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Abstract

Atom interferometry is rapidly growing as a new tool for high precision gravity
measurements, finding important applications in applied and fundamental physics,
especially in quantum-level tests of general relativity. In this context, testing the
Einstein Equivalence Principle with quantum systems is motivated by the aim of
improving the limits reached by classical tests with macroscopic bodies, but mostly
by the possibility to perform qualitatively new tests with “test masses” having well
defined properties, in terms of spin, bosonic or fermionic nature, and proton-to-
neutron ratio.

In this thesis, two experiments basedon ultra-cold strontium atom interferometry
are presented. In the first one, we performed an experimental comparison of the
gravitational acceleration for two different strontium isotopes: one which has zero
total spin, the boson 88Sr, and one which has a half-integer spin, the fermion 87Sr.
Gravity acceleration was measured by means of a genuine quantum effect, namely,
the coherent delocalization of matter waves in an optical lattice. The results set
an upper limit of ∼ 10−7 for the Weak Equivalence Principle violation and for the
existence of a possible spin-gravity coupling.

In a second experiment a new interferometric scheme with the 88Sr isotope
was developed with the purpose of setting the basis for a new generation of high
precision gravimeters. We realized the first vertical Mach-Zehnder interferometer
with 88Sr atoms based on large-momentum-transfer Bragg pulses. This isotope has
specific favorable characteristics: it has no nuclear spin so that in the ground state
it is a scalar particle which is virtually insensitive to stray magnetic fields, and its
small scattering length results in reduced decoherence due to cold collisions. These
unique properties make this isotope of superior interest for the highest precision
gravimetric devices. We demonstrated atomic diffraction by a laser standing wave
of up to eight photon recoils and the realization of a gravimeter with a sensitivity
δg/g = 4 × 10−8.
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Chapter 1
Introduction

In the last twenty years, the incredibly fast development of a wide range of matter-
wave interferometer devices opened new ways in high precision metrology of
inertial forces, finding important applications both in fundamental and applied
physics [1, 2]. In particular, thanks to its foreseen improvements, the role of neutral
atom interferometry in gravity measurements is rapidly growing. Indeed, such
devices have already demonstrated superior performances in measuring gravity
acceleration [3–5], gravity gradients [6, 7], gravity curvatures [8] and rotations [9,
10]. Accurate and sensitive measurements of such effects have direct applications
to inertial navigation [11] and underground prospecting. Atom interferometry has
also advanced the field of precision determination of fundamental constants, such
as the atomic fine structure constant α [12–14], and the Newtonian gravitational
constant G [15–17].

Furthermore, atom interferometry is becoming a promising tool for fundamental
quantum-level tests of general relativity, the present theory of gravity [18]. For
example, searches for non-Newtonian gravitational potentials aremotivated by string
theory and the possibility of compact dimensions [19]. In this direction, experiments
with multiple atom interferometers located at different distances from the Earth’s
center have been discussed [20, 21], andmeasurements of force at micrometer scales
have been carried out and discussed [22–24]. Atom interferometer gyroscopes in
low Earth orbit should be able to measure the geodetic effect as well as the Lense-
Thirring rotation, a general relativity effect that causes a gyroscope to rotate relative
to the fixed stars due to a massive rotating body being nearby. Both effects are
objectives of future space borne atom interferometer missions [25]. Other exciting
proposals prospects atom interferometry as sensors of gravitational waves [26–29].

Ofmajor interest for the present dissertation are tests of the Einstein Equivalence
Principle (EEP), which is at the heart of general relativity. Violations of the EEP
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2 Introduction

are expected in attempts to unify general relativity with the other fundamental
interactions and in theoretical models for dark energy in cosmology [30, 31] as
well as in extended theories of gravity [32]. From a phenomenological point of
view, three aspects of the EEP can be tested [33]: the Weak Equivalence Principle
(WEP), the Local Lorentz Invariance (LLI) and the Local Position Invariance (LPI).
The WEP, which corresponds to the universality of free fall, goes back to Galileo
Galilei’s idea that the motion of a mass in a gravitational field is independent
of its structure and composition. A direct test of the WEP is the comparison of
the acceleration of two “test masses” of different composition. If the principle is
violated, then the accelerations of different bodies would differ.

The best current constraints on the relative differential acceleration of two bodies
are at the level of 10−13 and come from two methods: the study of the motion of
moons and planets [34] and the use of torsion balances [35]. The interest of using
atoms is not only to improve the limits reached by classical tests with macroscopic
bodies, but mostly in the possibility to perform qualitatively new tests with probe
masses having well defined properties, e.g., in terms of spin, bosonic or fermionic
nature, and proton-to-neutron ratio. In recent years, experiments based on atom
interferometry compared the fall in Earth’s gravitational field of two Rb isotopes
[36, 37] and Rb versus K [38] reaching a relative precision of about 10−7. At
the same level of precision is the experiment described in this thesis, which was
published in Physical Review Letter [39]. More recently the best result so far of
10−8 was obtained with two Rb isotopes [40]. Tests of WEP were carried out in
which the measurement of Earth’s gravity acceleration with an atom interferometer
was compared with the value provided by a classical gravimeter [3, 41]. A much
higher precision will be achieved in future experiments with atom interferometers
that are planned on the ground [21, 42] and in space [43, 44]. The possibility of tests
with atom interferometry for matter versus antimatter has also been investigated
[45, 46].

Possible spin-gravity coupling, torsion of space-time, and EEP violations have
been the subject of extensive theoretical investigation (see, for example, refs. [47–
53]). Experimental tests were performed based on macroscopic test masses [53, 54],
atomic magnetometers [55, 56], and atomic clocks [57]. In ref. [36], a differential
free fall measurement of atoms in two different hyperfine states was also performed.
Possible differences in gravitational interaction for bosonic and fermionic particles
were also discussed [58, 59] and efforts towards experimental tests with different
atoms are under way [59, 60].

The initial aim of my thesis project was the realization of a test of Einstein
Equivalence Principle and search for spin-gravity coupling effects with two isotopes
of strontium atoms. We performed an experimental comparison of the gravitational
interaction for a bosonic isotope of strontium (88Sr) which has zero total spin with
that of a fermionic isotope (87Sr) which has a half-integer spin. This represented
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the first test of the WEP, for quantum probe masses with deeply different internal
characteristics. Indeed, they do not only undergo different statistics (one is a boson,
one is a fermion), but one has a spin, while the other is a spin-less particle. This
was also a favorable system to look for possible existence of spin-gravity coupling
effects. Gravity acceleration was measured by means of a genuine quantum effect,
namely, the coherent delocalization ofmatter waves in an optical lattice. To compare
gravity acceleration for the two Sr isotopes, we confined atomic wave packets in a
vertical off-resonant laser standing wave and induced a dynamical delocalization
by amplitude modulation of the lattice potential at a frequency corresponding to
a multiple of the Bloch frequency ωB, which is directly related to the gravity
acceleration g. In conclusion of our experiment, we obtained upper limits of ∼ 10−7

for pure inertial effects and for a possible spin-gravity coupling.
In order to dramatically improve the future tests of general relativity, new

interferometric schemes have to be employed. Because of this reason, in the second
part of my Ph.D. fellowship, I started to develop a new scheme with the bosonic
88Sr based on large-momentum-transfer Bragg pulses. Indeed, important goals
are increase of the sensitivity of these devices as well as the demonstration of
interferometry with atomic species other than alkali-earth atoms, which are most
commonly used. For some experiments, indeed, the possibility of choosing the
atomic species with the right characteristics is crucial. In particular, for precision
measurements there is a considerable interest in using alkaline-earth or alkaline-
earth-like atoms, such as Ca, Sr or Yb [9, 39, 42, 61–63], that are already used for
the most advanced optical atomic clocks [64–66].

Alkaline-earth atoms have several characteristics that make them particularly
interesting in this context. Firstly, their zero electronic angularmomentum in the 1S0
ground state makes these atoms less sensitive than alkali atoms to perturbation due
to magnetic fields. Furthermore, they offer more flexibility thanks to the presence of
both dipole allowed transitions and narrow intercombination transitions that can be
used for efficient multi-photon Bragg diffraction [67–69] and for single-photon atom
interferometry schemes [62, 70]. Finally, resonance transitions from the ground
state are in the blue/near-UV (e.g., 461 nm for Sr, 399 nm for Yb) resulting in a
larger momentum transferred to the atoms for the same diffraction order compared
to alkali-metal atoms and hence in a correspondingly higher potential sensitivity of
the interferometers.

In addition to the general features of alkaline-earth-metal atoms listed above, the
88Sr isotope has specific favorable characteristics: it has no nuclear spin so that in
the ground state it is a scalar particle which is virtually insensitive to stray magnetic
fields, and its small scattering length (a = −2a0) results in reduced decoherence due
to cold collisions. On the other hand, since strontium has no hyperfine structure in
the ground state, the usual schemes based on Raman transitions cannot be employed
to realize the beam splitters and the mirrors for an interferometer. Therefore, we
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used Bragg diffraction which, acting only on the atom’s external degrees of freedom,
can split the atomic wave packet into two momentum states separated by a even
number of photon recoils while maintaining the same electronic state. We have
studied the Bragg diffraction by a 461 nm laser standing wave up to eight photon
recoils and we realized a vertical Mach-Zehnder interferometer with up to 60 ms
of free fall time, demonstrating its performance as a gravimeter with a sensitivity
δg/g = 4 × 10−8. The results were published in Physical Review A [71].

This dissertation is organized as follows:
Chapter 2 introduces the theoretical aspects of the physics of ultra-cold atoms

and optical lattice potentials, which are at the basis of the two experimental methods
used. In particular, I will discuss the main tools for coherent control of atomic
motion, namely Bragg diffraction and Bloch oscillations. I will also introduce the
characteristics of the techniques for gravity measurements.

Chapter 3 presents a general overview of the experimental apparatus for ultra-
cold strontium atom experiments, in our laboratory at LENS. I will briefly discuss
the main characteristics of strontium isotopes and their potential for high precision
measurements.

Chapter 4 presents the experiment on the test of Einstein Equivalence Principle
and spin-gravity coupling. The specific details of the experimental setup as well as
the measurement results are discussed.

Chapter 5 presents the large-momentum-transfer Bragg interferometer experi-
ment. I will discuss the characteristics of the setup we used, and I will presents the
results of the Bragg diffraction and the Mach-Zehnder interferometer, providing
the current performances of the gravimeter and the evaluation of the main noise
sources.



Chapter 2
Coherent control of atomic
motion with optical lattices and
applications to inertial sensors

2.1 Atoms in optical lattices

In the first part of this section an introduction to the main concepts and notations
to describe the dynamics of an atom in a laser field will be presented. A semi-
classical approach will be taken in order to easily separate and calculate the force
contributions. While the internal degrees of freedom of the atom will be treated
in a quantum description, the external degrees of freedom will be treated with
the classical equations of motion. Two force contributions will emerge from this
analysis and one of them, the dipole force, will be the first ingredient to describe
the interaction between an atom and an optical lattice. We will also present the
dressed-atom picture which gives a useful physical interpretation of the dipole force,
and it will be used to describe the two-photon transitions in the later section.

In the second part of this section the Bloch theorem will be used to describe
the motion of an atom in an optical lattice in terms of the band structure. We will
present a formal description of the system in the tight-binding limit, which will be
useful to describe the delocalization coupling induced by an amplitude modulation
of the lattice, later in this chapter.

2.1.1 Atom-light interaction

In this section we will mainly follow the theory developed by Cohen-Tannoudji
[72–74].

5



6 Coherent control of atoms with optical lattices and inertial sensors

Two-level atom

Let’s consider an ideal system composed by a single atom Awith an internal structure
composed of just two levels |g〉 and |e〉, separated by an energy Ee − Eg = ~ωA,
where ωA is the so called atomic frequency. In its external degrees of freedom the
atom is described by the spatial R and momentum P coordinates of the center of
mass, and by the electric dipole moment d.

Let’s also consider a monochromatic laser radiation with frequency ωL that can
be represented by the coherent field

EL (r, t) = ε (r)E (r) cos(ωLt + φ(r)), (2.1)

where ε (r), E (r) and φ(r) are respectively the polarization, amplitude and phase
of the field in r.

The atom A is coupled to the laser field and to the vacuum field which contains
all the modes that initially are not occupied by any photon. The atom-laser coupling
VAL can be analyzed in terms of the fundamental process of absorption and
stimulated emission of laser photon by the atom. The atom-vacuum couplingVAV

is responsible for spontaneous emission of photon from the excited state. It is
characterized by the natural linewidth γ = 1/τr , where τr is the radiative time of
|e〉. The Hamiltonian of the total system can then be divided in four terms:

H = HA +HV +VAL +VAV . (2.2)

The atomic HamiltonianHA contains the kinetic energy of the center of mass and
the internal energy (we take Eg = 0):

HA = H
ext
A +H int

tot =
P2

2M
+ ~ωA |e〉 〈e| . (2.3)

The Hamiltonian of the quantum radiation fieldHV is the summation over all the
modes of the electromagnetic field:

HV =
∑
j

~ω j

(
a†j a j +

1
2

)
. (2.4)

The atom-laser coupling is the scalar product between the electric dipole moment
and the laser electric field EL of eq. (2.1):

VAL = −d · EL (R, t). (2.5)

The atom-vacuum coupling is

VAV = −d · E(R) = −d ·
∑
j

*.
,
i

√
~ω j

2ε0L3 ε ja jeik j ·R + h.c.+/
-
, (2.6)
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where a†j (a j) is the creation (annihilation) operator of a photon of momentum ~kj ,
energy ~ω j = ~ck j and polarization ε j , L3 is the quantization volume, and ε0 is
the electric permittivity.

If the laser field is not far from resonance, such that the detuning δ = ωL − ωA

is small, one can apply the rotating wave approximation. The off-resonance terms
e−iωL t |g〉 〈e| (and h.c.) can be neglected, leading to a simpler form for the coupling

VAL =
~Ω1(R)

2
[
e−iφ(R)e−iωL t |e〉 〈g | + h.c.

]
, (2.7)

where we have written the electric moment in its diagonal components d =
deg |e〉 〈g | + dge |g〉 〈e|) since the atom does not have a dipole moment when
it is in an energy eigenstate, and we have introduced the Rabi frequency Ω1 as

~Ω1(R) = −E (R)d · ε (R). (2.8)

The same approximation can be done for the off-resonance terms a j |g〉 〈e| (and
h.c.) inVAV .

Optical Bloch equations and Heisenberg equations of motion

The evolution of the system can be initially separated in the internal and external
degrees of freedom. The evolution of the internal atomic states can be obtained in
a density matrix description by solving the equation

i~ ρ̇ = [H , ρ], (2.9)

where ρ = |ψ〉 〈ψ | is the density matrix built on the internal states basis |g〉 and |e〉.
The solution of eq. (2.9) leads to the optical Bloch equations

*..
,

u̇
v̇

ẇ

+//
-
=

*..
,

−γ/2 δ + φ̇ 0
−(δ + φ̇) −γ/2 −Ω1

0 Ω1 −γ

+//
-

*..
,

u
v

w

+//
-
+

*..
,

0
0
−Γ/2

+//
-

(2.10)

where Ω1 and φ are function of R(t), and we have introduced the variables u, v and
w that describe the correlations between the states |g〉 and |e〉 and the population
imbalance, and are related to the density matrix by

u(t) = Reρge (t)e−iωL t−iφ(R(t)) (2.11)
v(t) = Imρge (t)e−iωL t−iφ(R(t)) (2.12)
w(t) = 1

2 [ρee (t) − ρgg (t)]. (2.13)



8 Coherent control of atoms with optical lattices and inertial sensors

The steady-state solution for eq. (2.10) is given by

u =
δ

Ω1

s
1 + s

, v =
γ

2Ω1

s
1 + s

, w = −
1

1 + s
, (2.14)

where

s(R) =
Ω2

1(R)/2
δ2 + γ2/4

(2.15)

is called saturation parameter. The s = 1 condition defines the saturation intensity
Is = cε0E2

L (R)/2.
The dynamics of the center of mass of A can be studied with the Heisenberg

equations for R and P:

Ṙ =
1
i~

[R,H ] =
∂H

∂P
=

P
M
, (2.16)

Ṗ = MR̈ =
1
i~

[P,H ] = −
∂H

∂R
= −∇VAL (R) − ∇VAV (R) = F(R), (2.17)

where eq. (2.16) represents the center of mass velocity and eq. (2.17) represents
the force operator F(R). Therefore, the equation of motion for the mean value of R
calculated over the atomic wave functions is

M
〈
R̈
〉
= − 〈∇VAL (R) + ∇VAV (R)〉 . (2.18)

The expectation value of R gives the position r of the center of the atomic wave
packet, so M

〈
d2R/dt2

〉
= M r̈.

Semi-classical approximation and force contributions

Let’s consider the initial time t = 0, at which the external atomic state is described
by a wave function ψ(r) centered on r = 〈R(0)〉 with a width ∆R(0). In the same
way, the momentum has a mean value p = 〈P(0)〉 and a width ∆P(0), related to the
position by an indetermination relation

∆R(0)∆P(0) ≥ ~. (2.19)

We can consider the force exerted on the atomic wave packet as semi-classical, i.e.
with a very small fluctuation around its mean value, if two conditions are fulfilled.
Firstly, the position spread ∆R(0) must be smaller than the spatial scale of variation
of the laser field (λL = 2π/kL):

∆R(0) � λL ⇔ kL∆R(0) � 1. (2.20)
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Secondly, the velocity spread must be smaller enough to allow the corresponding
spread of Doppler shift kL∆v(0) to be negligible respect to γ:

kL∆P(0)
M

� γ. (2.21)

The eqs. (2.20) and (2.21) describe the localization of the wave packet. Multiplying
both sides of the equations and using eq. (2.19) we get the compatibility condition
with the Heisenberg indetermination relation

~k2
L

M
� γ ⇔ Er � ~γ, (2.22)

where Er = ~2k2
L/2M is the recoil energy of an atom when it absorbs or emits a

photon. The corresponding recoil velocity is vr = ~kL/M .
In the semi-classical limit, the existence of two different time scales for the

internal and external degrees of freedom is also necessary. In fact, the time
scale for the internal degrees of freedom is related to the spontaneous emission
Tint = τr = 1/γ, while the time scale for the external degrees of freedom depends
on the damping of the atomic velocity so that Text = ~/Er . Equation (2.22) leads
to the condition Text � Tint .

The localization conditions of eqs. (2.20) and (2.21) permit substitution of the
position operator with its medium value 〈R〉 = r. Therefore, the eq. (2.18) becomes

M r̈A =
∑
j

〈
d j

〉 [
∇Ej

]
r,t
. (2.23)

Because Text � Tint , we can uncouple the internal and external degrees of freedom,
so that for an atom initially at rest r = 0 we can use the stationary solutions (2.14)
for 〈d〉 which is calculated with the density matrix ρ:

〈d〉 = d(ρge + ρeg) = d[u cos(ωLt + φ(R)) − v sin(ωLt + φ(R))]. (2.24)

Therefore, using the definition of Rabi frequency (2.8) and the saturation parameter
(2.15), we can get a final expression for the mean force

F(r) = −~
[
∇Ω1(r)
Ω1(r)

δ +
γ

2
∇φ(r)

]
s(r)

1 + s(r)
(2.25)

which is the sum of two contributions, one proportional to the Rabi frequency
gradient and one proportional to the phase gradient. They describe, respectively,
the reactive and dissipative response of the atom to the laser excitation.

The dissipative term is also called radiation pressure force, or scattering force,
since it originates from the absorption-spontaneous emission cycles. In fact, if the
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laser field is approximated as a plane wave with a wave vector kL , the phase of
the field is φ(r) = −kL · r, so that ∇φ|r=0 = −kL and the dissipative term can be
written in the form

Fdiss = ~kL
γ

2
s

1 + s + (2δ/γ)2 ≡ ~kLΓs, (2.26)

where we have introduced the rate Γs of photon momentum transfer to the atom.
As a function of the detuning δ, Fdiss is a Lorentz function centered on δ = 0,
which is expected for a dissipative process. The radiation pressure force is the main
ingredient for standard laser cooling techniques.

The reactive term is the one responsible for the dipole interaction, and is the
main ingredient for describing the dynamics of an atom in an optical lattice. We
will discuss this term in more detail in the following section.

2.1.2 Dipole force

The reactive component of the force (2.25), also called dipole force Fdip, is propor-
tional to the gradient of the intensity through the Rabi frequency Ω1. For a laser
plane wave, in which the amplitude and polarization are independent of position,
∇Ω1 vanishes, so that Fdip = 0. The dipole force is present only in a superposition
of plane waves, and since it is associated to the reactive response of the force, it
cannot involve absorption of energy. These two properties suggest that the dipole
force is associated to the redistribution of photons between the plane waves forming
the laser field, via absorption and stimulated emission processes. The atom will
not absorb energy during such a redistribution because all the plane waves have
the same ωL , however, since the momentum of the photons associated to the plane
waves is different, there will be a net momentum transfer to the atom.

A more explicit form of Fdip can be written using the definition of the saturation
parameter s defined by eq. (2.15):

Fdip = −
~δ
4

∇Ω2
1

δ2 + γ2/4 +Ω2
1/2

. (2.27)

In function of the detuning δ, the dipole force varies as a Lorentzian dispersion
function, as expected for a reactive process. For red detuning (δ < 0) the dipole
force pushes the atoms towards the higher intensity regions, while for blue detuning
(δ > 0) the opposite holds true.

The conservative nature of the dipole force is clear when we write it in function
of the potential

U (r) =
~δ
2

ln

1 +

Ω2
1(r)/2

δ2 + (γ2/4)


, (2.28)
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so that Fdip = −∇U (r). While the dipole force is zero on resonance (Fdip = 0 for
δ = 0), it dominates the radiation pressure force for large detunings (|δ | � γ). In
the limit of low intensity (s � 1) the potential can be approximated as

U (r) ∼ ~Ω2
1(r)/4δ =

~γ2

8δ
s(r), (2.29)

which takes the form of the a.c. Stark effect [75]. On the other hand, the scattering
rate Γs defined in eq. (2.26) can be approximated as

Γs =
~γ3

8δ2 s. (2.30)

The ratio between the two energy scales is proportional to the detuning

U/~Γs ∼ δ/γ. (2.31)

Therefore, to realize a dipole trap one typically requires a large detuning and a
large intensity to keep the scattering rate, which is responsible for the decoherence,
as small as possible for a fixed trapping depth. In the limit of large detuning, the
rotating wave approximation cannot be applied, so the expression of the potential
and the scattering rate have to be corrected [76]:

U (r) =
~Ω2

1(r)
4

(
1

ωL − ωA
−

1
ωL + ωA

)
, (2.32)

Γs (r) = U (r)
γ

~

(
ωL

ωA

)3 (
1

ωL − ωA
−

1
ωL + ωA

)
, (2.33)

while the considerations done up to now still hold.

Focused-beam traps

Let us now consider the more realistic case of far off-resonance laser beam with a
Gaussian profile propagating along the z direction. The spatial intensity distribution
of a Gaussian beam with power P is

I (r, z) =
2P

πw2(z)
exp

(
−

2r2

w(z)

)
, (2.34)

where r is the radial direction and w(z) is the 1/e2 radius:

w(z) = w0

√
1 +

(
z

zR

)2
. (2.35)
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Here, w0 is the beam waist and zR = πw2
0/λL is the Rayleigh length. One can

derive the trapping potential by using the intensity profile in the eq. (2.32). Since
the Rayleigh length is larger than the beam waist, the potential in the radial direction
is much steeper than in the axial direction.

If the thermal energy of the atomic sample kBT (where kB is Boltzmann
constant) is smaller than the potential depth U0, the extension of the atomic cloud
is radially small compared to the waist and axially small respect to the Rayleigh
length. In this condition, the optical potential can be approximated as a harmonic
trap with two frequencies ωz and ωr :

U (r, z) ' −U0


1 − 2

(
z

zR

)2
− 2

(
r
w0

)2
. (2.36)

The corresponding trapping frequencies for the radial and the axial direction are
ωr = (4U0/Mw2

0)1/2 and ωz = (4U0/Mz2
R)1/2 respectively.

It is important to remark that for a focused beam the typical trapping potential
along the beam axis is not enough to compensate for the gravitational force, while
the strong radial confinement can minimize the perturbation effect of gravity. For
this reason such traps are usually aligned in the horizontal plane. As we will see in
the next section, a standing-wave trap can overcome this issue.

Dressed-atom picture

As we observed in the previous section, the semi-classical approximation leads
to expressions for the force components which are average values of the atomic
internal operators and field operators taken at the center of the atomic wave packet
r. In this approach, the atom-field interaction was represented in terms of the
atomic eigenstates. Another useful approach for the physical interpretation of the
dipole force is the dressed-atom picture [77–79], in which all or part of the coupled
atom-field system is solved exactly and the resultant atom-field eigenstates are used
as the basis for further calculations.

In absence of coupling, the energy levels of the total system (atom + laser
modes) are labeled by two quantum numbers: e, g for the atom and n for the number
of photons in the laser mode of frequency ωL . The eigenstates are divided in
manifolds En separated by the energy ~ωL , consisting of the two states |g, n + 1〉
and |e, n〉.

If we write the atomic Hamiltonian (2.3) in terms of the lowering and rising
operators b = |g〉 〈e| and b† = |e〉 〈g |, and the atom-laser couplingVAL of eq. (2.5)
in the semi-classical approximation, the dressed-atom Hamiltonian at position r is

HDA(r) = ~(ωL − δ)b†b+ ~ωLa†a − [d · EL (r)b†a + d · E∗L (r)ba†] (2.37)
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in which we haven’t written the interactionVAV of eq. (2.6) because in the dressed-
atom basis it is null, and also note that since this treatment is done at a given position
r , we omitted the kinetic energy inHA.

The atom-laser coupling connects only the two states of a given manifold, i.e.
transitions between g and e with the absorption of one laser photon:

〈e, n| VAL |g, n + 1〉 = −
√

n + 1 d · EL (r) ≡ ~
2Ω1(r)eiφ(r) . (2.38)

Therefore, the Rabi frequency Ω1(r) actually depends on the number of photons in
the manifold, but we will neglect this dependence supposing that the laser field is
initially excited in a coherent state with a Poisson distribution for n, for which the
width ∆n is very small compared with the average number of photons. Under this
approximation, the eigenvalues ofHDA for the manifold En are

E1n(r) = (n + 1)~ωL −
~
2 δ +

~
2ΩDA(r),

E2n(r) = (n + 1)~ωL −
~
2 δ −

~
2ΩDA(r),

(2.39)

where ΩDA(r) =
√
Ω2

1(r) + δ2. The corresponding eigenstates (dressed states) are
|1, n; r〉 and |2, n; r〉, linear combinations of the uncoupled states |g, n + 1〉 and |e, n〉:

|1, n; r〉 = +eiφ(r)/2 cos θ(r) |e, n〉 + e−iφ(r)/2 sin θ(r) |g, n + 1〉 ,
|2, n; r〉 = −eiφ(r)/2 sin θ(r) |e, n〉 + e−iφ(r)/2 cos θ(r) |g, n + 1〉 ,

(2.40)

where the angle θ(r) is defined as cos(2θ(r)) = −δ/ΩDA(r) and sin(2θ(r)) =
−Ω1(r)/ΩDA(r). The energy diagram for the dressed-atom states is depicted in
fig. 2.1.

In an inhomogeneous laser beam (as is the case for a Gaussian beam), the
eigenstates will vary with the position r (fig. 2.1c). Outside of the beam, the dressed
levels coincide with the bare ones, split by ~δ in the manifold. Inside the beam each
dressed state is a linear superposition of the bare states with an energy splitting of
~ΩDA(r) larger than ~δ. This result is just another expression for the a.c. Stark
shift.

For an atom initially at rest (r = 0) the mean value of the dipole force can be
written in the dressed atom base as

Fdip =
~
2∇ΩDA(ρ22 − ρ11), (2.41)

where ρ11 and ρ22 are the steady-state density matrix element describing the
populations of |1, n; r〉 and |2, n; r〉. It can be shown that the steady-state solution
for these populations are [79]

ρ11(r) =
sin4 θ(r)

sin4 θ(r) + cos4 θ(r)
, ρ22(r) =

cos4 θ(r)
sin4 θ(r) + cos4 θ(r)

. (2.42)



14 Coherent control of atoms with optical lattices and inertial sensors

〉r;, n1|

〉r;, n2|

〉r1;−, n2|

〉r1;−, n1|

〉1−e, n|

〉g, n|

〉+ 1g, n|

〉e, n|
nE

1−nE

Lω

δ

δ

)r(DAΩ

)r(DAΩ

r

〉+ 1g, n|

〉e, n|

〉g, n|

〉1−e, n|

δ

δ

Position

)r(DAΩ

)r(DAΩ

δ

δ

〉r;, n1|

〉r;, n2|

〉r1;−, n1|

〉r1;−, n2|

(a) (b) (c)

Figure 2.1: Dressed-atom energy diagram. (a) Energy manifolds without coupling.
(b) In presence of a position-dependent coupling the energy of each manifold splits by
ΩDA(r). (c) Energy splitting as a function of the position for a Gaussian laser beam.
Outside the beam the energy levels connect with the uncoupled states of (a).

Therefore, the mean dipole force becomes

Fdip = −~δ
ΩDA

Ω2
1 + 2δ2

∇ΩDA = −∇



~δ
2

ln *
,
1 +
Ω2

1
2δ2

+
-


, (2.43)

which is the same expression as eq. (2.28) derived from the Optical Bloch equations
in the limit δ � γ.

The dressed-atom approach gives a simple interpretation of the dependence of
Fdip on the sign of the detuning. If δ > 0 the levels 1 are those that coincide with
|g, n + 1〉 outside the laser beam. They are less contaminated by |e, n〉 than levels
2 so less spontaneous emission occurs from levels 1 than from levels 2. It follows
that the levels 1 are more populated than levels 2. The resulting force from levels
1 is then dominant, and the atom is pushed out of the high-intensity regions. For
δ < 0 the opposite is true: levels 2 are more populated and the atom is attracted in
the high-intensity regions.

2.1.3 Optical lattices

As we have discussed in the previous section, a dipole trapping potential is present
just in presence of plane waves superposition, and the case of a Gaussian beam was
analyzed. Let’s now consider the superposition of two counter-propagating plane
waves with wave vector ±kL along the z direction, polarization along x and same
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amplitude E0

E(z, t) = ε xE0 cos(ωLt − kL z) + ε xE0 cos(ωLt + kL z)

= 2ε xE0 cos kL z cosωLt = 2ε xE (z) cosωLt,
(2.44)

which has a position dependent amplitude E (z), and an average intensity

I (z) = 4I0 cos2 (kL z) , (2.45)

where I0 is the single-beam intensity. In the limit of large detuning the potential
can be written using eq. (2.29)

U (z) =
U0
2

cos2(2kL z), where U0 = −
~γ2

2δ
s (2.46)

is the potential depth. The result is a standing-wave with an intensity profile pattern
with a periodicity of λL/2, and it is also called one-dimensional optical lattice. For
δ > 0 the atoms will be trapped in the minima of the light intensity pattern, while
for δ < 0 they will be trapped in the maxima. Around its minima, the potential
(2.46) can be approximated as a harmonic oscillator with a trapping frequency
ωlatt = kL

√
4U0/M . It can also be extended to the case of two counter-propagating

Gaussian beams, so using eq. (2.36)

U (r, z) ' −
U0
2

cos2 (2kL z)

1 − 2

(
z

zR

)2
− 2

(
r
w0

)2
. (2.47)

which has a potential depth four times larger along the z direction with respect to
the single beam, and a new axial trapping frequency ωz′ =

√
ω2
z + ω

2
latt
' ωlatt .

This leads to a strong confinement in the lattice nodes (or antinodes), which is able
to compensate for the gravity force once the lattice is aligned along the vertical
direction.

Bloch theorem and band structure

The Hamiltonian of an atom in a 1D optical lattice, once we neglect the radial
contribution in the potential of eq. (2.47), is simply given by

H =
p2

2M
− ~

U0
2

(1 + cos 2kL z) . (2.48)

The solutions of this periodic Hamiltonian can be derived by the well known
theorem formulated by Bloch in the context of solid-state physics [80] (extensive
dissertations can be found in refs. [81, 82]).
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The Hamiltonian is invariant under translations of multiples of the distance
d = λL/2, i.e. it commutates with the translation operator

Td = exp
(
i
dp
~

)
. (2.49)

Therefore, the solutions of the Hamiltonian are the eigenstates |q, j〉 and eigenvalues
Ej (q) of Td, that can be labeled by a discrete band index j and a continuous
quasimomentum q. The corresponding eigenfunctions are

ψq, j (z) = 〈z |q, j〉 = eiqzuq, j (z), (2.50)

where u j,q (z) are functions with the same spatial periodicity d of the lattice. The
eigenstates |q, j〉 are called Bloch states. The phase is always defined modulo 2π,
so the quasimomentum q is defined modulo 2π/d = 2kL . The Bloch states and
their eigenvalues Ej (q) are conventionally represented in the first Brillouin zone
q ∈ ]−kL,+kL]. For each j, the set of energy levels specified by Ej (q) is called
an energy band. Figure 2.2 shows the first three energy bands for the case of the
free particle and for two different lattice depths U0. The energies are numerically
calculated with the Kronig-Penny model [83].

