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Abstract 7 

Accident data have shown that in pedestrian accidents with high-fronted vehicles (SUVs and vans) the risk of pedestrian head 8 

injuries from the contact with the ground is higher than with low-fronted vehicles (passenger cars). However, the reasons for this 9 

remain poorly understood. This paper addresses this question using multibody modelling to investigate the influence of vehicle 10 

front height and shape in pedestrian accidents on the mechanism of impact with the ground and on head ground impact speed. To 11 

this end, a set of 648 pedestrian/vehicle crash simulations was carried out using the MADYMO multibody simulation software. 12 

Impacts were simulated with six vehicle types at three impact speeds (20, 30, 40 km/h) and three pedestrian types (50 th% male, 13 

5th% female, and 6 yr old child) at six different initial stance configurations, stationary and walking at 1.4 m/s.  14 

Six different ground impact mechanisms, distinguished from each other by the manner in which the pedestrian impacted the 15 

ground, were identified. These configurations have statistically distinct and considerably different distributions of head-ground 16 

impact speeds. Pedestrian initial stance configuration (gait and walking speed) introduced a high variability to the head-ground 17 

impact speed. Nonetheless, the head-ground impact speed varied significantly between the different ground impact mechanisms 18 

identified and the distribution of impact mechanisms was strongly associated with vehicle type. In general, impact mechanisms 19 

for adults resulting in a head-first contact with the ground were more severe with high fronted vehicles compared to low fronted 20 

vehicles, though there is a speed dependency to these findings. With high fronted vehicles (SUVs and vans) the pedestrian was 21 

mainly pushed forward and for children this resulted in high head ground contact speeds. 22 
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1 - Introduction 29 

The World Bank estimates that each year 1.2 million pedestrians die in road accidents, 35% of which are children (World Bank 30 

2002, Lopez et al. 2006). The Pedestrian Crash Data Study (PCDS) database in the United States shows that injuries to the lower 31 

extremities and head are the most frequent in pedestrian accidents, with head injuries being usually the most severe (Jarrett and 32 

Saul 1998, Chidester and Isenberg 2001). An epidemiology study showed that pedestrians struck by an SUV are twice as likely to 33 

sustain brain injury as pedestrians struck by passenger cars (Ballesteros et al. 2004). The main source of head injuries is the 34 

bonnet in SUV accidents but the windscreen dominates in passenger car accidents (Longhitano et al. 2005). Comparing dummy 35 

and Post Mortem Human Surrogates (PMHS) impact tests with an SUV and a small-sedan at 40 km/h Kerrigan et al. (Kerrigan et 36 

al. 2005a, Kerrigan et al. 2005b, Kerrigan et al. 2012) found that the velocity/HIC score at head strike for a sedan was greater 37 

than for an SUV and the increased potential for head injuries shown by accident data (Ballesteros et al. 2004) was attributed to 38 

the greater stiffness of the bonnet region struck in SUV cases compared to the windscreen struck in car cases. Full scale cadaver 39 

tests with a mid-sized sedan and a small city car showed that the whole body kinematics and injury pattern is strongly affected by 40 

the kinematics of the pelvis during the vehicle-pedestrian interaction which depends on the pedestrian stature relative to the 41 

vehicle front geometry (Subit et al. 2008).  42 

As seen above, most research efforts have focused on minimising injuries arising from the primary impact with the vehicle. 43 

Nonetheless, despite uncertainty in attributing injuries to vehicle or ground contact, accident data show that pedestrian ground 44 

contact injuries are also significant. Otte et al. (Otte and Pohlemann 2001) analysed 293 pedestrian impact cases and found that 45 

injuries could be attributed to ground contact in 66% of cases, and in 11% of cases they were the most severe. They also pointed 46 

out that head injuries were more frequent and more severe for vehicle Bonnet Leading Edge (BLE) heights above 700 mm and in 47 

the vehicle impact speed range between 20-40 km/h. Similarly, a study of 522 cases from the US Pedestrian Crash Data Study 48 

(Roudsari et al. 2005) found that in 21% of cases injuries could solely be attributed to ground contact, and that ground impact was 49 

the main cause (39%) of head injuries for adults struck by Light Truck Vehicles (LTVs).  50 

Pedestrian ground contact mechanisms are highly variable, but in recent years studies have been conducted to investigate the 51 

mechanism of injury generation from pedestrian contact with the ground (Kendall et al. 2006, Simms and Wood 2006c, Simms 52 

and Wood 2006d, Simms et al. 2011). These have focused on head injuries, since these are both frequent and the most severe 53 

(Jarrett and Saul 1998). Simms and Wood performed multibody simulations of pedestrian impacts with a saloon car and an SUV. 54 

They found that, while head injuries from vehicle impact were strongly dependent on impact velocity, injuries from ground 55 

impact were variable but mainly influenced by pedestrian head drop height and not by vehicle speed (Simms and Wood 2006a). 56 

Similarly, Kendall et al. performed impact simulations of the MADYMO multibody pedestrian model with FE models of a 57 

small sedan car and an SUV. Overall the vehicle appeared to be more likely to cause injuries than the ground, but the ground was 58 

still the main cause of injuries in 25% of cases. In addition, the severity of ground related injuries with respect to vehicle-related 59 



injuries was found to be higher with the SUV than with the car (Kendall et al. 2006). Simms et al simulated impacts with 60 

pedestrian models of a mid-size male and a small female with six vehicle types at speeds between 25 and 35km/h. They found 61 

that vehicles with high bonnet leading edges such as SUVs were more likely to lead to a direct head impact with the ground 62 

compared to lower fronted vehicles (Simms et al. 2011). In addition six recurring pedestrian-ground impact mechanisms were 63 

observed in 94% of the 72 simulated cases. However, in this preliminary study the vehicle shapes were approximate, the speed 64 

range was limited and although the influence of gait on pedestrian kinematics is well established (Elliott et al. 2012), only two 65 

gait stances were considered. 66 

Gupta et al. simulated impacts of a mid-size male, a small female and a 6 yr old child against FE models of a sedan car and an 67 

