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Abstract. The Euclidean distance degree of a real variety is an important
invariant arising in distance minimization problems. We show that the Eu-

clidean distance degree of an orthogonally invariant matrix variety equals the

Euclidean distance degree of its restriction to diagonal matrices. We illustrate
how this result can greatly simplify calculations in concrete circumstances.

1. Introduction

The problem of minimizing the Euclidean distance (ED) of an observed data
point y ∈ Rn to a real algebraic variety V ⊆ Rn arises frequently in applications,
and amounts to solving the polynomial optimization problem

minimize

n∑
i=1

(yi − xi)2 subject to x ∈ V.

The algebraic complexity of this problem is closely related to the number of complex
regular critical points of y on the Zariski closure VC of V. We will call such points
the ED critical points of y with respect to V ; see Definition 4.1. The authors of [11]
showed that the number of ED critical points of a general data point y ∈ Cn is
a constant, and hence is an invariant of V. This number is called the Euclidean
distance degree (ED degree) of V . As noted in [11], the computation of EDdegree(V)
can be subtle, since it may change considerably under a linear transformation of V.

In this work, we explore the ED degree of orthogonally invariant matrix varieties
M⊆ Rn×t, meaning those varieties M satisfying

UMV > =M for all real orthogonal matrices U ∈ O(n), V ∈ O(t).

Without loss of generality, suppose n ≤ t. Clearly, membership of a matrix M
in such a variety M is fully determined by its vector of singular values σ(M) =
(σ1(M), . . . , σn(M)), where we use the convention σi−1(M) ≥ σi(M) for each
i. Indeed, we may associate with any orthogonally invariant matrix variety M
its diagonal restriction S = {x : Diag (x) ∈ M}. The variety S thus defined
is absolutely symmetric (invariant under signed permutations) and satisfies the
key relation M = σ−1(S). Conversely, any absolutely symmetric set S ⊆ Rn
yields the orthogonally invariant matrix variety σ−1(S); see e.g. [14, Theorem 3.4]
and [7, Proposition 1.1].
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In this paper, we prove the elegant formula

(?) EDdegree(M) = EDdegree(S).

In most interesting situations, the diagonal restriction S ⊆ Rn has simple geometry,
as opposed to the matrix variety M, and hence our main result (?) provides
elementary and transparent means to compute the ED degree of M by working
with the simpler object S. Interesting consequences flow from there. For example,
consider the r-th rank variety

Rn×tr := {X ∈ Rn×t : rankX ≤ r},
and the essential variety

E := {X ∈ R3×3 : σ1(X) = σ2(X), σ3(X) = 0}
from computer vision [1, 17,21]; both Rn×tr and E are orthogonally invariant. The
diagonal restrictions of Rn×t and E are finite unions of linear subspaces and their
ED degrees are trivial to compute. Moreover, our results readily imply that all
ED critical points of a general real data matrix Y on Rn×tr and on E are real.
This result has been previously shown for Rn×tr in [11] – a generalization of the
Eckart-Young theorem – and is entirely new for the essential variety E . A related
further investigation of the essential variety appears in [15].

Our investigation of orthogonally invariant matrix varieties fits in a broader
scope. The idea of studying orthogonally invariant matrix setsM via their diagonal
restrictions S – the theme of our paper – is not new, and goes back at least to von
Neumann’s theorem on unitarily invariant matrix norms [28]. In recent years, it
has become clear that various analytic properties of M and S are in one-to-one
correspondence, and this philosophy is sometimes called the “transfer principle”; see
for instance, [7]. For example, M is Cp-smooth around a matrix X if and only if S
is Cp-smooth around σ(X) [5, 12, 20, 25, 27]. Other properties, such as convexity [8],
positive reach [6], partial smoothness [5], and Whitney conditions [13] follow the
same paradigm. In this sense, our paper explores the transfer principle for the ED
degree of algebraic varieties. To the best of our knowledge, this is the first result in
this body of work that is rooted in algebraic geometry.

Though our main result (?) is easy to state, the proof is subtle; moreover, the
result itself is surprising in light of the discussion in [14, Section 5]. The outline
of the paper is as follows. In Section 2 we investigate invariance properties of the
Zariski closure MC ⊆ Cn×t of an orthogonally invariant matrix variety M⊆ Rn×t,
as well as the correspondence between irreducible components of S and those of
M. In Section 3, we discuss “algebraic singular value decompositions” for general
matrices Y ∈ Cn×t, leading to Section 4 containing our main results. When S is a
subspace arrangement, our results yield particularly nice consequences generalizing
several classical facts in matrix theory – the content of Section 5.

2. Zariski closure, irreducibility, and dimension of matrix varieties

Setting the stage, we begin with some standard notation. For the fields F = R
or F = C, the symbol F[x] = F[x1, . . . , xn] will denote the ring of polynomials
in x1, . . . , xn with coefficients in F. Given polynomials f1, . . . , fs ∈ F[x] the set
V := {x ∈ Fn : f1(x) = · · · = fs(x) = 0} is called an (algebraic) variety over F.
The Zariski closure of an arbitrary set T in Cn, denoted T , is the smallest variety
over C containing T . Unless otherwise specified, the topology on Cn is fixed to be
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the Zariski topology, obtained by defining the closed sets to be the varieties over
C. The topology on any subset of Cn will then always be the one induced by the
Zariski topology.

Consider a real algebraic variety V ⊆ Rn. The vanishing ideal of V is defined to
be I(V) := {f ∈ R[x] : f(x) = 0 for all x ∈ V}. Viewing V as a subset of Cn, the
Zariski closure of V, denoted VC, can be written as {x ∈ Cn : f(x) = 0 for all f ∈
I(V)}; see e.g. [29]. Note this notation is slightly redundant since by definition we
have V = VC. Nonetheless, we prefer to keep both symbols to ease notation when
appropriate.

2.1. Invariance under closure. Consider a group G acting linearly on Cn. Then
G acts on the right on C[x] via

g · f(x) = (x 7→ f(g · x)) for any g ∈ G, f ∈ C[x].

A subset T ⊆ Cn is G-invariant if g · x lies in T for any g ∈ G and x ∈ T . A
polynomial f ∈ C[x] is G-invariant provided g · f = f for all g ∈ G. We begin with
the following elementary result.

Lemma 2.1. If a set T ⊆ Cn is G-invariant, then its closure T is also G-invariant.

