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Abstract

Alchemical theory is emerging as a promising tool in the context of molecular dynamics simula-

tions for drug discovery projects. In this theoretical contribution, I revisit the statistical mechanics

foundation of non covalent interactions in drug-receptor systems, providing a unifying treatment

that encompasses the most important variants in the alchemical approaches, from the seminal

Double Annihilation Method by Jorgensen and Ravimohan [W.L. Jorgensen and C. Ravimohan,

J. Chem. Phys. 83,3050, 1985], to the Gilson’s Double Decoupling method [M. K. Gilson and J.

A. Given and B. L. Bush and J. A. McCammon, Biophys. J. 72, 1047 1997] and the Deng and

Roux alchemical theory [Y. Deng and B. Roux, J. Chem. Theory Comput., 2, 1255 2006]. Con-

nections and differences between the various alchemical approaches are highlighted and discussed,

and finally placed into the broader context of nonequilibrium thermodynamics.
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INTRODUCTION

The determination of the binding free energy in ligand-receptor systems is the corner-

stone of drug discovery. In the last decades, traditional molecular docking techniques in

computer assisted drug design have been modified, integrated or superseded using method-

ologies relying on a more realistic description of the drug-receptor system. It has becoming

increasing clear that, in order to reliably rank the affinity of putative ligands for given target,

a microscopic description of the solvent is a crucial ingredient. As recently pointed out by

Gilson and co-workers,[1] the nature of the entropic term in binding is intimately related

to microsolvation phenomena in ligand-receptor association that can bring along very large

entropy fluctuations.

In the framework of atomistic molecular dynamics (MD) simulations with explicit solvent,

several computational methods have been devised for rigorously determining the absolute

binding free energy in drug receptor systems. Most of these methodologies are based on the

so-called alchemical route (see Refs. [2, 3] for recent reviews). In this approach, proposed

for the first time by Jorgensen and Ravimohan[4], the binding free energy is obtained by

setting up a thermodynamic cycle as indicated in Figure 1 and by computing the decoupling

free energy of the ligand in the bound state and in bulk water, indicated hereinafter with

∆Gb and ∆Gu, respectively. These decoupling free energies corresponds to the two closing

branches of the cycle and are obtained by discretizing the alchemical path connecting the

fully interacting and fully decoupled ligand in a number of intermediate nonphysical states,

running for each of these states equilibrium, fully atomistic molecular dynamics simulations.

Alchemical states are hence defined by a λ coupling parameter entering in the Hamiltonian,

varying between 1 and 0 so that at λ = 1 and at λ = 0 one has the fully interacting and gas-

phase ligand, respectively. ∆Gb and ∆Gu are usually recovered as a sum of the contributions

from each of coupling parameter windows by applying the free energy perturbation method

(FEP).[5] Alternatively, and equivalently, one can compute the canonical average of the

derivative of the Hamiltonian at the discrete λ points, obtaining the decoupling free energy

via numerical thermodynamic integration (TI).[6] Finally, the cycle is closed by computing

the difference between the two decoupling free energy along the alchemical path, ∆Gb and

∆Gu, obtaining the dissociation free energy in solution.

Gilson et al. [7] criticized Jorgensen’s theory by pointing out that the resulting binding
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FIG. 1: The alchemical thermodynamic cycle for computing the absolute and relative dissociation

free energy, ∆G0, in drug-receptor systems. The subscript “sol” and “gas” indicates solvated

and gas-phase species, respectively. For the alchemical determination of absolute standard free

energies (left cycle) the ligand must decoupled in the solvated complex and in bulk solvent obtaining

∆G0 = ∆Gb −∆Gu. For alchemical determination of relative standard free energies (right cycle)

the ligand L must transmuted into the ligand L′ in the solvated complex and in bulk solvent

obtaining ∆∆G0 = ∆GLL′
b −∆GLL′

u .

free energies do not depend upon the choice of standard concentration. In order to define a

reference chemical potential for the decoupling ligand when bound to the receptor, Gilson

introduced a “restraint” that somehow keeps the ligand in the binding place. This restraint

is shown to yield[7] an additive standard state dependent correction to the dissociation

free energy of kBT ln(Vr/V0), interpreted as a chemical potential difference of the ligand at

concentration 1/Vr and 1/V0. According to Gilson, the effect of progressively strengthening

the restraint, leading to a more negative correction, should be balanced by a larger work

integral so that “errors will occur only when the integration region defined by the restraint

volume becomes so small that conformations that ought to make important contributions

to the work integral are missed.” Later Karplus and co-workers[8] noted that in the final

(λ ' 0) stages of the decoupling of the complex, the unrestrained ligand in DAM may freely

rotate and wander to any point in the simulation system, so that, in order to compute ∆Gb

correctly, the ligand would have to sample every possible position in the simulation box,

with a standard state correction for the DAM dissociation free energy equal to the additive

term kBT ln(Vbox/V0) where Vbox is the volume of simulation box. In the framework of the

Gilson’s DDM theory, these authors hence proposed to enforce a set of harmonic restraints
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(with force constant varying from 5 to 50 kcal mol−1[Å−2/rad−2]) that restrict both the

position and the orientation of the ligand. Subsequently, Deng and Roux[9] proposed a

DDM variant whereby the restraints for the bound state are not present at the end states

λ = 1 and λ = 0 of the alchemical process; rather, they are progressively switched on

and off during the alchemical transformation with a cancellation effect. In the Deng and

Roux variant, in the limit of strong restraints, the standard state correction is no longer

dependent on the imposed restraint volume Vr. However, it does requires the estimate of

the unknown translational, rotational and conformational binding site “volume” Vsite in the

complex[10, 11] via an independent unrestrained simulation of the bound state.

In a series of recent papers, Fujitani and coworkers,[12–14] successfully applied the un-

restricted DAM approach to several drug-receptor systems, in many cases predicting the

dissociation free energy via FEP in close agreement with the experimental values with an

average error of 2/3 kcal mol−1. Errors were assessed by repeating several times the FEP

calculations with runs on the order of few ns on each alchemical states. Most importantly,

these authors directly compared their DAM/FEP values, ∆GDAM = ∆Gb − ∆Gu, to the

experimental value ∆G0, openly criticizing the DDM standard state correction: “as far as

we know there is no theoretical or experimental proof that [the standard state corrected]

∆G0 meets the definition of the absolute binding energy.[..] Therefore, we directly compare

∆Gbind with ∆G0.”