SUV (Gupta and Yang 2013) and found that a lowered car front profile and a raised SUV front profile prevented direct head 68 

impact with the ground. In contrast, a raised-front car profile and a lowered-front SUV profile led mainly to head-first impacts 69 

with the ground, but it was unclear why this occurred.  70 

In the aforementioned studies (Kendall et al. 2006, Simms and Wood 2006a, Simms et al. 2011, Gupta and Yang 2013) the 71 

head injury risk evaluation was performed by calculating the HIC scores from impacts with the vehicle and the ground. However, 72 

the Madymo multibody pedestrian model is not yet validated for the prediction of head injuries from the impact with the ground, 73 

and results are very sensitive to the contact stiffness in the modelling. A kinematic approach followed by Hamacher et al. 74 

(Hamacher et al. 2012) in a multibody computational investigation found that SUVs and vans were associated with higher 75 

projection distances, and the authors concluded that high-fronted vehicles therefore pose a higher risk of pedestrian head injuries 76 

from the ground contact. 77 

Overall, a biomechanical analysis of the relationship between pedestrian head ground injuries and vehicle type remains 78 

incomplete. The objective of the present paper is therefore to use a multibody computational approach to evaluate whether the 79 

ground impact mechanisms identified by (Simms et al. 2011) could be clearly identified even when a more representative set of 80 

vehicle shapes, and a broader range of vehicle impact speeds and pedestrian initial positions is considered. Moreover, this work 81 

aimed at assessing whether a relation could be identified between the pedestrian ground impact configuration (head first, pelvis 82 

first etc.) and vehicle front shape and height as assessed by Bonnet Leading Edge height. 83 

2 - Methods 84 

2.1 - Pedestrian models 85 

The 50th % male, 5th % female and the 6 yr-old child MADYMO multibody pedestrian models (MADYMO 2011) were applied in 86 

a vehicle pedestrian impact with the initial pedestrian orientation perpendicular to the direction of vehicle travel (i.e. the 87 

pedestrian was struck from the left). The main features of the used pedestrian models are shown in Table 1. These three 88 

pedestrian models were chosen to have a wider representation of road users. Since the simulations were analysed individually, the 89 



number of employed pedestrian models was limited to three in order to attain a reasonable analysis time. The 50th % mid-size 90 

male pedestrian model was preferred to the 95th % male pedestrian as it has been extensively validated in (Van Rooij et al. 2003, 91 

Anderson et al. 2007) for the reproduction of pedestrian impacts and the analysis of vehicle contact. The model has recently been 92 

compared to staged tests and a real collision in terms of head trajectory, longitudinal and transverse head translation relative to the 93 

primary contact location of the pedestrian on the vehicle, impact location on the head, head impact time and head impact velocity 94 

(Elliott 2011). The results showed that the model can be used to quantitatively test the influences of pre-impact vehicle speed, 95 

pedestrian speed and pedestrian stance on pedestrian kinematics during the interaction with the vehicle (Elliott et al. 2012). 96 

Attempts have also been made to validate the pedestrian models in MADYMO by reconstructing real collisions. Linder et al. 97 

(Linder et al. 2005) used the MADYMO pedestrian model to simulate real accidents and compared the response of simulations to 98 

collision data in terms of head impact location and pedestrian throw distances (within 20% of the estimated values from post-99 

collision data). Yao et al. (Yao et al. 2008) used the pedestrian model in MADYMO to reconstruct 10 real-world collisions 100 

finding a good correspondence with the collision data in terms of pedestrian wrap-around distance (errors of 2–4%) and 101 

pedestrian throw distance (errors of 0–16%). 102 

The 5th % female and the 6 yr-old child models were obtained by scaling the 50th % male model using MADYMO/SCALER 103 

(Happee et al. 1998). No direct validation data of the 5th % female and the 6 yr-old child models are available yet.  104 

 105 

Table 1. MADYMO pedestrian models 106 

 107 

2.2 - Vehicle models 108 

The front shapes of six vehicle types were modelled in MADYMO with 5 extruded cylinders and one ellipsoid. The models, 109 

shown in Fig. 1, were based on actual vehicles representative of six categories: a sports car, a compact car, a big car, a small 110 

SUV, a big SUV and a van. The vehicles were characterized by bonnet leading edge (BLE) increasing in height from the sports 111 

car to the van but also having different bonnet angles and length, see Table 2. The bonnet leading edge is defined according to the 112 

EuroNCAP protocol as the front upper outer structure of the vehicle including the bonnet and wings, the upper side members of 113 



the headlight surround and any other attachments (EuroNCAP 2013). In Table 3 are shown for each vehicle the values of the ratio 114 

“bonnet leading edge height/pedestrian centre of gravity height” and of the ratio “bonnet leading edge height/pedestrian height”. 115 

 116 

 117 

Fig. 1. MADYMO models of the vehicles and 50th % male pedestrian model. 118 

 119 

Table 2. Geometrical dimensions of vehicle fronts. 120 

Vehicle 
Sports 

car 

Compact 

car 

Big 

car 

Small 

SUV 

Big 

SUV 
Van 

Bonnet length (mm) 1454 795 1080 1026 1272 330 

Bonnet angle (°) 4 13 7 11 8 31 

BLE height (mm) 535 694 725 795 942 1050 

Ground clearance (mm) 185 230 258 297 304 280 

Windscreen angle (°) 28 28 27 31 27 43 

 121 

Table 3. Ratio vehicle bonnet leading edge height/pedestrian centre of gravity height and vehicle bonnet leading edge 122 

height/pedestrian height 123 

Vehicle BLEH/Ped.C.G. 

