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Parole chiave: abete rosso, adattamento, genotipizzazione 384 SNPs, analisi degli outiliers 
 

Riassunto 
 
Scopo:  
L'obiettivo principale di questo studio è stato quello di investigare sul potenziale genetico adattativo in abete 
rosso (Picea abies (L.) Karst) nell’arco	
  alpino. 
 

Metodi e Risultati:  

In questo studio, è stato adottato un approccio genomico sul polimorfismo del nucleotide singolo 384 (SNP), 
secondo il test di genotipizzazione Illumina GoldenGate, per investigare la variabilità genetica e la capacità 
adattativa in una popolazione di 392 individui	
  di	
  abete	
  rosso	
  campionati	
  nell’arco	
  alpino	
  e	
  georeferenziati.	
  I	
  
dati	
  ambientali	
  sono	
  stati	
  ottenuti	
   tramite	
   i	
  dataset	
  WORLDCLIM	
  e	
   IGP	
  MODIS	
  LST	
  satellitare.	
  Per	
   l’analisi	
  
statistica multivariata (componenti principali –PCA) è stata applicata su tutte le serie di dati ambientali per 
ridurre la dimensionalità del campione ed estrarre la più alta percentuale di variazione, per poter procedere 
poi	
  all’analisi	
  degli	
  outliers. 
 
 

Conclusioni:  

La genotipizzazione ha fornito informazioni sul tasso di successo tramite il polimorfismo del singolo 
nucleotide (SNPs), e ha rivelato fallimento nel caso di 26% SNPs, dove la maggior parte di questi loci sono 
stati originati dal dataset di Arborea (Canada) su Picea glauca. La struttura della popolazione stata stimata 
utilizzando STRUCTURE (Pritchard et al. 2000) per raggruppare potenzialmente gli alberi esaminati in 
gruppi genetici, sulla base di 394 individui genotipizzati con successo e 280 loci polimorfici.  I risultati hanno 
mostrato	
  l’assenza	
  di	
  una	
  forte	
  struttura della popolazione e questo probabilmente è dovuto ad un panmixis. 
Le analisi degli outiliers sono state eseguite utilizzando un modello bayesiano modello lineare-misto Bayenv 
2	
  (Gunther	
  e	
  Coop,	
  2013)	
  e	
  il	
  metodo	
  d’analisi	
  spaziale	
  Samβada (Stucki e Joost, 2014). In sintesi, non è stata 
trovata nessuna forte correlazione tra frequenze alleliche e i gradienti ambientali inclusi nella analisi degli 
outlier,	
   suggerendo	
   che	
   la	
   selezione	
   nell’	
   abete	
   rosso	
   avviene	
   al	
   livello	
   del	
   singolo	
   locus	
   testato	
   in	
   questo 
studio. 
 
Significato ed impatto dello studio:  

Questo studio è uno dei diversi studi esplorativi del potenziale genetico adattativo in abete rosso, realizzati 
utilizzando un approccio di genomica del paesaggio. I limiti di questo studio risiedono nel numero 
relativamente ridotto di loci esaminati. Come prospettiva futura, si ritengono essenziali studi di associazione 
genome-wide, così come approcci fenotipo-fenotipo e genotipo-ambiente, in cui almeno 1.000 loci siano 
considerati. Tali studi sarebbero molto	
   importanti	
   per	
   la	
   migliore	
   conoscenza	
   dell’abete	
   rosso, e 
costituirebbero un mezzo potente per la ricerca di segnali di selezione e adattamento ai cambiamenti 
climatici. 
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Keywords: Norway spruce, adaptation, 384 SNPs genotyping, outlier analyses 
 

Summary 
 

Aims:  

The main objective of this study was to investigate an adaptive genetic potential in Norway spruce (Picea 
abies (L.) Karst) across the European Alps.  

 

Methods and Results:  

In this study, we used a genomic approach based on a 384 single nucleotide polymorphism (SNP) Illumina 
GoldenGate genotyping assay to investigate adaptive genetic variation within a population composed of 392 
individuals provided with geo-reference data. An environmental dataset was obtained from WORLDCLIM 
dataset (Hijmans et al. 2005) and PGIS MODIS LST satellite (Neteler, 2010). In addition to temperature and 
precipitation variables, an aridity index was also included in data analyses. Principal component analyses 
were applied on all environmental datasets to reduce its dimensionality and extract the highest proportion 
of variation to be used in outlier detection analyses.  

 

Conclusions:  

Genotyping analyses provided insight in to the rate of success with single nucleotide polymorphism (SNPs) 
genotyping and revealed failure in case of 26% SNPs where most of these loci originated from Arborea 
dataset (Canada) on white spruce (Picea glauca). Population structure was estimated by using STRUCTURE 
(Pritchard et al. 2000) to potentially cluster individuals in genetic groups based on 394 successfully 
genotype individuals and 280 polymorphic loci. The highest delta K value was 2 (Evanno et al. 2005) 
showed there is no strong population structure within the population and suggested of panmixis. Outlier 
detection analyses were performed using a Bayesian liner mixed model-Bayenv 2 (Gunther and Coop, 2013) 
and the Spatial analysis method-Samβada	
   (Stucki	
  and	
   Joost,	
  2014).	
   In	
   the	
   summary,	
   there	
  was	
  no	
  strong	
  
correlation between allele frequencies and environmental gradients included in outlier analyses that would 
suggest selection in Norway spruce at the individual loci tested in this study. 

 

Significance and Impact of the Study:  

 
This study was one of several exploratory studies of adaptive genetic potential in Norway spruce by using 
landscape genomics approaches. Limitations of this study were due to the relatively small number of loci. As 
a future perspective, genome wide association studies or genotype to phenotype approach as well as 
genotype to environment when at least 1000 loci included, would be challenging in case of this organism 
and certainly would provide more power in search for signal of selection.  

 
  



 

iii 
 

Lavori correlati alla Tesi - Papers related to the Thesis.   
 
 
- Power and repeatability of outlier and genotype x environment in Norway spruce (Picea abies L. 
Karst) 
Calic I, Bussotti F, Neale DB (in preparation) 
 
- Characterization of phenotypic traits involved in long-term adaptation to climate change and 
their genetic base in case of Norway spruce (Picea abies L. Karst) 
Bonosi L, Mosca E, Calic I, Neale DB et al. (in preparation) 
 
- A candidate gene based approach to explore adaptive genetic variation to aridity in Sugar Pine 
(Pinus lambertiana) (in preparation) 
Vangestel C, Vazguez-Lobo A, Martinez-Garcia PJ, Wegrzyn JL, Calic I, Liechty JD, Neale DB.  
 
- Identifying the genetic basis of partial resistance on Sugar Pine (Pinus lambertiana) under white 
pine blister rust infection (WPBR) (In preparation) 
Vazquez-Lobo A, Vangestel C., Martinez-Garcia PJ, Wegrzyn J, Calic I, Neale DB 
 
  



 

iv 
 

List of Figures 
 

Figure 1: Natural distribution map of Picea abies across Europe (EUFORGEN, 2013)  

Figure 2. Satellite map of Europe with documented drought induced mortality areas  

Figure 3: A mapping population consists of 392 trees sampled across the Alps 

Figure 4: A 384 Illumina GoldenGate design steps 

Figure 5: Germination of Picea abies seeds  

Figure 6: Germination of Picea abies seeds 

Figure 7: PGIS Modis LST satellite provides resolution of 250m x 250m 

Figure 8: Visualization of correlation matrix between 20 climatic variables and geographic variables 

Figure 9: Visualization of loadings for each principal component (seasonal dataset) 

Figure 10: Visualization of the cumulative proportion of variance (%) for each principal component 

Figure 11: Visualization of loadings for each principal component (monthly dataset) 

Figure 12: Visualization of the cumulative proportion of variance (%) for each principal component 

Figure 13: Examples of successfully clustered SNP 

Figure 14: Examples of unsuccessfully clustered SNPs 

Figure  15:  Visualization  of  Wright’s  Fis  inbreeding  coefficient 
Figure 16. Plot of mean likelihood L(K) and variance per K value from STRUCTURE 

Figure 17. (A) The rate of change of the likelihood distribution (mean±SD) and (B) absolute values of the 

second order change of the likelihood distribution (mean±SD).   

Figure  18.  Plot  of  ΔK  (Evanno  method) 

Figure 19: Barplot when K =2 for original order for 394 individuals 

Figure 20. R plot visualization of logarithm for the Posterior Odds to base 10 and averaged Fst across 

populations.  

Figure 21. R plot visualization of logarithm for the Posterior Odds to 384 loci under investigation for the 

signal of selection. 

Figure 22. R plots visualization of 280 SNPs and logarithm of Bayes factors for latitude (A); (B) longitude; 

(C) elevation; (D) PC 1 (the first principal component value); (E) PC 2 (the second principal component 

value); (F) PC 3 (the third principal component value). 

Figure 23: R plots visualizations for correlation between locus id 23 (PGWD1-0634) and logarithm of 

base 10 of Bayes factors for winter aridity (A) and locus id 96 (PGLM2-0703) and logarithm of base 10 of 

Bayes factors for autumn precipitation (B). 

