
Role of Nucleus Accumbens in Neuropathic Pain: Linked Multi-
Scale Evidence in the Rat Transitioning to Neuropathic Pain

Pei-Ching Chang1,†, Sarah Lynn Pollema-Mays1,†, Maria Virginia Centeno1, Daniel 
Procissi2, Massimos Contini3, Alex Tomas Baria1, Macro Martina1, and Apkar Vania 
Apkarian1,*

1Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 
Illinois 60611, USA.

2Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 
60611, USA.

3Dipartimento di Scienze Fisiologiche, Universita` di Firenze, I-50134, Firenze, Italy.

Abstract

Despite recent evidence implicating the nucleus accumbens (NAc) as causally involved in the 

transition to chronic pain in humans, underlying mechanisms of this involvement remain entirely 

unknown. Here we elucidate mechanisms of NAc reorganizational properties (longitudinally and 

cross-sectionally), in an animal model of neuropathic pain (spared nerve injury, SNI). We 

observed inter-related changes: 1) In resting-state fMRI, functional connectivity of the NAc to 

dorsal striatum and cortex was reduced 28 days (but not 5 days) after SNI; 2) contralateral to SNI 

injury, gene expression of NAc dopamine 1A, 2, and κ-opioid receptors decreased 28 days after 

SNI; 3) In SNI (but not sham) covariance of gene expression was upregulated at 5 days and settled 

to a new state at 28 days; and 4) NAc functional connectivity correlated with dopamine receptor 

gene expression and with tactile allodynia. Moreover, interruption of NAc activity (via lidocaine 

infusion) reversibly alleviated neuropathic pain in SNI animals. Together, these results 

demonstrate macroscopic (fMRI) and molecular reorganization of NAc and indicate that NAc 

neuronal activity is necessary for full expression of neuropathic pain-like behavior.

Introduction

Concepts regarding the role of nucleus accumbens (NAc) in pain, and in chronification of 

pain, are undergoing rapid advances. Until recently this nucleus was thought to be primarily 

involved in evaluating reward signals, yet new evidence shows that it also encodes salience 

for pain, and value for pain relief and that NAc valuation of acute analgesia is distorted in 

chronic pain patients [9; 12; 13; 54; 64; 65]. Recent evidence indicates that increased 
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functional connectivity between NAc and the prefrontal cortex is predictive of the transition 

from acute to chronic pain one year prior to pain chronification [10]. Despite these 

advances, the mechanistic implications of the macroscopic human brain imaging-based 

findings remain unknown; even though they were predicated on the hypothesis that NAc 

dopaminergic learning mechanisms may play an essential role in pain chronification [7].

The NAc is a central component of the mesocorticolimbic system [5; 19; 31]; a brain 

network closely associated with emotional learning, motivated and addictive behavior, in 

which dopaminergic neurotransmission and modulation are thought to supply the critical 

learning signal. Knowledge of the role of the mesolimbic circuitry in pain is increasing. The 

association between mesolimbic circuitry and neural substrates of pain and analgesia has 

been considered in the past decades [29; 37; 53]; for noxious or aversive conditions both 

excitatory and inhibitory responses of dopaminergic neurons have been observed [16; 23; 

43; 50; 62; 68], both increases and decreases in extracellular dopamine are reported [11; 51], 

and corresponding results are found in human studies [44; 46]. Moreover, in patients with 

central disorders such as schizophrenia, Parkinson’s disease, substance abuse, and mood and 

anxiety disorders, pain sensitivity is altered, presumably as a consequence of changes in the 

dopaminergic system [1; 42; 71], and animal studies implicate dopamine in acute and 

neuropathic conditions [6; 26; 60]. Yet, the mechanistic role of NAc in pain chronification 

remains unknown.

The present study was designed to interrogate NAc properties in the spared nerve injury 

(SNI) model of neuropathic pain to evaluate cross-species correspondences, and to inform 

the relationship between fMRI macroscopic measures and related molecular mechanisms. 

The SNI model is a robust rodent model of neuropathic pain in which animals develop 

lifelong pain following nerve injury. It is used here as a tool for detecting how persistent 

neuropathic pain may affect the NAc. Given that the critical role of NAc in human pain 

chronification was identified in a combined longitudinal and cross-sectional study, we 

adopted a similar approach in the rat and tracked NAc functional connectivity and receptor 

properties, as animals transitioned from healthy to neuropathic pain behavior. Furthermore, 

we examined the effects of reversibly interrupting NAc activity on modulation of 

neuropathic behavior.

Methods

Animals

Adult male Sprague Dawley rats (Harlan, Indianapolis, IN; 200 – 250g) were used 

throughout the experiments. Animals were housed on soft bedding in groups of three per 

cage on a 12-h light/dark cycle in a temperature-controlled environment (21 ± 2°C) with 

food and water available ad libitum. For all animals, handling and testing were performed 

during the light period. To minimize stress, they were handled regularly before injury and 

before behavioral testing. All experimental procedures were approved by the Northwestern 

University Institutional Animal Care and Use Committee. Behavioral measures and initial 

fMRI data analyses were performed in a blinded fashion.
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Experimental Design

Experiment A—In this experiment, we tested how peripheral nerve injury induces changes 

in NAc due to persistent neuropathic pain. We tracked NAc properties cross-sectionally (in 

comparison to sham animals) from pre-injury (Day-2) to persistent pain (Day5 and Day28), 

using mRNA receptor expression, fMRI functional connectivity, and behavior. The 

experimental paradigm is summarized in Fig. 1A. Animals were divided into two groups: 

the Short Term group sacrificed at Day5, and the Long Term group sacrificed at Day28 

(MRI: Day5: SNI = 10, sham = 12 animals; Day28: SNI = 13, sham = 11 animals. RT-

qPCR: Day5: SNI = 14, sham = 13 animals; Day28: SNI = 14, sham = 12 animals). Because 

physiological recording was used for fMRI data pre-processing, rats with incomplete 

physiological recordings during the scans were excluded from the fMRI study; however 

these rats were still included in the receptor gene expression analysis. fMRI data was 

obtained before injury, as well as on the day before they were sacrificed to extract NAc 

tissue for mRNA receptor expression. Mechanical allodynia was assessed the day before 

each fMRI scan.