Height 

Sports 

car 

Compact 

car 

Big 

car 

Small 

SUV 

Big 

SUV 
Van 

6-year old child 0.805 1.044 1.090 1.195 1.417 1.579 

5th percentile female 0.635 0.823 0.860 0.943 1.117 1.246 

50th percentile male 0.558 0.724 0.757 0.830 0.983 1.096 

       

Vehicle BLEH/Ped 

Height 
      

6-year old child 0.457 0.593 0.619 0.679 0.805 0.897 

5th percentile female 0.349 0.453 0.473 0.519 0.615 0.686 

50th percentile male 0.307 0.398 0.416 0.456 0.541 0.603 

 124 

2.3 - Contact characteristics 125 

MADYMO is a commercial multibody simulation software package in which systems of rigid bodies connected by kinematic 126 

joints are allowed to contact and penetrate each other. Contact forces are computed according to specified contact characteristics. 127 



The loading and unloading curves for the present study were sourced from a study by Lyons and Simms (Lyons and Simms 128 

2012). The loading functions for the bumper and the bonnet provided by Lyons and Simms were based on a paper from Liu et al. 129 

(Liu et al. 2002), while the windscreen stiffness was extracted from the impactor tests of Mizuno and Kajzer (Mizuno and Kajzer 130 

1999). The unloading curves for bumper, bonnet and windscreen were based on 10% of the stiffness of the corresponding loading 131 

curves and the unloading curve for the BLE was based on 1% of the stiffness of the BLE loading curve.  132 

A friction coefficient of 0.3 for the vehicle-pedestrian contacts was used as previous studies found that it gave reasonable results 133 

(Simms and Wood 2006a, d). The hysteresis slope was set to 108 for all vehicle contacts. The combined force-deformation 134 

characteristics of both contacting surfaces were used in all contacts except for the vehicle–head contact, in which only the vehicle 135 

deformation characteristics were used.  136 

As regards the pedestrian-ground interaction, no validated contact model is available yet. Therefore, only the pedestrian contact 137 

characteristics were used and the ground was modelled as a rigid surface. To model the friction force in the contact with a dry-138 

asphalt road a friction coefficient of 0.58 for the pedestrian-ground interaction was chosen, based on experimental test results 139 

(Wood and Simms 2000).  140 

2.4 - Impact conditions 141 

Impact simulations were performed for three initial vehicle velocities: 20, 30 and 40 km/h to reproduce the range of typical 142 

impact speeds in pedestrian accidents (Simms and Wood 2006c). Very high speeds were not considered since survivability 143 

following primary contact with the vehicle is then low. A constant deceleration of 0.75g was applied to the vehicles to simulate 144 

braking at impact on a dry-asphalt surface, similarly to the approach taken in previous studies (Simms and Wood 2006b, Simms 145 

et al. 2011). Vehicle dipping during the braking due to suspensions compression and tyres deformation was neglected as done in 146 

previous studies (Van Rooij et al. 2003, Simms and Wood 2006a, Shen et al. 2008, Untaroiu et al. 2010, Elliott et al. 2012).  147 

Six initial stance configurations were chosen from the gait cycle defined by Untaroiu et al. (Untaroiu et al. 2009) with the 148 

pedestrian facing sideways to the vehicle. The selected stance configurations are those circled in Fig. 2: the struck leg was leading 149 

in three cases (0%, 10%, 80%) and lagging in the other three (30%, 50%, 60%). Impacts were performed with the pedestrian both 150 

stationary and moving transversally to the vehicle at a (walking) speed of 1.4m/s (Simms and Wood 2006c), though the full 151 

complexities of walking were not modelled. The simulation parameters are summarized in Table 4. A total of 648 multibody 152 

simulations of vehicle-pedestrian impacts was carried out using MADYMO.  153 

There are currently no experimental data for validation of pedestrian ground contact kinematics and injuries. Accordingly, the 154 

predictive capabilities of the MADYMO pedestrian model for ground contact assessment cannot currently be tested. To address 155 

this limitation, the results presented from this work focus on trends rather than absolute values of head impact speed predictions. 156 

 157 



 158 

Fig. 2. Initial pedestrian stances simulated. Adapted from (Untaroiu et al. 2009). 159 

 160 

 161 

Table 4. Simulation matrix 162 

 
Vehicle type 

Vehicle impact 

speed (m/s) 

Pedestrian 

 model 

Pedestrian gait 

position 

Pedestrian initial 

speed (m/s) 

 sports car, 

compact car, big 

car, small SUV, 

big SUV, van 

5.5, 8.3, 11.1 
50th % male, 5th % 

female, 6 y.o. child 

0%, 10%, 30%, 

50%, 60%, 80% 
0, 1.4 

Total 6 3 3 6 2 

 163 

2.5 - Analysis Approach 164 

Impact kinematics were studied to identify patterns of body stance and motion at the instant of ground contact. The analysis of 165 

how vehicle shape influences the ground impact severity was carried out by identifying the head-ground impact speed as the 166 

absolute value of the vertical component of the head’s centre of gravity velocity at impact with the ground. For each impact 167 

mechanism the average head-ground impact speed was used to assess the relative severity of the different configurations of 168 

impact. The possible existence of identifiable relationships of head-ground impact speed and time to head-ground contact with the 169 

bonnet leading edge height was also investigated.  170 



3 - Results 171 

The graphic animations of each simulation were analysed to classify the pedestrian post-impact kinematic and the type of ground 172 

impact configuration. The head-ground impact speed for each case was calculated at the simulation time step preceding the one in 173 

which head-ground contact force became different from zero.  174 

3.1 - Identification of impact mechanisms 175 

Out of a total of 648 simulations, in 617 cases (95%) it was possible to identify six recurring ground impact mechanisms, 176 

distinguished from each other by the type of pedestrian post-impact trajectory (wrap or forward projection), direction of body 177 

rotation prior to ground impact and manner in which the pedestrian impacted the ground, see Table 5 and Fig. 3. The remaining 178 

31 cases (5%) could not be clearly classified in any of the six categories or were excluded because pedestrian limbs shielded the 179 

head impact with ground altering the head-ground impact kinematics.  180 

 181 

 182 

Table 5: Description of the identified impact mechanisms. 183 

Mechanism 1 This is a wrap trajectory, in which the head hits 

the ground first. The pedestrian rotates between 

90° and 180° before ground impacting the 

ground in a head-first configuration.  

