
DOTTORATO DI RICERCA IN

ATOMIC AND MOLECULAR PHOTONICS

(international doctorate)

CICLO XXVIII

COORDINATORE Prof. Roberto Righini

MID-INFRARED SINGLE- AND MULTI-FREQUENCY COHERENT SOURCES

FOR HIGH-RESOLUTION MOLECULAR SPECTROSCOPY

Settore scientifico-disciplinare FIS/03

Dottorando Tutore

Dott. Francesco Cappelli Dott. Paolo De Natale

Coordinatore

Prof. Roberto Righini

30 novembre 2012 – 29 novembre 2015





Preface & Abstract

November 29, 2015

The mid-infrared portion of the electromagnetic spectrum is of par-

ticular interest due to the abundance and intensity of simple molecule

absorption lines that fall in this spectral region. On the other hand, laser

technologies are here still in development. This thesis, entitled Mid-

infrared single- and multi-frequency coherent sources for high-resolution

molecular spectroscopy, contains the collection of the experiments to

which I have directly contributed during my PhD course. They all have

been aimed to the generation and the control of coherent mid-infrared

radiation for high-resolution molecular spectroscopy purposes. The pro-

posed sources are based on non-linear generation and on quantum cas-

cade lasers. The initial approach consisted in generating single-frequency

mid-infrared radiation, eventually referenced to a near-infrared frequency

comb. Subsequently, approaches to generate and control frequency

combs directly in the mid infrared have been implemented.

The three-year PhD course that I have attended is the International

doctorate in atomic and molecular photonics, organised by the European

Laboratory for Non-Linear Spectroscopy - LENS in Florence (Italy). I

have worked in the research group (part of the Italian National Insti-

tute of Optics - CNR-INO) led by my PhD supervisor Paolo De Natale.

The expertise of the group is mainly in the fields of infrared frequency

metrology, spectroscopy and trace-gas sensing. The international course

provides for a period abroad. Thanks to a preexisting – I would say natu-

ral – collaboration, I had the opportunity of spending ten months during

my second year at the Swiss Federal Institute of Technology (ETH) in

Zürich working in Jérôme Faist’s group. The expertise of the group is

mainly in design, realisation and study of quantum cascade lasers. I’m

very grateful to both the research groups for what I have learned in these

highly stimulating years. I hope I have been helpful in carrying on the

activities.

Francesco Cappelli





Preface II

March 14, 2016

This second version of my thesis is the result of the suggestions I

received from my referees. I have to thank Piotr Masłowski and Stéphane

Schilt for having accepted to referee my thesis and for having performed

this task with competence and accuracy. In particular the appendix has

been expanded by adding sections A.5 to A.7, and few minor revisions

have been applied to the main text. I think that the overall quality of the

manuscript has improved and for this reason I’m very grateful to both of

them.

Francesco Cappelli
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Introduction

The interest in generating and detecting infrared radiation is high in

today’s society, in particular for applications in environment and health

fields. The main absorption lines of simple molecules fall in this spectral

region, and the study of the absorption spectra can give precise infor-

mation on their concentration in gaseous samples. Moreover, molecular

spectra deal with fundamental-physics open issues.

According to the ISO standard, the infrared region of the electromagnetic

spectrum is classified as follows [1]:

near-infrared (NIR) 0.78 – 3 µm

mid-infrared (MIR) 3 – 50 µm

far-infrared (FIR) 50 – 1000 µm

Carbon dioxide is one of the most important examples concerning

simple molecules of environmental and biological interest. In the atmo-

sphere, it contributes to the greenhouse effect [2, 3]. In addition, since it

is generated in biological oxidation processes, it can give information on

the health condition of live beings.

Another interesting application is the analysis of the concentration of

radiocarbon dioxide1 in a gaseous sample [4, 5], since the knowledge of

this concentration enables the dating of the related biological specimen

and can give again an insight on climate changes.

The observation of the electromagnetic absorption spectrum of the

carbon dioxide molecule, shown in fig. I.1, clarifies the importance of the

MIR region. The fundamental ro-vibrational transitions of the molecule
1Carbon dioxide made of 14C atoms.
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Introduction

correspond to these frequencies. Since they are the fundamental ones,

their line intensity is the highest in the whole absorption spectrum of

the molecule. This peculiar feature, combined with refined spectroscopy
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Figure I.1: CO2 infrared absorption spectrum at a temperature T = 300 K, where the
border between the mid infrared and the near infrared portions is pointed out.
The most intense absorption lines fall in the mid infrared region (note the
logarithmic scale). Source: HITRAN database [6].

techniques such as cavity ring-down [7], enables trace-gas sensing up to

a part-per-quadrillion sensitivity. Moreover, such a strong dipole is useful

in testing the strictness of the symmetrization postulate, which lies at the

basis of the standard approach to quantum mechanics. If the spin of all

the identical nuclei is zero, since the function has to be totally symmetric,

all the antisymmetric states should be missing, together with the related

transitions. Therefore, the search for these forbidden transitions can give

an insight to which extent the symmetrization postulate is valid [8–10].

Visible and NIR are well covered in terms of laser sources and

detection techniques and technologies as well, since research in this

field historically started in these spectral regions [11, 12].2 On the other

hand, technologies in the MIR region are still in development. Such

a gap is due to the lack of tunable and wavelength-engineerable laser

2It is worth reminding that the ancestors of the laser is the maser. This kind of device
operates in the microwave region.
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Introduction

sources up to the invention of quantum cascade lasers (QCLs) in 1994

[13]. It was indeed necessary to apply quantum engineering in order

to extend semiconductor laser operation to the MIR. In the meanwhile,

coherent MIR radiation has been generated exploiting frequency mixing

in non-linear crystals starting from visible/NIR radiation [14, 15]. This

approach ensures wide tunability and high spectral purity, but presents

severe limitations in terms of generated power.

A tool that is nowadays essential in spectroscopy measurements is

the optical frequency comb (OFC). It has been found that the spectrum

of the radiation emitted by lasers operating in mode-locked regime [16]

(generating short coherent pulses) is made of a comb of perfectly equis-

paced and coherent modes. If the spectrum is wide enough,3 they can be

self-referenced [17–19], serving as rulers for frequencies. These devices

have proven to be very useful both as references for continuous-wave

lasers as well as for direct comb spectroscopy [20–23].

Unfortunately, up to now there are no pulsed mode-locked lasers

operating in the MIR. The classical method for having OFCs in the

MIR takes again advantage of frequency mixing in non-linear crystals

starting from visible/NIR standard OFCs [24–28]. A recent and compact

approach employs high-Q microresonators pumped with continuous-

wave lasers, where the OFC is generated thanks to the Kerr effect [29–

33]. An alternative approach is provided by QCLs. Their unexpected

capability of generating OFCs has been discovered only recently [34]. It

has to be remarked that the comb formation, due to the four-wave mixing

process taking place in the gain medium, is peculiar. The phase relation

between the modes is similar to that of frequency-modulated lasers, no

pulses are emitted.

Both laser spectra and molecular transitions detected by laser spec-

troscopy in the real world are broadened by several phenomena. This

width sets a limit on the precision of determination of the laser emis-

sion frequency or of the molecular transition center frequency. On the

molecular side, the precision of the measurement can be greatly in-

creased overcoming the Doppler broadening even at room temperature

using techniques such as saturation and polarization spectroscopy [35].

These techniques have only been enabled by the introduction of lasers

in spectroscopy, since a highly-concentrated power (both in space and

3The spectrum has to cover an octave.
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Introduction

in frequency) is required. On the laser side, the linewidth can be greatly

reduced resorting to stabilization techniques such as phase locking to

a stable reference or frequency locking to molecular transitions. For

stabilization purposes, it is of fundamental interest to study the frequency

noise proper of the laser sources to be used.

This thesis deals with MIR spectroscopy. Spectroscopy techniques

are discussed, with a particular focus on the laser sources. In particular,

techniques to generate and stabilize both single-frequency and multi-

frequency coherent MIR radiation are presented. In chapter 1 the the-

oretical background at the basis of the topic is recalled. In particular,

in section 1.1 infrared molecular spectra, collective absorbing behav-

ior (including the broadening phenomenon), and saturation and polar-

ization spectroscopy techniques are presented. In section 1.2 optical

non-linear second-order and third-order phenomena are discussed. Then,

in section 1.3 optical frequency combs are introduced, discussing the

mode-locking mechanism and their stabilization and absolute frequency

referencing. In section 1.4 frequency noise in laser emission is discussed.

Finally, in section 1.5 quantum cascade lasers are presented, discussing

in particular their capability of generating frequency combs.

In chapter 2 seven experiments to which the author directly contributed

during his PhD course are presented. In particular, in section 2.1 stabi-

lized and referenced single-frequency MIR QCLs are proved as spec-

troscopy sources, using frequency locking to a molecular absorption

line and phase locking to a metrological non-linear-generated radiation.

On the other hand, in section 2.2 MIR OFCs generation, control and

application as spectroscopy tools are presented. In particular, generation

of a highly-coherent MIR OFC through intracavity difference-frequency

generation is presented. Moreover, a frequency noise characterization

and phase-locking of QCL OFCs is presented, useful for proving both the

coherence and the potential spectroscopy performances of these sources.

Finally, in the appendix details on the frequency-to-amplitude conversion

(converter calibration and multimode conversion demonstration) used for

frequency noise characterization are given, followed by the estimation

of the Henry linewidth enhancement factor for a QCL. To conclude, a

discussion on the relation between the two main optical parameters of

a frequency comb (spacing and offset frequencies) and the waveguide

effective refractive index and group refractive index is presented.
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CHAPTER 1

Theoretical framework

1.1 Molecular spectra detected by laser spectroscopy

Molecules, seen both as singles or taken as a whole, are rich and in-

teresting physics systems. Spectroscopy basically studies their interac-

tion with electromagnetic radiation. This section deals with molecular

spectroscopy and it is essentially divided into two parts. The first one

(sections 1.1.1 to 1.1.3) gives an overview on infrared molecular spectra,

describing single molecules as systems and their interaction with light.

The discussion focuses on linear molecules and in particular on carbon

dioxide, giving examples of ro-vibrational spectral bands.

The second one (sections 1.1.4 to 1.1.7) introduces the collective ab-

sorbing behavior of a molecular gas sample, explaining the broadening

phenomena (homogeneous and inhomogeneous) and the saturation. Then

it focuses on two laser spectroscopy techniques (saturation and polariza-

tion spectroscopy) that enable the overcoming of the spectral-resolution

limitation due to the inhomogeneous broadening, opening the way to

room-temperature high-resolution spectroscopy.

1.1.1 Molecular energy levels

Considering the Born-Oppenheimer approximation, the eigenfunction

describing a molecule can be factorized as follows:

ψm =ψtψeψnψvψr (1.1)
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1.1 Molecular spectra detected by laser spectroscopy

where ψt describes the translation, ψe the electronic state, ψn the nuclear

spin state, ψv the vibration and ψr the rotation of the molecule. The

functions describing the vibrational states are very close to the ones

describing the ideal harmonic oscillator, while the functions describing

the rotational states are the spherical harmonics. For the moment we

consider the molecule stationary in the considered reference frame, and

it is assumed to stay in its electronic ground state.1 In this way, the

translational and electronic contributions can be omitted, considering

only the rotational and vibrational ones.2 Now the ro-vibrational energy

of a molecule can be expressed as [36]

E
h
= G(u1,u2, . . .)+F(J) (1.2)

with h Plank constant.

The vibrational contribution G depends on the vibrational normal modes

characterizing the considered molecule. Their number and nature are

tightly linked to the symmetry properties of the molecule itself and are

labeled u1, u2 and so on. For generic polyatomic molecules the number of

vibrational degrees of freedom (DOF) is (3N−6), where N is the number

of atomic nuclei in the molecule. This result comes considering that the

motion of each atomic nucleus is described by 3 DOF, but looking at the

molecule as a system, 3 of them describe the translation of the center

of mass, while other 3 describe the rotation of the system. For linear

molecules the number of vibrational DOF is equal to (3N−5) because

there is no rotation around the molecular axis. Each vibrational mode

can be in its ground state – for example u1 = 0 – or in an excited state

(u1 = 1,2, . . . ). The vibrational contribution depends on the quantum

numbers and the constants as follows:

G(u1,u2, . . .) =∑
i

νi

(
ui +

di

2

)
︸ ︷︷ ︸
harmonic vibrations

+ ∑
i,k≥i

xik

(
ui +

di

2

)(
uk +

dk

2

)
︸ ︷︷ ︸

anharmonic corrections

+ ∑
i,k≥i

giklilk︸ ︷︷ ︸
deg. rotation

+ . . .

(1.3)

1This assumption is justified by the fact that the energy associated to mid- and
far-infrared radiation is too low to excite electronic transitions (E < 0.40 eV).

2The nuclear spin contribution is neglected.
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1.1 Molecular spectra detected by laser spectroscopy

where index i counts the degenerate modes only once. νi = ωi/2π is the

vibrational frequency related to the mode ui. di counts its degree of de-

generacy,3 giving the zero-point energy. xik is the (small) anharmonicity

constant. gik is a constant4 related to the vibrational angular momentum

of degenerate modes and li the related quantum number.5

On the other hand, the rotational contribution F depends on the total

angular momentum number J (J = 0,1,2, . . . )6 and reads as follows:

F(J) = BJ(J+1)︸ ︷︷ ︸
rotational energy

− DJ2(J+1)2︸ ︷︷ ︸
centrifugal distortion

+ . . . (1.4)

where B = h/8π2I is the rotational constant, I is the moment of inertia

about an axis going through the center of mass. D is the (small) cen-

trifugal distortion constant, related to the non rigidity of the molecule,

accounting for the changing of the internuclear distances with increasing

rotation. As a consequence of the interaction of vibration and rotation,

the rotational constant shows a little dependence on the vibrational level.

This is because the moment of inertia I changes during a vibration in

such a way that the average value of 1/I is slightly different respect to

its value in the equilibrium position. As a consequence, the expression

for the rotational constant is

B[u] =
h

8π2I︸︷︷︸
rest value

− ∑
i

αi

(
ui +

di

2

)
︸ ︷︷ ︸

vibrational dependence

(1.5)

where αi are constants much smaller than the rest value. For the sake of

completeness, even the constant D has a dependence on the vibrational

state, but usually this effect is completely negligible.

The relative population of each level depends on J through the expression

NJ = gJ e−hF(J)/(kBT ) (1.6)

where the term is the Boltzmann factor giving the population of the

level, with kB Boltzmann constant and T absolute temperature. For

3di = 1 if the mode is non-degenerate, di = 2 if it is doubly degenerate, and so on.
4gik is of the same order of magnitude of xik.
5li = ui,ui−2,ui−4, . . . ,1,0 if the mode is degenerate, while li = 0 (and gik = 0)

if the mode is non-degenerate.
6Actually, for determining the smallest value that J can take, the vibrational level

degeneracy has to be taken into account, because J ≥ l.
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1.1 Molecular spectra detected by laser spectroscopy

linear asymmetric molecules gJ = (2J+1) corresponds to the number of

degenerate rotational sublevels, while for the symmetric ones that factor

oscillates with J depending on the nuclear spin of the external atoms (see

fig. 1.2 for an example).

1.1.2 Linear molecules ro-vibrational bands

In order to estimate the transitions that a certain molecule can show and

their intensity, the dipole moment matrix element between the molecular

states has to be computed. The absorption intensity is usually expressed

in terms of line intensity (S ), a parameter that accounts for the transition

dipole moment and the levels population at thermal equilibrium for a

given temperature T . Depending on the symmetry that characterizes a

molecule, only certain transitions are allowed. As a consequence, some

selection rules can be established. A molecule shows ro-vibrational tran-

sitions in the mid-infrared only if its dipole varies during the oscillation

in one of its vibrational modes. This becomes evident writing the dipole

matrix element [37]

MMMul vib = ~P(0)
∫
ψvlψvu dτvib +

vib. DOF

∑
n=1

∂~P
∂qn

∣∣∣∣
0

∫
ψvlqnψvu dτvib (1.7)

where ~P is the molecular dipole vector,7 qn are the nuclear displacement

coordinates for the vibrational modes, and dτvib is the volume element

in the qn frame. The subscript u denotes the upper state, while l denotes

the lower one. Since the two vibrational states are different and the

vibrational wavefunctions are orthonormal, the first integral vanishes,

leaving only the second term, which depends on the variation of the

dipole during the oscillation in a certain vibrational mode.

Considering transitions between non degenerate vibrational states (Σ),

the selection rules for ro-vibrational transitions impose [36]

∆u = uu−ul =±1 (1.8a)

and

∆J = Ju− Jl =±1 (1.8b)

7Here ~P is the dipole given by the placement of the atoms (with different electroneg-
ativity) in the molecule.
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1.1 Molecular spectra detected by laser spectroscopy

The transitions corresponding to ∆J =+1 form the R branch, while the

ones corresponding to ∆J =−1 form the P branch. Once given the center

frequency of the vibrational transition ν0, each line forming the same

band, given by the involved rotational levels [F(Ju)−F(Jl)], is obtained

by

ν = ν0 +(Bu +Bl) m+(Bu−Bl) m2 (1.9)

where m = J+1 for the R branch and m =−J for the P branch. In this

formula the terms given by the centrifugal distortion (∝ D) have been

neglected. These spectral lines are almost equispaced.

In order to properly understand the selection rules, we consider again

eq. 1.1 and recall that the functions describing the vibrational states are

very close to the ones describing the ideal harmonic oscillator, while

the functions describing the rotational states are the spherical harmonics.

We consider then the inversion operation, i.e. what happens reflecting

each particle in the molecule with respect to the origin. The electronic

function in the ground state is always symmetric. The same holds for

the totally symmetric vibrational levels (Σ+, e.g. the vibrational ground

state). In these conditions the symmetry properties depend only on the

rotational function. Levels with even J are positive, while levels with odd

J are negative. The basic selection rule for dipole transitions states that

positive levels can combine only with negative levels (and vice versa).

1.1.3 Symmetry properties

Linear molecules have been divided into two symmetry groups. The ones

having a symmetry plane perpendicular to the molecular axis belong

to the D∞h group, the others to the C∞v group. The carbon-dioxide

molecule (12C16O2) belongs to the first group, while the isotopologue
17O12C16O belongs to the second one. The symmetric molecule 12C16O2

has zero permanent dipole moment. As a consequence the pure rotational

spectrum in the far infrared cannot be observed and in the mid infrared

only transitions involving vibrational modes with a periodic changing of

the dipole moment8 can be observed (see eq. 1.7). The CO2 molecule

has three vibrational modes (see fig. 1.1):

Symmetric stretch It is labeled u1 and since it does not brake the molecular symmetry

it’s inactive in the mid infrared.

8This is possible only if the vibration brakes the symmetry of the molecule.
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1.1 Molecular spectra detected by laser spectroscopy

Bending It is labeled u2 and it’s doubly degenerate. For these mode the

additional quantum number l is used. It is active in the mid infrared

with a characteristic frequency of 667 cm−1.

Asymmetric stretch It is labeled u3 and it’s active in the mid infrared with a character-

istic frequency of 2349 cm−1 (λ = 4.25 µm).

O C O

u1

u2

u3

Figure 1.1: CO2 vibrational modes: symmetric stretch, bending and asymmetric stretch.

The vibrational state of the molecule is expressed synthetically as (u1ul
2u3).

Symmetric linear molecules (group D∞h) have an additional symmetry

property, they can be symmetric or antisymmetric with respect to an

exchange of the identical nuclei. The total eigenfunction ψ of the system

(apart from the nuclear spin function) remains unchanged or changes sign

when all nuclei on one side of the center are simultaneously exchanged

with the corresponding ones on the other side. The corresponding ro-

tational states are called symmetric or antisymmetric in the nuclei. In

general, considering the vibrational ground state Σ+
g (0000), the positive

rotational levels are symmetric (even J) and the negative antisymmetric

(odd J), while in the first excited Σ+
u the property is inverted. For these

molecules another selection rule holds: only levels with the same kind

of symmetry can combine together. If the spin of all the identical nuclei

is zero, since the function has to be totally symmetric, all the antisym-

metric states are missing. This is the case for the 12C16O2 molecule.

20



1.1 Molecular spectra detected by laser spectroscopy

This question of the symmetry does not hold anymore if instead of the

non-degenerate ground state Σ+
g we consider the first excited degenerate

state Πg (0110). In this case all the rotational states are present. For a

transition Πg→ Πu (0110)→ (0111) not only odd and even values of

J are allowed, but also transitions with ∆J = 0 are allowed. For this

reason, the additional Q branch is present.9 Since J ≥ l the first R and P

branch lines are missing. Obviously the two transitions (0000)→ (0001)

and (0110)→ (0111) are very close (almost overlapping) in frequency.

This is the case for the 12C16O2 molecule spectrum around 4.25 µm (see

fig. 1.2).

1.1.4 Homogeneous and inhomogeneous broadening

The aim of spectroscopy is to study the electromagnetic absorption spec-

tra of gaseous samples. The simplest modern experimental scheme

consists in a frequency-tunable laser source which generates a beam pass-

ing through a cell containing the sample gas and a detector to measure

the transmitted light. For the moment we assume the laser source strictly

monochromatic. Even avoiding any technical issue that could broaden

the peaks related to the gas absorption, there are physics phenomena

that let the spectral peaks appear broad [38], limiting the spectral reso-

lution. The spectral line profile is said to be homogeneously broadened

if the probability of absorption of resonant photons is equal for all the

molecules of the sample that are in the same initial state. In other words,

this probability must not depend on a property of the single molecule.

The most important example is natural broadening, given by sponta-

neous emission. The shape of homogeneously broadened absorption lines

is Lorentzian, as obtained with a semiclassical approach to the absorption

of an electromagnetic wave by a collection of microscopic oscillators

at rest, and stated by the Kramers-Kronig equations for the absorption

9For the Q branch, the frequency decreases with J. Moreover, for Πg→Πu transi-
tions the intensity decreases very rapidly with J.
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1.1 Molecular spectra detected by laser spectroscopy
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Figure 1.2: CO2 bands around 4.25 µm at a temperature T = 300 K, where the frequency
scale is expressed in cm−1 (1 cm−1 ≈ 30 GHz). Three bands are shown.
The (0001−0000) band of the 12C16O2 molecule is the most intense, since
it involves the fundamental vibrational level (0000). Moreover this isotopo-
logue is the most prevalent in nature (98.4 %). In this band only transitions
involving a rotational ground state with even J are allowed by the vibrational
levels symmetry and by the 16O atoms nuclear spin (0). The (0111−0110)
band of the same isotopologue is also shown. It is a so-called hot band,
since the lower level is not the ground state of the molecule. In this case the
restriction on J does not hold, since the rotational levels do not have the same
degree of symmetry of the previous case. Not only odd and even values of
J are allowed, but also transitions with ∆J = 0 are allowed. For this reason,
the additional Q branch is present. For the sake of clearness, transitions
belonging to this branch with line intensities < 3×10−21 cm/molecule have
been artificially removed. Finally, the (0001−0000) band of the 12C17O2
molecule is shown. For graphical reasons, the whole band has been multi-
plied by a factor 104. This isotopologue is quite rare, the natural abundance
is 1.37× 10−7. It has the same symmetry of the 12C16O2 molecule, but
the 17O atoms nuclear spin is 5/2. For this reason, transitions involving a
rotational ground state with odd J are not forbidden but show a different line
intensity with respect to the others, resulting in the characteristic intensity
modulation, artificially underlined in the graph with the trait connecting the
dots representing the absorption lines. Source: HITRAN database [6].
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1.1 Molecular spectra detected by laser spectroscopy

coefficient and the refractive index10

α(ω) =
Ne2

4ε0mc
γ

(ω−ω0)2 +(γ/2)2 (1.10a)

n(ω) = 1+
Ne2

4ε0mω0

ω−ω0

(ω−ω0)2 +(γ/2)2 (1.10b)

where N is the number of oscillators per unit volume, e is the unitary

electric charge, ε0 is the dielectric constant in vacuum, m is the mass of

the oscillators and ω0 = 2πν0 is the transition center frequency. γ is the

natural linewidth. This factor, accounting for the spontaneous emission,

is related to the Einstein coefficients as follows:

γ = A21 =
8πh
c3 ν

3B21 (1.11)

where A21 and B21 are the Einstein coefficients for the spontaneous

and the stimulated emission respectively. Another contribution to the

homogeneous broadening is due to the transit time, given by the finite

time that the molecules spend within the laser beam section, expressed

as follows [39]:

γt =
1
w

√
ln2
π

kBT
m

(1.12)

with m molecular mass and w beam waist. Finally it is worth mentioning

the homogeneous broadening contribution due to collisions, the so-called

pressure broadening.