Even if in many ways the quasimomentum q is a natural extension of the
momentum p to the case of periodic potential, one can not consider it as amomentum
on its own. Only in the presence of an external field does the dynamical significance
of q emerge. Up to now q has to be considered solely as a quantum number
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Figure 2.2: The first three energy bands Ej (q) numerically calculated with the Kronig-
Penny model [83] (solid blue line) and the group velocity v(q) for the lowest band
(red dashed line), in the case of: (a) free particle, (b) weak-binding limit U0 = Er , (c)
tight-binding limit U0 = 5Er . In presence of a periodic structure a gap opens at the
edges q = ±kL of the Brillouin zone.



2.1 Atoms in optical lattices 17

characteristic of the translational symmetry of the lattice, just as the momentum p
is a quantum number for the full translational symmetry of a free particle.

It can be shown [81] that a wave packet in a level specified by the band index j
and quasimomentum q has a group velocity

vj (q) =
1
~
∇qEj (q). (2.51)

This means that there are stationary levels for which, despite the interaction with the
lattice, the particle moves forever without any degradation of its mean velocity. The
group velocity for the lowest band is reported in fig. 2.2 for three different lattice
depths U0.

In general, the solution for the eigenvalues Ej (q) needs to be numerically calcu-
lated from the Hamiltonian (2.48). There are two limits for which the eigenvalues
can be analytically calculated: the weak-binding limit and the tight-binding limit.

In the tight-binding limit (fig. 2.2c) the lattice depth is high enough to localize
the particle in the lattice sites. The spatial extension of the wave packet reduces to
less than λL/2, so its momentum is larger than 2~kL and its kinetic energy is larger
than 4Er . This means that the lattice depth has to be U0 � 4Er . In this limit, the
eigenvalues Ej (q) are mostly dependent (for low j) on the band index j and not on
the quasimomentum q.

In the weak-binding limit U0 � Er (fig. 2.2b), the optical lattice is a small
perturbation to the free particle. In this limit, the eigenstates of the system are the
momentum eigenstates of the free particle and the lattice couples these states only
at the edges of the Brillouin zone, for which q ' ±kL . This means that the coupled
momentum eigenstates of the free particle are |p0〉 and |p0 + 2~kL〉, where p0 is the
initial momentum of the particle. This represents a Bragg transition and it will be
discussed widely in the next sections.

Tight-binding model and Bloch tunneling

We will now focus on the tight-binding limit, which will give us an interesting
description of the quantum transport properties in a lattice.

The Bloch theorem tell us that we can write the Bloch states |q, j〉 as a superpo-
sition of plane waves ���Φn, j

〉
, with n ∈ Z indexing the n-site position

|q, j〉 =
∑
n

eindq ���Φn, j

〉
, (2.52)

where ���Φn, j

〉
form a discrete set of states, called Wannier states [84]. The inverse

relation of eq. (2.52) is

���Φn, j

〉
=

∫
BZ

e−indq |q, j〉 dq, (2.53)
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where the integration is extended over the first Brillouin zone. Since the Bloch
states are orthogonal with a normalization 〈q′, j |q, j〉 = δ(q′ − q), the Wannier
states also form an orthogonal base, with normalization

〈
Φn′, j |Φn, j

〉
= δn′,n. This

means that they have a finite spatial extension. Substituting the Bloch theorem
(2.49) into eq. (2.1.3) shows that Td

���Φn, j

〉
=

���Φn+1, j
〉
, so that ���Φn, j

〉
is related to

���Φ0, j
〉
by a translation of n sites.

Let’s now assume that the atomic sample is cold enough so that only the lowest
band of the potential is populated, allowing us to neglect the band index j. In the
tight-binding limit, the lowest state of the atom in one potential well is only coupled
to its nearest neighbors. We can then assume that the Wannier state |Φn〉 is mainly
located within a single site at position xn = nd. The Hamiltonian for such a system
is

H = −
J
4

∑
n

|Φn+1〉 〈Φn | + h.c. (2.54)

where J is the tunneling energy, and depends on the potential depth U0. The
eigenvalues of the Hamiltonian calculated on the Bloch states base set |q〉 gives the
energy spectrum for the lowest band

E(q) = −
J
2

cos(dq). (2.55)

It can be seen in fig. 2.2c that as the depth of the lattice increases, the first energy
band and its correspondingmean velocity can be better approximated by a sinusoidal
function.

As an easy application of the tight-binding model, we will evaluate the coherent
spreading of an atomic wave packet which is tunneling between the lattice sites [85].
Let’s consider the initially localized state in the well x0 = 0, |ψ(t = 0)〉 = |Φ0〉, with
a Gaussian spatial extension ∆x(0) and with wave vector q. The average position
moves according to the group velocity of eq. (2.51) where the dispersion relation is
(2.55):

〈x(t)〉 = v(q)t =
Jt
4~

sin(dq), (2.56)

and the width of the wave packet, in the limit of ∆x(0) � λL , expands according
to

〈∆x(t)〉2 = ∆x2(0)
[
1 +

J2t2

32~2∆x4(0)
(
1 + cos(dq)

)]
. (2.57)

As anticipated, because of the Bloch tunneling, the wave packet propagates indef-
initely without any change in its mean velocity. Importantly, we notice that for
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particular values of q = ±kL/2 the wave packet moves without spreading. This
provides an efficient mechanism to coherently manipulate atoms in optical lattices.

Later in this chapter, the tight-binding model will be used to describe the
delocalization coupling induced by an amplitude modulation of the lattice.

2.2 Traveling optical lattices

In the previous section we discussed the interaction and dynamics of an atom
trapped in a steady optical lattice, realized by superposing two laser fields with the
same frequency ωL and opposite wave vector kL . If we set different frequencies
for the two beams we obtain a traveling standing wave. We will see that the
main phenomena arising from such a system are two-photon transitions. If the
difference in frequency changes linearly with time, the lattice is accelerated and
Bloch oscillations take place. The same phenomenon happens when an external
force, such as the gravity force, is applied to a steady lattice.

2.2.1 Two-photon transitions: Bragg diffraction

Let’s consider two counter-propagating laser beams with slightly different frequen-
cies ∆ω = ω1 − ω2 � δ � ω1, ω2 ∼ ωL . The resulting field, according to
eq. (2.44), is a traveling standing wave

E(z, t) = 2ε xE0 cos(kL (z − vt)) cosωLt, (2.58)

where v is the propagation velocity

v =
∆ω

2kL
. (2.59)

This velocity corresponds to the velocity of the reference frame in which the two
waves have the same frequency due to the opposing Doppler shift.

In presence of a traveling optical lattice, an atom will be able to absorb a photon
at ω1 from one beam and undergo stimulated emission of a photon at ω2 into
the other beam. This is a resonant process called Bragg diffraction. During the
simultaneous absorption and re-emission of a photon, the lattice will transfer a net
momentum to the atom ~(k1 + k2) ∼ 2~kL . The intermediate state in which the
atom has absorbed one photon is out of resonance, so the spontaneous emission is
strongly suppressed.

The resonance condition results from the conservation of energy andmomentum

1
2 Mv2

i + ~ω1 =
1
2 Mv2

f + ~ω2, (2.60)

Mvi + ~k1 = Mv f + ~k2, (2.61)
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where vi and v f are the initial and final velocity of the atom, and we have considered
an arbitrary direction for the input velocity and the wave vectors of the two waves.
The resonance condition for the frequency difference is

∆ω = (k1 − k2) ·
(
vi +

~
2M

(k1 − k2)
)

(2.62)

which contains two terms: the Doppler shift and the energy recoil. In the counter-
propagating configuration (k1 ∼ −k2), to be on resonance with an atom at rest
(vi = 0) the lasers need to be shifted by four times the recoil energy

~∆ω = 4Er = 4~ωr, (2.63)

where we have introduced the recoil frequency

ωr =
~k2

L

2M
. (2.64)

The situation we described is the simplest one. The frequency difference can be
increased to induce higher-order resonances inwhichmore pairs of photon can simul-
taneously transfermomentum to the atom. For an atom initially at rest, the interaction
with the traveling standing wave can transfer 2n-photon momenta to the atom, so
that discrete momentum states ���p = 2n~kL, E = 4n2Er

〉
on the momentum-energy

parabola of the free particle can be occupied. If the atom is initially occupying one
of these states, let’s say the ���p = 2m~kL, E = 4m2Er

〉
state, the resonance condition

for an n-order Bragg diffraction to the state ���p = 2(m + n)~kL, E = 4(m + n)2Er

〉
is

n∆ω = 4n(2m + n)ωr . (2.65)

Figure 2.3 depicts a 2nd order Bragg transition in the momentum-energy plot.
Viewing Bragg scattering as a two-photon transition from the initial ground

state to the final ground state with a momentum difference of 2~kL shows the close
connection with a Raman transition between two internal hyperfine states of the
ground state manifold, each with its own external momentum state. The main
difference resides in the fact that because of the change in the internal state, Raman
transitions can not transfer more than two-photon recoils at the time. Another
change in the internal state is required to transfer momentum in the same direction.
On the other hand, Bragg transitions can transfer, in principle, an infinite number of
photon momenta during the same interaction. We will explain how this is limited
experimentally in the following chapters.

Since the atom always remains in the same internal state during this process,
the coupling between all the possible momentum states has to be taken into account.
To calculate the transition probabilities and coupling between different momentum
states, one can use the dressed-atom picture we have introduced in section 2.1.2.
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Figure 2.3: Second-order Bragg diffraction represented in the momentum-energy plot.
The two-level atom interacts with two counter-propagating waves with a frequency
difference ∆ω = ω1 − ω2 � δ tuned on resonance with a 4-photon transition. The
atom receives a kick ∆p = 4~kL .

Hamiltonian of Bragg transitions

In the dressed-atom picture, the Hamiltonian of a two-level atom in presence of two
electromagnetic fields with amplitude EL and frequencies ω1 and ω2 takes a form
analogous to the one of eq. (2.37)

H =
p2

2m
+~ω0b†b+~ω1a†1a1 +~ω2a†2a2 − [d · EL (b†a1 + ba†2)+ h.c.] (2.66)

where in this case a†1a1 and a†2a2 are the number operators for photons of energyω1
and ω2 respectively. The eigenstates of the system are |i, p, N1, N2〉, where i = g, e
is the internal state, were p is the momentum of the atom and Nl is the number of
photons in the mode l = 1, 2.

The interaction operator is composed of two terms VAL = V1 + V2, both
products of the dipole operator and the photon field operator. The dipole operator d
couples the two atomic states |g〉 and |e〉, while the number operators a†1a1 and a†2a2
are responsible for the coupling between the two modes of the field. The photon
field 1 will couple the states |g, p, N1, N2〉 and |e, p − ~k1, N1 + 1, N2〉, so we can
define the Rabi frequency for the field 1 as:

〈g, p, N1, N2 | V1 |e, p − ~k1, N1 + 1, N2〉 = ~Ω1/2, (2.67)

where we have not taken into account the spatial dependence of the electric field,
so the phase term is constant and it will be neglected. In the same way we can
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define the Rabi frequency Ω2. In typical conditions, ∆ω is in the order of kHz
while the Ω1 ' Ω2 are in the MHz range and the detuning δ in the GHz range.
It is then possible to neglect the contribution from the excited states. The only
difference between the initial and final state will be the kinetic energy. We can
define a two-photon Rabi frequency

Ω =
Ω1Ω2

2δ
'
Ω2

1
2δ

(2.68)

that couples the state |g, p, N1, N2〉 to the states |g, p + 2~kL, N1 − 1, N2 + 1〉 and
|g, p + 2~kL, N1 + 1, N2 − 1〉.

Since the atom always remains in its internal ground state, we have to also
consider the coupling to states in which two photons were absorbed and two photons
were re-emitted and so on. This means that |g,p+2~kL,N1+1,N2−1〉will be coupled
to |g,p+4~kL,N1+2,N2−2〉, which is coupled to |g,p+6~kL,N1+3,N2−3〉, and so on.
Therefore, we have to consider an infinite number of states labeled by the integer
number n:

|p, n〉 = |g, p + 2n~kL, N1 + n, N2 − n〉 . (2.69)

If the initial state has a definite momentum p, it will remain in the basis of the |p, n〉
states. In the simplest approach, we can apply perturbation theory [86] of the first
order in the interaction couplingVAL . Thus, the Hamiltonian can be written in the
basis |p, n〉 and takes the matrix form [87]

H = ~

*...................
,

. . . κ 0 · · · 0 · · · 0

κ q−n κ
. . .

...
...

0 κ
. . . κ 0 0

...
. . . κ q0 κ

. . .
...

0 · · · 0 κ
. . . κ 0

...
...

. . . κ qn κ

0 · · · 0 · · · 0 κ
. . .

+///////////////////
-

(2.70)

where ~qn = (p + 2n~kL)2/2M + n~∆ω + ~Ω contains the light shift ~Ω, and
~κ = ~Ω/2 is the effective coupling between states separated by 2~kL . We notice
that momenta differing from the resonant momentum p = 2n~kL lead to a Doppler
shift k ·v = p ·2nkL/M which acts as a detuning. This shows that only a momentum
class around the resonance is diffracted, while the diffraction of other momentum
classes is suppressed. This phenomenon is known as velocity selectivity [88, 89]
and can be used to create atomic samples with a narrower momentum distribution.
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If we introduce the interaction time between a traveling standing-wave and the
atom, we can induce Rabi oscillations between momentum states. This process
forms the basis of the matter wave optics used in free-falling atom interferometry.
The time dependence of Bragg transitions will be discussed later in this chapter.

Steady lattice interpretation

We will now try to give an interpretation of a steady lattice in terms of the model
we just described. If we consider the spatial dependence of the electric field, we
need to include a phase term in the effective coupling operatorVAL responsible for
transitions from the state |p〉 to the states |p + 2n~kL〉 and |p − 2n~kL〉:

VAL =
~Ω
2

(
ei2kLz + e−i2kLz

)
. (2.71)

In the semi-classical limit of a high number of photons, we can consider the classical
electromagnetic field. The Hamiltonian (2.66) in the case ω1 = ω2 becomes

H =
p2

2M
− ~
Ω

4
(1 + cos 2kL z) (2.72)

which is the classical expression for the Hamiltonian of an atom in an optical lattice,
like the one in eq. (2.48). By comparison, we see that Ω = U0/2, where U0 is the
lattice depth.

Let’s now consider the band structure picture of the lattice in the weak-binding
limit. In section 2.1.3 we touched on the fact that the atom can be considered a free
particle and the lattice only couples the momentum eigenstates at the edges of the
Brillouin zone, let’s say q − 2kL and q. In this case, the Hamiltonian (2.70) can be
simply written in a 2 × 2 form

H = ~
(
q − 2kL κ

κ q

)
(2.73)

that can be easily diagonalized. The energies are significantly different from the
one of a free particle when |q − kL | ≤ κ. The energy gap between the first and
the second band is then 2~κ = ~Ω. As a result, we can interpret the coupling
between momentum eigenstates at the edges of the Brillouin zone as first-order
Bragg transitions.
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2.2.2 Accelerated optical lattices: Bloch oscillations

If we now consider the possibility to tune the frequency difference ∆ω(t) between
the two waves linearly in time, the resulting field will be an accelerated standing
wave in the laboratory frame. On the other hand, in the frame of the lattice, the
atom will experience a constant inertial force in addition to the effect of the periodic
potential.

If ∆ω(t) is swept, we impose an acceleration on the lattice

a =
dv
dt
=

1
2kL

d∆ω
dt

, (2.74)

where we have used the expression of v in eq. (2.59) for the propagation velocity of
the lattice. In this case the Hamiltonian can be expressed as

Hlab =
p2

2M
−

U0
2

cos [2kL (z − z(t))] , where z(t) =
∫ t

0

∆ω(t ′)
2kL

dt ′. (2.75)

In the case of a linear frequency sweep, z(t) = 1
2 at2+v0t, where a is the acceleration

of eq. (2.74) and v0 is related to the frequency difference at t = 0.
In the non-inertial reference frame which is co-moving with the accelerated

standing wave the Hamiltonian is time independent

Hacc =
p2

2M
−

U0
2

cos(2kL z) + Maz, (2.76)

where we have applied a unitary transformation U (t) that is responsible for a
translation in position space α(t) = 1

2 at2−v0t and a translation in momentum space
β(t) = m(at − v0). As we can see from eq. (2.76), in the non-inertial reference
frame an inertial force appears:

F = Ma =
M

2kL

d∆ω
dt

. (2.77)

Therefore, there are two analogous situations: an accelerated lattice realized by
sweeping the frequency difference, and a steady-lattice in presence of a constant
external force. Both lead to the same phenomenon: Bloch oscillations.

Bloch oscillations in a lattice with an external force

Bloch oscillations were first studied by Zener in the scenario of an electron moving
in a crystal in which a constant electric field is applied [90, 91], and then studied
theoretically and experimentally in the context atomic physics [92–96]. The problem
can be generalized for the case of an atom in an optical lattice subject to an external
force, that in our case would be the gravitational force.
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Let’s consider the Hamiltonian (2.76). The presence of the external force
F = Ma breaks the translational symmetry due to the d = λL/2 periodicity of the
potential. However, it is still possible to calculate the evolution of the translation
operator Td of eq. (2.49), in order to obtain the evolution of the quasimomentum q:

−i~Ṫd = [H ,Td] = [−Fz,Td] = FdTd . (2.78)

Therefore, the eigenstates of the Hamiltonian are always Bloch states

ψq, j (z) = eiq(t)zu j (z, t) (2.79)

with a time-dependent quasimomentum q(t) = q(0) + Ft/~. Since the quasimo-
mentum has a periodicity of 2kL , q(t) will evolve linearly in time and it will acquire
the initial value q(0) again after a period

τB =
2~kL
Ma

(2.80)

called Bloch period, corresponding to obtain the time required to a full scan of the
first Brillouin zone. At the edge of the energy band, the lattice transfers two photon
momenta (2~kL) to the atom, i.e. a first-order Bragg transition occurs.

The mean velocity 〈v〉j (q(t)) of the atom in the state | j, q(t)〉 is given by the
group velocity of eq. (2.51). Since q evolves linearly in time, 〈v〉j (q(t)) is an
oscillatory saw-tooth function with zero mean value. This oscillatory motion takes
the name of Bloch oscillation.

Here we also want to introduce the Bloch frequency of these oscillations

ωB =
1
τB
=

Ma
2~kL

(2.81)

that would be the actual observable in our experiment.

Bloch oscillations as adiabatic passage between momentum states

Let’s consider an atom initially at rest in a steady-lattice. In the Bragg transition
description, if we change the difference in frequency ∆ω we should expect a
first-order Bragg transition whenever the energy difference between two adjacent
momentum states in the energy-momentum parabola match ∆ω. According to
eq. (2.65), this kind of transition occurs when

∆ω = 4(2m + 1)ωr, (2.82)

where m labels the initialmomentum state, i.e. |p = 2m~kL〉 → |p = 2(m + 1)~kL〉.
Therefore, every time ∆ω increases by 8ωr , the atom momentum increase by a
factor of 2~kL .
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If the lattice is uniformly accelerated in the laboratory frame, the frequency
difference changes linearly ∆̇ω(t) = 2kLat (see eq. (2.74)). Therefore, the time
required for the atom to undergo a resonant Bragg transition is

t =
8ωr

∆̇ω
=

2~kL
Ma

(2.83)

which is exactly the Bloch period (2.80) for the inertial force F = m∆̇ω/2kL .
The Bloch oscillations in an accelerated optical lattice can be used to coherently
accelerate atoms in the laboratory frame.

For this process to be efficient, the frequency sweep has to be done adiabatically.
This criterion comes directly from the adiabatic rapid passage techniques developed
in nuclear physics [97]. The adiabatic condition is fulfilled when

∆̇ω � Ω2 � (8ωr )2, (2.84)

where the first condition is equivalent to avoiding inter-band transition in the band-
structure model, while the second is equivalent to the weak-binding limit condition
and allows for the transitions to be sequential, so that only two momentum states
can be considered at a time.

To better understand the adiabatic passage, let’s have a look at the dressed-atom
picture we have introduced in the description of Bragg diffraction (see sec. 2.2.1).
In absence of coupling Ω, an atom with initial zero momentum will evolve in the
space subtended by the states |m〉 = |2m~kL, N1 − m, N2 + m〉, with an energy

Em(∆ω) = 4m2Er + N1~ω1 + N2~ω2 − m~∆ω. (2.85)

The effect of a weak coupling (Ω � 4Er ) is appreciable only when the states |m〉 are
degenerate. For an atom initially preprepared in the |0〉 state, the system adiabatically
follows the evolution of the eigenstates, when the frequency difference ∆ω is
increased, leading to subsequent momentum changes of 2~kL . This corresponds
to Bloch oscillations in the fundamental band. Intuitively we can say that in order
for the atom to remain in the first band, the speed of change in frequency has to be
small enough to prevent the atom from crossing the energy gap ~Ω. The larger the
gap, the faster the sweep ∆̇ω can be.

This phenomenon was studied rigorously by Zener [90] and Landau indepen-
dently [98]. They found that the probability for a particle in an accelerated lattice
to tunnel between the fundamental energy band and the first excited band has an
exponential decay, that can be expressed as a function of a critical acceleration ac

P ∝ exp(−ac/a). (2.86)

This probability represents the Landau-Zener tunneling rate. The critical accelera-
tion is proportional to the square of the band gap, which in the limit of weak-binding
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is proportional to the lattice depth U0:

ac

a
=
πΩ2

2∆̇ω
=

π

64
U0
Er
. (2.87)

For a typical atomic physics experiment, the lattice depth is U0 ∼ 5Er , and with
a = g gravity acceleration, ac ∼ 102 m/s2. Therefore, the losses per oscillation
due to gravity are on the order of 10−12. This result confirms Bloch oscillations
as a very efficient tool to coherently accelerate atoms. Furthermore, as long as the
atoms initially occupy the first band, i.e. if their momentum spread is smaller than
2~kL , the efficiency of the process is independent of the initial velocity. This is an
important difference between Bloch oscillations and Bragg diffraction, as we will
see later in this chapter.

Wannier-Stark states and Wannier-Stark ladder

Bloch oscillations can also be described in terms of the Wannier-Stark states ���Ψn, j

〉
,

which are stationary states localized in the lattice site n in the jth band [99]. The
presence of the potential −Fz breaks the translational symmetry, and the energy of
different sites is mismatched to produce a ladder, called a Wannier-Stark ladder:

En, j = Ēj − Fdn = Ēj − n~ωB, (2.88)

where Ēj is the mean energy of the jth band, andωB is the Bloch frequency defined
in eq. (2.81). The Bloch tunneling is then suppressed andWannier-Stark localization
occurs. In reality, the energies are not perfectly discrete, but have a Lorentzian
shape because of a finite lifetime due to the Landau-Zener tunneling [100].

The tight-binding Hamiltonian (2.54) in the Wannier states basis (see sec. 2.1.3)
in presence of an external force is given by

H =
∑
n

(Ēj − n~ωB) ���Φn, j

〉 〈
Φn, j

��� −
Jj
4

∑
n

���Φn+1, j
〉 〈
Φn, j

��� + h.c. (2.89)

This Hamiltonian can be diagonalized in the Wannier-Stark states basis

���Ψn, j

〉
=

∑
m

Jm−n

(
Jj

2~ωB

)
���Φm, j

〉
, (2.90)

whereJn(z) are theBessel functions of the first kind. The corresponding eigenvalues
form the energy ladder of eq. (2.88). Because the Bessel functions are exponentially
small for |n| > |z |, the Wannier-Stark states are localized in the nth lattice site. The
localization length is 1/d for dF > Jj , and ∼ Jj/dF for dF < Jj [101]. From
now on, we will consider the strong localization regime (dF < Jj) in which the
Landau-Zener tunneling is strongly suppressed and the single-band approximation
can be used.
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2.3 Coherent delocalization in a driven optical lattice

In this section we will introduce a driving of the optical potential, in the form of a
time-dependent modulation. We will see how the driving can be used to coherently
control the quantum motion of the atoms in a lattice. This system can be a powerful
tool for precision force measurements. We will show how this is applied in the case
of a vertical optical lattice, where the external force is the gravity force. Although
the considerations we will do can also be applied in the case of a phase modulation
[102–104], we will just focus on the amplitude-modulation driving [105, 106], since
it is the technique used in the present work.

2.3.1 Amplitude-modulated optical lattice

Let’s consider an atom in a periodic potential subject to an external force, as we
considered in sec. 2.2.2. We can add an amplitude-modulation driving (fig. 2.4) to
the lattice in the form

U (z, t) =
U0
2

cos(2kL z)
[
1 + α sin (ωM t − φ)

]
, (2.91)

where α, ωM and φ are respectively the depth, the frequency and the phase of the
modulation. The Hamiltonian governing the system becomes

HAM (p, z, t) =
p2

2M
−U (z, t) + Fz. (2.92)

Wewill show that in the present system a resonant tunneling mechanism induces
a coherent delocalization of the matter wave. The resonance occurs when the atoms
absorb or emit energy quanta ~ωM resonant with the `th harmonic of the Bloch
frequency ωB, tunneling to lattice sites separated by `. Since we are interested in
the resonant process, we will just consider near-resonance modulation frequencies
ωM ' `ωB. Moreover, we will consider the Landau-Zener tunneling negligible, i.e.
the strong localization regime we discussed in sec. 2.2.2. Under this condition we
can drop the band index j, and consider the atomic dynamics confined always in
the initial lattice band.

The Hamiltonian (2.92) can be expressed in the Wannier-Stark states basis |Ψn〉

defined in eq. (2.90) and in the tight-binding form:

HAM =−
∑
n

n~ωB|Ψn〉〈Ψn |+
∑
n

(
αU0

2
CAM
` sin(ωM t−φ)|Ψn+`〉〈Ψn |+h.c.

)
(2.93)

where the coefficientsCAM
` = 〈Ψn+` | cos(2kL z) |Ψn〉 represent the overlap integrals

between resonantly coupled |Ψn〉 states. If we consider the quasi-resonant situation



2.3 Coherent delocalization in a driven optical lattice 29

)tMsin(0αU)
z
,t

(
U

ω

Bω�
Bω�

Figure 2.4: Intra-band coherent delocalization induced by an amplitude-modulation
driving of the optical lattice. The intensity is modulated in time by a sinusoid at
frequency ωM and relative amplitude α. The site-to-site tunneling occurs when
ωM matches the energy separation between two adjacent Wannier-Stark states, i.e.
~ωM = `~ωB. Here the energy separation is induced by the gravitational force.

δM = ωM − `ωB ∼ 0, it is possible to neglect the fast-oscillating terms by moving
to the rotating frame through the operator

URF = exp *
,
−i

∑
n

n
ωM

`
t |Ψn〉 〈Ψn |+

-
, (2.94)

The Hamiltonian (2.93) under the rotating-wave approximation acquire a time-
independent form:

HAM =
∑
n


n
~δM
`
|Ψn〉 〈Ψn | + *

,
ei(π/2−φ) JAM

`

2
|Ψn+`〉 〈Ψn | + h.c.+

-


, (2.95)

where the terms exp[i(π/2 − φ)]JAM
` represent the tunneling rates, which can be

tailored by the lattice depth α and phase φ:

JAM
` =

αU0
2
〈Ψn+` | cos(2kL z) |Ψn〉 . (2.96)

In real space, this site-to-site tunneling can be viewed as a two-photon Bragg process
between neighboring Wannier-Stark states excited by the amplitude modulation
which brings sidebandsωL±ωM to the original lattice [107]. It can be demonstrated
[108] that the stationary states on resonance are delocalized Bloch states moving
with an effective energy dispersion

E(q) = JAM
` sin(q`d − φ). (2.97)
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2.3.2 Transport dynamics in real space: Resonant tunneling

The Hamiltonian (2.95) contains two terms: a localizing term proportional to the
detuning δM and a delocalizing term proportional to the tunneling rate JAM

` which
couples states separated by ` sites. For δM , 0, the translational symmetry is
broken and the Hamiltonian is similar to the one of a static lattice in presence of an
effective external force Fδ = ~δM/`d (see eq. (2.89)). In this regime the dynamics
is governed by Bloch oscillations with a period 2π/δM . When the system is on
resonance, a coherent delocalization of the wave packet takes place, which spreads
ballistically according to the dispersion relation of eq. (2.97).

The eigenstates of the Hamiltonian can be written in terms of the Wannier-Stark
states basis of eq. (2.98) for the force Fδ with a phase factor due to the phase φ of
the modulation:

|ψn(δM )〉 =
∑
m

eim(π/2−φ)J−m *
,

JAM
`

Fδd
+
-
|Ψn+m`〉 . (2.98)

Therefore, the eigenstates of the driven Hamiltonian are alwaysWannier-Stark states
localized on the lattice site n, and they form a ladder of energies

En(δM ) =
n~δM
`

. (2.99)

If the amplitude modulation is applied for a time tM , we can write the evolution
operator in the |ψn(δM )〉 states basis and in the rotating frame:

URF (tM ) = exp *
,
−i

∑
n

n
δM
`

tM |ψn(δM )〉 〈ψn(δM ) |+
-
, (2.100)

which, applied to the initial state |Ψn(t = 0)〉, leads to the time-evolved state

|Ψn(tM )〉= e−inδM tM /`
∑
m

e−im
δM tM

2+φ Jm



JAM
` tM
~

sinc
(
δM tM

2

)
|Ψn+m`〉 (2.101)

where the sinc function is defined as sinc(x) = sin(x)/x.
We can compute the broadening of the time-evolved wave packet initially

localized on the nth site by evaluating the square of the shifted spatial operator:

σ2
n(tM ) ≡ 〈Ψn(tM ) | (z − nd)2 |Ψn(tM )〉 ∼ v2

` t2
Msinc

(
δM
ΓF

)
(2.102)

which is the asymptotic ballistic expansion, valid for large tM , and where we
introduced the speed of the broadening at resonance

v` =
1
~
`d ���J

AM
`

���
√

2
(2.103)
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and the Fourier-limited linewidth of the resonance spectrum

ΓF = 2π ×
1
πtM

. (2.104)

In a real experiment, one does not measure the extent of an atomic wave packet,
but the size of a thermal cloud which has a Gaussian distribution with initial finite
size σ0. The actual observable would be the convolution between the variance of
eq. (2.103) and the atomic cloud’s size:

σ(tM ) =

√
σ2

0 + v
2
`
t2
Msinc

(
ωM − `ωB

Γ

)
(2.105)

which represents a series of resonances centered at every `th harmonic of the Bloch
frequencyωB, with a linewidth Γ that can generally be larger than the Fourier-limited
one.

It is worth to say that it’s possible to evaluate the exact position of the resonances
without making any approximation on the Hamiltonian (2.92) and generalizing to
an arbitrary modulation function f (t) with period 2π/ωM . This analysis can be
done taking advantage of the space and time symmetries and exploiting the Floquet
theory [109]. As result [106], in case of amplitude modulation, the positions
of the resonances remain unchanged, while in the case of phase modulation the
resonances could be shifted by a non zero average value of the effective force due
to the driving. In conclusion, for precise force measurements we have chosen an
amplitude modulation driving, which is insensitive to the presence of spurious
harmonics and subharmonics of ωM .

2.3.3 Effects of decoherence

Since the resonant tunneling and Bloch oscillations are coherent quantum processes,
one has to take into account possible decoherence effects. Typical decoherence
mechanisms are spontaneous emission, cold atom interactions [96], random recoils
by lattice photons [110] and environmental scattering by incoherent photons or
background gas.

It is worth to stress that even if in most applications (such as the precision
measurements of this work) decoherences are negative phenomena, they can be
of interest on their own. Indeed, the conventional conductivity in solid crystals is
possible only in presence of some decoherence induced by scatteringwith impurities.
Without any relaxation process, under the effect of an electric field, electrons would
undergo Bloch oscillations without any real conduction.

Since in the present discussionwe are interested in the effects of the decoherence,
and not in the specific physicalmechanism fromwhich the decoherence is originated,
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we can just consider a general coupling between the system under study and the
environment, which can be constituted by atomic collisions or scattering with
random photons. In both cases, the effect of the decoherence can be schematized by
the collapse of the atomic wave packet into one single lattice site. This localization
process, known as sequential tunneling, inhibits the coherent coupling among the
adjacent Wannier-Stark states, induced by the amplitude modulation.