Experiment B—Modulation of neuropathic behavior was investigated by blocking NAc 

activity using a brain microinjection technique. A different set of SNI animals received 

chronic infusion of lidocaine 2% (n = 8) or saline as vehicle control (n = 7) in the NAc for 

14 days. The experimental paradigm is summarized in Fig. 2. An Alzet mini pump was 

implanted on the side (right) contralateral to the paw (left) that received SNI injury, with 

both procedures performed on the same day. Behavioral tests for mechanical and cold 

allodynia were assessed twice before injury (around Day-2 for implanting the pump and 

injuring the peripheral nerve) as well as on Day4, Day7, Day10, Day14, Day17 and Day20.

Spared Nerve Injury (SNI)

SNI was used as an animal model of persistent peripheral neuropathic pain. The SNI model 

has been described previously [24]. Animals were anesthetized with isoflurane (1.5 –2%) 

and a mixture of 30% N2O and 70% O2. The sciatic nerve of the left hind leg was exposed at 

the level of trifurcation into the sural, tibial, and common peroneal nerves. The tibial and 

common peroneal nerves were tightly ligated and severed, leaving the sural nerve intact. 

Animals in the sham injury group served as the control as their sciatic nerves were exposed, 

as in the SNI procedure, but they received no further manipulations.

Test for Mechanical Allodynia

Tactile sensitivity of the hind paw was measured using withdrawal responses to a series of 

von Frey filaments as previously described [20]. Animals were placed in a Plexiglass box 

with a wire grid floor and allowed to habituate to the environment for 10 – 15 minutes. 

Filaments of varying forces (Stoelting Co, USA) were applied to the lateral part of the 

plantar surface of the hind paw. Filaments were applied in either ascending or descending 

strengths to determine the filament strength closest to the hind paw withdrawal threshold. 

Each filament was applied for a maximum of 2 seconds at each trial; paw withdrawal during 

the stimulation was considered a positive response. Given the response pattern and the force 

of the final filament, 50% response threshold (in grams) was calculated [20].
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Test of Cold Allodynia

The measurement of sensitivity to cold consisted of applying 1 drop (about 50µl/site) of 

acetone solution on the lateral hind paw of the animal as previously described [22]. The 

withdrawal reaction of the animals was observed. Half a second and 20 seconds were 

assigned as minimal and maximal cut-off points, respectively. This test was repeated three 

times per paw, at 10-minute intervals. A score ranging from 0 to 4 was used to quantify the 

type of reactions (withdrawal, vocalization, flinching and licking) the animals exhibited to 

the acetone drop. The scores of an animal’s reactions during three times of the test were 

averaged for per paw, and used as the score of the animal.

MRI Acquisition

All MR experiments were carried out on a Bruker 7 T/40 cm horizontal magnet (Clinscan, 

Bruker Biospin, Ettlingen, Germany) with a surface coil. Blood oxygen level-dependent 

(BOLD) contrast-sensitive T2*-weighted gradient-echo echo-planar images were acquired 

for resting state fMRI (rs-fMRI) scans. Each scan consisted of 300 volumes of 14 slices 

acquisition (repetition time (TR) of 1.3 seconds, echo time (TE) of 25 milliseconds, flip 

angle = 60°, 1.0 mm slice thickness, and 0.5 × 0.5 mm2 in-plane resolution). A high-

resolution T2-weighted RARE anatomical reference was acquired for each animal (1.0 mm 

slice thickness and 0.273 × 0.273 mm2 in-plane resolution). An additional T2-weighted 

RARE anatomical scan with the same geometry as the functional image (1 mm slice 

thickness and 0.5 × 0.5 mm2 in-plane resolution) was also acquired and used as a low-

resolution anatomical reference.

Anesthesia was induced and maintained during the experiments with isoflurane (1.75 – 

2.5%) mixed with air. Body temperature, respiratory rate, and heart rate were monitored and 

recorded during scans (Model 1025; SA Instruments, Stony Brook, NY, USA). The 

monitoring system was operated using a fiber optic temperature probe, respiration pad and 

fiber optic pulse oxymeter. Respiratory and cardiac waves were recorded during image 

acquisition with a temporal resolution of 0.001 kHz. To maintain body temperature around 

37°C during the imaging session, a feedback-controlled water circulation system (medres, 

Cologne, Germany) was used to supply the base of the cradle. rs-fMRI scans were collected 

only when physiological parameters remained stable for about 10 minutes.

Image Preprocessing

The rs-fMRI data was preprocessed with AFNI (http://afni.nimh.nih.gov) and FSL 5.1 

(FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl). The fMRI were first skull 

stripped and preprocessed using AFNI by applying de-spiking, removal of physiological 

artifacts from respiration and heartbeat, and correction for slice timing. Rats that had 

incomplete respiratory and cardiac recordings were discard from MRI data analysis. The 

images were then processed using FSL for correction for motion, spatially smoothed with a 

Gaussian kernel of 0.8 mm FWHM and high pass filtered with a cutoff of 100 seconds.

Volumes from functional images were registered to a standard space with a three-step 

process. Images were first aligned with the individual’s low-resolution anatomical image 

followed by alignment with the individual’s high-resolution anatomical image, and then co-
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registered to a standard space. Average time courses from all of the voxels inside whole 

brain, white matter (WM) and cerebrospinal fluid (CSF) were extracted. Confounding 

regressors that modeled global whole brain, WM and CSF signals and six motion 

parameters, including translations and rotations, were removed from images through linear 

regression.