On the other hand, if the probability of absorption depends on a property

of the single molecule, the line is said to be inhomogeneously broad-

ened. The most important example of inhomogeneous line broadening

is Doppler broadening. In this case, the probability of absorption of

monochromatic radiation depends on the velocity of the single molecules.

Since the velocity distribution in a sample in thermal-equilibrium con-

ditions follows the Boltzmann statistics, the shape of pure inhomoge-

neously broadened absorption lines is Gaussian, with a FWHM given

by

∆νD =
ν0

c

√
8ln2

kBT
m

(1.13)

This width depends linearly on the frequency ν0, but only under square

root on the ratio between the temperature and the molecular mass, there-

10This version of the equations holds close to an absorption line, where |ω−ω0| �
ω0.
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1.1 Molecular spectra detected by laser spectroscopy

fore only a major cooling of the sample can appreciably reduce it.

In order to understand how the two broadening mechanisms interact to

give the real line shape, we can divide the molecules in the same initial

state into subgroups, such that all molecules with a velocity component

within the interval vz to vz +∆vz belong to one subgroup. If we choose

∆vz = γ/k, where k is the wavenumber, we may consider the frequency

interval γ to be homogeneously broadened inside the much larger in-

homogeneous Doppler width. To be more explicit, we can say that all

molecules in the subgroup can absorb or emit radiation with frequency

ν = ν0 + vzk. This happens because in the moving molecules reference

frame this frequency falls within the natural width γ around ν0. The

resulting line shape is a convolution between the two, a so-called Voigt

profile.

1.1.5 Linear and non-linear absorption

Taking advantage of the so-called non-linear absorption spectroscopy

techniques, it is possible to get rid of the Doppler broadening. They take

advantage of the saturation phenomenon, i.e. the fact that the absorption

coefficient of a gaseous sample is not constant but at a certain point it

starts to decrease with increasing optical power. In order to understand

the saturation phenomenon, we start by studying the absorption with

respect to optical intensity [40]. For a monochromatic plane lightwave

defined as

E = E0 cos(ωt− kz+ϕ) (1.14)

we define the mean intensity as

I =
1
2

cε0E2
0 (1.15)

The power absorbed in a volume dV = Adz is

dP =−P0αdz =−AIσ∆N dz (1.16)

where A is the cross-section of the illuminated area, ∆N is the difference

of the population densities of the upper and lower levels, and σ is the

absorption cross section. If P0 is sufficiently low, ∆N and α can be con-

sidered constant, otherwise their dependence on P0 becomes important.

Actually, the intensity distribution of the plane wave in frequency is not a

24



1.1 Molecular spectra detected by laser spectroscopy

delta function, therefore a spectral intensity Iν can be defined as follows:

I =
∫

Iν dν≈ Iν(ν0)δνL (1.17)

where δνL is the Iν FWHM. The absorbed power is then

dP = ∆N dV
∫

Iνσ(ν)dν (1.18)

where σ(ν) has the shape of the absorption with a FWHM δνa. If

δνa < δνL the expression for the absorbed power is

dP = ∆N dV I(ν0)σ(ν0)
δνa

δνL
(1.19)

This shows that for spectroscopy purposes what counts is the spectral

intensity Iν and its width, more then the intensity. In particular, it is

important to have laser sources narrower in frequency than the absorp-

tions, since the spectral portion of the optical power that falls outside the

absorption line does not contribute to the detection.

The population difference in saturation conditions is given by

∆N =
∆N0

1+S
(1.20)

with S = I/Is, where Is is the saturation intensity given by the stimulated

absorption Einstein coefficient and the relaxation rates, while if δνa >

δνL, the absorbed power is

dP = dV I(ν0)σ(ν0)
∆N0

1+S
(1.21)

and if the only relaxation process is spontaneous emission, the saturation

intensity can be expressed as

Is =
2h
c2 ν

3A21 (1.22)

If pressure is low enough the transition probability due to collisions is

negligible respect to A21.

The saturation of homogeneously broadened transitions with Lorentzian

profiles gives again a Lorentzian profiles with a FWHM

∆νs = ∆ν0
√

1+S(ν0) (1.23)
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1.1 Molecular spectra detected by laser spectroscopy

and the absorption coefficient results

α(ν) =
α0(ν)

1+S(ν)
(1.24)

with α0(ν) unsaturated absorption coefficient. When a monochromatic

wave of the form given by eq. 1.14 passes through a gas in thermal

equilibrium, only those molecules with a certain velocity vz such that in

their reference frame the wave frequency results in resonance within the

natural width contribute to absorption. The absorption cross section is

given by

σ(ω−ω0− kvz) = σ0
(γ/2)2

(ω−ω0− kvz)2 +(γ/2)2 (1.25)

but even though a hole in the population difference is burned, the ab-

sorption coefficient still shows a Voigt profile (as in the non-saturated

case)

α(ν) =
α0(ν)

1+S(ν0)
(1.26)

and that hole is not detectable.

1.1.6 Saturation spectroscopy

That hole becomes detectable using two counterpropagating beams in

a so-called saturation spectroscopy scheme. The first powerful beam is

called pump beam and indicated by the wave vector ~k1, the second weak

beam is called probe beam and indicated by the wave vector ~k2. The

probe beam is the one which is detected. Many experimental schemes

have been thought and realized, here we will study the one where the

second beam is just obtained from the first one using a partial reflector

(see fig. 1.3).11 Since they are counterpropagating, we have kz2 =−kz1.

Now in the absorption coefficient α(ω) there are two absorption cross-

section contributions, σ(ω−ω0−kvz) and σ(ω−ω0+kvz). If S(ν0)� 1

we have

αs(ω) = α0(ω)

[
1− S(ν0)

2
(γs/2)2

(ω−ω0)2 +(Γs/2)2

]
(1.27)

11The most known are with two frequency independent beams (fix pump and tunable
probe), or with both the beams having the same optical power (e.g. in intracavity
spectroscopy).
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laser
BS

detector

gas cell

pump
beam

probe

Figure 1.3: Saturation spectroscopy scheme. The beam splitter (BS) splits the main
beam in a probe beam (the transmitted one) and a pump beam (the reflected
one). In these conditions the pump beam saturates the sample and a Lamb
dip is observed on the Doppler-broadened absorption profile.

where Γs = (γ+ γs)/2 and γs = γ
√

1+S(ν0). Now the absorption coef-

ficient shows a Lorentzian dip for ω = ω0. In order to understand the

formation of a Lamb dip, we consider that for ω 6= ω0 the pump radia-

tion is absorbed by the class of molecules with the velocity component

vz =+(ω−ω0∓ γs/2)/k, while the probe radiation by the unperturbed

class of molecules with vz =−(ω−ω0± γs/2)/k. For ω = ω0 both the

waves are absorbed by the same class of molecules vz = (0± γs/2)/k,

which is the one having zero component of the velocity along the wave

propagation axis. The pump beam, which is the most intense, saturates

the absorption of the sample for that class and the absorption of the probe

beam is significantly reduced.

Saturation spectroscopy is a very useful technique since it enables the de-

tection of transitions with natural broadening even at room temperature,

but it shows some limitations:

• Whatever chopping technique is used to get rid of the Doppler

background, the whole probe beam intensity is shined on the

detector, limiting the signal-to-noise ratio.

• The shape of the line is Lorentzian, therefore on the center of

the transmission the signal function has a local maximum (or

minimum). For this reason this signal cannot be directly used to

lock a laser.

As we will see, the polarization spectroscopy technique allows to over-

come these limitations.
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1.1 Molecular spectra detected by laser spectroscopy

1.1.7 Polarization spectroscopy

Polarization spectroscopy was reported for the first time in 1976 by

Wieman and Hänsch [35] as an evolution of the standard saturation

spectroscopy. The technique is based on the fact that the pump beam can

also induce a change in the polarization of the probe beam. Again the

two beams come from the same laser, but now, using proper wave plates

and polarizers, the pump is made circularly polarized, while the probe is

linearly polarized.12 We assume that the involved transition is a molecular

ro-vibrational transition belonging to the R or the P branch. If the pump

beam is σ+ polarized, the selection rule on the projection of the angular

momentum J states ∆M =+1. For this reason the pump beam saturates

the transition unbalancing at the same time the population among the

2J+1 degenerate rotational sublevels. In this way the sample becomes

birefringent. The linear probe beam can be thought to be composed of

two balanced circularly polarized components σ+ and σ−. Clearly such

an induced birefringent sample unbalances the two components, resulting

in a probe beam with a rotated polarization. Now, to be able to detect

the probe beam only when the polarization is rotated it is sufficient to

add a polarizer at the end of the path (named analyzer) just before the

detector, with a transmission axis perpendicular to the polarization axis

of the unperturbed probe beam. Clearly the same principle that holds

for saturation spectroscopy still holds in this case. This rotation effect

happens only for those molecules that are simultaneously in resonance

with both the beams (within the natural width), i.e. for those molecules

whose velocity component on the beam direction is zero. This is the fact

that enables Doppler-free detection. To be more quantitative deriving

the polarization signal [40], we start writing the linearly polarized probe

wave as
~E = E0x̂ei(ωt−kz) (1.28)

12As an alternative, the pump beam can be linearly polarized, with the axis 45o

rotated respect to the probe beam. This configuration gives different spectroscopic line
shapes.
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It can be expanded on the two circular polarizations σ+ and σ− as
~E = ~E++~E−, where

~E+ =
1
2

E0(x̂+ i ŷ)ei(ωt−k+z) (1.29a)

~E− =
1
2

E0(x̂− i ŷ)ei(ωt−k−z) (1.29b)

with x̂ and ŷ unit vectors identifying the axis. The σ+-polarized pump

beam causes a non-isotropic saturation of the sample, therefore the

absorption coefficient and the refractive index experienced by the two

polarizations are different. Passing through the sample for a length L the

two polarizations result

~E+ =
1
2

E0(x̂+ i ŷ)ei[ωt−k+L+i(α+/2)L] (1.30a)

~E− =
1
2

E0(x̂− i ŷ)ei[ωt−k−L+i(α−/2)L] (1.30b)

The non-isotropic saturation gives a phase difference

∆ϕ = (k+− k−)L =
ωL
c

∆n (1.31)

where ∆n = n+− n−. Moreover an amplitude difference is also devel-

oped:

∆E =
E0

2

[
e−(α

+/2)L−e−(α
−/2)L

]
(1.32)

After the sample (for z = L) the two polarization components give an

elliptically polarized wave:13

~E(L)= ~E++~E−=
1
2

E0 eiωt e− i[ωnL/c−iαL/2] [(x̂+ i ŷ)e− iΛ+(x̂− i ŷ)e+ iΛ
]

(1.33)

with n = (n++n−)/2, α = (α++α−)/2 and

Λ =
ωL∆n

2c
− i

L∆α

4
(1.34)

If the transmission axis of the analyzer is tilted respect to ŷ of a small

angle ϑ, the transmitted amplitude becomes

Et = Ex sinϑ+Ey cosϑ (1.35)

13For a complete discussion the absorption and the pressure-induced birefringence of
the windows of the gas cell should be considered [40].
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The transmitted amplitude is then

Et = E0 eiωt e− i[ωnL/c−iαL/2](sinϑcosΛ+ cosϑsinΛ)

= E0 eiωt e− i[ωnL/c−iαL/2][sin(ϑ+Λ)]
(1.36)

The detected signal is proportional to the transmitted intensity

S(ω) ∝ It(ω) = cε0EtE∗t (1.37)

The ∆α line profile is Lorentzian, as for saturation spectroscopy, therefore

we can define

∆α(ω) =
∆α0

1+ x2 , with x =
ω0−ω

γs/2
(1.38)

and α0 = α(ω0). The Kramers-Kronig equations (1.10) relate the refrac-

tive index and the absorption coefficient, yielding

∆n(ω) =
c

ω0
∆α0

x
1+ x2 (1.39)

At the end, using eqs. 1.36–1.39 and expanding them considering that all

factors in Λ and the ϑ angle are small, we obtain the detected signal

It(ω)= I0 e−αL
[

ϑ
2+ϑ∆α0 L

x
1+ x2︸ ︷︷ ︸

dispersive

+

(
∆α0 L

4

)2 1
1+ x2︸ ︷︷ ︸

Lorentzian

+
3
4

(
∆α0 x
1+ x2

)2]
(1.40)

Now a dispersive term is present. It is centered around ω0 and its magni-

tude depends on the angle ϑ. Tuning properly this angle, the dispersive

term can be maximized, being greater than the other frequency-dependent

terms. Unfortunately, a constant term proportional to ϑ is present, giving

an unwanted background to the signal. A smart way to get rid of this

background is to rotate the analyzer setting ϑ ≈ π/4, and detect both

the transmitted and the reflected components in a differential-detection

scheme.14 Now

S(ω) ∝ It(ω)− Ir(ω) = I0 e−αL[|sin(ϑ+Λ)|2−|cos(ϑ+Λ)|2] (1.41)

14See fig. 2.1 for a schematic representation and ref. [41] for an application.
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Setting ϑ = π/4 and expanding for Λ� 1 we obtain

S(ω) ∝ 2I0 e−αL Re[Λ] = I0 e−αL
∆α0 L

x
1+ x2 (1.42)

In this way a background-free dispersive signal centered on the transition

is obtained. With this configuration (circular pump) transitions belonging

tho the R or the P branches give more intense signals, while transitions

belonging tho the Q branch give weaker signals.15

1.2 Non-linear phenomena

Non-linear phenomena are at the basis of a large number of optical

techniques and technologies. This section deals with this topic. Firstly,

a general discussion starting with Maxwell’s equations introduces the

non-linear polarization (section 1.2.1). Then, in sections 1.2.2 and 1.2.4

non-linear second-order and third-order phenomena, such as second-

harmonic generation, sum-frequency generation, difference-frequency

generation, third-harmonic generation, four-wave mixing and the Kerr

effect, are introduced, with a side discussion on the phase-matching

condition and bandwidth (section 1.2.3).

1.2.1 Non-linear polarization

Maxwell’s equations can describe the electromagnetic field evolution in

every condition, in vacuum as well as in matter. In the version reported

below [42], they are valid far away from electrical charges and currents:

~∇∧~E =− ∂

∂t
~B (1.43a)

~∇∧ ~H =
∂

∂t
~D (1.43b)

~∇ ·~D = 0 (1.43c)
~∇ ·~B = 0 (1.43d)

where ~E = ~E(~r, t) and ~H = ~H(~r, t) are the electric and the magnetizing

field, respectively. The two vectors ~D = ~D(~r, t) and ~B = ~B(~r, t), respec-

tively the displacement field and the magnetic field, are related to the

15The opposite holds if the pump is linearly polarized.

31
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main fields through the relations

~D = ε0~E +~P (1.44a)

~B = µ~H + ~M (1.44b)

where ~P= ~P(~E) and ~M are the electric polarization vector and the magne-

tization vector respectively, while ε0 is the dielectric constant in vacuum

and µ is the magnetic permeability constant. Since we are going to deal

with non-magnetic samples, we impose ~M = 0.

Usually, in-lab generated fields are way weaker respect to the ones that

bound electrons to molecules. Therefore the polarization vector can be

expanded in series respect to the electric field, yielding

~P = ε0χ(~E)~E = ε0(χ
(1)~E +χ

(2)~E2 +χ
(3)~E3 + . . .) (1.45a)

with χ(~E) dielectric susceptibility and χ(i) = χ(i)(~E) ith susceptibility co-

efficient. The second-order coefficient is non-vanishing only for acentric

crystals, i.e. for crystals without a center of symmetry.

Eq. 1.45a can be expressed in tensorial form16 as follows:

Pk(~r, t) = ε0(χ
(1)
kl El +χ

(2)
klmElEm +χ

(3)
klmnElEmEn + . . .) (1.45b)

where Pk is the kth component of the polarization. The indexes l m n run

over the three spatial coordinates x y z, while

χ
(i)
1,2,...,i+1 =

1
i!ε0

∂iP1

∂E2∂E3 . . .∂Ei+1
(1.46)

For standard dielectric materials the permanent dipole moment is zero.

If in the polarization expression we separate the linear terms in the field

from the non-linear ones we obtain [43]

~P(~r, t) = ε0χ
(1)~E(~r, t)+~P(NL)(~r, t) (1.47)

Combining eqs. 1.43b, 1.44a and 1.47 we obtain

~∇∧ ~H = ε
∂

∂t
~E +

∂

∂t
~P(NL) (1.48)

16Here the Einstein summation convention is adopted. The summation over repeated
indexes is implied.
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with ε = ε0(1+χ(1)). Recalling the identity

~∇∧~∇∧~E = ~∇(~∇ ·~E)−∇
2~E (1.49)

and assuming
~∇ ·~E = 0 (1.50)

the curl of both the terms in eq. 1.43a can be evaluated, obtaining the

wave equation

∇
2~E = µ ε

∂2

∂t2
~E +µ

∂2

∂t2
~P(NL) (1.51a)

In order to simplify the discussion we can assume ~P(NL) ‖ ~E, yielding the

wave equation in scalar form

∇
2E = µ ε

∂2

∂t2 E +µ
∂2

∂t2 P(NL) (1.51b)

We consider now an electric field made of several plane waves, propagat-

ing along the z axis with angular frequencies ωi:

E(z, t) = ∑
i

1
2
[Ei(z) ei(ωit−kiz)+c.c.] (1.52)

Replacing eq. 1.52 in eq. 1.51b we understand how the non-linear term

mixes the components at different frequencies.17

1.2.2 Second-order non-linear phenomena

For the interpretation of second-order non-linear phenomena, only the

second-order term in eq. 1.45 must be considered, as well as only three

plane waves (i = 1,2,3 in eq. 1.52, where i = 2,3 are the sources, i = 1

is the generated one). Evaluating now P(2) we find terms oscillating

at 2ω2 (second-harmonic generation - SHG), ω2 +ω3 (sum-frequency

generation - SFG), and |ω2 −ω3| (difference-frequency generation -

DFG), capable of generating new field at ω1. The relation among the

frequencies is given by the conservation of energy law applied to photons.

Now we can rewrite eq. 1.51b for the field oscillating at ω1 and evaluate

the term ∇2E(ω1) according to eq. 1.52. Neglecting the second derivative

of the field respect to z, and recalling that k2
1 = ω2

1 µ ε1, with ε1 = ε(ω1),

17This mixing takes place since the field is multiplied by itself, therefore terms related
to different frequencies multiplies among each other. See eq. 1.45.
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we obtain
d

dz
E1 =− iω1

√
µ
ε1

d(ω3,ω2)E3E∗2 e− i∆k z (1.53)

where d(ω) is the value of the non-linear constant defined as dlmn =
1
2 ε0χ

(2)
lmn, obtained evaluating the sum over the indexes l,m in eq. 1.45b for

a certain geometry of the involved fields. Eq. 1.53 describes the variation

of the generated field along the generating path. For the other two fields

similar expressions hold, and the three amplitudes are coupled through

the non-linear constants d(ω). Eq. 1.53 by itself can describe second-

order non-linear phenomena as long as the conversion efficiency is low,

i.e. the source fields are not significantly depleted. We now integrate

it assuming that the two fields E2 and E3 hit a non-linear crystal side,

and on that side E1(z = 0) = 0. For the DFG process the conservation of

energy gives

ω1 = ω3−ω2 (1.54)

and we define the phase-mismatch factor as18

∆k = k1− (k3− k2) = k1− k3 + k2 (1.55)

We can now integrate eq. 1.53 along the crystal length l, obtaining

E1(l) =− iω1

√
µ
ε1

d E3E∗2
ei∆k l−1

i∆k
(1.56)

The related intensity is

I(l) = E1(l)E∗1 (l)
√

ε1

µ
=

√
µ
ε1

ω2
1d2

n2
1
|E3|2|E2|2 l2 sin2 (l∆k/2)

(l∆k/2)2 (1.57)

where n1 = n(ω1) = ε1/ε0 is the refractive index of the material.

1.2.3 Phase matching

Eq. 1.57 clearly shows that the generated power is proportional to the

function

sinc2
(

l∆k
2

)
=

sin2(l∆k/2)
(l∆k/2)2 −−−→

∆k→0
1 (1.58)

18For the other processes the phase-mismatch factor is defined in the same way with
just a different distribution of the signs.
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If the phase-matching condition ∆k = 0 is satisfied, the generated power

increases quadratically19 with l, otherwise it simply oscillates with a

spatial period given by lc = π/∆k, the so-called coherence length (see

fig. 1.4). There are two techniques to fulfill the phase-matching condition:
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Figure 1.4: Phase-matching curves. a) Phase-matching curve (eq. 1.58) as a function of
the phase-mismatch factor ∆k, with a fixed crystal length l = L.
b) Generated power (eq. 1.57) as a function of the crystal length l, with dif-
ferent fixed values of the phase-mismatch factor ∆k. The length is expressed
in terms of a reference L0.

• One takes advantage of the natural birefringence of anisotropic

crystals and for this reason it is named birefringent phase matching.

If we consider the case of uniaxial crystals, characterized by a

single symmetry axis, and we consider to hit the crystal with waves

19This result holds since we have considered plane waves. If we consider that the
incident waves are focused Gaussian beams, we obtain that the generated power increases
linearly with l.

35



1.2 Non-linear phenomena

whose wave vectors are perpendicular to that axis, we have that

the waves experience two different refractive indexes, depending

whether the electric field is perpendicular (ordinary polarization)

or parallel (extraordinary polarization) to the symmetry axis. The

first one is the ordinary refractive index no, while the second one

is the extraordinary refractive index ne = ne(ϑ), which depends on

the angle ϑ between the wave vector and the symmetry axis [44].

In order to simplify the discussion we assume that all the wave

vectors are parallel to each other and ki = k(ωi) = ωini/c. Now

the phase-matching condition reads

ω1no(ω1) = ω3ne(ω3,ϑ)−ω2no(ω2) (1.59)

where we have assumed E1 and E2 ordinarily polarized, while E3

extraordinarily polarized. By properly adjusting the angle ϑ the

phase-matching condition can be satisfied.

• The other one, the so-called quasi phase matching, takes advantage

of the possibility of periodically reverting one of the principal

optical axis of the crystal, resulting in a modulation of the sign of

the non-linear constant d. If this modulation has the proper spatial

period Λ = lc, the generated power still oscillates, but increasing

at every oscillation, like a stairs. Formally, we can rewrite the new

phase-matching condition as follows:

∆k′ = k3− k2− k1−
2π

Λ
= 0 (1.60)

Now the parameter that has to be properly chosen is Λ, a construc-

tive feature that can also be slightly adjusted with temperature.

The advantages of the quasi phase matching are an overall higher conver-

sion efficiency and a higher flexibility in reaching the phase-matching

condition.

For these conversion processes, an important parameter that has to

be taken into account is the phase-matching bandwidth, i.e. fixing the

phase-matching condition, how much the frequency of the generated

radiation can be tuned still having an appreciable amount of power.

Supposing that the tunable frequency is ω2, we use eq. 1.54 to rewrite

the phase-mismatch factor (eq. 1.55) expressing it in terms of the other
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two frequencies, obtaining20

ω3(n3−n2)+ω1(n2−n1)−
2πc
Λ

= c∆k (1.61)

with ni = n(ωi). Observing the phase-mismatch function (eq. 1.58

and fig. 1.4), we can assume as a limit for the generation its first zero,

i.e. l∆k/2 = π, yielding for the crystal length L < 2π/∆k = 2lc. The

bandwidth of the generated radiation at ω1 is now obtained subtracting

member by member eq. 1.61, once in phase-matching condition ∆k = 0

and then in the limit condition ∆k = 2π/L, and finally multiplying the

result by 2 since the sinc function is symmetrical. The result is

∆ν1 =
2c

L ∆n21
(1.62)

This result depends only on the difference of the refractive indexes

∆n21 = n2−n1 and the crystal length L.