To investigate the interaction between the system and an environment the
approach based on the single-particle Schrödinger equation is not valid, and the
dynamics should be described by a density matrix ρ. The evolution of ρ can be
obtained by solving the stochastic Liouville equation [111, 112], where a localization
operator is introduced

ρ̇ =
1
i~

[
HAM, ρ

]
+

∑
m

(
2LmρL†m − L†mLmρ − L†mLmρ

)
. (2.106)

Here,HAM is the Hamiltonian (2.92) governing the coherent transport, and Lm are
the projections of the recoil operator (Lindblad operator), responsible for a certain
relaxation process one wants to take into account. In the Wannier states basis |Φm〉

(see sec. 2.1.3) and in the tight-binding approximation, Lm take the form of a
localizing term in the site m:

Lm =
√
γD |Φm〉 〈Φm | , (2.107)

where γD represents the rate of collapse of the atomicwave function. By substituting
the Lindblad operators in the Liouville eq. (2.106) one obtains

ρ̇ =
1
i~

[
HAM, ρ

]
− 2γD (ρ − D), (2.108)

where D =
∑

m ρmm |m〉 〈m | is the diagonal part of the density matrix. This
equation shows that the off-diagonal terms of the density matrix, which are the
coherences, relax to zero at the rate γD , while the diagonal terms, which are the
populations, are not affected by the decoherence mechanism. The off-diagonal term
cause a sequential tunneling, which in momentum space leads to a decay of the
Bloch oscillations

〈p(t)〉 = p0e−γD t sin(ωBt), (2.109)

where the amplitude p0 in absence of decoherence is damped at a rate γD . In real
space, the sequential tunneling asymptotically leads to a diffusive spreading of the
atom ensemble

σ2(t) ∼ Dt, where D =
( p0

M

)2 γD

ω2
B + γ

2
D

(2.110)
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represents a diffusion constant. Note that since ωB ∝ F, the external force tends to
suppress the diffusion. Therefore, the conductivity of a system goes to zero when
the frequency of Bloch oscillations is larger than the decoherence rate.

Since we are interested in the resonance spectrum, we note that a numerical
integration of the Liouville equation leads to Lorentzian line-shape, with γD
approximately the linewidth of the spectrum [108]. The presence of a decoherence
process will result in a broadening of the Fourier-limited linewidth defined in
eq. (2.104), by an additive quantity γD , which is the inverse of the coherence time
of the system.

2.3.4 Bloch frequency based dynamometer

The measurement of the atomic wave packet broadening as a function of the
amplitude-modulation frequency of the lattice potential allows reconstruction of the
resonance spectrum given by eq. (2.105). The spectroscopy of the Wannier-Stark
resonant tunneling profile permits determination of the potential energy between
nearest neighboring sites, i.e. ~ωB. Interrogation of the atoms to higher harmonics
of the modulated potential allows a precise determination of the local force F
through the definition of the Bloch frequency

ωB =
FλL

2~
. (2.111)

The presented system is a dynamometer which works at the micrometer scale.
Such a device finds interesting applications, spanning from measurements of the
Casimir-Polder force [22, 23, 113, 114] to possible violation of Newtonian gravity
[19].

Aside from the potential of short-distance measurements, this technique has
already demonstrated very high performances in the measurement of gravitational
forces. With the bosonic 88Sr isotope, gravity acceleration g = Fg/MSr was
measured with a relative uncertainty of 10−7, by interrogating the atomic sample at
the sixth harmonic of the Bloch frequency [41].

2.4 Atom optics with Bragg pulses

In section 2.2.1 we have discussed the main characteristics of Bragg transitions in
a time-independent description. In this section, we will see how Bragg pulses are
responsible for the time evolution of the atom’s momentum. By choosing a proper
interaction time it is possible to produce atom-optical components such as “mirrors”
and “beam splitters”, essential for the realization of an atom interferometer.

Contrary to Raman transitions, for which the internal state entanglement with
the external degrees of freedommakes the system a real two-level problem, in Bragg
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transitions there is always a coupling between unwanted momentum states, leading
to losses. We will see how to take into account such losses and possible reduction
solutions. We will also discuss the importance of the atom’s initial momentum
distribution in the realization of efficient atom-optical elements.

2.4.1 Rabi oscillations between momentum states

As we have already seen in sec. 2.2.1, the Hamiltonian describing the interaction
between an atom and a traveling standing wave (formed by two beams with opposite
wave vector |k1 | ∼ |k2 | = kL) can be written in terms of the single-photon Rabi
frequency Ω0. For now, we consider a mono-energetic wave packet, with a δ-
momentum distribution. In the frame rotating at frequency ωL:

H =
p2

2M
− ~δ |e〉 〈e| + ~Ω0 cos(kL z) (|e〉 〈g | + h.c.) . (2.112)

Here we are interested in solving the evolution of the system, so we consider a time-
dependent atomic wave function |ψ(t)〉 = e(z, t) |e〉 + g(z, t) |g〉. By solving the
Schrödinger equation i~ ˙|ψ〉 = H |ψ〉 we obtain two coupled differential equations
for the coefficients e(z, t) and g(z, t). Since we are in the case of a far-detuned
lattice (δ � Ω0, ωr ), we can adiabatically eliminate the excited state, so that we
remain with just a single differential equation:

i~ġ(z, t) = −
~2

2M
∂2g(z, t)
∂z2 +

~Ω2
0

δ
cos2(kL z)g(z, t), (2.113)

where we can recognize that the coupling with the potential is mediated by the
two-photon Rabi frequency Ω = Ω2

0/2δ we have introduced in sec. 2.2.1.
For constant Ω0 we can apply the method of separation of variables and look

for a solution in the form g(z, t) = gt (t)gz (z). Thus, we can divide eq. (2.113) into
two coupled spatial and temporal equations

ig′t − ωtgt = 0, (2.114)
− ~

2M g′′z + 2Ω cos2(kL z)gz − ωtgz = 0, (2.115)

where ωt is the separation constant. Equation (2.115) is a Mathieu equation for
which exact solutions exist and are known as Mathieu functions [115, 116].

Since eq. (2.113) contains the periodic potential, which is invariant under
translation of an integer multiple of 1/kL , we can apply the Bloch theorem (see
sec. 2.1.3) and separate the spatial dependence in g(z, t) in terms of eigenfunctions
of constant quasimomentum g(z, t) =

∑
m gm(t) exp(imkL z). The integer-index m

in this context refers to the state of momentum m~kL which lies on the momentum-
energy parabola we have discussed in sec. 2.2.1. The Mathieu equation (2.113)
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becomes

i~
∑
m

ġmeimkLz = ~
∑
m

[(
ωrm2+Ω

)
gm+
Ω

2
(gm+2+gm−2)

]
eimkLz (2.116)

where we have made use of the definition of recoil frequency ωr in eq. (2.64), and
trigonometric relation cos2(kL z) = 1

2 +
1
4 (e2ikLz + e−2ikLz ) which is responsible

for the presence of the gm+2 and gm−2 terms. The Mathieu eq. (2.116) holds for all
m only if

i~ġm = ~
(
ωrm2 +Ω

)
gm +

1
2
~Ω (gm+2 + gm−2) . (2.117)

As we can see this equation only couples either even or odd momentum states.
At this point we can distinguish between two different regimes: the Raman-Nath

regime, which occurs for short interaction times; and the Bragg regime, in the case
of long interaction times. While in the Raman-Nath regime many momentum states
are populated, in the Bragg regime just the initial and the final states are occupied.

Although, atom interferometer experiments were proposed and realized in the
Raman-Nath regime to obtain a multi-mode beam splitter [117–120], we are more
interested in a pure Bragg diffraction [121] where just two momentum states are
populated and a clear description of the atomic phase is expected. On the other
hand, the Bragg regime requires a very long interaction time, which is typically
not feasible in real experiments. In the intermediate regime, known as quasi-Bragg
regime, mainly two states are populated, but the coupling with the other states is
also taken into account. Useful results can be obtained by numerical computation,
but some solutions can be also obtained analytically. We will follow the analysis in
ref. [122] which also provides strategies to minimize the unwanted losses.

Raman-Nath regime

In the case of very short interaction times (t � 1/
√
Ωωr ), the kinetic energy can

be neglected in eq. (2.117), resulting in

i~ġm = 1
2~Ω (gm+2 + gm−2) . (2.118)

Since this equation only couples states separated by an even number of momenta
~kL , we restrict attention to the states 2m, for which the solution is expressed by
the Bessel functions:

g2m(t) = (−i)mJm(Ωt). (2.119)

Therefore, the transition probability from the state g0 = 1 at t = 0 to the state
with momentum 2m~kL is P2m(t) = J 2

m (Ωt). This means that in this regime more
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than two momentum states are populated at time, even if the occupation probability
would not be the same for every m.

In atomic physics, the Raman-Nath regime is a special case of the Kapitza-Dirac
effect [123–127], which is the diffraction of a collimated atomic beam by an optical
standing-wave. It can be shown [128] that the dispersion of the optical wave vector in
a focused beam, which is responsible for the multiple-order diffraction, is analogous
to the short pulse time situation. Intuitively, thinking in the Fourier-transform
domain, a short pulse in time will correspond to a wide frequency spectrum, the
components of which can excite a larger number of momentum states.

Bragg regime: pure π and π/2 pulses

In the Bragg regime the kinetic energy in eq. (2.117) is not negligible. Let’s consider
the initial situation in which only the momentum state −n~k is populated, therefore
g−n = 1 and gm = 0 for m , −n. Equation (2.117) tell us that there is an infinite
number of coupled equations between states separated by an even number 2l with
l ∈ Z:

i~ġ±n+2l = 4l (l ± n)~ωrg±n+2l +
1
2~Ω(g±n+2l+2 + g±n+2l−2) (2.120)

where, for simplicity, we have removed a constant offset n2~ωr + ~Ω from the
energy scale. If the process is sufficiently slow, the energy conservation will favor
the transition −n → n. This allows an adiabatic elimination of the intermediate
state (0 < l < n) for which

���4l2 − 4nl��� ~ωr � ~Ω. (2.121)

Under this condition we can assume that the lth equation is always in equilibrium
with ġ−n+2l ∼ 0, so for example

g−n+2 = −
1
8
~Ω

1
(nl − l2)~ωr

g−n. (2.122)

We can eliminate all the n − 1 intermediate states by defining an effective Rabi
frequency for the −n → n transition

Ωeff =
Ωn

(8ωr )n−1

n−1∏
l=1

1
nl − l2 =

Ωn

(8ωr )n−1
1

(n − 1)!2 . (2.123)

The same expression was first found by Giltner et. al. [129] using simple considera-
tions on the detuning of the intermediate states. The remaining equations are

i~ġ−n = 1
2~Ωeffgn, i~ġn = 1

2~Ωeffg−n (2.124)
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which can be easily solved

g−n(t) = cos
(

1
2Ωefft

)
, gn(t) = −i sin

(
1
2Ωefft

)
. (2.125)

Thus, the system oscillates between the momentum states separated by 2n~kL in
a manner analogous to the Rabi oscillations of atomic population between two
resonantly coupled states. Rabi oscillation for the two Bragg coupled states is
known as Pendellösung and was first observed for X-rays on a crystal [130]. The
integer number n represents the order of Bragg diffraction that we have introduced
in sec. 2.2.1.

If the argument Ωefft of the trigonometric functions in eq. (2.125) is equal to π
(a π-pulse), the population will be completely transfered from the initial state −n to
the state n; if Ωefft = π/2 (a π/2-pulse), the population will be equally divided in
the two momentum states. These pulses correspond respectively to a mirror and a
beam splitter in the atom optics context, and they will be the main ingredient for
atom interferometry.

The adiabatic elimination we did is justified by the (2.121) condition, and set a
limit to the two-photon Rabi frequency Ω � 4(1 − n)ωr , which can be inserted in
eq. (2.123) to get the general condition

Ωeff �
8(n − 1)nωr

2n(n − 1)!2 . (2.126)

This expression sets a lower bound for the interaction time needed in order to have
a pure n-order Bragg diffraction. The intermediate regime between Raman-Nath
and Bragg is known as quasi-Bragg regime.

2.4.2 Quasi-Bragg regime: Losses and pulse shaping

In the quasi-Bragg regime the adiabatic approximation is not valid and the losses in
unwanted momentum states are not zero. Exact numerical solutions can be obtained
by a Mathieu equation approach [122]. The results are consistent with a numerical
integration of the coupled differential eqs. (2.120). Figure 2.5 shows the numerical
simulation of the output population for a −3~kL → +3~kL transition withΩ = 3ωr .
This simulation considers an interaction coupling Ω = 3ωr starting from t = 0, an
initial population g−3(0) = 1, and includes 5 outer states (0 < |l | < n + 5) in the
integration.

Severed things can be discussed looking at the result. For instance, the effective
Rabi frequency Ωeff of eq. (2.123), found in the adiabatic approximation (i.e.
in absence of losses), is in good agreement with the frequency of oscillations
extrapolated from a sinusoidal fit function. This remains true as long as |gm,±n |2 �
|g±n |

2. Therefore, Ωeff can also be used in the quasi-Bragg regime.
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Figure 2.5: Numerical simulation of the output population for a third-order Bragg
transition: −3~kL → +3~kL , with Ω = 3ωr . The red curve is a sinusoidal fit with
frequency Ωfit = 1.05 ×Ωeff .

Secondly, we observe a fast oscillations around the mean Rabi oscillation. The
frequency is large compared toΩeff and depends on the pulse amplitude. To observe
such fast oscillation a very precise timing and amplitude control of the system is
required. Most of the time one observes just the mean value, which can lead to an
effective π-pulse efficiency smaller than one (91.3% in the figure).

An approximate, but usefulway to algebraically calculate the losses contribution,
is an expansion of the adiabatic method we used in the previous section. Let’s
first consider a generic pulse amplitude shape, i.e. we suppose the two-photon
Rabi frequency Ω(t) to be time-dependent. Equations (2.125) for the population
evolution in the adiabatic approximation become

g(1)
−n (t) = cos

(
1
2

∫ t

−∞

Ωeff (t ′)dt ′
)
, g(1)

n (t) = −isin
(

1
2

∫ t

−∞

Ωeff (t ′)dt ′
)
, (2.127)

where the label (1) stands for the first-order adiabatic approximation, in which just
the initial and final states are populated. The corrections to the population can be
calculated as an expansion

gm = g(1)
m + g

(2)
m + g

(3)
m + . . . (2.128)

where the second order, for example, is calculated by inserting g(1)
±n in the differential
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eqs. (2.120). We obtain equations for the states next to the initial and final states:

iġ−n±2(t) = 4(1 ∓ n)ωrg−n±2(t) +
1
2
Ω(t) cos

(
1
2

∫ t

−∞

Ωeff (t ′)dt ′
)
,

iġn±2(t) = 4(1 ± n)ωrgn±2(t) −
i
2
Ω(t) sin

(
1
2

∫ t

−∞

Ωeff (t ′)dt ′
)
.

(2.129)

These are states for which g(2) , 0. To get the third order terms g(3) we can iterate
the process by inserting g(2)

±n±2 in (2.120), and so on for the next orders. Solutions for
these inhomogeneous differential equations can be obtained by standards methods,
such as Green’s functions [131].

With this method we can calculate the losses and the relative phase shift up to
the desired order. Let’s say we are interested to the second-order correction. The
losses L in the −n → n transition come from the neighboring states

L(2) = |g−n−2 |
2 + |g−n+2 |

2 + |gn−2 |
2 + |gn+2 |

2 (2.130)

and an upper limit to the losses-induced phase shift can be evaluated as |∆φ| 6
√

L
[122]. This method can be applied to an arbitrary pulse shape to calculate losses
and phase shift. We will consider the simplest square pulse, experimentally used
for a long time in Raman interferometry, and a smooth-envelope pulse, namely a
Gaussian pulse.

Square pulses

In the case of a square pulse, Ω(t) = Ω̄ for 0 < t < T and zero otherwise where
T is the duration of the pulse. In the second-order approximation, the integrals
in eq. (2.129) are easy to solve, and we obtain the populations of the neighboring
states

g−n±2 =
Ω̄

ωr

1
8(1 ∓ n)

, gn±2 = i
Ω̄

ωr

1
8(1 ± n)

e4i(1±n)ωrT . (2.131)

So the total losses, according to eq. (2.130), are

L(2) =
1

16
Ω̄2

ω2
r

n2 + 1
(n2 − 1)2 . (2.132)

This equation is a good prediction for the real case, where no approximation is
applied. For example, in the case where n = 3 and Ω̄ = 3ωr the losses are L = 8.8%,
in agreement with the efficiency found for the numerical simulation in fig. 2.5.

Since real experiments requires much smaller losses, this would mean reducing
the Rabi frequency Ω̄ to a level for which the practical implementation is not
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possible. For example, if we want to keep losses below the 10−4 level, as required
for high-precision interferometry, the π-pulse time would be of the order of τπ ≡
π/Ωeff ∼ 10 s.

Smooth pulses exhibit much smaller losses and phase shifts for a given pulse
duration. We will see that Gaussian envelopes are a good solution.

Gaussian pulses

A Gaussian pulse envelope can be written in the form

Ω(t) = Ω̄e−t
2/2σ2

. (2.133)

We will refer to the pulse duration as the width σ. The corresponding effective
Rabi frequency (2.123) becomes

Ωeff (t) = Ω̄n

(
1

8ωr

)n−1 1
(n − 1)!2 e−nt

2/2σ2
. (2.134)

The correction calculations in the case of a Gaussian envelope are much harder
because they involve complicated integrals, and moreover higher correction orders
in general would be needed. If we considered losses smaller than the 10−2 level,
the second-order corrections are enough [122] and lead to

L(2) ' 4(0.5Ω̄σ)2 exp
[
−16(1 − n)2σ2ω2

r/(1.6n1/3)
]

(2.135)

which decreases very rapidly with σ. Therefore, high effective Rabi frequency
can be used and very small losses can be obtained. Indeed, to have losses below
10−10, which are small enough to be neglected with respect to other technical errors,
the π-pulse duration has to be σπ/ωr > 1.5n1/6/(n − 1) which is feasible in real
experiments. For comparison with the square envelope situation we discussed, for
n = 3 we can reach losses below 10−10 with σπ > 1/ωr ∼ 10 µs.

As a more detailed example, in fig. 2.6 we show a numerical simulation of the
population evolution for a 3rd order Bragg diffraction in the case of a Gaussian
envelope. We use Ω̄ = 20ωr and we consider 5 outer states in the computation.
The Gaussian was truncated at 6σ. The population at the input and output states, as
well as the nearest neighboring states are shown. For a pulse duration σ . 0.3ω−1

r ,
the population is transfered from the initial state −3~k to the output state +3~kL
as well as the nearest neighboring states. The system is in the Raman-Nath regime.
When the pulse becomes longer, the system evolves in the quasi-Bragg regime and
the losses decrease rapidly, becoming negligible after a time ∼ 0.8ω−1

r in which the
system performs Pendellosöung oscillations as in the Bragg regime.

A proper optimization of the Rabi frequency Ω̄ can lead to π-pulse efficiency
very close to 100%. The practical losses will then be dominated by issues such
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Figure 2.6: Numerical simulation of the population evolution for a 3rd order Bragg
diffraction and a Gaussian pulse with Ω̄ = 20ωr . The blue and red curve are the input
|g−n |

2 and output |gn |2 state populations respectively. The dashed lines correspond to
the next neighboring states |g±n±2 |

2 population.

as single-photon excitation, finite laser power, finite size and temperature of the
atomic cloud, wave-front distortions.

In particular we will see that Bragg pulses are highly velocity selective, and
more so as the diffraction order is increased. This leads to a dependence of the
population transfer on the multi-photon detuning ∆ω. To minimize this dependence,
other pulse solutions have been developed, such as composite-pulse techniques
[132, 133] or adiabatic-rapid-passage pulses [134].

2.4.3 Velocity selectivity of Bragg pulses and the importance of mo-
mentum distribution

Let’s now relax the mono-energetic condition we introduced at the beginning of this
section. We consider the realistic situation of an atomic momentum distribution
ρ(p) [135]. The wave packet would be a superposition of momentum states
|Ψ(t)〉 =

∫
ρ(p) ���ψp (t)

〉
dp, where ρ(p) is normalized separately from ���ψp (t)

〉
so

that
∫
|ρ(p) |2 dp = 1.

In sec. 2.2.1, we noticed that momenta deviating from the resonance condition
act as a detuning δp because of the Doppler shift. Therefore, the atomic wave
function can be written as

|Ψ(t)〉 =
∑
m

∫
gm(δp, t)ei(m+δp )kzdδp, (2.136)
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where δp has been chosen as adimensional detuning from the resonant state |m~k〉.
Because of the same consideration, the Mathieu equations (2.117) that govern the
evolution of the system become

i~ġm = ~
[
ωr (m + δp)2 +Ω

]
gm + ~Ω2 (gm+2 + gm−2) . (2.137)

The population evolution can be obtained by numerically solving these differential
equations, with the initial condition that the atoms occupy the state n with a Gaussian
distribution of width σp:

ρ(δp) =
(
2πσ2

p

)−1/2
exp

[
−(δp − n)2/(2σ2

p)
]
. (2.138)

To point out the main effects of a Bragg pulse interacting with a finite momentum
distribution, we consider the simple case were the initial population is distributed
in the n = −1 state. Figure 2.7 shows the result of the numerical simulation for the
case of an initial δ-distribution (a) and for an initial Gaussian distribution of width
σp = 1~kL (b). We again consider a Gaussian pulse with Ω̄ = 3ωr and we keep 5
outer states in the calculation.

Two effects are clear by comparing the mono-energetic situation with the finite
momentum distribution. At short times the losses into the neighboring states
increase, larger is the initial momentum width σp. This can be interpreted by
realizing that the tails of the Gaussian centered on the −n states are closer to the
states −n − 2,−n + 2, and therefore the effective coupling would be increased.
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Figure 2.7: Numerical simulation of the population evolution for a 1st-order Bragg
transition −~kL → +~kL in the case of an initial δ-momentum distribution (a) and for
a Gaussian distribution of width σp = 1~kL (b). The blue (red) curve is the population
in n = −1 (+1) state, while the dashed curves are the losses in n = −3,+3. Here
Ω̄ = 3ωr .
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At longer times (σ > ω−1
r in the figure) the losses become negligible, but a

damping of the two-state oscillation is observable. The damping is due to the
velocity selectivity of the Bragg transition, caused by the Doppler shift [89]. The
longer the interaction time, the narrower the resonance condition would be, resulting
in an exponential decay of the transfer efficiency. The resonant condition is Fourier-
limited by the interaction time. This result shows that, in order to increase the
Bragg pulses efficiency, it is better to start with a narrow momentum distribution,
for which the losses and the damping effects are smaller.

On the other hand, it turns out that such pulses can be used to prepare an atomic
sample with arbitrary narrow momentum distribution, by tuning the interaction
time. We notice that this process does not increase the number of atoms in a given
velocity class, and is therefore not a cooling technique.

Finally, Bragg pulses can be used for momentum distribution analysis with
sub-recoil resolution, by resolving the Doppler width of the Bragg transition itself.
This technique, called Bragg spectroscopy [136], is a powerful tool for momentum
distribution measurements and is commonly used in situations where time-of-flight
techniques can be limited in resolution, such as with Bose-Einstein condensates
[137, 138].

A systematic numerical simulation of the π-pulse efficiency carried out by
Szigeti et al. [135] demonstrates the importance of a narrow initial momentum
distribution to produce a large-momentum-transfer atom-optical element. In their
analysis it emerges that the π-pulse efficiency does not depend strongly on the order
n as long as Ω can be arbitrarily increased, i.e. if no constraints are placed on the
available optical power. In a realistic scenario, the optical power is limited, so it is
only possible to increase Ω by reducing the detuning δ from the excited internal
state. This has the consequence of increasing the losses due to resonant scattering,
whose probability is expressed by eq. (2.30).

In conclusion, placing constraints on the available optical power and on the
maximum acceptable losses due to resonant scattering leads to very strong con-
straints on the starting momentum distribution width, especially when one wants to
move to higher Bragg orders.

2.5 Free-falling Mach-Zehnder atom interferometer with
Bragg pulses

In general, an interference process occurs when a (matter-)wave is split in a coherent
superposition of two states along two paths and it is recombined after a certain
free-evolution time T . The accumulated phase between the two paths leads to an
interference pattern at the recombiner. At the output channels of the interferometer,
we have a complementary probability to find the wave in one of the two states. The
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probability oscillates periodically as a function of the total phase difference ∆Φ.
In this section we will describe the theoretical concept of a Mach-Zehnder

atom interferometer between momentum states, realized by a sequence of three
π/2− π − π/2 Bragg pulses, which split, reflect and recombine the wave-packet. In
the presence of a gravity field, the atom will fall along the geodesics of the field
during the free-evolution time, and the accumulated phase shift between the two
arms will depend on the gravity acceleration g.

Another important interferometric scheme, that will not be presented in this
discussion, is the Ramsey-Bordé interferometer [139–142], which is constituted by
a sequence of four π/2-pulses. This scheme is sensitive to the recoil frequency ωr

and for this reason is used for the determination of the fine constant α [13, 14, 143].

2.5.1 Phase shift calculation

For instance, let’s consider the atom interferometer represented in fig. 2.8 in a
time-space diagram. The classical paths with and without the presence of the
gravitational field are both shown. We define the effective wave vector keff = 2n~kL
of the nth order Bragg transition, which transfer atoms from the initial state |p0〉 to
the final state |p0 + 2n~kL〉. The transition probability depends on the pulse area
Ωeffτ (see sec. 2.4.1) and can be adjusted to realize a mirror (π) or a beam splitter
(π/2).

The total phase difference between the upper path ACB and the lower path ADB

A
A0

D

BC
D0

C0

B0

T T20

z

t

2π/ 2π/π

Figure 2.8: Time-space diagram of a Mach-Zehnder interferometer, in presence of
a gravitational field (solid lines) and without gravity (dashed lines). The red (blue)
paths correspond to momentum states |p0〉 (|p0 + 2n~kL〉).
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can be divided into three terms

∆Φ = ∆φpath + ∆φlight + ∆φsep. (2.139)

The first term is responsible for the free evolution between the pulses and can
be calculated with the classical action. The second term comes from the phase
imparted by the Bragg pulses at the atom position. The last term originates from the
difference in the initial position of the interfering wave packets, and it is typically
negligible because the wave packets are overlapped.

A commonly used method to calculate the phase shift of an atom interferometer
takes advantage of the path integral description of quantum mechanics [144]. This
formalism is very useful since it reduces the analysis to a calculation of integrals
along classical paths. This approach was first used to calculate the phase shift
of an atom interferometer by Kasevich and Chu [145]. Similar approaches [141,
146] and extensions of the method [147, 148] were developed for Raman pulse
interferometers, in which different paths also correspond to a different atomic
internal state. The theory can be easily extended to Bragg pulse interferometers, in
which the paths are just labeled by a different momentum state.

The action is defined as the integral of the Lagrangian L(z, ż) over the path
z(t) connecting two points zA = z(tA) and zB = z(tA):

S =
∫ tB

tA

L [z(t), ż(t)] dt . (2.140)

According to the principle of stationary action, we define the classical path Γcl, for
which the action is extremal, so that Scl ≡ Scl(zBtB, zAtA) is just function of the
endpoints of the path.

In presence of a uniform gravitational potential the Lagrangian is L = M
2 ż2 −

Mgz. The classical action is found by integratingL along the classical path, derived
from the Euler-Lagrange equations:

Scl =
M
2

(zB − zA)2

tB − tA
−

Mg

2
(zB + zA)(tB − tA) −

Mg2

24
(tB − tA)3. (2.141)

The phase difference ∆φpath can be calculated as the difference of the classical
action between the two paths:

~∆φpath = SAC
cl + SCB

cl −
(
SAD

cl + SDB
cl

)
= M

T (zC − zD)
(
zC + zD − zA − zB − gT2

) (2.142)

where we have set tB − tA = 2T . With a simple geometrical comparison (fig. 2.8),
we can see that the parabolic trajectories are related to the straight-line paths by:

zA = zA0, zC = zC0−gT2/2, zD = zD0−gT2/2, zB = zB0−2gT2. (2.143)
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Therefore, we find that the second term in eq. (2.142) is zero:

zC + zD − zA − zB − gT2 = zC0 + zD0 − zA0 − zB0 = 0 (2.144)

because the straight-line trajectories enclose a parallelogram. This means that the
phase shift in a free-falling Mach-Zehnder interferometer rises only from the phase
imprinting of the laser pulses and not from the free evolution of the two paths. This
is true only if we consider a uniform gravity field, or in general for a Lagrangian
linear in z. If we account for gravity gradients, which introduce terms proportional
to z2 or higher order terms, the contribution to the phase shift is not null and can be
calculated [148]. For typical working parameters gravity gradients can be neglected,
since the largest contributions come from the Earth’s gravity gradient, on the order
of 3 × 10−9 g/cm.

The phase difference due to the interaction with the light pulses can be calculated
as the phase difference accumulated in the upper and lower paths

∆φlight =
∑
ACB

φi −
∑
ADB

φ j . (2.145)

Since the atom remains always in the same internal state during Bragg transitions,
the calculation of the phases φi is simple. The interaction with a pulse in the
time-space position ziti will be responsible for a phase shift

φi = ± (keff zi − ωeffti − φeff ) (2.146)

where the sign is positive for the transitions |p〉 → |p + 2n~kL〉 and negative for
the opposite, and φeff = n(φ1 − φ2) is the phase difference between the two optical
beams. Adding the phase contributions of the three pulses in the upper and in the
lower path, we find the final phase difference

∆Φ = ∆φlight = keffT2g + (φeff
I − 2φeff

II + φ
eff
III )

= 2nkLT2g + n(φI − 2φII + φIII)
(2.147)

which is independent with respect to the position, so we label the optical phases φI,
φII and φIII for the pulses at t = 0,T and 2T respectively.

This result can be generalized to a variety of inertial effects arising from different
forces. For example, this scheme can be used to measure rotations through the
Sagnac effect [10, 149].

2.5.2 Gravimeter based on large-area Bragg interferometry

In eq. (2.147), the factor keffT2 represents the space-time area of the interferometer.
It is easy to see that in order to increase the sensitivity of a gravity acceleration
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measurement we need to increase the the space-time area. This can be done by
increasing the free evolution time T or by increasing the effective wave vector of
the multi-photon transition.

The simplest solution to increase the time T is to drop the cold atomic cloud
from a trap and detect the output states as far as possible from the trapping position,
in order to exploit the separation of the arms in free fall for longer time. Another
solution is to launch the atoms upward in a fountain in order to double the free
evolution time available before the detection [3, 150]. A typical way to launch
atoms is based on a moving optical molasses [150, 151], but launching with an
accelerated optical lattice is also possible, as explained in sec. 2.2.2, and by using
a sequence of high-efficiency π-pulses, as demonstrated in this work. Other more
expensive possibilities rely on the operation of the interferometer in a micro-gravity
environment, such as dropping towers [152], parabolic flights [153, 154] and orbital
space missions [155].

To increase the effective momentum separation between the interferometer arms
we need to increase keff . This can be done by reducing the wavelength of the laser
used for the Bragg pulses and by increasing the diffraction order n. Dipole allowed
transitions in alkaline-earth atoms are in the blue/near-UV region of the optical
spectrum (461 nm for Sr and 399 nm for Yb) resulting in a net momentum transfer
to the atoms which is ∼ 2 times larger than the momentum imparted by infrared/red
transition on more commonly used alkali atoms with the same diffraction order.
At the same time, exploiting high order Bragg transitions can linearly increase
the interferometer area. Large-momentum-transfer with single Bragg pulses was
demonstrated up to 10th order for Cs atoms [122]. Other possibilities have also been
investigated to increase the interferometer area. Multi-pulse schemes [156] have
been developed and a total momentum splitting of 102~kL [157] was demonstrated.
A combination of Bragg pulses and Bloch oscillations can be used to accelerate one
of the arm of the interferometer [158–160] or to increase the interferometer time
by letting the two arms evolve in a steady lattice [161].





Chapter 3
Apparatus for ultra-cold
strontium atom experiments

3.1 Strontium atoms for precision measurements

Strontium is an alkaline-earth metal atom with atomic number Z = 38. As all the
elements in the second column of the periodic table, it has two valence electrons.
We can find four stable isotopes in nature, that can be laser cooled and trapped
starting from the same solid sample. The main characteristics of these isotopes are
reported in table 3.1.

All of the isotopes, except 87Sr, are bosons with zero nuclear spin. Their level
structure is the same, the only difference comes from the isotopic shift. 87Sr is the
only fermion, with a nuclear spin I = 9/2 and therefore it has a hyperfine structure.
Because of the presence of two valence electrons, the energetic ground state does
not present any electronic angular momentum. Therefore the bosons have a zero
total magnetic moment in their ground state, making these isotopes insensitive to

Isotope Atomic mass
[162, 163]

Abundance
(%) [164]

Nuclear
spin

Scattering length
(a0) [165, 166]

84Sr 83.913425(3) 0.56(1) 0 122.76(9)
86Sr 85.909260731(9) 9.86(1) 0 798(12)
87Sr 86.908877497(9) 7.00(1) 9/2 97.37(7)
88Sr 87.905612257(10) 82.58(1) 0 −2.00(27)

Table 3.1: Properties of stable strontium isotopes. For completeness we report here
the nuclear magnetic moment of 87Sr µ = −1.0936030(13)µN [167].

49
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external magnetic fields. This is a precious characteristic for implementation in high
precision measurement experiments, where the control of the spurious magnetic
fields is a real technical issue. On the other hand, the fermion has a magnetic
moment that arises only from the nuclear spin, i.e. about 2000 times smaller with
respect to alkali atoms.