Functional Connectivity Analysis

rs-fMRI connectivity was evaluated using a seed-based correlational approach. Based on 

histological characteristics in animals, the NAc is divided into two major sub-territories, the 

core and the shell [27; 41; 48]. Fig. 3A displays the coordinates of seeds for the NAc core 

and shell, which were selected based on the rat MRI atlas [63] and were used for functional 

connectivity analysis. Averaged time course from all of the voxels inside the seed region 

was correlated with every other voxel time course of the brain. Correlation coefficients (r) 

were converted to a normal distribution using Fisher's z transform (z(r)). In order to evaluate 

anesthesia-related global functional connectivity [47], 1000 randomly selected voxels were 

correlated with every other voxel time course of the brain, Fisher’s z transformed, and 

averaged to yield a single index per animal, which represented the anesthesia-related global 

functional connectivity of the animal. No significant difference was found between the 

indices of SNI and sham animals for all experimental conditions (Day-2, Day5 and Day28). 

To diminish anesthesia-related across animal variability, global functional was used as 

confounding regressor in the group-level statistical analysis.

Voxel-wise group-level statistical analysis of functional connectivity were assessed non-

parametrically using the FSL Randomize tool [55]. For each analysis, 5000 random 

permutations were carried out. The analyses were performed only within the gray matter 

mask. All statistical maps were family-wise error (FWE) corrected using P < 0.05, based on 

the threshold-free cluster enhancement (TFCE) statistic image [66].

Gene Expression Analysis

Gene expression was performed on NAc from SNI and sham operated rats at Day5 and 

Day28. Rats were deeply anesthetized with Isoflurane and rapidly decapitated; brains were 

removed while immersed in TBS frozen buffer. Brains were sliced coronally from Bregma 

2.20 to 1.00, allowing easy visualization of the NAc, and contralateral and ipsilateral NAc 

were removed separately and frozen in liquid nitrogen, and stored at − 80°C. RNA was 

extracted using a Qiagen RNeasy RNA extraction kit; DNA contamination was prevented by 

first using a column that binds DNA while allowing RNA to flow through. RNA was reverse 

transcribed into cDNA using Roche’s First Strand cDNA Synthesis kit and oligo dT primers. 

RNA yield and quality was confirmed with Nanodrop analysis.

RT-qPCR was done using a Roche Lightcycler 480 (LC480) with either Roche probes 

master mix or SYBR green master mix, primers (0.4 µM), hydrolysis probes and NAc 

cDNA (primers listed in Table S7). All genes of interest were normalized to the GAPDH 

reference gene. For hydrolysis probe reactions, a single gene of interest was multiplexed 

with the reference gene GAPDH in the same well. Reactions consisted of a 5-minute hot 

start incubation at 95°C, followed by 45 cycles of 10-second at 95°C, 10-second at 60°C, 
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and 1-second at 72°C. Primers were initially validated using a SYBR green RT-qPCR assay, 

which allowed for melting temperature analysis, demonstrating a single peak for each gene 

product. RT-qPCR samples were also run on 1.8% agarose gels to verify single gene 

products. Although primers were intron spanning, cDNA negative and reverse transcriptase 

negative controls were done for genes of interest and did not give a signal. As recommended 

in published guidelines for RT-qPCR methods, all data were efficiency corrected [18]. 

Standard curves were done to calculate reaction efficiency for each gene product using 

dilutions of NAc cDNA. All data were efficiency corrected using Roche LC480 software 

and the delta delta Ct method [61]. For multiplex reactions, efficiency curves were run using 

multiplex parameters, while for SYBR green reactions efficiency curves were done with 

SYBR green reaction mixes. Within the recommendations of the MIQE RT-qPCR 

guidelines, a reference gene can be validated by running another reference gene against it. 

Thus to validate GADPH as a stable reference gene, tubulin was run relative to GAPDH for 

all samples and no differences in tubulin were detected when run against GAPDH. 

According to MIQE guidelines this provides sufficient confidence in GAPDH that it can be 

used as a reference gene on its own [18]. Statistical analyses were done using a two-way 

ANOVA test, with Fisher LSD for post-hoc analysis.

Correlation Analysis

Relationships between NAc functional connectivity, receptor expression, and pain behavior 

were investigated using correlation analysis. Data for correlation analysis were pooled from 

Day5 and Day28, separately for SNI and sham animals. For inter-run calibration for RT-

qPCR, a normalized receptor gene expression was used in the correlation analysis. The 

samples of brain tissue were tested for RT-qPCR in two runs, with each run consisting of 

SNI and sham animals at Day5 and Day28. Thus, a z-score of receptor gene expression was 

calculated with each run in order to calibrate the two runs.

Mini-Pump Insertion

Animals were anesthetized with isofluorane (2 – 3%), and a mixture of 30% N2O and 70% 

O2 and an osmotic mini-pump (ALZET Osmotic Pumps, Model 2002, 200 µl reservoir 

volume, 14 days delivery; 0.5 µl/hr release rate; Cupertino, CA) was implanted 

subcutaneously between the scapular blades. This pump was filled either with saline or 

Lidocaine 2% and connected by a vinyl tube (PVC 60) to a 28-gauge injector (Plastics One, 

Roanoke, VA) that was stereotaxically implanted in the medial shell of NAc, which 

suggested to be hedonic hot spot in the NAc [57], and was contralateral to peripheral nerve 

injury (ML: + 1; DV: - 7; AP: - 1.7, relative to Bregma). Immediately after the pump 

insertion, these animals received an SNI injury.

Histology

At the end of the observation period of the animals for Experiment B, each animal was 

deeply anesthetized (60 mg/kg, nembutal, i.p.) and transcardially perfused with 4% 

paraformaldehyde. The brains were isolated and processed to determine the placement of 

cannulae. For this purpose, serial sections (40 µm thickness) were stained with Cresyl Violet 

stain and screened under the microscope.
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Results

Experiment A

In this experiment, we tested the effects of peripheral nerve injury on extent of information 

sharing between NAc and the rest of the brain, as well as on gene expression in NAc. The 

experimental design is shown in Fig. 1A. Baseline fMRI scans were conducted in rats 2 days 

prior to SNI or sham injury. At either 5 days or 28 days post-injury, SNI and sham injury 

rats were imaged again and sacrificed to assess NAc receptor gene expression. SNI animals 

showed behavioral signs of persistent neuropathic pain, including tactile allodynia after SNI 

injury (Fig. 1B). Von Frey 50% withdrawal thresholds of the injured paw in SNI animals, 

but not sham animals, decreased at Day 5 and persisted at Day 28 (two-way ANOVA, for 

group effect, F(2,86) = 15.93, P < 0.001; Fisher LSD post-hoc comparison for both Day 5 

and Day 28, P < 0.001). No difference in withdrawal thresholds was observed for the 

contralateral paw in SNI or either paw in sham animals (F(2,86) = 0.18, P = 0.83).