Proof. Fixing g ∈ G, the map µg : Cn → Cn given by µg(x) = g · x is a linear

isomorphism. Hence, assuming T is G-invariant, we deduce µg(T ) = µg(T ) = T , as
claimed. �

We now specialize the discussion to the main setting of the paper. For a positive
integer s, the symbol O(s) will denote the set of all s× s real orthogonal matrices.
This is both a group and a real variety and its Zariski closure OC(s) is the set
of all s × s complex orthogonal matrices — those satisfying Q>Q = QQ> = I.
Henceforth, we fix two positive integers n and t with n ≤ t, and consider the groups
O(n)×O(t) and OC(n)×OC(t), along with the group Π±n of all signed permutations
of {1, . . . , n}. Recall that we always consider the action of O(n) × O(t) on Rn×t
and the action of OC(n)×OC(t) on Cn×t by conjugation (U, V ) ·X = UXV >.

Now suppose M ⊆ Rn×t is a O(n) × O(t)-invariant (orthogonally invariant)
matrix variety. Then Lemma 2.1 shows that MC is O(n)×O(t)-invariant. We now
prove the stronger statement: MC is invariant under the larger group OC(n)×OC(t).

Proposition 2.2 (Closure invariance). A matrix varietyM⊆ Rn×t is O(n)×O(t)-
invariant if and only if MC is OC(n)×OC(t)-invariant. Similarly, a variety S ⊆ Rn
is Π±n -invariant if and only if SC is Π±n -invariant.

Proof. Since the proofs are similar, we only prove the first claim. Suppose first MC
is OC(n)×OC(t)-invariant. Then for every X ∈M and (U, V ) ∈ O(n)×O(t), the
matrix UXV T lies in MC ∩ Rn×t = M. Therefore M is O(n) × O(t)-invariant,
as claimed. Suppose conversely that M is O(n) × O(t)-invariant. Let X ∈ MC
be fixed. Then the map γX : OC(n) × OC(t) → Cn×t defined by γ(g) = g · X
is continuous. Lemma 2.1 yields the inclusion O(n) × O(t) ⊆ γ−1

X (MC). Since

γ−1
X (MC) is closed by continuity, we conclude OC(n) × OC(t) ⊆ γ−1

X (MC). This
completes the proof. �
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2.2. Irreducible components of orthogonally invariant varieties. For the
rest of the section, fix a Π±n -invariant (absolutely symmetric) variety S in Rn.
Then the O(n)×O(t)-invariant matrix set M := σ−1(S) is a real variety in Rn×t;
see [14, Theorem 3.4] or [7, Proposition 1.1]. Moreover, the diagonal restriction
{x ∈ Rn : Diag (x) ∈M} coincides with S. Here, we call a n× t matrix D diagonal
if and only if Dij = 0 whenever i 6= j, and for any vector x ∈ Rn the symbol Diag (x)
denotes the diagonal matrix with Dii = xi for each i = 1, . . . , n.

In this section, we highlight the correspondence between the irreducible compo-
nents of S and those of M. Recall that a real or complex variety V is irreducible if
it cannot be written as a union V = V1 ∪ V2 of two proper subvarieties V1 and V2.
Any variety V can be written as a union of finitely many irreducible subvarieties
Vi satisfying Vi * Vj for distinct indices i and j. The varieties Vi are called the
irreducible components of V, and are uniquely defined up to indexing.

Coming back to the aim of this section, let {Si}ki=1 be the irreducible components
of S. The varieties Si are typically not absolutely symmetric. Hence we define
their symmetrizations Sπi :=

⋃
π∈Π±

n
πSi and the real varietiesMi := σ−1(Sπi ). It is

standard that a signed permutation maps an irreducible component of S to another
irreducible component of S.

We record the following elementary observation for ease of reference.

Lemma 2.3. For any pair of indices i, j, the following implications hold:

Sπi ⊆ Sπj =⇒ Sπi = Sπj , and

Mi ⊆Mj =⇒ Mi =Mj

Proof. If Sπi ⊆ Sπj , then we deduce that Si =
⋃
π∈Π±

n
(Si ∩ πSj). Hence for some

π ∈ Π±n , the inclusion Si ⊆ πSj holds. Since both Si and πSj are irreducible
components of S, it must be that Si = πSj and hence, Sπi = Sπj , as claimed. The
second implication follows immediately. �

For any U ∈ O(n) and V ∈ O(t), the map X 7→ UXV > is an automorphism of
Mi, and therefore maps an irreducible component of Mi to another irreducible
component of Mi. We now show that this action is transitive, just as the action of
Π±n on the components of Sπi .

Lemma 2.4. For any index i, the group O(n) × O(t) acts transitively on the
irreducible components of Mi. Consequently, the real variety Mi is equidimensional.

Proof. Let H be an irreducible component ofMi. Note that the set Γ :=
⋃
{UHV > :

U ∈ O(n), V ∈ O(t)} is a union of a nonempty collection of irreducible components
of Mi. Let Z be the union of the irreducible components of Mi not contained in
Γ (if any). Observe that Z is an orthogonally invariant variety. Hence the two
absolutely symmetric varieties {x : Diag (x) ∈ Γ} and {x : Diag (x) ∈ Z} cover Sπi .
Since Si is irreducible, either Γ or Z coincides with all of Mi. Since the latter is
impossible by construction, we conclude that Γ =Mi, as claimed. �

We end with the following theorem, which will play a key role in the proof of
Proposition 4.10, leading to the main result of the paper.

Proposition 2.5. Each variety Mi is a union of some irreducible components of
M.
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Proof. Let {Cl} be the set of irreducible components of M. Then for any index l,
Cl =

⋃
j(Cl ∩Mj) which implies that Cl is contained in Mj for some index j(l).

Fix an Mi and let H be an irreducible component of Mi. From the equality
H =

⋃
l(Cl ∩H) we conclude that the inclusion H ⊆ Cl holds for some index l. This

implies that H ⊆ Cl ⊆Mj(l), and hence by Lemma 2.4, Mi ⊆Mj(l). Lemma 2.3
then implies the equality Mi =Mj(l), yielding H ⊆ Cl ⊆Mi. Taking the union of
this inclusion over all the irreducible components H of Mi and the corresponding
Cl, we deduce that Mi is a union of some irreducible components of M. �

Since closures of irreducible components of a real variety V are the irreducible
components of VC, Proposition 2.5 immediately implies that Mi is a union of some
irreducible components of MC.

2.3. Dimension of orthogonally invariant varieties. We next show how to read
off the dimension of MC from the absolutely symmetric variety S ⊆ Rn. To this
end, note first that since the equality dim(MC) = dim(M) holds (see [29, Lemma
8]), it suffices to compute the dimension of the real variety M from S. We will
assume that Π±n acts transitively on the irreducible components of S, that is in the
notation of Section 2.2 we have Sπi = S for all indices i. If this is not the case, we
can treat each set Sπi separately. With this simplification, both varieties S and M
are equidimensional (Lemma 2.4).

The following recipe follows that in [5, Section 2.3] and [7] and hence we skip
some of the explanations. The basic idea is to understand the dimension of the fiber
σ−1(x∗) where x∗ ∈ S is (carefully) chosen so that the sum of the dimension of the
fiber and the dimension of S equals dim(M).