The standard state correction issue can be bypassed altogether by computing relative

binding free energies,[15] due to the transmutation of a ligand into another in the same

binding site and in the solvent. Relative binding free energy calculations involves as much

computations as absolute free energies do (see Figure 1), and completely neglect the possi-

bility of a change of binding site volume due to the transmutation. This approach is hence

limited to the assessment of the binding affinities in strictly congeneric series of ligands

with the tacit assumption of a constant binding site volume upon transmutation and cannot

provide, by any means, a complete tool in MD-based drug design.

In conclusion, the question of the standard state correction, or, equivalently, the issue

of the binding site volume in drug-receptor dissociation free energy calculations is either

ignored, as in relative free energy calculations, or treated using methodologies relying on the

definition of arbitrary set of constraints whose effects on the resulting free energy has never

been convincingly assessed. In any case, the standard state issue, that is indeed crucial
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for a reliable MD-based in silico tool in drug discovery, is still far from being settled. In

this theoretical contribution we revisit the DAM and DDM theory with a spotlight on the

binding site volume issue, providing a unifying treatment encompassing Jorgensen, Gilson

and Boresch and Roux theories, and finally placing the alchemical methodology into the

broader context of nonequilibrium thermodynamics.

ACHEMICAL THEORY OF NON COVALENT BONDING

Molecular recognignition in host-guest or drug-receptor non covalent interactions are

based on a highly specific molecular complementary[16], translating in the existence of a

single overwhelmingly prevalent binding “pose” defined using an appropriate set of coor-

dinates that are functions of the ligand and receptor Cartesian coordinates x. A natural

coordinate in ligand-protein binding is represented by the distance R of center of mass

(COM) of the ligand with respect to a fixed reference system with the origin at COM of

the protein and oriented along the inertia axis of the protein. The vector R (in polar coor-

dinates r, θ, φ) defines the precise location of the ligand COM on the protein surface in the

bound state. Euler angles can be further introduced to specify the orientation of the ligand

frame relative to the protein frame. For non rigid ligands and/or binding pockets, however,

a rigorous separation of vibrational and rotational coordinates is not possible as the inertia

tensor of the ligand and, to a less extent, that of the protein may change significantly upon

binding by coupling to ligand and/or receptor conformational coordinates. The most gen-

eral definition of a binding pose is hence enforced by supplementing the natural coordinate

R = r, θ, φ with an appropriate set of ξξξ ro-vibrational coordinates defined with respect to a

protein frame in terms of the ligand and receptor Cartesian coordinates x. The set {R, ξξξ}

should include all those coordinates whose probability density differ significantly in going

from the bound to the unbound states.

Double Decoupling method (DDM)

In DDM, a set of harmonic restraints are introduced on the Y = {R, ξξξ} d-dimensional

set of coordinates in order to the keep the ligand in the binding pose while the decoupling

process proceeds. The easiest way to do so is that of introducing harmonic potentials for
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each of these d coordinates, leading to the restraint potential of the kind

Vr(x) =
1

2
Kr(r(x)− re)2 +

1

2
Kθ(θ(x)− θe)2 +

1

2
Kφ(φ(x)−φe)2 +

1

2

d−3∑
i

K
(i)
ξ (ξi(x)− ξei )2 (1)

The restraint potential can be compactly written in vector notation as as

Vr(Y −Ye) =
1

2
(Y −Ye)

TK(Y −Ye) (2)

where K is the diagonal matrix of the harmonic force constants. Note that the function

e−βVr(x) may be interpreted as a product of independent univariate Gaussian distributions

or equivalently as non normalized multivariate Gaussian distribution in the d dimensional

space defined by the coordinates Y = {R(x), ξξξ(x)}

e−βVr(x) = e−
1
2

(Y−Ye)TΣΣΣ−1
r (Y−Ye) (3)

where the diagonal covariance matrix ΣΣΣr is defined as

ΣΣΣr = kBTK
−1 (4)

As we may not know precisely the geometry of the pose of the ligand in the binding

site, the chosen restraint equilibrium parameters, Ye = {Re, ξξξe}, can be different from

their corresponding true mean values Yc = {Rc, ξξξc}. In Ref. [17], in the context of single

molecule pulling experiments, a simple relation was derived between the free energy of

the driven system (i.e. with Hamiltonian including the harmonic potential of an external

device coupled to a specific molecular distance R) and the free energy of the system with

unperturbed Hamiltonian along the driven coordinate (i.e. the potential of mean force along

R). The relation proposed by Marsili (Eq. 7 in Ref. [17]) can be straightforwardly applied

to any of the restrained λ alchemical state in DDM as:

Gr(ΣΣΣr,Ye, λ) = G(Y, λ) + Vr(Y −Ye) + kBT ln

(
P (Y|ΣΣΣr,Ye, λ)

P (Y∗)

)
(5)

where

Gr(ΣΣΣr,Ye, λ) = −kBT ln

[
C
∫
dxe−β[H(x,λ)+Vr(Y−Ye)]

]
(6)

G(Y, λ) = −kBT ln

[ ∫
dxδ(Y −Y(x))e−βH(x,λ)∫
dxδ(Y∗ −Y(x))e−βH(x,λ)

]
= −kbT ln

P (Y)

P (Y∗)
(7)
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Here, Gr(ΣΣΣr,Ye, λ) is the free energy of the restrained system (C is an h dependent constant

that makes argument of the logarithm adimensional) and G(Y, λ) is the free energy of

the unrestrained system at Y = R, ξξξ with respect to some immaterial reference state at

Y∗ = R∗, ξξξ∗ In Eqs 6 and 7, H(x, λ) is the Hamiltonian at the alchemical state λ, with

x encompassing all solvent, ligand and receptor coordinates. P (Y|ΣΣΣr,Ye, λ) ≡ 〈δ(R −

R(x))δ(ξξξ − ξξξ(x))〉r, finally, is the canonical probability density evaluated at Y = {R, ξξξ} for

the restrained system with free energy given by Eq. 6.

