of dyadic cubes in (X, dX) has been established (cf. [28, Lemma 5.8]). By

this, we mean a collection {4j}Z3j<j0 of families of measurable subsets of X, j0 = ∞ if

diamX = ∞ and otherwise j0 ∈ Z such that 2j0 ≤ diamX < 2j0+1, having the following

properties:

(i) each 4j is a partition of X, i.e. X = ∪Q∈4jQ for any j as above;

(ii) Q ∩Q′ = ∅ whenever Q, Q′ ∈ 4j and Q 6= Q′;

(iii) if Q ∈ 4j and Q′ ∈ 4k for k ≥ j, then either Q ⊆ Q′ or Q ∩Q′ = ∅;
(iv) λ−1 2j ≤ diamQ ≤ λ 2j and λ−12j` ≤ H`(Q) ≤ λ2j` for all j and all Q ∈ 4j;

(v) for all j and all Q ∈ 4j, and τ > 0

H`
(
{x ∈ Q : dist(x,X \Q) ≤ τ2j}

)
+H`

(
{x ∈ X \Q : dist(x,Q) ≤ τ2j}

)
≤ λτ 1/λH`(Q).

with λ = λ(`,Λ) (for the existence of such families see [24] and [73]).
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With fixed a given porosity α ∈ (0, 1/2), we are then interested in analyzing the worst

case, i.e.

D(α, n) := sup {dimHK : K ⊂ Rn is (α, δ)-porous for some δ > 0} .

We can easily deduce the estimate

n− 1 ≤ D(α, n) ≤ γ(α, n) < n,

as (n − 1)-dimensional vector spaces are (α, δ)-porous for all δ > 0 and α ∈ (0, 1/2).

Furthermore, Mattila (see, for instance, [59, Theorem 11.14]) has shown that

lim
α↑1/2

D(α, n) = n− 1. (6.5)

Remark 6.7. Salli [72] has actually improved upon the previous result by showing that

n− 1 +
B(n)

| ln(1− 2α)|
≤ D(α, n) ≤ n− 1 +

A(n)

| ln(1− 2α)|
for all α ∈ (0, 1/2),

for some strictly positive dimensional constants A and B.

Finally, we note that the analogous property in (6.5) in the case of interest for us, if

true, would then let us conclude another characterization of the conjectured estimate on

the Hausdorff dimension of Σu: If Σu is (α, δ)-porous in Su for all α ∈ (0, 1/2) and some

δ = δ(α) > 0, then dimHΣu ≤ n− 2.

7. Higher integrability of the gradient in any dimension: the proof

In this section we shall prove the higher integrability property of the gradient following

De Philippis and Figalli [37]. We shall first establish in Proposition 7.3 below a particular

case of Theorem 6.4 that is sufficient for our purposes.

To this aim we recall that the conclusions of Theorem 2.7 and Proposition 2.14 show

the Alfhors regularity of Ω ∩ Su: for some constants C0 = C0(n) > 0, ρ0 = ρ0(n) > 0

C−1
0 rn−1 ≤ Hn−1(Su ∩Br(z)) ≤ C0 r

n−1 (7.1)

for all z ∈ Su, and all r ∈ (0, ρ0 ∧ dist(z, ∂Ω)), u ∈M(B2).

To prove Proposition 7.3 we need two technical lemmas. The first one is obtained via

De Giorgi’s slicing/averaging principle.

Lemma 7.1. There are dimensional constants M1, C1 such that if M ≥ M1 for every

u ∈M(B2) we can find three decreasing sequences of radii such that

(i) 1 ≥ Rh ≥ Sh ≥ Th ≥ Rh+1;

(ii) 8M−(h+1) ≤ Rh −Rh+1 ≤M−(h+1)/2, and Sh − Th = Th −Rh+1 = 4M−(h+1);
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(iii) Hn−1
(
Su ∩ (BSh \BRh+1

)
)
≤ C1M

−(h+1)/2;

(iv) R∞ = S∞ = T∞ ≥ 1/2.

Proof. Let R1 = 1, given Rh we construct Sh, Th and Rh+1 as follows.

Set Nh := bM (h+1)/2/8c ∈ N and fix M1 ∈ N such that Nh ≥ bM (h+1)/2/16c for

M ≥M1. Here, bαc denotes the integer part of α ∈ R.