Figure 24: R plots visualization of 280 SNPs and logarithm of Bayes factors for PC 1 (the first principal 

component value) (A); (B) PC 2 (the second principal component value); (C) PC 3 (the third principal 

component); (D) PC 4 (the fourth principal component value. 

 

 

 

 

 

 

 

 

 

 



 

v 
 

List of Tables 
 

Table 1: Documented cases of drought and heat-induced mortality from Europe 

Table 2: Gene products showed to be associated to various climate gradients in different   conifer 

species 

Table 3: Mapping population of Norway spruce 

Table 4: List of environmental variables.  

Table 5: Outputs of prcomp function to do principal component analysis in R   

Table 6: Summary statistics of the PCA on climatic variables (seasonal dataset) 

Table 7: Multivariate measures of climate for the seasonal dataset 

Table 8: Summary statistics of the PCA on climatic variables (monthly dataset) 

Table 9: Multivariate measures of climate for monthly dataset 

Table 10: Basic diversity statistic of genotyping data from 384 Illumina dataset 

Table 11: Overview of unsuccessfully genotyped SNPs 

Table 12: SNP genotype quality data 

Table 13: Basic diversity statistics of genotype data 

Table 14: Table output of the Evanno method results 

Table  15.  Interpretation  of  Jeffrey’s  scale  of  evidence  for  the  selection  (Jeffrey,  1961) 
Table 16: Summary of SNPs showed to have strong association to geo-climatic variables 

Table 17: Norway spruce sampled individuals included for 384 Illumina genotyping assay 

Table 18: Summary of candidate genes potentially involved in adaptation process when different outlier 

detection methods performed 

Table 19: The percentage (%) of discovered genes from the total number of genes screened for signal of 

selection 

Table 20:  Summary of gene candidates potentially involved in adaptation generated with different 

outlier methods confirms no repeatability existence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

Acknowledgements 
 
 
At the end of my time as a PhD student, I am proud of the things I have learnt and 
accomplished but I am first and foremost grateful to the people who have advised, supported, 
taught and helped me over the years.  
 
First, I would like to thank to my supervisor David for guiding me during three years and giving 
me a chance to train myself in the best way at UC Davis. It was such a pleasure to be your 
graduate student. Thank you for keeping always your door open. Your insights into forest 
population genetics and landscape genomics, the beauty of forest, your hospitality and help 
during my stay in Davis have all been valuable. Filippo, my tutor at UNIFI, thank you for all your 
support and guidance along doctoral period. I would like to thank to DISPAA Department at 
UNIFI for providing me with a scholarship and all financial support during my stay abroad. John 
Liechty, I could never mention or thank you enough for all the things you have helped me, big 
and small, but above all I would like to thank you for always being there as a colleague and 
never feel like I am bothering you with all my questions. Thank you for introducing me to the 
world of programming languages, I promise to continue building up my skills in that area! 
Pedro Martinez Garcia, thank you for all your help and for sharing with me with your expertise. 
Emily Grau, thank you for your help with scripts and doing it happily! Thank you for housing 
help and for your constant cheerful and helpful disposition. Thanks to Carl Vangestel and 
Alejandra Vazquez Lobo Yuren for your truly nice collaboration and guidance on Sugar pine 
projects. I am grateful for consultations and guidance of Prof. Jeffrey Ross Ibarra in population 
genetics.  To  all  people  of   the  Plant  Science  Department  at  UC  Davis   from  Neale’s  group  and  
Ross   Ibarra’s   group,   Randy Famula, Paul Bilinski, Dianne Velasco, Sayuri Tsukahara and 
Colleen Spurlock, thank you guys for making a good atmosphere at work, for sharing space and 
time with me, for laughs and chats, your advices and your friendship!  
 
Thanks to Lorenzo Bonosi for the collaboration within PicPhenomics project and for genomic 
data sharing. Giuseppe Vendramin, thank you for opportunity to conduct work in your lab and 
for all your advices and help. Ilaria Spanu, thank you so much for all hard work in the lab, we 
were such a good team!  
 
 
Thanks to my family for all their love and support, my Mom and Dad, my grandma, aunt and all 
near and good people to me.  
 

 



  Introduction 

1 
 

1. INTRODUCTION 
 

1.1 About Conifers 
Conifers is a common name to indicate the members of the order Pinales, (division Pinophyta, class 

Pinopsida), including approximately 700 species and up to 900 taxa, and represent an ecologically 

important group (Debreczy and Rácz, 2011). They present a monophyletic group of gymnospermous 

woody plants with a long evolutionary history dating back to Carboniferous more than 300 million years 

ago (Farjon and Filler, 2013).  Based on fossil records, conifers were distributed worldwide at the 

beginning of Mesozoic (250 million years ago) when their genetic diversity was high (Stewart and 

Rothwell, 1993). Conifers remained dominant forests across the world until angiosperms occurred 

during Early Cretaceous (120 million years ago) facing a competition changes (Farjon and Filler, 2013). 

Nowadays, conifers are present on all continents except Antarctica and in all climate zones. However, 

among conifer species, some species of the same genus are only common for a particular small region 

whereas other species are distributed across large areas or continents. Such case is common for Picea 
abies, which is widely distributed across Eurasia and Picea omorika, which is only related to small region 

of Balkan Peninsula.  

 

Conifers are highly valued for their straight trunks, soft, finely grained and easily workable wood, which 

all emerged a growth in commercial exploitation of conifer forests worldwide (Debreczy and Racz, 

2011). Most of conifer-covered slopes were reduced and finally vanished with only few exceptions 

remained untouched such as redwoods in California, pine forests at  Tasmania’s  southwest,  the  alerce 

forest of the southern Andes (Debreczy and Racz, 2011). However, the importance of conifer 

ecosystems and forest ecosystems in general has been significantly emerged since they play such an 

important role in the hydrological cycle, recycling of nutrients and stabilizing of climate.  

 

Within conifers, eight families are recognized where some families are monospecific (Sciadopityaceae) 

to 231 species numbered in Pinaceae, and from a single country (Japan Sciadopityaceae) to all 

continents expect Antartica (Cupressaceae). Among all families, the Cupressaceae is the only family 

with a cosmopolitan distribution (both Northern and Southern Hemisphere). The Pinaceae is the 

Northern Hemisphere family with the widest distribution, which is shared by several genera but the 

Pinus is making the largest contribution. The Taxaceae is a family of mostly Northern Hemisphere 

distribution as well as the Cephalotaxaceae with a limited distribution in Eastern part of Asia. The 

Sciadopityaceae is a family of a single species common just for Japan, which was possible spread from 

Europe to Japan. The Podocarpaceae is a primarily Southern Hemisphere family with a pan-tropical 

distribution across Ecuador, Mexico and Japan with genus Podocarpus accounting for the most 

distribution of the family. The Araucariaceae is a family where only three genera make up the family 

being common for the Southern Hemisphere. The last family, the Phyllocladaceae is also common for 

Southern Hemisphere of one genus with a limited distribution in Tasmania, New Zealand and Malaysia 

(Debreczy and Racz, 2011). 
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1.2  Pinaceae (The Pinus family) 
 

The family Pinaceae is the largest family in conifers with 240 or more species included widely 

distributed along Northern Hemisphere with the greatest diversity in temperate to tropical mountain 

habitats (Debreczy and Racz, 2011). The Pinaceae is coniferous family very important ecologically and of 

great economic importance as a source of timber, paper pulp, resins and oils (Debreczy and Racz, 2011). 

The three largest genera, Pinus (115+species), Abies (55+species) and Picea (ca. 35 species) are widely 

distributed in Eurasia and North and Central America, while Larix (10-15 species) has a broad northern-

latitude distribution, while Tsuga (9 species) and Pseudotsuga (4+species) are restricted to portions of 

Asia and North America (Debreczy and Racz, 2011).  

 

This family dominance is common in conifer forests of the temperate and cold regions. In boreal forest 

zone are common limited number of species such as Abies, Larix, Picea and Pinus. In Europe, the family 

Pinaceae of the boreal forest in Scandinavia is present in most of mountainous regions but absent in 

lowlands except around the Mediterranean and Black Seas and in the Baltic States, Belarus and Russia 

(Farjon and Filler, 2013).  

 

The genus Picea is represented in Europe with two species, one is widespread, Picea abies and the 

other is a narrow endemic, Picea omorika, occurring only in a small area of Bosnia and Herzegovina and 

a short distance across the border into Serbia along Tara river. The genus Picea is accounting for 38 

species widely distributed in the northern parts of Northern Hemisphere and presents one of the most 

dominant conifer genus (Farjon and Filler, 2013). Picea is a northerly genus adapted to low or extremely 

low winter temperatures and growing seasons that can be as short as five or six weeks (Farjon and 

Filler, 2013).  