In the alchemical simulation of the complex, one computes, either via FEP or TI, the

free energy difference between the states at λ = 1 (interacting ligand) and λ = 0 (gas-phase

ligand), subject to the restraint potential Vr, Eq. 1. In force of Eq. 5, we therefore get the

Y∗ independent relation

∆Gr(ΣΣΣr,Re, ξξξe) = Gr(ΣΣΣr,Re, ξξξe, 0)−Gr(ΣΣΣr,Re, ξξξe, 1)

= ∆G(R, ξξξ) + kBT ln
P (R, ξξξ|ΣΣΣr,Re, ξe, 0)

P (R, ξξξ|ΣΣΣr,Re, ξξξe, 1)
(8)

where I have used the expanded notation for Y = {R, ξξξ} and where

∆G(R, ξξξ) = −kBT ln

[∫
dxδ(R−R(x))δ(ξξξ − ξξξ(x))e−βH(x,0)∫
dxδ(R−R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)

]
(9)

is the decoupling free energy of the unrestrained system evaluated at Y = {R, ξξξ} and where

∆Gr(ΣΣΣr,Re, ξe) corresponds to decoupling free energy of the restrained complex. Note that,

since there is no change in the parameters Ye = {Re, ξe} in going from the initial (coupled)

to the final (decoupled) state, there can’t be correspondingly no change in the harmonic

potential energy at {R, ξξξ} due to the restraint.

The ξξξ-dependent decoupling free energy of the unbound state can be defined as[9]

∆Gu(ξξξ) = −kBT ln

[∫
dxδ(R∞ −R(x))δ(ξξξ − ξξξ(x))e−βH(x,0)∫
dxδ(R∞ −R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)

]
(10)

where, R∞ represents a ligand-receptor COM distance that is large enough to allow the

ligand and the receptor to interact only with the solvent when λ 6= 0. ∆G(ξξξ) represents

the reversible work to bring the unbound ligand and unbound receptor (set at a relative

vector distance R∞ and in the ro-vibrational states defined by the vector ξξξ) from the bulk

into the gas-phase. This work may depend on the ξξξ coordinates in case of, e.g., competing

conformational states of the ligand and/or protein involved in the binding. For a rigid ligand

and rigid binding pose, ξξξ can be taken to coincide with the three Euler angles, ΩΩΩ, defining
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the orientation of the ligand with respect to the protein frame. In this case, all rotational

states at R∞ (i.e. for the unbound or free ligand) have equal weights so that ∆Gu(ΩΩΩ) ≡ ∆Gu

is independent of ΩΩΩ. In DDM theories, while ligand conformational changes upon binding

may[18] or may not[8] accounted for, the fact that the receptor may change as well its

conformational state in the binding process is generally overlooked. By subtracting Eq. 10

in Eq. 9, we obtain

∆Gr(R, ξ)−∆Gu(ξξξ) = −kBT ln

[∫
dxδ(R−R(x))δ(ξξξ − ξξξ(x))e−βH(x,0)∫
dxδ(R−R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)

]
+

+ kBT ln

[∫
dxδ(R∞ −R(x))δ(ξξξ − ξξξ(x))e−βH(x,0)∫
dxδ(R∞ −R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)

]
= −kBT ln

[∫
dxδ(R∞ −R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)∫
dxδ(R−R(x))δ(ξξξ − ξξξ(x))e−βH(x,1)

]
= −w(R, ξξξ) (11)

where we have exploited the fact that the probability densities of the decoupled ligand and

receptor (λ = 0) with respect to R is uniform. w(R, ξξξ) on the rhs of Eq. 11 represents the

reversible work, or potential of mean force, for bringing a separated ligand and receptor in

the ξξξ ro-vibrational arrangement into the corresponding bound conformation at R.

If in Eq. 8 and Eq. 11 we choose ξξξe = ξξξc and ξξξ = ξξξc and we use Eq. 11, we obtain

∆Gr(ΣΣΣr,Rc, ξξξc)−∆Gu(ξξξc) = −w(Rc, ξξξc) + kBT ln
P (R, ξξξ|ΣΣΣr,Rc, ξξξc, 0)

P (R, ξξξ|ΣΣΣr,Rc, ξξξc, 1)
(12)

Eq. 12 expresses the fact that the dissociation free energy with a set of harmonic restraints

of the kind of Eq.1 computed in DDM simulation via FEP or TI, namely the quantity

∆Gd(ΣΣΣr,Rc, ξξξc) = ∆Gr(ΣΣΣr,Rc, ξξξc)−∆Gu(ξξξc) (13)

is equal to minus the drug-receptor PMF at Rc, ξξξc plus a correction related to the logarithm

of the ratio of the canonical probability distributions for the restrained decoupled and coupled

bound states, respectively, evaluated in both cases at the same point Rc, ξξξc. I stress that for

Eq. 12 to be valid, the canonical probabilities at the end states, P (R, ξξξ|ΣΣΣc,Rc, ξξξc, 1) and

P (R, ξξξ|ΣΣΣc,Rc, ξξξc, 0), must be both evaluated with the restraint in place.

How does then the FEP or TI computed DDM dissociation free energy ∆Gd(ΣΣΣr,Rc, ξξξc)

relate to the standard dissociation free energy ∆Gd0? Or, equivalently, how does the potential

of mean force w(Rc, ξξξc) at its minimum value {R, ξξξ} = {Rc, ξξξc} relate to the dissociation
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constant Kd/C0 = e−β∆Gd0? I recall that in the present treatment, the {R, ξξξ} coordinates

are defined with respect to the fixed inertia system of the receptor. It is convenient to further

distinguish between rotational coordinates of the ligand relative to the receptor and all other

(ligand and receptor) conformational coordinates involved in the definition of the complex,

namely ξξξ ≡ ΩΩΩ,χχχ. While the rotational states ΩΩΩ defining the orientation of the ligand

frame relative to the fixed protein have all equal probability of 1/8π2 when the molecules

are separated in the bulk (no matter what the conformational states of the partners are),

the χχχ conformational coordinates of the separated species in standard conditions can be

rationalized in terms of conformational basins with uneven weights. It can then be shown

that the dissociation constant in the infinite dilution limit for a fixed conformation χχχ is given

by[10]

1

Kd(χχχ)
=

1

8π2

∫
Db(χχχ)

e−βw(R,ΩΩΩ,χχχ)dRdΩΩΩ (14)

=
Vb(χχχ)

8π2
e−βw(Rc,ΩΩΩc,χχχ) (15)

where the integration domain, Db(χχχ), must be restricted to the region of existence of the

complex between the receptor and the ligand in the fixed conformational states defined by

the χχχ coordinates.[7, 10] In the second equality we have written the integral (that has the

dimension of a volume and square radiants) in terms of an effective volume Vb(χχχ) times

the potential of mean force at the bottom of the well, w(Rc,ΩΩΩc,χχχ). The physical meaning

of such volume is schematically illustrated in Figure 2 for a simple monoatomic ligand.