Mechanism 2 The kinematics are similar to Mechanism 1 but 

there is less rotation of the body and the pelvis 

strikes the ground first, followed by the legs 

and head. The angle of rotation of the 

pedestrian is less than 90°. 

 

Mechanism 3 As in Mechanism 1, the head strikes the ground 

first, but the pedestrian rotates through more 

than 180° before impacting the ground.  

 

Mechanism 4 In Mechanism 4 the body rotates more than 

270° before impacting the ground. The pelvis or 

legs strikes the ground first, followed by the 
 



torso and the head. 

Mechanisms 5a Mechanism 5a is a forward projection in which 

the pedestrian is pushed in the direction of 

vehicle travel with the legs contacting the 

ground first. In this case (3% of cases) the head 

contacts the ground with whole body rotation 

towards the vehicle front. 

 

Mechanism 5b Mechanism 5b is a forward projection too. In 

this case (11% of cases) the head contacts the 

ground with whole body rotation away from the 

vehicle front.  

 184 

 185 

 186 

Fig. 3. Breakdown of impact mechanisms. 187 

 188 

3.2 - Relationship between impact mechanism and head ground impact speed 189 

The average and standard deviation of the head-ground impact speed distributions for each Mechanism is shown in Table 6, Fig. 4 190 

and separately for the three vehicle impact speeds in Fig. 5. An ANOVA single factor performed on the six classes represented by 191 

the ground impact Mechanisms gave an F ratio of 100.7 with an F critical of 2.1 and a P-value < 0.001. This result indicates that 192 

the values of head-ground impact speed within each of the six Impact Mechanism categories are statistically distinct and 193 

considerably different. (Moore and McCabe 2003).  194 

 195 



Table 6. Average head-ground impact speed for impact mechanism. 196 

Impact Mechanism Avg. head-ground speed (m/s) Standard deviation (m/s) 

1 4.73 0.75 

2 3.23 1.39 

3 2.93 0.59 

4 5.21 1.71 

5a/5b 1.96 0.95 

5b 6.05 1.01 

 197 

 198 

Fig. 4. Average values and standard deviations of head-ground impact speed for each impact Mechanism for all 199 

pedestrian models. 200 

 201 

 202 

Fig. 5. Average values and standard deviations of head-ground impact speed for each impact Mechanism at the three 203 

vehicle impact speeds for all pedestrian models.  204 



3.3 - Relationship between impact mechanism and vehicle type 205 

Due to the large difference in stature between the two adult pedestrian models (mid-size male and small female) and the child 206 

pedestrian model the post impact kinematics experienced by adult and child pedestrians differed significantly. Accordingly, the 207 

distributions of impact mechanisms for the different vehicle types are presented separately for the two adult pedestrians and for 208 

the child pedestrian cases.  209 

Fig. 6 shows the frequency of the different ground impact mechanisms for adult pedestrians (male and female) at all vehicle 210 

impact speeds considered (20, 30 and 40 km/h) while Figs 7-9 show the mechanism frequencies at 20 km/h, 30 km/h and 40 km/h 211 

respectively. Similarly, Fig. 10 shows the instances of the different ground impact mechanisms for child pedestrians at all vehicle 212 

impact speeds considered (20, 30 and 40 km/h), while Figs 11-13 show the mechanism frequencies for child pedestrians at 20 213 

km/h, 30 km/h and 40 km/h respectively.  214 

 215 

 216 

Fig. 6. Occurrences of the six impact mechanisms for each vehicle type for the adult pedestrian impacts at all vehicle 217 

impact speeds (20, 30 and 40 km/h).   218 

 219 

 220 



 221 

Fig. 7. Occurrences of the six impact mechanisms for each vehicle type for the adult pedestrian impacts at 20 km/h. 222 

 223 

 224 

Fig. 8. Occurrences of the six impact mechanisms for each vehicle type for the adult pedestrian impacts at 30 km/h.  225 

 226 



 227 

Fig. 9. Occurrences of the six impact mechanisms for each vehicle type for the adult pedestrian impacts at 40 km/h. 228 

 229 

 230 

Fig. 10. Occurrences of the six impact mechanisms for each vehicle type for the child pedestrian impacts at all vehicle 231 

impact speeds (20, 30 and 40 km/h). 232 

 233 

 234 



 235 

Fig. 11. Occurrences of the six impact mechanisms for each vehicle type for the child pedestrian impacts at 20 km/h. 236 

 237 

 238 

 239 

Fig. 12. Occurrences of the six impact mechanisms for each vehicle type for the child pedestrian impacts at 30 km/h. 240 

 241 



 242 

Fig. 13. Occurrences of the six impact mechanisms for each vehicle type for the child pedestrian impacts at 40 km/h. 243 

3.4 - Relationship between head-ground impact speed and normalized bonnet leading edge height 244 

Fig. 14 shows the head-ground impact speed for different vehicle speeds and pedestrian sizes as a function of the vehicle’s 245 

normalized bonnet leading edge height (NBLEH), which is the ratio of the Bonnet Leading Edge Height to the pedestrian height. 246 