The annulus BRh\BRh−8M−(h+1)/2 contains the Nh disjoint sub annuli BRh−8(i−1)M−(h+1)\
BRh−8iM−(h+1) , i ∈ {1, . . . , Nh}, of equal width 8M−(h+1). By averaging we can find an

index ih ∈ {1, . . . , Nh} such that

Hn−1
(
K ∩ (BRh−8(ih−1)M−(h+1)/2 \BRh−8ihM−(h+1)/2)

)
≤ 1

Nh

Hn−1
(
K ∩ (BRh \BRh−8M−(h+1)/2)

) d.u.b. in (7.1)

≤ C0
Rn−1
h

Nh

≤ C1M
−(h+1)/2,

so that (iii) is established. Finally, set

Sh := Rh − 8(ih − 1)M−(h+1), Rh+1 := Rh − 8ihM
−(h+1), Th :=

1

2
(Sh +Rh+1),

then items (i) and (ii) follow by the very definition, and item (iv) from (ii) if M1 is

sufficiently big. �

The second lemma has a geometric flavor.

Lemma 7.2. Let f : Rn−1 → R be Lipschitz with

f(0) = 0, ‖∇f‖L∞ ≤ η. (7.2)

If G := graph(f) ∩B2 and η ∈ (0, 1/15], then for all δ ∈ (0, 1/2) and x ∈ (B1+δ \B1) ∩G

dist(x, (B1+2δ \B1+δ) ∩G) ≤ 3

2
δ.

Proof. Clearly by (7.2) we get

‖f‖W 1,∞(B2) ≤ 3η.

Let x = (y, f(y)) ∈ (B1+δ \ B1) ∩G and x̂ := (λ y, f(λ y)), with λ to be chosen suitably.

Note that as |x| ≥ 1 we have

|f(λ y)− λ f(y)| ≤ |f(λ y)− f(y)|+ |λ− 1| |f(y)|

≤ |λ− 1|
(
‖∇f‖L∞ |y|+ ‖f‖L∞

)
≤ 3η|λ− 1| |x|.

Hence,

|x̂− x| ≤ |x̂− λx|+ |λ− 1||x| ≤
(
3η + 1

)
|λ− 1| |x|.

It is easy to check that the choice λ = 1 + 5
4
δ|x|−1 gives the conclusion. �
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We are now ready to prove the version of Theorem 6.4 of interest for our purposes.

Proposition 7.3 (De Philippis and Figalli [37]). Let C0, C1,M1 be the constants in (7.1)

and Lemma 7.1, respectively.

There exist dimensional constants C2, M2 > 0 and α ∈ (0, 1/4), β ∈ (0, 1/4), with

M2 ≥ M1, such that for every M ≥ M2, u ∈ M(B2), we can find families Fj of disjoint

balls

Fj =
{
BαM−j(yi) : yi ∈ Su, 1 ≤ j ≤ Nj

}
such that for all h ∈ N

(i) B, B′ ∈ ∪hj=1Fj are distinct balls, then (B)4M−(h+1) ∩ (B′)4M−(h+1) = ∅;
(ii) if BαM−j(yi) ⊂ Fj, then Su∩B2αM−j(yi) is a C1,γ graph, γ ∈ (0, 1) any, containing

yi,

Du

(
yi, 2αM

−j)+ Au

(
yi, 2αM

−j) < ε0;

‖∇u‖
L∞
(
B

2αM−j (yi)
) < M j+1; (7.3)

(iii) let {Rh}, {Sh}, {Th} be the sequences of radii in Lemma 7.1, and let

Kh := (Su ∩BSh) \
(
∪hj=1 ∪Fj B

)
,

(note that by construction Kh+1 ⊂ Kh \ ∪Fh+1
B), and

K̃h := (Su ∩BTh) \
(
∪hj=1 ∪Fj (B)2M−(h+1)

)
⊂ Kh.

Then, there exists a finite set of points Ch := {xi}i∈Ih ⊂ K̃h such that

|xj − xk| ≥ 3M−(h+1) ∀j, k ∈ Ih, j 6= k; (7.4)

(Kh ∩BRh+1
)M−(h+1) ⊂ ∪i∈IhB8M−(h+1)(xi); (7.5)

Hn−1(Kh) ≤ C1 hM
−2hβ; (7.6)

Ln
(
(Kh ∩BRh+1

)M−(h+1)

)
≤ C2 hM

−h(1+2β)−1. (7.7)

(iv) Σu ∩B1/2 ⊂ Kh for all h ∈ N and

Ln
(
(Σu ∩B1/2)r

)
≤ C2 r

1+β ∀r ∈ (0, 1/2]. (7.8)

In particular, dimM(Σu ∩B1/2) ≤ n− 1− β.