 

 

 

1.3 Norway spruce natural distribution  
 

Picea abies (L.) H. Karst.1881 is the most widely distributed spruce in Europe, ranging through the 

alpine systems from the Maritime Alps to the Carpathians, the Balkan Mountains and sporadically in the 

Dinaric Alps (Debreczy and Rácz, 2011). Across the Europe, its very wide distribution is starting 

extensively in Scandinavia (Norway, Sweden and Finland) and in northeast part of Europe from Estonia, 

Belarus and far into Russia. In Central Europe, its presence is limited to the mountainous regions where 

if present in lowlands is due to its plantations (Figure 1). It occurs from French Hautes Alps to the end of 

Alps in Austria. It is also present in Germany (the Bavarian Forest, Bohemian Mountains, the 

Erzgebirge), the Carpathians and the mountains of the Balkans to Montenegro, Macedonia and Bulgaria 

(Farjon and Filler, 2013). The area of distribution has expanded beyond its natural range, due to its 

plantations in Belgium, Luxembourg, the Netherlands, in Denmark as well as Great Britain, Ireland and 

most parts of France (Spiecker, 2000 in Klimo et al. 2000).  
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Figure 1. Natural distribution map of Picea abies across Europe (EUFORGEN, 2013) (www.euforgen.org) 

Norway spruce has migrated from several places of origin causing an expansion of the geographic range 

primarily to higher mountain regions and lowlands through the interglacial period.  

 

An increase in natural range proportions for Norway spruce within Europe started at the beginning of 

the 19th century due to the intensive reforestation in order to establish a good source for a timber 

production (Mullin et al., 2011). Nowadays, the range expansion of Norway spruce has been under the 

human activity influence such as fire, land clearing and extensive logging (Modrzynski, 2007). Norway 

spruce also has been planted in North America, specifically in eastern Canada (Mullin et al., 2011).  

 

 

 

1.4 Ecology of Norway spruce 
 
Two most important climatic factors for the growth of Norway spruce are temperature and 

precipitation (Nebe, 1968). Environmental factors influence all developmental stages of Norway spruce 

(Modrzynski, 2007). For instance, amount of solar radiation is one of the important environmental 

factors important for seed crop abundance in the year prior the flowering since it stimulates bud 

opening. If environmental conditions are into optimal range, Norway spruce will have a good seed crop 

every 3-4 years (Modrzynski, 2007). The length of the growing season in Norway spruce depends on 

photoperiod and temperature. Bud set development is associated to night length, but also other factors 

such as temperature and moisture requiring the minimum temperature of 0°C for occurrence of deep 

dormancy. Temperature is important for beginning of the growth for needles and shoots, higher than 

5°C, whereas for cambial activity is required temperature above 10°C (Modrzynski, 2007).  

 

The temperature or heat sum requirements of Norway spruce are relatively low, what is evident from 

the natural geographic range reaching mostly northern and high altitude areas. In the southern parts, 

Norway spruce reaches high altitude where it forms tree lines or range limits, below which the 

temperature is too high for the growth (Modrzynski, 2007). Norway spruce is found to be quite tolerant 

http://www.euforgen.org/
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to low winter temperatures, however it is sensitive to early and late frosts during its growing season 

(Ellenberg, 1978). It also tolerates high temperatures (up to +46°C) and very low temperature (up to -

60°C) at sites where average January temperature of -35°C such as Siberia (Ellenberg, 1978; Schmidt-

Vogt, 1977).  

 

Moisture requirements of Norway spruce are quite high, and according to Schmidt-Vogt (1977), Norway 

spruce is vulnerable to the drought because of its reduced ability to uptake water when it is scarce. 

Regarding soil requirements, Norway spruce is able to develops optimally on soils that are mesic, loamy 

and medium rich in nutrients with an optimal pH range lies between 5.3 and 6.0, however it can grow 

on soils with pH values ranging from 3.4 to 6.7 (Obminski, 1977).   

 

Most disturbances in Norway spruce stands are caused by both biotic and abiotic factors, such as 

storms, snow and insects. Drought, frost, fungal diseases and herbivores are causes of major 

disturbance in Norway spruce stands (Schmidt-Vogt, 1989). Norway spruce tolerance to low 

temperature is well entertained if properly conditioned in late summer and hardened in fall, being able 

to tolerate to about -60°C during winter dormancy (Schmidt-Vogt, 1977). On the other hand, as it was 

reported by Christersson and Fircks (1990) observed seedling injury was up to 100) at temperature -4°C. 

Harmful impact of high temperatures is common for your seedlings when exposed at the soil surface 

(up to 65°C). Such temperatures cause protein denaturation and lead to seedling mortality, whereas a 

harmful effect of high temperature on mature trees rarely occurs (Schmidt-Vogt, 1977). The tolerance 

to heat stress is triggered through dehydration in tissues and heat shock proteins synthesis 

(Modrzynski, 2007). Drought induced mortality in Norway spruce was observed in nurseries and young 

stands, where in old stands drought damages are minor (Modrzynski, 2007). If present, drought 

changes are causing physiological changes such as decrease in gas exchange rates and peroxidase 

activity and carbohydrate exudation from root system (Schmidt-Vogt, 1977). 
 

 

 

 

1.5 Climate change and its impact on conifers  
 

Forest ecosystems are being rapidly and directly transformed by the land uses due to the expanding 

human populations and economies (Allen et al. 2010). Less evidence is available nowadays about 

impact   climate   change   could   have   on   the   world’s   forest.   One of the most important challenges 

recognized globally is the climate change effect on ecosystems (Koskela et al. 2007). Although widely 

acknowledged, the global temperature has raised up (0,5°C since 1970) due to the increased emissions 

of greenhouse gases, future predictions are indicating further increases in mean temperature (2-4°C 

globally) with significant mortality issues in some parts of the world (Christensen et al. 2007; Seager et 
al. 2007) as well as extreme droughts or high temperature raise (Allen et al. 2010). Average 

temperatures are expected to increase by 2-4°C in Europe over the next fifty years causing significant 

changes in regional and seasonal patterns of precipitation (IPCC 2007b), creating novel environmental 

conditions to which forest ecosystems will be exposed.   
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Forest ecosystems might not be able to support novel climate changes due to their long life span and 

time span of the climate change (Kremer, 2007). Based on the palaeoecological data assumptions, the 

rate of evolutionary change is much slower than the rate of present climate change (Davis et al. 2005), 

leading to the fact that forest species as a sedentary, long lived organisms are under the risk of the 

potential dieback caused by global climate changes. Trees belong to ecologically and economically 

important group of the terrestrial ecosystems where these novel changes are about to occur.  

 

Plenty of evidences of die-off cases due to drought and high temperatures on conifer species are 

already available and reported across the world (Table 1). In Europe, mortality cases due to dry and 

warm conditions in the 1990s and 2000s across Mediterranean regions, including death among woody 

species in Spain such as Pinus sylvestris (Penuelas et al. 2001; Martinez-Vilalta and Pinol, 2002) and in 

increases in mortality of Pinus sylvestris in Switzerland and Italy (Dobbertin and Rigling, 2006, Bigler et 
al. 2006) (Figure 2). For Norway spruce, has been reported a case of dieback due to summer drought 

paired with biotic stressors in Norway (Solberg, 2004) and in Switzerland due to drought and high 

summer temperatures in 2003 correlated to bark beetles (Ips typographus) reported by Forster et al. 
(2008).  

 

Climate induced mortality of conifer species have been reported in other parts of the world as well. For 

instance, in North America has been reported drought induced mortality on example of Pinus contorta 

in British Columbia (Kurz et al. 2008a) and several spruce species in Alaska (Berg et al. 2006).  

 

 

                    
Figure 2. Satellite map of Europe with documented drought induced mortality areas (Table 1). Right 

picture presents mortality of Pinus sylvestris in Switzerland (1999), By: Wermelinger B. Left picture 

presents die-offs of Pinus sylvestris in Spain (2006), By: Navaroo-Cerrillo R. (References in Allen et al. 
2010) 
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Many recent examples of drought and heat-induced mortality from around the world suggest that no 

forest type is invulnerable to climate change  (Allen et al. 2010).  Koski et al. (1997) reported 

populations of Norway spruce are facing severe threats in some regions in Central Europe. Populations 

are in danger of possible dieback due to the industrial air pollution and global warming. Although it is 

common high levels of intrapopulation genetic variation and known high adaptability of Norway spruce, 

decline and mortality rates are predicted to occur (Koski et al. 1997). 

 

 

Table 1: Documented cases of drought and heat-induced mortality from Europe (1970 to present), ID 

numbers refers to locations mapped (Allen et al. 2009). 

  

Location Years of mortality Forest type Dominant tree 
Climate anomaly linked 

to mortality 

Europe 

(Western 

Central) 

ID: 2 

1970-1985 

Temperate 

conifer and 

broadleaf 

Abies spp. 

Picea spp. 

Pinus spp. 