The data in Fig. 14 are stacked in columns corresponding to specific NBLEH values, with each column obtained from a specific 247 

combination of vehicle type and pedestrian model. Each column contains 12 values of head-ground impact velocity 248 

corresponding to six initial stances and two initial pedestrian speeds (0 and 1.4 m/s). Different markers within each column 249 

indicate the ground impact mechanism. Data located on the horizontal axis are cases where no head-ground impact occurred. R2 250 

for a linear or quadratic regression is given in each case.  251 

 252 



 253 

Fig. 14. Head-ground impact speed against normalized bonnet leading edge height (NBLEH) plotted separately for the 254 

three vehicle impact speeds. The points stacked on the same column correspond to impact simulations with the 255 

same combination of vehicle type and pedestrian type but with different pedestrian initial stance and walking 256 

speed. Each marker indicates the identified ground impact mechanism. 257 

 258 

For the adult pedestrian cases the highest average head-ground impact speed occurs for Mechanism 4 (5.1 m/s) and Mechanism 1 259 

(4.6 m/s). Mechanism 4 occurs only at 40 km/h while Mechanism 1 occurs mainly at 30 km/h (77 cases, 67%). For these 77 cases, 260 

the head-ground impact speed as a function of NBLEH is shown in Fig. 15 A.  261 

For Mechanism 1 cases at 30 km/h the time between first contact with the vehicle and the head-impact with the ground is also 262 

negatively correlated with the NBLEH, see Fig. 15 B, and linear regression again shows high correlation (R2 = 0.61). 263 

A similar relationship (Fig. 15 C) exists between the time to head-ground impact and the head-ground impact speed (R2 = 0.41).  264 

 265 

 266 

Fig. 15. Cases of Mechanism 1 for adult pedestrian impacts at 30 km/h. A) Head-ground impact speed against 267 

normalized bonnet leading edge height. B) Time to head-ground impact against normalized BLEH. C) Head-268 

ground impact speed vs time to head-ground impact.  269 



4 - Discussion 270 

This paper describes the existence of patterns for the influence of pedestrian and vehicle size and speed and pedestrian initial 271 

stance on pedestrian head ground contact mechanisms as a precursor to studying pedestrian ground related injury outcome. The 272 

analysis is based on 648 MADYMO multibody simulations and the categorisation of the geometric configuration of the 273 

pedestrian’s body at the instant of head contact with the ground, see Table 5. These categories are largely based on the degree of 274 

pedestrian whole-body rotation at the instant of ground contact, as well as whether or not the head is the first body region to 275 

contact the ground. Six of these impact mechanisms correspond to those identified in the preliminary study by Simms et al. 276 

(Simms et al. 2011), although Mechanism 5a corresponds to Mechanism 5 of the Simms et al study. The post-impact kinematics 277 

described by Mechanism 5b was not observed in the preliminary study (Simms et al. 2011) as child pedestrians were not 278 

considered. 279 

Table 6 and Fig. 4 shows that Mechanism 1, 4 and 5b have significantly higher head ground contact speeds (4.6 m/s, 5.1 m/s & 280 

6.5 m/s respectively) than Mechanism 2, 3 and 5a (3.2 m/s, 2.9 m/s & 1.9 m/s respectively). Given this significant variation, the 281 

following discussion first seeks to provide a kinematic explanation and then to assesses the combined effects of vehicle speed and 282 

type, and pedestrian size, gait and speed on the frequency of occurrence of the different ground contact Mechanisms. As already 283 

pointed out, the absence of validation data for pedestrian ground contact is a limitation of this work, which means that the focus 284 

should be on trends rather than absolute values. 285 

 286 

4.1 - The influence of ground impact mechanism on head ground contact speed  287 

The high F-ratio (100.7) and the very low P-value (<1e-10) associated with the analysis of variance of the data in Fig. 4 288 

indicates that the head-impact speed distribution for each mechanism can be considered statistically different to all other 289 

mechanisms. Mechanism 1, 4 and 5 show the highest head impact speeds with the ground (Table 6). In general, the highest head 290 

ground impact speed occurs for cases where the whole-body rotation increases the head linear velocity and for cases where there 291 

is no shielding of the head contact with the ground through prior contact with other body regions, see Table 5 and Table 6. Thus 292 

the average head-ground impact speed for Mechanism 1 (4.6m/s) is higher than for Mechanism 2 (3.2m/s) and Mechanism 3 293 

(2.9m/s). Mechanism 2 mostly occurs at lower impact speeds (66% of cases at 20 km/h, 25% at 30 km/h and 9% at 40 km/h) and 294 

therefore the angular velocity induced from vehicle impact is lower than Mechanisms 1, 3 and 4 that occur at higher vehicle 295 

impact speeds. This is clearly visible in Table 5 if the typical pedestrian kinematics of Mechanism 1 and 2 are compared. In 296 

Mechanism 2 the pedestrian upper body remains almost horizontal for the entire duration of the flight phase, while in Mechanism 297 

1 much more body rotation takes place, indicating a higher angular velocity.  298 



For Mechanism 1 and 3, the large difference in average head-ground impact speed is due to the direction of body rotation prior 299 

to head-ground impact. The vertical component of the head velocity can be deconstructed into two contributing parts, as shown in 300 

Fig. 16. The first is the drop velocity (Vdrop) associated with the downward motion of the whole body due to gravity, and this is 301 

largely determined by the height reached by the body after vehicle impact. The second contribution is the vertical component (Vtz) 302 

of the head’s tangential velocity (Vt) due to whole-body rotation. This depends on α, the angle between the ground and torso at the 303 

moment of head-ground impact. The impact velocity of the head with the ground is therefore given by: 304 