Here, we have assumed a single minimum PMF of the kind w(R) = De(r)Ω(r, θ, φ), where

De(r) is a Morse potential and Ω(r, θ, φ) is an appropriate square well potential defining the

entrance angle of the monoatomic ligand into the binding pocket. Note that (Figure 2b)

the integral defining the equilibrium constant can be extended beyond the Db domain with

no appreciable change in Keq.

Returning back to the general Eq. 15, for a polyatomic ligand, Vb(χχχ) also includes a

rotational contribution due to the librations of the ligand in the pocket, [7] when the ligand

and the receptor are in the given conformational state χχχ. We can approximate the integrand

in Eq. 15 with respect to the coordinates X = R,ΩΩΩ with a multivariate Gaussian distribution

of appropriate covariance ΣΣΣr (see Figure 11 (b)), i.e.∫
Db(χχχ)

e−βw(R,ΩΩΩ,χχχ)dRdΩΩΩ = e−βw(Rc,ΩΩΩc,χχχ)

∫
e−

1
2

(X−Xc)TΣΣΣ−1
b (χχχ)(X−Xc)dX (16)
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FIG. 2: Relation between Vb and the PMF w(ξ) for a simple monoatomic ligand (ξ = R, θ, φ) a:

PMF as a function of the ligand-receptor distance. The PMF is modeled with a distance dependent

Morse potential of the form w(r) = D[1−e−a(r−r0)]2−D. The θ, φ dependency is such that bonding

may occur only in a solid angle of DΩ = π/2 corresponding to one octant of the 4π integrated

orientational space. The red segment represents the strain energy due to a wrong choice of the

restraints (see text). b: adimensional factor e−βw(ξ) as a function of the ligand-receptor distance

(maximum value at ξ = ξc). The shaded area defines the volume Vb. The integral of the function

e−βw(ξ)Jξ (Jξ is the Jacobian of the transformation ξ = ξ(x) within the shaded area is the solid

black line and yields the equilibrium constant Keq (reported in 1/µ M units). Vb (c) and standard

dissociation energy (d) as a function of w(ξc) for various a values (width) of the Morse potential.
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so that

Vb(χχχ) =
√

2π3|ΣΣΣb(χχχ)| (17)

Going back to Eq. 15, the overall dissociation constant can be calculated as a standard

canonical average:

1

Kd

=

∫
dχχχP (χχχ)

1

Kd(χχχ)
=

∫
dχχχP (χχχ)

Vb(χχχ)

8π2
e−βw(Rc,ΩΩΩc,χχχ) (18)

In the infinite dilution limit, the probability density P (χχχ) ≡ 〈δ(χχχ − χχχ(x)〉 is identical to

the probability density of the conformational coordinates χχχ of the separated species. If the

binding involves only one conformational state or basin defined by the integration domain

Dχ of the ligand and the receptor, i.e. if Kd(χχχ) is overwhelmingly dominated by χχχ ∈ Dχ,

we obtain
1

Kd

=

∫
Dχ
dχχχP (χχχ)

1

Kd(χχχ)
= W (χχχc)

Vb(χχχc)

8π2
e−βw(Rc,ΩΩΩc,χχχc) (19)

where we have defined the mean (adimensional) conformational weight W (χχχc). If the con-

formational states spanned by the χχχ coordinates are well separated and characterized by

deep minima, then W (χχχc) can be identified, in first instance, with the canonical weight in

dilute solution of the binding ligand/receptor conformation for the separated species. If such

binding conformation has a low weight for the separated species, then it means that the drug

and/or the receptor experiences substantial conformational changes upon binding and that

the free energy gain in the association process comes either from the volume (or entropy,

vide infra) term Vb(χχχ) or from the enthalpic gain due to the e−βw(Rc,ΩΩΩc,χχχc) term.

Taking into account that ∆Gd0 = −kBT ln(KdV0) Eq. 19 can be equivalently written in

terms of dissociation free energy as

∆Gd0 = −w(Rc,ΩΩΩc,χχχc) + kBT ln

(
Vb(χχχ)

8π2V0

)
+ kBT lnW (χχχc) (20)

Again, note that while the vector distance R is a collective variable (CV) bearing no coupling

with other ligand-receptor CVs, the integration domain of the ΩΩΩ CV in the bound state is

in principle dependent on the conformational state χχχ. In DDM theory, it is tacitly assumed

that the χχχ conformational coordinates pertain the ligand only (i.e. the conformational state

of the receptor is invariant upon binding) and that the orientational volume spanned by

the ligand relative to the receptor in the binding site is approximately independent of the

conformational state of the system. In this rather strong assumption, that can be in essence
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identified with the rigid rotor harmonic oscillator (RRHO) approximation, the determinant

in Eq. 17 is diagonal and the volume Vb(χχχ) can be written as product of a χχχ independent

translational volume Vt and an orientational volume VΩ (expressed in radiants) leading to

the expression

∆G
[RRHO]
d0 = −w(Rc,ΩΩΩc,χχχc) + kBT ln

(
Vt
V0

)
+ kBT ln

(
VΩ

8π2

)
+ kBT lnW (χχχc) (21)

One can see the three logarithmic terms in Eq. 21 as a translational, rotational and confor-

mational entropy loss of the bound state, producing a penalty in the binding affinity, thus

writing Eq. 21 in the familiar form

∆Gd0 = ∆Hd − T∆Sd0 (22)

with the dissociation enthalpy ∆Hd = −w(Rc,ΩΩΩc,χχχc) given by the PMF at the bottom of

the single well in the R,ΩΩΩ,χχχ space and the standard state dependent and volume related

dissociation entropy ∆Sd0 = −kB
[
ln
(
Vt
V0

)
+ ln

(
VΩ

8π2

)
+ lnW (χχχc)

]
. Hence, the more tightly

is bound the ligand in the pocket, the smaller will be the “volumes” Vt, VΩ and W (χχχ) and

the larger is the entropy loss due to association.