The NAc core and shell display overlapping but differential functional 
connections—To identify NAc functional connectivity in healthy conditions, we 

performed a whole-brain functional connectivity analysis using non-parametric permutation 

tests on resting-state fMRI scans acquired prior to injury (Day-2). rs-fMRI connectivity was 

evaluated using a seed-based correlational approach. Resting state analyses detect coherent 

patterns of brain activity in the resting subject, in the absence of a task, by assessing 

functional connectivity between a seed region and other target brain areas [33]. Based on 

histological, track tracing, and physiological characteristics in animals [35], the NAc is 

divided into two major territories, the core and the shell. Both the NAc core and shell 

exhibited extensive significant correlations with sensory and motor regions, prefrontal 

cortical regions, hippocampus, thalamus, and hypothalamus, and both regions showed the 

strongest functional connections with dorsal striatum (CPu, Caudate/Putamen), sensory 

cortex (S1/2), motor cortex (M1/2), insula (Ins), cingulate (Cg), as well as the medial 

(mPFC) and orbital (OFC) prefrontal cortices (Fig. 3B, Table S1 and Table S2).

Despite the large overlap in the NAc core and shell connectivity maps, the core and shell 

were also characterized by differential functional connectivity strengths (Fig. 3C, Table S3 

and Table S4). Specifically, the NAc core showed significantly stronger connectivity to Cg, 

CPu, Ins, OFC, S1/2 (Table S3), whereas the shell exhibited stronger connectivity to the 

hippocampus (Hipp), thalamus (Tha), hypothalamus (Hy), and mPFC (Table S4). In 

addition, the right NAc core showed significantly stronger connectivity to the left NAc core, 

whereas the right NAc shell showed significantly stronger connectivity to the left NAc shell. 

This demonstrated the core and shell were characterized by specific functional connections, 

even with the close proximity of the seeds for functional connectivity analysis.

Reorganization of NAc core and shell functional connections in SNI animals—
Our primary hypothesis was that NAc core and shell are important mediators of chronic 

pain-like behavior following neuropathic injury, which should be reflected in reorganization 

in information sharing between NAc and the rest of the brain. To examine changes 

associated with neuropathic pain, a whole-brain t-test determined group differences between 
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SNI and sham animals at Day-2, as well as Day5 and Day28. At Day-2 and Day5, no 

significant difference of functional connectivity between SNI and sham animals was seen 

(data not shown). At Day28, functional connectivity decreased for contralateral NAc core 

connectivity to the contralateral CPu, bilateral Ins and S1/2, and for ipsilateral NAc core 

connectivity to the contralateral Ins, and bilateral S1/2; for contralateral NAc shell 

connectivity to the bilateral S1/2, and Ins (Fig. 4 and Table S5).

Reduced expression of NAc dopamine type 1a, 2, and kappa-opioid receptors 
in SNI animals—To evaluate NAc receptor gene expression changes with the transition to 

neuropathic pain, reverse transcriptase, quantitative PCR (RT-qPCR) was conducted on 

NAc tissue from SNI and sham animals. To determine the possible lateralization of receptor 

gene expression changes, contralateral and ipsilateral NAc from each animal were collected 

and analyzed separately. In order to relate receptor gene expression to temporal aspects of 

chronification, tissue was collected at Day5 and Day28. Efficiency curves using 10-fold 

dilutions of NAc cDNA were run to validate primer efficiency (Fig. 5A, B for representative 

curves). RT-qPCR products were also run on a gel to verify a single product and confirm 

primer specificity (Fig. 5C). All genes of interest were normalized to the GAPDH reference 

gene and are shown relative to sham animals. Additionally, the properties of NAc ipsilateral 

to SNI were quantified relative to the ipsilateral sham NAc, whereas the NAc contralateral 

to SNI injury was quantified relative to the contralateral sham NAc. As Fig. 5D shows, there 

were no significant changes in the alpha tubulin to GAPDH ratio at either Day5 or Day28 in 

contralateral or ipsilateral NAc, thereby validating the stability of GAPDH as a reference 

gene. This analysis focused on genes that are either of particular interest for NAc function 

(D1, D2) or for pain regulation (opioids cannabinoid receptors). Our analysis revealed no 

significant changes in transcript expression at Day5 or Day28 for the cannabinoid receptor 1 

(CB1), µ-opioid receptor 1 (MOR1), and serotonin1a receptor (5-HT1a) (data not shown). 

Interestingly, the κ-opioid receptor (KOR) transcript showed no significant changes at Day5, 

yet a significant 27% reduction was identified only in contralateral NAc in SNI animals at 

Day28 (two-way ANOVA, post-hoc Fisher LSD comparison, P = 0.03), relative to sham 

animals (Fig. 5E). Furthermore, the DR1a transcript also showed no significant changes at 

Day5, but it showed a significant 30% reduction in the contralateral NAc only at Day28 (P = 

0.02) (Fig. 5F). The DR2 transcript also showed no significant changes at Day5, yet a 

significant 21% reduction in the contralateral NAc at Day28 was observed (P = 0.01) (Fig. 

5G). These data demonstrate that peripheral nerve injury induces significant, time dependent 

changes in the expression of several important genes within the NAc. Moreover, these 

changes are lateralized, occurring in the NAc contralateral to injury. Although no significant 

changes were detected in the NAc ipsilateral to injury, there were trends for a reduction in 

DR1a (P = 0.12) and DR2 (P = 0.11) receptor gene expression in SNI animals at Day28.