1.2.4 Third-order non-linear phenomena

For the interpretation of third-order non-linear phenomena, the third-

order term in eq. 1.45 must be considered, as well as four plane waves

(i = 1,2,3,4 in eq. 1.52). The third-order susceptibility χ
(3)
klmn is a fourth-

rank tensor, with 81 elements [45]. For crystals with low symmetry

all the terms are independent and can be nonzero. On the other hand,

for high-symmetry materials the number of independent elements is

significantly reduced. For isotropic materials the independent elements

are only three. Evaluating now P(3) we find terms oscillating at 3ω2

(third-harmonic generation), ω2 +ω3 +ω4 (sum-frequency generation),

and |ω2+ω3−ω4| and permutations (four-wave mixing - FWM), capable

of generating new field at ω1. The relation among the frequencies is

again given by the conservation of energy. With a discussion similar to

the one adopted in section 1.2.2, an expression equivalent to eq. 1.53 can

20Compare eqs. 1.59 and 1.60.
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be retrieved:

d
dz

E1 =− i
ω2

1µε0χ(3)

8k1

[
6E3E4E∗2 e− i∆k z︸ ︷︷ ︸

four-wave mixing

+6E1

(
1
2
|E1|2 + |E2|2 + |E3|2 + |E4|2

)
︸ ︷︷ ︸

Kerr

] (1.63)

For the other three fields similar expressions hold, and the four amplitudes

are coupled through the χ(3) parameter. The four-wave mixing term

comes from the mixing of the other three waves. The factor 6 in front

of it comes from the degeneracy given by the interchangeability of the

three fields. On the other hand, the Kerr term comes from the sum of the

intensities of the other fields and only modifies the propagation constant

of the same wave. It causes the arising of a change of the refractive index

according to the following equation:

n(I) = n0 +n2(I2 + I3 + I4) (1.64)

Eq. 1.63 can be integrated and the intensity can be computed, yielding

a dependency from the phase-mismatch factor ∆k of the same type of

eq. 1.58, with a related phase-matching bandwidth.

1.3 Optical frequency combs

Optical frequency combs (OFCs) are laser spectra made of perfectly

equispaced and locked longitudinal modes. The mode-locking mecha-

nism takes care of turning the group of independent modes into a set of

modes with fixed reciprocal phases and mode spacing. The frequency

components of such a spectrum can then be expressed as follows:

νN = N fs + fo (1.65)

where fs is the spacing, fo is the offset frequency, while N is a large

integer.21 According to eq. 1.65, when mode locking is effective only

two degrees of freedom survive.

21Here we have used the following notation: ν for optical frequencies, f for radio-
frequencies.
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In the following sections the mode-locking mechanism is described in

its versions, the active and passive amplitude-modulation mode locking

(sections 1.3.1 and 1.3.2), and the frequency-modulation mode locking

(section 1.3.3). In order to have a metrological OFC for high-resolution

and precision spectroscopy measurements, it is fundamental to measure

and stabilize both the parameters defined in eq. 1.65. A brief discussion

about this aspect is presented in section 1.3.4.

1.3.1 Amplitude-modulation mode locking

The classical way to achieve mode locking takes advantage of a modu-

lation of intracavity losses. If this modulation is induced by an external

mechanism respect to the lasing, the mode locking is named active. On

the other hand, if the modulation is spontaneous, it is named passive.

In mode-locked operating regime, the lasers emit pulses which are very

short in time,22 and the repetition rate fr is given by the length of the

laser cavity.23 As in any optical resonator, the laser mode spacing is

given by

fs =
c

rnL
(1.66)

where n is the refractive index and L is the length of the cavity. The

factor r depends whether the laser cavity is linear (r = 2) or ring (r = 1).

For pulsed mode-locked lasers the equality fs = fr holds.

In order to explain the mode-locking mechanism [46], we start expressing

the intracavity electric field at any fixed point as

E(t) =
+m/2

∑
i=−m/2

Ei ei[2π(ν0+i fs)t+ϕi] (1.67)

where m is the total number of lasing modes, while ν0 is the carrier

frequency. ϕi is the phase of the i-th mode. An important property of

E(t) expressed in these terms is its periodicity in Tr = 1/ fs, the round-trip

22Usually the pulse width is on the scale of picoseconds and can reach the femtosec-
onds level.

23Usually the pulse repetition rate spans from hundreds of megahertz to few tens of
gigahertz.
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transit time within the cavity:

E(t +Tr) = ∑
i

Ei ei[2π(ν0+i fs)(t+1/ fs)+ϕi]

= ∑
i

Ei ei[2π(ν0+i fs)t+ϕi] ei2π(ν0/ fs+i)︸ ︷︷ ︸
=1

= E(t)

(1.68)

because ν0/ fs is an integer. This result holds as long as the phases ϕi are

fixed. The mode-locking mechanism takes care of keeping these phases

fixed. A particular form of mode locking consist in having all the phases

vanishing24 (ϕi = 0). Moreover, taking Ei = E0, eq. 1.67 gives

E(t) = E0

+m/2

∑
i=−m/2

ei2π(ν0+i fs)t = E0 ei2πν0t sin(mπ fst)
sin(π fst)

(1.69)

The laser output power is proportional to

P(t) ∝ |E(t)|2 = E2
0

sin2(mπ fst)
sin2(π fst)

(1.70)

A number of properties can be inferred from eqs. 1.69 and 1.70:

• The emitted power is made of a train of pulses with a periodicity

Tr = 1/ fs.

• The peak power is equal to m times the average power.

• The peak field amplitude is equal to m times the single-mode

amplitude.

• The individual pulse width, defined as the time difference between

the peak and the first zero, is

τ0 =
Tr

m
=

1
m fs
≈ 1

∆v
(1.71)

where ∆ν is the laser gain bandwidth.

A schematic is reported in fig. 1.5. This discussion shows what happens

at a fixed position. Considering what happens along the laser cavity, we

24Actually this corresponds to have all the phases equal, then this unique phase can
be reabsorbed without any loss of generality.
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Figure 1.5: In this figure comb pulses generated by an ideal laser with 9 and 19 locked
modes lasing are depicted. a) Optical pulses in time domain. b) Related
modes in frequency domain.

have a traveling pulse passing at a certain position every ∆t = Tr, with a

spatial length

l0 ≈ c τ0 = c
Tr

m
=

rnL
m

(1.72)

Despite what stated by eq. 1.70, the actual shape of the pulses is usually

close to – and it is always approximated with – a Gaussian bell.25

In order to understand how a modulation of the losses can lock the

phases of the modes in a laser having inhomogeneously-broadened gain26

[43], we have to start from the analysis of Maxwell’s equations (eq. 1.43).

It is important to note that the periodicity of the modulation has to be

close to the round-trip transit time. We consider eq. 1.43a as it is, while in

eq. 1.43b we introduce gain and periodic losses through a time-dependent

conductivity σ(~r, t) as follows:

~∇∧ ~H = σ(~r, t)~E + ε
∂

∂t
~E (1.73)

Replacing ~H in eq. 1.73 using eq. 1.43a, and recalling as usual eqs. 1.49

and 1.50, we obtain the wave equation

∇
2~E−µσ(~r, t)

∂

∂t
~E−µε

∂2

∂t2
~E = 0 (1.74)

25This result comes from the property of the Gaussian shape. Combined with the
quadratic approximation for the gain medium, multiplying the Gaussian pulse spectrum
by the gain function using the quadratic expansion, a new Gaussian pulse with a modified
pulse parameter is obtained. In other words, the Gaussian pulse tends to maintain its
Gaussian shape after each round trip.

26This means that the laser, increasing the pumping, spontaneously operates in
multimode regime.
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where we have considered σ(~r, t) slowly-varying compared to ~E. First of

all we solve eq. 1.74 for σ = 0. The simplest solution within a cavity of

length L is a set of plane waves, where ~E(~r, t) = x̂E(z, t), with

E(z, t) = ∑
i

ai ei2πni fsz/c ei2πi fst (1.75)

where the complex formalism is adopted. Since c2 = 1/(µε), each term in

eq. 1.75 satisfies eq. 1.74 with σ= 0, and the same holds for the total field

E(z, t) for any arbitrary choice of the mode amplitudes ai. Considering

now σ(~r, t) 6= 0, the field solution given by eq. 1.75 no longer satisfies

eq. 1.74, but we can still use the complete and orthonormal basis function

set ei2πni fsz/c to expand the field at any time t at a position 0 < z < rL.

The expression is the same as eq. 1.75 but with ai→ ai(t). Here the factor

ai(t)ei2πi fst is merely seen as the Fourier series expansion coefficient of

the field at time t, i.e.

E(z, t) = ∑
i

bi(t)Ei(z) (1.76a)

Ei(z) = ei2πni fsz/c (1.76b)

bi(t) = ai(t)ei2πi fst (1.76c)

The basic difference respect to the case σ = 0 is that now the coefficients

ai(t) are no longer arbitrary and are related to each other, as imposed by

eq. 1.74. Replacing eq. 1.76 in eq. 1.74 we obtain

∑
i

{
ai(t)

[
∇

2~Ei +µε(2πi fs)
2~Ei

]
− [µσ(~r, t)+2iµε2πi fs]~Ei

∂

∂t
ai+

− i2πi fsµσ(~r, t)ai~Ei

}
ei2πi fst = 0

(1.77)

The sum of the first two terms vanishes according to eq. 1.74 with σ = 0.

Moreover we have to consider that σ/ε� i fs.27 At the end we obtain

∑
i

~Ei
dai

d t
ei2πi fst =−∑

i
ai

σ(~r, t)
2ε

~Ei ei2πi fst (1.78)

27This is equivalent to state that the frequency spacing among the modes is much
greater than the modes linewidth.
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In this discussion, σ(~r, t) represents both the time-independent average

loss as well as the periodic loss modulation, yielding the mode locking.

Therefore we express it as

σ(~r, t) = σ0 +σm f (~r)
(
ei2π fmt +e− i2π fmt)/2 (1.79)

where fm is the modulation frequency and σm a real constant. Replacing

σ(~r, t) in eq. 1.78, then dot-multiplying both sides by ~E j(~r) (namely

the same set of modes, but indexed independently) and integrating over

the resonator volume, considering the orthonormality of the waves, we

obtain

ei2πiν jt d
d t

a j =−ei2πiνit σ0

2ε
ai−∑

i
Si j

σm f (~r)
(
ei2π fmt +e− i2π fmt

)
4ε

ai ei2πiνit

(1.80a)

Si j =
∫

Vresonator

f (~r) ~Ei ·~E+
j dV (1.80b)

For σm = 0 (no modulation) we have

ai(t) = ai(0)e−σ0t/(2ε) (1.81)

giving that ε/σ0 is the decay time, that approaches infinity since in lasers

the gain compensates for the losses within a bandwidth given by the

inverse of the laser transition lifetime. Therefore we can assume σ0 = 0

and eq. 1.80a becomes

d
d t

a j =−∑
i

Si jσm

4ε
ai
(
ei2π fmt +e− i2π fmt)ei2π(i− j) fst (1.82)

For sustained interaction the sum of the terms [(i− j) fs± fm] must be

close to zero, i.e. the modulation frequency must be almost equal to the

difference of two cavity modes. We introduce therefore the detuning as

∆ = 2π( fs− fm) (1.83)
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Keeping only the two synchronous terms on the right side of eq. 1.82,

which correspond to i = j+1 and i = j−1, we obtain

d
d t

ai = κai+1 ei t∆+κai−1 e− i t∆ (1.84a)

κ =
Si,i+1σm

4ε
(1.84b)

At this point we note that the effect of the modulation is reduced to

a simple coupled mode equation. As stated by eq. 1.80b, because of

the orthogonality of the modes, f (~r) = constant would imply κ = 0,

meaning that the modulation has to be non-uniform along the laser cavity.

To simplify the discussion we introduce the quantity

ci(t) =− i ei it∆ e− i iπ/2 ai(t) (1.85a)

ai(t) = ici(t)e− i it∆ e+ i iπ/2 (1.85b)

yielding

i
d
d t

ci + ici∆ =−κci+1 +κci−1 (1.86)

The steady state solution (dci/d t = 0) of this equation is

ci = Ii

(κ
∆

)
(1.87)

where Ii is the hyperbolic Bessel function (or modified Bessel Function)28

of order i. For the Bessel function, in the limit κ/∆� 1, we have

Ii(κ/∆)→ (2πκ/∆)−1/2, yielding as original modes amplitudes

ai(t) = i
e− i i(t∆−π/2)√

2πκ/∆
(1.88)

The total laser field (eq. 1.76) is then

E(t) = ∑
i

i
ei iπ/2√
2πκ/∆

e− i2πi fmt (1.89)

The laser field is no longer made of independent modes, it has to be

expressed as a superposition of modes with fixed amplitudes, phases and

frequencies, a so-called supermode. The spacing between the modes is

given by fm, even though this value has to be close to the natural mode

28The relation that links the hyperbolic Bessel functions to the standard Bessel
functions is Ii(x) = i−i Ji(ix).
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spacing.

The former discussion holds for lasers having inhomogeneously-broadened

gain. Ideal lasers having homogeneously-broadened gain do not operate

spontaneously in multimode regime. However, in that case the modula-

tion itself generates the side modes starting from the carrier and bringing

them above threshold.

1.3.2 Passive mode locking

A number of fast actuators, such as acousto-optic modulators [47] or

semiconductor elements, have been used to actively mode-lock different

types of lasers. However, the best performances in terms of pulse short-

ness and peak energy are proper of passively mode-locked lasers. In order

to have a spontaneous modulation of the losses, non-linear effects within

the laser cavity have to take place. For example, the insertion within

the laser cavity of a saturable-absorber element favors pulse operation

than continuous-wave one, since the pulse, due to its highly-concentrated

energy, saturates the absorbing element, experimenting lower losses than

the continuous-wave radiation would do. In order to have a stable pulsed

regime, the laser dynamics has to be regulated by properly temporized

phenomena. We define Tsat as the saturable absorber recovery time and

Tg as the laser transition (gain) recovery time. To generate short and

high-energy pulses, the recovery constants have to be Tsat < Tr < Tg, i.e.

the saturable absorber has to recover faster than the cavity round-trip

time,29 while the gain has to recover more slowly. According to the

type of laser, examples of used saturable absorbers are dilute solutions

of organic dyes [48], or appropriate molecular gases, or semiconduc-

tor materials. An interesting approach consist in the use of SESAMs –

intracavity semiconductor saturable absorber mirrors [49].

The optical Kerr effect constitutes a valid alternative to the saturation

as spontaneous phenomenon that ensures a modulation of the losses

(see section 1.2.4). It is commonly exploited for example to phase-lock

Ti:sapphire lasers. In this case we consider eq. 1.90 where the non-linear

refractive index seen by the lasing beam depends on the beam intensity

itself:

n(I) = n0 +n2I (1.90)

29See [48] for an example.
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Usually n2 > 0. Considering the transverse intensity profile of a Gaussian

beam [50]

I(r) =
2P

πw2 e−2r2/w2
(1.91)

where P is the total power in the beam, r is the radial distance from the

beam axis (center) and w is the waist. Now, replacing this intensity shape

in eq. 1.90, we obtain a differential refractive index profile

∆n(r) = n2
2P

πw2 e−2r2/w2
(1.92)

At this point we expand ∆n(r) around r = 0 obtaining

∆n(r) = n2
2P

πw2

(
1− 4r2

w2

)
(1.93)

If we think in terms of optical path L = nL when a beam passes through

an optical element, it is completely equivalent to assign the radial vari-

ation to the refractive index or to the physical length, namely L(r) =

n(r)L = nL(r). But an optical element with a thickness varying with r as

eq. 1.93 is nothing more than a focusing lens. This discussion shows that

every Gaussian beam passing through a Kerr medium tends to self-focus.

Moreover, we have to consider that due to the longitudinal intensity pro-

file of a pulse, this effect is much more intense for the core of the pulse

than for the wings. If we insert an aperture in the laser cavity, we can

think to align the cavity in a way that for the continuous-wave operating

regime the losses are high, while for the pulsed regime, thanks to the

Kerr effect, the losses are lower. In this conditions the mode-locking

operation is similar to passive mode-locking in solid-state lasers with

a fast saturable absorber. For lasers pumped by other lasers, the finite

transverse profile of the pump beam within the active medium constitutes

by itself a soft aperture. The dynamic equation describing the interplay

among non-linear refractive-index variation, diffraction, and transversely-

varying gain (due to the pump beam profile) is expressed in terms of

slowly-varying field amplitude E(x,y,z) as [51]

∂

∂z
E +

i
2k

(
∂2

∂x2 E +
∂2

∂y2 E
)
= ge−2r2/w2

p E + iκ|E|2E (1.94)

with r2 = x2 + y2. κ = n2k/n0 is the Kerr effect coefficient, wp is the

pump-beam size (1/e amplitude), g = g0/(1+S) is the saturated gain,
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and S = 2P/(πw2Is) is the gain-saturation parameter, with P and Is, the

average power and the saturation intensity, respectively. Solving eq. 1.94

shows that through the Kerr effect and the transversely-varying gain,

the laser-beam parameters become power dependent, giving rise to the

spontaneous modulation that ensures the mode locking.

1.3.3 Frequency-modulation mode locking

Another relevant way of reaching an operating regime where the phases

of the modes are related takes advantage of frequency modulation. For

this case, a discussion similar to the one shown in section 1.3.1 holds.

In order to take into account a pure frequency modulation, in eq. 1.79

the constant σm has to be taken pure imaginary. As a consequence, the

solution of eq. 1.86 is now the standard Bessel function Ji. Again the

spectrum of the field is made of a comb of frequencies (eq. 1.89) but now

the laser output amplitude is constant, no pulses are emitted.

1.3.4 Frequency-comb parameters control

Eq. 1.65 shows that in mode-locking conditions only two degrees of

freedom survive. In order to have a metrological30 OFC it is fundamental

to measure and stabilize both fs and fo [52]. Observing the emitted

radiation with a fast-enough detector,31 the beat-note signal coming from

the beating between the adjacent modes can be detected. This beat note

corresponds to fs. This parameter depends on the cavity length, therefore,

comparing fs with a local oscillator,32 a phase-locked loop can be imple-

mented to control this parameter acting for example on a piezoelectric

actuator mounted on a laser-cavity mirror.

Managing fo is less trivial. First of all, the simplest and more widespread

method for measuring this quantity requires an octave-spanning OFC

spectrum.33 The low-frequency portion of the spectrum has to be frequency-

doubled in a non-linear crystal through the SHG process (see section 1.2.2)

30Here metrological means useful for measuring absolute frequencies with a high
accuracy (of the order of 10−12).

31The detector bandwidth has to be larger than fs.
32The local oscillator can be itself referenced to the primary Cs-clocks standard,

providing an absolute reference for the whole system.
33This means that within the spectrum both the frequencies νN and ν2N have to be

present.
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and beaten with the high-frequency portion of the spectrum.34 The beat-

note signal oscillates at

2νN−ν2N = 2N fs +2 fo−2N fs− fo = fo (1.95)

Even less trivial is controlling fo. A common practice adopted in solid

state lasers consists in trying to drive the laser in a regime where fo de-

pends on the pump power. In these conditions, fine acting on the power,

the parameter can be controlled.

In order to have a real metrological OFC, both fs and fo have to be

stabilized against a common oscillator referenced to a primary standard,

such as a Cs atomic clock.

1.4 Laser emission noise

As a first approximation, the electric field emitted by a laser can be

described by a plane wave with a well defined frequency (eq. 1.14).

Actually, due to both fundamental and technical reasons, it is physiologic

that the field emitted by real lasers undergoes random amplitude and

phase fluctuations, therefore it is better described as follows:

E = Re
[
E0(t)ei[ω0t+ϕ(t)]

]
(1.96)

where E0(t) and ϕ(t) are slowly-varying quantities, such that

d
d t

E0(t)/〈E0〉 � ω0 (1.97a)

d
d t

ϕ(t)� ω0 (1.97b)

These fluctuations are generally defined as noise.

In the following sections the noise in laser sources is described. Firstly,

in section 1.4.1 the noise spectral density is introduced. Then, in sec-

tion 1.4.2 the noise due to the spontaneous emission is discussed, with its

implications in terms of phase/frequency noise (section 1.4.3). Moreover,

in section 1.4.4 the frequency noise quantum limit due to the spontaneous

34A proper compensation line on one of the two arms has to be implemented in order
to compensate for the delay that the pulses on one way can accumulate respect to the
other one.
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emission is presented. Finally, in section 1.4.5 1/ f frequency noise is

discussed.

1.4.1 Noise spectral density definition

In eq. 1.96, both the quantities E0(t) and ϕ(t), henceforth indicated

generally as A(t), can be split in a constant component and a time varying

part with zero mean value [53], that is the noise, as follows:

A(t) = 〈A〉+δA(t) (1.98)

Since we are considering stationary and ergodic noise processes, the

mean value denoted with 〈 〉 may either refer to the ensemble average or

to the average on time

〈A〉= lim
t ′→∞

1
t ′

∫ t0+t ′

t0
A(t)d t (1.99)

The noise may be described in the time domain in terms of its autocorre-

lation

ρA(τ) = 〈δA(τ) δA(t− τ)〉 (1.100)

The noise may be also described in the frequency domain in terms of

noise power spectral density (NPSD)

NPSDA( f ) = 〈|∆A( f )|2〉=
∫ +∞

−∞

ρA(τ)e− i 2π f τ dτ

= lim
t ′→∞

1
t ′

∣∣∣∣∫ t ′

0
δA(t)e− i 2π f t d t

∣∣∣∣2 (1.101)

NPSDA( f ) and ρA(τ) form a Fourier transform pair,35 so that the inverse

Fourier transform gives

ρA(τ) =
∫ +∞

−∞

NPSDA( f )e− i 2π f τ d f (1.102)

∆A( f ) may be seen as the δA(t) Fourier transform. Combining eqs. 1.100–

1.102 δA(t) mean square can be expressed in terms of NPSDA( f ) as36

〈δA2(t)〉= ρA(0) =
∫ +∞

−∞

NPSDA( f )d f =
∫ +∞

−∞

〈|∆A( f )|2〉d f (1.103)

35This is stated by the Wiener-Khintchine theorem.
36This is stated by the Parseval’s theorem.
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In order to account for the probability that a noise signal exceeds a certain

value, the probability density function is introduced. Its normalization is∫ +∞

−∞

p(δA) d(δA) = 1 (1.104)

and δA nth moment is defined as

〈δAn(t)〉=
∫ +∞

−∞

p(δA)δAn d(δA) (1.105)

With n = 2 eq. 1.105 is an alternative definition of δA mean-square value.