 305 

 cos
imp drop tz drop t
V V V V V      (1) 306 

 307 

Fig. 16 shows that in Mechanism 1 Vtz increases the head-ground impact speed. In contrast, for Mechanism 3 whole body rotation 308 

moves the head away from the ground, decreasing the head-ground impact speed. This results in lower average head-ground 309 

impact speeds for Mechanism 3 (2.9 m/s) than for Mechanism 2 (3.2 m/s). Since impact energy is proportional to the square of 310 

speed, this 10% speed difference can be significant. 311 

 312 

 313 

Fig. 16. Components of head's velocity in Mechanism 1 and 3 314 

 315 

The highest head-ground impact speeds were found for Mechanism 5b (6.5 m/s) and Mechanism 4 (5.1 m/s). Interestingly, these 316 

are both ground impact configurations in which the head ground impact is preceded by the impact of pedestrian’s lower limbs or 317 

pelvis. For Mechanism 4, the high head-ground impact speed may result from increased whole-body rotation following pelvis 318 

contact with the ground.   319 

In Mechanism 5b, the pedestrian is projected forward after the impact with the vehicle, after which the feet or knees strike the 320 

ground and act as pivots for rotation of the body towards the ground, causing part of the horizontal component of pedestrian’s 321 

linear momentum to be transferred into rotation towards the ground. This occurred almost exclusively for the child pedestrian 322 

cases when struck by the SUV or van models and leads to the most severe head-ground impact speed (6.5 m/s on average) 323 



amongst all the observed impact mechanisms. Mechanism 5a differs significantly from Mechanism 5b since whole-body rotation 324 

is in the opposite direction and head impact with ground occurs at much lower speeds (1.9 m/s on average).  325 

4.2 - The relationship between normalised bonnet leading-edge height and head ground impact speed  326 

Fig 14 shows a large variability for head impact speed for each NBLEH ordinate, with values ranging from 0 m/s (no head 327 

impact with ground) to almost 10 m/s for the range of pedestrian speeds and gait stances considered. This variability results from 328 

the effects of pedestrian initial stance and speed, again highlighting the well-known sensitivity of pedestrian ground contact 329 

kinematics to the initial impact conditions (Simms and Wood 2006a, Simms et al. 2011). 330 

Fig 14 shows a minor trend towards an increase in head ground impact speed with increasing vehicle speed: the overall average 331 

head impact speed increases from 3.2 m/s at 20 km/h to 4.2 m/s at 30 km/h and 4.5 m/s at 40 km/h.  332 

At 20 and 30 km/h, considering all pedestrian sizes, speeds and gait stances, Fig. 14 A shows a weak trend towards increasing 333 

head impact speed as a function of normalized bonnet leading edge height (NBLEH). However, the R2 values for a linear 334 

regression analysis are low: 0.24 at 20 km/h and 0.14 at 30 km/h. Furthermore, at 40 km/h a different (also weak) trend is 335 

observable: instead of a consistent increase in head impact speed as a function of NBLEH, there is an apparent parabolic 336 

relationship, with lowest and highest NBLEHs leading to higher head impact speeds than intermediate ones. However, a quadratic 337 

regression yields only R2= 0.12. This trend results from the fact that at 40 km/h Mechanism 4 occurs frequently with the lowest 338 

values of the ratio BLEH/Ped. Height and Mechanism 5b is the most common for the lowest values of the ratio BLEH/Ped. 339 

Height. As a consequence of this the highest head-ground impact speed values are found at the upper and lower bounds of the 340 

interval, while the lower values are located in correspondence of the central part of the interval; hence, the weak parabolic 341 

relationship between head-ground impact speed and BLEH/Ped. Height. 342 

Considering only impacts with the adult male pedestrian, Fig. 14 B shows head-ground impact speed increases with NBLEH at 343 

20 and 30 km/h, however R2 values are low (0.20 at 20 km/h and 0.11 at 30 km/h). No relationship between head impact speed 344 

and NBLEH is evident for males at 40 km/h. For the adult female pedestrian no relationship between head-ground impact speed 345 

and NBLEH could be identified at any vehicle impact speed. For the child pedestrian impact cases the relationships are stronger, 346 

with an increasing linear relationship at 20 km/h and 30 km/h ((R2= 0.43 and R2= 0.41 respectively) and a quadratic relationship 347 

at 40km/h (R2= 0.53). 348 

4.3 - Relationship between vehicle impact speed and ground impact mechanism  349 

At 20 km/h, Fig. 14 (B and C) shows that Mechanism 2 (average head impact speed 3.2 m/s) is the most frequent outcome with 350 

adult pedestrians for all vehicle types (89% of cases for the male pedestrian and 85% of cases for the female pedestrian). At this 351 

low speed a head-first impact with the ground (Mechanism 1) is unlikely because rotation of the pedestrian after primary impact 352 



is insufficient to raise the pelvis above the head prior to ground impact. Thus serious head injury from ground contact is less 353 

likely in these cases. 354 

At 30 km/h there are fewer instances of Mechanism 2 and more of Mechanism 1 (average head impact speed 4.6 m/s) for adult 355 

pedestrians (see Fig. 14 B and C), especially for the lower fronted vehicles (NBLEH < 0.6), since the increased speed causes 356 

more whole-body rotation. Thus adult head injuries from ground contact are likely to increase when vehicle speeds increase from 357 

20 to 30 km/h. For child pedestrians, there are many Mechanism 5b cases at 30 km/h for the higher fronted vehicles (NBLEH > 358 

0.6), and these are associated with very high head impact speeds (6.2 m/s on average). Thus, these are likely to be serious head 359 

injury cases. 360 

At 40 km/h there are many cases of Mechanisms 2 and 3 for adult pedestrians for the lower fronted vehicles (NBLEH < 0.5), 361 

see Fig 14 B and C. In contrast, for higher fronted vehicles (NBLEH > 0.6) there are many cases of Mechanism 2. Since 362 

Mechanisms 2 and 3 have relatively low head ground impact speeds, this is consistent with empirical evidence that head ground 363 

injuries do not increase proportionately with vehicle impact speed (Ashton and Mackay 1983). 364 