Repeated droughts 

Italy  

(South Tyrol) 

ID: 6 

1992 
Temperate mixed 

conifer 
Pinus sylvestris Multi year drought 

Austria (Tyrol) 

ID: 8 
1991-1997 

Temperate mixed 

conifer 
Pinus sylvestris Seasonal droughts 

Italy (Aosta) 

ID: 9 
1985-1998 

Temperate mixed 

conifer and 

broadleaf 

Pinus sylvestris Multi year drought 

Norway 

ID: 12 
1992-2000 

Temperate 

conifer 
Picea abies 

Multi year summer 

drought 

Switzerland 

ID: 16 
2003 

Temperate 

conifer and 

broadleaf 

Picea abies 
Drought, high 

temperatures 

Spain  

ID: 19 
2004-2006 

Temperate 

conifer 

Pinus sylvestris, 

Pinus nigra 
Multi year drought 

France ID: 23 2003-2008 

Temperate mixed 

conifer and 

broadleaf 

Quercus spp. 

Abies spp. 

Picea abies 
Pinus spp. 

Spring, summer droughts 

Scorching heat 
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1.6 Phenomena of adaptation 
 

Adaptation, or the hereditary adjustment to the environment, is one of the universal features of life 

(Grant, 1963). An adaptation could be defined as a characteristic evolved by a natural selection, which 

enchases the survival or reproduction of organisms (Futuyma, 2005). With the climate changes causing 

environment changes, optimal sets of adaptations with maximizing fitness under local conditions might 

shift accordingly (Kremer et al. 2012). Aitken et al. (2008) described three possible scenarios for forest 

ecosystem how to cope with novel environmental changes as (1) migration to track ecological niches 

spatially; (2) adaptation to new conditions in current location and (3) extirpation. Existence of 

phenotypic plasticity and effective genotypes enables forest species to tolerate the environment 

change (Savolainen et al. 2007).  

 

Trees as long-lived sedentary organisms with a capacity of long distance dispersal via seed or pollen are 

not estimated enough about their genetic basis of adaptation potential given an intensity and 

directionality of climatic change (Kremer et al. 2012). However, the strict criterion for a local adaptation 

is that one population has higher fitness at its native site than any other population at the same site 

(Savolainen et al. 2013). At other sites, populations would have lower fitness, however that would not 

mean locally adapted population would grow better elsewhere but only their growth is the best at site 

where locally adapted (Kawecki and Ebert, 2004). 

 

Understanding the genetic basis of adaptation is possible though the way of estimation distribution of 

allele frequencies among populations. Evolutionary forces that drive allele frequency distribution 

changes across time are mutation, gene flow (migration), genetic drift (random changes in allele 

frequencies from generation to generation due to sampling effects), natural selection and mating 

system (the degree to which sexual reproduction occurs through self-pollination, consanguineous 

mating between related or unrelated individuals) (Aitken, 2004). Gene flow influences the process of 

adaptation via seed migration or pollen flow when new areas are colonized (Austerlitz et al. 2000). The 

potential of forest trees to adaptation is reflected through gene flow (mostly by pollen) and natural 

selection (Savolainen et al. 2014). On the other hand, genetic drift is more reflected than other 

evolutionary forces in small or isolated populations or species with small ranges and experienced major 

bottlenecks (Aitken, 2004). The adaptive potential one population could have depends on phenotypic 

variation, strength of selection, fecundity, interspecific competition and biotic interactions. Tree 

populations from boreal and temperate zones show moderate to strong clines in phenology and growth 

along temperate gradients indicating substantial adaptation (Aitken et al. 2008).  

 

Trees as long-lived organisms may not have evolutionary rates as high as short generation organisms 

(Smith and Donoghue, 2008) raising the concern about having an exact match within evolutionary 

change with rapid climate change. Trees experienced strong evolutionary responses during glacial and 

interglacial periods when dramatic environmental changes occurred leading to their replacement to 

more favorable habitats but also their extinction (Kremer, 2010). Based on fossil records, some plant 

species that previously existed in Europe end of the Tertiary period nowadays are present in North 

America, however there was no tree extinction in recent period, indicating that trees have developed 

ability to migrate or adapt to environmental change (Kremer, 2010). Capacity for colonizing new areas 

for some forest tree species are predicted to be limited, such as Scots pine, which is predicted to 

decline (Kellomaki et al. 2001). 
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Savolainen et al. (2013) described three possible population genetics approaches for detecting the 

footprints of local adaptation at the molecular level: population differentiation through scans of the 

Wright fixation index (Fst), correlation between allele frequencies and environmental variables and Fst-

Qst comparisons. Common garden experiments proved to been informative in estimation of adaptive 

genetic potential, however their informative power depends on the number of different test 

environments, the duration of tests and the genetic diversity of experimental populations (Neale and 

Kremer, 2011). With discovery of genomic data, genome scans became an alternative to common 

garden experiments, as time consuming, costly and logistically challenging approaches. However, 

through combination of genomic and more traditional approaches, intensive efforts have been made to 

identify the most ecologically important traits and their underlying genes (Neale and Kremer, 2011). 

Although approximately 290 genes have been investigated for evidence of balancing or directional 

selection, around 20% (55 genes) showed departures from neutrality (Neale and Ingvarsson, 2008). 

Population genetic analyses provide enriched exploration of adaptation signatures based on sampled 

DNA sequences from multiple individuals especially when common garden or phenotypic selection, are 

not feasible. However, Tiffin and Ross Ibarra (2014) emphasized the usage of population genetic 

analyses that provides enriched exploration of adaptation based on sampled DNA sequences from 

multiple individuals also when common garden experiments or phenotypic selection analyses are not 

feasible. 
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1.7 Adaptive genetic variation in conifers with emphasis on Norway spruce  

      (Common garden trials) 

 
Evidence of evolutionary responses through local adaptation in trees may originate from two sources: 

provenance trials and patterns of clinal variation (Savolainen et al. 2007). Selection along environmental 

gradients in continuous populations often results in clines. Development of the genetic variation that 

provides increase of phenotypic clines depends on balance between selection and the average disperse 

distance of the organism (Savolainen et al. 2007). Generally, common garden experiments provided an 

insight in phenotypic proportion of variation between traits and abiotic and biotic environmental 

factors (Savolainen et al. 2007).  

 

Traits related to adaptation to specific environmental stresses could be assessed through long-term 

field provenance trials such as phenology (e.g. timing of bud burst, bud set, leaf abscission, pollination 

and seed maturation); cold-hardiness and drought-related traits. However, adaptive traits are more 

commonly assessed in short-term nursery, growth chamber or greenhouse in more controlled 

conditions (Aitken, 2004). Long-term provenance trials enabled an opportunity to study differences 

among populations from different environments as well as effects of a changing environment on these 

populations by substituting spatial for temporal environmental variation (Aitken 2004).  

 

Common garden plantations have provided an insight about variability in quantitative adaptive traits 

among and within wild populations of forest tree species (Skroppa and Johnsen, 2000). The analyses of 

phenotypic clinal variation due to the selection can be a productive approach to uncover local 

adaptations and their genetic basis (Savolainen et al. 2007). Multiple-site provenance trials (also known 

as common garden plantations) could serve to examine plastic responses of populations in novel 

environment when planted in sites where environmental gradients are different (Alberto et al. 2013).  

 

A number of traits known to have adaptive significance have been observed through common garden 

studies. In the previous conducted provenance trials, a substantial variation has been observed among 

populations for traits related to the climatic adaptation (Skroppa and Johnsen, 2000). One of the 

examples of such study is trial conducted on one-year-old seedlings of Norway spruce, when a clinal 

variation among populations as observed and the latitude and altitude of the natural stands explained 

88% of the variability (Daehlen et al. 1995). Skroppa and Johnsen, 2000 described several cases of clinal 

variation for different traits on case of Norway spruce such as cessation of shoot elongation at the age 

of six, annual growth rhythm traits, duration of shoot growth, and basic wood density, pointing out that 

that higher percentage of variation has been observed on population level rather than on family level 

and it could be explained by different mechanisms influence the genetic variability within and among 

populations (Skroppa and Johnsen, 2000). 

 

Phenotypic clines along environmental gradients are common in forest trees such as variation in the 

mean timing for bud set in Pinus sylvestris along latitudinal gradient (Mikola, 1982). Beside bud set, 

other traits have been extensively studied such as phenology in general and flowering time for which 

strong candidate genes are available and belong mostly to the photoperiodic pathway including 

circadian clock (Gyllenstrand et al. 2007).  
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In study conducted by Chen et al. (2012) was analyzed genetic and phenotypic variation in bud set in 

Norway spruce, a highly heritable adaptive trait, for which variation appeared to be strongly clinal. Chen 

et al. (2012) emphasized that Norway spruce populations, just as in the case of other forest species, are 

strongly differentiated for bud set indicating very strong phenotypic differentiation for this particular 

trait. Additionally, Chen et al. (2012) analyzed single-nucleotide polymorphism (SNP) frequencies at 

candidate genes for timing of bud set in 18 populations of Norway spruce, providing capture of the 

clinal variation at candidate gene SNPs correlated with latitude. The clinal variation has been finally 

confirmed in gene expression study on subset of genes for which clinal variation was detected for SNP 

allele frequencies (Chen et al. 2012). 