Among the known elements, 88Sr possesses the unique characteristic of an
almost vanishing scattering length. This property has important consequences. For
instance, a cold ensemble of 88Sr can be considered as a system of non interacting
particles, so it can be described in terms of a single-particle Hamiltonian. Another
important consequence is the absence of decoherence among the external degrees
of freedom because of the absence of cold collisions. This feature is the reason why
long-lived Bloch oscillations in a vertical optical lattice could be observed for up to
17 s with a transfer of more than 10000 photon recoils [24, 41]. For alkali atoms (as
well as all others) this lifetime is drastically reduced [92, 168, 169], unless polarized
fermions in a single Zeeman sublevel are used [170], or by exploiting Feshbach
resonances [171, 172] which imply the use of strong magnetic fields typically not
desirable in precision measurement experiments. As a counterpart, such a small
scattering length does not facilitate evaporative cooling. This is the reason why
Bose-Einstein condensation was first obtained for the less abundant 84Sr isotope
[173], which has a more suitable scattering length. 88Sr has only been condensed
subsequently through sympathetic cooling [174].

Another interesting feature of strontium isotopes is the presence of narrow
optical transitions. Such resonances can be used to produce ultra-cold thermal
samples down to the recoil limit, and allow for the implementation of fast optical
cooling schemes toward quantum degeneracy [175]. Ultra-narrow optical transitions
also allow the development of the most stable and accurate optical clocks [176].

For all these reasons strontium atoms were demonstrated to be very good
candidates for precision measurements. In this work, we will focus our attention
to the boson 88Sr and the fermion 87Sr, because the difference of their quantum
properties are of special interest in Einstein Equivalence Principle tests. Particularly,
in addition to following different statistics, one is a spin-less atom and the other has
a half-integer spin.

3.2 Laser cooling and trapping of strontium atoms

The cooling technique we use to cool and trap strontium atoms relies on the
dissipative term of the light-atom interaction discussed in sec. 2.1.1 and expressed
by eq. (2.26), also called the radiation pressure force. When the transition is
saturated (s � 1) the force exerted on the atoms is maximum Fmax = ~kLγ/2, and
is limited by the linewidth of the transition γ. Broad transitions are more efficient
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in slowing and cooling a large amount of velocity classes in a short time.
On the other hand, the upper state lifetime limits the minimum temperature

reachable in an optical molasses [177, 178] to the so called Doppler temperature
(when the detuning is set to be δ = −γ/2):

kBTD = ~γ/2 (3.1)

which is due to the balance between the viscous force of the molasses and the
discrete and random nature of the momentum exchange between atoms and light.
A more fundamental limit can be found in such system and is called the recoil
temperature [179], which depends on the recoil energy:

kBTr = ~2k2
L/m = 2Er . (3.2)

This temperature limit comes from the fact that, due to the exchange of momentum
quanta, the final indetermination on the velocity can not be smaller than of the
one which corresponds to the emission of a single photon, i.e. the recoil velocity
vr = ~kL/M .

A full dissertation about the laser cooling techniques based on the radiation
pressure force can be found in refs. [180, 181].

In this section we will describe the optical characteristics of the two strontium
isotopes that we aim to use in our experiments, and the procedure we adopted to
produce samples at 1 µK temperature. We will first describe the boson case, which
has a simpler structure, and then we will introduce the modification we need to
adopt to trap the fermion.

3.2.1 Optical transitions for cooling of 88Sr

The presence of two valence electrons results in strontium having an energy level
structure similar to that of helium. Depending on the reciprocal orientation of the
two spins we can distinguish two distinct series of levels: triplet states (for parallel
spins) and singlet states (for anti-parallel spins). The levels can be described by
the Russell-Saunders coupling [182] because the electrostatic interaction is much
larger than the spin-orbit one. Therefore, the states are denoted by three quantum
numbers in the form 2S+1LJ , where S is the total spin, L is the total orbital angular
momentum and J = L + S. According to Hund’s rule, the ground state is the one
with smaller total angular momentum, i.e. 5s2 1S0. In fig. 3.1 the lowest energy
levels are shown, together with the transitions of interest for the cooling procedure.

The selection rules for the electric dipole transitions in the Russell-Saunders
coupling forbid transitions between singlet and triplet states (∆S = 0). The pres-
ence of spin-orbit coupling breaks this rule, leading to the presence of narrow
intercombination transitions.
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Figure 3.1: Grotrian diagram of the lowest 88Sr levels, and the transitions of interest
for cooling. The states are represented in the Russell-Sunders notation 2S+1LJ and are
divided between singlet (S = 0) and triplet states (S = 1). For each level we indicate
the valence electron configuration, the wavelength and the natural linewidth γ are
indicated for each transition.

The first excited state in the singlet series is the 5s5p 1P1 state, with angular
momentum J = 1. The transition from the ground state 5s2 1S0–5s5p 1P1 has a
wavelength of 461 nm and a natural linewidth of 32 MHz, so it can be used for
efficient slowing of a thermal beam and for Doppler cooling in a magneto-optical
trap (MOT). Because of the color of this transition, we refer to this trapping stage
as the “blue MOT”.

The level scheme composed by the ground state 5s2 1S0 and the excited state
5s5p 1P1 is not a “closed” system. The state 5s5p 1P1, in addition to decaying to the
ground state, also has a finite probability to decay to the 5s4d 1D2 state. From this
state the atoms decay to the fine structure sublevel of the first excited triplet state:
5s5p 3P1 e 5s5p 3P2. The 5s5p 3P1 state can rapidly decay (τ = 1/γ = 0.13 ms)
to the ground state, while the 5s5p 3P2 state only decays to the ground state after a
very long time (τ ∼ 2 h). The resulting effect is that, during the cooling cycle, many
atoms are trapped in this metastable state and become transparent to the radiation
pressure force.

A few possibilities can be adopted to close the blue MOT cycle. In our
experiment we make use of two repumping transitions: the 5s5p 3P2–5s6s 3S1
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λ γ ωr TD Tr Is
1S0–1P1 461 nm 32 MHz 11 kHz 770 µK 1.03 µK 43 mW/cm2

1S0–3P1 689 nm 7.6 kHz 4.8 kHz 180 nK 460 nK 3 µW/cm2

Table 3.2: Important parameters for the two cooling transitions of 88Sr, based on the
definitions introduced in the previous section.

transition at 707 nm and the 5s5p 3P0–5s6s 3S1 transition at 679 nm. The first one
allows pumping to 5s6s 3S1, from which the atoms can rapidly decay to 5s5p 3P1,
which in turn decay to the ground state. This would be enough to close the cycle,
except that the pumped state 5s6s 3S1 can also decay to 5s5p 3P0, which is the
ultra-metastable “clock” state. From here, the transition to the ground state is totally
forbidden for 88Sr and only slightly permitted for the 87Sr with a lifetime of several
hours. For this reason we need a beam at 679 nm to repump atoms away from the
clock state to close the cycle.

According to the Doppler cooling theory, the final temperature in a broadband
MOT is limited by the linewidth of the transition. The 461 nm transition with a
linewidth of 32 MHz limits the temperature of the blue MOT to the mK range.
To further cool the atoms we use a second MOT stage on the intercombination
transition 5s2 1S0–5s5p 3P1 at 689 nm. Thanks to its narrow linewidth (γ = 7.6 kHz)
the Doppler temperature lies below the recoil temperature, and the sample can be
cooled below 1 µK. This second stage is called the “red MOT”.

Because of no ambiguity with the Russell-Saunders notation for the transitions
of interest, we will omit the full valence electronic configuration, from now on. The
important parameters for the two cooling transitions are reported in table 3.2.

3.2.2 88Sr cooling and trapping procedure

Slowing the atomic beam

The atomic source is composed of a collimated atomic beam produced by an oven
heated to about T ∼ 400 °C. The corresponding mean longitudinal velocity is
v =
√

3kBT/M ∼ 350 m/s. Since the capture velocity of the first MOT stage is
about 50 m/s, we need to slow down the atomic beam to velocities about one order
of magnitude smaller. This is done with a Zeeman slower [183] operating on the
1S0–1P1 transition, which can exert a maximum acceleration amax ∼ 106 m/s2,
about five order of magnitude larger than gravity acceleration. For a typical working
intensity of s ∼ 1 and a detuning δ ∼ −300 MHz, the maximum acceleration is
a ∼ amax/2. Therefore, the distance needed to slow an atom with initial velocity
v = 350 m/s is L = v2/2a ∼ 30 cm. The Zeeman slower is composed of a 30 cm
long solenoid with conical section and a red detuned beamwith circular polarization
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propagating in opposite direction with respect to the atomic beam. The magnetic
field produced by the solenoid is inhomogeneous and is chosen to compensate the
Zeeman sublevels shift due to the Doppler effect of the moving atoms along the
entire path. By properly setting the profile of the magnetic field, it is possible to
slow all the velocity classes down to a desired final velocity, in our case 50 m/s.

The blue MOT

The atomic beam slowed in the Zeeman slower reaches the main vacuum chamber
and it is trapped in a magneto-optical trap operating on the 1S0–1P1 broad transition.
As sketched in fig. 3.2(a), theMOT is composedof three pairs of counter-propagating
laser beams with opposite circular polarizations crossing at the zero of a quadrupole
magnetic field produced by two coils in an anti-Helmholtz configuration (the
current flows in opposite directions). The presence of the magnetic gradient creates
a disequilibrium between the pairs of forces acting in opposite directions, as a
function of position with respect to the zero of the field.

The operation of a 1D MOT is summarized in fig. 3.2(b). For a transition
J = 0 → J = 1, the Zeeman sublevels mJ of the excited state are split by the
gradient of the magnetic field, approximately liner near the zero B(z) = bz. The
energetic shift ∆E = gJmJ µBbz has a different sign for the states mJ = ±1. If the
laser beams are red detuned with respect to resonance, the beam propagating from
right to left andσ− polarized, which couples the ground state with the mJ = −1, will
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Figure 3.2: Schematic picture of theMOT operation. (a) The trap is composed of three
pairs of orthogonal counter-propagating laser beam crossing the zero of a quadrupole
field produced by two coils in anti-Helmholtz configuration. (b) One dimensional
operation of the MOT.
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interact more favorably with atoms in the positive z direction. On the other hand,
the beam propagating from left and σ+ polarized will push atoms in the negative z
direction. Averaging between many cycles of absorption and spontaneous emission,
the optical pumping will redistribute atoms among the magnetic sublevels and the
resulting force for each beam can be written as the radiation pressure force (2.26)
where the detuning has a dependence on velocity and position:

Fσ±

diss = ~kL
γ

2
s

1 + s + (2δ∓/γ)2 , where δ∓ = δ ∓ kLv ∓ βz. (3.3)

The total force FMOT = Fσ+
diss(δ−) − Fσ−

diss(δ+) acting on the atom is a dispersive
force in velocity and position, able to cool and trap. The description can be easily
extended in three dimensions, taking into account the fact that due to the asymmetry
of the anti-Helmholtz configuration, the gradient along coils axis is twice the one
in the radial direction: bx = by = −bz/2. The resulting trapping geometry is not a
sphere, but an ellipsoid.

The blue MOT falls within the broadband MOT class, for which γ � ωr . The
recoil frequency defines the energy scale that distinguish cooling processes obtained
on broad or narrow transitions. For the blue MOT γ/ωr ∼ 3× 103, so the linewidth,
or more generally, the power broadened linewidth γP = γ

√
1 + s, is the natural

energy scale. In this regime the dynamics of the system can be described by a
semi-classical theory that leads to the Doppler cooling, in which the recoil photon
is more a conceptual tool than a real key object of the system dynamics. Moreover,
gravity force is negligible since its ratio with the maximum force exerted by the
radiation pressure is

Mg

Fmax
=

2Mg

~kLγ
∼ 10−5. (3.4)

In our experiment the configuration of the blue MOT is the following: each
beam has a diameter of about 2 cm and operates close to saturation s ∼ 1. The
magnetic gradient is set to be about b = 550 G, which guarantees a capture velocity
of 50 m/s, required to catch the maximum possible flux coming from the Zeeman
slower. The detuning is experimentally optimized to δ = −30 MHz to get the largest
number of atoms trapped at the lowest temperature. With a time-of-flight (TOF)
technique we estimate a temperature of about 1 mK at the end of the blue MOT.

The two repumping radiations at 707 nm and 679 nm are coupled and sent
towards the MOT position, allowing an increase of about 40 times the number
of trapped atoms. With this system we can prepare a cold sample of about 108

atoms in 1 s. Further cooling is obtained in a second MOT stage operating on the
intercombination transition at 689 nm.
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The red MOT

The redMOT transition at 689 nm, unlike the blue transition used in the first cooling
stage, has a linewidth comparable to the recoil frequency γ/ωr = 1.6. The narrow
transition allows the system to evolve in a different regime, where the semi-classical
approach does not hold anymore, and different cooling properties emerge [184,
185]. For instance, gravity plays a key role in this kind of regime. Indeed, the
maximum force exerted by the radiation pressure is just enough to compensate for
the gravitational force: Fmax/Mg ∼ 16.

The saturation intensity for the 1S0–3P1 transition is rather small (Is = 3 µW/cm2)
with respect to the available optical power for the red MOT beams delivered by a
laser diode. For a 2 cm diameter and a power of 5 mW per beam, we can have
an intensity larger than 2000 Is. The saturation parameter s (which sets the power
broadened linewidth γP) and the detuning δ determine the dynamics in the red
MOT. Depending on their relative size with respect to the recoil frequency, we can
distinguish three regimes [186].

When the red MOT beams are switched on, their optical spectrum is broadened
by modulating the radio frequency in an acusto-optical modulator (AOM). This is
done in order to increase the capture velocity to cover the wide range of velocity
classes coming from the blue MOT. A modulation of 8 MHz generates about
400 sidebands with an intensity of about 5Is per tooth. After the blue beams
are switched off, the magnetic gradient is suddenly decreased and then slowly
ramped up to 0.6 G/cm in 50 ms, in order to maintain an adiabatic condition on the
deceleration [187]. This procedure is called the “broadband red MOT”, and allows
us to recapture about 30% of the atoms.

After 200 ms of cooling in the broadband phase, the modulation is switched
off and all the power is sent to the carrier to broaden the resonance by power. This
situation corresponds to the regime δ � γp � νr , in which the leading energy scale
is given by γP, and the dynamics can be described by a semi-classical approach
in the same way as for the broadband transition MOT. Here gravity is negligible
and the thermodynamics can be described by Doppler theory. The power is then
slowly decreased and the detuning is ramped down to approach resonance. The
system evolves in the regime δ < γp � νr , in which the dynamics of the trap
becomes a damped oscillator. When the intensity and the detuning are reduced so
that γp = γ ∼ νr , the system is in a quantum mechanical regime. Here gravity can
not be neglected, and the thermodynamics are fully dominated by the photon recoil.
Temperature close to the recoil limit can be reached.

Figure 3.3 summarizes the main aspects of the red MOT. The overall force
acting on the atom along the vertical direction (the radiation pressure force and
the gravity force FMOT − Mg) and the respective potential energy (in temperature
units) for two different limits are plotted in fig. 3.3(a). The blue line corresponds to
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Figure 3.3:RedMOToperation. (a) Overall vertical force and potential of the redMOT
in two different regimes: (blue line) γp � νr , (red line) γp ∼ νr . (b) Experimental
parameters of the red MOT beams. For up to 200 ms the frequency is modulated at
8 MHz, then is switched to single frequency and ramped towards resonance while the
intensity is reduced. (c) Absorption image of the final red MOT.

the first regime, in which the power broadened linewidth dominates the dynamics,
and the gravity force is a negligible contribution to the potential. The red line
corresponds to the case γP ∼ ωr . The force effectively acts as a barrier only in
specific positions that depend on the detuning and magnetic gradient. In three
dimensions, because of the asymmetry of the gradient, this barrier has an ellipsoid
shape (see frame c). In this regime gravity tilt of the potential is not negligible and
atoms will be collected at the energy minimum which lies below the zero of the
magnetic field. In fig. 3.3(b) the experimental intensity and frequency ramp of the
red MOT is shown. The broadband phase is 200 ms long and then a ramp is applied
in single-frequency operation for 50 ms to cool the sample towards the recoil limit.
An absorption image of the final sample is shown in fig. 3.3(c). The measured
temperature in TOF is about 1.2 µK, and the number of atoms about 5 × 106. The
spatial dimensions along the radial and vertical direction are 300 µm and 50 µm
full width at half maximum (FWHM), respectively.
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3.2.3 Hyperfine structure of 87Sr

The presence of a non-zero nuclear spin I = 9/2 in 87Sr gives rise to a hyperfine
structure. Each level 2S+1LJ is split into sublevels defined by the quantum number
F = I + J. For J < I, as in the transitions of interest, each 2S+1LJ state will contain
2J + 1 hyperfine levels.

Taking into account the magnetic dipole and the electric quadrupole interactions
(higher order terms contribution is 108 times smaller) the energy correction is [182]

∆Ehyp =
1
2
AK +

1
4
B

[
3K (K + 1) − 4I (I + 1)J (J + 1)

2I (2I − 1)J (2J − 1)

]
(3.5)

where A and B are the interaction constants for magnetic dipole and the electric
quadrupole respectively, and K = F (F + 1) − I (I + 1) − J (J + 1). Each of these
levels is composed by 2mF + 1 Zeeman sublevels, which can be split (neglecting
the nuclear factor gI ) in presence of a magnetic field B by ∆EZee ' gFmF µBB,
where the Landé factor is given by

gF =
F (F + 1) + J (J + 1)I (I + 1)

2F (F + 1)
. (3.6)

State F gF A (MHz) B (MHz)
1S0 9/2 0 0 0

7/2 −2/9
1P1 9/2 4/99 −3.4(4) [188] 39(4) [188]

11/2 2/11
3P0 9/2 0 0 0

7/2 −1/3
3P1 9/2 2/33 −260.084(2) [189] −35.658(6) [189]

11/2 3/11

3P2

5/2 −6/7

−212.765 [190] 67.34 [190]
7/2 −1/7
9/2 2/11
11/2 51/143
13/2 6/13
7/2 −4/9

3S1 9/2 8/99 −542.0(1) [191] −0.1(5) [191]
11/2 4/11

Table 3.3: Hyperfine constants and Landé factors for the states of interest of 87Sr. The
Landé factor of 1S0 and 3P0 is determined by the nuclear gI factor (∼ 2 × 10−3).
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Table 3.3 summarizes the A, B and gF values for the levels of interest. Figure 3.4
shows the level structure and the transitions of interest for trapping and cooling
of 87Sr. The energy shifts with respect to the 88Sr are reported, also taking into
account the isotopic shift.

The 1P1 state presents three hyperfine states F = 7/2, 9/2 and 11/2, each one
consisting of 2mF +1 sublevels. For an efficient trapping into a MOT, we operate on
the transition with ∆F = +1, which has a higher transition probability and a larger
pressure force accordingly. Therefore, the blue MOT transition is 1S0(F = 9/2)–
1P1(F = 11/2). SinceA and B are on the order of γ, the hyperfine structure of 1P1
cannot be resolved, leading to undesired excitations of the F = 9/2 and 11/2 states.
Another complication is the wide hyperfine structure of the repumping levels 3P2
and 3S1, which are divided into five and three F levels respectively.

The state 3P1 is also divided into three states F = 7/2, 9/2 and 11/2, but the
coupling constants are much larger and the linewidth much smaller. Therefore
in the second MOT stage, the transitions between different hyperfine states are
totally independent. The main cooling transition is 1S0(F = 9/2)–3P1(F = 11/2).
Unfortunately, because the gF factor of the ground state is much smaller than the
excited state, the coupling between the Zeeman sublevels is strongly unbalanced.
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Figure 3.4: Hyperfine structure and transitions of interest for cooling and trapping of
87Sr. The shifts are given with respect to 88Sr, including the isotopic shift. For the
states involved in the repumping process, the overall broadening is given.
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As we will see in the next section, an additional laser has to be used in order to
make the red MOT work.

3.2.4 87Sr cooling and trapping procedure

The blue MOT

A limiting factor in the fermion trapping is its pure natural abundance. As shown
in table 3.1, the probability to find 87Sr atoms in solid strontium is just 7%, against
83% of 88Sr. Therefore, the atomic flux φ f from the oven will be 7/83 ' 9% of
the 88Sr flux. Because the loading flux is linear with φ f , the number of 87Sr atoms
loaded in the MOT cannot be expected to exceed 9% of the 88Sr atoms.

Aswe have alreadymentioned, because the hyperfine splitting is small compared
to γ, operating the blue MOT on the 1S0(F = 9/2)–1P1(F = 11/2) transition leads
to some losses in the F = 9/2 and 11/2 states. The main issue causing this is the
wide hyperfine structure of the repumping levels 3P2 and 3S1, which requires an
expedient. The state 3P2 has five hyperfine sublevels separated by about 4.3 GHz.
All of them are populated by the decay of 1D2, and they need to be repumped to
3S1, which in turn is divided into three levels separated by about 5.4 GHz. Instead
of using different lasers to address all these hyperfine states, we simply sweep the
frequency of the 707 nm laser [192]. By choosing the right modulation parameters
it is possible to cover all the frequency range containing the hyperfine transitions
3P2(F)–3S1(F ′). Despite the laser not being single mode during a sweep cycle, by
modulating the piezoelectric and the current it is possible to significantly increase
the number of trapped atoms. The parameters are adjusted in order to maximize this
number, and for normal operation we observe ten times more atoms with respect to
single-frequency operation.

On the other hand, modulating the 679 nm laser is not necessary. The state 3P0
has just one hyperfine state F = 9/2, therefore it is sufficient to tune the laser on
the 3P2(F = 9/2)–3S1(F = 11/2) transition. In this way, all the atoms decaying
from 3S1(F) to 3P2 are transfered back into the cycle by the 707 nm laser. With
this expedient we can trap about 3 × 106 atoms in 3 s in the blue MOT.

The red MOT

While for alkaline atoms the presence of a hyperfine structure does not significantly
complicate the MOT operation, for alkali-earth atom the presence of a J = 0(F)
ground state leads to a remarkable complication because of the different Landé
factors with respect to the F+1 excited state. To understand this point, let us consider
a MOT operating on a F → F + 1 transition, such as the F = 9/2→ F = 11/2 for
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with gg ∼ ge. (a) For a given fixed position (z > 0 for example), the Zeeman shift
is almost the same in the ground and in the excited state. Atoms interact with σ−
regardless ofwhichmF state is occupied. (b)MOToperation depending on the position.
For an atom in a certain mF of the ground state, the blue (red) lines represents the
mF + 1 (mF − 1) Zeeman sublevels shifted by B(z) = bz.

strontium. The Zeeman splitting due to a MOT magnetic field B(z) = bz is

~∆ω =
[
(mF ± 1)ge − mFgg

]
µBbz, (3.7)

where gg and ge are the Landé factors for the ground states mF and the excited
states mF ± 1 respectively. Figure 3.5 shows the schematic operation of an alkali
atom MOT working on a F = 9/2 → F = 11/2 transition. Alkali atoms, due
to a ground state with J , 0, have ge ∼ gg. Therefore, the splitting (3.7) makes
the resonance frequency for a certain polarization independent on the populated
sublevel of the ground state, as shown in fig. 3.5(a). The two counter-propagating
laser beams with δ < 0 and opposite circular polarizations exert the same force
(despite small differences due to the slightly different slopes) regardless of which
mF state is populated. An atom moving in the z < 0 (z > 0) region will always
have higher probability to absorb a photon from σ− (σ+) beam, receiving a kick
towards the trap center (fig. 3.5b).
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For alkali-earth atoms, which have gg � ge, the situation is quite different.
As shown in fig. 3.6(a), because of the degeneracy of the Zeeman sublevels in
the ground state, in a given position z > 0 (z < 0) some mF states have a higher
probability to absorb σ− (σ+) photons, others will interact with σ+ (σ−) photons,
while the rest will not interact with either beam. The probability for an atom to
absorb photons from one beam or another does not only depend on the mF state,
but also on the atomic position z. Looking at the slope of the excited sublevels
as a function of the position (fig. 3.6 b), one sees that the transition probabilities
strongly depend on the mF state, in same cases even an inversion of the sign of the
Zeeman shift in the two sides of the trap occurs.

Let’s see how the strong dependence of a given mF state on the position obstructs
the formation of a restoring force. In fig. 3.6(c) we consider an atom occupying
mF = +9/2 in the ground state. It can interact only with the excited mF = 11/2
and 7/2, depending on the polarization. Because of the small gg, the sign of the
Zeeman shift will be the same for these two levels (see eq. 3.7). If we assume the
atom is in z < 0, in principle it can absorb photons from both beams. However,
the unbalanced Clebsch-Gordan coefficients [86] for this stretched states favor the
transition σ+ pushing towards the center of the trap. In general, as we can see
by looking at the ratios of the Clebsch-Gordan coefficients for the pair transitions
(fig. 3.6 d), the probability of absorbing a photon from the restoring beam is higher
for stretched states, i.e. with larger |mF |. This difference in transition probability
between σ± lights can be used, instead of the resonance condition for the Zeeman
shift, to create a restoring force [193]. The other important consequence is the fact
that if the atom in mF = +9/2(−9/2) is in z > 0(z < 0), it cannot be on resonance
with any light and is free to leave the trap. Summarizing, only stretched states can
be pushed by the radiation pressure force, but just in one side of the trap.

In the case of broad transitions, such as 1S0–1P1 in the blue MOT, the fast
optical pumping rapidly randomizes the population between the sublevels. The
stretched states are alternately populated and an average restoring force toward the
center of the trap is obtained. On the other hand, in the case of narrow transitions,
such as 1S0–3P1 in the red MOT, the atoms remain on resonance with the trapping
beam for only a few cycles, so the population can not be efficiently redistributed
among the Zeeman sublevels. This effect limits the 87Sr MOT lifetime, which is
about ten times smaller than the 88Sr one.

To overcome this issue, by increasing the optical pumping efficiency towards the
stretched states, we realize a MOT operating on two intercombination transitions
[194]. In addition to a laser working on the 1S0(F = 9/2)–3P1(F = 11/2) transition
(called “cooling” or “trapping” laser because its the one that exerts the force), we
introduce a second laser working on the 1S0(F = 9/2)–3P1(F = 9/2) transition,
with the same detuning δ < 0 and polarization for each beam. The 3P1(F = 9/2)
state has a Landé factor 4.5 times smaller than the 3P1(F = 11/2) state, so the
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Figure 3.7: Comparison between the 88Sr and 87Sr final red MOT.

Zeeman splitting for the excited state is closer than the ground state one. Therefore,
it remains on resonance for longer in an inhomogeneous magnetic field. A laser
tuned to the 1S0(F = 9/2)–3P1(F = 9/2) transition allows a much more efficient
pumping in a larger area, resulting in a rapid occupation of the stretched states.
Because of this effect, this laser is called the “stirring” laser.

By using this technique, the red MOT can work in a similar way as the one
for 88Sr. The broadband phase, as well as the single-frequency ramp, is applied
to both lasers. The result is a very efficient red MOT cooling. With this method
we can produce a red MOT sample of about 3 × 105 at a temperature of 1.4 µK.
Figure 3.7 shows an absorption imaging of the final 87Sr red MOT, compared to the
88Sr one. We keep the trap slightly tighter by tuning the lasers closer to resonance
(δ = 220 kHz, instead of 260 kHz used for 88Sr). The result is a hotter sample, but
the number of atoms is almost doubled in this way.

3.3 Experimental apparatus

The vacuum system and the main components for the production of an ultra-cold
strontium gas used for the experiments of this work are sketched in fig. 3.8.

3.3.1 Atomic source

The source consists of an atomic beam produced by a compact in-vacuum oven
[195] containing about 5 g of solid strontium (99% purity). In comparison to a
vapor cell, atomic beams allow cleaner systems, uncoupling the high-pressure part
(the oven) from the MOT cell. Moreover, with the use of a Zeeman slower it is
possible to obtain high loading fluxes into the cold trap. With alkali-earth atoms, the
use of an oven is almost compulsory because of the low vapor pressure. Reasonable
atomic beam fluxes require the solid sample to be heated to hundreds of degrees
Celsius.

The oven consists of a stainless-steel reservoir with internal length and diameter
of 34 mm and 10 mm respectively, filled with strontium, electrically heated by
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Figure 3.8: Schematic top view of the experimental apparatus.

a tantalum wire. The reservoir is secured to a standard DN40CF flange, and the
thermal contact is reduced by steatite split bushes, which have very low thermal
conductivity. The output of the reservoir terminates in a nozzle filled with about
120 stainless-steel capillaries 8 cm long, with internal diameter of 100 µm for beam
collimation. The oven is located in vacuum into a standard DN40CF cube, facing
the Zeeman slower tube. The vacuum environment isolates the oven from thermal
conduction. Additional heating is due to blackbody radiation, for which a 1 mm
thick aluminum cylinder provides shielding. The thermal isolation guarantees high
efficiency with low power consumption (about 15 W at 440 °C). We typically heat
the oven to about 430 °C. By means of transverse spectroscopy we have estimated
a 88Sr atomic flux of about 2 × 1011 atoms/s at this temperature.

3.3.2 Vacuum system

The direction of the atomic beam is adjustable by a bellow that connects the
oven cube to another DN40CF cube with four optical accesses. Through this cell
we performed transverse spectroscopy for the atomic beam characterization, but
in principle it can be used to realize transverse cooling [196] for further beam
collimation. A 20 l/s ion pump is attached to the cube, providing a residual pressure
of about 10−8 mbar in the oven region. After the cube, a mechanical valve allows
the atomic beam flux to be stopped without turning the oven off. After the valve,
the oven vacuum and the MOT cell vacuum are connected through a tight nozzle in
order to get a significant differential pressure between the “dirty” and the “clean”
part of the apparatus. Opposite to the oven position, the optical access for the
Zeeman slower beam is placed on a DN63CF cube. Because strontium reacts highly
with silicates a sapphire window was chosen, to avoid coating of the Zeeman slower
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optical access. A pressure gauge, a 40 l/s ion pump and a titanium sublimation
pump are attached on the cube. To increase the effective pump speed, the cube is
connected to the MOT cell via a 10 cm long DN63CF nipple. The residual pressure
measured by the gauge is 7 × 10−10 mbar.

3.3.3 Zeeman slower

The Zeeman slower consists of a tube with length L = 30 cm, around which
two tapered coils are wound. The magnetic profile produced by the solenoid,
which allows the compensation of the Doppler shift during the slowing, follows
the equation B(y) = B0

√
1 − y/L + Bbias, where the offset Bbias is proportional

to the detuning δ. We have chosen to work with a red detuned beam with σ−
polarization [197]. In this configuration the magnetic profile needs to pass from
positive to negative, leading to the following advantages: the magnetic field has
a lower maximum absolute value, which requires less current, and the magnetic
field goes drastically to zero at the output, allowing a better definition of the output
velocity distribution because the atoms will suddenly be out of resonance. We
have chosen a detuning of δ = −480 MHz, which is far enough from resonance to
not affect the atoms trapped in the MOT. By choosing this value we need to set a
maximum field B0 ' 550 G in order to slow down atoms with a starting velocity
up to 400 m/s. In practice the solenoid is divided into two parts, with opposing
independent current control in order to arbitrary set the input capture velocity and
the output velocity for best loading of the MOT.

3.3.4 MOT cell and coils

The MOT cell is constituted by a custom DN63CF cube, connected to the Zeeman
slower on one side and to the pumps on the opposite side. Large windows (10 cm
diameter) with a broad visible anti-reflection coating are located on the other four
apertures. The windows are sealed by indium wire. The three MOT beams at
461 nm and 698 nm are overlapped with dichroic mirrors. Two horizontal MOT
beams access the cell with a relative angle of 60°, while the vertical beam accesses
from the lower window (tilted a few degrees with respect to the vertical direction
to allow optical access for the lattice beams). The beam polarization is made
circular by three quarter-wave plates (λ/4) placed just before the cell. The beams
are retro-reflected and the polarization is rotated by three additional λ/4-plates.

The anti-Helmholtz coils have the axis oriented along the vertical direction.
The magnetic gradient at the center of the cell is bz = 4.2 Gm−1A−1. The coil
current is remotely controlled by an analog power supply and a MOSFET, which
has a response time of about 1 ms.

Because the 689 nm transition is so narrow, the red MOT is highly sensitive to
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spurious magnetic fields. Relatively small magnetic fields can take the cooling laser
out of resonance. For example, the Earth’s magnetic field (∼ 0.5G) is responsible for
a Zeeman shift of about 1 MHz, much larger than the natural linewidth γ = 7.6 kHz.
Therefore, we compensate for the offset magnetic fields by means of three pairs of
coils in Helmholtz configuration, which are oriented along orthogonal directions
and controlled by three independent current supplies.