Proof. For notational convenience we set K = Su. In what follows we shall repeatedly

use Theorem 6.1 with ε ∈ (0, 1) fixed and sufficiently small.

We split the proof in several steps.

Step 1. Inductive definition of the families Fj.
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For h = 1 we define

F1 := ∅, K1 = K ∩BS1 , K̃1 = K ∩BT1 ,

and choose C1 to be a maximal family of points at distance 3M−2 from each other. Of

course, properties (i) and (ii) and (7.4) are satisfied. To check the others, one can argue

as in the verification below.

Suppose that we have built the families {Fj}hj=1 as in the statement, to construct Fh+1

we argue as follows. Let Ch = {xi}i∈Ih ⊂ K̃h be a family of points satisfying (7.4),

i.e. |xi − xk| ≥ 3M−(h+1) for all j, k ∈ Ih with j 6= k, and consider

Gh+1 := {BM−(h+1)(xi)}i∈Ih .

By the porosity assumption on K for every ball BM−(h+1)(xi) ∈ Gh+1 we can find a sub-ball

B2αM−(h+1)(yi) ⊂ BM−(h+1)(xi) \ K, α ∈ (0, 1/4) for which the theses of Theorem 6.1 are

satisfied. Then, define

Fh+1 := {BαM−(h+1)(yi)}i∈Ih .

By condition (7.4), the balls B 3
2
M−(h+1)(xi) are disjoint and do not intersect

∪hj=1 ∪Fj (B) 1
2
M−(h+1)

by the very definition of K̃h. Thus, item (i) and (ii) are satisfied.

Hence, we can define Kh+1, K̃h+1 and Ch+1 as in the statement.

Step 2. Proof of (7.5).

Let x ∈ (Kh∩BRh+1
)M−(h+2) and let z be a point of minimal distance from Kh∩BRh+1

.

In case z ∈ K̃h+1, by maximality there is xi ∈ Ch+1 such that |z−xi| ≤ 3M−(h+2) and thus

we conclude x ∈ B5M−(h+2)(xi). Instead, if z ∈ (Kh∩BRh+1
)\K̃h+1, the definitions of Kh+1

and K̃h+1 yield the existence of a ball B̃ ∈ ∪h+1
j=1Fj for which z ∈ (K ∩ (B̃)2M−(h+2)) \ B̃.

In view of property (ii), a rescaled version of Lemma 7.2 gives a point y satisfying

y ∈
(
K ∩ (B̃)4M−(h+2)

)
\ (B̃)2M−(h+2) , and |z − y| ≤ 3M−(h+2).

Therefore, as z ∈ BRh+2
and TRh+1

= Rh+2 + 4M−(h+2) we get by property (i) and the

definition of K̃h+1

y ∈
(
K ∩ (B̃)4M−(h+2) ∩ B̃)4M−(h+2)

)
\ (B̃)2M−(h+2) .

Finally, by maximality we may find xi ∈ Ch+1 such that |y−xi| ≤ 3M−(h+2). In conclusion,

we have

|x− xi| ≤ |x− z|+ |z − y|+ |y − xi| ≤ 7M−(h+2),

so that (7.5) follows at once.
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Step 3. the Kh’s satisfy a suitable d.l.b. as that of K in (7.1).

We claim that for every h ∈ N

Kh ∩BM−(h+1)(xi) = K ∩BM−(h+1)(xi) for all xi ∈ Ch. (7.9)

In particular, from the latter we infer the conclusion of this step.

The equality above is proven by contradiction: assume we can find xi ∈ Ch and

x ∈ (K \Kh) ∩BM−(h+1)(xi).

As xi ∈ K̃h then xi ∈ BTh , in turn implying x ∈ BSh since Sh−Th = 4M−(h+1). Therefore

x ∈
(
K \Kh

)
∩BSh , and by definition of Kh we can find a ball B ∈ Fj, j ≤ h, such that

x ∈ B. We conclude that

dist(xi, B) ≤ |x− xi| ≤M−(h+1),

contradicting that xi ∈ K̃h.