 

 

 

 

1.8 Genotype versus environment in conifers with emphasis  on Norway spruce  
 

Landscape genomics integrates both landscape ecology and population genetics with an aim to 

investigate how landscape elements (such as forest) and environmental factors influence the spatial 

distribution of genetic variation. One of the main research questions of landscape genetics is how 

environmental factors such as temperature or precipitation affect adaptive genetic variation due to the 

climate change (Holderegger et al. 2010). As genomic data became more available nowadays, genome 

scans for signatures of adaptation became more common (Tiffin and Ross Ibarra, 2014). In genomic era, 

the first approach was population genomics such as Fst outlier method, which was common for about 

decade (Holderegger et al. 2010). Landscape genetics became available more recently and it directly 

use environmental variable to highlight molecular markers linked to genomic regions, which are under 

the selection (Holderegger, 2008). In particular, allele frequencies in individuals either in the 

populations are correlated to any of environmental variables such as: temperature, precipitation, 

aridity, altitude etc. (Holderegger, 2008). Genetic variation is often influenced by latitudinal or 

altitudinal clines, however climate is the most important driver of adaptive phenotypic traits (Eckert et 
al., 2010a). 

 

Several landscape genomics studies on the conifer species have been conducted in searching for an 

estimation of adaptive genetic variation. One of the first attempts on non-model organism to detect 

outlier loci under the selection on Norway spruce was done by Scalfi et al. (2014). In this study was 

reported usage of Fst outlier detection analyses in a combination with regression analyses. In this study 

were used 384 SNPs representing 290 genes used for genotyping at micro-geographic study (two 

altitudinal-transects in the Italian Alps) for a total of 38 populations and macro-geographic study across 

27 populations belonging to the Alpine and Hercyno-Carpathian domains. As result, seven loci were 

detected with Fst outlier detection; six other outliers were detected through population clustering 

(Bayesian simulation and hierarchical island model) and 15 outliers with regression analyses.  

 

Another approach was described by Chen et al. (2012) when analyzed genetic and phenotypic variation 

in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce for 

correlations with latitude. In this study were included genotypes for 137 single-nucleotide 

polymorphisms (SNPs) selected from 18 candidate genes putatively affecting bud set and 308 control 

SNPs selected from 264 random genes for estimation of patterns of genetic structure and environment. 
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Several methods have been applied to analyze clinal variation such as linear regression on latitude 

assuming that geographic variation is associated to an environmental gradient covarying with latitude 

as well as Regression Monte Carlo simulation to investigate to what extent a significant clinal variation 

observed at one nucleotide site could be due to LD with another SNP (Berry and Kreitman, 1993). 

Bayesian generalized linear mixed model (Bayenv) analyses was applied to detect clinal variation for 

SNP allele frequencies in correlation to environmental variables. The last method used in this study, was 

BayeScan method (Foll and Gaggiotti, 2008). Chen et al. (2012) proved that variation in bud set is clinal 

one. As result of analysis of clinal variation in allele frequencies, 28 significant SNPs including 11 from 

candidate genes were detected.  

 

Di Pierro et al. (in preparartion) reported approach on Norway spruce to determine and quantify 

patterns of adaptive response in natural populations across the Italian Alps and Apennines. Across the 

Italian species range, 24 natural populations were sampled. Genotyping was done for 384 selected 

Single Nucleotide Polymorphisms (SNPs) from 285 genes. As results of this study, were revealed five Fst 

outliers and seven SNPs associated to one or more climatic variable, precipitation more than 

temperature (Di Pierro et al. in preparation). 

 

Investigation of local adaptation potential has been performed also on other conifer species. One of 

examples is the study on four different conifer species: Abies alba, Larix decidua, Pinus cembra L. and 

Pinus mugo Turra across the European Alps is by Mosca et al. (2012). As the result, six SNPs were 

detected in Larix decidua and 18 in Pinus mugo Turra, which were associated to PC1 (the first principal 

component score) corresponding to winter precipitation and seasonal minimum temperature. In Abies 
alba, four SNPs were associated with PC2 (the second principal component score) corresponded to the 

seasonal minimum temperature. In all species, except Abies alba, was present a strong effect of 

seasonal temperature and precipitation when the strongest signal of correlation originated from 

association to seasonal minimum temperature for A. alba, P. cembra and P. mugo (Mosca et al. 2012).  

One of the first attempts to illustrate population genomics approach on non-model organism such as 

loblolly pine (Pinus taeda) was conducted by Eckert et al. 2010. Loblolly pine is a species distributed 

across the southern eastern part of USA, ranging from Texas to Delaware enabled to determine genetic 

variation among natural populations based on isozymes and nuclear microsatellites (Eckert et al. 2010). 

In this study was presented a genome-wide dataset of single nucleotide polymorphisms (SNPs) typed 

from 1730 loci in a mapping population composed of 682 loblolly pine individuals. Totally were 

examined 54 populations for allele correlations to multivariate environmental variables (the principal 

component scores) (Eckert et al. 2010). Very strong association between allele frequencies and geo-

climatic multivariate variables (the principal components) was common for 22 SNPs, whereas totally 48 

SNPs showed the strongest signal of correlation (i.e. Bayes Factors (BFs.) > 100) describing temperature, 

growing degree days above 5C, winter aridity, overall aridity, precipitation as well as aridity during 

summer and winter.  
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1.9 Gene groups associated to environment among conifers 
 

Mosca et al. (2012) reported several associated SNPs located in genes encoding proteins affecting plant 

response to abiotic stress. Loci associated to multivariate components (PCs) were found in genes 

involved in lignin biosynthesis. Mosca et al. (2012) observed 3 loci where one was detected in Pinus 
cembra and other two loci were detected in Pinus mugo. Additionally, two loci encoding for heat-shock 

proteins (HSP) were detected in Abies alba (one) and in Larix decidua (one) and they were also 

correlated to PCs scores. Several associated SNPs were located in genes encoding proteins involved in 

translocation mechanisms, two loci in Larix decidua, two loci in Pinus cembra and one on Pinus mugo. 

Overall, seven associated SNPs were located in genes common among all four species, when these loci 

were mainly involved in metabolic and oxidation-reduction processes and in regulation of stomata 

movement. Among climatic variables, the strongest correlation in this study was related to the seasonal 

minimum temperature and winter /autumn precipitation (Mosca et al. 2012).  

 

Di Pierro et al. (unpublished) reported seven associated loci to environmental variables, where for four 

loci was known putative function and three others were anonymous. Known putative functions were: 

encoding for SNF2 protein family; encoding for a putative conserved domain: oxygen evolving enhancer 

protein1 (involved in photosystem II stabilization), encoding for a protein similar to 

phosphoenolpyruvate carboxykinase 2 (critical enzyme involved in the gluconeogenesis) and locus 

encoding for a sequence with a high similarity with NAD(P)-linked oxidoreductase-like protein in 

Arabidopsis thaliana (involved in oxidation reduction on chloroplast thylakoid membrane).  Di Pierro et 
al. (unpublished) observed more correlation to precipitation than to temperature among climatic 

variables included in outlier detection analyses. 

 

Scalfi et al. (unpublished) attempted detection of loci with different putative functions both on macro 

and micro geographic scale. As summary of Fst outlier detection methods, only at macro-geographic 

scale have been detected seven outlier loci, where one has a similarity with protein of Zea mays 

(ACG24319) and another was similar to sucrose synthase of Pinus halepensis (AY705802.1). Other 

detected loci were involved in various biological processes such as: (a) transcription factor, (b) 

translation-elongation factor, (c) UBX domain-containing protein, (d) acyl-CoA thioesterase or (e) 

acetyltransferase component. Totally seven outliers were detected with Fst approach and one locus in 

detected in a gene involved in plant defense and other two in lipid metabolism. Since at macro-

geographic scale, analyses were conducted twice, loci detected using populations assigned according to 

their geographic position was only one and located in Picea glauca (gb|BT10728.1|) and encoding for a 

nucleic acid-binding protein in Arabidopsis thaliana. Considering another approach, clustering based on 

STRUCTURE (Pritchard et al., 2000), two loci detected being involved on a gene encoding for a sucrose 

synthase in Pinus halepensis while another locus detected was located in gene encoding for a F-box 

protein. In this study, regression analyses were also performed. At micro-geographic scale analyses only 

two loci showed significant correlation with climatic variables such as temperature and precipitation 

where one locus has similarity with the pentatricopeptide (PPR) repeat containing protein of A. 
thaliana. In the macro-geographic scale analyses, totally 38 loci from 227 tested were significant, where 

only 12 loci were significant.  

 

In study conducted by Eckert et al. (2010a), more than half of identified loci were located in genes that 

code for proteins with unknown function (hypothetical proteins) referring to that time lack of 



  Introduction 

13 
 

sequenced loblolly pine genome but referring to Arabidopsis thaliana reference genome or lack of 

sequence similarity to genes in model plants. Most of other identified loci are related to plant response 

mechanisms to abiotic stress such as calcium-dependent protein kinases (CPDKs) which approved to be 

a key signal to transduction of osmotic stress signaling, short-chain dehydrogenase/reductases and TIFY 

domains. Proteins with TIFY domains are known to respond to a wide range of abiotic stresses such as 

drought, salinity and low temperature. Eckert et al. (2010a) described other potentially adaptive genes 

encoding for proteins responsible for oxidative stress (e.g. oxido-reductases, peroxidases, thioredoxin-

like proteins); cell membrane related proteins (e.g. nodulin, K+: K+ antiporter) and genes encoding for 

sugar metabolism (e.g. trehalose-6-phosphate phosphatases, TPPs). Additionally, Eckert et al. (2010b) 

reported one SNP located in gene with known gene function that is correlated to ubiquitin-specific 

protease, proteins quite abundant in eukaryotes and being expressed when ongoing increased protein 

degradation as response to environmental stress.  