Fixing notation, consider the convex cone

Rn+,≥ := {x ∈ Rn : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0}.

Observe that Rn+,≥ is exactly the range of σ on Rn×t. Along with a point x ∈ Rn+,≥,

we associate the partition Px = {P1, . . . , Pρx , P0} of the index set {1, . . . , n} so that
xi = xj if and only if i, j ∈ Pl, and xi > xj for any i ∈ Pq and j ∈ Pr with q > r.
We assume that P0 contains the indices of the zero coordinates in x, and we define
pl := |Pl|. It could be that p0 = 0 for a given x. On the other hand, we have pl > 0
for all l = 1, . . . , ρx. Recall the equality

σ−1(x) = {U Diag (x)V > : U ∈ O(n), V ∈ O(t)}.

Let

(O(n)×O(t))x := {(U, V ) ∈ O(n)×O(t) : Diag (x) = U Diag (x)V >}

denote the stabilizer of Diag (x), under the action of O(n)×O(t). Then one can check
that (U, V ) lies in the stabilizer (O(n)×O(t))x if and only if U is block diagonal with
blocks Ui ∈ O(pi) for i = 0, . . . , ρx and V is block diagonal with blocks Vi ∈ O(pi)
for i = 1, . . . , ρx, and a block V0 ∈ O(p0 + (t − n)). Further, UiV

>
i = I for all

i = 1, . . . , ρx which means that the Ui’s determine the corresponding Vi’s for all i
except i = 0. This implies that the dimension of (O(n)×O(t))x is

dim((O(n)×O(t))x) =

ρx∑
l=0

pl(pl − 1)

2
+

(p0 + t− n)(p0 + t− n− 1)

2
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yielding

dim(σ−1(x)) = dim(O(n)×O(t))− dim((O(n)×O(t))x)

=
n(n− 1) + t(t− 1)

2
−

ρx∑
l=0

pl(pl − 1)

2
− (p0 + t− n)(p0 + t− n− 1)

2

=
∑

0≤i<j≤ρx

pipj +
t(t− 1)

2
− (p0 + t− n)(p0 + t− n− 1)

2
.(2.1)

Here we used the observation

n(n− 1)

2
−

ρx∑
l=0

pl(pl − 1)

2
=

(∑ρx
l=0 pl
2

)
−

ρx∑
l=0

(
pl
2

)
=

∑
0≤i<j≤ρx

pipj .

For a partition P of [n], define the set ∆P := {x ∈ Rn+,≥ : Px = P}. The set of
all such ∆’s defines an affine stratification of Rn+,≥. Let P∗ correspond to a stratum

∆∗ in this stratification satisfying S ∩∆∗ 6= ∅ and having maximal dimension among
all strata that have a nonempty intersection with S. Then for any point x∗ ∈ S∩∆∗,
we can choose a sufficiently small δ > 0 satisfying S ∩ Bδ(x∗) ⊆ ∆∗. Hence the
fibers σ−1(x) have the same dimension for all x ∈ S ∩ Bδ(x∗) and the preimage
σ−1(S ∩Bδ(x∗)) is an open (in the Euclidean topology) subset of M. Taking into
account that both S and M are equidimensional, we deduce

dim(σ−1(S)) = dim(S) + dim(σ−1(x∗)).

Appealing to (2.1), we arrive at the formula

dim(M) = dim(S) +

 ∑
0≤i<j≤ρ∗

p∗i p
∗
j

+
t(t− 1)

2
− (p∗0 + t− n)(p∗0 + t− n− 1)

2
.

(2.2)

Example 2.6 (Rank variety). Recall the rank variety Rn×tr of matrices of rank at
most r. In this case, S is the union of all coordinate planes in Rn of dimension r
and SC is the set of all r-dimensional coordinate planes in Cn. Also, MC = Cn×tr ,
the set of all matrices in Cn×t of rank at most r.

Note that S is equidimensional. Then along with a point x∗ we have p∗0 = n− r
and p∗i = 1 for all i = 1, . . . , r. Applying (2.2) we get that the dimension of Cn×tr is

r +

((
r

2

)
+ r(n− r)

)
+
t(t− 1)

2
− (t− r)(t− r − 1)

2
= r(t+ n− r).

Example 2.7 (Essential variety). The essential variety is E = {E ∈ R3×3 : σ1(E) =
σ2(E), σ3(E) = 0}. Its Zariski closure EC ⊆ C3×3 is known to be irreducible and of
dimension six [9]. In this case, S ⊆ R3 consists of the six lines defined by x1 = ±x2,
x1 = ±x3 and x2 = ±x3 with the remaining coordinate set to zero in each case.

We can verify dim(EC) = 6 using (2.2). Indeed, picking a general point x∗ on
the line x1 = x2 in R3

+, we see that Px∗ has p∗0 = 1 and p∗1 = 2. Now applying the
formula (2.2) we get dim(EC) = 1 + 1 · 2 + 3− 0 = 6.

3. Algebraic Singular Value Decompositions and GIT quotients

In this section we fix a Π±n -invariant variety S ⊆ Rn and the induced O(n)×O(t)-
invariant matrix variety M := σ−1(S). The description of M as the preimage
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σ−1(S) is not convenient when seeking to understand the algebraic geometric
correspondences between M and S, since σ is not a polynomial map. Instead, we
may equivalently write

(3.1) M = {U Diag (x)V > : U ∈ O(n), V ∈ O(t), x ∈ S}.

In this notation, it is clear that M is obtained from S by an algebraic group action
– a description that is more amenable to an algebraic analysis. Naturally then to
understand geometric correspondences between the closures MC and SC, we search
for a description analogous to (3.1), with M, S, O(n), and O(t) replaced by their
Zariski closures MC, SC, OC(n), and OC(t). The difficulty is that an exact equality
analogous to (3.1) usually fails to hold; instead, equality holds only in a certain
generic sense that is sufficient for our purposes. We now make this precise.

3.1. Algebraic SVD. Our strategy revolves around an “algebraic singular value
decomposition”, a notion to be made precise shortly. Note that the common
extension of a singular value decomposition (SVD) from real to complex matrices
using unitary matrices, their conjugates, and the Hermitian metric does not fit well
in the algebraic setting because unitary matrices form a real (but not a complex)
variety and conjugation is not an algebraic operation. In particular, it is not suitable
for studying the EDdegree of a matrix variety. Hence we will need an algebraic
analog of SVD that uses complex orthogonal matrices. For a recent geometric
treatment of SVD rooted in algebraic geometry see the survey [23].

Definition 3.1 (Algebraic SVD). We say that a matrix A ∈ Cn×t admits an
algebraic SVD if it can be factored as A = UDV > for some orthogonal matrices
U ∈ OC(n) and V ∈ OC(t), and a complex diagonal matrix D ∈ Cn×t.