Considering an infinite number of noise processes with different statistics,

for the central limit theorem a Gaussian probability density function is

obtained:

p(δA) =
1√

2π〈δA2〉
e−δA2/(2〈δA2〉) (1.106)

1.4.2 Spontaneous emission noise

The spontaneous emission noise is the fundamental noise contribution

in laser emission. In order to include the spontaneous emission into the

classical rate equations, a factor Esp(t) has to be added, yielding

d
d t

E(t) =
[

i(ω−ω0)+
G−1
2τph

]
E(t)+Esp(t) (1.107)

where ω0 is the central optical frequency, τph is the photon lifetime in the

laser cavity, and the normalized gain is defined as G = Rstτph, with Rst

stimulated emission coefficient. Since the spontaneous emission extends

over a large frequency range, its noise contribution can be considered as

white, i.e. constant in frequency, with an autocorrelation function

〈Esp(t) E∗sp(t− τ)〉= Rδ(τ) (1.108)

where R is a constant to be determined according to a quantum me-

chanical discussion, and δ(τ) is the Dirac delta function. Spontaneous

emission can be treated as thermal light, where photons are emitted in a

very large number of uncorrelated processes with different statistics. As

a consequence, Esp exhibits a Gaussian probability density function as in

eq. 1.106, both for the real and the imaginary part. Eq. 1.107 can be split
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in a part for the normalized intensity S, defined as

E(t) =
√

S(t) eiϕ(t) (1.109)

and one for the phase. For the intensity we start from d
d t S= d

d t [E(t)E
∗(t)]

and then we use eq. 1.107, while for the phase we start from d
d t ϕ =

Im[E∗(t) d
d t E]/S(t) and then again eq. 1.107, yielding

d
d t

S =
S

τph
(G−1)+2Re[Esp(t) E∗(t)] (1.110a)

d
d t

ϕ = (ω−ω0)+
1
S

Im[Esp(t) E∗(t)] (1.110b)

Since the laser acts as an amplifier for the spontaneous emission, E(t)

do depend on Esp, yielding

〈Esp(t) E∗(t)〉= R
2

(1.111)

and then, eq. 1.110a can be rewritten as

d
d t

S =
S

τph
(G−1)+R+FS(t) (1.112)

where FS(t) is the related Langevin noise source, and R = KtotRsp, with

Ktot and Rsp enhancement factor and spontaneous emission coefficient,

respectively. Comparing eqs. 1.110a and 1.112 and recalling eq. 1.109,

we obtain

FS(t)≈ 2Ex(t)
√
〈S〉 (1.113)

In particular

Ex(t)≈ Re
[
e− iϕ(t) Esp(t)

]
(1.114a)

and

Ey(t)≈ Im
[
e− iϕ(t) Esp(t)

]
(1.114b)

represent two independent zero-mean-value Gaussian processes with

equal autocorrelation function

〈Ex(t)Ex(t− τ)〉= 〈Ey(t)Ey(t− τ)〉 (1.115)
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and

〈Esp(t)E∗sp(t− τ)〉= 2〈Ex(t)Ex(t− τ)〉= Rδ(τ) (1.116)

yielding

〈FS(t)FS(t− τ)〉= 2R〈S〉δ(τ) (1.117)

For the phase as well a Langevin noise source can be introduced:

d
d t

ϕ = (ω−ω0)+Fϕ(t) (1.118)

where Fϕ(t) is given by

Fϕ(t)≈
Ey(t)√
〈S〉

(1.119)

with autocorrelation function

〈Fϕ(t)Fϕ(t− τ)〉= Rδ(τ)

2〈S〉
(1.120)

FS and Fϕ as well represent two independent Gaussian noise processes

with zero mean value.

1.4.3 Phase/frequency noise and related emission spectrum

Phase (or frequency) noise is particularly important for laser sources since

it determines the finite linewidth of the emitted radiation. The following

discussion will show how to relate phase and frequency noise to the

power spectrum.37 We consider again eq. 1.109 for the slowly-varying

complex field amplitude. Phase noise is related to the fluctuations of ϕ(t).

For the discussion it is worth introducing the instantaneous frequency
...
ϕ = d

d t ϕ, which represents the deviation from the central frequency ω0.

We define the phase difference and the instantaneous frequency difference

as

δϕ = ϕ−〈
...
ϕ〉t (1.121a)

δ
...
ϕ =

...
ϕ−〈

...
ϕ〉 (1.121b)

so that the latter has a zero mean value and the laser radiation mean

frequency is 〈ω〉 = ω0 + 〈
...
ϕ〉. Clearly, even for δ

...
ϕ(t) eq. 1.101, with

37Here with power spectrum we mean the distribution of the laser power in frequency
domain around the carrier frequency ω0 = 2πν0.
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NPSDA( f ) = NPSD ...
ϕ
( f ) = FNPSD( f ), holds.

In interferometric setups the phase difference for a delay τ can be ob-

served38

〈∆ϕ
2〉= 〈[δϕ(t)−δϕ(t− τ)]2〉= τ

2

∫
+∞

−∞

FNPSD( f )
sin2(2π f τ/2)
(2π f τ/2)2 d f

(1.122)

Knowing this phase difference it is possible to evaluate the autocorrela-

tion function of the field amplitude. Neglecting the intensity noise, the

field and its autocorrelation are expressed as

E(t) =
√
〈S〉ei[δϕ(t)+〈

...
ϕ〉t] (1.123)

〈E(t)E∗(t− τ)〉= 〈S〉ei〈
...
ϕ〉τ〈ei∆ϕ〉 (1.124)

Recalling the series expansion of the exponential function and using the

Gaussian moment theorem [54], it can be proven that

〈ei∆ϕ〉= e〈∆ϕ2〉/2 (1.125)

At this point the power spectrum is obtained by evaluating the Fourier

transform of the autocorrelation function:

WE(∆ν) =
∫ +∞

−∞

〈E(t)E∗(t− τ)〉ei2πτ∆ν dτ (1.126)

where ∆ν = ν− 〈ν〉. Alternatively, introducing the one-side Fourier

transform and the one-side FNPSD( f ) we obtain Elliott’s equation

WE(∆ν) = 〈S〉
∫

∞

0
dτ cos(2πτ∆ν) e−Z(τ) (1.127a)

with

Z(τ) = 2

∫
∞

1/T
d f FNPSD( f )

[
sin(π f τ)

f

]2

(1.127b)

where T is the time scale on which the FNPSD( f ) has been acquired.

This is a general result: having the frequency noise spectral density

FNPSD( f ) acquired on a certain time scale T , the power spectrum on

that time scale can be computed.

38See [54] for a comparison.
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1.4.4 Quantum noise limit

The case of white frequency noise, i.e. a flat FNPSD, is particularly

important, since the frequency noise due to spontaneous emission is of

this type. In this case eq. 1.122 gives

〈∆ϕ
2〉= |τ|FNPSD = 2

|τ|
tc

(1.128)

where tc is the coherence time. Since the variance of the phase difference

increases with time, and the coherence decreases, tc is an estimation of

the time delay in which the radiation can interfere with itself. Applying

eqs. 1.126–1.128 for this case we obtain

WE white(∆ν) =
〈S〉

π2 FNPSD
1

1+
( 2 ∆ν

π FNPSD

)2 (1.129)

The shape of the power spectrum is Lorentzian, with a FWHM of 2 ∆ν =

π FNPSD, value that is independent of the acquisition time scale T . This

width is named intrinsic linewidth.

In order to obtain the white FNPSD given by the spontaneous emission,

we recall eq. 1.101 for the phase (eq. 1.118) and considering only the

Langevin force term for the autocorrelation (eq. 1.120) we obtain

FNPSDS-T =
R

2〈S〉

∫ +∞

−∞

δ(τ)e− i 2π f τ dτ =
R

2〈S〉
≈

Ktotnsp

2τph〈S〉
(1.130)

where nsp = Rsp/Rst is the ratio between the spontaneous emission and

the stimulated emission coefficients. This is the lowest noise level for a

laser, set by the quantum nature of the emission. It is essentially given by

the ratio of the spontaneous photons to the stimulated ones, and for these

reason it shows a 1/P dependency, where P is the optical power emitted

by the laser. This result was firstly obtained by Schawlow and Townes

in 1958 [55]. For semiconductor lasers it was clear since the beginning

that this expression could not reproduce the data. The prediction was

always underestimated. In 1982 Henry realized that for semiconductor

lasers this discussion is incomplete, since it neglects the intensity noise

contribution to the frequency noise.39 Therefore he proposed to add a

39This contribution is due to the intensity noise which modulates the population and
therefore the gain. Eq. 1.10 tell that to a modulation of the gain corresponds a modulation
of the refractive index and, as a consequence, a modulation of the frequency.
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factor αE and a function H( f ) to account for this phenomenon [56], such

that

FNPSDS-T-H =
Ktotnsp

2τph〈S〉
(α2

E |H( f )|2 +1) (1.131a)

with

H( f ) =
1

(i f/ frx)2 + i f/ fd +1
(1.131b)

where frx is the relaxation resonance frequency and fd the damping

frequency. The αE parameter is for standard bipolar semiconductor

lasers of the order of 3 . . .7.

1.4.5 1/ f frequency noise

At low frequencies the FNPSD of common free-running lasers exhibits a

1/ f trend. This contribution is named flicker noise and it is independent

on the emitted power. In this case we can write

FNPSD( f ) =
f 2
FL

f
(1.132)

where fFL is the characteristic frequency determining the magnitude of

this type of noise. Here it is important to work with the one-side FNPSD.

Moreover we underline that to measure the FNPSD for f → 0 a time

T → ∞ would be required. Since in practical cases T is always finite, the

integral in eq. 1.122 (as in eq. 1.127b) can be evaluated from 1/T to +∞

avoiding the divergence. Considering τ/T � 1 and replacing τ→ tc in

the logarithm in the result, we finally obtain

〈∆ϕ
2〉 ≈ τ

24π f 2
FL ln

(
5T
tc

)
(1.133)

Since the dependence on τ is quadratic, a Gaussian autocorrelation func-

tion for the field is obtained (eqs. 1.124 and 1.125). Finally, using

eq. 1.126, a Gaussian power spectrum is obtained:

WE 1/ f (∆ν) = 〈S〉
√

2
4 fFLl

e−
[
∆ν

/(
fFLl
√

2ln2/π

)]2

(1.134)

with l =
√

ln(5T/tc). In this case the width of the obtained spectrum

does depend on the acquisition time scale T . As shown in fig. 1.6, if

a FNPSD is made of a 1/ f part (at low frequencies) and of a white

noise one (at high frequencies), 〈∆ϕ2〉 is given by the sum of the two

55



1.5 Quantum cascade lasers

1 1 0 1 0 0 1 k 1 0 k 1 0 0 k 1 M 1 0 M 1 0 0 M
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 0 1 0

- 5 0 0 k - 2 5 0 k 0 2 5 0 k 5 0 0 k

 

FN
P

S
D

 (H
z2 /H

z)

f r e q u e n c y  ( H z )

1 / f

 

 

in
te

ns
ity

 (a
.u

.)

f r e q u e n c y  ( H z )

2 5 5  k H z

Figure 1.6: In this graph a typical laser FNPSD is depicted. The FNPSD is made of a
1/ f part and a white noise one, the latter due to the spontaneous emission
(intrinsic noise).
Inset: Laser power spectrum (centered around the carrier optical frequency
ν0) related to the shown FNPSD. It has been computed solving numerically
eq. 1.127. The curve is a Voigt function, given by the convolution of the
white-noise Lorentzian contribution and the 1/ f Gaussian contribution.

contributions, and the resulting power spectrum is the convolution of a

Lorentzian and a Gaussian function (Voigt profile), each of them with its

own width.

1.5 Quantum cascade lasers

Quantum cascade lasers (QCLs) are current-driven semiconductor lasers

based on intersubband transitions in quantum wells. To date they are

the best-performing lasers in the mid-infrared and terahertz wavelength

region, in terms of reliability and power combined with tunability. For

this reason they are fundamental tools for molecular spectroscopy.

In the following sections QCLs realization and operation are briefly de-

scribed. Firstly, in section 1.5.1 an introduction on the basic operating

principles is given. Then, in section 1.5.2 the fabrication process is de-

scribed. The nowadays-adopted solutions for having broad-gain devices,

which ensure wide single-mode tunability or wide multimode spectra, are
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1.5 Quantum cascade lasers

presented in section 1.5.3. Finally, in section 1.5.4 the QCLs capability

of generating frequency combs is discussed, together with their peculiar

mode-locking mechanism.

1.5.1 Fundamentals

The first proposal of such a device was made by Kazarinov and Suris in

1971 [57]. The proposed semiconductor active region is a superlattice

made of uniform wells. The idea is very simple as well as intriguing, but

unfortunately the structure proved to be electrically unstable. The first

working QCL, realized at Bell Labs by Faist and co-workers in 1994 [13],

is based on a complex superlattice made of different cells, each of them

made of a series of quantum wells. In particular, each cell (or period) is

divided into two regions, a gain region and a relaxation-injection region

(see fig. 1.7).

• In the gain region a population inversion is maintained by the

current flux due to the externally-applied electric field. Here three

levels, which are sublevels of the electronic conduction band, are

present. The electrons are injected in level 3 (the highest in energy)

and the population inversion is maintained between level 3 and

level 2.

• The adjacent relaxation-injection region must essentially drive the

electrons from level 1 of the preceding gain region to level 3 of

the following one, matching the energies. The transition occurs

through resonant tunneling. A portion of this region is doped with

electron donors, in order to provide the carriers.

The structure is organized in an alternate cascade of relaxation-injection

and gain regions in a number that spans from 10 to 100. The externally-

applied electric field provides the needed potential energy to the electrons.

The advantages of this cascade structure are the decreasing of the popula-

tion density required for each individual gain region, with the consequent

reduction of the threshold current density, and the possibility of recycling

the same electrons for many transitions. In principle, each electron can

generate as many photons as the gain regions are.

In order to understand the essential behavior of a QCL, we consider the
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Figure 1.7: Schematic of the band structure of a QCL. The scheme shows a three-
quantum-well vertical-transition design. Two periods are shown. Together
with the superlattice, the square moduli of the electronic wavefunctions are
depicted. The overall slope is given by the externally-applied electric field.
The thick arrows denote the flow of the electrons, while the thin wavy arrows
denotes the laser transition. g denotes the ground-state miniband in the
relaxation-injection region.
Moreover, a TEM micrograph of a clived cross-section of an active region
of the same type is shown. Light regions are AlInAs barriers, while dark
regions are GaInAs wells.
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rate equations for the three-levels system [58]:

d
d t

n3 =
J
e
− n3

τ3
−Sgc(n3−n2) (1.135a)

d
d t

n2 =
n3

τ32
+Sgc(n3−n2)−

n3−n2 the

τ2
(1.135b)

d
d t

S =
c
n

{
[gc(n3−n2)−αtot]S+β

n3

τsp

}
(1.135c)

where n3 and n2 are the upper and lower sheet densities per period (in

cm−2), S is the photon flux per unit active region width (in cm−1s−1),

τ3 and τ2 are the total lifetimes of state 3 and 2 respectively, τ32 is the

nonradiative relaxation time from level 3 to level 2, τsp is the spontaneous

emission lifetime, n2 the is the thermal population of level 2, β is the

fraction of spontaneous photons emitted within the lasing mode, gc

is the gain cross section, e is the electron charge, n is the effective

refractive index, J is the current density, and αtot are the total losses, due

to the mirrors and the waveguide. Neglecting the amplified spontaneous

emission, the behavior below threshold can be obtained by eq. 1.135 by

setting the time derivatives and S to zero. From eq. 1.135a we obtain n3 =

Jτ3/e, and using this result in eq. 1.135b we obtain for the population

inversion

∆n = n3−n2 =
Jτe f

e
−n2 the (1.136)

with τe f = τ3(1− τ2/τ32). Note that the population inversion takes place

only if τ2 < τ32. The threshold current density is reached when the modal

gain gc∆n compensates for the losses αtot:

Jthr = e
αtot/gc +n2 the

τe f
(1.137)

Above threshold the gain is clamped and S increases linearly with J. The

slope efficiency is obtained again from eq. 1.135 by setting the derivatives

to zero and differentiating over J:

d
d I

P = hναm1
d

dJ
P =

hν

e
αm1

αtot

τe f

τe f + τ2
(1.138)

where αm1 are the front mirror losses, P the optical power emitted by the

laser and I is here the current flowing thorough the active medium.
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1.5.2 Growth, processing and mounting

The first step in QCLs fabrication is the growth of the active medium,

i.e. the deposition of the layers that constitute the superlattice. The

used technique is molecular beam epitaxy (MBE), that enables the de-

position of thin layers of material in a fully-controlled way. The MBE

machine is essentially a thermal evaporator with a very low base pressure

(10−11 mbar) and clean environment. While growing QCLs, 3–10-µm-

thick semiconductor layers have to be grown, with a layer accuracy of

about 1 Å for individual wells and barriers. Typical structures are made

of GaInAs/AlInAs layers with varying doping concentration (see fig. 1.7

for an example). The most important tool to check the quality of a

growth is high-resolution X-ray diffraction. It provides highly-accurate

measurements of thicknesses and lattice parameters.

Once grown the active medium material (wafer), it has to be cut and

placed within the waveguide. QCLs are monolithic lasers, the facets of

the semiconductor constitute the mirrors of the cavity. A proper design of

the waveguide is essential in order to give gain only to the fundamental

Gaussian transverse mode, i.e. in order to obtain single-transverse-mode

emission devices. In QCLs the population inversion is obtained at the cost

of a thermal dissipation of 20–100 kW/cm2. The heat extraction is a cru-

cial aspect to be taken into account, since the threshold current (eq. 1.137)

increases with the temperature of the active region. The type of process

that is nowadays usually adopted is called buried-heterostructure, where

a lateral regrowth of material is made [59]. This is crucial for enhancing

heat extraction, allowing QCLs to operate in continuous wave at room

temperature. Once the active region sequence of layers is grown by MBE

on a substrate, a cladding is grown by metal organic vapor phase epitaxy.

Then another layer is deposited by plasma enhanced chemical vapor

deposition. Afterwards, using ultraviolet photolitography, the waveguide

pattern is transfered on the sample. Then a series of chemical reactions

(etching) and regrowth processes give to the waveguide the right shape

and electrical conduction/isolation characteristics. Finally, ohmic con-

tacts are deposited on the top and on the bottom. Once the waveguide has

been obtained, it has to be cleaved. The length of the cavity spans usually

between 1 and 6 mm. As a standard practice, QCLs are mounted epi-side

up (junction up) using indium solder on copper submounts, but the best

performances in terms of heat extraction are obtained with epi-side down
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mounting on diamond submounts. The devices obtained with such a

standard process are called Fabry-Pérot devices and usually emit multi-

longitudinal-mode radiation. In order to obtain a single-mode emission

at a specific wavelength, a distributed feedback (DFB) can be included in

the active region [60], by etching a grating directly onto the waveguide.

1.5.3 Broad-gain devices

As already stated, one of the selling points of QCLs is the wavelength

tunability for single-mode devices, or the wide spectral coverage for

multimode devices. This features are obtained by using two systems that

contribute to broaden the gain curve.

• The first one concerns the design of the active region. Instead of

the classic three-levels scheme, the bound-to-continuum scheme is

adopted [61]. Essentially, levels 2 and 1 are replaced by minibands

forming a continuum. There is no more a net separation between

the active and the relaxation-injection regions. The whole period

is made of a chirped superlattice.

• The other one consists in cascading periods with different gain

curve centers [62]. Unlike bipolar interband transitions, intersub-

band transitions are transparent on both sides (both for higher

and lower energies with respect to the peak). For this reason it is

possible to grow a cascade of periods made of two or three sub-

groups, each of them with a gain centered at a different wavelength,

resulting in a total wider gain curve.40

Combining these two solutions, gain curves as wide as 500 cm−1 can be

obtained. This value corresponds to 40% of the wavelength at 9 µm.

1.5.4 Quantum-cascade-laser frequency combs

A broad gain, together with a low group velocity dispersion, is an es-

sential feature in order to enable frequency combs generation for QCLs

(QCL-combs). This unexpected capability has been discovered only

recently [34]. The four-wave mixing process (FWM – see section 1.2.4)

that takes place in the gain medium [63] is responsible for the mode

40In this configuration attention must be paid in order to avoid cross reabsorption of
photons by couples of levels.
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locking in an auto-injection-locking fashion. In a simplified framework,

we can say that through the non-linear process three laser modes generate

radiation nearby a fourth mode.41 This radiation tends to injection-lock

the nearest mode.42 This phenomenon tends to take place in cascade in

every portion of the laser emission spectrum, ensuring the locking of all

the modes. For mid-infrared operating devices the upper-state lifetime,

inherent to the intersubband transition of the active region, is very short

(≈ 0.3 ps) compared to the cavity round-trip time (≈ 140 ps for 6-mm-

long devices). This is responsible for the broadband nature of the FWM

that ensures the mode locking, but also for a tendency to operate with a

nearly constant output power, damping any energy spike propagating at

the round-trip frequency within the cavity. As a consequence, the phase

relation between the modes is similar to that of frequency-modulated

lasers (see section 1.3.3), as theoretically predicted [64, 65], and no

pulses are emitted.

41This closeness is due to the law of energy conservation (see section 1.2.4), which
preserves the spacing among the modes.

42The injection locking of two oscillators happens if their distance in frequency
falls within the bandwidth of the process, which is given essentially by ∆ finj-lo =

η fs
√
(Pm/Ps)/(2π2), where η is a coupling factor, and Pm,s is the power of the master

source (the radiation generated through FWM in our case) and of the slave oscillator
(the natural laser mode), respectively [50]. Within the bandwidth, the stationary phase
difference is given by ∆ϕ = ϕ−ϕm = sin−1[( fs− fm)/∆ finj-lo], where ϕm and fm,s are
phase and frequency of the master and the slave oscillator, respectively.
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2.1 Single-frequency quantum cascade lasers sta-
bilization and spectroscopy

As stated in sections 1.1.5 and 1.1.6, in order to perform high-sensitivity

and resolution sub-Doppler spectroscopy, it is fundamental to have

intense and narrow (low-frequency-noise) mid-infrared laser sources.

Moreover, if also a high accuracy is required, an absolute reference for

frequencies is needed. QCLs (see section 1.5) are ideal candidates for this

role, since their intrinsic linewidth1 is comparable to the natural linewidth

of molecular transitions (tens–hundreds of Hz), and the emitted radiation

intensity spans from the milliwatt up to the watt level. Moreover, their

tunability is another desirable feature (see section 1.5.3). Unfortunately,

on a time scale spanning from 1 s to 10 ms, QCLs linewidth is way

wider in free-running operation (about 1 MHz) due to the 1/ f noise

contribution (see section 1.4.5). Two main approaches can be used in

order to overcome this limitation and to provide the desired absolute fre-

quency reference: (1) The QCL emission can be stabilized and narrowed

against a molecular absorption line, (2) or it can be referenced to an OFC

(see section 1.3) through a phase-locking chain. Such schemes are de-

scribed in the following sections (sections 2.1.1 and 2.1.2, respectively).

Moreover, in section 2.1.3 a demonstration of the phase-locking setup

performances for high-resolution CO2 spectroscopy is described.

2.1.1 Polarization locking

With the following experiment, a method to obtain a narrow-emission and

absolutely-referenced QCL has been proven [67]. It exploits the avail-
1See section 1.4.4 for an overview and ref. [66] for the first measurement.
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2.1 Single-frequency QCLs stabilization and spectroscopy

ability of a natural ruler of frequency references given by the many strong

molecular absorption lines, whose center frequency can be absolutely

measured with a sub-kHz precision [39]. Basing on this, it is possible

to have a simple system for high-sensitivity/precision spectroscopy for

a specific molecular species, without using an OFC. A polarization-

spectroscopy (PS) scheme2 produces, without any external modulation,

the narrow dispersive sub-Doppler signal used to close the feedback loop

on the QCL driving current for frequency stabilization. It will be shown

that the linewidth of a continuous-wave room temperature QCL can be

narrowed below 1 kHz (FWHM) by locking the laser to a CO2 line.

The laser is a room temperature DFB QCL emitting at 4.3 µm, pro-

vided by Hamamatsu Photonics. It is operated at a temperature of 283 K

and a current of 710 mA, delivering an output power of about 10 mW. A
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Current
Driver

Room Temp
DFB-QCL
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Differential
amplifier

Temp.
Controller

PID for
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-1V
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1V

Beat-note Counter

Beat-note
FFT spectrum
analyzer

Beat-note
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FNPSD
FFT spectrum
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DFG

PS Signal
Detectors

Probe              Pump

Figure 2.1: Polarization-locking setup. The probe beam gives the signal used for the
frequency locking. The pump beam is also used for the beat-note detection
and the frequency counting. PS: polarization spectroscopy, DFG: comb-
referenced single-frequency difference-frequency generation, FET: field-
effect transistor, FFT: fast Fourier transform.

schematic of the experiment is shown in fig. 2.1. The QCL is mounted

on a specific compact thermoelectrically-cooled mounting. A low-noise

home-made current driver is used. It ensures a current noise power

spectral density always below 1 nA/
√

Hz, while keeping a fast current

modulation capability, thanks to a control circuitry placed in parallel to

the QCL based on a field-effect transistor (FET).

2See section 1.1.7 for an overview and ref. [41] for an example.
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2.1 Single-frequency QCLs stabilization and spectroscopy

The chosen molecular transition is the P(29)e of the (0111−0110)

ro-vibrational band of CO2 at 2311.5152 cm−1 (see section 1.1.3). The

inset of fig. 2.1 shows a typical scan of the PS signal at a pressure of

8.9 Pa, when the laser frequency is tuned across the molecular resonance.

By carefully balancing the differential detection, a zero-offset signal is

obtained. It ensures a linear conversion of the laser frequency fluctuations

into amplitude variations in the region centered around the resonance

frequency.