3.3.5 Robust breadboard tower

To increase the stability of the experimental optical setup, we implemented a robust
breadboard system originally designed by Andrea Alberti. The system consists
of two 50 × 120 cm custom breadboards (Kinetic System), placed one on top
of the other and mounted around the vacuum system as shown in fig. 3.9. The
two breadboards were made with a 5 cm thick honeycomb structure and a special
geometry to fit the experimental setup. The lower breadboard has a squared hole on
the long side in order to fit around the MOT cell. It is held 12 cm above the main
optical table so that the top surface is 5 cm lower with respect to the MOT center,
which is the correct height for our standard optic mounts. The top breadboard is
held 30 cm above the lower one and has a hole of 10 cm diameter right on top the
MOT cell window for vertical optical access. Both breadboards have mounting
holes on both sides, so we used the lower parts to anchor the MOT coils, cables
and fluorescence detection systems, in order to free space for other optics. Each
breadboard is held by four extruded aluminum rods with a 9 × 9 cm cross section.

Figure 3.9: Robust breadboard tower drawing (left) and picture (right). Two vibration
isolation breadboards are mounted around the vacuum system in order to increase the
stability of the experiment in terms of long term drift and vibration isolation.
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The lower breadboard hosts the MOT mirrors and the probe beam shaping optics.
On the top breadboard we mounted optics for the optical lattice and a vibration
isolation platform for the Bragg retro-reflection mirror that, as we will see, is the
main limit in our free-falling interferometric measurements.

3.3.6 Atom detection systems

The number of atoms in the blue MOT is monitored by an avalanche photodiode,
which measures the fluorescence due to the interaction with the MOT beams.

In the red MOT and in the lattice, the main characteristics of the atomic cloud
(position, dimensions, density, temperature) can be studied by a standard absorption
imaging technique on a CCD camera. The probe beam is a laser beam at 461 nm
tuned on-resonance with respect to the 1S0–1P1 transition of the respective isotope.
The beam comes from a polarization-maintaining fiber and arrives at the lower
suspended breadboard with a power of ∼ 500 µW. It is expanded to a waist diameter
of about 5 mm FWHM, and it enters the MOT cell from the x direction (see fig. 3.8).
The absorption image is focused by a lens onto a 8 × 8 mm CCD camera (Andor
Luca R), with a 8 µm pixel size. The focal length was chosen in order to have a
magnification of about 1.7, and the camera was placed on the focal plane. This
system is mainly used for resonant tunneling measurements, where a knowledge of
the in situ spatial distribution is required.

We also count on fluorescence detection for high resolution momentum mea-
surements in TOF, especially useful for free-falling interferometry. After the probe
fiber, we placed a flipping mirror in order to switch easily between absorption
imaging and fluorescence schemes. When the mirror is flipped, the beam is lowered
3 cm by a periscope and is expanded and compressed respectively in the horizontal
and vertical direction by two cylindrical lens telescopes. The final beam size is
about 5 mm and 200 µm diameter FWHM in the horizontal and vertical direction
respectively. The beam enters the MOT cell from the x direction 3 cm lower with
respect to the MOT position, close to the lower edge of the cell’s window. This
configuration allows the maximum TOF possible before the atoms touch the bottom
of the cell. The aspect ratio we chose needs to guarantee interaction with the
expanding cloud along the horizontal direction and to have the maximum vertical
resolution as possible (limited by the diffraction limit of a beam at 461 nm). The
fluorescence signal is collected by a gated photo-multiplier (H11526). Immediately
after the cell, the beam is retro-reflected in order to compensate for the pushing of
the probe beam. This allows an increase of the fluorescence signal by approximately
one order of magnitude.
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3.4 Laser systems

The 1S0–1P1 transition at 461 nm is used for the first MOT stage, the Zeeman slower,
the probe system and for the Bragg beams. Because of the high saturation intensity
Is = 42 mW/cm2, high power laser sources are required for an efficient cooling. For
this application a frequency-doubled diode laser system was developed [198] and
later improved on [199] in our labs. This type of homemade system was optimized
to deliver about 200 mW in the blue, just enough to get a decent cooling process.
To have more power available, we also tested and implemented a slave-injected blue
diode laser system which can deliver up to 120 mW. Because high-order Bragg
transitions require as much power as possible (see sec. 2.4), we built a second
dedicated frequency-doubled laser system.

The 1S0–3P1 transition at 689 nm requires much less driving power to achieve
efficient cooling, because the saturation intensity is about three orders of magnitude
smaller. This remains true even if we need to broaden the spectrum in the first red
MOT trapping stage (see sec. 3.2.2). Therefore, a master-slave diode laser system
was developed for the production of all the red frequencies. However, because of
the narrow linewidth we need a sub-kHz laser, which requires a high finesse cavity.
In the 87Sr configuration, the stirring light can be easily produced by shifting the
88Sr light with an acousto-optical modulator (AOM), since the F = 9/2→ F = 9/2
transition is 222 MHz away from the 88Sr transition. For the F = 9/2→ F = 11/2
trapping transition, which is 1.2 GHz away, we use a second ECDL locked to the
master with a frequency-offset optical phase-locked-loop (OPLL).

The two repumping lasers at 707 nm and 679 nm are homemade extended-cavity
diode lasers (ECDL) in Littrow configuration. They deliver about 30 mW each
after optical isolators (OI). They are combined in a polarizing beam splitter (PBS),
expanded in a telescope to ∼ 2 cmwaist diameter FWHM and sent through theMOT
cell and retro-reflected. The frequency can be finely controlled with a piezoelectric
transducer (PZT) mounted on the grating. As discussed in sec. 3.2.4, the frequency
of the 707 nm repumper is modulated in order to cover the hyperfine structure of
the 3P2 and 3S1 states, by sweeping the PZT and the diode current.

Finally, we are using a commercial Verdi-V6, which delivers up to 6 W at
532 nm, for the far-off-resonance optical lattice. The “green” optical lattice and
the Bragg laser setups will be describe in detail in the next chapters, since their
characteristics are directly involved in the experiments we performed.

3.4.1 Cooling blue laser system

Master laser

The master source is an ECDL at 922 nm in the Littrow configuration. The infrared
light is amplified by a tapered amplifier (TA) and frequency doubled in a non-linear
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crystal. The coupling efficiency into the crystal is enhanced with a bow-tie cavity.
The ECDL delivers ∼ 35 mW with a 110 mA driving current with a linewidth

of about 500 kHz. After passing through an OI the light is amplified to about
930 mW by the TA chip, driven at 2.65 A. A second OI is placed after the TA
in order to suppress optical feedback from the cavity. The 922 nm radiation is
frequency doubled in a 25 mm long periodically-polled KTiOP4 crystal (PPKTP)
[200]. This kind of crystal is made up of a periodic structure of KTP layers
with alternate birefringence axis orientation. The periodicity is a multiple of the
working wavelength. The resulting doubling condition is the quasi-pase matching
[201], for which the phase-matching of the momentum is obtained by an additional
contribution coming form the periodic structure. Our crystal has a poling period of
5 µm, so the matching temperature is around 25 °C. The faces are anti-reflection
coated (R < 0.2%).

The crystal is placed in a bow-tie cavity. The input and output couplers are
plano-convex mirrors with 100 mm curvature radius, with an input reflectivity of
88.5%. The cavity is closed by two plane mirrors with high-reflection coating for
461 nm (99.5%) and high-transmission for 922 nm (97.5%). The cavity has a free
spectral range (FSR) of 650 MHz. In optimal operating conditions the doubling
efficiency is about 25% and the laser produce 220 mW at 461 nm. The cavity is
kept on resonance with a Pound-Drever-Hall locking scheme. The ECDL current
is modulated at 10 MHz and the error signal is obtained by demodulating the
infrared light signal reflected by the cavity and collected on a photodiode (PD). The
error signal is fed to a fast PZT mounted on one of the cavity plane mirrors via a
proportional-integral-derivative servo (PID), and part of the signal is sent directly
to a current modulation circuit in the diode current driver. The cavity and the
master infrared laser are enclosed in an aluminum box placed on a rubber sheet for
passive vibration and acoustic isolation. The box also protects the system from dust
deposition on the cavity mirrors, which has a strong negative effect on the doubling
efficiency. The entire system is also placed on a separated air-floating optical table.

Most of the blue light is transmitted through a window and is sent via a
polarization-maintaining (PM) fiber to the optical table where the vacuum system is
mounted. A small reflection from the first window surface is used for the production
of the probe beam and the reflection from the second face is used for the spectroscopy
beam. On the vacuum system table, the blue light is split by two PBS. The majority
is used for the production of the MOT beam (∼ 60 mW). A second beam is used
to inject a slave diode laser for the production of the Zeeman slower beam. A third
beam is used for beat-note stabilization of the Bragg laser. The optical scheme of
the cooling blue laser system is shown in fig. 3.10(a).

The blue laser is stabilized on the 1S0–1P1 transition. The error signal comes
from saturation-absorption spectroscopy of strontium gas, produced in a 30 cm
long heat pipe at 350 °C. The error signal is produced by phase modulating the
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blue light at 10 MHz with an electro-optical modulator (EOM) and demodulating
the spectroscopy signal with a mixer. The error signal is fed to the ECDL PZT via
a PID servo. Because the isotopic shift of 87Sr F = 9/2→ F = 11/2 transition is
just 52 MHz, the blue laser is tuned to the respective isotopic cooling resonance by
simply shifting the frequency with an AOM.

Slave diode laser

To increase the available power for the blue cooling process, we implemented a blue
diode slave (Nichia NDB4216E). The diode can deliver up to 120 mW at 461 nm,
operating in a strong multi-mode regime. It can be injected by the master light with
about 3.5 mW, but it cannot remain locked for more than few minutes. To solve this
issue, we implemented an active frequency stabilization for the injection.

The diode light is collimated, then shaped by an anamorphic prism pair and
passes through an optical isolator. We inject the master cooling radiation from the
output polarizer of the OI. The diode’s current is modulated at 100 kHz and its
intensity noise is measured by a PD, which monitors a small reflection from the
input polarizer of the OI. The signal is demodulated by a low-frequency lock-in
amplifier and the output voltage gives the phase relationship between the induced
amplitude noise and the current driving signal, which can be used as a correction.
The error signal is integrated by a PID and sent to the current driver of the diode.
The injection is monitored by a scanning Fabry-Perot cavity with 5 GHz FSR. The
locked injection can typically work continuously, and it relocks automatically if
the master laser is unlocked and relocked. With this system we produce an extra
100 mW which is used for the Zeeman slower beam.

Blue frequency production

All the specific frequencies for the blue cooling and imaging are generated through
the use ofAOMs. The scheme for frequency production is summarized in fig. 3.10(b).
From now on we will indicate with ν the optical frequencies and f the radio
frequencies used to drive the AOMs, where the sign of f depends on the diffraction
order.

For instance, theAOM1 for the isotopic shift control is placed in the spectroscopy
locking loop, and is mounted in a double-pass configuration in order to uncouple
the beam direction from the frequency shift. Therefore the laser frequency is
νL = ν88 − 2 fAOM1, where ν88 is the optical frequency of the 1S0–1P1 transition of
88Sr. The AOM1 is controlled by a direct digital synthesizer (DDS) that allows a
fast frequency switch between the two isotopes, so that fAOM1 = f 88

AOM1 + δ87/2,
where δ87/2 is zero for the 88Sr trapping configuration and −52 MHz for 87Sr.
Because AOM1 has a maximum efficiency around 80 MHz, we chose to work at
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fAOM1 = −72.8 MHz for 88Sr and −96.8 MHz for 87Sr.
On the vacuum apparatus table, the MOT beam frequency is generated with

a single-pass AOM, so that νMOT = νL + fAOM2. Since the optimal frequency
for trapping strontium is found experimentally to be at a detuning δ ' −30 MHz,
we set fAOM2 = 115 MHz. The Zeeman slower beam comes from the slave blue
diode injection-locked to the master at a frequency νL . It is shifted by a single-pass
AOM, so that νZS = νL + fAOM3. As we discussed in sec. 3.3.3, according to the
magnetic field profile and the capture velocity we select a detuning δ = −480 MHz,
so fAOM3 = −335 MHz. The probe beam frequency is produced directly on the
laser table by two AOMs in series, so that νprobe = νL + fAOM4 + fAOM5. Because
the probe beam has to be on resonance, fAOM4 = fAOM5 = 72 MHz.

All the AOMs (except for the spectroscopy one) also act as fast shutters. Since
the probe beam is on resonance, it is especially important to prevent it from reaching
the atoms after the blue MOT is switched off. This is the reason why the probe
frequency is produced by two separate AOMs. In this way the residual light coming
from the zero order is reduced. We also installed fast mechanical shutters (∼ 1 ms
response time) after the probe fiber and on the MOT and Zeeman slower beams, in
order to completely block the light.

3.4.2 Red laser system

Master laser

The master laser is an ECDL at 689 nm in the Littrow configuration. The diffraction
grating is mounted on a PZT and the cavity has a FSR = 1.5 GHz. The laser
provides around 4.5 mW out from an OI, and thanks to the optical feedback from
the extended cavity, the linewidth is reduced to about 220 kHz, mainly limited by
low frequency acoustic noise. To further reduce the linewidth, we stabilize the
ECDL to a high finesse external cavity by means of a Pound-Drever-Hall locking
scheme. The cavity consists of two high-reflective mirrors (R = 99.95%) glued
onto a quartz support with low thermal expansion coefficient, at a distance of
10.2 cm which correspond to a FSR = 1.5 GHz. The estimated cavity finesse is
F = π

√
R/(1 − R) ∼ 7800, therefore the linewidth of the resonant modes is about

FSR/F ∼ 190 kHz. The cavity is placed under vacuum (∼ 10−8 mbar) and fixed by
a rubber support onto the optical table to reduce vibration noise.

To lock the laser to the cavity resonance, the phase of the optical field is
modulated at 10 MHz by an EOM and the error signal is obtained by demodulating
the signal from a PD that collects the light from the cavity reflection. The error
signal has a slope of 3.4 MHz/V and a signal-to-noise ratio (SNR) of 200 over
3 MHz bandwidth. The feedback acts on three different channels: the PZT of the
extended cavity with 2 kHz bandwidth, the current supply of the diode laser with
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50 kHz bandwidth and directly on the diode with 3 MHz bandwidth. The SNR
should be enough to get 1 Hz linewidth, but it is actually limited by the residual
acoustic and vibrational noise coupled to the cavity itself. From the integrated noise
measured on a second high finesse cavity, a 20 Hz linewidth was estimated [198],
more than enough for recoil-limited cooling.

To compensate for the thermal drift of the cavity (∼ 20 MHz/h), we lock it to
the 88Sr atomic transition. The error signal is obtained by saturation-absorption
spectroscopy in a heat pipe at 400 °C. The pump beam is shifted by an 80MHzAOM
and frequency modulated at 100 kHz. The error signal is obtained by demodulating
the probe signal measured by an amplified low-noise PD. The error signal is fed to
the cavity PZT via a PID servo.

Figure 3.11(a) shows the scheme for the whole red laser system. The remaining
light coming from the zero order of AOM1 is used for the beat note stabilization of
a second ECDL, named “master2”. The light from the two masters is sent via PM
fibers to the vacuum system table, where they inject slave diodes, which increase
the available optical power .

Secondary phase-locked mater laser

While the frequency for the stirring laser can be obtained just by shifting the 88Sr
cooling frequency with an AOM, the trapping frequency for the 87Sr is about
1.2 GHz away. We use a separated ECDL source (master2) offset locked to the
master1 by an optical phase-locked-loop.

The master2 has the same diode and ECDL configuration as master1. Its output
beam is superposed to a pick-off beam from master1 on an uncoated window and
light is measured by a PD with 2 GHz bandwidth. The optical beat note produces
an amplitude modulation at the frequency difference fa = νL2 − νL1. This signal is
mixed down by an RF synthesizer with frequency fsynt ' 1.2 GHz, so that we find
a signal out of the mixer with frequency fb = fa − fsint . The phase and frequency
are compared to a reference signal at 70 MHz by a digital phase and frequency
detector (PFD) which has a linear response over 4π. The PFD gives a voltage
signal which is proportional to the phase difference between the measured beat
note and the reference signal, and it can be used to lock master2 to the frequency
νL2 = νL1 + fsynt + 70 MHz (paying attention to the correct signs).

The PFD we used (designed at LENS) provides two outputs, one with kHz
bandwidth (LF) and one with MHz bandwidth (HF). The HF signal is further
filtered by a passive high-pass filter to cut DC and feed to the diode’s current driver.
The LF signal is integrated by a PID servo and sent to the extended cavity PZT.
When the loop is closed the frequency is stabilized with an offset given by fsynt,
and the linewidth is reduced from an initial 600 kHz of the ECDL to a few Hz
(fig. 3.12).
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Red frequency production

The scheme for frequency production is summarized in fig. 3.11(b). Once it is locked
to the 88Sr 1S0–3P1 transition, master1’s frequency is determined by the frequency
of the in-loop AOM2 which modulates the pump beam for the spectroscopy, so that
νL1 = ν88 − fAOM2. After passing through AOM3, master1’s light is sent to the
vacuum system table for optical amplification anddistribution. The 88SrMOTbeams
comes from slave1, which is directly injected by the light coming from master1 and
shifted by the double-pass AOM4, so that ν88

MOT = νL1 + fAOM3 + 2 fAOM4. The
AOM4 signal comes from a computer controlledDDS, and is used for the production
of the redMOT broadband phase and single-frequency ramp. The AOM4 frequency
can be written as fAOM4 = −( f ref + δDDS(t)), where f ref = 82.1 MHz is a reference
signal and δDDS(t) is the tunable part. TheAOM2 andAOM3 frequencies are chosen
in order to have the optical detuning close to resonance except for the δDDS(t) term,
so that − fAOM2 + fAOM3 − 2 f ref = 0. Therefore, we have set fAOM2 = −80.6 MHz
and fAOM3 = 83.6 MHz.

For 87Sr cooling, we can use the slave1 as stirring laser by compensating for the
222 MHz isotopic shift of the F = 9/2→ F ′ = 9/2 transition. By properly tuning
two λ/2-plates we can change the optical path of the injection beam in order to
make it double-pass trough AOM5. We set fAOM5 = −110.8 MHz to make salve1
work as the 87Sr stirring laser.

The 87Sr trapping frequency is determined by master2, which is offset locked
to master1. Here we need to consider the contribution coming from the in-loop
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AOM1, because the beam used for the beat note is taken from the zero order. The
light is sent to the vacuum system table via a PM fiber, and after double-pass
AOM6 it injects slave2. Therefore, the optical frequency for the trapping beam is
ν87

trap = νL2 − fAOM1 + 2 fAOM6, where νL2 is the frequency of master2 as described
in the previous section. AOM6 is controlled by a second DDS which produces a
broadband phase and a frequency ramp similar to AOM4, but optimized for 87Sr
cooling. fAOM1 was originally set to 80.8 MHz, and the remaining frequency shift
needed to compensate for the isotopic difference is given by fsint.

The stirring and the trapping lasers are combined in a 50:50 beam splitter, which
also acts as splitter for the horizontal and vertical MOT beams. This configuration
is particularly favorable for the red MOT which requires more power on the vertical
beams, because of the asymmetric structure of the trap, combined with the presence
of the gravity field. After the beam splitter we end up with 7 mW and 10 mW per
beam for the stirring and trapping respectively. The horizontal beam is then equally
separated in a PBS, and each beam is combined for the three directions with the
blue MOT beams in three dichroic mirrors.





Chapter 4
Test of Einstein Equivalence
Principle for 0-spin and
half-integer-spin isotopes of
strontium in a driven optical
lattice

In this chapter I will present an experimental comparison of the gravitational
interaction for a bosonic isotope of strontium (88Sr) which has zero total spin with
that of a fermionic isotope (87Sr) which has a half-integer spin. This represents a
test of the Weak Equivalence Principle (WEP), also known as universality of the
free fall, for probe masses with deeply different quantum composition. Indeed, they
do not only undergo different statistics (one is a boson, one is a fermion), but one
has spin while the other is a spin-less particle. This is also a favorable system to
explore for the possible existence of spin-gravity coupling effects.

4.1 Sr isotope system for fundamental gravity tests

Gravity acceleration was measured by means of a genuine quantum effect, namely,
the coherent delocalization of matter waves in an optical lattice (see sec. 2.3 for the
full description of the theory). To compare gravity acceleration for the two strontium
isotopes, we confined atomic wave packets in a vertical off-resonant optical standing
wave and induced a dynamic delocalization by amplitude modulation of the lattice
potential (fig. 4.1). The principle of the technique lies in the induced resonant

79
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tunneling at harmonics of the Bloch frequency, which, in presence of the gravity
force, takes the form

ωB = 2π ×
FgλL

2h
, (4.1)

where Fg is the projection of the gravitational force on the atomic wave packet
along the lattice direction, h is the Planck constant and λL the wavelength of the
laser used for the lattice.

In order to account for anomalous accelerations and spin-dependent gravitational
mass, the gravitational potential can be expressed as

Vg,A = (1 + βA + kSz )MAgz, (4.2)

where MA is the rest mass of the atom, βA is the anomalous acceleration generated
by a nonzero difference between gravitational and inertial mass due to a coupling
with a field with non-metric interaction with gravity [46, 202, 203], k is a model-
dependent spin-gravity coupling strength, and Sz is the projection of the atomic
spin along the direction of gravity. The coupling term k can be interpreted as the
amplitude of a finite-range mass-spin interaction [53, and references therein], as a
quantum-gravity property of the matter wave field [204], or as a gravitational mass
tensor with a spin-dependent component in the standard model extension [205].

Sr88Sr87 Sr88

)tMsin(0αU)
z
,t

(
U

88,87hδ

ω

Figure 4.1: Experimental configuration to test the equivalence principle with two
strontium isotopes. The two isotopes are alternately laser cooled and trapped in a
vertical optical lattice. Intraband coherent delocalization of atomic wave packets
is induced by means of amplitude modulation of the optical lattice potential: the
difference between the resonant modulation frequencies of the two atomic species
δ87,88 = ωB,87 − ωB,88 depends only on their mass ratio and the WEP violation
parameter η.
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The Bloch frequency corresponds to the site-to-site energy difference induced
by the gravitational force, and, according to theWEP, the frequency difference δ87,88
for the two isotopes must depend only on the atomic mass ratio R88,87 = M88/M87
which is known with a relative uncertainty of 1.5 × 10−10 [163]. A measurement or
limit on the fractional difference in acceleration between two bodies is represented
by the well known Eötvös ratio, given in our case by

η ≡ 2
a88 − a87
a88 + a87

= 2
ωB,88 − R88,87ωB,87

ωB,88 + R88,87ωB,87
, (4.3)

where ai = 2~ωB,i/MiλL (i = 87, 88) are the measured vertical accelerations for
the two isotopes. Thus, experimental limits on η place limits on the WEP violation
due to probe masses with different quantum internal composition.

4.2 A far off-resonance vertical optical lattice for gravity
measurements

In this section I will describe the experimental setup for gravitational force mea-
surements with strontium atoms trapped in a driven vertical optical lattice.

The Bloch frequency measurement sensitivity increases with the interaction
time, therefore we need the atoms to be kept in the lattice for as longer a time as
possible. In order to avoid resonant scattering-induced losses, we decided to operate
with a far-detuned high power laser. We chose a wavelength λL = 532 nm for which
many high-power sources are available and which has a detuning from the 1S0–1P1
transition δ ∼ 2.7 × 106γ. With an easily reachable laser power of 500 mW per
beam and a radius of 300 µm, we can have an intensity of 3.5 × 105 W/cm2 that
guarantees a lattice depth U0 = 6Er and a residual scattering rate of about 0.03 Hz,
according to eq.(2.30). The Bloch frequency and period for the 88 and 87 strontium
isotopes in a 532 nm optical lattice are

ωB,88 ≈ 2π × 574 Hz, τB,88 ≈ 1.74 ms,
ωB,87 ≈ 2π × 568 Hz, τB,87 ≈ 1.76 ms.

(4.4)

4.2.1 Lattice laser setup

A schematic view of the lattice laser setup is shown in fig. 4.2. The lattice laser
source is a commercial single-mode frequency-doubled Nd:YVO4 laser (Coherent
Verdi-V6) delivering up to 6 W at 532 nm. The main output of the laser is split
equally between two paths. They pass through two independent 100MHz AOMs for
frequency and amplitude control of the lattice beams and are injected into two single-
mode polarization-maintaining fibers. One of the outputs is sent upwards from the
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Figure 4.2: Lattice laser optical setup. The lattice is realized by superposing two
counter-propagating beams coming from opposite fibers, whose amplitudes are stabi-
lized to a voltage reference and modulated at a frequency ωM . The lattice frequency
is locked to a hyperfine transition of molecular iodine and is measured by an optical
frequency comb.

lower cell window, and the other is sent downwards from the top. Both fibers are
protected by optical isolators, and the beams are expanded by two telescopes in
order to have the same waist when they reach the atoms, about 300 µm. For typical
power levels of 500 mW per beam, the lattice depth is about U0 = 6Er , thus the
trap frequencies are 7 kHz and 17 Hz along the longitudinal and radial directions,
according to the expression obtained in sec. 2.1.2 and sec. 2.1.3. The intensity
of the beams is monitored after the fibers by two independent photodiodes which
collect light from the reflections on the same optical window placed after the optical
isolator of the lower beam. These signals are used to stabilize the lattice potential
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U0.
Even though lattice verticality is not a necessary condition for differential gravity

measurements, we aligned the beams along the direction of g with 1 mrad precision,
in order to maximize the sensitivity to gravity acceleration. By interposing a large
glass container filled with water on top of the vacuum cell, we verified the verticality
of the upwards-directed beam by looking at a reflection from the water surface at a
distance of 2 m. The downwards-directed beam was then aligned on top the other
by maximizing the transmission through the opposite fiber.

Since the determination of g is directly related to the lattice wavelength λL

through the Bloch frequency, a high precision measurement of λL is required
for an absolute measurement of the gravitational acceleration. Indeed, previous
results obtained with the same technique demonstrated a limit on the measurement
accuracy of 2 × 10−7 due to the instability of the lattice wavelength [106]. For
differential gravity measurements it is important that the frequency is stable between
consecutive isotopes measurements; lattice frequency control is thus important. For
this reason we use a new version of the Verdi model which enables direct frequency
stabilization by a piezoelectric transducer mounted on the doubling cavity. We
use a saturated absorption spectroscopy signal from a rotational line of molecular
iodine to lock the laser, and at the same time we monitor the single-mode operation
with a Fabry-Perot cavity. Finally, we can measure the absolute lattice frequency
by means of a self-referenced Ti:sapphire optical frequency comb [206].

4.2.2 Controlling the lattice amplitude

The lattice beams’ intensity is stabilized by a servo control system, which also
allows the necessary amplitude modulation at frequency ωM and depth α to induce
resonant tunneling of atomic wave packets in the optical lattice. The intensity is
stabilized by acting on the RF levels that drive the AOMs. The error signals for the
two beams are obtained independently by comparing the photodiode signals with
two stable voltage references. The stabilization avoids slow drift of the lattice depth
that could arise from misalignment of the fiber injections and suppresses acoustic
vibration-induced amplitude noise. In the range of acoustic frequencies, from tens
of Hz to several kHz, amplitude noise could lead to heating of the atoms by exciting
vibrational frequencies of the lattice [207].

Figure 4.3 shows typical power spectral densities (PSD) of the relative intensity
noise of the lattice beams. The free running laser spectrum (red line) is compared
to the condition after moving the water cooling chiller into a separate room (green
curve). With this expedient the noise in the kHz region, due to the vibrations on
the optical table induced by the water flow in the cooling baseplate, is reduced by
one order of magnitude. With the servo feedback loop (blue line) the noise up to
10 kHz is reduced by two orders of magnitude. A residual 50 Hz modulation and
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Figure 4.3: Power spectral densities of the lattice laser relative intensity noise for free
running laser (red line), with water cooling chiller placed in a separate room (green
line), with active feedback (blue line).

the servo bump at 80 kHz are also visible.
The servo control allows also to apply the amplitude-modulation driving signal,

which is referenced, as many other relevant frequencies, to a primary rubidium
standard stabilized on long term to a GPS signal. The servo control has a finite
linear response of about 20% around the working point, thus we need to limit the
modulation depth in order to avoid higher harmonics of the modulation frequency,
which may lead to decoherence in the resonant tunneling process. By looking at
the PSD of the modulated intensity signal we reduced the higher harmonic content
below the floor level, i.e. about 120 dB of attenuation.

4.2.3 Controlling the lattice frequency

The laser Verdi-V6 we used for the experiment is a new version recently developed,
with two PZTs mounted on two cavity mirrors, allowing tunability and stabilization
of the laser frequency. We found couple of issues in this new version, therefore we
had to pay special care to its daily operation.

We implemented a saturated absorption spectroscopy scheme on a molecular
iodine cell, which has a wide range of rovibrational lines around 532 nm. The
laser working point is not stable day-to-day, and we observed jumps in frequency
of several GHz. Luckily, by tuning the PZT which has a sensitivity of 64 MHz/V
and an overall dynamic range of 6.4 GHz, it is always possible to find one of the
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iodine lines. By modulating the frequency of the pump beam at 100 kHz and
demodulating it with a lock-in amplifier, we can use the error signal coming from
one of the hyperfine transitions of the rotational lines to lock the laser by feedback
to the PZT.

Figure 4.4 shows a saturated absorption spectroscopy signal with the related
error signals of the hyperfine transitions. The cavity mirror was scanned across
almost the entire PZT range, thus three rotational lines are visible. The frequency
was calibrated by monitoring the laser wavelength with a commercial wavemeter
with a resolution of 100 MHz. Each line contains at least one strong hyperfine
transition to which we can lock the laser. By comparison with the reported iodine
spectroscopy measurements in literature [208, 209] we were able to identify each
line, and in some cases also each hyperfine component [210]. Depending on the
laser working condition, we also observed other lines, such as the 1122 and 1123,
which are 150 GHz away.

By means of a Ti:Sapphire femtosecond frequency comb we can measure the
absolute frequency of the lattice and characterize its stability [211]. Part of the
light from the lattice laser is sent to a laboratory in the Physics Department with
a 200 m long fiber and it is superimposed to the radiation of the frequency comb.
The beat note with the closest tooth of the comb is monitored by a fast photodiode.
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Figure 4.4: Saturated absorption spectroscopy of molecular iodine with the related
error signals of the hyperfine transitions. The cavity mirror was scanned across almost
the entire PZT range, thus three rotational lines are visible. Each line contains at least
one strong hyperfine transition to which we can lock the laser.
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Figure 4.5: (a) Allan deviation of the relative frequency uncertainties of the lattice
measured with the optical frequency comb, by locking to the spectroscopy signal
(black data), and free running (red data). (b) Fabry-Perot cavity transmission of the
lattice laser light for single-mode (blue line) and multi-mode (red line) operations.

The repetition rate f rep of the comb is stabilized by locking the beat note on a RF
synthesizer and the offset frequency f0 is stabilized with a self-referenced technique,
namely an f − 2 f interferometer. The absolute value of the lattice frequency is
given by f = n f rep ± f0 ± fbeat, where n is the number of the closest tooth, which
is determined by a wavemeter with a resolution of 100 MHz. By continuously
counting fbeat we can measure the lattice frequency with MHz accuracy within a
few seconds of integration and we can characterize its stability. Figure 4.5(a) shows
the Allan deviation for the relative uncertainty of the lattice frequency when the
laser is free running and when it is locked to a hyperfine transition of the iodine.

By looking at the beat note with the combwe also observed an unexpectedmulti-
mode operation of the Verdi. We studied this behavior by constantly monitoring
the laser radiation in a Fabry-Perot cavity with 15 GHz FSR. We discovered that
the multi-mode operation depends on the voltage of the cavity PZT. Figure 4.5(b)
shows typical spectra for the single-mode and multi-mode operations. We managed
to always perform the experiment in single-mode operation by tuning the PZT in
proper range. After the experiment the Verdi was fixed by the manufacturer.

4.2.4 Trapping atoms in the lattice

After the cooling process in the redMOT, the atoms are adiabatically loaded into the
optical lattice. The lattice intensity is ramped up, starting 500 µs before switching
off the red MOT, and it reaches the maximum value in 100 µs. The adiabatic
loading mitigates the population of higher bands, suppressing the heating by the
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lattice [107]. The adiabatic condition is fulfilled for loading times longer than the
inter-band energy separation, according to the equation [212]

| 〈q, j |
∂H

∂t
|q, 1〉 | �

(Ej (q) − E1(q)))2

~
, (4.5)

where |q, j〉 is the Bloch state in the band j with quasi-momentum q and Ej (q) is
the energy of the j-band. Even a for small potential depth U0 � Er , the energy
gap between the first two bands at the center of the band (q ∼ 0) is U0 ∼ 4Er (see
sec. 2.1.3). A rough estimation for the adiabatic loading condition is therefore

d
dt

U0(t)
Er

� 16
Er

~
. (4.6)

For our typical potential depth this condition is satisfiedwhen the intensity is ramped
up over a time longer than 20 µs and it is still one order of magnitude smaller than
the Bloch period. In the case of 87Sr, the loading produces an unpolarized trapped
sample.