Not all matrices admit an algebraic SVD; indeed, this is the main obstruction to an
equality analogous to (3.1) in which the varietiesM, S, O(n), and O(t) are replaced
by their closures. A simple example is the matrix A = ( 1 i

0 0 ), with i =
√
−1. Indeed,

in light of the equality AA> = 0, if it were possible to write A = UDV > for some
U, V ∈ OC(2) and a diagonal matrix D, then we would deduce that UDD>U> = 0
which implies that A = 0, a contradiction. Fortunately, the existence question has
been completely answered by Choudury and Horn [4, Theorem 2 & Corollary 3].

Theorem 3.2 (Existence of an algebraic SVD). A matrix A ∈ Cn×t admits an
algebraic SVD, if and only if, AA> is diagonalizable and rank(A) = rank(AA>).

Suppose A admits an algebraic SVD A = U Diag (d)V > for some orthogonal
matrices U ∈ OC(n) and V ∈ OC(t), and a vector d ∈ Cn. Then the numbers d2

i are
eigenvalues of A>A and AA>, and the columns of U are eigenvectors of AA> and
the columns of V are eigenvectors of A>A, arranged in the same order as di. We call
the complex numbers di the algebraic singular values of A. They are determined up
to sign.

We record the following immediate consequence of Theorem 3.2 for ease of
reference.

Corollary 3.3. Consider a matrix A ∈ Cn×t. If the eigenvalues of AA> are
nonzero and distinct, then A has an algebraic SVD.

Suppose V is a variety over R or C. We say that a property holds for a general
point x ∈ V if the set of points x ∈ V for which the property holds contains an open
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dense subset of V (in Zariski topology). In this terminology, Theorem 3.2 implies
that general complex matrices A ∈ Cn×t do admit an algebraic SVD.

We can now prove the main result of this section (cf. equation (3.1)).

Theorem 3.4 (Generic description). Suppose that a set Q ⊆ SC contains an open
dense subset of SC. Consider the set

NQ := {U Diag (x)V > : U ∈ OC(n), V ∈ OC(t), x ∈ Q}.
Then NQ is a dense subset of MC, and NQ contains an open dense subset of MC.

Proof. After we show NQ is a dense subset ofMC, Chevalley’s theorem [16, Theorem
3.16] will immediately imply that NQ contains an open dense subset of MC, as
claimed.

We first argue the inclusion NSC ⊆ MC (and hence NQ ⊆ MC). To this end,
for any f ∈ I(MC), note that the polynomial q(x) := f(Diag (x)) vanishes on S
and therefore on SC. Hence the inclusion {Diag (x) : x ∈ SC} ⊆ MC holds. Since
MC is OC(n)×OC(t)-invariant (Proposition 2.2), we conclude that NSC ⊆MC, as
claimed. Moreover, clearlyM is a subset of NSC , and hence the inclusionMC ⊆ NSC

holds. We conclude the equality MC = NSC .
Now suppose that Q contains an open dense subset of SC and consider the

continuous polynomial map P : OC(n)× SC ×OC(t)→MC given by

P (U, x, V ) := U Diag (x)V >.

Noting the equations Q = SC and NQ = P (OC(n)×Q×OC(t)), we obtain

NQ = P (OC(n)×Q×OC(t)) = P (OC(n)×Q×OC(t))

= P (OC(n)×Q×OC(t)) = NSC =MC.

Hence NQ is a dense subset of MC, as claimed. �

Remark 3.5. The varietyMC may contain matrices that do not admit an algebraic
SVD and hence the closure operation in Theorem 3.4 is not superfluous. For example
the Zariski closure of R2×2

1 contains the matrix ( 1 i
0 0 ), which we saw earlier does not

have an algebraic SVD.

Though in the notation of Theorem 3.4, the set NSC coincides with MC only up
to closure, we next show that equality does hold unconditionally when restricted to
diagonal matrices. For any matrix B ∈ Cn×n we define e1(B), . . . , en(B) to be the
n coefficients of the characteristic polynomial of B, that is e1(B), . . . , en(B) satisfy

det(λI −B) = λn − e1(B)λn−1 + · · ·+ (−1)nen(B).

For any point b ∈ Cn, we define ei(b) = ei(Diag (b)) for every i = 1, . . . , n. In other
words, e1(b), . . . , en(b) are the elementary symmetric polynomials in b1, . . . , bn.

Theorem 3.6. The equality, SC = {x ∈ Cn : Diag (x) ∈MC}, holds.

Proof. The inclusion ⊆ follows immediately from the inclusion NSC ⊆ MC estab-
lished in Theorem 3.4. For the reverse inclusion, define the set

Ω := {y ∈ Cn : yi = ei(x
2
1, . . . , x

2
n) for some x ∈ SC}.

We first claim that Ω is a variety. To see this, by [26, Proposition 2.6.4], the variety
SC admits some Π±n -invariant defining polynomials f1, . . . , fk ∈ C[x]. Since fj are
invariant under coordinate sign changes, they are in fact symmetric polynomials in
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the squares x2
1, . . . , x

2
n. Then by the fundamental theorem of symmetric polynomials,

we may write each fj as some polynomial qj in the quantities ei(x
2
1, . . . , x

2
n). We

claim that Ω is precisely the zero set of {q1, . . . , qk}. By construction qj vanish on
Ω. Conversely, suppose qj(y) = 0 for each j. Letting x2

1, . . . , x
2
n be the roots of

the polynomial λn − y1λ
n−1 + · · ·+ (−1)nyn, we obtain a point x ∈ Cn satisfying

yi = ei(x
2
1, . . . , x

2
n) for each i. We deduce then that x lies in SC and hence y lies in

Ω as claimed. We conclude that Ω is closed.
Observe the mapping π : MC → Cn defined by π(X) = (e1(XX>), . . . , en(XX>))

satisfies π(NSC) ⊆ Ω, and so we deduce π(MC) = π(NSC) ⊆ π(NSC) ⊆ Ω. Hence for
any y ∈ Cn satisfying Diag (y) ∈MC, there exists x ∈ SC satisfying ei(x

2
1, . . . , x

2
n) =

ei(y
2
1 , . . . , y

2
n) for each index i = 1 . . . , n. We deduce that x2

1, . . . , x
2
n and y2

1 , . . . , y
2
n

are all roots of the same characteristic polynomial of degree n. Taking into account
that SC is Π±n -invariant, we conclude that y lies in SC. The result follows. �

We conclude with the following two enlightening corollaries, which in particular
characterize matrices in MC admitting an algebraic SVD.

Corollary 3.7 (SVD in the closure). A matrix X ∈MC admits an algebraic SVD
if and only if XX> is diagonalizable, rank(X) = rank(XX>), and the vector of
algebraic singular values of X lies in SC.