We also observe that the interaction between receptor genes (influence of one receptor on 

another) shifts in time after SNI. The latter was quantitated by the covariance matrix for 

receptor gene expression in NAc at Day5 and Day28 in SNI and sham animals, and 

represented as a receptor- network connectivity graph (Fig. 6). We observed a general 

upregulation of covariance between the genes examined in SNI animals at Day5, which 

subsequently (at Day28) subsided to levels comparable to sham animals. Across both groups 

Chang et al. Page 8

Pain. Author manuscript; available in PMC 2015 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and time intervals the expression of DR1a and DR2 (DR1/DR2), and the expression of CB1 

and 5-HT1a (CB1/5-HT1a), were positively interrelated within and across contralateral and 

ipsilateral NAc, whereas these gene pairs were negatively interrelated with each other. If we 

treat the measured pair-wise correlations as random samples, then we can quantify these 

general observations. The covariance matrix for DR1a, DR2, both within and across 

contralateral and ipsilateral NAc (Table S6A) shows a strong group by time interaction 

(F(1,20) = 15.2, P < 0.001), with a post-hoc Bonferroni comparison showing significantly 

higher covariance in SNI animals at Day5 (mean strength = 0.87, S.E.M. = 0.07) in contrast 

to sham animals at Day5 (mean strength = 0.44, P < 0.001). No group differences were 

identified at Day28 (SNI mean strength = 0.60; sham = 0.74). A similar analysis for the CB1 

and 5-HT1a covariance matrix (Table S6B) shows only a time effect (F(1,20) = 7.5, P < 

0.01), with a higher overall covariance strength at Day5 (mean strength = 0.65 with S.E.M. 

= 0.06), in contrast to Day28 (mean strength = 0.40). We also tested the covariance matrix 

linking the DR1a/DR2 with the CB1/5HT1a (Table S6C). The covariance matrix was 

significant for group (F(1,20) = 26.9, P < 10−5), time (F(1,20) = 5.1, P < 0.03), and group-

by-time interaction (F(1,20) = 10.4, P < 0.005). Post-hoc Bonferroni comparisons indicated 

significantly higher negative covariance in SNI animals at Day5 (mean strength = - 0.61, 

S.E.M. = 0.04), in contrast to sham animals at Day5 (mean strength = - 0.19, P < 10−6). 

Again, no difference between the groups was found at Day28 (SNI mean strength = - 0.33; 

sham = - 0.24). Thus, we observe that the positive strength of the DR1a/DR2 is elevated, 

whereas the negative interaction between the DR1a/DR2 and CB1/5-HT1a is enhanced, 

early after peripheral nerve injury in the SNI animals.

Relating NAc functional connectivity to receptor gene expression and to pain 
behavior—We performed correlation analyses to explore the longitudinal association 

between changes in functional connectivity in SNI animals with pain behavior and receptor 

gene expression. First, functional connectivity of contralateral NAc core to the brain voxels, 

which was previously identified as decreased in SNI animals and was contralateral to injury, 

was averaged for this correlation analysis. This contralateral NAc core functional 

connectivity was significantly different among group and across time (two-way ANOVA, 

for group-by-time effect, F(2,77) = 6.31, P = 0.014; Fisher LSD post-hoc comparison on 

between SNI and sham animals at Day28, P < 0.001; difference between SNI animals at 

Day28 and Day-2, P = 0.002) (Fig. 7A bar graph). This functional connectivity (pooling the 

Day5 and Day28 time points) exhibited a significant negative correlation with DR2 gene 

expression in SNI animals (R = - 0.52, P = 0.01), but not in sham animals (R = - 0.13, P = 

0.57), and also showed trends with SNI DR1a (R = - 0.32, P = 0.13) and KOR (R = −0.36, P 

= 0.09, data not shown) gene expression, and was also significantly positively correlated 

with pain behavior in SNI animals (R = 0.62, P = 0.002), but not in sham animals (R = - 

0.08, P = 0.73) (Fig. 7A scatter plots). In addition, shell functional connectivity of 

contralateral NAc to the brain voxels, which were previously identified as decreased in SNI 

animals and was contralateral to injury, was averaged for this correlation analysis. This 

contralateral NAc shell functional connectivity was significantly different among group and 

across time (two-way ANOVA, for group-by-time effect, F(2,77) = 4.71, P = 0.033; Fisher 

LSD post-hoc comparison on difference between SNI and sham animals at Day28, P < 

0.001; difference between SNI animals at Day28 and Day-2, P = 0.03) (Fig. 7B bar graph). 
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This functional connectivity (pooling the Day5 and Day28 time points) approached a 

borderline of significance of correlation with DR2 gene expression in SNI animals (R = - 

0.38, P = 0.08) but not in sham animals (R = - 0.12, P = 0.58), and also showed trends with 

SNI DR1a (R = - 0.25, P = 0.24) and KOR (R = −0.30, P = 0.16, data not shown) gene 

expression, but did not correlate with pain behavior in SNI animals (R = 0.24, P = 0.26) and 

sham animals (R = - 0.02, P = 0.92) (Fig. 7B scatter plots). No correlation was found 

between functional connectivity and alpha tubulin expression (data not shown). These 

results indicate that peripheral nerve injury-induced modulation of NAc connectivity in SNI 

animals is differentially related with changes in DR2 gene expression and to mechanical 

allodynia.

Experiment B

Continuous lidocaine infusion in NAc decreases mechanical and cold 
hypersensitivity in SNI animals—There is good evidence that plasticity of the NAc is 

necessary for the consolidation of appetitive instrumental memories [38]. Appetitive 

instrumental memory is a form of associative memory. It is the process by which new 

rewards are learned and acquire their motivational salience. Within this context, the 

reorganization of NAc functional connectivity observed in SNI animals (Experiment A) can 

be interpreted as evidence for the involvement of NAc-mediated learning processes in the 

transition to a neuropathic state. To test this hypothesis directly in a new cohort of animals, 

we examined the effects of reversibly interrupting neuronal activity of NAc (by a 2-week 

continuous infusion of lidocaine 2%, started at the time when peripheral nerve injury was 

inflicted), on the maintenance and temporal evolution of signs for neuropathic pain-like 

behavior (Fig. 2).