 365 

4.4 - Relationship between vehicle type and ground impact mechanism  366 

There is a significant difference in the distribution of impact mechanisms between the low-fronted vehicles represented by the 367 

three car models and the high-fronted vehicles represented by the two SUVs and the van. With the three car models the adult 368 

pedestrian is impacted below the pelvis and the kinematic outcome of the impact is always a wrap-type trajectory. With the small 369 

SUV, the first impact with vehicle front occurs around the pelvis and less whole body rotation is imparted to the pedestrian. With 370 

the big SUV and the van, the vehicle front impacted the child pedestrian above the centre of gravity, resulting in forward 371 

projection trajectories.  372 

Fig. 6 shows that the instances of Mechanism 1 (head-first ground impact) for adult pedestrians (50th percentile male and 5th 373 

percentile female) generally increase with increasing vehicle front height, except for the van model: for the sports car, Mechanism 374 

1 occurred in 7 cases (10%) compared to 33 cases (45%) for the big SUV. For the van model, the most common impact 375 

mechanism was Mechanism 2 (61%).  376 

The distribution of ground impact mechanism among vehicle types for adults depends on vehicle impact speed. At 20 km/h, 377 

Mechanism 2 is the most common for all vehicle types (91% with the sports car, 96% with the compact car and the big car, 87% 378 

with the small SUV, 91% with the big SUV and 58% with the van). In contrast, at 30 km/h (Fig. 8), Mechanism 1 is much more 379 

frequent than Mechanism 2, occurring in 17 cases (71%) with the compact car, and in 20 cases (83%) with the small SUV, 380 

although in only 5 cases (21%) with the van (where Mechanism 2 dominates at this speed (75%). At 40 km/h (Fig. 9) impact 381 

mechanisms characterized by high rotation of the pedestrian prior to ground contact (Mechanism 3 and 4) are most common with 382 

the three car models: for example Mechanism 4 occurred in 18 cases (75%) of impacts with the sports car, 16 cases (66%) with 383 



the compact car and 12 cases (50%) with the big car. Mechanism 3 never occurred with the sports car while it occurred in 7 cases 384 

(29%) with the compact car, 6 cases (25%) with the big car, and 11 cases (45%) with the small SUV. Mechanism 1 remains 385 

frequent with the two SUVs: 9 cases (37%) with the small SUV and 18 cases (75%) with the big SUV. For the van, Mechanism 1 386 

& 2 dominate at this speed. 387 

 388 

For the child pedestrian cases, Mechanism 2 accounts for around 40% of cases from the sports car up to the small SUV, while 389 

Mechanism 5b dominates for the large SUV (89%) and van (100%). Again there is a speed dependency to these findings. At 20 390 

km/h, only Mechanism 2 occurred with the three car models, while with the small SUV 8 cases of Mechanism 2 (67%) were 391 

observed. In impacts with the big SUV and the van the outcome at this speed was always Mechanism 5b. At 30 km/h (see Fig. 12) 392 

Mechanism 1 dominated for the compact car, while Mechanism 2 was very frequent for the big car and small SUV. Mechanism 393 

5b dominated for the big SUV and van. At 40 km/h (see Fig. 13), Mechanism 1 is only common for the big car (50%). 394 

Mechanism 2 only occurs for the small SUV, while Mechanism 3 is common for the compact car (50%). Mechanism 4 dominates 395 

(83%) for the sports car, but the incidence is reduced to 2 cases (16.5 %) for the big car and there are no instances of Mechanism 396 

4 for the small SUV, big SUV and van. Mechanism 5b dominates for the big SUV and van. 397 

In the cases of Mechanism 5b the vehicle pushes the pedestrian forward and rotates the upper body towards the ground 398 

(clockwise in Fig. 17). As a result, the pedestrian has a high head-ground impact speed (average 6.2 m/s) even at relatively low 399 

vehicle impact velocities of 20 and 30 km/h. This weak dependence of head ground impact speed on vehicle impact speed in these 400 

cases may be explained by the following: the vertical component of head velocity results from the combined effects of gravity and 401 

whole-body rotation. Whole-body rotation occurs due to eccentric vehicle impact force and this is more pronounced at higher 402 

speeds.  However, at lower speeds the time to ground contact after the separation from the vehicle is longer and vertical head 403 

velocity is accumulated through the action of gravity, which acts over a longer time than in the higher speed cases. The net effect 404 

is that the head ground contact speed is similar across a broad range of speeds from 20-40 km/h for these cases. Thus vehicles 405 

with a high bonnet leading edge relative to the pedestrian height might represent a serious threat to pedestrians in terms of 406 

ground-related injuries even at low impact velocities. 407 

 408 

 409 

Fig. 17: Impact between the van and the child pedestrian at 20 km/h. The ground impact mechanism is Mechanism 5b. 410 

 411 



4.5 - Relationship between vehicle front height and head-ground impact speed in head-first impacts with ground  412 

The linear regression analysis performed on the 77 cases of Mechanism 1 at 30 km/h (Fig. 15 A), shows a high correlation 413 

between the head-ground impact speed and the NBLEH (R2=0.56) and almost a doubling of head impact speed between the 414 

lowest and highest values of NBLEH. This suggests that within Mechanism 1 cases (which account for two thirds of adult cases at 415 

30 km/h) the higher bonnet leading edge heights of SUVs and vans induces significantly higher head ground impact speeds.  416 