Incidentally, we may hence say that Eq. 21 constitutes the statistical mechanics founda-

tion of the Docking approach, essentially based on the underlying RRHO approximation. If,

for example, we assume that Nc represents a set of equally populated conformational states

of the free ligand (due to, e.g., rotable bonds[19]), Eq. 21 may be rearranged

∆G
[RRHO]
d0 = −w(Rc,ΩΩΩc,χχχc) + kBT ln

(
Vt
V0

)
+ kBT ln

(
VΩ

8π2

)
− kBT lnNc (23)

In molecular Docking, the energetic contribution, ∆H = −w(Rc,ΩΩΩc,χχχc), is evaluated using

molecular mechanics Poisson-Boltzmann surface area (MM/PBSA))[20, 21] or the molec-

ular mechanics generalized Born surface area (MM/GBSA)[21–23] models, while the elu-

sive volume entropic contributions, kBT (ln
(
Vt
V0

)
+ ln

(
VΩ

8π2

)
, are either evaluated using MD

methodologies[24] or by simplified analytical estimates.[25]

Going back to Eq. 12, Eq. 20 provides the searched relationship between the potential

of mean force w(Rc, ξξξc) = w(Rc,ΩΩΩc,χχχc) and the standard dissociation free energy ∆Gd0 in

the context of DDM theory. If we use Eq. 20 in Eq. 12 and using the definition Eq. 13, we

finally find

∆Gd0 = ∆Gd(ΣΣΣr,Rc, ξξξc) + kBT ln

(
Vb(ξξξc)

8π2V0

)
− kBT ln

P (R, ξξξ|ΣΣΣr,Rc, ξξξc, 0)

P (R, ξξξ|ΣΣΣr,Rc, ξξξc, 1)
(24)
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where we have re-defined the overall binding site volume as

Vb(ξξξc) = VtVΩ(χχχc)W (χχχc) (25)

Equation 24 defines a DDM general relation embracing (as we shall see further on) all

current binding theories from the DAM approach with no restraints to the Deng and Roux

method with strong restraints. Note again that, in the general case, the “rotational volume”,

VΩ(χχχc), is a function of the conformational states.

Boresch’s and Deng’s theory: stiff restraint regime

When Ki →∞, i.e. in the so-called stiff-spring regime[17, 26], the last logarithmic term

on the rhs of Eq. 24 is zero since the probability densities for the restrained system in the

λ = 1 and λ = 0 states becomes identical. According to eq. 12, the alchemically determined

dissociation free energy (Eq. 13), ∆Gd(ΣΣΣr,Rc, ξξξc), can be thus taken to be equal to minus

the PMF at {R, ξξξ} = {Rc, ξξξc}, i.e.

∆Gd(ΣΣΣr,Rc, ξξξc) = −w(Rc, ξξξc) (26)

Consequently, in order to recover the dissociation standard free energy in alchemical sim-

ulations with strong restraints, the strong restraint ∆Gd(ΣΣΣr,Rc, ξξξc) free energy should be

corrected by a volume term Vb(ξξξc) that, in the limit of large force constants Ki, is independent

on ΣΣΣr and is related to the unknown binding site volume Vsite, i.e.

∆Gd0 = ∆Gd(ΣΣΣr,Rc, ξξξc) + kBT ln

(
Vb(ξξξc)

8π2V0

)
(27)

Vb(ξξξc) can be taken as a system-dependent volume defined by the domain R,ΩΩΩ Db(χχχ) for

the bound state when the ligand and the receptor are in the χχχ conformational states. It

important to stress that the size and the units of the volume Vb(ξξξc) depends on the choice of

the ro-vibrational ξξξ coordinates used to define the binding site. Provided that Vb(ξξξc) can be

somehow estimated in independent unrestrained simulations of the free ligand (needed for

measuring W (χχχc)) and of the complex, Eq. 27 allows to compute the absolute dissociation

free energy from the difference of the decoupling free energies of the free ligand and of

complex obtained by FEP or TI, where the latter is tightly kept around the Rc, ξξξc ligand-

receptor position by a set of strong restraints of the form Eq. 1. Eq. 27 was previously
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derived using a different route by Boresch al[8] and by Deng and Roux[11]. In the strong

restraint approach, the estimate of the dissociation free energy crucially depends on the

estimate of the binding site volume Vb(ξξξc) that can vary by several kcal mol−1,[11] hence

spanning more than three orders of magnitude in the inhibition constant. Moreover, the

parameters ξξξe in the restraint potential, Eq. 1, should be chosen such that they coincides

with the corresponding mean values of the unrestrained bound state ξξξc = 〈ξξξ〉b, where the

subscript b indicate that the mean must be taken over bound state canonical configurations.

If any of the {ξei } differs from the corresponding equilibrium value {ξci }, then, as shown in

Figure 2, the system is subject to a strain potential that will be reflected in the PMF and

hence on Vb. Probably, the major weakness in DDM with strong restraints lies in the choice

of the restrained coordinates themselves, that impact on the size and units of V (ξξξc). First

of all, the number and the nature of the ligand and receptor conformational coordinates

participating to binding is not known from the start. Secondly, whatever their choice, due

to the inherent fluxional nature[27] of ligands and receptor, these coordinates will be coupled

to other ligand and receptor coordinates so that restraining them may prevent the sampling

of configurational states that are relevant for the binding affinity. In some sense, Boresch

and Deng theory appears essentially to be based on the traditional picture of “lock and key”

model[28] for binding, with a systematic underestimation of the binding site volume Vb(ξξξc)

due to the neglect of any effect of receptor and ligand conformational reshaping (“induced

fit” model[29]).