Because of the finite momentum distribution of the atomic sample, higher bands
can still be populated, leading to losses via Landau-Zener tunneling (see sec. 2.2.2).
Such losses are more important for higher bands respect to the fundamental one,
because of the smaller energy gap. The fraction of population between the second
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Figure 4.6: Lattice lifetime for 88Sr (blue squares) and 87Sr (red circles). The number
of atoms decay exponentially with two different time scales. In the first 100 ms the
hot atoms are lost by evaporation, after which the lifetime is limited to about 15 s by
the background gas collisions. The solid lines are exponential least-squares fits which
give τ88 = 14(2) s and τ87 = 16(3) s.
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and the first band can be derived by theMaxwell-Boltzmann distribution andwritten
in terms of the energy gap ∆EG between the two bands:

N2
N1
∼ exp

(
−
∆EG

kBT

)
. (4.7)

For moderate lattice depths (U0 � 16Er ) the band gap can be approximated as
∆EG ' U0/2, which can be demonstrated by a first order perturbation approach
[81]. For our typical potential depth U0 = 6Er , this implies N2 ∼ 0.3N1. Such
a fraction of atoms is expected to be lost at a rate of the Bloch frequency. The
residual losses come form the radial confinement which is poorer than the lattice
confinement along the vertical direction. The combination of this phenomena leads
to a strong evaporation of the hotter atoms in the first 100 ms. Figure 4.6 shows
the typical lattice lifetime for 88Sr and 87Sr. Two time scales are clearly visible. An
initial fast evaporation reduces the number of atoms by an approximate factor of
10. After around 100 ms the populations decay with a time constant of about 15 s,
which is mainly limited by the collisions with the background gas.

In order to increase the number of trapped atoms, we implemented a further
cooling step inside the lattice. After the atoms are adiabatically loaded, the MOT
magnetic field is switched off, but the red MOT lasers are kept on for 5 ms. The
resulting system is an optical molasses acting on an atomic cloud confined in the
conservative optical trap. In this system a lower temperature can be obtained
because density-dependent heating is reduced [213]. Since the red MOT transition
is very narrow, the light shift due to the high power lattice laser has to be taken
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Figure 4.7: Molasses cooling stage in lattice. The number of 88Sr atoms trapped in
the lattice after 100 ms as a function of the frequency of a 5 ms red MOT beams stage.
The resonance is shifted because of the lattice light shift.
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into account. We have optimized the red molasses stage in the lattice by tuning
the frequency and intensity and looking at the number of atoms trapped after the
evaporation time (100 ms). The result for 88Sr is shown in fig. 4.7. The number
of trapped atoms is plotted versus the red MOT frequency detuning with respect
to the estimated unperturbed resonance. A dispersive behavior is centered at about
500 kHz because of the lattice light shift. For higher frequencies the effective
radiation crosses the resonance and goes to the blue, thus the atoms are lost. An
increase of a factor of 1.5 can be obtained by tuning the laser to the red. The same
parameters applied to 87Sr lead to similar results.

4.3 Bloch frequency measurements

4.3.1 Resonant tunneling spectra

A few milliseconds after the lattice loading, an amplitude-modulation (AM) burst
of frequency ωM is applied for a time tM . As described in sec. 2.3, the modulation
induces a coherent delocalization of the atomic wave packets, arising from intra-
band transitions among Wannier-Stark levels. This is a resonant process occurring
at ωM = `ωB. The phenomenon can be observed by monitoring the atomic
distribution width in situ. Figure 4.8 shows some absorption imaging pictures for
atoms in the lattice with and without the resonant modulation. The cloud’s σ-width
is obtained by a Gaussian least-squares fit of the integrated profile. The dependence
of the atomic distribution width as a function of the modulation frequency is
expressed by eq. (2.105) (repeated here as a quick reference):

σz (ωM ) =

√
σ2

0 + v
2
`
t2
Msinc

(
ωM − `ωB

Γ

)
, (4.8)

Sr88Sr87

g
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0 
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Figure 4.8: In situ absorption images of the 87Sr and 88Sr atomic samples confined
in the optical lattice with and without resonant modulation. The induced coherent
delocalization leads to a spatial broadening of the atomic sample along the lattice axis.
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whereσ0 is the initial size of the cloud, v` is the speed of the broadening at resonance
expressed by eq. (2.103) and Γ is the resonance linewidth.

Figure 4.9 shows typical resonant tunneling spectra for 88Sr and 87Sr used for
the differential gravity measurements. The AM burst was applied for tM = 12 s
and 8 s at the ` = 2 and ` = 1 harmonics of ωB respectively for both isotopes. The
modulation depth α is tuned to maximize the signal-to-noise ratio of each spectrum
while keeping the higher modulation harmonics at a low level, as discussed in
sec. 4.2.2. By sweeping the modulation frequency ωM we can obtain a full
resonance spectrum. The recording time for consecutive resonance spectra of the
two isotopes is about 1 h. The central frequency is obtained by a least-squares
fit of the data with eq. (4.8), with σ0, v` , ωB and Γ as free parameters. A single
measurement leads to a resolution of 5 × 10−7 for ωB,88 and 1.6 × 10−6 for ωB,87.
The uncertainty is calculated as the standard error of the fit for each resonance
profile. The difference in precision between the two isotopes is due to the reduced
signal-to-noise ratio in the absorption profile for 87Sr, caused by the smaller natural
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Figure 4.9: Typical amplitude modulation spectra and the corresponding least-squares
best-fit function (solid line) for (a) 88Sr (tM = 12 s, ` = 2) and (b) 87Sr (tM = 8 s,
` = 1) atoms. Both the lattice frequency and the lattice beam intensities were kept
constant for each pair of measurements, while the modulation depth α was tuned to
maximize the signal-to-noise ratio of each spectrum. The error bars are the statistical
errors over at least three consecutive measurements.
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abundance of this isotope as well as the presence of the 10-level hyperfine manifold
which yields a higher Doppler temperature and a smaller (about a factor of 2)
absorption cross section due to optical pumping in the imaging process.

4.3.2 Sensitivity of Bloch frequency measurements

In general, the precision which is attainable in the measurement of forces by this
technique is related to the quality factor Q = `ωB/Γ of the resonances, as well as
the signal-to-noise ratio. As long as the width of the resonance is Fourier-limited, Γ
does not depend on `, but only on the modulation time tM , as discussed in sec. 2.3.
This fact is significant because it allows the quality factor of the resonances Q to
be improved, and therefore to an increase in the sensitivity of the measurement by
a factor `. In the case of Fourier-limited resonance, the ωB sensitivity to spatial
width fluctuations ∆σ can be written as [106]:

∆ωB = 2π ×
3

πt2
Mv``

∆σ, (4.9)

which is derived from a power expansion of eq. (4.1) and then by applying a
first-order propagation of uncertainty theory.

The delocalization slows down (v` decreases) by increasing ` due to the re-
duction of the tunneling rate with increasing separation between the initial and
final Wannier-Stark states. Since we have a constraint on the maximum modulation
depth that we can apply without introducing higher harmonics of the modulation fre-
quency, the driving at larger ` leads to smaller signal-to-noise ratio of the resonance.
Because of this reason, we preferred to modulate the lattice at lower harmonics of
the Bloch frequency and increase the interrogation time tM instead. In absence of
decoherence mechanisms, or at least for small decoherence effects, the resonance
linewidth depends mainly on tM . Therefore, the sensitivity to the determination
of the center of the resonance increases quadratically with tM , as we can see by
looking at eq. (4.9). The modulation time is limited by the lifetime of the lattice,
which limits the number of atoms participating in the tunneling and the final optical
density at the detection.

Decoherence mechanisms which induce broadening of the resonance may
reduce the quality factor. An important mechanism of decoherence is the scattering
with photons of the lattice. By keeping a relatively small potential depth, photon
scattering produces mainly losses instead of decoherence. As already mentioned,
the absence of cold collisions for 88Sr do not introduce broadening of the resonance,
while for an unpolarized sample of 87Sr, cold collisions between different spins
states can give rise to a broadening of the resonance.

The signal-to-noise ratio depends on multiple factors. Firstly, the main contribu-
tion comes from the fluctuations of the initial atomic cloud size, due to the intensity
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and frequency instabilities of the red cooling laser. We estimate a contribution of
70% of the statistical error coming from this term. Secondly, the intensity fluctua-
tion of the lattice laser affects the tunneling rate. For a residual intensity fluctuation
of 1% coming from the polarization fluctuations out of the fibers, the tunneling
rate varies by 1-2%. Additionally, the system is sensitive to acoustic and seismic
vibrations of the optical system in the frequency region which corresponds to the
resonant frequencies `ωB/2π. The noise spectral density has to be integrated around
these resonances over a range Γ/2π, but since the system is usually modulated for a
time of the order of 10 s, there is a cut-off frequency of about 0.1 Hz. Above this
frequency the vibrations are filtered out, except for the resonances which we have
just considered. A further factor that affects the final sensitivity is the detection
noise of the CCD system. When the optical density is. 1, an overestimation of the
cloud width may occur. Finally, the atomic losses due to the finite lifetime in the
lattice limit the sensitivity, by directly reducing the signal-to-noise ratio which is
proportional to

√
N , where N is the number of atoms participating in the signal.

Since in these differential measurements we are limited by the signal-to-noise
ratio of 87Sr imaging, we did not push the 88Sr measurements to the limit of our
system, which was already demonstrated to work for modulation at ` = 6 and
tM = 12 s [106]. With 88Sr, this technique also demonstrated a relative precision
of ∆g/g = 2 × 10−7 in gravity acceleration measurements [41].

4.3.3 Active frequency lock to the Bloch frequency

We also developed a new technique to further improve the Bloch frequency sensitiv-
ity. The idea comes from optical atomic clocks [214, 215], in which one similarly
wants to precisely determine the center of a resonance. In those cases the resonance
is a narrow transition between two internal atomic states, one of which is highly
metastable. In the present case, the resonance is a transition between Wannier-Stark
levels of the tilted lattice. The idea is the following: instead of scanning the full
resonance spectrum and extracting the center value from a fit of the data, it is
possible to lock the local oscillator by interrogating the two sides of the fringe and
thus continuously count the central value. In an optical clock the local oscillator is
the clock laser, in our case it is the AM frequency synthesizer.

The experimental procedure we used is sketched in fig. 4.10. The local oscillator
(LO) frequency fM is digitally modulated in order to consecutively interrogate the
two sides of the resonant tunneling spectrum. Subsequent demodulation is achieved
by computing the difference of the two consecutive measurements of σz , which
yields an odd-symmetry error signal suitable for locking. If the LO is initially tuned
to a frequency fM close to the Bloch frequency harmonic we want to measure,
a first cycle interrogates the cloud with an AM burst at a fM − ∆ f , recording a
coherent broadening σz ( fM − ∆ f ). A second cycle interrogates the other side of
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Figure 4.10: Operation principle of the active frequency lock to the Bloch frequency.
The AMLO frequency is tuned to alternately interrogate the two sides of the resonance.
The central value is recorded and a correction is applied to keep the LO on top of the
fringe.

the fringe at an AM frequency fM + ∆ f . While a third cycle begins, a computer
program computes the demodulation by calculating the difference

∆σz = σz ( fM + ∆ f ) − σz ( fM − ∆ f ) (4.10)

and it applies a correction to the central frequency value:

fM,n = fM,n−1 + κ∆σz, (4.11)

where n is the number of consecutive measurements, and κ is a weighting factor to
be optimized, determined by the slope of the error signal. With this system, just two
experimental cycles are needed to extract a measurement of the Bloch frequency.
By counting fM , the statistical uncertainty on ωB can by rapidly integrated down.

Error signal

By scanning the central frequency fM with a fixedmodulation step∆ f , it is possible
to record a full error signal. The slope around the center determines the sensitivity
to the broadening as a function of the modulation frequency, and is called the
resolution slope.

Figure 4.11 shows typical error signals obtained with different modulation steps
for a 88Sr broadening resonance with tM = 10 s, ` = 2 and α = 6%. We used
∆ f = 60 mHz (red squares), 40 mHz (green diamonds), 80 mHz (blue circles).
The solid lines are linear fits to the data around the center. A comparison between
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Figure 4.11: (a) Fourier-limited resonance for 88Sr with tM = 10 s, ` = 2 and
α = 6%. (b) Typical resonant tunneling error signals obtained by modulating the
central frequency fM with different modulation steps ∆ f = 60 mHz (red squares),
40 mHz (green diamonds), 80 mHz (blue circles). The solid lines are linear fits to the
data around the center. The best slope is obtained for ∆ f ' 2Γ/2π.

the width of the resonance obtained by the fit of (a), which is Fourier-limited,
and the slopes of the error signals, suggests that the best slope is obtained for
∆ f ' 2Γ/2π. For the case in the figure, the best slope is κ = 0.6 mHz/µm, obtained
for ∆ f = 60 mHz.

Feedback to the AM frequency generator

Once we have chosen the resolution slope κ, the locking is achieved by correcting
the central modulation frequency fM every two consecutive cycles, as expressed
by eq. (4.11). In general we can also apply a proportional and integral gain in the
form

fM,n = fM,n−1 + GPκ∆σz,n−1 + GI∆Σn−1, (4.12)
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whereGP andGI are dimensionless gains and∆Σn is calculated as the instantaneous
weighted average of the corrections:

∆Σn =
1
n

n∑
m

∆σz,m. (4.13)

In order to test the effectiveness of the locking system we run the same mea-
surements with different locking parameters. The results are shown in fig. 4.12.
If we start slightly out of resonance (about 50 mHz in the figure), the feedback
brings the central frequency of the LO to resonance after few oscillations. When
the resolution slope κ is optimized, a proportional gain larger then GP > 1 leads
to forced oscillations around the mean value. While the integral gain has some
advantages when we start to acquire data far from resonance, it has just the effect of
slowing the convergence, when we are close. This makes sense if one notices that
the acquisition cycle time is much longer then the variations on the Bloch frequency
that occur during a measurement set. Because of these reasons we typically lock
the LO with GP = 1 and GI ' 0.
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Figure 4.12:Active frequency lock to the Bloch frequency. The modulation frequency
fM is recorded after every two experimental cycles and the feedback is applied.
Different gains were used. The lines are just a visual guide.
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4.3.4 Sensitivity of the frequency locking technique

The sensitivity of the Bloch frequency measurements can be characterized by its
Allan deviation [216]. This is a powerful tool to analyze the stability of an oscillator
and to discriminate between different noise sources. The Allan variance σ2

y (τ) is
defined as one half of the time average of the squares of the differences between
successive readings of the frequency deviation sampled over the sampling period.
Mathematically:

σ2
y (τ) =

1
N − 1

N−1∑
k=1

1
2

( ȳk+1 − ȳk )2, (4.14)

where τ is the averaging time in which N measurements of the frequency fM are
sampled and ȳk is the kth fractional frequency average in the interval τ:

ȳk (τ) =
1

ωBτ

∫ tk

tk−τ
ω(t)dt, (4.15)

where t is the time over a single acquisition, and goes from 0 to Tc. In our case,
since we need two cycles to record a frequency measurement, Tc is twice the single
experimental cycle time, and τ = NTc. The Allan deviation is defined as the
square-root of the Allan variance.

In presence of white noise only, the Allan variance of an oscillator which is
locked to a resonance fringe with quality factor Q and signal-to-noise ratio SNR
can be expressed in a simple form:

σy (τ) ∼
1
Q

1
SNR

√
Tc

τ
. (4.16)

This definition suggests that with the same resonance parameters and the same noise
sources discussed in sec. 4.3.1, the precision of a Bloch frequency measurement
can be improved by averaging for a long time τ and by reducing the cycle time Tc.

In a typical measurement set, the 88Sr and 87Sr Bloch frequency are measured
alternately. The single experimental cycle requires TMOT + TAM, where TMOT is the
loading time of the MOT and TAM is the modulation time in the lattice. Typical
values for the two isotopes are TMOT = 3 s, TAM = 10 s for 88Sr and TMOT = 7 s
TAM = 6.8 s for 87Sr. Therefore, the overall cycle times are Tc ∼ 27 s and ∼ 29 s.

The Bloch frequencyωB is determined by recording the fM time series for about
700 s and taking the mean value of the time series. Figure 4.13 shows the Allan
deviation of a set of 101 recorded values of fM for 88Sr and a set of 42 values for
87Sr. In both cases the Allan deviation scales as τ−1/2 (as expected for white noise)
with sensitivities at 1 s of σωB,88 = 1.5 × 10−6ωB,88 and σωB,87 = 9.8 × 10−6ωB,87,
respectively.
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Figure 4.13: Allan deviations of the Bloch frequency measurements for 88Sr (circles)
and 87Sr (diamonds) and their corresponding τ−1/2 asymptotic behavior (lines) obtained
by frequency locking the AM frequency generator to the coherent delocalization
resonance.

This new method allowed us to improve the sensitivity in the determination
of the Bloch frequency (and gravity acceleration) by more than one order of
magnitude with respect to the resonant tunneling spectra technique (see sec. 4.3.1)
and to previous published results for 88Sr [41]. In the same time required for the
acquisition of a spectrum (about 30 min), we achieved a precision of 5 × 10−8 for
88Sr, while for 87Sr we obtained a precision of 4 × 10−7. A comparison of the
Allan deviation of the measured Bloch frequency with the Allan deviation of the red
MOT size fluctuations projected into Bloch frequency fluctuations through eq. (4.9)
shows that the main noise source comes from the red MOT size with a contribution
of about 70%. The difference in precision between the two isotopes, in addition to
what we have discussed in sec. 4.3.1, is also due to the slightly higher cycle time.

The 88Sr result also represents the state-of-the-art in compact and local gravime-
ters when compared to the Rb interferometer based on Bloch oscillation pulses
realized in Paris [217].
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4.4 Test of the Weak Equivalence Principle

4.4.1 Differential force measurements: the Eötvös ratio

Each pair of Bloch frequency measurements obtained with the resonant tunneling
spectra and with the frequency lock techniques were used to determine the Eötvös
ratio defined by eq. (4.3). The data were recorded in N = 68 measurement sessions,
spread over 9 months. Figure 4.14 shows the experimental results for η, their average
value, and the comparison with the null value predicted by general relativity. Each
point ηi is determined with its own error σi given by the quadratic sum of the
statistical error and the uncertainty on the systematic effects.

The final result for the WEP violation parameter is

η = (0.2 ± 1.6) × 10−7, (4.17)

where the uncertainty corresponds to the standard deviation of the weighted mean
ση̄ corrected by the reduced chi-square:

∆η = ση̄
χ

√
N − 1

, (4.18)

×

×

×

×

AM resonant tunneling spectra AM frequency lock

Figure 4.14: Summary of the measurements of the η parameter by AM resonant
tunneling spectra (triangles) and by AM frequency lock (circles). The final weighted
mean (blue dashed line) is compared with the null value expected from WEP (red
line).
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where ση̄ =
√

1/
∑N

i σ̄2
i , and χ2 =

∑N
i (ηi − η̄)2 /σ̄2

i , which results in χ2/(N −
1) = 2.78.

In the case of unpolarized 87Sr atoms, the mean contribution of kSz in the
potential of eq. (4.2) is zero and η = β88 − β87. This result can be interpreted in
terms of the WEP violation parameters for the fundamental constituents of the two
atoms, according to different parameterizations [46, 202, 218]. The parametrization
in ref. [202] is particularly useful for comparing the result of this work with previous
and older experimental tests because β88 and β87 are a function of the test mass
nuclear structure and of the proton, neutron and electron gravitational anomalies
βw , where w = {p, n, e}. The observable WEP violation parameter η can be written
in terms of linear combinations of the free particle βw as

η = 10−3 ×
[
5.01βe+p−n + 0.15(βp + β p̄) +O(10−2)

]
. (4.19)

In our experiment βe+p−n is the most sensitive parameter, which can be bound by
the η result as βe+p−n < 3.4 × 10−5, i.e. three orders of magnitude bigger with
respect to the existing bound [202], while the difference with measurements of η
employing classical test masses is six orders of magnitude.

A more general violation of the EP related to spin concerns the fundamental
nature ofmatterfields in quantummechanics, which can be bosonic or fermionic. Ac-
cording to ref. [58], it is possible that the cosmological gravitational field generated
by fermionic matter and bosonic matter has different strengths. This phenomenon
can be parametrized by stating that the gravitational constant G is different for
bosonic and fermionic matter. If this is true, this clearly breaks the universality
of gravitation and thus the EP. Our result sets a 10−7 direct bound on the boson-
to-fermion gravitational constant ratio fBF ≡ GB/GF from being different from
1.

4.4.2 Systematic corrections

The Bloch frequency measurements are affected by few systematic errors, which
in our differential measurement, largely cancel and can be neglected at the present
level of accuracy. Systematic error sources in common between the two isotopes
measurements are: misalignment of the lattice beams, lattice frequency calibration,
gravity gradients, and Gouy phase shift [219].

Lattice light shift

The main contribution to the systematic error in local gravity measurements with
trapped neutral atoms arises from the space-dependent lattice depth U0(z) due to
the local intensity gradient of the two interfering Gaussian beams. Since the Bloch
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frequency measurement is a force measurement, we are actually sensitive to the
effective driving force

F = −∂zV (z) = ∂z[U0(z) − Mgz]. (4.20)

Therefore, the Bloch frequency of each isotope will contain an additional term
proportional to the light gradient and weighted by their individual mass. Since we
are interested only in the effect of the gravity acceleration upon ωB, the differential
acceleration due to the residual intensity gradient must be removed from the ratio
given in eq. (4.3). Thus, the correction has been calculated to be

∆ηU =
R88,87 − 1

(ωB,88 + R88,87ωB,87)/2
∂zU0
2~kL

, (4.21)

where we have assumed that the difference in the trapping potential due to the
dynamic polarizability of the two isotopes is negligible [220], so that ∂zU0 =

∂zU0,88 = ∂zU0,87. The expression of the correction in eq. (4.21) is given by
the product of the shift of ωB,88 induced by the lattice beam gradient ∆ωU =

∂zU0/2~kL and a weight factor R88,87 − 1 ∼ 10−2, divided by the mean Bloch
frequency (ωB,88 + R88,87ωB,87)/2. The physical interpretation of eq. (4.21) is that
the acceleration due to the two-photon scattering process producing the confinement
in the optical lattice has a reduced effect on the differential measurement but does
not cancel out. This technical issue affects any EP tests employing an optical lattice
[221].
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Figure 4.15: Determination of the light shift of the 88Sr Bloch frequency due to the
intensity gradient. ωB,88 was measured as a function of the total power on the atoms.
The slope ∆ωU extrapolated from the linear fit is used to calculate the systematic
correction.
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A precise calibration of the acceleration due to the intensity gradient was
done by measuring ωB,88 by means of the frequency lock technique. Repeated
measurements of ωB,88 were performed with a stabilized lattice frequency as a
function of the total lattice power

P = P1 + P2 + 2ε
√

P1P2, (4.22)

where P1 and P2 is the power sent to the atoms per beam and ε is a geometrical
correction factor due to the mismatch of the width of the two beams of order of
unity. The results are shown in fig. 4.15. The resulting Bloch frequency shift
∆ωU = (∂ωB/∂P)P = (6.16 ± 0.56) × 10−6 × P Hz/mW was obtained from the
slope of a linear fit to the data. The corresponding correction is ∆η ∼ 3.6 × 10−7

for typical operating conditions.

Magnetic field gradients

The effect of magnetic field gradients in the differential Bloch frequency measure-
ments was carefully studied. Residual magnetic field gradients b = ∂B/∂z were
estimated by precise calibration of the 88Sr red MOT vertical position dynamics to
be less than 140 µT ·m−1.

In general, the Bloch frequency measurement is sensitive to magnetic field
gradients through the Zeeman effect. The position dependent Zeeman shift can be
seen as a potential for which there is a corresponding effective force

FZeem(mF, b) = ∂zUZeem(z) =
mF

F
gI µNb, (4.23)

where mF are the hyperfine spin components of the projection of the total angular
momentum F, gI is the nuclear Landé factor, µN is the nuclear Bohr magneton and
b = ∂zB the external magnetic field gradient.

While 88Sr is insensitive to magnetic field gradients at this level of precision
because of its null total magnetic moment, the sensitivity of the 87Sr isotope depends
on the average spin projection 〈mF 〉. This was estimated by measuring ωB,87 while
applying the magnetic field gradient with the MOT coils during the amplitude
modulation in the lattice, up to 210 mT · m−1. Typical resonant tunneling spectra
are shown in fig. 4.16(a) for a modulation time tM = 7.8 s and ` = 1.

Considering a homogeneous population of the magnetic sublevels, the presence
of a magnetic gradient just removes the degeneracy of the 10 Bloch frequency
resonances for each mF . The resulting overall spectrum is a 10-component resonant
broadening function of eq. (4.8):

σ(ωB) =
1

10

∑
mF

√
σ2

0+v
2
`
t2
Msinc2

[(
ωM−`

(
ωB+

λL

2~
FZeem(mF,b)

))
/Γ

]
. (4.24)



102 Test of EEP for strontium isotopes in a driven optical lattice

567.6 568.0 568.4 568.8

40

60

80

100

120

140

160 (a)

 

 

87
Sr

 a
to

m
ic

 c
lo

ud
 w

id
th

 σ
z [µ

m
]

Modulation frequency ω
87

/2π [Hz]

0.00 0.05 0.10 0.15 0.20 0.25

-6

-4

-2

0

2

4

6

8

10

 

 

�
��




���

��
��

�

��

ω
��

−ω
����

π�
�

�
�	

Magnetic field gradient [T m-1]

(b)

Figure 4.16: 87Sr Bloch frequency sensitivity to magnetic field gradients. (a) Resonant
tunneling spectra for different applied magnetic field gradients with the MOT coils:
b = 0 (black squares), 84 mT ·m−1 (red circles), 210 mT ·m−1 (blue diamonds). The
solid lines are least-squares fit to the data with eq. (4.24). (b) Central Bloch frequency
values normalized to the unperturbed resonances. The red line is a linear fit to the data,
the dashed blue lines are the mean prediction bands.

For Γ Fourier-limited (41 mHz for the data shown in figure), the width of each
resonance component is much larger than the achievable Bloch frequency splitting
with the MOT coils. Therefore, we can not resolve the Bloch frequency components
and we just observe a broadening.

Figure 4.16(b) shows the measured central Bloch frequency values normalized
to the unperturbed resonances. The red line is a linear fit to the data, the dashed
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Effect Correction Uncertainty

Lattice light shift 3.6 0.3
Magnetic field gradient 0.001 0.01

Tides 0.16 0.01
Lattice frequency 0 0.05

Table 4.1: Uncertainty budget concerning the WEP violation parameter η. Correction
values and uncertainties depend on the experimental conditions. Typical values are
given in units of 10−7.

blue lines are the mean prediction bands. The resulting sensitivity to magnetic field
gradients is ∂ωB,87/∂b = 2π × (2 ± 15) mHz/(T · m−1), which is consistent with a
null effect at the level of 10−9 for our typical residual magnetic field gradient.

Other systematics and final budget

For every set of Bloch frequency measurements we considered the effect of tidal
forces, which leads to a peak-to-peak variation at our site of the order of 2×10−6 m/s2,
i.e. a contribution of 10−7 to ωB, on time scales of the order of 6 h. Since
the measurements for the two isotopes were carried out in succession for a total
time interval of 1 h, the maximum contribution from tides on the differential
measurements that we could observe is 1.6 × 10−8 (typically is on the order of few
parts in 10−9).

As discussed in sec. 4.3.3, the frequency of the lattice is stabilized during a
differential Bloch frequency measurement and the lattice frequency is measured
with MHz precision, leading to a residual uncertainty contribution lower than 10−8

on η.
The total systematic uncertainty is thus dominated by the intensity gradient

uncertainty at the level of 3× 10−8. Table 4.1 summarizes the important systematic
corrections and uncertainty contributions.

4.5 Test of spin-gravity coupling violation

In presence of a gravitational potential of the form expressed by eq. (4.2), the 87Sr
hyperfine sublevels will experience a force due to the spin-gravity coupling:

FSG = ∂zVSG,87 = kIzM87g. (4.25)

The effect of such a force is analogous to the one due to an external magnetic
field gradient, discussed in the previous section. Each 87Sr spin component Iz will
feel different gravitational forces due to different spin-coupling kIz , resulting in a
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broadening of the resonant tunneling spectra. Because a Fourier-limited linewidth
of the broadening resonance is expected in absence of decoherence mechanisms, a
comparison between the measured linewidth and the Fourier one can be used to set
a limit on the spin-gravity violation.

We analyzed a set of 87Sr resonant tunneling spectra used for the determination
of η. The residual deviations ∆Γ of the measured linewidth Γ from the Fourier
linewidth, after removing systematic broadening effects, are shown in fig. 4.17.

A residual magnetic field gradient |b| ≤ 140 µT ·m−1 may broaden the linewidth
via theZeeman effect of∆Γb ≤ 0.57mHzandwe assume this value to be a systematic
uncertainty on ∆Γ. A second systematic broadening and uncertainty arises from
atom-atom collisions. Since our fermions are unpolarized, they are distinguishable
particles in quantum mechanics and undergo s-wave scattering. For an estimated
density n87 = 3.5(8)×1015 m−3, the estimated broadening is 2.4(6) mHz. Therefore,
the measured residual broadening is ∆Γ = −0.4 ± 0.5(stat) ± 0.8(syst) mHz.

The Bloch frequency separation between the extreme spin components mF =

±9/2 can be seen as a broadening of the resonance for ∆Γ = 2 × 9/2 × k`ωB,87,
resulting in a spin-gravity coupling strength

k = (0.5 ± 1.1) × 10−7. (4.26)

Since the nucleus of 87Sr has nine valence neutrons, this result also sets a limit
of 10−7 for anomalous acceleration and spin-gravity coupling for the neutron either
as a difference in the gravitational mass depending on the spin direction, which was
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Figure 4.17:Measurements of the resonance linewidth broadening ∆Γ for 87Sr. The
displacement with respect to the Fourier linewidth (∆Γ = 0, red dashed line) sets a
limit on spin-gravity coupling violation.
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previously limited at 10−23 [55], or as a coupling to a finite-range Leitner-Okubo-
Hari Dass interaction, which was limited to less than 10 at 30 mm by means of
torsion balances with spin-polarized masses [53] and never with quantum matter.





Chapter 5
Large-momentum-transfer Bragg
interferometer with 88Sr atoms

In this chapter I will present the experimental realization of the first Mach-Zehnder
interferometer with strontium atoms based on large-momentum-transfer Bragg
transitions. The experimental setup used to produce Bragg pulses will be described,
and the result of using such pulses formanipulation of 88Sr atomswill be discussed. I
will show how the control of efficient atom-optical components allows the realization
of a highly sensitive gravimeter. Finally, I will present the current performances of
such a device and an analysis of the main noise sources.

5.1 Bragg transitions for strontium atoms

5.1.1 Bragg laser setup

The laser source for the Bragg beams is a dedicated frequency-doubled diode laser
at 461 nm, similar to the one used for the first cooling stage (see sec. 3.4.1). Indeed,
we need as much power as possible to drive high-order Bragg transitions, therefore
a dedicated high power source is almost compulsory. We reproduced the master
cooling source in terms of mechanics and fundamental components (diode, tapered
amplifier, cavity mirrors, crystal). In optimal conditions, the laser delivers 235 mW
in the blue. Figure 5.1 shows the scheme of the Bragg laser setup.

The Bragg laser is frequency locked to the master cooling laser by an offset
phase-locked-loop, in a similarway aswe do for the red cooling lasers (see sec. 3.4.2).
A small part of the laser light (∼ 5 mW) is split by a PBS and combined with the
master cooling laser light by another PBS; we project the polarizations on the same
axis by using a third PBS at 45° with respect to the first one and we let them beat on

107
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Figure 5.1: Optical scheme of the Bragg laser setup. The source is a frequency-
doubled infrared laser delivering more than 200 mW at 461 nm. It is offset locked to
the master blue laser by an OPLL. The intensity is actively stabilized by an AOM. The
two frequencies for the Bragg pulses are controlled by two independent AOMs and
combined with orthogonal polarizations in a PM fiber. They are sent upwards into the
MOT cell, reflected by a suspended mirror and the polarizations are rotated 90° by a
λ/4-plate.

a fast PD with 9 GHz bandwidth. The signal is mixed down by two RF generators:
one delivers a fixed 6.8 GHz signal, and another is a tunable 3 GHz generator.
The mixed signal is sent to a digital PFD and its phase is compared to an 80 MHz
reference signal. The error signal is integrated by a PID servo and used to correct the
frequency of the 922 nm master laser. By playing with the down-mixing frequency
chain we are able to stabilize the Bragg laser in a range of detuning 2-8 GHz with
respect to the 1S0–1P1 transition.

The main Bragg laser beam passes through an AOM for active intensity sta-
bilization. The AOM is driven by a low amplitude 80 MHz signal, which only
diffracts a small fraction of the light (∼ 1 mW) into the first order. The zero order
is used for the Bragg beams production, while the first order is collected by a PD
and used for the intensity stabilization. The PD’s signal is compared to a stable
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voltage reference. The difference signal is integrated by a PID servo and is used as
correction for the AOM RF driver with 100 kHz bandwidth.