Lidocaine (targeting mainly the contralateral medial shell of NAc (Fig. 8A), which is 

suggested to be hedonic hot spot in the NAc [57], significantly decreased the magnitude of 

tactile allodynia during treatment (two-way repeated-measures ANOVA, with time as repeat 

measure for group effect, F(1,13) = 7.19, P = 0.02) (Fig. 8B). After cessation of treatment at 

Day14, lidocaine-infused animals progressively returned to tactile sensitivity levels of saline 

infused animals. There was no difference between groups for the tactile thresholds of the 

uninjured paw at any time point (data not shown).

Lidocaine-infused animals also exhibited a decrease in cold allodynia during lidocaine 

treatment compared with the saline-infused animals (Fig. 8C). Cold allodynia score was 

significantly lower in lidocaine-infused animals compared to saline-infused animals during 

the treatment (F(1,13) = 9.19, P = 0.01).

Discussion

We demonstrate differential functional connectivity of NAc core and shell, in the healthy 

rat, with cortical and sub-cortical regions. This functional connectivity reorganization was 

not detected at 5 days but rather 28 days following neuropathic injury, and not in sham 

animals. Functional connectivity primarily exhibited a long-term reduction in strength of 

communication between ventral and dorsal striatum and to specific cortical regions. This 

reduction of functional connectivity is specific to the location of the seed and to the body 
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side where peripheral nerve injury was inflicted. RT-qPCR complemented the fMRI results 

by showing that gene expression for multiple receptors decreased at Day 28 only in NAc 

contralateral to the injury. Furthermore, we also observed upregulation of receptor gene 

expression covariance early after neuropathic injury. Critically, receptor expression and 

neuropathic pain-related behavioral outcomes were related to long-term fMRI changes. This 

is the first study that provides functional and molecular evidence for the reorganization of 

NAc properties with the transition to neuropathic pain, and demonstrates that disrupting 

NAc neuronal activity reduces expression of neuropathic pain-related behavior.

In healthy anesthetized animals, fMRI revealed that the NAc core and shell exhibited 

extensive connectivity to cortical and sub-cortical regions. Whereas the core had 

significantly stronger connectivity to sensorimotor cortices, insula, cingulate and CPu, the 

shell exhibited stronger connectivity to hippocampus, thalamus, hypothalamus, and mPFC. 

Note that due to MRI signal loss and geometric distortions we could not investigate 

functional connections with the amygdala or with brainstem structures, mainly to ventral 

tegmentum. To our knowledge these results are the first demonstration of functional 

connectivity of NAc in the rodent, demonstrating corticostriatal connections and revealing 

components of the cortico–striato–pallidal–thalamocortical loops [2; 4; 49; 56; 73]. We 

observed prominent connectivity between NAc and CPu, demonstrating the tight coupling 

between parts of basal ganglia related to emotional learning [3; 70] with the dorsal aspects 

involved in more cognitive and motor functions [34; 36]. Significant distinctions were found 

between NAc core and shell in terms of their relative strengths of connectivity, which is 

consistent with their functional segregation along emotional salience and motivated behavior 

[59], their well-established differential connectivity [27; 40; 41; 48], with evidence that the 

two components respond differentially to aversive stimuli [8], and optogenetic data 

indicating dense hippocampal inputs to the medial shell of NAc [17]. Importantly, our 

results point to functional connections between NAc and cortical regions that are important 

in acute and chronic pain, namely, the hippocampus, thalamus, sensorimotor cortices, 

cingulate, insula, mPFC, and OFC, suggesting that the striatal dopaminergic system is part 

of the rearrangement of cortical circuits associated with transition to chronic pain.

An important limitation of this study is the potential influence of anesthesia on reported 

functional connectivity. Strength of functional connectivity is reduced in the anesthetized 

compared to conscious animals [47]. However, the spatial pattern of functional connectivity 

in anesthetized animals seems largely consistent with the pattern observed in awake animals 

[47]. Still, it is likely that fMRI in awake animals may reveal more extensive changes in 

functional connectivity in SNI animals. Another limitation is that we intentionally limited 

the volume and concentration of infused lidocaine to a minimum to insure specificity of 

obtained results. It is likely that the procedure only impacted a limited proportion of NAc, 

especially core, neurons, and that disruption of more NAc neurons would result in bigger 

reductions in neuropathic pain behavior.

The NAc receptor inter-relationships were upregulated in SNI animals at Day5, both within 

the DR1a/DR2 pair, and across the DR1a/DR2 and CB1/5-HT1a pairs. These results suggest 

enhanced dopamine activity within the NAc and VTA reverberating loops. Thus, these 

results are the earliest signal we observe in NAc that differentiate between SNI and sham 
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animals and which imply an enhanced mesolimbic-learning state. Following 28 days of 

neuropathic pain, when expression levels of DR1a, DR2 and KOR in NAc contralateral to 

SNI injury are decreased and NAc functional connectivity is also decreased, the receptor 

inter-relationships seem to return to basal levels, yet with a distinct pattern for SNI. It was 

surprising to see a tight correlation between DR1a and DR2 expression, given that they 

comprise two parallel NAc transmission pathways: DR1a expression defines the 

striatonigral neurons in the direct pathway containing dynorphin, the endogenous ligand for 

KOR; whereas DR2 are expressed on neurons that comprise the striatopallidal indirect 

pathway [2; 25; 30; 32; 58]. The direct and indirect pathways are associated with positive 

hedonic and aversion/negative affect, respectively [15; 52; 57; 58]. Recent studies indicate 

that activation of DR1 and inactivation of DR2 postsynaptically control reward learning and 

aversive learning, respectively, in a pathway-specific manner [39]. If we define transition to 

neuropathic pain as a state of enhanced aversive learning, then we expect to observe changes 

in the expression of DR2. Indeed, 28 days after injury, we in fact observe down regulation of 

DR1a, DR2 and KOR. Furthermore, given that only DR2 expression correlated with 

functional connectivity changes, our data are consistent with the role of aversive-learning 

circuitry in neuropathic pain.