Step 4. Proof of (7.6).

We get first a lower bound for #(Ih): use (7.5) and the d.u.b in (7.1) to get

Hn−1
(
Kh ∩BRh+1

)
= Hn−1

(
Kh ∩BRh+1

∩ ∪i∈IhB8M−(h+1)(xi)
)
≤ C0 #(Ih)

(
8M−(h+1)

)n−1

that is

#(Ih)M
−(h+1)(n−1) ≥ 81−nC−1

0 Hn−1
(
Kh ∩BRh+1

)
. (7.10)

Thus, we estimate as follows

Hn−1(Kh+1) ≤ Hn−1
(
Kh \ ∪Fh+1

B
) disjoint balls

= Hn−1(Kh)−
∑
Fh+1

Hn−1(Kh ∩B)

d.l.b. in (7.1), (7.9)

≤ Hn−1(Kh)−
αn−1

C0

#(Ih)M
−(h+1)(n−1)

(7.10)

≤ Hn−1(Kh)−
81−nαn−1

C2
0

Hn−1
(
Kh∩BRh+1

)
= (1− η)Hn−1(Kh) + η

(
Hn−1(Kh)−Hn−1

(
Kh ∩BRh+1

))
def. of Kh
≤ (1−η)Hn−1(Kh)+ηHn−1

(
K∩(BSh\BRh+1

)
) (iii) Lemma 7.1

≤ (1−η)Hn−1(Kh)+C1M
−h+1

2 ,

(7.11)

where we have set η := 81−nαn−1/C2
0 .

By iteration of (7.11), we find by Young inequality

Hn−1(Kh) ≤ C1

h∑
i=0

(1− η)h−iM−i/2 ≤ C1 h max{(1− η)h,M−h/2}.

Choose β ∈ (0, 1/4) such that (1− η) ≤M−2β, the previous estimate then yields (7.6),

Hn−1(Kh) ≤ C1 h max{M−2hβ,M−h/2} = C1 hM
−2hβ.
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Step 5. Proof of (7.7).

Then, we exploit (7.5) to get

Ln
(
(Kh+1 ∩BRh+2

)M−(h+2)

)
≤ Ln

(
∪i∈Ih+1

B8M−(h+2)(xi)
)
≤ #(Ih+1)

(
8M−(h+2)

)n
d.l.b. in (7.1), (7.9)

≤ 8n

C0

M−(h+2)
∑
i∈Ih+1

Hn−1
(
Kh+1 ∩BM−(h+2)(xi)

)
disjoint balls

≤ 8n

C0

M−(h+2)Hn−1
(
Kh+1

) (7.6)

≤ 8nC1

C0

(h+ 1)M−2(h+1)β−(h+2). (7.12)

Step 6. Proof of (7.8)

By construction we have that Σu ∩B1/2 ⊆ Kh. Therefore, (7.7) gives as Rh ≥ R∞ ≥ 1/2

Ln
(
(Σu ∩B1/2)M−(h+1)

)
≤ Ln

(
(Kh ∩BRh+1

)M−(h+1)

)
≤ C2 hM

−h(1+2β)−1.

Hence, if r ∈ (M−(h+2),M−(h+1)] we get

Ln
(
(Σu ∩B1/2)r

)
≤ C2 hM

−h(1+2β)−1 ≤ C2M
−h(1+β)−1 ≤ C2 r

1+β.

�

Remark 7.4. Apart from Step 2, all the arguments in the other steps of Proposition 7.3

employ only the Alfhors regularity of Ω ∩ Su and its consequence Lemma 7.1.

In addition, note that one can easily infer the (more) intrinsic estimates

Hn−1
(
Su ∩ (Kh ∩BRh+1

)M−(h+1)

)
≤ C2 hM

−2hβ,

and

Hn−1
(
Su ∩ (Σu ∩B1/2)r

)
≤ C2 r

β ∀r ∈ (0, 1/2].