The undiffracted beam is split equally by a PBS and sent to two independent
AOMs, which are used for frequency control and shaping of the Bragg pulses. The
two beams, with frequencies ω1 and ω2, are then recombined in a PBS with mutual
orthogonal polarizations and injected into a PM fiber. The whole laser is enclosed in
an aluminum box, while the rest of the optical path, which is in free-space, is placed
under a 2 mm thick, dense plastic box. The fiber output is collimated at a 1/e2

intensity radius of r = 2.5 mm and sent vertically upwards to the atomic sample.
The light is then retro-reflected by a 2” mirror suspended on a vibration isolation
platform (MinusK 25BM-4), placed on top of the upper breadboard. A quarter-wave
plate is placed before the retro-reflection mirror to rotate the polarization of the
returning light by 90°. The verticality of the beam is verified at 1 mrad level by
retro-reflecting it on a water surface. The residual vibrations and tilt coupled to the
retro-reflecting mirror are monitored by a triaxial accelerometer (Episensor ES-T)
and a precision tiltmeter (Applied Geomechanics Tuff Tilt 420) placed on top of the
vibration-isolation platform. The platform is enclosed in an acoustic isolation box.

5.1.2 Justification of the experimental configuration choices and con-
sequences

The experimental configuration we chose is an attempt to reduce the phase noise
of the optical system as much as possible. Indeed, as we will see, one of the main
limitation to the interferometric phase sensitivity comes from the relative phase
noise of the two Bragg beams.

A collinear configuration of the Bragg beams, in which the path difference is
only due to the optical interferometer in which the AOMs are enclosed, is the most
robust configuration we came up with. While a two fiber configuration in which the
two beams are counter-propagating and sent to the atomic system independently
from the top and from the bottom is conceptually simpler, it has the disadvantage
of maximizing the path length difference. This configuration is incredibly sensitive
to phase noise fluctuations, especially due to the fibers whose effective path length
has a strong dependence on the environment temperature. Because the relative
phase noise in the single-fiber configuration comes from the optical interferometer,
it must be isolated as much as possible from vibration and acoustic noise. For this
reason we enclosed the the interferometer in a box. An analysis of the residual noise
is given in sec. 5.5.3.

To further reduce the phase noise one can completely eliminate the optical
path difference by driving a single AOM with two frequencies. Unfortunately this
configuration leads to a problem. To understand the issue let’s consider this last
situation, in which the AOM is driven by a frequency component f and a time-
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varying component f +δ+αt, where δ is the frequency difference necessary to drive
Bragg transitions for an atom at rest and α is a chirping that is needed to compensate
for the Doppler shift of the falling atom. The beam coming out of the fiber consists
of two co-propagating frequency components with same polarization, while the
Bragg pulses need to be formed by two counter-propagating beams. For this reason
the beam needs to be reflected after it passes through the cell. During a pulse, the
atoms will then see four optical lattices made by all the possible combinations of
frequency pairs, as sketched in fig. 5.2. An n-order Bragg resonance condition
given by eq. (2.62) can be written for an atom that is fallen for a time t as

~∆ω = keff (−gt) + ~δn, (5.1)

where the two-photon wave vector keff = k1 + k2 = 4π/λL is directed along g and
its sign defines the direction of the diffraction, and δn = nk2

eff/2M is the resonant
detuning for an atom at rest.

Let us first consider the opposite pairs of beamswith same frequencies (fig. 5.2a).
They correspond to steady lattices in the laboratory frame, but they are seen as
traveling standing waves by the falling atoms. Therefore, Bragg transitions can
occur when the following resonance conditions are satisfied:

~[ f − ( f )] = 0 = −keffgt + ~δn, (5.2)
~[ f + δ + αt − ( f + δ + αt)] = 0 = +keffgt + ~δn. (5.3)

This means that a Bragg transition may occur if the Bragg pulse is applied at a
time t = ~δn/keffg. This situation can be seen as a Bragg transition in a steady

f αt+δ+f

f αt+δ+f

f αt+δ+f

f αt+δ+f

g

(a) (b)

Figure 5.2: Standing wave interaction possibilities for a retro-reflected two-frequency
beam. (a) Pairs of beams forming steady lattices. (b) By using orthogonal polarization
rotated after reflection by 90°, the formation of standing waves is avoided. The
interaction with two opposite-traveling standing waves is still possible, and double
Bragg diffraction may occur.
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lattice induced by the external gravity force (see sec. 2.2.2). For first-order Bragg
transitions on strontium, this time corresponds to about 2 ms of free fall. At twice
this time, the atom will be on resonance with a second-order transition, and so
on. Therefore, the configuration of a single two-frequency beam with the same
polarization is inconvenient.

In order to only produce traveling standing waves in the laboratory frame, we
prepare the two-frequency beam with orthogonal polarizations and then a quarter-
wave plate placed before the retro-reflection mirror rotates the polarizations of
the returning light by 90°. This avoids the formation of standing waves by pairs
of beams with the same frequency. On the other hand, the remaining system
still contains two traveling waves with the same velocity given by the frequency
difference ∆ω = ω1 − ω2, but opposite propagation direction. Both lattices can
interact with an atom at rest, producing a double Bragg diffraction. To understand
this situation let’s consider the resonance conditions for the pairs of beams with
different frequencies:

∓~[ f − ( f + δ + αt)] = ±keffgt + ~δn, (5.4)
∓~[( f + δ + αt) − f ] = ±keffgt + ~δn (5.5)

where the first equation corresponds to the resonance condition for the pair of
frequenciesmarked by the green ellipse in fig. 5.2(b) and to an upward anddownward
diffraction, according to the sign of keff; the second corresponds to the resonance
condition for the pair marked by the orange ellipse. By tuning the values of δ and α
we can decide which pair will be on resonance. If we want the atom to be diffracted
upwards by 2n-photon recoils we will choose ∆ω = δn and α = −keffg in order to
keep the upward traveling standing wave on resonance along the free fall, while the
downward traveling one will quickly be out of resonance because the chirping αt
and the Doppler shift keffgt will grow with opposite sign.

The double Bragg diffraction will always occur whenever the atoms reach a
stationary point of their trajectory, i.e. the apogee of the parabolic flight. Therefore,
while running the interferometer we avoid sending pulses at the apogee time. Since
the atomic ensemble has a finite momentum width, the double diffraction resonance
condition can be fulfilled for a certain time range. For a typical momentum width of
σ ∼ 10 kHz we can avoid double diffraction by not sending pulses for 1 ms around
the apogee time.

Even though, in our experimental configuration double diffraction is unwanted,
it is worth mentioning that double Bragg diffraction was proposed as a possible tool
for symmetric large-area atom interferometer schemes where some common-mode
noise sources cancel out [222, 223].

In conclusion, the final configuration we chose involves the use of a retro-
reflection mirror placed on top of the cell. This mirror will be our main limitation
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to the sensitivity of the interferometer. Indeed, it acts as a reference frame for the
traveling standing wave with respect to the freely falling atoms. The vibration noise
of the mirror can be seen as an induced inertial acceleration in the reference frame
of the atoms, and it can be measured by the interferometer. In order to suppress
this noise, we mounted the mirror on a suspended isolation platform. The noise
spectra and the possible solutions to overcome the vibration noise limitation will
be discussed later in this chapter.

5.1.3 Bragg pulses production

TheBragg beams’ frequency, phase and amplitude are controlled by two independent
80 MHz AOMs. The RF scheme we used is shown in fig. 5.3(a).

The carrier frequency of the pulses is generated by a two-channel arbitrary
waveform generator (Agilent 33622A), referenced to a rubidium clock standard.
This generator has very high phase coherence between the two channel: less
then 1 ps of rms jitter for a bandwidth up to 40 MHz, which is a negligible
contribution to the interferometer phase noise. One channel delivers a continuous
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Figure 5.3: (a) RF scheme for Bragg pulse production. The carrier frequency is
generated by a two-channel arbitrary waveform generator (Agilent 33622A). Channel 1
is programmed with a list of frequencies centered at 60 MHz and accounting for the
detuning ∆ω needed to produce arbitrary n-oder Bragg transitions. Channel 2 delivers
a continuous frequency sweep α (centered at 80 MHz) to compensate for the varying
Doppler shift of the falling atoms. The relative phase is controlled by mixing the
channel 1 output with 20 MHz delivered by an Agilent 33200A phase-modulated by
an Agilent 33120A. The amplitudes are shaped by an Agilent 33612A. (b) Gaussian
envelope signal (red) and corresponding optical signal (blue) for a σ = 10 µs pulse.
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frequency sweep α triggered when the red MOT is switched off and the atoms start
to fall. The frequency chirping for blue Bragg transitions on strontium atoms is
α = keffg ' 2π×42.55 kHz/ms. The second channel is used to control the frequency
shift∆ω needed to produce arbitrary n-order Bragg transitions. The frequency states
are saved in a list inside the generator and triggered by the experimental control
system.

The pulse amplitude is programmed in a second arbitrary waveform generator
(Agilent 33612A) with 1 GSa/s sample rate. We have programmed the generator
to produce Gaussian envelopes truncated at 8σ, but it can be easily modified to get
every kind of desired envelope. The amplitude of the carriers is shaped with the
envelope signal by means of two mixers (ZAY-1). Figure 5.3(b) shows a Gaussian
envelope signal (red line) and the corresponding optical signal (blue line) for a pulse
with σ = 10 µs duration.

The relative phase of the two Bragg beams has to be controlled in order to scan
an interferometer fringe. Unfortunately, we can not directly trigger a phase shift in
the carrier frequency generator, therefore we use a third signal generator (Agilent
33200A) that is phase modulated. The main frequency f = 80 MHz of the swept
channel is reduced to 60 MHz and mixed with a phase-modulated 20 MHz signal.
The output is filtered by a band-pass filter centered at 80 MHz. The modulation
signal is a 5 V square pulse which induces a phase shift whose sensitivity is set
by the 33200A generator. Since the amplitude noise of the modulating signal is
transfered to phase noise, to produce the 5 V signal we used a good generator
(Agilent 33120A) triggered by our TTL control system. The phase noise spectrum
for the overall RF chain is reported later in this chapter as comparison to the optical
phase noise.

I implemented a high-level LabView interface that simultaneously programs all
these generators in order to produce an arbitrary number of pulses with arbitrary
frequency, amplitude and phase. The pulse timing table is simultaneously written
into the main control program that sends TTL signals to the generators in order to
trigger the desired states at the right time.

5.2 Manipulation of ultra-cold 88Sr with Bragg pulses

5.2.1 Velocity selection of the red MOT

As we discussed in sec. 2.4.3, as an effect of the interaction between a thermal
atomic ensemble and a Bragg pulse is velocity selection. The cold atomic sample
that we can initially interrogate is an ultra-cold thermal cloud of 88Sr atoms, cooled
and trapped in the red MOT (see sec. 3.2.2 for details). The cloud contains about
5 × 106 atoms at a temperature T = 1.2 µK. The expected 1-σ momentum width
is ∆p =

√
MkBT = 1.08 ~kL . This temperature is not low enough to get efficient
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Figure 5.4: Velocity selection of the red MOT with a second-order Bragg transition.
TOF image of the released red MOT not diffracted (a) and diffracted (b) by a 30 µs
pulse. On the right, the two integrated profiles are shown. The center of the cloud is
depleted and transfered to the on-resonance |4~k〉 state. Residual off-resonance |2~k〉
state is populated because of the large momentum distribution of the red MOT.

Bragg diffraction, therefore a velocity selection is required.
Figure 5.4 shows the effect of a second-order Bragg transition on the red MOT.

A 30 µs pulse is applied just after the release of the trap and an absorption image is
taken after a TOF of 13 ms. The images of the cloud without (a) and with (b) Bragg
diffraction are compared. The on-resonance interaction depletes the center of the
cloud, transferring a narrower sample to the |4~k〉 state. Because the released red
MOT ensemble is largely spread in momentum, a fraction of the distribution tail
is resonant with the first-order transition, therefore another portion of the Gaussian
profile is depleted and transfered into the |2~k〉 state. Since some losses in unwanted
momentum states are always present after the selection pulse, we typically apply at
least three consecutive pulses in order to spatially separate the selected cloud from
the red MOT.

By increasing the pulse duration a narrower momentum distribution can be
obtained, although this results in a lower number of atoms in the desired momentum
state. We verified that an acceptable compromise between atom number and
momentum width for low-order Bragg diffractions is obtained for pulse duration
between 20 and 40 µs. We characterized the selected atomic sample by measuring
the momentum distribution with Bragg spectroscopy.

Bragg spectroscopy of the atomic sample

Bragg spectroscopy consists in measuring the excited state population as a function
of the Bragg beams’ frequency difference ∆ω from the Bragg resonance. Because
the Bragg transition is Doppler shift sensitive, the excited state will have maximum
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population on resonance, and it will decrease as long as∆ω is tuned out of resonance.
Scanning the ∆ω around the resonance is thus a spectroscopy of the momentum
distribution of the interrogated atomic cloud. Because the Bragg resonance is
Fourier-limited, the interaction duration sets the resolution of the spectroscopy
probe.

Figure 5.5 shows Bragg spectroscopy signal of the red MOT (red circles)
and of a velocity selected cloud (blue diamonds). For the first measurement we
applied second-order Bragg pulses 100 µs after releasing the trap. We chose a
pulse duration of σ = 50 µs. The corresponding Fourier-limited linewidth is
γF = 2π/πσ = 2π × 6.3 kHz and sets the resolution for the Bragg spectroscopy.
Scanning the frequency difference ∆ω across the resonance gives a Gaussian
momentum distribution with a width of σ∆ω = 2π × 37.8 kHz.

We can extract a temperature estimation from the Bragg spectroscopy. The
energy equipartition for a velocity distribution with width σv tell us that T =
Mσ2

v/2kB. The Doppler effect relates the Bragg detuning to the atoms’ velocity, so
that σv = σ∆ω/kL . Thus, the temperature of the cloud along the vertical direction
can be estimated by

T =
M

2kB

σ2
∆ω

k2
L

. (5.6)

In the case of the red MOT, the result is T = 1.5 µK, which is consistent with the
temperature measured in TOF.

We then studied the momentum distribution of a velocity selected cloud by a
20 µs second-order pulse. After the selection we applied a second pulse, 140 µs
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Figure 5.5: Bragg spectroscopy of the redMOT (red circles) and of a velocity selected
cloud (blue diamonds). The velocity selected cloud was excited by a 2nd Bragg pulse
of 20 µs duration. The measured momentum widths are 1.3~kL and 0.2~kL .
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long, the frequency of which was scanned across the resonance. The long duration
ensures a resolution of 2 kHz due to the Fourier linewidth. Themeasuredmomentum
distribution width is σ∆ω = 2π × 6.9 kHz, which corresponds to a temperature
T = 50 nK and a momentum spread ∆p = 0.2~kL .

5.2.2 Rabi oscillations between momentum states

The Mach-Zehnder interferometer requires the population of two momentum states
to be equally split, inverted after a certain time and then recombined. The population
splitting ratio can be tuned by varying the interaction strength of a Bragg pulse, in
terms of its intensity and duration. By keeping the intensity fixed and by varying
the pulse duration, for example, Rabi oscillations between momentum states can be
observed, as explained in sec. 2.4.1.

The velocity-selected atomic cloud is now taken as the initial state that we want
to analyze, and we will label it as |0~k〉. A Bragg pulse with a frequency difference
that compensates for the Doppler shift of the falling cloud and covers enough
frequency recoils ωr for an n-order Bragg transition will produce Rabi oscillations
mainly between |0~k〉 and |2n~k〉, while some losses into other momentum states
may be present. The states’ population is measured by a Gaussian least-squares fit
of the atomic cloud signals, spatially separated by an adjustable TOF.

First we will consider the effect of the pulse shape on the diffraction efficiency
of a first-order Bragg transition. We will then investigate the diffraction at higher
orders and their main limitations.

Gaussian pulses vs square pulses

Figure 5.6 shows the Rabi oscillation measurements for a first-order Bragg transition
driven by a square pulse (a) and a Gaussian pulse (b). We used the same parameters
for both measurements. The peak intensity was set to I = 400 W/m2 (Ω̄ = 1.3ωr ),
which correspond to about 5 mW per beam. The detuning from resonance was set
to δ = +2.77 GHz = 86 × γ. The initial momentum state was prepared by a 20 µs
velocity selection pulse from the red MOT, and then separated from the red MOT
tails by other two pulses. The main momentum states driven by a first-order Bragg
pulse are shown: the initial state |0~k〉 (black squares), the first diffraction order
|2~k〉 (red circles) and the losses in |−2~k〉 (blue diamonds).

From these measurements we can qualitatively discuss a few considerations
we have presented in sec. 2.4.1 about the theoretical analysis of Rabi oscillations
for Bragg pulses. For instance, at short pulse times, non-negligible losses in the
|−2~k〉 states are present. This situation corresponds to the Raman-Nath regime,
which occurs for time t < 1/

√
Ωωr when the kinetic energy contribution can be

neglected. For the parameters we have used, the Raman-Nath regime occurs for
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Figure 5.6: Rabi oscillations measurements for a 1st order Bragg transition driven
by a square pulse (a) and a Gaussian pulse (b). We plotted the relative population of
the relevant momentum states |0~k〉 (black squares), |2~k〉 (red circles) and |−2~k〉
(blue diamonds). Parameters used: intensity per beam I = 40 mW/cm2 (Ω̄ = 1.3ωr ),
δ = +2.77 GHz (86 × γ), initial momentum width σp = 0.2~kL . The error bar is
the statistical error over at least three consecutive measurements. The lines are just a
visual guide.

t < 13 µs, in accordance with what we have measured in the Gaussian pulse case.
For square pulses instead, the fast oscillation of the losses is larger and does not
end with the Raman-Nath regime. Indeed, as we have pointed out in sec. 2.4.1, the
quasi-Bragg regime lasts much longer for square pulses than for Gaussian pulses.

From now on, we will only use Gaussian pulses in our applications.

High-order Bragg diffraction

In sec. 2.4.3, we have discussed the importance of momentum width and we have
pointed out that the higher the Bragg order one wants to use, the more stringent the
constraint on the momentum width. As we already stated, it is not possible to reduce
the momentum width without losing atoms in the selection process. Therefore, a
drop of efficiency in higher order Bragg transitions is expected.

It was observed by Szigeti et al. [135] that, in order to keep high transfer effi-
ciencies while moving to higher orders, an increase of the effective Rabi frequency
Ωeff for n-order Bragg transitions is required, expressed by eq. (2.123) and reported
here as quick reference:

Ωeff =
Ωn

(8ωr )n−1
1

(n − 1)!2 (5.7)
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where Ω = Ω2
0/2δ is the two-photon Rabi frequency and ωr is the recoil frequency.

To increase Ωeff , one has to increase the two-photon Rabi frequency, which
is related to the single-photon Rabi frequency Ω0 and therefore depends on the
intensity, and also depends on the detuning δ from the internal excited state. As can
easily be seen by looking at eq. (5.7), for fixedΩ the effective Rabi frequency drops
dramatically for n > 2, because of the presence of the factorial in the denominator
which is much “faster” than the n-power in the numerator. Therefore, Ω needs to
be increased more and more, for a larger order n.

Since the available optical power is limited by the laser source in a real experi-
ment, at fixed beam diameter and at full power,Ω can only be increased by reducing
the detuning δ. On the other hand, approaching the resonance causes an increase of
the losses due to resonant scattering, whose probability is expressed by eq. (2.30).
In practice, according to the available laser power, we choose the detuning δ in
order to maximize the π-pulse efficiency, which eventually determines the contrast
of the interferometer.

Figure 5.7 shows some of the best Rabi oscillations we obtained according
to the previous considerations, for first (a), second (b) and third (c) order Bragg
transitions. We have measured the relative population of the main states involved in
the oscillations and the losses in the nearby states, where present. In each plot the
momentum states aremarked by the same symbols: |0~k〉 (black squares), |2~k〉 (red
circles), |4~k〉 (blue diamonds) and |6~k〉 (green triangles). The cloudswere initially
velocity selected by a 40 µs pulsewhich gives amomentumwidthσp ' 0.2~kL . The
parameters we have used are: (a) intensity per beam I = 150 mW/cm2, δ = +8 GHz;
(b) I = 200 mW/cm2, δ = +8 GHz; (c) I = 230 mW/cm2, δ = +3 GHz. The
population was measured by Gaussian fit of the fluorescence signals in TOF.

For the first-order transition, we are limited by the frequency locking system to
δ = 8 GHz. Therefore, we need to reduce the intensity of the Bragg beams with
respect to the present maximum available I = 230 mW/cm2 per beam. A further
increase of Ωeff would simply take the dynamics too close to the Raman-Nath
regime, increasing the losses and reducing the π-pulse efficiency. For the second-
order transition, we typically work around the extremes of our current experimental
availability in terms of intensity and detuning. For the third-order transition, we are
currently limited by the available intensity and we need to stay closer to resonance
(δ < 5 GHz).

Figure 5.7(d) shows the typical fluorescence signals obtained for π-pulses at
the first four Bragg orders. We are able to get an almost perfect diffraction (98%
of efficiency) for a first-order transition and we observed up to 50% of atoms
diffracted into the |8~k〉 state with a fourth-order pulse at full power and at a
detuning δ = +2.77 GHz.
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(a) First-order Rabi oscillation
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(b) Second-order Rabi oscillation
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(c) Third-order Rabi oscillation
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(d) Atomic signals for π-pulse excitation
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Figure 5.7: Rabi oscillations measurements for a first (a), second (b) and third (c)
order Bragg transition driven by Gaussian pulses. In each plot the momentum states
are marked by the same symbols: |0~k〉 (black squares), |2~k〉 (red circles), |4~k〉
(blue diamonds) and |6~k〉 (green triangles). Parameters used: (a) intensity per
beam I = 150 mW/cm2, δ = +8 GHz; (b) I = 200 mW/cm2, δ = +8 GHz; (c)
I = 230 mW/cm2, δ = +3 GHz. Initial momentum width σp ' 0.2~kL . The error bar
is the statistical error over at least three consecutive measurements. The lines are just
a visual guide. (d) TOF fluorescence signals of the atomic cloud excited by a π-pulse
for the first four Bragg orders. From top to bottom, the transfer efficiencies are: 98%,
85%, 65%, 50%.
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5.3 Mach-Zehnder interferometer with Bragg pulses

AMach-Zehnder interferometer is composed by a three pulse sequence π/2−π−π/2.
The first π/2 coherently splits the atomic cloud in two different momentum states
|p0〉 and |p0 + 2n~k〉, which are reflected after a time T by a π-pulse and then
recombined by a π/2-pulse after a time 2T . As we discussed in sec. 2.5, a Mach-
Zehnder interferometer is sensitive to inertial accelerations. The phase shift between
the two arms of the interferometer was derived in eq. (2.147) and takes the general
form:

∆Φ = 2nkLT2a + n(φI − 2φII + φIII), (5.8)

where n is the Bragg order with wave vector kL , T is the time separation between the
interferometer pulses, a is the sum over all the participating inertial accelerations,
and φi is the phase of the ith pulse. The sensitivity to acceleration measurements
depends on the interferometer space-time area 2nkLT2. Because of this reason we
want to use high n-order Bragg diffractions and let the atomic wave packets evolve
freely in the gravitational field for the longest time T possible. To increase this
time we want to exploit all the available space in the MOT cell. Therefore, we
implemented a pulse sequence to launch the atoms in a fountain, increasing the
free-falling time.

5.3.1 Experimental sequence

The experimental sequence is depicted in fig. 5.8(a). An atomic sample of 88Sr is
cooled in the two-stage MOT, reaching a final temperature of 1.2 µK, with a spatial
radial (vertical) size of 300 µm (50 µm) FWHM. The sequence produces about
2 × 106 trapped atoms in 1.5 s. A small fraction of the atoms (∼ 105) is selected
from the MOT and launched upwards with a 40 µs π-pulse. The selection reduces
the momentum distribution width to σP ' 0.2~kL along the vertical direction. The
cloud is spatially separated by the red MOT and launched in a fountain with several
π-pulses up to a total momentum transfer of 40~kL . Even though a single π-pulse
would be sufficient to isolate the selected atoms from the freely falling cloud after
the release from the red MOT, a larger number of pulses is applied to increase the
total time of flight up to 150 ms. After the launch of the atoms in the fountain,
a Mach-Zehnder interferometer is realized by applying three Bragg pulses in a
π/2 − π − π/2 configuration.

The effective Rabi frequency for the Bragg pulses is set in order to get the highest
π-pulse efficiency, according to the considerations we discussed in sec. 5.2.2. The
pulse duration is then fixed and the π/2-pulse is realized by decreasing the amplitude
in order to equally split the population over two paths separated by 2n~kL . Fig. 5.8(b)
shows an absorption image of the atoms in the two arms of the interferometer after
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Figure 5.8: Free-falling Mach-Zehnder interferometer sequence and atom detection
signals. (a) The atoms are coherently split, reflected and recombined by a π/2−π−π/2
pulse sequence. In the free-evolution time the two paths undergo ballistic trajectories.
Before the interferometric sequence the atoms are velocity selected and launched by a
sequence of π-pulses. (b) Absorption image of the two interferometer arms split by a
first-order π/2-pulse, at the maximum space separation for a T = 30 ms interferometer.
(c) Fluorescence signal acquired 40 ms after the last π/2-pulse. The momentum states’
population is extrapolated by a double-Gaussian least-squares fit to the data.

30 ms for a first-order pulse. We notice that the spatial separation between the two
interferometer arms is 600 µm, which is about two times larger than the separation
induced by near-infrared light in alkali atom interferometers for the same separation
time T . The two paths in the interferometer are recombined after a time 2T .

Unlike Raman interferometrywhere the two paths correspond to different atomic
hyperfine states and a selective detection can be used, in Bragg interferometry the
internal state is the same, therefore the output arms needs to be spatially separated
and detected simultaneously. The population at the two output ports is detected
by either absorption imaging or fluorescence collection about 40 ms after the last
pulse is applied, when the two momentum states are sufficiently separated in space.
A fluorescence image of the interferometer output ports for a first-order Bragg
transition and a total interferometer time 2T = 60 ms is shown in fig. 5.8(c). The
atoms are detected by a narrow probe beam passing 3 cm below the MOT position,
as described in sec. 3.3.6.

5.3.2 Launching atoms in a fountain

As stated, we want to launch the atoms upwards as high as possible in order to
increase the available free-falling time and so increase the interferometer area.
We realize the launch in two different ways. The method that we practically
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implemented in our gravimeter consists in a fast sequence of π-pulses. A second
promising method consists in loading the atoms in a far-detuned accelerated optical
lattice. The preliminary results of such a technique will be discussed.

Launch with a high-efficient Bragg pulse sequence

The launching method with several Bragg pulses takes advantage of the high
efficiency of first-order Bragg transitions that we can achieve in our setup. Indeed,
after velocity selection from the red MOT, a single π-pulse has an efficiency of
approximately 98% (see sec. 5.2.2). Therefore, if a fast sequence of N pulses is
applied just after the selection andbefore the cloud significantly expands transversely,
2N-photon recoils can be transfered to the atoms with an overall efficiency of about
(98%)N .

The typical π-pulse length for the launch is σ = 6 µs. The Gaussian envelope is
truncated at 8σ, therefore a single pulse requires about 100 µs. With 20 such pulses
for example, we can transfer 40~kL in 2 ms, with an efficiency of (98%)20 ' 67%.
This launch almost doubles the total TOF from the release of the trap to the detection
(placed 3 cm below the MOT position), from 75 ms to 130 ms.

Obviously, when the atoms interact with the Bragg beams and receive a kick
of 2n~kL , their frequency will be Doppler shifted. Therefore, the Bragg beams’
frequency needs to be adjusted for each subsequent pulse. For an atom initially
occupying the momentum state |2m~kL〉, the frequency difference ∆ω to get an n-
order Bragg diffraction to the state |2(m + n)~kL〉 needs to be increased, according
to eq. (2.65): ∆ω = 4(2m + n)ωr .

Launch with a far-detuned accelerated lattice

Another method we began to investigate is the possibility to launch atoms confined
in an accelerated optical lattice. This method might be more favorable because
the Bloch oscillation process involved in the acceleration is potentially immune to
losses. As it was pointed out in sec. 2.2.2, as long as the atoms initially occupy
the first band, i.e. if their momentum spread is smaller than 2~kL , the efficiency of
the process is independent of the initial velocity. This is a great difference between
Bloch oscillations and Bragg diffractions.

The only possible losses come from the Landau-Zener tunneling to excited
bands. As long as the acceleration is adiabatic (∆̇ω � Ω2), the losses can be kept
very low. We could accelerate the Bragg laser beams to perform the launch, but
in the present configuration it is too close to resonance to keep the atoms trapped
for a time longer than few µs. Indeed, a reasonable lattice depth U0 = 7Er can be
obtained with I = 5 mW/cm2 per beam and a maximum detuning δ = −8 GHz
= 250γ, but the resonant scattering rate Γs = 2π × 300 kHz is still too large.
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Figure 5.9: (a) Experimental configuration for combining the blue Bragg laser and the
green lattice laser. The green beams are combined with the blue beams on a dichroic
mirror. The polarizations are matched in order to be rotated by 90° by the same
quarter-wave plate. (b) Absorption imaging of the launched clouds by two accelerated
green lattices propagating in opposite directions. The lattice imparted 4~kL . Atoms
confined in a residual steady lattice and falling atoms not captured are also visible. (c)
Fluorescence signal of a cloud launched by 24~kL . The residual falling atoms and the
downward accelerated cloud are also shown.

On the other hand, we can use the far-off resonance green lattice that we used
for the Bloch oscillation experiment. The detuning from the 1S0–1P1 transition is
δ ∼ 2.7 × 106γ. With our laser we can have a power of 600 mW per beam and
a radius of 300 µm, so we have an intensity of 4 × 105 W/cm2 that guarantees a
lattice depth U0 = 7Er , the same lattice trapping conditions we discussed for the
Bragg laser. Here the difference is the scattering rate, which is 104 times smaller
and allows atoms to be trapped for more than 10 s (see sec. 4.2.4). Moreover, since
the waist is comparable to the atomic radial dimension after the release from the
red MOT, this lattice also guarantees a transversal confinement during the launch
sequence.

The experimental configuration is sketched in fig. 5.9(a). The green laser optical
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setup was modified in order to be compatible with the Bragg laser system. The green
AOM outputs were combined with orthogonal polarizations in a PBS, and injected
into a PM fiber. The fiber output is expanded in a telescope and then combined
with the Bragg laser light on a dichroic mirror to be sent vertically and centered on
the atoms. The polarization is rotated by the same broadband quarter-wave plate
and the light is reflected by the suspended mirror. In this way, the formation of
steady lattices is avoided, as described in sec. 5.1.2, unless the frequency difference
between the two beams is intentionally tuned to zero. The interference only occurs
for two stationary waves moving in opposite directions.

The launch sequence with the green lattice is realized as follows: the atoms
are adiabatically loaded into the steady lattice from the red MOT in ∼ 100 µs.
After 20 ms of evaporation the frequency difference between the two beams is
swept at a rate ∆̇ω ∼ 2π × 50 kHz/ms, which is small enough to maintain the
adiabatic condition. The final frequency difference ∆ωf obtained after a sweep ∆t
long, sets the number m of 2-photon recoils imparted to the atoms, according to
the Bragg resonance condition ∆ωf = 4mωr . For the green laser ωr = 2π × 8 kHz.
Figure 5.9(b) shows an absorption image of the launched atomic cloud after the
frequency ramp. The lattice was swept for 2.5ms up to a final frequency difference of
∆ωf = 2π×128 kHz, imparting 4~kL to the atoms in two opposite directions. Atoms
confined in a residual steady lattice and falling atoms not captured are also visible.
Figure 5.9(b) shows the fluorescence signal of a launch with ∆ωf = 2π × 768 kHz
that imparted 24~kL to the atoms. The residual falling atoms and the downwards
accelerated cloud are also shown.

5.3.3 Interference fringes

The interference occurring at the recombining pulse produces complementary
probability amplitudes in the two output channels, where the detection probability
P(∆Φ) oscillates sinusoidally as a function of the total phase difference:

P(∆Φ) =
N |p0〉

N |p0〉 + N |p0+2n~k〉
= P0 +

A
2

cos(∆Φ), (5.9)

where N |p0〉 and N |p0+2n~k〉 are the number of atoms in the two outputs, P0 ∼ 0.5 is
the offset probability and A is the amplitude of the fringe pattern.

The atomic interference phase∆Φ, given by eq. (5.8), can be scanned by varying
the phase of one the three Bragg pulses. Figure 5.10 shows the measured fringe
patterns for first (black squares), second (red circles) and third (blue diamonds)
order Bragg pulses and for an interferometer time T = 0.5 ms. The phase of the
last π/2-pulse, φIII, is scanned by a phase-modulated RF generator controlling one
of the two AOMs’ frequency, as described in sec. 5.1.3. The lines are sinusoidal
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Figure 5.10: Interference fringes for first (black squares), second (red circles) and
third (blue diamonds) order Bragg pulses for T = 0.5 ms. The interference phase ∆Φ
was scanned by varying the phase of the last Bragg pulse φIII. The lines are sinusoidal
fits of eq. (5.10).

least-squares fits of the form

P (φIII) = P0 +
V
2

cos (nφIII) , (5.10)

where P0 and V are free parameters and n is the order of the Bragg transition.
Here the amplitude is called V , that stands for visibility. The visibility of the
interferometer is defined as the amplitude of the sinusoidal fit to the interference
fringe, which has to be distinguished by the contrast C of the interferometer, defined
as the peak-to-peak of the fringe amplitude. We determine the contrast from the
measured values of P(∆Φ) between the 2nd and the 98th percentile (following the
approach introduced in ref. [224]).