Gilson’s theory: Intermediate restraint regime

We now assume that we impose only translational and orientational restraints and that

these restraint are weak enough to allow the ligand-receptor system, to canonically sample

all χχχ conformational states that are important for binding. This can be practically achieved,

for example, by using only rigid portions of the ligand and the receptor in order to define

the relative ligand-receptor orientation ΩΩΩ with a possibly negligible impact on the sampling

of conformational states. At the same time the translational restraint potential should

be strong enough to prevent the ligand to freely drift away from the binding site at any

λ alchemical states. In this case, we can identify ξξξc with ΩΩΩc so that we may write the
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probability density of the decoupled restrained bound state as

P (Y|ΣΣΣr,Yc, 0) = P (R,ΩΩΩ|ΣΣΣr,Rc,ΩΩΩc, 0)

=
1∫

e−
1
2

(Y−Yc)TΣΣΣ−1
r (Y−Yc)dY

=
1

Vr
(28)

where we have used Eqs 1 and Eq. 4 and where Vr defines the temperature dependent

allowance restraint volume such that Vr > Vb. The probability density of the fully coupled

restrained system can be written as a product of two multivariate Gaussian distribution

with covariance matrix ΣΣΣ−1 = ΣΣΣ−1
b + ΣΣΣ−1

r defined in the {R,ΩΩΩ} space, i.e.

P (Y|ΣΣΣr,Yc, 1) =
e−βw(Yc)∫

e−β[w(Y)+V (Y−Yc)]dY

=
1∫

e−
1
2

(Y−Yc)TΣΣΣ−1
b (Y−Yc)e−

1
2

(Y−Yc)TΣΣΣ−1
r (Y−Yc)dY

=

√
2πd det[ΣΣΣr + ΣΣΣb]

VrVb
=

√
det[1 + ΣΣΣ−1

r ΣΣΣb]

Vb
(29)

where Vb =
∫
Db
e−βw(Y)dY '

∫
e−

1
2

(Y−Yc)TΣΣΣ−1
b (Y−Yc)dY and where the effective covariance

ΣΣΣb no longer depends on the conformational states, whose contribution is supposed to be

implicitly integrated away in the PMF w(R,ΩΩΩ). Inserting Eqs. 29 and 28 into Eq. 24, we

find

∆Gd0 = ∆Gd(ΣΣΣr,Rc,ΩΩΩc) + kBT ln

(
Vr

8π2V0

)
+ kBT ln

√
det(1 + ΣΣΣ−1

r ΣΣΣb) (30)

In the assumption that the last term is small and can be neglected (i.e. Vr � Vb), and

factoring the restraint volume Vr in translational and orientational parts VI , ξI , then Eq.

30 is identical to the Equation proposed by Gilson.[7] I stress that Eq. 30 was derived by

introducing ligand-protein rotational coordinates that are supposed to be decoupled from

any conformational state, so that w(Rc,ΩΩΩc) represents the reversible work to bring the ligand

form the bulk state to the bound state defined by the coordinates Rc,ΩΩΩc, irrespective of the

conformational states. DDM with weak restraint potentials should be handled with due

care by practitioners. In case of highly symmetric ligands like benzene in T-lysozime,[11] for

example, weak orientational restraints may prevent the sampling of the bound conformations

that are defined by a mere exchange of the atom labels due to rotational operations of the

symmetry group of the ligand (say σ), underestimating the conformational volume in the

bound state and hence the dissociation free energy. If the weak orientational restraints

prevents the sampling of any of the equivalent σ = 12 states of benzene, then the free
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energy should be corrected by an additive term kBT ln 12 apparently due to “symmetry”.

If instead the restraints are engineered so that they allow the sampling of the bound states

generated by rotations around the six-fold axis of the benzene molecule but not of those that

can be generated by rotation around the 2-fold symmetry axis, then the correction factor

reduces to kBT ln 2. Incidentally, I remark that this kind of corrections applies only to

DDM with weak restraints and not to the Boresch and Deng variant with strong restraints,

provided that in the Vb(χχχ) measure of the binding site volume for the unrestrained system

all relevant conformational states have sampled.

As discussed in Ref. [7], for Eq. 30 to hold, it must be that

∂∆Gd(ΣΣΣr,Rc,ΩΩΩc)

∂Vr
= −kBT

Vr
(31)

where, in taking the derivative, we have neglected the last term in Eq. 30. Eq. 31 provides

in principle a mean to assess whether the chosen restraints obeys the Gilson’s regime. In

fact, by computing the uncorrected alchemical dissociation free energy for different restraint

potentials at constant temperature and pressure and plotting the result as a function of

−1/Vr we should find a straight line with slope of kBT .

Jorgensen’s theory: Unrestrained (DAM) regime.

What happens when instead we let K → 0 in Eq. 12? In this case, as first remarked

in Ref. [8], the alchemical procedure becomes cumbersome since the standard dissociation

free energy should be in principle recovered by the single equilibrium simulation at the fully

coupled state λ = 1. The dissociation free energy detected in the unrestrained simulation

depends on the nominal concentration of the species imposed by the periodic boundary

conditions (PBC), i.e. on the MD box volume Vbox. The fraction of dissociated species can

be expressed as function of the ratio r = Kd/Cbox, where Cbox = 1/Vbox is the nominal

concentration imposed by the PBC, as

f =
r

2

[(
1 +

4

r

)1/2

− 1

]
(32)

Note that in the high concentration limit we have that limr→0 f = 0 while at infinite dilution

limr→0 f = 1. In simulations of typical drug-receptor systems, Vbox may be taken to vary

in the range 105:106 Å3. Hence, for a micromolar to nanomolar ligand, 1/Kd varies in the
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range 109:1012 Å3 so that the ratio r is of the order of 10−7:10−3. In this conditions, we

have that f = r1/2 + o(r2) and the box dependent free energy evaluated in the equilibrium

simulation at λ = 1 may be computed as

∆Gd(Vbox) = −kBT ln(KdVbox) = −kBT ln
f 2

1− f
= −kBT ln r + kBT ln(1− r1/2)

' ∆Gd0 − kBT ln
Vbox

V0

(33)

where in the last equation we have neglected the quantity kBT ln(1 − r1/2) ' −kBTr1/2

and exploited the fact that ∆Gd0 = −kBT ln(KdV0). The standard free energy can hence

be determined by a single very long simulation at the fully coupled state using Eq. 33.