 

Furthermore, Eckert et al. (2010a) reported five more loci correlated to aridity where as described; 

these loci were primarily involved with abiotic stress response to temperature and drought. Five loci 

showing significant association within genotypes and aridity gradients were located in genes encoding 

for following: Hexose:hydrogen symporter, Photosystem II protein, CSHC4-type RING finger, MATE 

efflux family protein and UDP-galactose transporter.  

Grivet et al. (2011) examined environmental associations between variation at candidate genes and 

climatic variables with an aim to identify genes, which may be targeted by selection on two 

Mediterranean conifer species: Pinus pinaster Ait. and Pinus halpenses Mill. In this study was assessed 

the impact of natural selection on the same set of candidate genes related to drought tolerance. As 

result, environmental association revealed loci correlated to temperature, when one of these loci was 

common in both pine species. Genes discovered belonged to dehydrins, which present a small group of 

multigene family of intracellular stabilizers that plays a major role in cell protection against desiccation. 

Additionally, 4cl gene family has been detected by environmental association analyses. This gene family 

is involved in the production of basic enzymes of the phenylpropanoid metabolism that present 

important metabolites acting against biotic and abiotic stresses (Rani et al. 2009) as well as encoding 

key enzymes in biosynthesis of lignin and several studies have demonstrated their involvement in the 

plant growth (Wagner et al. 2009). 

 

Prunier et al. (2011) scanned the genome of the boreal conifer black spruce (Picea mariana [Mill.] 

B.S.P.), a dominant tree of the North American boreal forest, for gene single-nucleotide polymorphisms 

(SNPs) potentially involved in adaptations to temperature and precipitation variations. In this study 

were included 583 SNPs from 313 genes potentially playing adaptive roles. Prunier et al. (2011) 

detected 14 outlier SNPs correlated to temperature and 16 to precipitation. Loci were located in genes 

with different putative functions where these correlated to temperature are belonging to C2H2 zinc 

finger family; R2-R3 MYB, Zinc-binding family, C3HC4 RING finger, AP2, WD-40 repeat family, MBF, 

Peroxidase, Glycosyl-hydrolase. Loci found to be correlated to precipitation belonged to B-box zinc 

finger, C3HC4 RING finger, C2H2 zinc finger, Zinc-binding family, Mov31 family, Ubiquitin, LEA, NAC, HD-

Zip etc.  

De La Torre et al. (2014) performed a genome-wide association study on white spruce [Picea glauca 

(Moench) Voss] and Engel-mann spruce [Picea engelmannii Parry], two conifer species common in 

western North America that hybridize extensively in British Columbia and the western part of Alberta 

(Canada). This study aimed to assess levels of admixture and introgression and to identify loci putatively 
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involved in adaptive differences between species by using a panel of 311 candidate gene single 

nucleotide polymorphisms (SNP) from 290 genes. The main objective of this study was to determine the 

glacial and postglacial re-colonization patterns between these widely hybridizing conifer species. As 

result, two species are showing to have long history of hybridization and introgression whose integrity 

has been maintained by a combination of strong environmental selection and reduced current 

interspecific gene flow (De La Torre et al. 2014). Twenty loci showed evidence of divergent selection 

where six loci were Fst outliers and associated to climatic gradients, whereas other fourteen loci were 

either outliers or showed association to climate. These loci were located in genes involved in 

carbohydrate metabolism, signal transduction and transcription factors (De La Torrre et al. 2014).  

 

Overall, several group of genes associated to climatic gradients have been identified in different conifer 

species. Based on the literature sources available so far, seven gene groups were shared among broad 

conifers, indicating the repeatability in genes also when different outlier detection approach used. The 

most common gene products are listed as following: (a) lignin biosynthesis present; (b) sugar 

metabolism; (c) peroxidases; (d) photosystem II protein; (e) Photosystem II protein, (f) Glycosyl 

hydrolase (g) RING proteins and (g) ubiquitin. (Table 2). 

 

 

 

Table 2: Gene products showed to be associated to various climate gradients in different   conifer 

species 

 
Phenotype Conifer species Candidate gene Reference 

Drought Pinus pinaster  

Lignin biosynthesis 

Grivet et al. (2011) 

Temperature, 

precipitation 

Pinus cembra 
Pinus mugo 

Mosca et al. (2012) 

Aridity Pinus taeda 
Sugar metabolism 

Eckert et al. (2012b) 

Temperature, 

precipitation 
Picea abies 

Di Pierro et al. 
(unpublished) 

Aridity Pinus taeda 
Peroxidases (WF, AS) 

Eckert et al. (2012b) 

Temperature, 

precipitation 
Picea mariana Prunier et al. (2011) 

Aridity Pinus taeda 
Photosystem II protein 

Eckert et al. (2012a) 

Temperature, 

precipitation 
Picea abies 

Di Pierro et al. 
(unpublished) 

Temperature, 

precipitation 

Picea mariana 
Glycosyl hydrolase 

(translocation mechanism) 

Prunier et al. (2011) 

Picea glauca 
P. engelmanii 

De La Torre et al. (2014) 

Aridity Pinus taeda 
RING proteins 

Eckert et al. (2012a) 

Temperature, 

precipitation 
Picea mariana Prunier et al. (2011) 

Aridity Pinus taeda 
Ubiquitin 

Eckert et al. (2012b) 

Temperature, 

precipitation 
Picea mariana Prunier et al. (2011) 
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2. RESEARCH OBJECTIVES 
 

The main objective of this study is to estimate an adaptive genetic potential within mapping population 

of Norway spruce across European Alps for a climate change. It is already known that the most 

important environmental gradients, which influence local adaptation among forest trees, are 

temperature, precipitation and aridity. Current climatic predictions suggest temperature could rise 1.5-

5.8°C in the next hundred years significantly increasing dieback of forest species across the globe. 

Norway spruce is known to be sensitive to increases in temperature and droughts in temperate and 

boreal conifer forests. Many recent examples of drought and heat-induced mortality cases across the 

world, strongly suggest that there is no forest type or climate zone invulnerable to climate change. How 

rapid changing climatic change will affect Norway spruce growth remains unclear, since the genetic 

basis of adaptation is not well understood. 

 

This study provides an insight to adaptive genetic variation within 392 geo-referenced individuals 

sampled across European Alps. The research question in this study is to identify presence of adaptive 

loci across the genome of Norway spruce. Herewith, we applied an approach where environmental data 

are directly associated to genomic data of collected samples.  

 

The first research objective was to determine genetic diversity of Norway spruce by genotyping 384 

single nucleotide polymorphism (SNPs) from natural populations. The second research objective was to 

estimate the correlation between climatic variables (e.g. temperature, precipitation or aridity) and 

genetic variation. Several outlier detection methods provided an insight of correlation between allele 

frequency and environmental gradients. The last research objective was to discover possible putative 

genes and responses in these genes underlying responses to climate. 
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3. MATERIAL AND METHODS 

 

3.1 Sample collection  

 

Needle tissue and seeds were collected in winter 2011/12 across Italian sites (Bonosi L. and Ghelardini 

L. FEM, San Michele) whereas the rest of sampling material was obtained from cooperating institutes 

(WSL Birmensdorf; BFW Vienna; INRA Avignon; Grozdarski Institut Slovenije). 392 mother trees 

originating from three main provenances Italy-Slovenia-France, Austria and Switzerland constitute a 

population of Norway spruce (Figure 3). Each mother tree was provided with geo-reference data 

(latitude, longitude and altitude) except for Austrian provenance where individuals were assigned 

randomly on Google maps (Bonosi L.) (Supplement 1). 

 

       

                   
           
      

 Figure 3: A population consists of 392 trees sampled across the Alps 

 

Each mother tree is geo-referenced by location (site) (nsites=152). An average number of sampled trees 

per site is 3~4 trees/site (Italy), 2 trees/site (Austria), 2 trees/site (Switzerland), 4 trees/site (France) 

and one tree/site (Slovenia) (Table 3). Needle tissue from 196 individuals and seeds from 187 

individuals were sealed in aplastic bag and stored at -20°C until further processing for DNA isolation.  

 

All mother trees were sampled at isolated points across Alps. An average elevation at which trees were 

sampled  was   1066.33m   above   Earth’s   sea   level   (Slovenia);   1433.07m   above   Earth’s   sea   level   (Italy),  
1624.5m  above  Earth’s  sea  level  (France);  1036.5  above  Earth’s  sea  level  (Austria)  and  1254.05m  above  
Earth’s  sea  level  (Switzerland).       
 