Proof. This follows immediately from Proposition 2.2, and Theorems 3.2 and 3.6. �

Corollary 3.8 (Eigenvalues in the closure). If X is a matrix in MC, then the
vector of the square roots of the eigenvalues of XX> lies in SC.

Proof. Recall that, if U is an open dense subset of a variety V , then U has nonempty
intersection with any irreducible component of V; see [3, 1.2 Proposition]. Hence
the intersection of U with any irreducible component of V is open dense in that
component, and is Euclidean dense in that component as well; see [22, page 60,
Corollary 1]. Consequently, U is Euclidean dense in V.

From Theorem 3.4 we know NSC contains an open dense subset ofMC. It follows
from the above discussion that NSC is Euclidean dense in MC. Given X ∈MC, we
let x be the vector of the square roots of the eigenvalues of XX>, which is defined
up to sign and order. We know there is a sequence Xk := Uk Diag (xk)V >k , where
Uk ∈ OC(n), Vk ∈ OC(t), and xk ∈ SC such that Xk → X as k →∞. Hence

(e1(XkX
>
k ), . . . , en(XkX

>
k ))→ (e1(XX>), . . . , en(XX>)).

Since roots of polynomials are continuous with respect to the coefficients [30, Theorem
1], we deduce that the roots of the characteristic polynomial det(λI−XkX

>
k ), namely

((xk1)2, . . . , (xkn)2), converge to (x2
1, . . . , x

2
n) up to a coordinate reordering of xk’s

and x. Passing to a subsequence, we deduce that xk converge to x up to a signed
permutation. Since SC is closed, we conclude that x lies in SC, as claimed. �

3.2. GIT perspective of algebraic SVD. The algebraic SVD can be viewed
from the perspective of Geometric Invariant Theory (GIT) [10, Chapter 2]. Let G
be the group OC(n)×OC(t) acting on Cn×t via (U, V ) ·A = UAV >. For any variety
V over C, let C[V] be the ring of polynomial maps V → C. Fix the G-invariant
variety MC and define the invariant ring

C[MC]G := {f ∈ C[MC] : f is G-invariant}
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as a subring of C[MC]. Consider a function f ∈ C[MC]G. Since the map q(x) :=
f ◦Diag (x) lies in C[SC] and is Π±n -invariant, we may write q as a polynomial map in
the values ei(x

2
1, . . . , x

2
n). Hence by passing to the limit, f itself can be expressed as

a polynomial over C in the ordered sequence of coefficients e1(XX>), . . . , en(XX>).
In other words, the following equality holds:

C[MC]G = C[e1(XX>), . . . , en(XX>)]

Observe that C[MC]G is a finitely generated reduced C-algebra, and as such, there is
a variety over C denoted byMC//G, such that C[MC]G is isomorphic to C[MC//G].
This variety (up to isomorphism) is the categorical G-quotient constructed in the
affine setting of GIT, and is denoted by MC//G. Concretely, we may write MC//G
as the variety corresponding to the ideal

{f ∈ C[x] : f(e1(XX>), . . . , en(XX>)) = 0 for all X ∈MC}.

A bit of thought shows that in our case, we may equivalently write

MC//G = {y ∈ Cn : yi = ei(x
2
1, . . . , x

2
n) for some x ∈ SC}.

This was already implicitly shown in the proof of Theorem 3.6.
The quotient map π :MC →MC//G is the surjective polynomial map associated

to the inclusion C[MC]G ↪→ C[MC]. To be precise, in our case we have

π(X) = (e1(XX>), . . . , en(XX>))

Intuitively MC//G can be “identified” with the space of closed orbits for the action
of G on MC, but not the orbit space. It can be proved that a G-orbit in MC is
closed if and only if it is the orbit of a diagonal matrix. In other words, the orbit
of a matrix X is closed if and only if X admits an algebraic SVD. By contrast, all
O(n)×O(t)-orbits in M are closed (compare these facts with [24, §16]).

4. ED critical points of an orthogonally invariant variety

We are now ready to prove our main results characterizing ED critical points
of a data point Y ∈ Cn×t with respect to an orthogonally invariant matrix variety
M⊆ Rn×t. We first give the precise definition of an ED critical point; see [11, §2].
For any variety V over R or C, we let Vreg be the open dense subset of regular points
in V. Recall that if V is a union of irreducible varieties Vi, then Vreg is the union
of Vreg

i minus the points in the intersection of any two irreducible components. In
what follows, for any two vectors v, w ∈ Cn, the symbol v ⊥ w means v>w = 0, and
for any set Q ⊆ Cn we define Q⊥ := {v ∈ Cn : v>w = 0 for all w ∈ Q} .

Definition 4.1 (ED critical point, ED degree). Let V be a real variety in Rn and
consider a data point y ∈ Cn. An ED critical point of y with respect to V is a point
x ∈ Vreg

C such that y − x ∈ TVC(x)⊥, where TVC(x) is the tangent space of VC at x.
For any general point y in Cn, the number of ED critical points of y with respect

to V is a constant; see [11] called the ED degree of V and denoted by EDdegree(V).

Here is a basic fact that will be needed later.

Lemma 4.2. Let V ⊆ Rn be a variety and let W be an open dense subset of VC.
Then all ED critical points of a general y ∈ Cn with respect to V lie in W.
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Proof. The proof is a dimensional argument explained in [11]. Without loss of
generality assume that VC is irreducible. Consider the ED correspondence EVC , as
defined in [11, §4], with its two projections π1 on VC and π2 on Cn. Since π1 is an
affine vector bundle over VregC of rank n− dimVC, it follows that π2

(
π−1

1 (VC \W)
)

has dimension smaller than n. �

Remark 4.3. We mention in passing, that the ED degree of a variety V , as defined
above equals the sum of the ED degrees of its irreducible components Vi, which
coincides with the original definition of ED degree in [11]. This follows from
Lemma 4.2 by noting that the set Vreg

C ∩ (Vi)C is an open dense subset of (Vi)C for
each i.

We say that two matrices X and Y admit a simultaneous algebraic SVD if there
exist orthogonal matrices U ∈ OC(n) and V ∈ OC(t) so that both U>XV and
U>Y V are diagonal matrices. Our first main result is that every ED critical point
X of a general matrix Y ∈ Cn×t with respect to an orthogonally invariant variety
M admits a simultaneous algebraic SVD with Y .

Theorem 4.4 (Simultaneous SVD). Fix an O(n)×O(t)-invariant matrix variety
M ⊆ Rn×t. Consider a matrix Y ∈ Cn×t so that the eigenvalues of Y Y > are
nonzero and distinct. Then any ED critical point X of Y with respect to M admits
a simultaneous algebraic SVD with Y .

The proof of this theorem relies on the following three lemmas.