This can also be seen in Table 7, which shows a consistent increase in average head ground impact speed from 3.8 m/s for the 417 

sports car up to 5.6 m/s for the van. In addition the strong (R2 = 0.61) negative correlation of the time between first contact with 418 

the vehicle and the head-ground impact with the NBLEH (Fig. 15 B), shows that high-fronted vehicles are associated with earlier 419 

impacts with the ground in these cases, and a consistent trend exists for the average values of time to head-ground impact for each 420 

vehicle type (see Table 7). Not surprisingly, therefore, a linear regression between head ground impact speed and time to head 421 

contact (Fig. 15 C) also yields a high correlation (R2 = 0.41), with shorter times to head ground generally yielding higher head 422 

impact speeds.  423 

Mechanism 1 also occurred at 40 km/h in 37 cases (2 with the big car, 9 with the small SUV, 18 with the big SUV and 8 with 424 

the van); if these cases are included in the linear regression analysis the same relationships described above hold, with R2 = 0.55 425 

between NBLEH and head-ground impact speed, R2 = 0.61 between NBLEH and time to head-ground impact and R2 = 0.38 426 

between head-ground impact speed and time to head-ground impact.  427 

 428 

Table 7. Average values of head-ground impact speed for the 77 cases of Mechanism 1 resulting from impacts at 30 429 

km/h with adult pedestrians. 430 

Vehicle 
Avg. head-ground 

speed (m/s) 

Avg. time to head-

ground impact (ms) 
Number of cases 

Sports car 3.8 872 7 

Compact car 4.3 842 17 

Big car 4.4 831 13 

Small SUV 5.4 768 20 

Big SUV 5.3 702 15 

Van 5.6 712 5 

 431 

Fig. 8 and Fig. 9 show that a head-first impact with the ground (Mechanism 1) is a likely outcome for adult pedestrians with all 432 

vehicle types at 30 km/h and with high-fronted vehicles at 40 km/h, but Fig. 15 and Table 7 indicate that the head-ground impact 433 

speed is higher in cases with high-fronted vehicles. The reason for this may be related to the fact that for low-fronted vehicles the 434 

head-ground impact occurs later than for high-fronted vehicles and there is therefore a longer pedestrian interaction with the 435 

vehicle front before separation and ground contact occur. In particular when the bonnet leading edge is lower than the pelvis, the 436 

pedestrian wrap trajectory leads to further interaction with the vehicle which reduces the whole-body angular velocity and hence 437 

the head-ground impact speed. 438 



4.6 - Effects of pedestrian initial stance and walking speed 439 

The pedestrian initial stance and walking speed introduced a substantial variability in the simulation results and in some cases for 440 

similar impact scenarios changed the outcome of the impact from potentially life-threatening for the pedestrian to non-severe.  441 

As visible in figure 14, the main effect of changing pedestrian initial stance and walking speed with all the other parameters being 442 

the same was to introduce a variation in pedestrian post-impact kinematics such to lead to a different Mechanism of impact with 443 

ground (e.g. male pedestrian at 30 km/h with BLE/Ped. Height = 0.398) or to the same ground Impact Mechanism but with 444 

significantly different head-ground impact speeds (e.g. female pedestrian at 40 km/h with BLE/Ped. Height =0.473).  445 

These results indicate that the variability introduced by pedestrian initial stance and walking speed cannot be neglected and 446 

therefore the trends identified in this study should not be used as a predictive tool for head injury assessment for a specific 447 

collision scenario 448 

4.7 - . Limitations of the study 449 

Validated contact characteristics based on the deformation properties of bonnet, bumper and windscreen were used to model 450 

pedestrian-vehicle contact interaction (Lyons and Simms 2012). These contact functions were developed to generate reasonable 451 

contact forces in the pedestrian/vehicle interaction. However, they did not account for differences in stiffnesses between vehicle 452 

types, as well as for the presence of regions of localised stiffness on the bonnet. In addition, vehicle braking effects were not 453 

included in the modelling, and these have some effect on pedestrian kinematics.   454 

Three different pedestrian sizes were used to account for the differences in impact kinematics due to different bonnet 455 

height/pedestrian height ratios. The mid-size 50% male model has been extensively validated, while the small female and the 456 

child, obtained by scaling the mid-size male model, were not validated.   457 

Most importantly, the MADYMO pedestrian models are not validated in terms of kinematic response for the interaction with the 458 

road, since such validation data is unfortunately not in the public domain.    459 

 460 

  461 



5 - Conclusions 462 

On the basis of the multibody modelling performed in this work using the 50th % adult male, the 5th % adult female and the 6 year 463 

old child MADYMO pedestrian models in simulated impacts with a range of vehicle types and a range of initial pedestrian gait 464 

stances and transverse speeds at vehicle impact speeds of 20-40km/h the following conclusions can be drawn: 465 

 466 

1. Despite the high variability observed in pedestrian-ground contact, it is possible to identify six recurring configurations 467 

of pedestrian impact with the ground in 97% of the impact simulations performed. These configurations have statistically 468 

distinct and considerably different average head-ground impact speeds.  469 

2. At 20 km/h vehicle impact speed the most common event for adult pedestrians is a wrap trajectory after which the 470 

pedestrian strikes the ground with the lower body first, followed by the torso and the head. A head-first impact is 471 

generally avoided. 472 

3. At 30 km/h a head-first impact with the ground for adults is likely for all vehicle types except the sports car and the van. 473 

When this mechanism occurs, the head-ground impact speed increases linearly and substantially with normalized bonnet 474 

leading edge height. Thus vehicles with a high bonnet leading edge relative to the pedestrian height are likely to cause 475 

higher head ground contact speeds at 30km/h.  476 

4. At 30km/h, when adult head-first impacts with the ground cannot be avoided, low-fronted vehicles (cars) provide a 477 

better containment of the pedestrian on the bonnet, ultimately reducing the head-ground impact speed. 478 

5. SUVs and vans appear to be more aggressive for head-ground contact to adult pedestrians than cars when the impact 479 

speed is at or below 30 km/h. At 40 km/h low-fronted vehicles cause whole body rotations in excess of 270° and high 480 

average head-ground impact speeds for adult pedestrians. These results indicate that at 40km/h a low front might not 481 

give any benefit in terms of reducing the severity of head-ground impact.  482 

6. For child pedestrians, a forward projection trajectory with high ground impact speed was observed for high fronted 483 

vehicles.  484 
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