Numerous studies reinforce the notion that levels of dopamine neurotransmission influence 

striatal BOLD activity; for example, the administration of D-amphetamine, dopamine re-

uptake inhibitors, and DR1a or DR2 antagonists all modulate striatal BOLD activity [21; 

28]. Our evidence relating NAc functional connectivity to DR2 expression is consistent with 

these observations and with previous work showing that 1) components of NAc functional 

connectivity and receptor gene expression were dominantly reduced contralaterally at 

Day28, 2) NAc functional connectivity was related to SNI pain behavior and to DR2 

expression, and 3) the disruption of NAc neural activity (chronic perfusion of a DR agonist) 

in NAc attenuates neuropathic behavior in SNI animals [60], which is also consistent with 

our evidence of lidocaine infusion in NAc reducing SNI neuropathic behaviors.

The NAc has been a central site for studying reward and drug reinforcement and for the 

transition between drug use as a reward and as an addictive habit [45; 67]. In fact, the 

reorganization we describe here for neuropathic pain has many parallels to processes 

implicated in addictive behavior. In humans, addicted states are associated with decreased 

DR2 expression in the striatum [69]. Similarly, with sustained neuropathic pain, we observe 

decreased DR2 expression in NAc. In rodent models of addiction, decreased dopamine 

release in the ventral striatum is coupled with increased dopamine release in dorsal striatum 

[72]. Similarly, we observed a decreased synchronization of resting fMRI activity between 

ventral and dorsal striatum, and this de-synchronization was associated with DR2 expression 

in NAc. These parallels are suggestive that brain learning circuitry perpetuate or aid in the 

persistence of pain perception by rendering the perception more habitual, a hypothesis 

derived from current theories of addiction as a shift of cued behavior into a habitual state 

[14]; as such, chronic pain seems to highjack brain learning circuitry in a manner similar to 

addictive behavior. The extent to which addiction to pain shares brain emotional learning 

mechanisms with those for rewarding drugs remains to be determined, and raises the 

question as to whether predisposition to chronic pain is part of a generalized predisposition 

to addictive behavior, or whether it is a specific addictive trait for aversive conditions.
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Fig. 1. Paradigm for Experiment A, and tactile sensitivity changes following peripheral nerve 
injury
(A) MRI scans at baseline were acquired at Day-2. Animals were randomly selected to 

receive either SNI or sham injury (Day 0) and were divided into the Short Term or Long 

Term group. First, at Day5 (Short Term Group, Day5) both SNI and sham animals 

underwent MRI, followed by extraction of NAc tissue for receptor gene expression analysis. 

Similarly, at Day28 (Long Term Group, Day28) SNI and sham animals underwent MRI and 

also extraction of NAc tissue. MRI at Day5 was performed in: SNI=10, sham=12 animals; 

MRI at Day28 was done in: SNI=13, sham=11 animals. RT-qPCR at Day5: was done in 
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SNI=14, sham=13 animals; while at Day28 it was done in: SNI=14, sham=12 animals. 

Because physiological recording was used for fMRI data pre-processing, rats with 

incomplete physiological recordings during the scans were excluded from the fMRI study; 

however these rats were still included in the receptor gene expression analysis. Tests for 

tactile allodynia were performed one day prior to each MRI scan. (B) Tactile allodynia in 

the injury paw of SNI animals were persistent over time. No change in tactile threshold was 

observed in the healthy paw of both SNI and sham animals. Tactile thresholds are shown for 

animals used in MRI experiment illustrated for Experiment A. *P < 0.05.
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Fig. 2. Paradigm of Experiment B
In a different group of animals from Experiment A, NAc activity, contralateral to peripheral 

nerve injury, was disrupted either by infusing Lidocaine 2% (n=8) or saline (n=7), for 14 

days using implanted mini pumps in the NAc. The mini pumps were implanted at the same 

surgical procedure when SNI injury was induced. Behavioral tests for tactile and cold 

allodynia were assessed twice at Day-2 as well as on Day4, Day7, Day10, Day14, Day17 

and Day20.
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Fig. 3. Functional connectivity of NAc core and shell in healthy animals
(A) The core and shell subdivisions of NAc are illustrated, as location of seeds used to study 

functional connectivity of each subdivision. (B) Group-averaged functional connectivity 

maps from NAc core and shell are shown in indicated rows, for resting state fMRI (rs-fMRI) 

when animals were healthy (collected at Day-2). Group-average was across all animals (n = 

36 rats). NAc core and shell exhibited strongest functional connectivity to CPu, S1/2, M1/2, 

Cg, Ins, mPFC and OFC, see Table S1 and Table S2 (one-sample T-test, P < 0.05, family-

wise error (FWE)-corrected). (C) NAc core and shell show preferential functional 

connectivity. The core (core > shell contrast) showed significantly stronger connectivity to 

CPu, S1/2, Cg, Ins, and OFC; while the shell (shell > core contrast) exhibited significantly 

higher connectivity to parts of Hipp, Tha, Hy, and mPFC, see Table 4 and Table 5 (paired T-

test, P < 0.05, FWE-corrected). (D) Brain atlas slices highlighting anatomical borders. 

Columns of axial slices, shown in B-D, correspond to each other (distance from Bregma in 

mm indicated at bottom). Functional connectivity maps are for seeds placed in the right side 

of the brain. Color bars represent range of t-values. Abbreviation: Cg = cingulate cortex, 

CPu = caudate/putamen, Hipp = hippocampus, Hy = hypothalamus, Tha = thalamus, S1/2 = 

primary and secondary S1/2sensory cortices, M1/2 = primary and secondary motor cortices, 