Lemma 4.5. The tangent space of OC(n) at a point U ∈ OC(n) is

TOC(n)(U) = {ZU : Z ∈ Cn×n is skew-symmetric}
= {UZ : Z ∈ Cn×n is skew-symmetric}.

Proof. Recall OC(n) = {W ∈ Cn×n : WW> = I}. Consider the map F : Cn×n →
Cn×n given by W 7→WW>. Note that for any W,B ∈ Cn×n and t ∈ R, one has

(W + tB)(W + tB)> = WW> + t(WB> +BW>) + t2BB>.

Hence given U ∈ OC(n), we have [∇F (U)](B) = UB> +BU>. The tangent space
TOC(n)(U) is the kernel of the linear map ∇F (U). Consider the matrix Z := BU>.

Then [∇F (U)](B) = 0 if and only if Z> +Z = 0 which means Z is skew-symmetric.
This proves the first description of TOC(n)(U). The second description follows by

considering the map W 7→W>W instead of F . �

Lemma 4.6. A matrix A ∈ Cn×n is symmetric if and only if trace(AZ) = 0 for
any skew-symmetric matrix Z ∈ Cn×n.

Proof. The “if” part follows because Aij − Aji = trace(A(Eij − Eji)) where Eij

denotes the n × n matrix whose (i, j)-entry is one and all other entries are zero.
The “only if” part follows by the same reasoning since {Eij −Eji} is a basis for the
space of skew-symmetric matrices. �

Lemma 4.7. Consider a matrix A ∈ Cn×t and a diagonal matrix D ∈ Cn×t with
nonzero diagonal entries di such that the squares d2

i are distinct. Then if AD> and
D>A are both symmetric, the matrix A must be diagonal.
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Proof. The symmetry of AD> means Aijdj = Ajidi for any i, j = 1, . . . , n. In
addition, the symmetry of D>A implies Aijdi = Ajidj for all i, j = 1, . . . , n and
Aijdi = 0 for any i = 1, . . . , n and j > n. Therefore for any i, j, one has

Aijdidj = Ajid
2
i and Aijdidj = Ajid

2
j .

Since d2
i 6= d2

j for all i 6= j, we get Aij = 0 for all i 6= j, i, j = 1, . . . , n. Since the
di’s are all nonzero and Aijdi = 0 for any i = 1, . . . , n and j > n, we have Aij = 0
for any i = 1, . . . , n and j > n. Thus A is diagonal. �

Remark 4.8. The assumption d2
i 6= d2

j for i 6= j is necessary in Lemma 4.7. For
example consider D = I and the symmetric matrices

A =

(
cos θ − sin θ
− sin θ − cos θ

)
∈ O(2), θ ∈ R

for which AD> and D>A are both symmetric. However, A is diagonal only when
θ = kπ with k ∈ Z.

Proof of Theorem 4.4. By Corollary 3.3, we may write Y = UDV > for some
U ∈ OC(n), V ∈ OC(t), and a diagonal matrix D ∈ Cn×t. Let X be an ED critical
point of Y with respect to M. Then A := U>XV lies in MC (Proposition 2.2). To
prove the theorem, we need to show that A ∈ Cn×t is diagonal.

Consider the map F : OC(n)→MC given by W 7→WAV >. Then

[∇F (U)](B) = BAV > ∈ TMC(X),

for any B ∈ TOC(n)(U). By Lemma 4.5, we may write B = UZ for a skew-symmetric

Z, yielding UZAV > ∈ TMC(X). Varying B, we see that the tangent space of MC
at X contains {UZAV > : Z> = −Z}. Then, by the definition of ED critical point
we have trace((Y − X)(UZAV >)>) = 0 for any skew-symmetric matrix Z, and
hence

0 = trace(U(D −A)V >V A>Z>U>) = trace((D −A)A>Z>).

By Lemma 4.6, this means (D −A)A> is symmetric. Since AA> is symmetric, we
have that DA> is symmetric; therefore the transpose AD> is symmetric.

By considering F : OC(t)→MC given by W 7→ UAW>, we get as above, that
{UAZ>V > : Z> = −Z} ⊆ TMC(X). It follows that

0 = trace((U(D −A)V >)>UAZ>V >) = trace((D −A)>AZ>)

for any skew-symmetric matrix Z, and by Lemma 4.6, (D − A)>A is symmetric.
Again, since A>A is symmetric, we get that D>A is symmetric. Since AD> and
D>A are both symmetric, we conclude A is diagonal by Lemma 4.7, as claimed. �

The next ingredient in our development is a version of Sard’s Theorem in algebraic
geometry (often called “generic smoothness” in textbooks); see [18, III, Corollary
10.7].

Theorem 4.9 (Generic smoothness on the target). Let V and W be varieties over
C. Consider a dominant polynomial map f : V → W. Then there is an open dense
subset W ′ of Wreg (and hence of W) such that for any w ∈ W ′ and any point
v ∈ Vreg ∩ f−1(w), the linear map ∇f(v) : TV(v)→ TW(w) is surjective.

We now establish a key technical result: a representation of the tangent space of
MC at a general matrix X ∈MC in terms of the tangent space of SC at the vector
of algebraic singular values of X.
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Proposition 4.10 (Transfer of tangent spaces). Consider a Π±n -invariant variety
S ⊆ Rn and the induced real variety M := σ−1(S). Then the following statements
hold.

(a) A general point X ∈MC lies in Mreg
C , admits an algebraic SVD, and its vector

of algebraic singular values lies in Sreg
C . Moreover, the tangent space TMC(X)

admits the representation

(4.1) TMC(X) =

{
UZ1 Diag (x)V > + U Diag (x)Z>2 V

> + U Diag (a)V > :
a ∈ TSC(x), Z1, Z2 are skew-symmetric

}
,

for any U ∈ OC(n), V ∈ OC(t), and x ∈ Sreg
C satisfying X = U Diag (x)V >.

(b) A general point x ∈ SC lies in Sreg
C . Moreover, for any U ∈ OC(n), V ∈ OC(t),

the point X = U Diag (x)V > lies in Mreg
C , and satisfies (4.1).

Proof. We begin by proving claim (a). By Theorem 3.4 with Q = Sreg
C , a general

point X ∈MC admits an algebraic SVD: X = U ′Diag (x′)V ′> for some x′ ∈ Sreg
C .

As Mreg
C is an open dense subset of MC, we can assume that X lies in Mreg

C .
Consider the dominant polynomial map P : OC(n)× SC ×OC(t)→MC given by

P (Ũ , x̃, Ṽ ) := Ũ Diag (x̃) Ṽ >.

By Theorem 4.9 we can assume that ∇P (U, x, V ) is surjective whenever we can write
X = U Diag (x)V > for some U ∈ OC(n), V ∈ OC(t) and x ∈ Sreg

C . Therefore the
description of tangent space in (4.1) follows from Leibniz rule on P and Lemma 4.5.
Hence claim (a) is proved.