Indeed, by arguing as in (7.12) we get

Hn−1
(
Su ∩ (Kh+1 ∩BRh+2

)M−(h+2)

)
≤ Hn−1

(
Su ∩ ∪i∈Ih+1

B8M−(h+2)(xi)
)

≤ #(Ih+1)
(
8M−(h+2)

)n−1 d.l.b. in (7.1), (7.9)

≤ 8n−1

C0

∑
i∈Ih+1

Hn−1
(
Kh+1 ∩BM−(h+2)(xi)

)
disjoint balls

≤ 8n−1

C0

Hn−1
(
Kh+1

) (7.6)

≤ 8n−1C1

C0

(h+ 1)M−2(h+1)β.

As outlined in Section 6 the former result leads to the higher integrability of the gradient

for MS-minimizers in any dimension.

Theorem 7.5 (De Philippis and Figalli [37]). There is p > 2 such that ∇u ∈ Lploc(Ω) for

all u ∈M(Ω) and for all open sets Ω ⊆ Rn.
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Proof. Clearly, it is sufficient for our purposes to prove a localized estimate. Hence, for

the sake of simplicity we suppose that Ω = B2.

We keep the notation of Proposition 7.3 and furthermore denote for all h ∈ N

Ah :=
{
x ∈ B2 \K : |∇u(x)|2 > Mh+1

}
. (7.13)

We claim that

Ah+2 ∩BRh+2
⊂ (Kh ∩BRh+1

)M−(h+1) . (7.14)

Given this for granted we conclude as follows: we use (7.7) to deduce that

Ln(Ah+2 ∩BRh+2
) ≤ Ln

(
(Kh ∩BRh+1

)M−(h+1)

)
≤ C2 hM

−h(1+2β)−1. (7.15)

Therefore, recalling that 1/2 ≤ R∞ ≤ Rh, in view of (7.15) and Cavalieri’s formula for

q > 1 we get that

ˆ
B1/2

|∇u|2qdx = q

ˆ ∞
0

tq−1Ln
( {
x ∈ B1/2 \K : |∇u(x)|2 > t

} )
dt

≤ q
∑
h≥3

ˆ Mh+1

Mh

tq−1Ln
( {
x ∈ B1/2 \K : |∇u(x)|2 > t

} )
dt+M3qLn(B1/2)

≤
∑
h≥0

M (h+4)qLn
(
Ah+2∩B1/2

)
+M3qLn(B1/2) ≤ C2

∑
h≥0

hM (h+4)q−h(1+2β)−1+M3qLn(B1/2).

The conclusion follows at once by taking q ∈ (1, 1 + 2β) and p = 2q.

Let us now prove formula (7.14) in two steps.

Step 1. For all M > n and R ∈ (0, 1] we have that

Ah ∩BR−2M−h ⊂
(
K ∩BR

)
M−h

for all h ∈ N. (7.16)

Indeed, for x ∈ Ah∩BR−2M−h let z ∈ K be such that dist(x,K) = |x−z|. If |x−z| > M−h

then BM−h(x) ∩K = ∅ so that u is harmonic on BM−h(x). Therefore, by subharmonicity

of |∇u|2 on the same set and the d.u.b. in (7.1) we infer that

Mh+1
x∈Ah
≤ |∇u(x)|2 ≤

 
B
M−h (x)

|∇u|2 ≤ nMh,

that is clearly impossible for M > n.

Finally, as x ∈ BR−2M−h and |x− z| ≤M−h we conclude that z ∈ BR.

Step 2. Proof of (7.14).

Since Rh+1 − Rh+2 ≥ 8M−(h+2) (cf. (i) Lemma 7.1), we apply Step 1 to Ah+2 and

R = Rh+1 and then (7.16) implies that

Ah+2 ∩BRh+2
⊂
(
K ∩BRh+1

)
M−(h+1) .
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Let x ∈ Ah+2 ∩ BRh+2
, z ∈ K ∩ BRh+1

be a point of minimal distance, and suppose that

z ∈ K \Kh.

Since Rh+1 ≤ Sh, by the very definition of Kh we find a ball B ∈ ∪hj=1Fj such that

z ∈ B. Since B = Bt(y) for some y and with the radius t ≥ αM−h, then x ∈ B2t(y) as

|x− z| ≤M−(h+1) for M sufficiently large. Thus, estimate |∇u(x)|2 < Mh+1 follows from

(7.3) in item (ii) of Proposition 7.3. This is in contradiction with x ∈ Ah+2. �
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[19] R. Cristoferi. A local minimality criterion for the triple point of the Mumford-Shah functional. In

preparation.

[20] G. Dal Maso. An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and
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