 

Mapping�population�
�

���0���������200��������400������600� km�
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Table 3: The population of Norway spruce 
 
Country          No. trees          No. sites               Tissue sample         Sample source 

Slovenia  3       3     needles                   Godzarski Institut Slovenie 
Italy  190      53     needles                       Bonosi, Ghelardini(FEM) 
France  12       3                    needles                           INRA Avignon, France 
Austria  80      37     mega’s                              BLW Vienna 
Switzerland 107      56     mega’s                     WLS Birmensdorf 
 
 
 
 
 
 
3.2 Illumina 384 GoldenGate chip design 

 

SNP genotyping (single nucleotide polymorphism) Illumina GoldenGate 384 chip was designed by 

integrating three different SNPs sources.  

 

The first set of SNPs is from Comparative Re-sequencing in Pinaceae (CRSP) project 

(http://dendrome.ucdavis.edu/NealeLab/crsp/). CRSP project was based on Sanger re-sequencing of a 

panel of 12 unrelated Norway spruce trees (haploid megagamethophyte DNA) using subset of 1024 

primer pairs derived from almost 1000 loblolly pine expressing tags (ESTs) including genes involved into 

several biological mechanisms (Scalfi et al. 2014 and Di Pierro et al. in preparation). SNPs performed 

well in the previous studies based on the successful genotyping and quality, in particular a subset of 153 

SNPs derived from Scalfi et al. 2014 and Di Pierro et al. (in preparation), were used for a 384 chip 

design. The final score of SNPs from CRSP project annotated for different biological processes is 94. (see 

Figure 4. for details). 

 

Additionally, a second set of SNPs delivered from sequencing panel of Evolutionary Biology Center at 

Uppsala (Sweden) has been used. From the total set of 1146 SNPs, a final set of 102 SNPs including 24 

of candidate genes, were selected for the genotyping. The source of these SNPs is from re-sequencing 

panel for discovery of new SNPs of 48 Norway spruce alleles. These SNPs were also applied in the study 

of Chen et al. (2012) on Norway spruce and they were putatively involved into photoperiodic pathway, 

shoot apical development and circadian clock.  

 

Finally, the remaining set of 374 SNPs is from Arborea project on Picea glauca (white spruce) Canada 

(http://www.arborea.ulaval.ca/). These SNPs were generated from 1964 SNPs from 1485 genes, which 

were initially identified and successfully genotyped in Picea glauca (white spruce) and used to be tested 

in 12 (diploid) individuals of Norway spruce from 12 populations in central Europe (Latvia, Poland and 

Germany). These 1485 genes were transcription factors either candidate genes related to growth, wood 

formation, cell wall, lignin synthesis (Chen et al. 2012). Testing was done by submitting SNP design 

panel to Illumina GoldenGate SNP genotyping resulting in discovery of 384 valid SNPs from 340 genes. A 

group of 374 SNPs are obtained in the collaboration with EB Uppsala, Sweden (Dr. Martin Lascoux) was 

used for selecting SNPs and the final number of SNPs selected was 188 SNPs originating from genes 

http://dendrome.ucdavis.edu/NealeLab/crsp/
http://www.arborea.ulaval.ca/
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putatively involved into photoperiodic pathways and the rest of control SNPs being involved into 

different biological functions. 

 

The process is initiated by selecting and submitting a list of requested loci to Illumina genotyping center 

(Parco Tecnologico Padano di Lodi, Italy). Upon submission, Illumina evaluated the list with Assay 

Design Tool (ADT) to ensure successful assay development. ADT tool was the first step to create an 

assay panel including these loci that have a high likelihood of success for genetic analyses performance. 

Evaluation was made based on the flanking sequence for each locus. After the preliminary evaluation 

with ADT file, Illumina provided Sequence list file where each locus was ranked with design-ability score 

and design rank (Figure 4).  

 

The final rank of SNPs was made based on design-ability score (the rank of 0.6-1 indicating the high 

success rate) and the final rank for each SNP provided by Illumina. Additionally, flanking sequences for 

example with presence of insertions/deletions or with presence of degenerate nucleotides were 

removed as well as these with the length of sequence on either side of variant (central polymorphism) 

is less then 60bp. An annotation for each SNPs associated to the trait of interest/environment was also 

one of the priority criteria for the final rank of SNPs to be submitted for genotyping. 

 

A total of 384 SNPs representing 242 genes were submitted to Illumina Genotyping Center in Parco 

Technico Padano, Lodi (Italy). The 384 SNPs were genotyped by using Illumina GoldenGate 384 SNP 

array where 188 SNPs originated from Arborea project, 94 SNPs originated from CRSP and 102 SNPs 

from Uppsala (Sweden) dataset (Supplement 2). 
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 Figure 4: A 384 Illumina GoldenGate design steps 
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3.3 Germination of seeds  

 

Seeds were placed in a sealable plastic bag and stored in the refrigerator at temperature 4°C shortly 

before starting the germination process. Norway spruce seeds were previously soaked in distilled water 

before placing them on the moisture filter paper inside Petri dish (Figure 5). For each individual were 

selected a group of 10-12 seeds. 

 

Each Petri dish with seeds for the germination were treated with distilled water every 24h in order to 

keep filter paper regularly moisture (Figure 6). The germination lasted from 5-10 days resulting into 

slightly opened seeds and embryo development visible in only few mm. Seeds were collected in a single 

tube for each individual and used for extraction of the haploid tissue (megagametophytes). Total 

number of individuals used for germination of seeds was 309 (127 individuals from Austria and 182 

individuals from Switzerland). Germination of Norway spruce seeds was done at Institute of Plant 

Genetics (IGV-CNR),  Sesto  Fiorentino  (Italy)  at  Dr.  Vendramin’s  laboratory. 
 

 

 

 

                  
Figure 5: Germination of Picea abies seeds 

Irina Calic
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Figure 6: Germination of Picea abies seeds 

 

The minimum number of pooled megagametophytes taken from the single cone was 8, and maximum 

was 10. As this procedure haploid tissue of spruce seeds is combined to diploid tissue in a single tube 

for each individual. Inferring the parent genotype from the combined haploid genotypes of mitotically 

derived products, it is possible that one of two alleles at a locus for which the parent is heterozygous is 

not detected if used only one megagametophyte from a single individual. However, with a set of 10-

pooled megagametophytes per genet, the probability of such event is very small, taking into 

consideration that the allele of only one megagametophyte could be detected.  

 

In some cases, the germination rate was quite low and minimum required number (8) of 

megagametophytes could not be achieved due to the fungal infestation or seeds were empty. The 

number of failed cases of the successful germination was 14 among individuals from Austria and 5 from 

Switzerland. Additionally, individuals that were germinated again were 52 from Switzerland and 12 

from Austria due to the very low germination rate.  

 

 

3.4 DNA isolation from needles and megagametophytes  

 

Genomic DNA was extracted from both needles and megagametophytes (haploid tissue of Picea abies 

seeds) using the DNeasy plant Mini Kit (QIAGEN, Valencia, CA). Total number of individuals where 

needles were used for DNA extraction was 211 (individuals from Slovenia, Italy and France) whereas 

megagametophytes were used for 112 individuals (Austria) and 174 individuals (Switzerland).  

 

Prior DNA isolation, plant material (needles) was weighted on the balance for each individual. 

Approximately 30mg of plant material was used per individual for DNA isolation. Regarding 

megagametophytes, at least 8 per individual were used for DNA isolation. Plant material was stored in 
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2ml micro-centrifuge tubes with 2.0 mm diameter beads overnight at -80°C. Beads, which were used for 

grinding of material, were previously washed and sterilized before use. Disruption of plant material was 

done at grinding machine until plant material did not become a fine tissue powder (approximately 

1minute ~ needles and 30 seconds ~ megagametophytes). After disruption of plant material, it was 

added  Buffer  AP1  (400μl)  and  RNase  (4μl)  followed  by  cell  lyses  of  the mixture for 1h at 65C with mixing 

(inverting  samples)  every  15minutes.  When  cell  lyses  were  completed,  a  Buffer  P3  (130μl)  was  added  to  
mixture and incubated on ice for 5 minutes. The next step was centrifugation the lysate at 14,000-rpm 

providing removal  of  precipitates  and  cell  debris.  The  volume  of  450μl  of  lysate  was  recovered  followed  
by  direct  addition  of  Buffer  AW1  (675μl)  on  lysate  and  immediate  mixture.  From  the  mixture,  650μl  was  
pipetted into DNeasy Mini spin column placed in 2ml centrifuge tube and centrifuged for 1min at 

8000rpm. DNeasy Mini spin column was re-used into a new 2ml centrifuge tube when added Buffer 

AW2  (500μl)  and  centrifuged  for  1min  at  6000  rpm.  This  step  was  done  one  more  time,  however  second  
time centrifuge was done on 14,000 rpm to dry a membrane. DNeasy Mini spin column was transferred 

to   a   new   2ml   centrifuge   tube   when   added   50μl   of   Buffer   AE   directly   on   membrane   followed   by  
incubation for 10minutes on the room temperature (15-25°C) and then centrifuged for 1 minute on 

8000rpm to elute.  