While the contrast depends only on coherence preservation during the interfer-
ometer, the visibility also takes into account the phase noise. As an example, in
fig. 5.11 two interference fringes for first-order Bragg transitions and T = 20 ms
with different phase noises are compared. While the contrast is similar for the red
and blue fringes (75% against 70% respectively), the visibility of the red fringe is
much smaller (45% against 64%) because of a larger phase noise.

Both the fringe contrast and the phase noise are limiting factors for the inter-
ferometer sensitivity, but they depend on different parameters. Therefore, we will
study them independently.
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Figure 5.11: Interference fringes for first-order Bragg transitions and T = 20 ms with
different configurations of the mirror suspension. While the contrast is similar for
the red and blue fringes (75% against 70% respectively), the visibility (given by the
amplitude of a sinusoidal least-squares fit) of the red fringe is much smaller (45%
against 64%), indicating a higher phase noise.

5.3.4 Chirping the Bragg beams’ frequency: absolute gravimetry

Since the atoms are falling during the interferometer sequence, they will see the
Bragg beams’ frequency shifted by the Doppler effect: keff · v = −2kLgt, if the
Bragg beams are oriented along the gravity direction. To compensate for this and
allow all the Bragg pulses to be on resonance along the whole ballistic trajectory,
we chirp one of the Bragg beams at a rate α = keffg ' 2π × 42.55 kHz/ms. The
chirp α induces an additional phase shift, therefore the interferometer phase ∆Φ
defined by eq. (5.8) has to be modified accordingly:

∆Φ = n(2kLg − α)T2 + n(φI − 2φII + φIII). (5.11)

From this expression it is clear that another way to scan an interference fringe is
obtained by varying the chirp α. The value of α that exactly compensates for the
gravity-induced Doppler shift is determined by the relation:

∆Φg = n(2kLg − α)T2 = 0 (5.12)

once the laser phases are set to be φ j = φ(t j ) = −αt2
j/2, where t j is the time of

each pulse.
The interferometer transition probability P(∆Φ) oscillates sinusoidally as a

function of α, but a central fringe can be identified: the one for which ∆Φg = 0.
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Figure 5.12:Central fringe measurements by varying the chirping rate α for first-order
Bragg pulses and different interferometer times. T = 3 ms (black squares), 7 ms (red
circles), 15 ms (blue up triangles), 23 ms (olive down triangles), 30 ms (maroon
diamonds).

As expressed by eq. (5.12), this fringe does not depend on the interferometer time
T , not on the Bragg order n. A measurement of the central fringe chirping gives
an absolute measurement of the gravitational acceleration g. Figure 5.12 shows
central fringe measurements obtained by varying the chirping rate α for first-order
Bragg pulses and different interferometer times. The sensitivity to central fringe
determination increases for longer interferometer times, according to eq. (5.12).

5.3.5 Gravity gradiometry

With a small change in the pulsed launch sequence, we can easily convert our system
to a gravity gradiometer. Since the first pulse of the sequence velocity select about
1/10 of the atoms from the broad red MOT distribution, the residual falling cloud
can be used as reservoir for a second interferometer.

To realize a gradiometer, we just add a second pulsed launch sequence before
the beam splitter (see fig. 5.13). The two clouds cannot be accelerated to the same
velocity, otherwise the last pulse of the second launch sequence would also interact
with the upper cloud. Therefore, if we launch the first cloud with N π-pulses at
order n, and we want to realize a gradiometer with n-order Bragg pulses, the second
launch sequence has to be composed of N−1 pulses. In this way, the input velocities
of the two interferometers will be separated by 2n~k, and the first π/2-pulse will
act as a beam splitter for both arms, diffracting the upper arm downwards, and the
lower arm upwards.
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Figure 5.13: Atomic trajectories and pulse sequence for a gravity gradiometer. Two
pulsed launch sequences separatedby a time tsep generate two traveling clouds separated
spatially by zsep at the beam splitter position. The two clouds are launched by one pulse
difference, in order to avoid diffraction on the last pulse. The red paths correspond to
|2Nn~k〉, the blue to |2n(N − 1)~k〉.

The time separation tsep between the pulsed launch sequences determine the
baseline of the gradiometer, i.e. the spatial separation zbl between the two inter-
ferometers at the beam splitter time. This can be easily calculated by the classical
trajectories:

zbl =
2n~k

M
tπ/2 +

(
tπ/2 +

1
2

tsep

)
gtsep. (5.13)

The gravity gradient is determined by the differential acceleration divided by the
baseline.

A preliminary realization of a gravity gradiometer with this method is reported
in fig. 5.14. Because the four outputs need to be detected simultaneously, particular
care has to be taken for the pulse timing. Two clouds were launched from the red
MOT with two launch sequences separated by 10 ms. The first cloud was launched
with 8 pulses at first order, the second cloudwith 7 pulses. The procedure creates two
free-falling clouds spatially separated at the beam splitter position by zbl ' 0.5 mm.
The interferometer time was set to T = 1 ms. The output ports are detected 40 ms
after the interferometer closure and the paths of the two interferometers cross, as
shown in fig. 5.14(a). The population ratios between the output momentum states
|1〉 = |p0〉 and |2〉 = |p0 + 2~k〉 for the upper and lower interferometer are plotted
in fig. 5.14(b). By scanning the phase of the third interferometer pulse φIII, two
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Figure 5.14:Gravity gradiometer results for two interferometers separatedby a baseline
of 0.5 mm. Parameters: first-order Bragg transitions and T = 1 ms. (a) Absorption
image of the crossedoutputs of the upper and lowerAI. (b) Complementary interference
fringes obtained by scanning the phase of the last π/2-pulse. The lines are least-squares
fit to the data. (c) Residual noise of the fringes, plotted one versus the other. The
correlation shows that the main phase noise is in common. Residual noise comes from
the detection.

complementary fringes can be recorded.
The phase difference between the two gravimeters can be used to determine the

local gravity gradient. In our case the sensitivity is limited by the small separation
distance, and is not high enough to measure the Earth’s gravity gradient. However,
the differential-phase signal is insensitive to many noise sources such as the Bragg
laser phase noise and the mirror vibrations, which are in common between the
two interferometers. An evidence of this is given by the correlation between the
noises on the two fringes shown in fig. 5.14(c). The residuals of the sinusoidal
least-squares fits are plotted for the two fringes one versus the other. Residual
uncorrelated noise is caused by detection noise.

The main limiting factor to our gravity gradiometer setup is the finite size of



130 Large-momentum-transfer Bragg interferometer with 88Sr atoms

the vacuum cell, which limits the maximum TOF. Because Bragg interferometers
require a simultaneous detection of the output ports, avoiding spatial overlapping
constrains ourgradiometer parameters, and a high sensitivity configuration cannot be
realized yet. A future improvement of the device will require a longer interferometer
region, as in proper atomic fountains.

5.4 Current performance of the interferometer

5.4.1 Contrast

Figure 5.15 shows the values of the observed contrast for first, second and third
Bragg order as a function of the interferometer time T . For different orders, the
Bragg laser detuning δ was chosen in order to maintain a high Rabi frequency and
a low rate of light scattering, according to the available laser power.

For short interferometer times, the contrast is mainly limited by the velocity
spread along the vertical direction and by residual light scattering, which limits
the π-pulse efficiency as already discussed in the Rabi oscillations analysis (see
sec. 5.2.2). For long interferometer times, the contrast is mainly limited by the Rabi
frequency inhomogeneity which is due to both the radial expansion of the atomic
cloud and the intensity profile imperfections of the Bragg beams. The sensitivity to
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Figure 5.15: Contrast of the interference fringes as a function of time T for first (red
squares), second (blue circles) and third (green diamonds) order Bragg diffraction.
The detuning δ was adjusted for each order to maximize the π-pulse efficiency.
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this inhomogeneity becomesmore critical as the Bragg order n increases because the
effective Rabi frequency scales as the nth power of the two-photon Rabi frequency
(see eq. 5.7). This shows that the small sample size and the ultra-low temperatures
achievable with strontium atoms can lead to a high contrast for long interferometer
times even with relatively narrow Bragg beams.

Surprisingly, we observed a big difference in contrast for positive and negative
detuning δ. For T = 30 ms, the interferometer contrast for first order Bragg
diffraction is about 1.5 times larger by keeping the Bragg laser detuned to red
frequencies with respect to blue. This effect is not explained by any heating
mechanism, and further investigation will be required.

A technically feasible improvement by an order of magnitude in the Bragg laser
power would allow us to move further from resonance (δ ∼ 600 γ) maintaining a
sufficiently high Rabi frequency and therefore realize a higher-order interferometer
as demonstrated for Cs [68].

Further improvement in the contrast can be obtained by reducing the probe
beam size in order to only detect the central atoms, for which the Rabi frequency
inhomogeneities due to the transverse expansion are smaller. However, in doing this
the effect on the sensitivity has to be taken into account. Reducing the interrogation
area will reduce the number of interrogated atoms, leading to an increase of the shot
noise limit and of detection noise. Therefore, there is a trade-off between contrast
gain and noise suppression which has to be optimized in order to really improve
the sensitivity of the gravimeter. Conversely, it is possible to explore geometries
where the atoms are guided by a dipole trap along the falling axis [159]. In this
scenario the atoms could be forced to remain in the region of maximum intensity
of the Bragg beams, ensuring that they all contribute to the interferometer signal.

Another possible improvement resides on a further cooling of the atomic source.
In this direction, a Bose-Einstein condensatewould allowhigher π-pulse efficiencies,
thanks to its large coherence length [225]. Moreover, atomic sources at 50 nK
temperature were already demonstrated with delta-kick cooling technique [226],
opening interesting future perspectives.

5.4.2 Sensitivity

The sensitivity δg/g of the interferometeras a gravimeter is determinedbymeasuring
the phase fluctuations δΦ at the slope of the central fringe:

δg

g
=

δΦ

2nkgT2 . (5.14)

The short and long-term sensitivities are characterized with the Allan deviation.
The results for a first-order interferometer with a time T = 30 ms and the estimated
effect of the main noise sources are shown in fig. 5.16. The Allan deviation scales



132 Large-momentum-transfer Bragg interferometer with 88Sr atoms

1 10 100 1000
10-9

10-8

10-7

10-6

0 1 2
0.2

0.4

0.6

0.8

A
lla

n 
de

vi
at

io
n 

δg
/g

Averaging time �  (s)

 

 

P
(∆

Φ
)

Phase �
III

 [π]

Figure 5.16: Allan deviation of the gravity acceleration measurements for a first-
order interferometer with a time T = 30 ms (black squares). The inset shows the
corresponding fringe and the point at which the phase fluctuations are measured. Also
shown are the estimated effects due to the residual acceleration noise of the retro-
reflection mirror (dash red line), the optical phase noise of the Bragg beams (dash dot
blue line), the intensity noise of the Bragg beams (short-dash orange line) and the shot
noise (1 × 105 atoms, dash dot dot green line).

as the inverse-root of the integration time with δg/g = 1.5 × 10−6 at 1 s, reaching
4 × 10−8 at 2000 s.

The sensitivity of our interferometer is presently limited by the residual acceler-
ation of the suspended retro-reflection mirror. The estimated phase noise due to the
mirror vibrations is 380 mrad/

√
τ, where τ is the averaging time. The second major

noise contribution comes from the optical phase noise of the Bragg beams which
is estimated to be 20 mrad/

√
τ, more than one order of magnitude smaller than the

vibration noise. The calculated phase noise arising from intensity fluctuations of
the Bragg laser is 1 mrad/

√
τ, while other noise sources such as AC Stark shift

effects and Bragg frequency noise are estimated to give contributions below the
µrad/

√
τ level. Finally, the shot noise limit for 105 atoms is 10 mrad/

√
τ.

In the following section we will show how these noise contributions are esti-
mated.
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5.5 Main noise sources in the Sr Bragg interferometer

Herewe provide an evaluation of themain noise sources limiting the sensitivity of the
Sr interferometer, using theoretical analysis as well as experimental measurements
of the typical power spectral noise densities (PSD). Note that all the equations
for the noise estimation are written for first order Bragg diffraction, n = 1. Also
note that, while the estimated phase noise is proportional to n, the sensitivity of
the interferometer (δg/g, as given by eq. (5.14)) does not depend on n. For the
evaluations, we will consider the following typical interferometer parameter values:
interferometer time T = 30 ms, cycle time Tc = 1.7 s and π/2-pulse duration
τBS = 10 µs. In order to maintain simplicity in the calculations we consider Bragg
pulses with a square profile, although a Gaussian profile is used in the experiment.
What is important for the evaluation of the noise contributions is actually the pulse
area τBSΩR and therefore, for τBS � T , using different pulse shapes has a negligible
effect on the result.

5.5.1 Bragg laser intensity noise

Intensity fluctuations of the Bragg beams cause fluctuations of the Rabi frequency,
which affect the interferometer signal. To reduce the intensity noise coming from
our laser source, we stabilized the optical amplitude by means of an AOM, as
described in sec. 5.1.1. Figure 5.17 shows the PSD measurement of the Bragg laser
intensity noise SI ( f ) with and without the active stabilization. The AOM feedback
allows the relative intensity noise below 1 kHz to be reduced by almost five orders
of magnitude. The low frequency peaks are a combination of a residual 50 Hz
signal and harmonics of the residual amplitude modulation at 10 MHz for the PDH
locking of the doubling cavity. The servo bump is visible at 30 kHz.

The estimation of phase shift induced on the interferometer by this noise follows
the analysis done for Raman interferometers (see for example ref. [227]). The phase
noise, written in terms of its Allan variance, is given by the following equation:

σ2
Φ,I (τ) =

Tc

τ

∫ +∞

0
SI ( f ) |HI ( f ) |2d f , (5.15)

where the transfer function HI ( f ), under the assumption that the intensity fluctua-
tions for all the three pulses are uncorrelated, is given by

|HI ( f ) |2 =

√
3π
C

sin4(2π f T )
(2π f T )2 , (5.16)

where C is the contrast of the interferometer. For our selected values we estimate a
σΦ,I (τ) = 1 mrad/

√
τ.
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Figure 5.17: Power spectral density of the Bragg laser relative intensity noise, with
(blue line) and without (red line) active stabilization.

Intensity fluctuations of the Bragg laser could, in principle, induce phase noise
through the a.c. Stark shift effect. However, for Bragg diffraction this effect is
reduced in comparison to Raman interactions, since atoms remain in the same
internal state and only their momentum changes. A residual differential shift comes
from the different detunings for the two momentum states through the Doppler
shift effect. One should therefore still expect a small contribution to phase noise
proportional to the intensity fluctuation

∆φac =
4∆ω
δ

δI
I
, (5.17)

where ∆ω and δ are the Bragg resonance frequency and the Bragg laser detuning
respectively, and δI the intensity fluctuation over the interferometer time. With our
typical parameters, we estimate an induced phase noise of 4 µrad per shot, which
is negligible compared to other noise sources.

5.5.2 Bragg laser frequency noise

The influence of fluctuations of the absolute Bragg laser wave vector has also been
estimated. For this, the frequency stability of the 461 nm Bragg laser has been
characterized through the beat note of the Bragg laser against the master cooling
laser at 461 nm. The relative frequency instability at 1 s is 7 × 10−10, indicating a
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relative uncertainty of 7 × 10−10 on g, based on the relation:

∆g

g
=
∆keff
keff

=
∆ν

ν
. (5.18)

Therefore, the absolute frequency noise of the Bragg laser is not currently limiting
the performance of the interferometer.

5.5.3 Bragg laser phase noise

Sensitivity function

The behavior of the interferometer phase, in presence of fluctuations in the phase
difference φ between Bragg beams, is characterized by the sensitivity function g(t).
It was initially developed in the context of atomic clocks [228], and then it found
application in pulsed atom interferometry for characterization of laser phase noise
[229] and for vibration noise [230] contributions.

The sensitivity function is a unit-less quantity defined as the relative probability
amplitude variation δP(Φ) due to the instantaneous phase jump δφ at time t in the
Bragg pulse sequence:

g(t) = 2 lim
δφ→0

δP(δφ, t)
δφ

. (5.19)

For a Mach-Zehnder pulse sequence τBS–T–2τBS–T–τBS , g(t) can be calculated in
separated pieces. The transition probability for an ideal contrast C = 1 is P(Φ) =
(1 − cosΦ)/2, where Φ = φI − 2φI I + φI I I is the total phase of the interferometer
due to the Bragg pulses. For phase jumps occurring between the first and the second
pulse, the phases can be written as: φI = φ, φI I = φ+ δφ and φI I I = φ+ δφ+ π/2,
so the transition probability becomes P(δΦ) = (1−cos(π/2−δφ))/2. For small δφ,
δP = ∂P/∂(δφ)δφ, and if we apply the definition in eq. (5.19) we get g(t) = −1.
In the same way, we find g(t) = +1 for phase jumps occurring between the second
and the third pulse. To calculate g(t) for phase jumps occurring during a pulse, one
has to take into account the time-dependent state amplitudes of the atomic wave
function. It can be seen that these terms depend on the Rabi frequency ΩR of the
driving Bragg transition. We find the total sensitivity function to be (see fig. 5.18):

g(t) =




0 for − Tc/2 < t < −T
sin[ΩR (t + T )] for − T < t < −T + τBS
1 for − T + τBS < t < −τBS
− sin[ΩRt] for − τBS < t < τBS
−1 for τBS < t < T − τBS
sin[ΩR (t − T )] for T − τBS < t < T
0 for T < t < Tc/2.

(5.20)
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Figure 5.18: Sensitivity function g(t) for a Mach-Zehnder pulse interferometer.

We defined g(t) between −Tc and Tc since the interferometer sequence will be
repeated with a frequency 1/Tc.

Transfer function

To understand the link between the time-dependent phase fluctuation δφ and the
interferometer phase δΦ, let’s integrate eq. (5.19) at mid-fringe, where δP ∼ δΦ/2:

δΦ =

∫
g(t)dt =

∫
g(t)

dφ
dt

dt . (5.21)

For a phase modulated at frequency ωφ and amplitude Aφ, from eq. (5.21) we find
δΦ = Aφωφ Im[G(ωφ)], where G(ω) is the Fourier transform of the sensitivity
function. If we consider a wide distribution of frequencies over which the phase
jumps can occur, we can define the transfer function in the frequency domain (also
called weighting function):

H (ω) = ωG(ω) ⇔ Hφ ( f ) = 2π f
∫ +∞

−∞

ei2π f tg(t)dt . (5.22)

The transfer function |Hφ (2π f ) |2 for our typical interferometer parameters is shown
in fig. 5.19(a). We can distinguish two features. Firstly, an oscillation at frequency
1/(T + 2τBS) leads to zeros at harmonics of this frequency. Secondly, there is a
low-pass filter due to the finite duration of the Bragg pulses, with an effective cut-off
frequency f0 = (ΩR/2π)/

√
3, about 15 kHz in our case.

Phase noise measurements

The PSD measurements of the phase noise Sφ ( f ) on the Bragg beams is presented
in fig. 5.19(a). This has been characterized through the use of a digital PFD by
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Figure 5.19: (a) Calculated transfer function for the Bragg phase noise for our typical
interferometer parameters. (b) Phase noise PSD Sφ ( f ) for different experimental
conditions: optical interferometer covered by box (red line), not covered (blue line),
optical table floating (green line), RF phase noise before AOMs (black line).

comparing the beat note of the two Bragg frequency components, ω1 and ω2, to a
reference RF synthesizer. The beat note is detected on a photodiode placed after
the polarization maintaining fiber (just before the atomic sample). In the plot we
also compare the spectra taken in different conditions. As described in sec. 5.1.1,
we built a plastic box to cover the optical Bragg laser setup. This reduced the noise
at low frequency (blue curve is without box). Floating the optical table reduced the
noise around 40 Hz (green line). Unfortunately, the Bragg laser is placed on the
same table as the vacuum system, therefore we need to unsuspend the table to avoid
tilt drifting (red curve). For comparison we also show the RF phase noise recorded
just before the AOMs (black curve). This is responsible for the base noise above
1 kHz and for the lines between 100 Hz and 1 kHz. In this region the optical noise
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is larger, mainly due to vibration resonances in the optical mounts.
The rms standard deviation of the interferometer phase noise due to a Bragg

laser phase noise with PSD Sφ ( f ) can be written as

σ2
Φ,φ = (2π f )2

∫ +∞

0
|H ( f ) |2Sφ ( f )d f . (5.23)

Our interferometer phase measurement consists of many measurements with a
repetition rate 1/Tc , in order to average out noise. This pulsed operation introduces
an aliasing effect, widely studied in atomic clocks [231, 232], called the Dick effect.
The one sample variance of eq. (5.23) has to be corrected as follows:

σ2
Φ,φ (τ) =

T2
c

τ2

∫ +∞

0

4 sin4(π f τ)
sin2(π f Tc)

|Hφ ( f ) |2Sφ ( f )d f . (5.24)

Under our typical conditions we estimate σΦ,φ (τ) = 20 mrad/
√
τ, which is still one

order of magnitude lower with respect to the vibration noise of the retro-reflection
mirror.

5.5.4 Vibration noise

Transfer function

Another important contribution to the interferometer noise is the vibration noise,
which is directly coupled to the upper retro-reflecting mirror for the Bragg beams.
The degradation to the Sr interferometer sensitivity due to vibrations coupled to the
retro-reflecting Bragg mirror can be easily derived from eq. (5.23), by replacing
the Sφ (ω) by k2

eff Sz (ω) = k2
eff Sa (ω)/ω4, where Sz (ω) and Sa (ω) are the PSD

of position and acceleration noise respectively. The transfer function (shown in
fig. 5.20a) acts as a second-order low pass filter, with a frequency cut-off 1/T , which
drastically suppresses the high frequency noise contribution. For large averaging
time τ and a repetition rate fc = 1/Tc, the sensitivity to vibration noise can be
expressed by:

σ2
Φ,a (τ) =

k2
eff
τ

∞∑
n=1

|H (2πn fc) |2

(2πn fc)4 Sa (2πn fc). (5.25)

Here keff = 2kL = 4π/λL is the effective wave vector of the first-order Bragg
diffraction with λL = 461 nm.

Vibration noise measurements

The amplitude spectral density of acceleration noise Sa ( f ), measured on top of the
supporting MinusK platform by a triaxial accelerometer (Episensor ES-T), is shown
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Figure 5.20: (a) Calculated transfer function for the vibration noise for our typical
interferometer parameters. (b) Amplitude spectral density Sa ( f ) measured on top of
the suspension platform for different experimental conditions: platform not suspended
(red line), suspended (green line), enclosed in acoustic isolation box (blue line).

in fig. 5.20(b). Here we report the spectra for the vertical acceleration only, which
gives the main contribution to the interferometer noise once the Bragg beam is set
vertically and the retro-reflection mirror is properly aligned. For comparison we
show spectra for different experimental conditions. The red line represents the noise
measured with the unsuspended platform, our ground noise. When the platform is
properly tuned the typical spectrum is represented by the green line. We further
improved the low frequency noise attenuation by enclosing the whole the platform
in a 2 mm thick plastic box covered by a layer of foam (blue line). The noise above
100 Hz is dominated by the internal electrical noise of the accelerometer and it is
not used for the transfer function calculation.

For our typical vibration noise, we estimated an Allan deviation of σΦ,a (τ) =
380 mrad/

√
τ. This contribution sets the actual limit on our interferometer sensitiv-

ity.
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5.5.5 Preliminary attempts of vibration compensation

A possible solution to overcome the residual vibrational noise limitation is based
on a feedback correction to the interferometer phase by using the a.c. acceleration
signal measured by a low noise seismometer [230, 233].

The sensitivity function g(t) expressed by eq. (5.20) can also be used to
extrapolate information on the retro-reflecting mirror vibrations. By considering a
mirror displacement r(t), the induced vibration phase noise is φ(t) = keff ·r(t). The
interferometer phase shift due to the mirror motion can be calculated by applying
eq. (5.21):

δΦv =

∫ +∞

−∞

g(t)keff · v(t)dt, (5.26)

where v(t) = ṙ(t) is the velocity of the mirror. Using the chain rule, the previous
equation can be written in terms of the mirror acceleration a(t) = v̇(t):

δΦa = −keff ·
[

f (t)v(t)dt
]+∞
−∞ + keff ·

∫ +∞

−∞

f (t)a(t)dt, (5.27)

where f (t) is the response function to acceleration noise of the mirror, and it is
defined as the integral of the sensitivity function:

f (t) = −
∫ t

0
g(t ′)dt ′. (5.28)

Figure 5.21 shows the response function corresponding to the integral of the g(t)
in fig. 5.18 for a Mach-Zehnder pulse interferometer. Since the f (t) is zero outside

T tBSτ

T

BSτBSτ2

)t(f

T

Figure 5.21: Response function f (t) to acceleration of the retro-reflection mirror.
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of the interferometer interval time, the first term in eq. (5.27) vanishes and the
resulting interferometer phase due to acceleration of the mirror is:

δΦa = +keff ·

∫ +∞

−∞

f (t)a(t)dt. (5.29)

The f (t) represents a weighting function for the acceleration noise of the mirror,
and the eq. (5.29) can be used to correct the atomic phase once the acceleration
a(t) is precisely measured.

The accelerometer signal is acquired during the interferometer cycle by a digital
card (NI PCI-4472B) with 24 bit resolution and 100 kHz sampling rate. As a
preliminary attempt to characterize the correlation between acceleration noise and
interferometer phase noise, we induced a strong acceleration modulation with a
loud speaker placed on top of the isolation platform. Figure 5.22 displays the phase
correction results for a 5 ms interferometer with an induced acceleration noise at
100 Hz. A typical noise acquisition is shown in fig. 5.22(a). The time origin
was set to the first pulse time with an optimized delay of 2 ms. Figure 5.22(b)
shows a set of 220 interferometer measurements. The noise destroys the fringe
visibility, while the contrast is preserved, demonstrated by a histogram of the
measured probabilities, which behaves as cos−1(Φ). Figure 5.22(c) shows the
measured transition probability as a function of the phase shift calculated from the
accelerometer output signal. The good correlation between the acceleration signal
and the interferometer phase allows reconstruction of the fringe.

An efficient rejection requires that the accelerometer measures the vibrations of
the retro-reflecting mirror as accurately as possible. This was not probably the case
for us, since in a low noise environment the noise detected by the accelerometer
was not correlated enough to the interferometer phase noise to produce a significant
improvement of the gravimeter sensitivity. This was probably due to two reasons.
Firstly, the mirror was not solidly mounted on the accelerometer but, rather was
suspended from a side of the isolation platform, while the accelerometer was placed
at the center of the platform itself. This could result in a significant difference in
the acceleration measured by the instrument and the real one present on the mirror,
which could also be due to unwanted correlations between the accelerations on
different axes. This configuration was unavoidable for the present setup, which
required the placement of the isolation platform on top of the experiment, and by
the dimensions of the accelerometer, which did not allow it to be placed it on top of
the mirror without unbalancing the isolation platform. Secondly, our accelerometer
presents a huge electrical noise floor above 100 kHz, which can be mistaken for
acceleration noise in the evaluation of the correction.

An improvement of this technique will require a better positioning of the
accelerometer with respect to the mirror and the reduction of the noise floor of the
instrument. The best configuration would be placing the isolation platform on the
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Figure 5.22: Phase correction for a 5 ms interferometer with induced acceleration
noise at 100 Hz. (a) Typical accelerometer acquisition during the interferometer cycle.
(b) Transition probability measurements. (c) Same data as in (b) plotted as a function
of the acceleration-induced phase δΦa.
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ground with the accelerometer at the center and the mirror on top of it. This would
require a drastic modification of the current setup since the vacuum chamber is
placed on an optical table and not enough room is available in between.





Chapter 6
Conclusions and perspectives

The aim of this thesis was the demonstration of high precision gravimetry based
on atom interferometry of ultra-cold strontium isotopes and the realization of
fundamental tests of general relativity. In particular, during the first year I completed
an experiment started in 2012. The work was successfully published in Physical
Review Letters in July 2014. The aim of the experiment was testing the Einstein
Equivalence Principle in its weak formulation and the spin-gravity coupling. In the
second part of my Ph.D. fellowship I started a new experiment which demonstrated
the potentiality of a new generation of interferometers based on strontium atoms,
for future gravitational tests. The results were published in Physical Review A.

We performed a quantum test of Einstein Equivalence Principle for the bosonic
88Sr isotope which has no spin versus the fermionic 87Sr isotope which has a
half-integer spin by coherent control of the atomic motion in an optical lattice
under the effect of gravity. Gravity acceleration was measured by means of a
genuine quantum effect, namely, the coherent delocalization of matter waves in
an optical lattice. To compare gravity acceleration for the two Sr isotopes, we
confined atomic wave packets in a vertical off-resonant laser standing wave and
induced a dynamical delocalization by amplitude modulation of the lattice potential
at a frequency corresponding to a multiple of the Bloch frequency ωB, which is
directly related to the gravity acceleration g. The Bloch frequency corresponds to
the site-to-site energy difference induced by the gravitational force, and according
to the Equivalence Principle, the frequency difference δ87,88 = ωB,87 − ωB,87 for
the two isotopes must depend only on the atomic mass ratio.

In our work, we also demonstrated a new method to improve the precision of
the measurement of ωB and consequently of gravity acceleration by locking the
AM oscillator frequency to the Bloch frequency. With this technique we were able
to reach a sensitivity at 1 s of σνB,88 = 1.5×10−6νB,88 and σνB,87 = 9.8×10−6νB,87.
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This new method allowed us to improve the sensitivity in the determination of the
frequency of Bloch oscillations (and of gravity acceleration) by more than one order
of magnitude for 88Sr with respect to our previous results, achieving a precision
of 5 × 10−8 for a single acquisition of about 700 s, while for 87Sr we obtained a
precision of 4 × 10−7.

Each pair of Bloch frequency measurements was used to determine the Eötvös
ratio η, defined as the relative differential acceleration between two test masses. The
Eötvös ratio η accounts for violations of the Equivalence Principle due to a nonzero
difference between gravitational and inertial mass. In the case of our experiment,
η depends only on the Bloch frequencies of the two isotopes and their mass ratio.
After 68 measurements of η and the evaluation of the systematic effects we were
able to obtain the final result η = (0.2 ± 1.6) × 10−7. By measuring the Bloch
frequency separation of the 10 spin components of 87Sr we were also able to set a
limit on the spin-gravity coupling violation. We measured the coupling strength to
be k = (0.5 ± 1.1) × 10−7.

The present results can set bounds for previously unmeasured parameters of
the standard model extension [203], can be interpreted in terms of the violation
parameters for the fundamental constituents of the two atoms [218], and it sets a
10−7 direct bound on the boson-to-fermion gravitational constant ratio from being
different from 1 [58]. Further enhancements in sensitivity with this experimental
method will require simultaneous probing of the two isotopes [234] and spin-
polarization of 87Sr. Short-distance measurements (r ≤ 1 cm) with 10−8ωB

precision can lower the limit of monopole-dipole interaction constants gpgs by 9
orders of magnitude [56].

The second part of my work was focused on the development of a new in-
terferometric scheme with strontium atoms based on Bragg pulses, with the aim
of increasing the sensitivity of gravity measurements and the demonstration of
interferometry with atomic species other than alkali-metal atoms, which are most
commonly used. We demonstrated the first atom interferometer based on large-
momentum-transfer Bragg diffraction in a fountain of strontium atoms, and its
use for the measurement of gravity acceleration. In particular, the 88Sr isotope
that we used in this work has specific favorable characteristics: it is insensitive
to external magnetic field because of its total null spin in the ground state and its
small scattering length results in reduced decoherence due to cold collisions. These
unique properties makes this atom of superior interest for the highest precision
gravimetric devices.

We have studied Bragg diffraction by a 461 nm laser standing wave up to eight
photon recoils and we realized a vertical Mach-Zehnder interferometer of up to
60 ms of free fall time. We studied the contrast degradation and we demonstrated
its performance as a gravimeter with a sensitivity δg/g = 4 × 10−8. The results are
mainly limited by technical aspects such as the available laser power, the size of
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the vacuum cell and residual vibrations; therefore we anticipate a dramatic increase
in performance with the increasing power of available lasers, a larger chamber to
increase the interferometer time and improved isolation from vibrational noise. A
variation on our scheme is the possibility to induce the Bragg transitions using
the narrow intercombination line at 689 nm where stable lasers with a higher
output power are already available. Moreover, schemes based on the combination
of Bragg diffraction and Bloch oscillations [161, 221, 235] might allow superior
performances in terms of precision and accuracy thanks to the specific properties
of strontium. Other relevant prospects are the use of ultra-cold Sr sources [236] and
high sensitivity detection schemes beyond the classical limit [237].
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