However, one can also choose to implement the cumbersome alchemical methodology in the

unrestrained version, by applying the K→ 0 limit of the general Equation 12 and assuming

that only a restraint on R is imposed, i.e.

lim
K→0

∆Gr(βK
−1,Rc)−∆Gu = −w(Rc) + kBT ln

[
limK→0 P (R, |βK−1,Rc, 0)

limK→0 P (R|βK−1,Rc, 1)

]
(34)

where

∆Gd0 = −w(Rc) + kBT ln

(
VT
V0

)
(35)

VT =
∫
Db
e−βw(R)dR is the allowance oscillation volume of the COM vector distance R in the

complex irrespective of the ligand-receptor orientational and conformational coordinates. In

the limit K→ 0 , the restraint the probability density of the decoupled system is given by

lim
K→0

P (R, |βK−1,Rc, 0) =
1

Vbox

. (36)

The probability density of the coupled system at R = Rc, P (R|βK−1,Rc, 1) , is simply

given by

lim
K→0

P (R|βK−1,Rc, 1) =
e−βw(Rc)∫

Vbox
e−βw(R)dR

=
1

VT

[
1 + (Vbox−VT )

VT
eβw(Rc)

] =
1

VT (1 + cr)
' 1

VT
(37)

where the constant cr = (Vbox−VT )
VT

eβw(Rc) ' Vbox

V0
e−β∆G0 can be neglected as long as eβ∆G0 �

Vbox/V0. Plugging Eqs. 37 and 36 into Eq. 34, using Eq. 35 and defining ∆Gd(DAM) =

limK→0 ∆Gr(βK
−1,Rc)−∆Gu, we finally obtain for the unrestrained (DAM) regime

∆Gd0 ' ∆Gd(DAM) + kBT ln

(
Vbox

V0

)
(38)
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FIG. 3: Example of a 2D generic PMF with multiple minima (left, energy units in kBT ) and

corresponding e−βw(ξ) factor using a combination of multivariate Gaussian distributions.

thus recovering Eq. 33 with ∆Gd(DAM) = ∆Gd(Vbox). I stress that Eq. 38 holds only if the

MD box volume is such that eβG0 � Vbox/V0. It should also be noticed that, while ∆G0 in Eq.

35 is a purely conventional quantity defined with respect to an arbitrarily selected standard

concentration, limK→0 ∆Gr(βK
−1,Rc) and ∆Gu in Eq. 34 refer to free energy differences

between two real thermodynamic states, namely the decoupling of the unrestrained ligand

in presence of the receptor in the MD box of volume Vbox and the decoupling of the Vbox-

independent ligand in the bulk phase, respectively. If on the rhs of Eq 37 we let Vbox →∞

, we obtain

lim
Vbox→∞

1

VT

[
1 + (Vbox−VT )

VT
eβw(Rc)

] =
e−βw(Rc)

Vbox

(39)

Inserting this result and Eq. 36 into Eq. 34, an using the definition ∆G(DAM) =

limK→0 ∆Gr(βK
−1,Rc)−∆Gu, we trivially obtain

lim
Vbox→∞

∆G(DAM) = −w(Rc) + w(Rc) = 0 (40)

i.e the Vbox-dependent dissociation DAM free energy goes to zero for Vbox →∞ , or, equiv-

alently the decoupling free energy of the complex coincides with the decoupling free energy

of the dissociated state. This happens since in the left branch of the cycle of Figure 1, when

the box becomes exceedingly large ( so that eβG0 � Vbox/V0 ) and provided that the unre-

strained (DAM) transformation of the complex is ideally done at equilibrium, then ligand in
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the fully coupled state at λ = 1 should be found freely wandering in the bulk with unitary

probability, as first remarked in ref. [8].

I conclude this section with some remarks on the nature of VT appearing in Eqs 35 and

37. This quantity has the unit of a volume and can be identified with the overall (transla-

tional) binding site volume of the ligand “pose” on the protein surface. In order to estimate

VT in a unrestrained simulation of the complex, one must define, in each sampled bound

configuration, a protein reference frame with respect to which the polar angles θ, φ are eval-

uated. VT is hence modulated by the ro-vibrational coordinates of both ligand and receptor.

For fluxional ligands and receptors with conformational configurations widening the COM

probability density in the bound state, the pose in the R domain can hence be very rugged

indeed as schematically shown in Figure 3. This picture of the translational PMF w(R, θ, φ)

with many crowded competing minima characterizing the “pose” is consistent with the “in-

duced fit” or conformational proofreading model for binding whereby the ligand and/or the

receptor kinetically adjust their conformational states due to their mutual interaction.[30]

Dissociation free energy via non equilibrium alchemical transformation

In spite of the previously outlined wandering ligand problem, the DAM theory has

been used for many years before the advent of DDM theory, incorporated in popular MD

packages[31] and often producing reliable free energy values.[32] Even quite recently,[12]

Fujitani and coworkers used the unrestrained DAM and FEP to compute the binding free

energy of the FKBP12-FK506 drug-receptor system. In all these early DAM simulations, as

well as in the recent examples due to Fujitani and co-workers,[13, 14] the decoupling process

in the left branch of the cycle in Figure 1(a), was performed, starting from a bound state,

in a total simulation time (along the whole alchemical decoupling path) never exceeding, at

most, the few tens of nanoseconds. For states with λ approaching to zero, the unrestrained

ligand could hence easily leave the binding site and start to freely drift off in the MD box.

The time scale of a random encounter in typical MD box of volume Vbox containing a single

drug-receptor pair can be straightforwardly estimated from the mean free path, Vbox

πd2 (with d

being the mean radius of the receptor assumed to be much larger than that of the ligand),

and the diffusion coefficient of a ligand in water,[33] typically obtaining collision rates of

the order of 0.1:0.01 ns−1, i.e. a random collision every 10 to 100 ns. In the light of this
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estimate, we can safely say that all of the DAM/FEP or DAM/TI simulations appeared

on the literature were actually non equilibrium processes hence providing a non equilibrium

estimate of the decoupling free energy. The same argument applies to DDM simulations as

well, where Boltzmann sampling is in principle required for all conformational states of the

complex that are not subject to restraints. Conformational transitions in flexible protein side

chains occur in a wide range of time scale, from picoseconds to milliseconds and longer.[34] A

converged sampling of these CVs, for all λ states, that should be highly relevant in induced

fit ligand-receptor association, is in many cases out of the reach in DDM/FEP or DDM/TI

simulations lasting at most few ns per alchemical state.