For the QCL frequency stabilization, the PS signal is processed by

a home-made PID controller, and fed back to the FET gate for current

control. From a preliminary analysis of the free-running frequency noise

power spectral density (FNPSD) of a similar QCL [68], it is expected

that a locking bandwidth of about 100 kHz is required for reaching a kHz-

level linewidth. In order to ensure this condition, both the differential

amplifier and the PID have been designed to have bandwidths larger than

1 MHz. However, there are two more fundamental aspects that can limit

the loop bandwidth. The first is the roll-off of the QCL tuning rate with

the modulation frequency [69]: the tuning rate is never flat, even at low

frequencies, and shows a -3 dB cut-off at about 100 kHz. The second is

the width of the linear region of the PS signal, that introduces a frequency

roll-off starting from 300 kHz. Following the above considerations, the

bandwidth of the frequency-locking loop is expected to be in the range

of a few hundred kHz.

In order to characterize the frequency locking, two different measure-

ments are carried out in parallel. The first one is the spectral analysis

of the in-loop PS signal, the second one is the analysis of the beat note

between the QCL and a narrow OFC-referenced DFG source3 providing

a stable (10-Hz linewidth within 100 µs) and absolute reference. Each

measurement has been also performed with the QCL in free-running

regime.

In fig. 2.2 the FNPSD measurement results are shown. Firstly, it is

noteworthy to highlight the improvements in the free-running regime

brought by the evolution of the current driver: using the new-generation

low-noise driver, the FNPSD exhibits a clean 1/ f trend, confirming that

virtually no external noise is added. By closing the frequency-locked

3See sections 1.2.2 and 1.3 for an overview and ref. [70] for an experimental
implementation.
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Figure 2.2: Comparison between the free-running QCL FNPSDs and the locked one.
The locked QCL FNPSD is obtained by summing the spectrum of the closed-
loop error signal to the PS detection noise floor, measured with empty gas
cell.

loop, the FNPSD is reduced in the spectral range below 250 kHz, which

is then assumed to be the loop bandwidth, as expected. At about 450 kHz,

the onset of a self-oscillation peak is evident. It can be well explained

by the dephasing introduced by the approaching roll-offs mentioned

above and it is, at present, the factor limiting the loop performances.

The FNPSD of the locked QCL is obtained by adding to the closed-loop

error signal the detection noise floor. The latter is dominated, in the

low-frequency range, by the residual intensity noise of the QCL, and

limits the frequency-noise reduction.

The effect of the locking on the QCL emission lineshape can be

more intuitively described by the spectrum of the beat note between the

QCL radiation and the DFG one. An acquisition is shown in fig. 2.3.

The 450 kHz servo bumps confirm the oscillation peak appearing in the

FNPSD. By comparing the areas of the locked and free-running beat

notes we obtain that 77% of the QCL radiation power is forced into the

narrow peak centered on the molecular line. Switching from the free-

running to the locked regime the linewidth (FWHM) is reduced from

about 500 kHz down to 760 Hz on a 1-ms time scale (inset). The inset
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free-running (trace a) and locked (trace b) conditions, and the narrow DFG
source. Inset: zoomed view (linear scale) of the central peak observed over
1 ms with a resolution bandwidth of 721 Hz (dotted curve) and QCL power
spectral profile retrieved from the locked FNPSD using eq. 1.127 (straight
line).

68



2.1 Single-frequency QCLs stabilization and spectroscopy

also shows the comparison between the beat note and the locked QCL

power spectral profile retrieved from its FNPSD using eq. 1.127 over a

1 ms time scale. For the latter, a 900 Hz FWHM is obtained, in good

agreement with the beat-note linewidth.

The beat-note frequency is also measured by a 1-s-gated frequency

counter over about 2 hours. The obtained Allan deviation [7] is 3 kHz at

1 s and decreases down to 0.9 kHz up to 320 s. Then, for longer times, it

increases again, due to slow variations of the locking signal offset. This

prevents our oscillator from achieving the stability performances of the

best mid-infrared standards [71].

The absolute frequency of the CO2 line is measured by averaging a

set of frequency counts performed counting in several days the beat note,

and knowing the DFG frequency thanks to the reference. The obtained

value is (69297480.708±0.025) MHz, with an uncertainty which takes

into account both the repeatability of the offset zeroing and the OFC

accuracy. This result is in agreement with the value given by HITRAN

database [6] for this transition (see table 2.1), but with at least 2 orders

of magnitude increased accuracy.

2.1.2 Single-frequency phase locking

Direct phase locking of QCLs to OFCs is a valid alternative respect to

frequency locking to a molecular absorption line (section 2.1.1), allowing

to enhance the frequency stability while preserving the full tunability of

the laser source, at the cost of a more complex and bulky setup. Having

a standard near-infrared OFC and a mid-infrared QCL, two approaches

are possible:

• The QCL MIR radiation can be up-converted through sum-frequency

generation (SFG - see section 1.2.2) to be beaten with the OFC

near-infrared radiation [72]. In this case, the final QCL linewidth

is limited by the excess phase noise of the OFC tooth given by its

reference oscillator.

• Alternatively, the QCL can be directly phase-locked to a DFG mid-

infrared radiation, obtained starting from two OFC-referenced near-

infrared sources. This method provides simultaneously an absolute

frequency reference and a residual phase noise independent of the

OFC noise.
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2.1 Single-frequency QCLs stabilization and spectroscopy

The latter scheme is here presented [73]. A final QCL narrowing below

the OFC tooth linewidth is obtained: indeed, a linewidth below 1 kHz on

a 1 ms time scale is obtained from the analysis of the FNPSD. The QCL

frequency stability and the absolute traceability have been characterized,

resulting both limited by the Rb-GPS-disciplined4 10-MHz quartz oscil-

lator reference of the OFC. Precision and high resolution spectroscopy

performances of this QCL source are tested by measuring the frequency

of the saturation Lamb dip of few CO2 transitions with an uncertainty of

2×10−11.

The laser is the same distributed-feedback QCL emitting at 4.3 µm

used for the experiment described in section 2.1.1. It is operated at a

temperature of 283 K and a current of 710 mA. The radiation which

the QCL has been locked to is produced by non-linear DFG process

in a periodically-poled LiNbO3 crystal (see section 1.2.2, 1.2.3 and

ref. [15]) by mixing an Yb-fiber-amplified Nd:YAG laser at 1064 nm and

an external-cavity diode laser (ECDL) emitting at 854 nm. The peculiar

locking scheme, employing a direct digital synthesis (DDS) technique

[70, 74, 75], makes the ECDL be effectively phase-locked to the Nd:YAG

laser, while the OFC just acts as a transfer oscillator adding negligible

phase noise to the DFG radiation (see appendix A.7). As a consequence,

the mid-infrared radiation is referenced to the Cs frequency standard

through the OFC, but its linewidth is independent of the OFC one.

A schematic of the experimental setup is shown in fig. 2.4. A small

portion of the QCL beam, taken with a beam-splitter, is used for the

phase-locking. It is overlapped to the DFG beam through a second

beam splitter and sent to a 200-MHz-bandwidth HgCdTe detector. A

100-MHz beat note is detected by using few µW of both QCL and DFG

sources. The beat note is processed by a home-made phase-detection

electronics, which compares it with a 100-MHz local oscillator (LO)

and provides the error signal for closing the phase-locked loop (PLL).

A home-made PID electronics processes the error signal and sends it

to the gate of a field-effect transistor (FET) to fast control the QCL

driving current. In fig. 2.5 the beat note acquired using a FFT spectrum

analyzer is shown. The width of the carrier frequency is limited by the

instrumental resolution bandwidth, as expected from a beat note between

4The Rb clock is compensated for long-term drifts through the reference to the GPS
(global positioning system).
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Figure 2.4: Schematic of the experimental setup. There are three main parts: the beat-
note detection between QCL and DFG for the phase-locking, the high-finesse
cavity for FNPSD analysis and the saturation spectroscopy signal detection
for the absolute frequency measurement of the CO2 transitions.
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two phase-locked sources. The locking bandwidth is limited by the

dependence of the QCL tuning rate on the modulation frequency (see

appendix A.5), as expected.5 In fact, despite the completely different

detector and electronics used, which are both much faster than those

used in the other experiment (section 2.1.1), the same 250-kHz locking

bandwidth is achieved, as confirmed by the servo bumps in the beat note.

The phase-locking performance in terms of residual RMS phase error is

measured by using the fractional power η contained in the coherent part

of the beat-note signal, i.e. in the carrier. By evaluating the ratio between

the area under the central peak of the beat note and the area under the

whole beat-note spectrum (1.5-MHz wide), a phase-locking efficiency of

η = 73% is obtained, yielding, through the relation [76]

η = e−ϕ2
RMS (2.1)

a residual RMS phase noise of 0.56 rad.

The main portion of the QCL radiation is used for frequency-noise

characterization and for spectroscopy. To the first purpose the QCL

beam is coupled to a high-finesse cavity, which works as frequency-to-

amplitude converter, when its length is tuned in order to have a trans-

mission corresponding to half the peak value.6 The cavity free spectral

range is 150 MHz, and its finesse is about 9000 at λ = 4.3 µm, as mea-

sured with the cavity-ring-down technique, leading to a mode FWHM

of 18.8 kHz. The cavity output beam is detected by a second HgCdTe

detector, and the resulting signal is processed by a FFT spectrum analyzer.

In fig. 2.6 the FNPSD of the phase-locked QCL, acquired by using the

high-finesse cavity, is shown. The same cavity has been also used to

measure the DFG FNPSD and the QCL FNPSD when frequency-locked

to a molecular line (see section 2.1.1). Such an independent converter

allows for a fair comparison between the two basically different locking

techniques. The plotted FNPSDs are compensated for the high-frequency

cavity cut-off, due to the photon cavity ring-down rate ( fc = 9.4 kHz –

see appendix A.1). The free-running QCL FNPSD, recorded by using

the slope of the Doppler broadened CO2 absorption line as converter, is

shown. The comparison between free-running and phase-locked condi-

5Compare to section 2.1.1 and ref. [69].
6See appendix A.1 for a description of the calibration procedure of the frequency-to-

amplitude converter.
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Figure 2.6: QCL FNPSDs in free-running and phase-locked conditions, acquired by
using a CO2 line and the high-finesse cavity as frequency-to-amplitude
converters, respectively. The cavity has been used also to measure the FNPSD
of the DFG radiation and the FNPSD of the QCL when it is frequency-locked
to a molecular absorption line (fig. 2.2). The residual 1/ f trend between
30 Hz and 1 kHz on the DFG FNPSD is given by the the Nd:YAG. The
QCL intensity noise is not shown here due to its relatively low level (more
than two orders of magnitude lower than the related portion of the frequency
noise spectrum). This gap is ensured by the steepness of the transmission
of the high-finesse cavity used as frequency-to-amplitude converter (see
appendix A.1).
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tions confirms a locking bandwidth of 250 kHz, with a frequency noise

reduction of about four orders of magnitude for frequencies up to 10 kHz.

Moreover, the phase-locked-QCL FNPSD perfectly overlaps the DFG

one, with only an excess noise above 200 kHz. If we compare the QCL

FNPSD when phase/frequency locked to the DFG/molecular transition,

they are almost coincident for Fourier frequencies above 1 kHz up to

450 kHz where a self-oscillation of both control loops is observed. This

confirms that the locking bandwidth is limited by the laser modulation

bandwidth (see appendix A.5). Nevertheless, a QCL linewidth narrower

than 1 kHz (FWHM) on a time scale of 1 ms is retrieved in both cases

by integrating the FNPSDs for frequencies above 1 kHz. As a con-

sequence, we note that phase-locking the QCL does not improve laser

narrowing with respect to frequency-locking. On the other hand, between

30 Hz and 1 kHz the two curves show different trends: in this range

the phase-locked QCL FNPSD lies below that of the frequency-locked

one, except for an evident noise peak centered at 400 Hz, which is also

present in the DFG source. Apart from this peak, the comparison in this

frequency range confirms a better control of the frequency jitter for the

phase-locked QCL, overcoming the limits of the frequency-locked QCL

set by the presence of a residual amplitude noise (see section 2.1.1). For

Fourier frequencies below 30 Hz the high-finesse cavity is no more a

good frequency-to-amplitude converter, since it saturates.

In order to confirm that the long-term frequency stability of the phase-

locked QCL is limited by the OFC stability (6×10−13 on 1 s), we have

measured the Allan deviation [7] of the DFG-QCL beat-note frequency.

The result is 2.3 Hz at 1 s with a τ−1/2 trend up to 128 s, which is the

last point used to compute the Allan deviation. Considering that the

stability of this system is limited by the OFC one, we can state that we

have gained a factor of about 70 in terms of stability with respect to

the frequency-locked QCL. Moreover, the accuracy of the phase-locked

QCL is traceable to the primary frequency standard at the 2× 10−12

level (140 Hz at 4.3 µm). Therefore, we can conclude that the OFC-

DFG phase-locked QCL, is a very suitable laser source for precision

spectroscopy and metrological applications.
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2.1 Single-frequency QCLs stabilization and spectroscopy

2.1.3 Single-frequency CO2 spectroscopy

As a demonstration of the spectral performances of the phase-locked

QCL (see section 2.1.2) in terms of resolution and precise frequency

measurements in the mid infrared, sub-Doppler saturated-absorption

spectroscopy of several lines of the CO2 molecule around 4.3 µm in a

12-cm single-pass cell has been performed [73, 77]. Thanks to the PLL,

the phase-locked QCL frequency is given by

νQCL = νDFG± fLO = (Np−Ns) fr± f ′LO (2.2)

where we have expressed, in the last equality, νDFG in terms of the

OFC parameters: repetition frequency fr of the OFC, comb orders Np

(Ns) for the pump (signal) laser involved in the DFG process and a radio

frequency f ′LO, which contains a balance of all local oscillator frequencies

(including fLO) used to lock the DFG radiation to the OFC. Scans of the

synthesized absolute QCL frequency can be performed by changing the

value of f ′LO.

The saturated-absorption setup, depicted schematically in fig. 2.4,

uses less than 10 mW power from the QCL in a classical configuration

of counterpropagating pump-probe beams (see section 1.1.6). Within the

tuning range of the QCL (10–25 ◦C for temperature and 700–900 mA for

current), the absolute center frequency of six CO2 transitions belonging

to the P branch of its (0111−0110) ro-vibrational band can be measured

(see section 1.1.3). In the saturated-absorption scheme, the Lamb dip

at the center of the Doppler-broadened molecular line is detected. An

optical chopper on the pump beam, combined with a lock-in detection,

enables to cancel out the Doppler background due to the probe radiation

and to retrieve the Lorentzian Lamb-dip profile with an optimal signal-to-

noise ratio (S/N), when the absolute frequency of the phase-locked QCL

is scanned across the Lamb dip by a stepwise tuning of the DFG source.

The recorded Lamb-dip spectrum of the P(34)f line is shown in

fig. 2.7. Each data point represents the average of 10 samples, acquired

by the lock-in amplifier with a chopping frequency of 2.49 kHz and a

time constant of 10 ms. The 20-MHz scan is performed in 2 minutes

with 50-kHz steps once forward and once backward across the Lamb-dip

feature. In this way, any frequency shift caused by pulling effects of the

lock-in integration is compensated for. In fig. 2.7 the fit curve and the
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Figure 2.7: Lamb-dip recording of the P(34)f line at 2306.6108 cm−1 at 12 Pa and
295 K. The fit is a Lorentzian function corrected both for a linear amplitude
modulation (as the QCL frequency is scanned by ramping its driving current)
and a background signal of the lock-in amplifier.

corresponding residuals are also plotted. To fit the data, a function g(ν)

of the following form has been used:

g(ν) = A · [1+B(ν−ν0)] ·L(ν)+C · [1+D(ν−ν0)] (2.3a)

L(ν) =
2

πw

[
1+4

(
ν−ν0

w

)2
]−1

(2.3b)

with A, w and ν0 area, full-width and center of the Lorentzian curve,

respectively. B is the slope coefficient due to the increment of the laser

power related to the decrement of the frequency, C and D are the residual-

background level and slope.

Thanks to the high precision/accuracy achieved by our setup, we are

able to perform a series of acquisitions by varying the pressure of the

CO2 gas in a very small range (1–26 Pa). As an example, the acquisition

related to the P(31)e line is reported in fig. 2.8. A weak linear dependence

of the line centers on pressure is observed, as is generally expected for

any molecular line (pressure shift). The extrapolated values at P= 0 yield

the absolute frequencies for all the measured transitions, corrected for

systematic self pressure shifts. Another example, the acquisition related
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Figure 2.8: Measured self pressure shift related to the P(31)e line at 2309.5962 cm−1 at
295 K. Each data point represents 4 averaged line-center frequencies from fit
results as shown in fig. 2.7.

to the P(29)e line is reported in fig. 2.9. The value extrapolated from this

graph at P= 0, ν0 P(29) =(69297478.7978±0.0014) MHz is the absolute

frequency of the transition (corrected by systematic pressure shift). This

value is in agreement with that measured for the QCL frequency-locked

to the same CO2 transition (compare to the result in section 2.1.1) with

an uncertainty improved by almost a factor of 20.

In table 2.1 the measured line-center frequencies (obs. freq.) and the

measured self pressure shift coefficients (press. shift) are listed. The devi-

ations with respect to two different sets of calculated values7 (Obs.-calc.)

are also reported. From the first comparison we note that the HITRAN

frequency values are systematically blue-shifted by 4–5 MHz with re-

spect to the observed ones, probably due to a miscalibrated spectroscopic

apparatus [6]. Our measurements are 3–4 orders of magnitude more pre-

cise than the values extracted from the HITRAN database and thus they

could be used to improve the molecular parameters of the (0111−0110)

ro-vibrational band (especially the band-center – see section 1.1.2). The

last comparison shows that frequencies measured with a low-resolution

(namely 162 MHz) Fourier-transform interferometer, when properly cal-

7These values are calculated using molecular parameters obtained by fitting some
experimental data.
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Figure 2.9: a) Dependence of the center of the Lamb dip of the CO2 (0111− 0110)
P(29)e transition on pressure, with the corresponding linear fit. For clarity,
the constant value of 69297478 MHz has been subtracted from the absolute
frequency values.
b) Example of a single Lamb dip acquisition. Experimental conditions: lock-
in amplifier time constant 10 ms, chopper frequency 616 Hz, frequency scan
with 60-MHz span and 50-kHz steps. The fit with a Voigt function (green
line) and the residuals (c)) are also plotted.
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2.2 Frequency combs stabilization and spectroscopy

Table 2.1: Observed line-center frequencies and self pressure shift coefficients for 6
transitions belonging to the (0111− 0110) ro-vibrational band of 12C16O2.
Comparisons with calculated values are also reported.

transition obs. freq. press. shift obs.-calc.a obs.-calc.b

(MHz) (kHz/Pa) (MHz) (MHz)

P(29)e 69 297 478.7998(31) -1.37(52) -4.0611 0.1362
P(30)f 69 267 227.7792(36) -1.04(46) -4.7036 -0.0321
P(31)e 69 239 948.5044(11) -0.22(9) -4.0039 0.3028
P(32)f 69 209 198.3778(8) -0.16(9) -4.6879 -0.1170
P(33)e 69 181 700.3740(18) 0.05(11) -3.9287 0.0376
P(34)f 69 150 447.0863(14) -0.22(10) -4.6021 -0.1919

a Comparison with the HITRAN database [6]. The uncertainty reported by the original
database for each transition is between 3 and 30 MHz. b Comparison with ref. [78],
where the frequencies of the same transitions measured with a low-resolution (162 MHz)
Fourier-transform interferometer are reported.

ibrated, can achieve an absolute accuracy of few hundreds kHz. The

1–4 kHz precision achieved by the presented measurements is limited by

both the Lamb-dip width and S/N, but neither by the spectral linewidth

nor the accuracy of the absolute frequency of the QCL.

2.2 Frequency combs stabilization and spectroscopy

Compared to what presented in section 2.1, a tempting idea is to have

OFCs operating directly in the MIR. Firstly they can serve as direct refer-

ences for single-frequency MIR lasers, such as DFB QCLs. Even further,

they can be used directly for MIR spectroscopy. An OFC radiation can

give more spectroscopy information at a time than a single-frequency

one, thanks to its instantaneous spectral coverage. The interest in using

OFCs in this spectral region is related to applications such as trace-gas

sensing with high-finesse cavities [4], high-precision spectroscopy and

frequency metrology [27]. In order to perform high-sensitivity and reso-

lution spectroscopy, it is again fundamental to have intense and narrow

(low-frequency-noise) radiation. Moreover, if also a high accuracy is

required, an absolute reference is again needed.

Pulsed mode-locked lasers have not yet been developed in the MIR,

but their NIR spectra can be transferred to the MIR region (MIR-combs)

taking advantage of non-linear frequency mixing. At the cost of being

highly-sophisticated and bulky pieces of apparatus, such MIR-combs
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2.2 Frequency combs stabilization and spectroscopy

have the advantage of being intrinsically metrological.8 For applications

like direct comb spectroscopy, where a high power spectral density is

needed, MIR-combs were developed using optical parametric oscillators

(OPO) [79, 80] or DFG systems using intense fiber-based NIR-combs

[26, 28, 81]. In section 2.2.1 a method to obtain a low-frequency-noise

and absolutely-referenced MIR-comb based on intracavity difference-

frequency generation (DFG-comb) is described. In section 2.2.2 an

application of this DFG-comb for CO2 spectroscopy is presented.

A promising alternative for generating MIR-combs is represented

by QCLs (QCL-combs). Since this technology is quite young [34], a

further characterization is needed. In section 2.2.3 the frequency noise

characteristic of such combs is presented. This study is essential both

for spectroscopy applications as well as for a better understanding of the

fundamental properties of the generated radiation. In section 2.2.4 an

experiment where a QCL-comb is phase-locked through a single chain to

the DFG-comb mentioned in section 2.2.1 is presented. This attempt is

aimed both at the stabilization and at the further study of the coherence

of the QCL-comb radiation.

2.2.1 Intracavity difference-frequency-generated mid-infrared
frequency comb

For MIR-combs, values for total and per-tooth power of 1.5 W and 30 µW

respectively, have been achieved [79]. In terms of spectral purity, the best

so far reported values for the teeth linewidth are 30–40 kHz on a 1–2-s

time scale [79, 81]. However, frequency down-conversion of combs from

the NIR to the MIR may sometimes severely degrade the coherence [82].

With the following experiment, a method to obtain an absolutely-

referenced MIR-comb, with a much increased spectral purity, has been

proven [83]. The 1040-nm portion of the spectrum of a visible/NIR-

comb (NIR-comb) is mixed with the intracavity radiation of a Ti:sapphire

(Ti:Sa) laser in a non-linear crystal (DFG - see section 1.2.2). A DFG-

comb centered around 4330 nm is thus generated. The excess frequency

noise of the NIR-comb can be efficiently removed in the MIR one by

properly implementing a direct digital synthesis (DDS) scheme. This

leads to a 2.0 kHz tooth linewidth (on a 1-s time scale) of the generated

DFG-comb. In addition, the high repetition rate ( fr = 1 GHz) and the

8Actually they are metrological if the original NIR OFC is metrological.
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2.2 Frequency combs stabilization and spectroscopy

intracavity power-boosted DFG determine an average per-tooth power of

1 µW and thus a power spectral density at the µW/kHz level, comparable

to the best results achieved with OPO-based MIR-combs.

Experimental setup
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Figure 2.10: Experimental setup: an Yb fiber amplifier (FA) is seeded by the NIR portion
of the spectrum of the NIR-comb. The amplifier output is used as signal in a
MgO:PPLN multiperiod crystal to generate MIR radiation, where the pump
is the Ti:Sa intracavity radiation. The Ti:Sa laser is pumped by a Verdi laser
and it is injection-locked by an ECDL. The DFG-comb (MIR-comb) beam
is coupled into a high-finesse cavity and beaten with a room temperature
DFB QCL for characterization purposes.
PLL: phase-locked loop, DDS: direct digital synthesis, APD: avalanche pho-
todiode, BSp: beam splitter, PZT: piezoelectric transducer, DM: dichroic
mirror, MgO:PPLN: periodically-poled lithium niobate crystal doped with
magnesium oxide, GM: gold mirror, OC: output coupler, Pol. det.: po-
larization detection and electronic control loop, BSt: beam stopper, M:
mirror, SM: spherical mirror, L: lens, Ti:Sa: titanium sapphire crystal, PD:
photovoltaic detector.