Ins = insular cortex, mPFC = medial prefrontal cortex, OFC = orbital frontal cortex, R = 

right, L = left side of the brain.
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Fig. 4. Differences in functional connectivity of NAc core and shell between SNI and sham 
animals
Between groups functional connectivity contrasts (SNI vs. sham, cross-sectional unpaired 

two-sample t-tests) were significantly different at Day28, illustrated for the four seed 

placements indicated. No significant difference was seen at Day5. (A) At Day28, functional 

connectivity decrease was seen. For contralateral NAc core, connectivity decreased to 

contralateral CPu, bilateral Ins and S1/2, and for ipsilateral NAc core connectivity to the 

contralateral Ins, and bilateral S1/2; while for contralateral NAc shell, connectivity 

decreased to contralateral Ins, and bilateral S1/2, see Table S3 and Table S4. All contrasts 

were thresholded at P < 0.05, FWE-corrected. Color bars represent range of t-values. (B) Rat 

atlas slices corresponding to each column above are shown.
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Fig. 5. The Expression of DR1a, DR2, and KOR transcripts are reduced in the NAc contralateral 
to peripheral nerve injury in SNI animals
(A) Validation of GAPDH primers using dilutions of input NAc cDNA over 4 orders of 

magnitude. The almost perfect doubling of PCR product with each cycle validates this 

primer pair. (B) Representative efficiency curve showing DR1a amplification comprising 

dilutions over 4 orders of magnitude. (C) RT-qPCR products run on a 1.8% agarose gel 

demonstrate a single amplification product for each gene of interest. (D) Relative abundance 

for genes of interest in the NAc of SNI animals are shown, the ipsilateral SNI is normalized 
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to the ipsilateral sham, while the contralateral SNI is normalized to the contralateral sham at 

Day5 and Day 28. Dotted line represents sham levels. For each sample, the gene of interest 

is normalized to the reference gene GAPDH. Alpha tubulin transcripts, when normalized to 

GAPDH, showed no significant changes in contralateral or ipsilateral NAc at Day5 and 

Day28, and validate GAPDH as a stable reference gene. (E) KOR transcript showed no 

significant changes between SNI and sham animals at Day5; however at Day28 a significant 

(P = 0.03), 27% reduction of transcript is found in the contralateral NAc only. (F) DR1a 

transcript showed no significant changes between SNI and sham animals at Day5, but at 

Day28 a significant (P = 0.02), 30% reduction is found in the contralateral NAc only. (G) 

DR2 transcript showed no significant changes between SNI and sham animals at Day5, but 

at Day28 a significant (P = 0.01), 21% reduction was found also in the contralateral NAc. 

No significant changes were found at any timepoint for the MOR, CB1, and 5-HT1a 

receptors (data not shown). Abbreviations: KOR = kappa-opioid receptor, MOR= µ-opioid 

receptor, DR1a = dopamine type 1a receptor, DR2 = dopamine type 2 receptor, CB1 = 

cannabinoid receptor 1, 5-HT1a = serotonin1a receptor, Tubulin = alpha tubulin, GAPDH = 

glyceraldehyde-3-phosphate dehydrogenase, and MW = molecular weight. * P < 0.05. 

(Normalized to GAPDH numbers for qPCR: DR1a: SNI Day5-Ipsi 0.1072, Day5-Contra 

0.0991, sham Day5-Ipsi 0.1172, Day5-Contra 0.1040, SNI Day28-Ipsi 0.1255, Day28-

Contra 0.0889, sham Day28-Ipsi 0.1520, Day28-Contra 0.1479. DR2: SNI Day5-Ipsi 

0.0785, Day5-Contra 0.0720, sham Day5-Ipsi 0.0901, Day5-Contra 0.0820, SNI Day28-Ipsi 

0.0961, Day28-Contra 0.0889, sham Day28-Ipsi 0.1129, Day28-Contra 0.1122. KOR: SNI 

Day5-Ipsi 0.0111, Day5-Contra 0.0106, sham Day5-Ipsi 0.0130, Day5-Contra 0.0188, SNI 

Day28-Ipsi 0.0154, Day28-Contra 0.0136, sham Day28-Ipsi 0.0182, Day28-Contra 0.0187. 

Tubulin: SNI Day5-Ipsi 0.3740, Day5-Contra 0.3750, sham Day5-Ipsi 0.3786, Day5-Contra 

0.3620, SNI Day28-Ipsi 0.4650, Day28-Contra 0.4410, sham Day28-Ipsi 0.4533, Day28-

Contra 0.4636.)

Chang et al. Page 23

Pain. Author manuscript; available in PMC 2015 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Gene expression covariance as a function of injury type and time from injury
Correlations between contralateral and ipsilateral NAc gene transcripts for five receptors 

(DR1a, DR2, KOR, CB1, and 5-HT1a), at a threshold of P < 0.01, are indicated in red 

(positive) and blue (negative) in a network graph representation. We observe a general 

upregulation of covariance between the genes examined in SNI animals at Day5, which 

subsequently subsides to a new state at Day28.
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Fig. 7. In SNI animals, decreased NAc functional connectivity correlates with DR2 receptor gene 
expression and with tactile allodynia
(A) Bar graph shows functional connectivity between NAc core contralateral to injury with 

all of voxels showing significant change and contralateral to injury, while scatter plots show 

correlations between functional connectivity with DR2 gene expression, and with tactile 

allodynia for SNI and sham animals. (B) Bar graph shows the functional connectivity of 

NAc shell contralateral to injury with all of voxels showing significant change and 

contralateral to injury, while scatter plots show the relationship of functional connectivity 

and DR2 gene expressions. Functional connectivity is expressed in Fisher’s z transformed 

correlation coefficients (z(r)), while DR2 receptor expression is expressed in z-scores. Data 

points for correlation analysis were pooled from animals from Day5 and Day28. 

Abbreviation: R = canonical correlation coefficient. #P < 0.05 (post-hoc). *P < 0.05 

(correlation).
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Fig. 8. Disruption of NAc neuronal activity reduces tactile and cold allodynia in SNI animals
(A) Locations of tips of mini pump cannula in NAc contralateral to peripheral nerve injury. 

Majority of tips are localized at medial shell of NAc. (B) Continuous infusion of Lidocaine 

for 14 days significantly reduced tactile allodynia, in comparison to the tactile allodynia of 

saline infused animals during treatment (P = 0.02). After cessation of treatment at Day14, 

the thresholds of the Lidocaine infused animals progressively returned to the levels of saline 

infused animals. (C) Chronic administration of Lidocaine also significantly reduced cold 

allodynia during the treatment period (P = 0.01).
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