Next, we argue claim (b). To this end, let Θ be the dense open subset of MC
guaranteed to exist by (a). We claim that we can assume that Θ is in addition
orthogonally invariant. To see this, observe that all the claimed properties in (a)
continue to hold on the dense, orthogonally invariant subset Γ :=

⋃
{UΘV T : U ∈

OC(n), V ∈ OC(t)} of MC. By Lemma 2.1, the set MC \ Γ is an orthogonally

invariant variety. Note now the inclusions Θ ⊆MC \ (MC \ Γ) ⊆ Γ. It follows that

MC \ (MC \ Γ) is an orthogonally invariant, open, dense variety in MC on which

all the properties in (a) hold. Replacing Θ with MC \ (MC \ Γ), we may assume
that Θ is indeed orthogonally invariant in the first place.

Next, we appeal to some results of Section 2.2. Let {Si}ki=1 be the irreducible
components of S and define the symmetrizations Sπi :=

⋃
π∈Π±

n
πSi and the varieties

Mi := σ−1(Sπi ). Observe that Si are the irreducible components of SC and we have
Sπi =

⋃
π∈Π±

n
πSi. Note also that MC is the union of the varieties Mi.

By Proposition 2.5, each variety Mi is a union of some irreducible components
of MC. Since the intersection of Mreg

C with any irreducible component of MC is

open and dense in that component, we deduce that the intersection Mi ∩Mreg
C is

an open dense subset of Mi for each index i. Similarly, the intersection Θ ∩Mi is
open and dense in each variety Mi. Then clearly Θ intersects NSπi for each index i,

since by Theorem 3.4 the set NSπi contains an open dense subset of Mi. Therefore

for each index i, the set Θ contains Diag (xi) for some xi ∈ Sπi .
We deduce that the diagonal restriction of Θ, namely the set

W := {x ∈ Cn : Diag (x) ∈ Θ},
is an absolutely symmetric, open subset of SC and it intersects each variety Sπi .

In particular, W intersects each irreducible component Si. Since nonempty open
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subsets of irreducible varieties are dense, we deduce that W is dense in SC. Moreover,
since for any point x ∈W , the matrix Diag (x) lies in Θ, we conclude

• Diag (x) lies in Mreg
C (and hence by orthogonal invariance so do all matrices

U Diag (x)V > with U ∈ OC(n), V ∈ OC(t)) and x lies in SregC ,
• equation (4.1) holds for X = Diag (x), and hence by orthogonal invariance

of MC and of the description (4.1), the equation continues to hold for X =
U Diag (x)V >, where U and V arbitrary orthogonal matrices.

Thus all the desired conclusions hold for any x in the open dense subset W of SC.
The result follows. �

We are now ready to prove the main result of this paper, equation (?) from the
introduction. As a byproduct, we will establish an explicit bijection between the
ED critical points of a general matrix Y = U Diag (y)V > ∈ Cn×t on M and the
ED critical points of y on SC.

Theorem 4.11 (ED degree). Consider a Π±n -invariant variety S ⊆ Rn and the
induced real variety M := σ−1(S). Then a general matrix Y ∈ Cn×t admits a
decomposition Y = U Diag (y)V >, for some matrices U ∈ OC(n), V ∈ OC(t), and
y ∈ Cn. Moreover, then the set of ED critical points of Y with respect to M is

{U Diag (x)V > : x is an ED critical point of y with respect to S},

In particular, equality EDdegree(M) = EDdegree(S) holds.

Proof. For general Y ∈ Cn×t, the eigenvalues of Y Y > are nonzero and distinct.
Then by Corollary 3.3, we can be sure that Y admits an algebraic SVD. We fix such
a decomposition Y = U Diag (y)V >, for some U ∈ OC(n), V ∈ OC(t), and y ∈ Cn.

Let X be an ED critical point of Y with respect to M. By Theorem 4.4, we
can assume that X and Y admit a simultaneous SVD, that is both U ′>XV ′> and
U ′>Y V ′> are diagonal for some matrices U ′ ∈ OC(n), V ′ ∈ OC(t). Notice that the
columns of U and U ′ are equal up to a sign change and a permutation. Similarly the
first n columns of V and V ′ are equal up to a sign change and a permutation. Hence
we may assume that X can be written as X = U Diag (x)V > for some x ∈ SC. By
Lemma 4.2 and Proposition 4.10, we can further assume that X lies in Mreg

C and
x lies in Sreg

C , and moreover the tangent space TMC(X) at X = U Diag (x)V > is
given in (4.1).

We will now show that x is an ED critical point of y with respect to S. To see
this, observe the inclusion

{U Diag (a)V > : a ∈ TSC(x)} ⊆ TMC(X).

and hence

0 = trace(U Diag (y − x)V >(U Diag (a)V >)>) for any a ∈ TSC(x).

Simplifying, we immediately conclude (y − x)>a = 0 for any a ∈ TSC(x), and hence
x is an ED critical point of y with respect to S.

Conversely, suppose x ∈ Sreg
C is an ED critical point of y with respect to S.

Applying Theorem 3.4, we deduce that if a set Q ⊆ Cn contains an open dense set
in Cn, then

{Û Diag (z) V̂ > : z ∈ Q, Û ∈ OC(n), V̂ ∈ OC(t)}
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contains an open dense subset of Cn×t. Define now the matrix X := U Diag (x)V >.
Then by Lemma 4.2 and Proposition 4.10, we may assume that X is regular and
the tangent space of MC at X is generated by all matrices of the form

i) UZ Diag (x)V > with Z skew-symmetric,
ii) U Diag (a)V > where a belongs to the tangent space of SC at x,

iii) U Diag (x)Z>V > with Z skew-symmetric.

We will show

(4.2) Y −X ⊥ TMC(X)

by dividing the proof according to the three cases i),ii), iii) above. For i), observe

trace
(
(X − Y )(UZ Diag (x)V >)>

)
= trace

(
Diag (x− y) Diag (x)>Z>

)
= 0,

where the last equality follows from Lemma 4.6. The computation for iii) is entirely
analogous. For ii), we obtain

trace
(

(X − Y )(U Diag (a)V >)>
)

= trace
(

(Diag (x− y)Diag (a)>
)

= 0,

where the last equation follows from the hypothesis that x is an ED critical point
of y on SC. We conclude that X is an ED critical point of Y relative to MC, as
claimed. The equality, EDdegree(M) = EDdegree(S), quickly follows. �

Example 4.12. To illustrate Theorem 4.11, we now derive the ED degree of some
notable orthogonally invariant varieties summarized in the following table. The pairs
(M, S) in all these examples were also discussed in [14, Section 4]. The dimension
of M or MC can be computed using (2.2).

orthogonally
invariant

variety M
dimension

absolutely
symmetric
variety S

dimension EDdegree

Rn×tr r(n+ t− r) Rnr r
(
n
r

)
E 6 E3,2 1 6

O(n)
(
n
2

)
{(±1, . . . ,±1)} 0 2n

SL±n n2 − 1 Hn n− 1 n2n

Fn,t,d (d even) nt− 1 Fn,d n− 1 [19, Cor. 2.12]

In the first three examples, the set S is a subspace arrangement and hence its
ED degree is the number of distinct maximal subspaces in the arrangement. We
will elaborate on this situation in Section 5.