In fig. 2.10 the experimental setup is reported. The setup, simi-

lar to that reported in ref. [75] for single-frequency DFG, is based on

a mode-locked Ti:Sa laser with a repetition rate fr of about 1 GHz

81



2.2 Frequency combs stabilization and spectroscopy

(see section 1.3.2), spectrally broadened to one octave operation range

(500–1100 nm) by a photonic-crystal fiber (NIR-comb). The oscillator

controlling fr is referenced to a Rb/GPS-disciplined 10-MHz quartz

clock with a stability of 6×10−13 at 1 s and an accuracy of 2×10−12

(see section 1.3.4). The portion of the NIR-comb spectrum above 1-µm

wavelength is selected by a dichroic mirror and sent to an Yb3+ fiber

amplifier. The output radiation, whose spectrum is limited by the am-

plifier gain bandwidth (fig. 2.11), is injected into the Ti:Sa laser cavity

by another dichroic mirror. The amplifier output is used as signal in a
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Figure 2.11: NIR-comb spectrum before and after the Yb fiber amplifier. The 1.6-nm-
wide gray region indicates the portion of the spectrum effectively involved
in the DFG-comb generation, essentially limited by the phase-matching
bandwidth of the DFG process (see section 1.2.3).

MgO:PPLN multiperiod non-linear crystal [15] to generate idler radia-

tion (DFG-comb), where the pump is the intracavity Ti:Sa radiation. The

MIR radiation is extracted from the cavity taking advantage of different

refraction angles at the facet of the crystal, cut at the Brewster angle for

the pump. The Ti:Sa laser is optically injected by an external-cavity diode

laser (ECDL) in order to make it unidirectional and single frequency. To

keep the optical injection, the Ti:Sa cavity length is stabilized against

the ECDL frequency by an electronic control loop using the polarization-

based Hänsch-Couillaud technique [84]; the feedback signal is sent to
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2.2 Frequency combs stabilization and spectroscopy

a piezoelectric acting on one of the cavity mirrors. The ECDL wave-

length is set to 838.5 nm in order to obtain a DFG-comb centered around

4330 nm with a signal at 1040 nm, in coincidence with the most intense

portion of the amplified NIR-comb (fig. 2.11). The DFG scheme, consid-

ering the 838–863 nm tuning range of the pump laser injecting source

(ECDL) and the 1032–1045-nm-wide spectrum of the signal (NIR-comb

spectrum after the amplifier), provides a tunability of the MIR central

wavelength from 4.2 to 5.0 µm. The crystal temperature (and eventually

the period) needs to be accordingly varied in order to ensure the quasi-

phase-matching condition (see section 1.2.3). The tuning limits for the

central wavelength are given by the edges of the ECDL tuning range and

the NIR-comb spectrum. Actually, the upper limit at around 5.0 µm is

imposed by the absorption of the PPLN crystal. The DFG-comb spec-

trum is limited by the PPLN crystal phase-matching bandwidth, which is

27-nm wide FWHM at 4330 nm (see section 1.2.3). This means that the

portion of the NIR-comb spectrum effectively involved in the DFG-comb

generation is 1.6-nm wide (see fig. 2.11). With a 5 W total power out

from the amplifier and 30 W Ti:Sa intracavity power, the obtained power

of the DFG-comb is 0.5 mW. Considering such an idler power, the pump

radiation is reduced by 2.5 mW.9 This value is negligible with respect to

the total intracavity pump power (30 W), therefore the losses related to

the DFG process are negligible [75].

In order to have a DFG-comb with narrow-linewidth teeth, the excess

noise of the NIR-comb due to repetition rate fluctuations (Ns× fr, with

Ns order number of one of the down-converted NIR teeth) must be

replicated by the pump frequency, to be canceled in the DFG process.

An intermediate stable oscillator operating around the signal frequency

(a Nd:YAG laser) and a DDS electronic scheme similar to that adopted

in the experiment reported in section 2.1.2 are used to that purpose (see

appendix A.7). ECDL and Nd:YAG frequencies (νp and νY respectively)

are beaten with the NIR-comb nearest teeth and the beat-note frequencies

are

fp = νp−Np fr− fo (2.4a)

fY = νY −NY fr− fo (2.4b)

9The pump photons are 5 times more energetic than the idler ones.
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where fp and fY are the beat-note frequencies of the ECDL and the

Nd:YAG respectively, fr and fo are the repetition rate and the carrier

envelope offset of the NIR-comb respectively, and Nx is the integer

identifying the tooth used for the beat note. fo is canceled from fY
using standard RF mixing, then the DDS multiplies fY + fo by a factor

(Np−Ns)/NY . A phase-locked loop (PPL2) is used to control the pump

beat note fp against the DDS output with a large bandwidth (2 MHz),

using the driving current and the external-cavity grating position as

actuators. In these conditions fp = ( fY + fo)(Np−Ns)/NY and using

eq. 2.4 the pump frequency can be written as

νp = ( fY + fo)

(
Np−Ns

NY

)
+Np fr + fo

= (νY −NY fr)

(
Np−Ns

NY

)
+Np fr + fo

(2.5)

and the frequency of the DFG-comb tooth (idler) obtained as difference

between the pump laser and the signal NIR-comb tooth results

νi = νp−Ns fr− fo =

(
Np−Ns

NY

)
νY (2.6)

It is worth noting that an absolute frequency traceability of the generated

νi is obtained by controlling the frequency of the Nd:YAG laser against

the nearest tooth of the NIR-comb: a PLL (PLL1 in fig. 2.10) with a

bandwidth of 10 Hz corrects for Nd:YAG frequency drifts acting on the

Nd:YAG crystal temperature, without perturbing its linewidth. Moreover,

from eq. 2.6 we note that the frequency fluctuations of νi depends only on

νY and are independent of the NIR-comb parameters ( fr and fo), giving

narrow DFG-comb teeth. The factor (Np−Ns)/NY is about 1/4 in our

case and, considering a Nd:YAG laser linewidth of about 5 kHz on a

1-s time scale, a linewidth of about 1 kHz of the DFG-comb teeth is

expected. It is important to observe that a perfect cancellation of fr can

only be obtained for the tooth Ns, whereas, for the tooth Ns +m (m is the

integer that enumerates the DFG-comb teeth), the additional fluctuations

amount to m×δ fr. The fluctuations for a generic DFG-comb tooth can

be expressed as

δνi,m =

(
Np−Ns

NY

)
δνY +mδ fr (2.7)
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2.2 Frequency combs stabilization and spectroscopy

In our case the two terms are of the same order of magnitude, therefore

they contribute to the noise at the same level.

The DFG-comb beam is coupled to a high-finesse cavity to study its

FNPSD, and it is beaten with a previously frequency-calibrated QCL at

4.33 µm in order to characterize its frequency components. A sequence

of beat notes spaced by 1 GHz is measured as the QCL frequency is

scanned. This confirms the value of the center wavelength emission

of the generated DFG-comb and the value of fr as expected, otherwise

difficult to measure due to the lack of fast photodetectors in the MIR

region.

Characterization

The 1-m-long high-finesse cavity (free spectral range FSR = 150 MHz) is

made of two plano-concave ZnSe mirrors, with high-reflectivity coatings

on the concave surfaces (6 m radius of curvature) [70]. At this wavelength

(4.33 µm) the finesse is 9000. To maximize the transmitted signal we

have matched fr with the following Vernier ratio [85] (see appendix A.6):

fr0 =
20
3

FSR =
20
3

c
2L0

(2.8)

which corresponds to a given cavity length L0. In this condition the

cavity selects a subset of comb teeth (one every three), that gives rise

to the peak shown in fig. 2.12a (the first peak in fig. 2.12b). While

keeping fr constant, if the cavity length L is changed, other resonances

can be observed between the comb and the cavity, for L1 = L0 +λ/6

(second peak), L2 = L0 + λ/3 (third peak) and L3 = L0 + λ/2 (fourth

peak), where λ is the mean wavelength of the radiation (fig. 2.12b).

However, the condition expressed in eq. 2.8 is valid only for the first

subset of teeth. For the other cavity lengths Ln only the central comb

tooth m0n of the corresponding subset is resonant with a cavity mode.

Neglecting the cavity dispersion, the frequency mismatch of the tooth

m (again one every three) with the nearest cavity resonance is given

by [ fr− (20/3)(c/2Ln)](m−m0n). Therefore the width of the peak for

L = Ln is

Wpk =

(
fr−

20
3

c
2Ln

)
Mtot (2.9)
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Figure 2.12: Transmission peaks of the high-finesse cavity recorded for different cavity
detunings. a) The peak corresponding to eq. 2.8, recorded in two different
ECDL phase-locking operating regimes: with operating DDS (black line,
30 kHz FWHM), and with simple phase locking to the nearest NIR-comb
tooh (red line, 400 kHz FWHM). b) 1-FSR-wide cavity scan (inset) with
zooms on consecutive longitudinal resonances spaced by FSR/3 = 50 MHz.
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where Mtot is the total number of the DFG-comb teeth. Eq. 2.9 enables

to estimate Mtot. As an example, the measured width of the third peak is

Wpk = 630 kHz FWHM. Since in this case

fr−
20
3

c
2(L0 +λ/3)

= 1.44 kHz (2.10)

a total teeth number Mtot = 440 is obtained. Calculations on the other

peaks give consistent results that, recalling the total comb power, allow

to estimate an average per-tooth power of 1 µW. This is also in agreement

with the expected spectral coverage of the DFG-comb retrieved by the

phase-matching bandwidth of the DFG process at this wavelength (see

section 1.2.3).

Figure 2.12a also shows the effect of the phase-locking technique

on the width of the DFG-comb teeth. The width of the black peak,

corresponding to the locking scheme described above (with operating

DDS for the ECDL phase locking), is 30 kHz FWHM, limited both

by the cavity mode and by the dispersion of the teeth due to the cavity

mirrors. On the other hand, the red peak, corresponding to a standard

phase locking of the ECDL to the nearest NIR-comb tooth (without

DDS), is much wider (about 400 kHz FWHM), confirming that the DDS

really provides narrower DFG-comb teeth.

In order to estimate the coherence of the DFG-comb we have used

the high-finesse cavity as multimode frequency-to-amplitude converter

to retrieve the FNPSD of the radiation in the condition established by

eq. 2.8 (see appendix A.2 for a demonstration). The factor used to

convert amplitude fluctuations to frequency fluctuations is the slope of

the first peak of fig. 2.12 at half maximum (see appendix A.1). Due

to the photons average lifetime, the cavity acts as a second-order low-

pass filter with a 9.4 kHz cutoff frequency. The spectrum reported

in fig. 2.13 is compensated for this cutoff. Using Elliott’s formula to

calculate the linewidth of the comb teeth (eq. 1.127), a value of 2.0 kHz

FWHM on a 1-s time scale and 750 Hz on a 20-ms time scale is obtained.

Taking into account the DFG-comb power, a per-tooth power spectral

density of 0.5 µW/kHz (on a 1-s time scale) is obtained, value which is

comparable with the best performing OPO-based MIR-combs [79, 80].

It is worth noting that this power level is in a range suitable for direct

comb spectroscopy in this spectral region.
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Figure 2.13: FNPSD related to the DFG-comb radiation retrieved by using the high-
finesse cavity as frequency-to-amplitude converter. The spectrum analyzer
is set in max-hold acquisition mode to be sure to collect the maximum
amplitude for each frequency interval. The spectrum is compensated for
the 9.4 kHz cavity cutoff. Inset: power spectrum profile of the DFG-comb
teeth on different time scales, calculated from the FNPSD using eq. 1.127.
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2.2.2 Frequency comb CO2 spectroscopy

In this section the metrological and spectroscopic performances of the

DFG-comb presented in the previous section (2.2.1) will be discussed.

The DFG-comb is used both as an accurate and highly-stable phase/frequency

reference for a continuous-wave quantum cascade laser at 4330 nm,

thus enabling high-precision spectroscopy with a powerful and narrow-

linewidth MIR source, and as a multi-frequency highly coherent MIR

source to perform high-sensitivity broadband direct comb spectroscopy

in ambient air with the Vernier technique [86].

By using the experimental setup shown in fig. 2.14, a room-temperature

continuous-wave DFB QCL operating around 4330 nm is phase-locked

to a single tooth of the DFG-comb (see section 2.2.1 for details on

its generation). This is done by superimposing a fraction of the QCL

(*+�GSQF

Figure 2.14: Experimental setup. A continuous-wave DFB QCL is phase-locked to a
single tooth of the DFG-comb. Alternatively, the DFG-comb is coupled to
a high-finesse cavity for spectroscopy purposes. Inset: beat note between
the QCL and one DFG-comb tooth, in both free-running and phase-locked
conditions.

beam (about 1 mW) with the DFG-comb beam and sending them to a

liquid-N2-cooled HgCdTe photodetector (200-MHz bandwidth - PD1).

Figure 2.14 shows the detected beat note between the QCL and the near-

est comb tooth, as recorded by a RF spectrum analyzer. The beat-note

frequency is phase-locked to a local oscillator provided by a RF signal

generator, by using a home-made phase-detection electronics with hybrid

analog/digital architecture. The phase-error signal is processed by a PID

89
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controller. The servo bumps confirm a phase-locking bandwidth of about

400 kHz, mainly limited by the QCL frequency modulation behavior (see

appendix A.5). The phase-locking efficiency η = 73% is estimated as

the ratio between the areas of the resolution-bandwidth-limited carrier

and the whole beat-note spectrum. Using again eq. 2.1 we can estimate

a residual RMS phase-noise ϕRMS = 0.56 rad, as an evaluation of the

PLL performance. This value is the same compared to the one obtained

with the experiment reported in section 2.1.2 where the laser is the same,

confirming that it is the QCL that limits the performances of the locking.

It is remarkable that the possibility of phase locking the QCL to one

arbitrary DFG-comb tooth within its working range (which for a standard

DFB QCL spans about 300 GHz) makes the DFG-comb itself a sort of

universal absolute frequency reference for this class of lasers.

A free-running QCL linewidth of about 400 kHz is inferred from the

free-running beat note of fig. 2.14, by considering the few kHz linewidth

measured for the DFG-comb tooth (see section 2.2.1). Instead, a full char-

acterization of the phase-locked QCL linewidth behavior on different time

scales can be only retrieved by measuring its FNPSD (see section 1.4.3).

To that purpose, we used an empty 1-m-long high-finesse Fabry-Pérot cav-

ity (finesse F ≈ 9000 at 4330 nm) as frequency-to-amplitude converter.

Figure 2.15 shows a comparison between the FNPSD of the phase-locked

QCL and the one of the DFG-comb (fig. 2.13). Both the spectra have been

compensated for the cavity cut-off (see appendix A.1), corresponding to

a 8.5 µs ring-down time for resonant photons. The quite good agreement

between the two recorded noise spectra confirms that measuring the

FNPSD of many comb teeth together (simultaneously in resonance with

the optical cavity – the so-called multimode frequency-to-amplitude con-

version – see appendix A.2 for a demonstration) yields the same result as

measuring the FNPSD of a single comb tooth. It is worth noting that this

further confirmation of the DFG-comb high-coherence degree is enabled

by the phase-locked QCL, used as a tracking oscillator amplifying a sin-

gle comb tooth, otherwise too weak to be measured. By integrating the

FNPSD spectrum of the phase-locked QCL using eq. 1.127, a linewidth

of about 4.6 kHz over 1 s is obtained, with a narrowing factor compared

to the free-running operation of about 100. This value is a bit larger than

what is measured for the DFG-comb (2 kHz), mainly due to residual 1/ f

frequency noise of the QCL. Such a single-frequency narrow-linewidth
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Figure 2.15: Comparison between the FNPSD measured for the DFG-comb (MIR-comb
– see fig. 2.13) and for the phase-locked QCL, retrieved by using the optical
cavity as frequency-to-amplitude converter. The DFG-comb trace is noisier
than the QCL one, due to lower available power.

absolutely-referenced MIR source with tens of milliwatt of power can

serve as a unique tool to perform high-precision/sensitivity molecular

spectroscopy, also exploiting recently developed sub-Doppler techniques

[87].

Alternatively, the multi-frequency DFG-comb itself can be used for

broadband direct comb spectroscopy. A convenient technique to go

this second way is the Vernier technique [88], that proved to be able to

resolve all individual teeth of the DFG-comb, as described below. This

approach is enabled by the high-enough average power (about 1 µW) and

narrow linewidth (about 2 kHz) of each tooth. Since the optical cavity

has a free spectral range FSR ≈ 150 MHz and the signal NIR-comb

has a repetition rate fr ≈ 1 GHz, the simplest Vernier ratio to make

the DFG-comb teeth simultaneously resonant with the cavity is the one

reported in eq. 2.8 (20/3 – see appendix A.6). In order to resolve the

single teeth, the repetition rate fr of the NIR-comb has to be slightly

detuned from the value fr0 that perfectly satisfies the resonance Vernier

condition of eq. 2.8. We scanned the cavity length by applying a voltage

ramp to three piezoelectric actuators moving one of the two mirrors.
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In fig. 2.16 the measured spectrum of the DFG-comb transmitted by

the empty cavity is reported. The signal is detected by a liquid-N2-

cooled InSb photodetector (1-MHz bandwidth – PD2 in fig. 2.14). The
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Figure 2.16: DFG-comb spectrum resolved with the Vernier technique: only one of the
3 sub-combs is shown (see fig. 2.12 and appendix A.6).

DFG-comb spectrum exhibits a FWHM of about 200 GHz, due to the

spectral bandwidth of the quasi phase matching (see section 1.2.3), with

strong amplitude inhomogeneities, mainly due to the absorption of CO2

molecules in ambient air over a 2-m path-length. The absolute frequency

scale is retrieved in two steps. Firstly, a relative linear frequency scale is

calculated by fitting the length-to-voltage response of the piezoelectric

actuators to a 5th-order polynomial curve, by using the comb teeth as

frequency markers with spacing equal to 3 fr. Secondly, the molecular

absorption features in ambient air are used (as a natural wavemeter) to

retrieve the integer order numbers of the teeth.

The spectrum plotted in fig. 2.16 is measured by averaging 80 scans

of the optical cavity length and the measured FWHM of each single

tooth corresponds to 55 kHz, which is wider than the cavity resonance

linewidth (about 19 kHz), mainly due to cavity drift during the averaging

time (4.75 s).

Given the 20/3 Vernier ratio, when scanning the cavity length by a
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2.2 Frequency combs stabilization and spectroscopy

complete FSR, 3 sub-combs are acquired, each of them with a teeth spac-

ing 3 fr and shifted with respect to the others by ± fr (see appendix A.6).

After properly interlacing the 3 sub-combs, we obtain the overall DFG-

comb spectrum with a teeth spacing fr. Actually, the spectrum of the

generated DFG-comb depends both on the parent NIR-comb and on the

quasi-phase-matching relation. Therefore, to make the spectroscopic

analysis easier, the experimental data have been normalized to make

the amplitude of the DFG-comb teeth as flat as possible. This is done

by dividing the original spectrum by an envelope Gaussian curve with

proper center and width. The central portion of the processed spectrum

is shown in fig. 2.17. The transmission spectrum through a 2-m path-
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Figure 2.17: Central portion of the DFG-comb air transmission spectrum measured with
the Vernier technique; circles, squares and triangles identify the 3 interlaced
sub-combs. Below the HITRAN simulation [6] is plotted, and the CO2
ro-vibrational transitions of two bands are also labeled: ν3(0001−0000)
and ν∗3(0111−0110).

length in ambient air, as simulated by the HITRAN 2012 database [6],

is plotted in the same figure. The agreement between the experimental

DFG-comb transmission spectrum in air and the HITRAN simulation is

very good. This is an interesting portion of the electromagnetic spectrum

to be analyzed. Indeed, the characteristic CO2 absorption at this wave-

length (4.3 µm) is clearly visible, in particular the lines belonging to the
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2.2 Frequency combs stabilization and spectroscopy

(0001−0000) and (0111−0110) bands (see section 1.1.3).

2.2.3 Quantum-cascade-laser comb frequency noise

A promising alternative for generating MIR-combs is represented by

QCLs. As stated in section 1.5.4, for mid-infrared QCLs, the upper-state

lifetime is very short (≈ 0.3 ps) compared to the cavity round-trip time.10

This is responsible for a tendency to operate with a nearly constant output

power, damping any energy spike propagating at the round-trip frequency

within the cavity. Nonetheless, in multimode-operating devices, a resid-

ual amplitude modulation in the emitted radiation is present, enabling

to observe a beat-note signal at the round-trip frequency. This signal is

also present in the laser current and is detectable through a bias-tee.11

QCL-combs have been initially characterized by measuring the autocor-

relation of the intermode beat note at the cavity round-trip frequency

(around 7 GHz for 6-mm-long devices), performing a so-called beat-note

spectroscopy [34], which consists in the detection of the beat note given

by only a subgroup of modes. This selection is obtained using a Fourier

transform interferometer (FTIR). A more sensitive technique is provided

by comparing two QCL-combs in a heterodyne beat experiment. An

experiment on QCLs arranged in a dual-comb spectroscopy setup demon-

strated a mode equidistance fractional accuracy of 7.5×10−16 relative

to the carrier (optical frequency) [89], a value close to those measured

for microresonator-based Kerr combs [29].12

Single-frequency QCLs frequency noise has been widely investigated

[66, 68, 69, 90, 91]. With the following experiment, the frequency noise

of a QCL-comb has been investigated for the first time [92]. This charac-

terization is essential both for spectroscopy applications as well as for a

better understanding of the fundamental properties of these devices with

such a unique comb formation mechanism. The generation of the comb

of frequencies is interpreted within the framework of supermodes. A

high-finesse optical cavity is used as multimode frequency-to-amplitude

converter to retrieve the QCL-comb intrinsic linewidth (see appendix A.2

10The cavity round-trip time is about 140 ps for 6-mm-long devices.
11Due to the short upper-state lifetime, QCLs are able to detect the beating between

their own modes.
12A comparison between QCL-combs and microresonator-based Kerr combs makes

sense, since in both cases the phenomenon that gives the mode locking is FWM (see
section 1.2.4).
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2.2 Frequency combs stabilization and spectroscopy

for a demonstration). A comparison among the obtained linewidths

is also given, demonstrating that the FWM effectively correlates the

quantum noise of the comb modes.

Frequency noise

What distinguishes a frequency comb from a simple array of perfectly

equally-spaced single-frequency optical sources is the correlation of the

frequency noise. While the heterodyne beat of two independent single-

frequency laser sources always yields a linewidth wider than that of

the individual lasers, this is not the case if the two single frequencies

are extracted from a frequency comb source. These considerations are

equally true for technical as well as for quantum noise. The intrinsic

linewidth of a semiconductor laser is given by the Schawlow-Townes-

Henry formula (eq. 1.131). It is proportional to the ratio of the number

of photons emitted in the cavity by spontaneous emission over the total

number of photons circulating in the cavity. As compared to a single-

frequency device, we observe that the only effect of comb operation is

the redistribution of the stimulated photons into equally spaced modes

with a negligible additional frequency noise. For this reason, the intrinsic

linewidth of single comb modes is expected to be unchanged and can be

expressed by the Schawlow-Townes formula considering the total optical

power of all comb modes.