In the following, I shall discuss how alchemical non equilibrium decoupling processes can

be used to derive reliable estimates of the standard dissociation free energies. The Jarzynski

theorem[35] represents one of the few exact results in non equilibrium thermodynamics, re-

lating the work done in a non equilibrium (NE) transformation between two thermodynamic

states A, B to the corresponding free energy difference, that is to the work done reversibly:

eβ∆GAB = 〈e−βWAB〉A (41)

While the configurations of the starting state A are canonically sampled, the arrival configu-

rations of B are not distributed canonically. The mean NE work, when averaged over many

realizations, all done according to a common prescribed time schedule, is always larger than

the free energy, i.e. the minimum, reversible work connecting two states. The difference

between the average NE work and the free energy correspond to the mean dissipation of the

NE process, a function of the speed of the NE realizations. For infinitely slow (quasi-static)

realizations, the work is always equal to ∆GAB and the Jarzynski work average is equiva-

lent to TI, while for instantaneous processes, it can be shown that that Jarzynski theorem

becomes equivalent to the Zwanzig free energy perturbation formula. The work probability

distributions for the forward (A to B) and reverse process (B to A) obey the the Crooks

PA→B(W )

PB←A(−W )
= e−β(WAB−∆F ) (42)

The sign of the work in the reverse distribution is due to the fact that the reverse process is

assumed to be done with identical but inverted time schedule. It has been observed[36–38]

that the work distribution obtained from fast annihilation/creation NE processes (lasting

no more than few hundreds or even tens of picoseconds) of small to moderate size organic
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molecules in polar non polar solvents has a marked Gaussian character and that the cor-

responding dissipation is surprisingly small, ranging from 0.05to 0.1 kcal mol−1 per atom.

In case of Gaussian work distributions for the (forward) annihilation process, the Crooks

theorem, Eq. 42, provides an unbiased estimate of the free energy in the form of

∆G = 〈WA→B〉 −
βσ2

2
(43)

where 〈WA→B〉 and σ are the mean work and variance of many NE realizations. This fact

has been recently exploited[39, 40] to implement a non equilibrium approach to alchemi-

cal simulation. In this methodology the dissociation free energy is again accessed via the

thermodynamic cycle, but this time the annihilation processes on the two branches are done

irreversibly at fast speed, starting form the fully coupled equilibrated states. The free energy

is recovered either from the Jarzynski theorem, Eq. 41 or, in case of Gaussian work distribu-

tion, from the unbiased estimate, Eq. 43. As such, the NE alchemical variant is compatible

either with the version with strong or weak restraints or with the unrestrained approach.

In case the NE alchemical simulations with restraints, the quantities ∆Gr(ΣΣΣr,Rc, ξξξc) and in

∆Gu(ξξξc) in Eq. 13 or ∆Gr(ΣΣΣr,Rc,ΩΩΩc) and in ∆Gu(ΩΩΩc) in Eq. 30 are not evaluated using

TI or FEP; rather they are computed applying Eq. 43 or Eq. 41 to the work histograms

obtained by launching in parallel few hundreds of fast (0.1 to 0.5 ns) decoupling alchemical

independent trajectories. For the unrestrained (DAM) NE version, it has been shown[40, 41]

that the dissociation free energy can be recovered exploiting the Crooks theorem applied to

mixture of Gaussian distributions, landing on Eq.

∆G0 = ∆Gb −∆Gu + kBT ln
Vsite
V0

(44)

where ∆Gb is NE free energy Gaussian estimate for the fast annihilation of the bound state,

∆Gu is NE free energy estimate for the fast annihilation of the ligand in and Vsite should

correspond to the effective cumulative “volume” of the binding site or, using a definition

due again to Gilson[42], to the exclusion zone of the receptor, defined by a measurable (in

principle) probability of re-entrance in an hypothetical reverse process for the complex. As

long as the NE process is much faster compared to the time scale of the relative ligand-

receptor diffusion, the NE estimate ∆Gb via Eq. 41 or 43 is essentially independent of the

box volume and on the duration time of the NE process, so that we can identify Vsite with

VT in Eq. 38. This is a rather trivial consequence of the insensitivity of the equilibrium
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constant integral Ke =
∫
Db
e−βw(R)dR to the integration domain Db defining the region of

existence of the complex and to the fact that in the fast switching alchemical decoupling of

the bound state, the decoupled ligand does not have the time to explore regions that are far

away from Db.

The NE alchemical approach, whether in the restrained or unrestrained version, bypass

completely the need for an equilibrium sampling at the intermediate alchemical states, re-

quiring a canonical sampling only at starting fully coupled λ = 1 thermodynamic state. The

latter can be obtained using enhanced sampling techniques such as H-REM or Umbrella

Sampling.[43] With this regard, the apparent ability of equilibrium FEP or TI based ap-

proaches to produce reliable estimates of the binding free energy in conventional simulation

lasting few ns per alchemical states (i.e. for a timescale that is well below the characteristic

ergodicity timescale in drug-receptor systems) is actually a fortuitous consequence of non

equilibrium processes. These techniques are in fact unaware applications of non equilib-

rium approaches whereby a mean alchemical work, rather than a free energy, is determined.

Such work, if the alchemical process is done in a cumulative time of the order of the tens

of nanoseconds, is Gaussianly distributed over few kBT or less and, in force of the Crooks

theorem, must be close to the true decoupling free energy. The similarity of the dissipation

energy on the two branch of the cycles provides a further fortuitous compensation effect

when evaluating the dissociation free energy as a difference of two non equilibrium mean

work.

CONCLUSIONS

In this paper I have revisited the statistical mechanics of non covalent bonding in drug-

receptor systems. I have shown that all existing alchemical theories in binding free energy

calculations can be rationalized in term of a unifying treatment encompassing the original

unrestrained DAM[4], the Gilson’s restrained DDM variant[7] and the sophisticated dock-

ing approach proposed by Deng and Roux.[11] The cited alchemical theories differ in the

definition (explicit or implicit) of the binding site volume through the enforcement of a set

of appropriately selected restrained potentials. Strong restrained approaches[11] relies on a

precise knowledge of the binding pose and volume in the context of the traditional picture

of the lock and key model. The DDM and DAM theories make weaker assumptions on the
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pose topology and nature, hence being progressively shifted towards a more realistic induced

fit/ conformational proofreading model in drug-receptor interaction. All alchemical theories

are finally placed into the broader context of non equilibrium thermodynamics, discussing

the application of the Crooks and Jarzynski non equilibrium theorems to the evaluation of

alchemical decoupling free energies.
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