The matrix variety SL±n consists of all matrices A ∈ Cn×n satisfying det(A) = ±1.
The ED degree of SL±n was explicitly computed in [2]. We show below how our main
theorem provides a simple alternate proof of their result.

The absolutely symmetric variety S in this case is Hn := {x ∈ Rn : x1x2 · · ·xn =
±1}. To compute the ED degree of Hn, we add up the ED degrees of its two
irreducible components

H+
n := {x ∈ Rn : x1x2 · · ·xn = 1}

and

H−n := {x ∈ Rn : x1x2 · · ·xn = −1}.
To compute the ED degree of H+

n , we begin with a point y ∈ Cn. Then by a
straightforward computation, x is an ED critical point of y with respect to H+

n if



16 D. DRUSVYATSKIY, H.L. LEE, G. OTTAVIANI, AND R.R. THOMAS

and only if x solves the system{
xi(xi − yi) = xn(xn − yn) for all i = 1, . . . , n− 1

x1 · · ·xn = 1.
(4.3)

By Bézout’s Theorem, we know EDdegree(H+
n ) ≤ n2n−1. We now argue that the

data point y = 0 has n2n−1 ED critical points with respect to H+
n which proves

that EDdegree(H+
n ) = n2n−1.

When y = 0, the system (4.3) is equivalent to{
x2

1 = · · · = x2
n

x1 · · ·xn = 1.

which has n2n−1 solutions in (H+
n )C. Indeed, choose x1 such that xn1 = ±1 (2n choices);

then choose xi for i = 2, . . . , n−1 such that x2
i = x2

1 (2 choices for each i); finally set
xn = 1

x1···xn−1
. Hence EDdegree(H+

n ) = n2n−1. Similarly, EDdegree(H−n ) = n2n−1,

and therefore we conclude EDdegree(Hn) = n2n.
The variety Fn,t,d = {X ∈ Rn×t : ‖X‖d = 1} is the unit ball of the Schatten

d-norm ‖X‖d :=
[∑n

i=1 σi(X)d
] 1
d . When d is even, the corresponding absolute

symmetric variety is the affine Fermat hypersurface

Fn,d :=

{
x ∈ Rn :

n∑
i=1

xdi = 1

}
.

The ED degree of a Fermat hypersurface was computed in [19].

5. Orthogonally invariant varieties from subspace arrangements

In this section, we augment the results of the previous section in the special
(and important) case when S is a subspace arrangement. Many important matrix
varieties, such as the rank varieties Rn×tr and the essential variety E , fall in this
category. Recall that S is a subspace arrangement if S can be written as a union of
finitely many affine subspaces {Si}ki=1 of Rn. Assuming that the representation of S
is chosen in such a way that Si is not contained in Sj for any distinct i, j, we call Si
the affine components of S. The following result follows directly from Theorem 4.11.

Corollary 5.1 (Affine arrangements). Consider a Π±n -invariant subspace arrange-
ment S ⊆ Rn with affine components {Si}ki=1, and define the induced real variety
M := σ−1(S). Then the equality, EDdegree(M) = k, holds.

Moreover, a general data point Y in Rn×t has exactly k ED critical points with
respect toM: for any decomposition Y = U Diag (σ(Y ))V > with orthogonal matrices
U ∈ O(n) and V ∈ O(t), the set of ED critical points is precisely

{U Diag (x)V > : x is the orthogonal projection of σ(Y ) onto Si}.

In particular, all ED critical points of Y with respect to M are real.

Proof. Let Θ be the dense open subset of Cn×t guaranteed to exist by Theorem 4.11.
Clearly we can also assume that each matrix Y ∈ Θ has EDdegree(M) many
ED critical points with respect to M. A standard argument shows that the set
ΘR := {Y ∈ Rn×t : Y ∈ Θ} is a dense open subset of Rn×t. Fix a matrix Y ∈ ΘR
and consider a singular value decomposition Y = U Diag (σ(Y ))V > with orthogonal
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matrices U ∈ O(n) and V ∈ O(t). By Theorem 4.11, the set of ED critical points of
Y with respect to M is given by

{U Diag (x)V > : x is an ED critical point of σ(Y ) with respect to S}.
Since σ(Y ) is a real vector, the ED critical points of σ(Y ) with respect to S are
precisely the orthogonal projections of σ(Y ) on each component Si. Therefore we
deduce k = EDdegree(S) = EDdegree(M). �

The first three examples in Example 4.12 illustrate Corollary 5.1. Typically,
as the data point y ∈ Rn varies, the number of real ED critical points of y with
respect to a variety V ⊆ Rn varies. Corollary 5.1 shows that when S is a subspace
arrangement, all ED critical points of a real data point with respect toM = σ−1(S)
are again real and their number is constant. This unusual feature is easy to see
using Theorem 4.11 that creates a bijection between the ED critical points of M
and S, but is not at all obvious if S is not in the picture.

In common examples, outside of the subspace arrangement case, many ED critical
points of a real data point may be non-real and the number of real critical points
typically varies as the data point moves around. For instance, the hyperbola Hn in
Example 4.12 can have complex ED critical points for a general y ∈ Rn. The same
is therefore true for SL±n .

In a sense, Corollary 5.1 generalizes the fact that the pairs of singular vectors
of a real matrix are real. Indeed, the pairs of singular vectors of a real matrix Y
correspond to the ED critical points of Y with respect to the orthogonally invariant
variety of rank one matrices; the corresponding absolutely symmetric variety is the
union of all coordinate axes.

Remark 5.2. Results analogous to those in this paper hold for symmetric matrices
under the action of the orthogonal group U ·A = UAU>. More precisely, consider the
space of real n× n symmetric matrices Sn. A setM⊆ Sn is orthogonally invariant
provided UMU> =M for all matrices U ∈ O(n). Such a set M can be written as
λ−1(S) where λ : Sn → Rn assigns to each matrix X the vector of its eigenvalues in a
nonincreasing order and S is the diagonal restriction S = {x ∈ Rn : Diag (x) ∈M}.
Conversely any permutation invariant set S ⊆ Rn gives rise to the orthogonally
invariant set λ−1(S). Similar techniques to the ones developed here can then be
used to study the correspondence between ED critical points of algebraic varieties
S and λ−1(S). This research direction deserves further investigation.
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