Similar to microresonator-based combs, QCL-combs are generated

through FWM (see section 1.2.4). For this reason, according to a semi-

classical approach to QCL-combs [64, 65], it makes sense to compare

the quantities with the quantum formalism developed for microresonator-

based combs [93]. This permits the retrieval of the Langevin equation

for the photon annihilation operator related to the n-th QCL-comb mode:

...
ân =

(
Gn−1

2τc
+ iDn

)
ân︸ ︷︷ ︸

gain & dispersion

− Gn

2τc
∑
k,l

CklBkl â†
k âmâl κn,k,l,m︸ ︷︷ ︸

FWM

+
1
τc

V̂n︸︷︷︸
noise

(2.11)
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with

Gn =
iγ12

2π n fs + iγ12
g0

Dn =−
πδ2

n

fn
−2π δn

Ckl =
γ22

γ22−2π i (l− k) fs

Bkl =
γ12

2i

(
1

2π k fs− iγ12
− 1

2π l fs + iγ12

)
where κn,k,l,m is the spatial superposition integral among the modes

involved in the FWM, τc is the photon lifetime in the laser cavity, γ22 is

the scattering rate out of the excited laser state, γ12 is the loss of coherence

of the laser transition, fs is the comb mode spacing (without dispersion),

g0 is the peak gain, δn is the difference between the frequency of the n-th

mode of the ideal laser cavity fn and the frequency of the n-th mode of

the laser cavity with dispersion. The coefficients Gn and Dn represent

the complex gain coefficient for the mode n and the modal dispersion,

respectively. The coefficient Ckl represents the amplitude of the coherent

population oscillations. The coefficient Bkl represents the bandwidth

of the FWM gain and determines how many modes contribute to the

FWM process. V̂n are the vacuum Langevin noise operators related to the

optical loss processes (waveguide and mirrors) [93, 94], characterized by

the following statistical properties:

〈V̂n(t)〉= 0 (2.12a)

〈V̂ †
n (t)V̂n(t ′)〉= δ(t− t ′) (2.12b)

〈V̂n(t)V̂n(t ′)〉= 0 (2.12c)

The product of the terms Gn, Ckl and Bkl can be linked to the third-order

nonlinear susceptibility χ(3) [64, 65]. Thanks to the FWM term, eq. 2.11

ensures that in comb operation the average relative phases of the modes

are fixed. Therefore, through a unitary transformation, it is possible

to select a new basis for the cavity modes, the supermodes basis, such

that one of these supermodes corresponds to that selected by the comb

operation [95] (see section 1.3.1). The new annihilation operators are

given by

b̂q = ∑
n

Un
q ân (2.13)
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where Un
q is the element of a unitary matrix such that U−1 = U† [96].

In this way, the equation is reduced to that of a single-mode laser (with

only one mode excited). In particular, the Langevin operators for the new

modes

V̂ ′q = ∑
n

Un
q V̂n (2.14)

will have the same correlation properties (eq. 2.12) because of the unitary

nature of the transformation. The resulting frequency noise is expected

to be the same as that of a single-mode laser.

Experiment

The laser used for these experiments is a QCL-comb based on an In-

GaAs/InAlAs broadband design with multiple active regions (multistack

– see section 1.5.3), previously reported in ref. [34]. It operates in con-

tinuous wave at room temperature, emitting several milliwatts of power

at 7.10 µm on a single transverse mode. The device length is 6 mm,

corresponding to fs ≈ 7.5 GHz (multi-longitudinal-mode emission). The

comb mode spacing fs can be measured as a radio-frequency (RF) mod-

ulation arising directly on the laser-biasing current and extracted from

the device through a bias-tee [89]. Two main operating regimes are

observed in this device. Just above the laser threshold, the device emits

single-mode radiation and we do not observe any RF beat note. Above

a second current threshold, a comb regime is observed for a significant

part of the device working range (see fig. 2.18, bottom), where a narrow

RF beat note on the laser current corresponding to fs is observed. In

comb regime, the laser emits a single coherent comb of frequencies. The

presence of these two operating regimes allows the study of the frequency

noise in both the regimes using the same device. In order to investigate

the FNPSD, a high-finesse optical cavity (Fabry-Pérot, F ≈ 6000) is

used to resolve the laser spectrum and to detect the frequency fluctuations

of the laser, acting as frequency-to-amplitude converter (fig. 2.18, top). A

pair of high-reflectivity mirrors (99.96% of declared reflectivity) coated

with dielectric layers is used to build a self-made cavity suitable for our

experiments. In the setup, an optical isolator (transmission T =−2.9 dB,

extinction E =−33 dB) is employed to avoid the instabilities induced

on the laser by the back-reflection from the input mirror of the cavity. To

collect the signal transmitted by the cavity, a high-sensitivity nitrogen-
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2.2 Frequency combs stabilization and spectroscopy

Figure 2.18: Top: Experimental setup used to measure the FNPSD of the laser. The
main optical components include the laser (a multistack InGaAs/InAlAs
QCL), the optical isolator, the high-finesse optical cavity and the high-
sensitivity HgCdTe detector. The signal is processed by a high-sampling-
rate oscilloscope.
Bottom: Power-versus-current curve of the QCL at fixed temperature. Two
operating regimes are observed in this device, a single-mode regime and a
comb regime.
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cooled HgCdTe detector (BW = 0–10 MHz) is employed. A 12-bit

vertical resolution, 1 GHz analog bandwidth, 2.5 GS/s sampling rate

oscilloscope is used to acquire the signal and to compute its Fourier trans-

form. The distance between the two mirrors (about 20 mm) is chosen

in order to set the free spectral range (FSR) of the cavity close to fs. In

order to resolve the laser spectrum, a Vernier ratio V r = fs/FSR slightly

different from one is chosen and a piezoelectric actuator is used to scan

the cavity length over one FSR (see section 2.2.2 and appendix A.6).

A schematic representation is depicted in fig. 2.19a and the obtained

spectrum is shown in fig. 2.20.

To utilize the cavity as a frequency-to-amplitude converter, we act

on the piezoelectric actuator and on the temperature controller of the

laser to set V r = 1.0 and to let the comb offset frequency fo be equal to

that of the optical cavity. In this way, the comb modes and the optical

cavity resonances are perfectly matched (see fig. 2.19b for a schematic

and fig. 2.19c for the measured cavity transmission profile). As a conse-

quence, in these conditions and only in these conditions of temperature

and driving current of the laser, all the comb modes are transmitted by

the cavity. The cavity can thus be used as a multimode frequency-to-

amplitude converter to collect the frequency fluctuations of all the modes

at the same time (see section 2.2.1 as an example of application of this

technique and appendix A.2 for a demonstration). Since V r = 1.0, an

accurate value of the optical cavity free spectral range (FSR) can be ob-

tained by measuring fs as described above. Such an accurate FSR value

is needed for the calibration of the frequency-to-amplitude converter

(see appendix A.1). The laser emits a power of P = 25 mW when the

comb modes are exactly matched to the cavity resonances. Thanks to

the high finesse of the cavity, it is also possible to collect the frequency

fluctuations of an individual comb mode by slightly varying the FSR. A

spectrum retrieved with the laser in single-mode operating conditions

(P = 15 mW) has been also acquired. The FNPSD measured on the

single-mode and comb regimes are reported in fig. 2.21. The spectra

are compensated for the frequency-to-amplitude converter cutoff (see

appendix A.1). We observe that the frequency noise on the comb regime

lies slightly below the frequency noise on the single-mode regime. More-

over, the frequency noise of an individual comb mode is also equivalent

to that acquired on all comb modes together. By integrating the FNPSD

99



2.2 Frequency combs stabilization and spectroscopy

(b)

(a)

in
te

ns
ity

(a
.u

.)

high-finesse cavity resonances
comb modes

(c)

optical frequency (a.u.)

ca
vi

ty
tra

ns
m

is
si

on
(a

.u
.)

QCL single mode
comb reg. one mode
comb reg. all modes

cavity detuning (2 MHz/div)

Figure 2.19: Schematic of the optical cavity and of the comb spectra with V r 6= 1.0
(comb regime - one mode) and V r = 1.0 (comb regime - all modes) (a) and
b) respectively).
c) Cavity transmissions acquired in the three conditions: single-mode QCL,
QCL in comb regime with only one mode in resonance with the cavity
and QCL in comb regime with all the modes in resonance with the cavity.
These acquisitions are obtained by scanning the cavity length. The cavity
detuning is the variation of the resonance frequency (FSR) with the length.
The comb is composed of many modes, but the most intense ones are six
(see fig. 2.20). Essentially only these main modes contribute significantly
to the orange transmission peak. On the other hand only the most intense
mode (the one in resonance) contribute to the blue peak. These peaks
are used for the calibration of the frequency-to-amplitude converter (see
appendix A.1).
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Figure 2.20: QCL-comb spectrum resolved by the cavity with a Vernier ratio V r slightly
different from one. The cavity length is scanned over one FSR using a
piezoelectric actuator. See fig. 2.19a for a schematic representation. The
dashed gray line sets the relative detection noise floor level at a RF of
1 MHz (see fig. 2.21).
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Figure 2.21: FNPSD of the QCL-comb taken in three different conditions. The spectra
are compensated for the frequency-to-amplitude converter cutoff. The
technical contributions to the noise are also reported: taking into account
the detection noise floor shape, the spectra are reliable up to 2 MHz; the
two contributions given one by the current driver and the other one related
to the intensity noise are negligible.
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using Elliott’s formula (eq. 1.127), the FWHM of a laser mode can be

retrieved. In this case a FWHM of about 600 kHz on a 1-s time scale is

obtained. This value is consistent with the linewidth usually shown by

DFB QCLs (see section 2.1.1 and references [68, 69] for a comparison).

Moreover, the contributions of the current driver noise and the laser

intensity noise as well as the detection noise floor are reported. Taking

into account the detection noise floor shape, the spectra are reliable up

to 2 MHz. Around 1 MHz, a flattening can be observed. Figure 2.22

shows a portion of the same FNPSD (from 100 kHz to 3 MHz). This

flattening, characteristic of a white frequency noise, corresponds to the

intrinsic quantum noise level Dδν due to the spontaneous emission, the

so-called Schawlow-Townes limit (see section 1.4.4).
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Figure 2.22: Zoom of the flattening portion of the spectrum related to the comb regime
with all the modes transmitted around 1 MHz (see fig. 2.21), corresponding
to the Schawlow-Townes limit (Dδν). The simulated FNPSD related to 6
independent modes is also shown.

Discussion

At this point it is interesting to compare this level Dδν to the expected

linewidth (HWHM) for single-mode lasers with the same characteristics,
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given by the Schawlow-Townes formula (eq. 1.131)

δν =
hν

P
αtotc2

4πn2
g

αmnsp(1+α
2
E) (2.15)

Taking ν = 42.2 THz as center frequency, P = 25 mW as total power

emitted by the laser, αm = 2.2 cm−1 as mirror losses, αtot = 7.2 cm−1 as

total losses,13 ng = 3.4 as group refractive index, nsp = 2 as spontaneous

emission factor and 〈α2
E〉= 0.0023 as squared Henry linewidth enhance-

ment factor averaged over the laser spectrum (see appendix A.3), we

obtain δν = 230 Hz, value which is consistent with the one obtained from

the spectrum δν = πDδν = (292±78) Hz (fig. 2.22). The fact that the

measured Schawlow-Townes limit for the comb emission corresponds

to the one computed using eq. 2.15 justifies the theoretical framework

introduced with eqs. 2.11–2.14, since it confirms that in comb operation

the laser behaves like a single-mode device, i.e. the modes are coherent.

Let’s consider again the QCL-comb FNPSDs. The comparison be-

tween the two FNPSDs in comb regime shows that the quantum fluc-

tuations of the different modes are correlated. In fact, we observe that

the FNPSD – in particular the portion limited by the quantum noise – is

identical when measured with one comb mode and with all comb modes

simultaneously (see fig. 2.21). This quantum limit – a value which is

given by the Schawlow-Townes expression – would be at least a factor

of 6 larger than the measured one (see fig. 2.22), assuming that the quan-

tum fluctuations of each comb mode are uncorrelated. This statement is

justified by the fact that at a RF of 1 MHz at least 6 QCL-comb modes

are expected to contribute to the spectrum (see fig. 2.20), because these

modes are the ones within a factor of 0.2 respect to the most intense

one, where the factor (1/0.2)2 is the ratio between the FNPSD and the

detection noise floor (see fig. 2.21). Such a factor of 6 is outside the

uncertainty of the measurement.

This experiment proves that in QCL-combs the four-wave mixing

process – at the origin of the comb operation – correlates the frequency

fluctuations among the modes until the quantum limit. As a result, the

linewidth is shown to be limited by the Schawlow-Townes formula, as

it is for single-mode lasers of the same total power. Since QCL-combs

13The relatively high waveguide losses are due to the residual cross-absorption given
by the multistack structure.
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do not suffer from additional frequency noise, they are suitable for high-

resolution spectroscopy applications.

2.2.4 Quantum-cascade-laser frequency comb stabilization

The experiment presented in the previous section proves the intrinsic

coherence of the emission of a QCL-comb, but to be used for high-

resolution spectroscopy applications a proper stabilization to overcome

technical noise is required, as for single-frequency QCLs (see section 2.1).

Indeed, for metrological purposes, a fine control of the main optical pa-

rameters is required [97] (see section 1.3.4). Moreover, this can be an

additional occasion for studying the coherence properties of QCL-combs

emission. In the following experiment, the DFG-comb presented in

section 2.2.1 has been used to investigate the comb properties of the

multimodal QCL emission, in a dual-comb-like setup [98]. This charac-

terization is essential for metrological applications of such QCL-combs.

Basically a QCL-comb tooth has been phase-locked to a DFG-comb one

and the collective effect on the other QCL-comb teeth has been studied.

The results are interpreted within the framework of frequency combs in

terms of offset and spacing frequencies, relating these parameters and

their fluctuations to primary physics quantities such as the QCL effective

waveguide refractive index and the group refractive index.

Experimental setup

In fig. 2.23 the experimental setup is shown. The QCL-comb, provided

by ETH Zürich, is a broad-gain Fabry-Pérot device, emitting continuous-

wave radiation around 4.70 µm (of a previous generation respect to the

laser presented in section 2.2.3). The spacing ( fs) between the longi-

tudinal modes (QCL-comb teeth) is about 7 GHz. The laser working

temperature is 16.5◦C and the current is 735 mA, with an emitted power

of 60 mW on a single transverse mode. In fig. 2.24 the laser spectrum

measured with an FTIR spectrometer is shown. The DFG-comb14 is

essentially used to convert the MIR QCL-comb spectrum down to the

radio frequencies (RF). It is important to remark here that the frequency

noise of the DFG-comb (single tooth linewidth) is particularly low (2-

kHz linewidth on a 1-s time scale). Moreover, the DFG-comb long term

14See section 2.2.1 for the details on its generation.
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Figure 2.23: Experimental setup used for the beat-note detection. λ/2: half-wave plate
to adjust the polarization; BS: asymmetric non-polarizing beam splitter
(transmission 99%, reflection 1%); BP: RF band pass filter (in figure the
center frequency is reported); LP: low pass filter; MIX: RF mixer; PLL:
phase-locked-loop electronics. Each frequency synthesizer in the setup
(including the ones in spectrum analyzers) is referenced to a quartz/Rb/GPS
disciplined clock.
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Figure 2.24: QCL-comb spectrum measured with an FTIR spectrometer. The resolution
is 7 GHz, therefore the laser modes cannot be resolved. Considering that
the spectrum is 700 GHz-wide, and the mode spacing is 7 GHz, an overall
number of about 100 modes is deduced.
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frequency stability and frequency accuracy descend directly from the

ones of the metrological NIR-comb involved in the generation chain.

The DFG-comb repetition rate ( fr) is 1 GHz and the spectrum is about

300-GHz wide.

As shown in fig. 2.23, the QCL-comb beam (about 1 mW of power) is

superimposed to the DFG-comb beam (about 0.5 mW of power), sending

them to a HgCdTe photodetector (200-MHz bandwidth). The recorded

heterodyne beat-note signal (HBNS) is used for further analysis of the

phase noise and frequency control of the QCL-comb. A fraction of the

HBNS signal is recorded by an RF spectrum analyzer (spectrum analyzer

1). When the frequency spacing between the QCL-comb modes and the

DFG-comb ones falls within the bandwidth of the detector, the obtained

RF spectrum is made of several peaks, each of them resulting from the

beating between a QCL-comb tooth and a DFG-comb tooth (in a ratio of

one every seven). The spacing between these peaks is | fs−7 fr| (about

10 MHz).15

The HBNS is also used in two RF chains. As represented on the left,

the signal is filtered at 30 MHz just to select only one peak (with all

the parameters chosen to have the better signal-to-noise ratio). Then it

is sent to a home-made hybrid analog/digital phase-locked-loop (PLL)

electronics. When the loop is closed on the QCL current modulator, this

signal is locked to the 30 MHz local oscillator, essentially locking one

QCL-comb tooth to a DFG-comb one.

On the right, the chain to remove the offset is depicted. The HBNS is

filtered at 30 MHz to select only one peak, summed in an RF mixer

to a 100 MHz signal and then subtracted in another mixer to the orig-

inal HBNS. In this way, spectrum analyzer 2 shows the HBNS where

one peak has been subtracted to all the others, therefore any common

frequency contribution (offset) is canceled out.

Results

When the QCL-comb operates in free-running regime, the peaks in the

HBNS (observed with spectrum analyzer 1) are about 1-MHz wide. As a

first step, the performance of the loop has been tested. Once closed the

15This difference can be positive or negative, and in a HBNS both cases can occur at
the same time. In this eventuality the RF peaks coming from a positive difference are
named direct, the others are named folded.
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loop and optimized the PLL parameters, the HBNS has been acquired

with spectrum analyzer 1 in real-time mode. Each acquisition is made

of 20 frames. Each frame contains the HBNS in time domain over a

2-ms time interval sampled at 75 MHz. Afterwards, for each frame the

Fourier transform of the signal (amplitude and phase) has been computed.

All the 20 obtained amplitude spectra of an acquisition are reported in

fig. 2.25. In fig. 2.26 a zoom of the locked peak (the one filtered to be

Figure 2.25: FFT amplitude of the 20 frames of an acquisition of the HBNS acquired
using spectrum analyzer 1. Each color is related to a specific frame. The
QCL-comb operates in locking condition. Each frame contains the HBNS
in time domain over a 2-ms time interval sampled at 75 MHz.

used in the locking chain) is shown. On a frequency span of 2 MHz the

typical shape of locked signals is evident, with the bumps given by the

electronic bandwidths. On a span of 12 kHz the peak is still resolution-

bandwidth-limited and a perfect stability over the whole acquisition is

observed. In fig. 2.26 the phase of the signal around the locked peak

is also reported. The phase is clearly stable over the whole acquisition.

Now, for studying the collective effect of the locking, we concentrate

our attention on the other peaks. In fig. 2.27 a zoom of the first-neighbor

peak is shown. On a span of 2 MHz the peak shows a shape close to the

one of the locked peak, but on a span of 12 kHz frequency fluctuations

are evident. Nonetheless, they are strongly reduced compared to the

107



2.2 Frequency combs stabilization and spectroscopy

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 - 2

1 0 - 1

1 0 0

- 1 5 0
- 1 0 0
- 5 0

0
5 0

1 0 0
1 5 0

 

 

am
pl

itu
de

 (a
.u

.)

f r e q u e n c y  ( 2 0 0  k H z / d i v )

 

 

am
pl

itu
de

 (a
.u

.)

 

 

ph
as

e 
(°

)

f r e q u e n c y  ( 1  k H z / d i v )

Figure 2.26: Zoom of the locked peak: amplitude (on two different spans) and phase
(see fig. 2.25). Even on the narrower span a perfect stability both of the
peak amplitude and phase can be observed.
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Figure 2.27: Zoom of the first-neighbor peak in locking operation (see fig. 2.25). On the
narrower span the presence of frequency fluctuations is evident.
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2.2 Frequency combs stabilization and spectroscopy

free-running regime, we can estimate a linewidth of few kHz against

500 kHz.

To be more quantitative, the 20 amplitude spectra have been averaged,

yielding the spectrum shown in fig. 2.28. All the peaks have been fitted
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Figure 2.28: Average over the 20 amplitude spectra of an acquisition in locking operating
regime (see fig. 2.25). Each peak has been fitted with a Gaussian function
and labeled with an integer number m. For the direct peaks the relative QCL-
comb mode has a higher frequency compared to the relative DFC-comb
mode. For the folded peaks the opposite holds.

with a Gaussian function (see fig. 2.29 for an example). The obtained σ

(Gaussian FWHM) have been plotted against the peak number and fitted

with the following function:

σ(m) =
√

σ2
0(m−m0)2 +RBW 2 (2.16)

where m numbers the peaks in the HBNS, m0 denotes the locked peak,

and RBW is the instrumental resolution bandwidth. The use of this func-

tion comes from the assumption that both the shape of the instrumental

function and the distribution of the frequency fluctuations are Gaussian,

and it is justified by the fact that the function fits well the acquired data.

σ0 represents the mean square root value of the frequency fluctuation

of the spacing between the laser modes (∆ fs). Repeating this procedure

with few different acquisitions (sets of 20 frames) and averaging over the
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Figure 2.29: Top: zoom of the first-neighbor averaged peak (number 3 in fig. 2.28) fitted
with a Gaussian function.
Bottom: fit of the peaks widths in locking operating regime using eq. 2.16.
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obtained values, yields

σ̄0 lock = (450±40) Hz (2.17)

Since the QCL-comb modes are 100, and considering that we phase-lock

the central one (or one nearby), the accumulated residual frequency noise

on the modes on the sides of the spectrum is

(450×50) Hz' 22 kHz (2.18)

Since the linewidth of the DFG-comb (the reference) is ∆νDFG = (750±
200) Hz (on a 20 ms time scale) [83], we can state that the overall single

QCL-comb mode linewidth is reduced from 500 kHz to values ranging

from 1 to 23 kHz on a 40 ms time scale.

Afterwards, in order to study the dynamics of the laser in free-running

operation, the locking chain has been opened, and the HBNS has been

acquired downstream the chain removing the offset fluctuations. Again

each acquisition is made of 20 frames and each frame contains the HBNS

in time domain over a 2-ms time interval sampled at 75 MHz. The 20

amplitude spectra have been averaged, giving the spectrum shown in

fig. 2.30. All the peaks have been fitted with a Gaussian function (see

fig. 2.31 for an example). The obtained σ have been plotted against the

peak number and fitted again with eq. 2.16. The value obtained averaging

over few different acquisitions is

σ̄0 free run. = (343±12) Hz (2.19)

In order to interpret these results in terms of the two main optical

quantities characterizing the laser waveguide, the effective and the group

refractive index (nc and ng, respectively) a specific discussion is needed

(see appendix A.4). The frequencies of a reference mode (whose fre-

quency and order are νc and N, respectively) and of its first neighbor

are expressed in terms of the effective and the group refractive index.

Subsequently, the OFC offset ( fo) and spacing ( fs) parameters and their

fluctuations are derived. The obtained relations for the fluctuations are
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Figure 2.30: Average over the 20 amplitude spectra of an acquisition in free-running
operating regime with the offset canceled, acquired using spectrum analyzer
2. The reference peak used for the offset subtraction has been pointed out.
Each peak has been fitted with a Gaussian function and labeled with an
integer number m. The offset cancellation works for direct peaks.

free running locked

∆ fs (343±12) Hz (450±40) Hz

∆νc (500±50) kHz (750±200) Hz

Table 2.2: Measured widths (frequency fluctuations) in free-running and locked opera-
tion. The reported values are referred to a 40 ms time scale.

(see eqs. A.41 and A.42)

∆nc

nc
=−∆νc

1
N

2ncL
c

(2.20a)

∆ng

ng
=−∆ fs

2ngL
c

(2.20b)

where L = (6.40± 0.05) mm is the physical length of the waveguide,

nc = (3.175±0.005), ng = (3.320±0.025), and N = 9030 (computed

as the ratio between the optical frequency and the spacing fs).

In table 2.2 the measured values are collected (refer to eqs. 2.17

and 2.19). All the reported values are referred to a 40 ms time scale. In
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Figure 2.31: Top: zoom of the first-neighbor averaged peak (number 4 in fig. 2.30) fitted
with a Gaussian function.
Bottom: fit of the peaks widths in free-running operating regime using
eq. 2.16.
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2.2 Frequency combs stabilization and spectroscopy

order to understand the impact of the locking on the laser parameters,

the ratios between the values in locking conditions and in free-running

conditions are computed, yielding

∆nc

nc

∣∣∣∣
lock

= 0.0015 · ∆nc

nc

∣∣∣∣
free

(2.21a)

∆ng

ng

∣∣∣∣
lock

= 1.3 ·
∆ng

ng

∣∣∣∣
free

(2.21b)

The ratios given in eq. 2.21 clearly show that the loop acts essentially

on the effective refractive index nc reducing its fluctuations in order to

stabilize the emission (satisfying eq. A.35). On the other hand ∆ng/ng is

almost unaffected. This means that the contribution given by the term

related to ∆nc to ∆ng is negligible compared to the one related to the

dispersion dn/dν (see eq. A.34).

This experiment proves that the QCL-comb mode used in the locking

chain is perfectly stabilized, while the other modes are only partially

stabilized. The locked QCL-comb mode shows a perfectly stable phase

difference compared to the DFG-comb one, while the other QCL-comb

modes show a reduced linewidth from 500 kHz down to values ranging

from 1 to 23 kHz on a 40 ms time scale, depending on the distance from

the locked mode. Another actuator to control the spacing fluctuations

is required in order to lock all the modes. Apparently, the spacing

fluctuations are not affected by the locking.

115





Conclusion

To conclude, a summary of the main results reported in this thesis and

some perspectives are here given.

The main theme of this work is the development of coherent laser sources

for high-resolution molecular spectroscopy in the MIR.

• The first reported experiment (see section 2.1.1 and ref. [67])

consists in frequency referencing a single-frequency QCL to a CO2

absorption line detected by polarization spectroscopy. Starting

from a free-running linewidth of about 500 kHz for the QCL, a

760 Hz linewidth (on a 1 ms time scale) is obtained thanks to

the locking, and the QCL absolute frequency is stabilized to the

center of the CO2 line at a precision level of 4× 10−11 on 1 s.

The absolute frequency of the locked QCL is measured with an

accuracy of 4×10−10.

• The second one (see section 2.1.2 and ref. [73]) consists in phase-

locking the same laser to a metrological non-linear-generated radi-

ation. The 250-kHz bandwidth with a residual RMS phase-noise of

0.56 rad leads to a subkilohertz-linewidth QCL radiation. The QCL

frequency stability is 6×10−13 on 1 s with an absolute traceability

accuracy of 2×10−12, both limited by the reference OFC.

• The third one (see section 2.1.3 and ref. [77]) is a proof of the

performances of the phase-locked QCL as spectroscopy source.

Several CO2 absorption lines have been measured by saturation

spectroscopy. The reported measurements are 3–4 orders of mag-

nitude more precise than the values extracted from the HITRAN
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database [6] and thus could be used to improve the molecular

parameters of the involved ro-vibrational band. The 1–4 kHz preci-

sion achieved by the presented measurements is limited by both the

Lamb-dip width and the S/N, but neither by the spectral linewidth

nor the accuracy of the QCL absolute frequency.

• With the fourth experiment (see section 2.2.1 and ref. [83]) a

change of perspective is reached, moving from single-frequency

spectroscopy to multi-frequency spectroscopy. It consists indeed

in the intracavity generation of a MIR OFC through non-linear

difference-frequency generation (DFG-comb). The proposed tech-

nique ensures an appreciable amount of power (0.5 mW), together

with a remarkably high stability. The tooth linewidth is indeed

2.0 kHz and 750 Hz on a time scale of 1 s and 20 ms, respectively.

An average power of 1 µW for each single tooth is achieved, which

means a remarkably high value for the per-tooth power spectral

density (0.5 µW/kHz on a 1-s time scale). The generated spectrum

spans 27 nm, with a center wavelength tunable from 4.2 to 5.0 µm.

• The fifth one (see section 2.2.2 and ref. [86]) is a test of the perfor-

mances of the DFG-comb as reference for single-frequency QCLs

and as source for direct comb spectroscopy. Using a high-finesse

optical cavity as spectrometer to resolve the comb spectrum, the

absorption of CO2 around 4.3 µm has been studied.

• The sixth experiment (see section 2.2.3 and ref. [92]) deals with

a new-generation QCL-comb. The aim of the experiment is to

characterize its frequency noise till the Schawlow-Townes limit

using a high-finesse optical cavity as multimode frequency-to-

amplitude converter, in order to test the effective coherence among

the modes. Since the measured frequency noise spectrum for all

the modes shows the same values compared to the one given by a

single mode, the coherence is proven down to the quantum limit.

• In the seventh and last-presented experiment (see section 2.2.4 and

ref. [98]) a QCL-comb has been phase-locked through a single

chain to the DFG-comb mentioned in section 2.2.1. The QCL-

comb modes show a reduced linewidth from 500 kHz down to

values ranging from 1 to 23 kHz on a 40 ms time scale, but for con-

trolling the spacing fluctuations an additional actuator is required.
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The experimental perspectives are twofold. First, the capabilities of

the DFG-comb have to be exploited in a more efficient manner filling the

high-finesse cavity with the sample gas, in order to detect sample gases

with lower concentration than ambient CO2 and/or weaker absorption

lines. Moreover, new-generation non-linear crystals, realized with a

holographic technique [99, 100], are planned to be used to ensure a wider

comb spectral coverage (up to a factor of ten).

On the side of QCL-combs, the experiments proved the intrinsic co-

herence of the emitted radiation, but as for metrological NIR-combs a

proper full stabilization is needed for metrological and high-resolution

spectroscopy applications. Several approaches will be tried, each of them

aimed to the fine control and the absolute frequency referencing of the

emission.
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Appendix

A.1 Frequency-to-amplitude converter calibration

In order to measure frequency fluctuations of an optical signal, a proper

frequency-to-amplitude converter is required. This happens because

standard detectors (such as photodiodes) are sensitive to power (ampli-

tude/intensity) fluctuations, but they are almost insensitive to frequency

fluctuations.16 In this section, the procedure for the calibration of an op-

tical frequency-to-amplitude converter is discussed. This procedure has

already been applied giving reliable results, as ascertained by comparing

the results obtained by using different types of frequency-to-amplitude

converters, such as optical cavities resonances and molecular absorption

lines (see section 2.1.2 for an example of comparison). The obtained

frequency noise power spectral densities (FNPSDs) are reliable up to

the limit given by the detection noise floor set by the detection system.

The setup is mainly composed of the laser source under test, an optical

cavity with a mirror connected to a piezoelectric actuator, a detector, an

oscilloscope and a spectrum analyzer (see fig. 2.18). The laser current

and temperature must stay constant in order to keep the optical frequency

constant. In order to calibrate the frequency-to-amplitude converter, two

ingredients are needed:

• The cavity transmission profile, obtained by scanning the cavity

length acting with a voltage ramp on the piezoelectric actuator.
16An important role in determining this limitation is played by the fact that the carrier

frequency is orders of magnitude larger than its deviations (tens–hundreds of terahertz
versus megahertz).

121



A.1 Frequency-to-amplitude converter calibration

The cavity is usually scanned over few FSRs (typically three) in

order to avoid non-linearities. The cavity transmission profile is

acquired with a detector and the photo-voltage is sampled with

an oscilloscope, triggered by the voltage ramp controlling the

piezoelectric actuator.

• The photo-current voltage noise power spectral density (VNPSD)

of the light transmitted by the cavity, collected with the same

detector and acquired with a spectrum analyzer. The VNPSD

contains the FNPSD if the cavity length is adjusted in order to

have the optical frequency of the laser source corresponding to

the side of a cavity resonance, where the transmission is half the

maximum. The VNPSD unities are V2/Hz because VNPSD are

voltage fluctuations square mean values normalized to the detection

RF bandwidth.

The frequency scale of the cavity transmission profile is obtained observ-

ing adjacent resonance peaks which fall at a specific ∆t that corresponds

to the cavity FSR. After this conversion, the profile of the cavity trans-

mission is expressed in terms of V/Hz. At this point we focus on the

resonance peak closer to the center of the transmission profile, we mea-

sure its FWHM and we determine the slope of the sides fitting the profile

around the half maximum with a beeline. This slope is expressed in

V/Hz. As a frequency-to-amplitude converter, the cavity behaves as a

second-order low-pass filter. The cutting is due to the photon lifetime

within the cavity. The cutoff frequency is given by fc = FWHM/2 and

the compensating factor for this cutoff is (1+( f/ fc)
2). At the end, the

following formula is obtained:

FNPSD (Hz2/Hz) = VNPSD (V2/Hz)
[

1+( f/ fc)
2

slope(V/Hz)

]2

(A.1)

The detection noise floor is acquired and elaborated exactly in the same

way, just with the laser beam blocked before reaching the cavity.

As already stated, frequency fluctuations are converted into intensity

fluctuations, but also the original intensity fluctuations of the laser source

are detected. In order to have a reliable FNPSD spectrum, it is crucial to

check that these original intensity fluctuations are negligible compared

to the ones given by the conversion. To this purpose, the intensity noise
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(amplitude noise) of the laser has to be measured. For this measurement

the cavity is removed and the laser beam is shined onto the detector, just

properly attenuated to take advantage of the whole detection dynamical

range. In order to compare the intensity noise with the frequency noise a

proper conversion is needed. The intensity noise has to be scaled to the

level of the cavity transmission. This is done by dividing the intensity

noise by the signal DC value and multiplying it for the peak value of

the cavity resonance (RP). Finally it is multiplied for the same slope.

The contribution of the intensity noise to the frequency noise is therefore

given by

FNPSDintensity(Hz2/Hz) = VNPSDintensity(V
2/Hz)·

·
(

RP(V)

DCintensity(V)

)2( 1
slope(V/Hz)

)2 (A.2)

A.2 Multimode frequency-to-amplitude conversion

In this section it will be shown how, by satisfying the right conditions, it

is possible to use an optical cavity as multimode frequency-to-amplitude

converter to retrieve the frequency noise of a frequency comb (see

fig. 2.19b). The intensity of the i-th comb mode transmitted by the

optical cavity is given by

Ii = Ii0T (νi j) (A.3)

where Ii0 is the intensity of the i-th comb mode, νi j = ν j−νi, νi is the

center frequency of the i-th comb mode, ν j is the center frequency of

the j-th cavity resonance and T (νi j) is the convolution between the i-th

comb mode shape and the j-th cavity resonance profile.17 The total

intensity transmitted by the cavity is given by

Itot = ∑
i

Ii = ∑
i
[Ii0T (νi j)] (A.4)

If

νi j = ∆ν = const. ∀i, j (A.5)

17T (νi j) is non-vanishing only if |νi j|< FSR.
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we are allowed to bring T (ν) out of the sum, yielding

Itot = T (∆ν)∑
i

Ii0 = T (∆ν)I0 tot (A.6)

This proves that in these conditions the transmission and consequently

the frequency-to-amplitude conversion follows the same rules of the

single-mode case.

Actually, the condition expressed by eq. A.5, where both the comb modes

and the cavity resonances have the same dispersion in frequency, is not

so strict. It is in fact sufficient that

|νi j−νlm| �
1
2

FWHM [T (∆ν)] (A.7)

for all the transmitted modes. In other words it is sufficient that the accu-

mulated dispersion over the whole comb spectrum is small compared to

the width of the cavity resonances.

A.3 Henry linewidth enhancement factor estima-
tion

In this section it will be shown how to compute the Henry linewidth en-

hancement factor (see section 1.4.4) for a QCL-comb. For the derivation,

a Lorentzian lineshape for the intersubband transition can be assumed

[58]. The factor can therefore be expressed as

αE(ν) =
ν32−ν

γ32
(A.8)

where ν32 and γ32 are the center frequency and the HWHM of the tran-

sition, respectively, while ν is the frequency of the radiation emitted by

the laser. Concerning ν, we have to consider that the emitted radiation is

a comb of frequencies, therefore αE has to be computed as average over

the whole emitted spectrum

〈α2
E〉laser spectrum =

1
∆ν γ2

32

∫
las. sp.

(ν32−ν
′)2 dν

′ (A.9)
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where ∆ν is the width of the comb spectrum. Assuming that the center

of the emitted spectrum corresponds to ν32 we obtain directly

〈α2
E〉laser spectrum =

1
3γ2

32

(
∆ν

2

)2

(A.10)

For the QCL-comb used in the experiment presented in section 2.2.3

we know from electroluninescence measurements that γ32 = 150 cm−1.

Moreover, in the actual operating conditions of the laser (P = 25 mW)

the spectrum width is ∆ν = 25 cm−1. The obtained Henry factor is then

〈α2
e〉laser spectrum = 0.0023 (A.11)

value that can be neglected in eq. 2.15.18

A.4 OFC parameters derivation

In this section, a discussion on how to relate the two main optical pa-

rameters of a frequency comb (spacing and offset frequencies) to the

effective refractive index and the group refractive index of a QCL-comb

waveguide is presented.

We start considering two teeth of the QCL-comb, the reference one and

its first neighbor. Their frequencies are respectively given by

νc = N
c

2n(νc)L
(A.12a)

ν1 = (N +1)
c

2n(ν1)L
(A.12b)

where N is an integer giving the order of the tooth chosen as reference,

n(νi) is the effective refractive index, and L is the QCL-comb cavity

length. In comb formalism, the frequencies of these two teeth are ex-

pressed in terms of offset frequency fo and spacing fs as follows:

νc = N fs + fo (A.13a)

ν1 = (N +1) fs + fo (A.13b)

18In case of a multistack device the shape of the gain curve on the top is even flatter
than a Lorentzian, consequently the given value for 〈α2

E〉 has to be considered as an
upper limit.
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Inverting the two formulas we easily obtain

fs = ν1−νc (A.14a)

fo = νc(N +1)−ν1N (A.14b)

Now we compute the spacing:

fs = (N +1)
c

2n(ν1)L
−N

c
2n(νc)L

(A.15)

We then expand the refractive index and introduce the group refractive

index as follows

n(ν1) = n(νc)+ fs
dn
dν

∣∣∣∣
νc

(A.16)

ng = n(νc)+νc
dn
dν

∣∣∣∣
νc

(A.17)

dn
dν

∣∣∣∣
νc

=
1
νc

[ng−n(νc)] (A.18)

obtaining

n(ν1) = n(νc)+
fs

νc
[ng−n(νc)] (A.19)

Henceforth n(νc) = nc. Now, using eqs. A.13 and A.19, and the expan-

sion

1/(1+ x)' 1− x (A.20)

for x� 1, and noting that

fs

νc
[ng−nc]� nc (A.21)

we can continue computing the spacing (eq. A.15)

fs '(N +1)
c

2ncL

[
1− fs

nc

2ncL
c

1
N
(ng−nc)

]
−N

c
2ncL

=
c

2ncL
− (N +1)

N
fs

nc
(ng−nc)

(A.22)

Factorizing fs as

fs

[
1+

(N +1)
N

(ng−nc)

nc

]
=

c
2ncL

(A.23)
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and using again eq. A.20 we obtain

fs '
c

2ngL

[
1+

1
N
(nc−ng)

ng

]
(A.24)

Now we evaluate the offset frequency:

fo = N(N +1)
c

2n(νc)L
−N(N +1)

c
2n(ν1)L

(A.25)

Using again eq. A.19 and neglecting terms in (ng−nc)
2 we obtain

fo ' fs(N +1)
(ng−nc)

nc
(A.26)

Using eq. A.24 at the zeroth order we obtain

fo ' (N +1)
c

2L

(
1
nc
− 1

ng

)
(A.27)

In order to check eq. A.27 with the formalism developed for pulsed

combs, we can compare it to equation 1 in ref. [101]. The latter, written

for the group phase offset, reads as follows:

∆ϕGPO =
2πν2

c

c

∫ L

0

dn(z)
dν

dz (A.28)

The sub-cycle part of ∆ϕGPO is ∆ϕCEO, the carrier envelope offset, de-

fined mod 2π. The offset frequency is defined as

fo =
∆ϕCEO

2π
fs = ν

2
c

fs

c

∫ L

0

dn(z)
dν

dz (A.29)

In our case the refractive index is homogeneous along the laser cavity,

therefore the integral yields just a factor 2L. Finally, recalling eqs. A.12

and A.18 we obtain

fo = fsN
(ng−nc)

nc
(A.30)

This result is very close to that of eq. A.26 since N� 1.

In eq. A.24 every parameter is usually well known, therefore it can be

used to compute the group refractive index. For the moment we neglect

the second term in parenthesis, obtaining

ng '
c

2L fs
(A.31)

127



A.4 OFC parameters derivation

For the QCL-comb presented in section 2.2.4 we have L = (6.40±
0.05) mm and fs = 7.062 GHz (measured by using the metrological

DFG-comb), obtaining

ng = (3.320±0.025) (A.32)

Knowing that the average refractive index seen by the laser mode within

the guide is n(νc) = (3.175±0.005) and knowing that N = 9030 (com-

puted as the ratio between the optical frequency and the spacing fs),

considering again eq. A.24 it can be easily verified that the second term

in parenthesis is negligible. Henceforth we will neglect it whenever

convenient.

Recalling eq. A.13, the optical parameters fluctuations can be evalu-

ated:

∆νc = N∆ fs +∆ fo (A.33a)

∆ν1 = (N +1)∆ fs +∆ fo (A.33b)

Moreover, from eq. A.17 and using eq. A.33 the group-refractive-index

fluctuations can be computed:

∆ng = ∆nc +∆νc
dn
dν

+νc ∆

(
dn
dν

)
= ∆nc

(
1−N

c
2ncL

1
nc

dn
dν

)
+νc ∆

(
dn
dν

) (A.34)

Assuming that the Nth QCL-comb tooth is phase-locked to a DFG-comb

tooth (see section 2.2.4), within the bandwidth of the loop we can state

that

∆νc = ∆νDFG (A.35)

yielding

∆ν1 = ∆ fs +∆νDFG (A.36)

In QCLs the two main phenomena that give the tunability of the emitted

frequency are the variation of the refractive index and the variation of

the physical length of the laser cavity with temperature, but the first

contribution is one order of magnitude larger (see ref. [58] page 178).

The other temperature-dependent parameter is the group refractive index.

From eq. A.17 it is clear that ng is not independent from nc. Nonetheless
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ng contains the term dn/dν which can depend on temperature in a

different way compared to nc. For this reason we compute

∆ fx =
d fx

dnc
∆nc +

d fx

dng
∆ng (x = s,o) (A.37)

In particular, using eq. A.24 (at the zeroth order) and eq. A.27, they read

as follows:

∆ fs =−
∆ng

ng

c
2ngL

(A.38)

∆ fo =−(N +1)
c

2L

(
∆nc

n2
c
−

∆ng

n2
g

)
(A.39)

Moreover, using again eq. A.12 we have

∆νc =−
∆nc

nc
N

c
2ncL

(A.40)

yielding
∆nc

nc
=−∆νc

1
N

2ncL
c

(A.41)

and from eq. A.38 we have

∆ng

ng
=−∆ fs

2ngL
c

(A.42)

where the fluctuations of the effective and the group refractive index are

obtained.

A.5 QCL frequency modulation bandwidth

An important characteristic for a laser is its frequency modulation band-

width. The setup used for this measurement is the same used for the

measurement of the FNPSD (see appendix A.1). In this case a frequency

modulation is induced by modulating the driving current. The frequency

of the modulation is varied and the laser frequency deviation is measured.

In fig. A.1 the frequency modulation bandwidth of the QCL used for the

experiments reported in section 2.1 is shown. This bandwidth results to

be the limiting factor in the PLLs.
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Figure A.1: Frequency modulation bandwidth of the QCL used for the experiments
reported in section 2.1. From the shape of the two graphs a bandwidth of
about 200 kHz is inferred. FM: frequency modulation.
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A.6 The Vernier technique

A.6 The Vernier technique

The Vernier technique is a valuable tool for the study of OFCs spectra and

for spectroscopy [85, 86, 88]. It enables the filtering of the modes of an

OFC using a high-finesse optical cavity. For a schematic representation

see fig. 2.19. The Vernier ratio is defined as V r = fs/FSR. If V r = 1 (or

any integer) each comb mode is in resonance with the cavity, therefore

everyone is transmitted. If V r is slightly detuned from 1, only one mode

at a time is in resonance with the cavity, therefore, by tuning the cavity

length, the comb spectrum can be resolved. The Vernier ratio can also

assume a fractional value expressed as V r = n/m, where n and m are two

integers. In this case only one comb mode every m is in resonance with

the cavity at a time. Still detuning the cavity length in order to cover

one FSR all of them are in resonance, but in m subgroups at a time (see

fig. A.2).

Figure A.2: Schematic representation of the Vernier technique in the optical-frequencies
domain with V r = 20/3, where the black lines are the cavity resonances
and the red ones are the OFC modes. By moving the cavity resonances in
order to cover a FSR (slip to the left) the OFC modes are in resonance in 3
subgroups at a time, as represented by the stars.

A.7 OFC as pure transfer oscillator: the DDS lock-
ing scheme

In order to have a DFG radiation characterized by a narrow linewidth,

it is crucial to employ two master sources (pump and signal) charac-

terized by the same spectrum shape, ideally phase-locked. Since they
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are tens of terahertz far apart, an intermediate transfer oscillator like an

OFC is required (see fig. A.3). It is not enough to phase-lock the two

Figure A.3: Schematic representation of the OFC used as transfer oscillator, where the
black lines are the OFC modes, while the red ones are the signal and the
pump sources, respectively. Ns and Np are two integers identifying the
closest comb modes (where N = 0 for the ideal OFC mode that is the closest
to ν = 0).

sources to the closest modes of the OFC by using the standard approach

because the fluctuations of the spacing among the modes would affect

the DFG. Even though the spacing is somehow stabilized, the residual

fluctuations can still be important since the two master sources are phase-

locked to two OFC modes which are separated by many other modes,

therefore the spacing fluctuations are significantly amplified. In order to

overcome this trouble an alternative scheme based on the direct digital

synthesis (DDS) of RFs has been introduced [70, 74, 75]. A dedicated

electronics (the so-called DDS) multiplies the signal beat note by a factor

(Np−Ns)/Ns given by the relative distance in frequency between the two

master sources, where Ns and Np are two integers identifying the closest

comb modes (N = 0 for the ideal OFC mode that is the closest to ν = 0).

Then the obtained signal is used as reference for the phase locking of

the pump with a large bandwidth. An absolute frequency traceability of

the generated DFG radiation is obtained by controlling the frequency of

the signal against the nearest OFC mode with a low-bandwidth PLL. By

using this scheme the OFC frequency fluctuations do not affect the DFG

radiation. In particular, on short time scales the linewidth of the DFG

radiation is proportional to the signal one,19 while on long time scales

the stability is given by the OFC.

In case the signal radiation is a portion of the OFC itself (see sec-

tion 2.2.1), a LO source in the proximity is still needed in order to

convert the frequency fluctuations of the OFC signal modes to an RF

19This fact is particularly evident in fig. 2.6 for the DFG FNPSD, where the residual
1/ f trend between 30 Hz and 1 kHz is given by the signal laser, the Nd:YAG.
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Figure A.4: Schematic representation of the OFC used as transfer oscillator, where the
black lines are the OFC modes, while the red ones are the LO and the pump
sources, respectively. The OFC modes used as signal are marked. NLO, Ns
and Np are three integers identifying the closest comb modes (where N = 0
for the ideal OFC mode that is the closest to ν = 0).

signal (see fig. A.4). Again the DDS multiplies the signal beat note by

a factor (Np−Ns)/NLO, and the obtained signal is used as reference for

the phase locking of the pump. On short time scales the linewidth of

the DFG radiation is proportional to the LO one. In this case the perfect

compensation operated by the DDS is strictly valid only for one of the

OFC modes. See section 2.2.1 for details.
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Abbreviations

DDS direct digital synthesis

DOF degree of freedom

DFB distributed feedback

DFG difference-frequency generation

ECDL external-cavity diode laser

FET field-effect transistor

FFT fast Fourier transform

FIR far infrared

FNPSD frequency noise power spectral density

FSR free spectral range

FTIR Fourier transform interferometer

FWHM full width at half maximum

FWM four-wave mixing

HBNS heterodyne beat-note signal

HWHM half width at half maximum

LO local oscillator

MBE molecular beam epitaxy

MIR mid infrared

NIR near infrared
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Abbreviations

NPSD noise power spectral density

OFC optical frequency comb

OPO optical parametric oscillator

PID proportional-integral-derivative

PLL phase-locked loop

PPLN periodically-poled lithium niobate (LiNbO3)

PS polarization spectroscopy

QCL quantum cascade laser

RF radio frequency

RMS root mean square

SFG sum-frequency generation

SHG second-harmonic generation

S/N signal-to-noise ratio

VNPSD voltage noise power spectral density
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