 

Loading DNA on agarose gel was done to estimate integrity for each sample and to test for a genomic 

DNA quality. Additionally, DNA concentration was measured for each sample with QubitTM fluorometer 

(Invitrogen) in order to achieve minimum quantity of genomic DNA required by Illumina GoldenGate 

assay  (20ng/μl).   
DNA isolation procedure was done at Institute of Plant Genetics (IGV-CNR), Sesto Fiorentino (Italy) at 

Dr.  Vendramin’s  laboratory. 

 
 
 
3.5 Environmental dataset 
 

 

Environmental dataset was obtained for each sampled tree, provided by geo-reference data (longitude, 

latitude and altitude) by using two different sources. The first was WORLDCLIM dataset (Global Climate 

data), which provides monthly average data for the period from 1950-2000, with a spatial resolution 

1km (Hijmans et al., 2005). Additionally, PGIS MODIS LST (Land surface temperature) satellite 

(http://modis.gsfc.nasa.gov), which provides daily data, was used with a spatial resolution 250m x 250m 

for the period 2002-2012 (Neteler, 2010) (Figure 7). Environmental data set was obtained in the 

collaboration with GIS and Remote Sensing Unit at FEM San Michele (Italy).  

 

Monthly and daily environmental variables, temperature (°C) and precipitation (mm), were obtained for 

the period from 1980-2012 based of geographic variables for each site.  Monthly minimum, maximum 

and averages were used to calculate seasonal measures for both temperature and precipitation. 

Seasonal measures were estimated based on annual quarters composed by tree months for each 

season as winter: (December-February), spring (March-May), summer (June-August) and autumn 

(September-November). Mean annual temperature (MAT) and mean annual precipitation (MAP) 

measures were obtained by averaging monthly measures for period 1980-2012 (Table 4). 
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      Figure 7: PGIS Modis LST satellite provides resolution of 250m x 250m  
    (Neteler, 2010) 

 
 
 
 
Table 4: List of environmental variables.  
 
Variable           Description                    Measure Unit  

Tmax seasonal  Seasonal maximum temperature      (°C) 
Tmin seasonal  Seasonal minimum temperature       (°C) 

Tmean seasonal  Seasonal average temperature                  (°C) 

Tmax monthly  Monthly maximum temperature       (°C)  

Tmin monthly  Monthly minimum temperature       (°C) 

Tmean monthly  Monthly average temperature   (°C) 

PPT monthly  Monthly precipitation    (mm) 

MAP   Mean annual precipitation       (mm) 

MAT   Mean annual temperature       (mm) 

AI monthly  Monthly values of aridity             

AI seasonal  Seasonal values of aridity  

Elevation  Elevation computed with GIS        
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3.5.1 Aridity index (AI) calculation 

 

Monthly temperature and precipitation data were used to estimate potential evapotranspiration (PET) 

based on the method of Thornthwaite (1948).  

 

 

 

                

 

 

 

Where u is the average monthly day length in hours for month i, N is the number of days in month I, Ti is 

the mean monthly temperature, and I is the heat index. The heat index is calculated as the sum across 

months of (Ti/5)1.541.. Monthly mean temperatures were used for the estimation of heat index.  

 

The length of each day varies with location upon the Earth and day of the year. Day length definition is 

explained as the time between the beginning of sunrise, when the upper rim of the sun is apparently 

even the horizon until the end of sunset, when the upper rim of the sun is apparently even horizon 

(Harrison, 1960).  

 

For the most accurate modeling of day length, several parameters have to be taken into account such 

as: position of the Earth with respect to the Sun, the rotation and orbital revolution of the Earth must 

be modeled and position of the flat surface on which the light is incident on the Earth (Forsythe et al. 
1995).  

 

An average day length (including twilight) from latitude (L),  longitude  (L)  and  the  sun’s  declination  angle  
for  each  day  in  the  year  was  estimated  by  using  modified  Schoolfield’s  equations  by  using  a  day  length  
coefficient of p=0.8333, providing the most accurate estimation of day length (Forsythe et al. 1995).  

 

Formula derivation for day length at a point on the Earth at elevation zero with non-sloping ground can 

be divided into three main parts (Schoolfield, 1982): 

 

1.  Predicting  the  revolution  angle  (θ)  from  the  day  of  the  year  (J) 
 

Θ  =  0.2163108  +  2  tan  -1 [0.9671396 tan [0.00860 (J-186)]]  (1) 

 

2.  Predicting  the  sun’s  declination  angle  (Φ)  or  the  angular  distance  at  solar  noon  between  the  Sun  and  

the equator, from the Earth orbit revolution angle 

 

Φ  =  sin-1 [0.39795  cos  Θ]      (2) 

 

  PETi    =   
    2  u  N 
  45 

10  Ti 

       I 

(6.75x10
-7

)I
3
 – (7.7x10

-5
)I

2
 + (1.79x10

-2
)I+0.49 
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3. Predicting day length (D)   (plus   twilight)   from   latitude   (L),   longitude   (L)   and   the   sun’s   declination  

angle. 

 

 

 

 D = 24 -  

        

        (3) 

   

where p is  in  degrees  and  θ  and  Φ  are  in  radians. 

 

4. Predicting potential evapotranspiration (PET) 

 

PET=(2μN  /  45)  (10Ti / I)  

 

Where  μ  presents  average  monthly  day  length  in  hours  for  month  i  and  I  presents heat index, which is 

calculated as I=(Ti / I).  

 

Day length (u) once calculated is included into formula of evapotranspiration (PET). Aridity index (AI) 

was defined as the ratio of monthly precipitation to PET with this ratio being defined quarterly.   

 
 
 
3.5.2 Principal component analyses 
 
 

Principal component analysis (PCA) is a tool to reduce multidimensional data to lower dimensions while 

retaining the most of the information (Kind and Jackson, 1999). The basic goal of principal components 

analysis is to describe variation in a set of correlated variables, xT = (x1,…xq), in terms of a new set of 

uncorrelated variables, yT = (y1,…yq), each of which is a linear combination of the x variables (Everitt and 

Hothorn, 2011). The final aim of principal component analysis is retaining as much as possible of the 

variation present in the data set.  

 

The reduction of data is achieved by transforming to a new set of variables, the principal components, 

which are uncorrelated and which are ordered so that the first retain most of the variation present in all 

of the original variables (Jollite, 2002). PCA analyses produce linear combinations of the original 

variables  to  generate  the  axes,  also  known  as  principal  components,  or  PC’s  (Holland,  2008). 
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Principal component analyses could be generally performed either with covariance matrix which scaled 

sums of squares and cross products or with correlation matrix when variables are previously 

standardized. Correlation matrix is always used when used different variables, which are measured in 

different units. Principal components should only be extracted from the sample covariance matrix when 

all the original variables have the same scale (Everitt and Hothorn, 2011). 

 

A principal component analysis was applied using prcomp function   in   R   software.   The   “prcomp”  
function is based on correlation matrix structure. The data were scaled and centered to avoid 

encountering of problems during performance of PCA analyses that might occur due to the significant 

difference of the relative magnitude of variables compared to the respective values. The reason is that 

linear regression favors those variables that show greatest variance, which would be usually those with 

larger values (reference or better write).  

 

R  function  “prcomp” performs a principal component analysis using a singular value decomposition of 

the data matrix. The data matrix does not need to be centered or scaled prior the analyses because 

these options could be specified as arguments in the prcomp command   by   using   “center”   (a   logical  
statement  to  indicate  the  data  should  be  centered  at  zero)  and  “scale”  (a  logical  statement  to  indicate  
the data should be scaled, i.e. the variance was set to 1 for each variable) (Anderson, online tutorial). 

 

The  final  outputs  important  to  be  considered  for  further  analyses  are  certainly  PC’s  scores  (also  referred  
as loadings), the proportion of variance, cumulative variance explained and eigenvalues (Table 5).  

 

Since the purpose of principal component analyses is the reduction of dimensionality (focusing on a few 

principal components versus many variables), the decision of how many scores should be selected and 

how many ignored, depended on several criteria.   There are three main criteria to select the most 

important  PC’s.  One  of  the  most  common  one  is  to  ignore  principal  components  at  the  point  at  which  
the next PC offers little increase in the total percent variance explained. A second criterion is to include 

all  those  PC’s,  which  explained total variance of 90%. The third criterion is to ignore components whose 

variance explained is less then 1 (when correlation matrix applied). The last criteria is to ignore the last 

PC’s  whose  variance  explained  is  all  roughly  equal  (Holland,  2008). 
 

The climate dataset offered totally 12 environmental variables measured and estimated for the period 

from 1980 until 2012. Monthly, annual and seasonal climatic data, longitude and latitude provided for 

each mother tree, were applied for PCA statistical analyses to summaries the major variation of the 

information contained into many dimensions into reduced number of uncorrelated dimensions. The 

number  of  the  final  PC’s  selected  was  based  on  the  percentage  of  the  variance  they  explained  (e.g.  at  
least 80%) and those for which eigenvalues (the variance explained by each component) were higher 

than  1,   reducing   the  data   from  20  variables   (in  case  of   seasonal  data)   to  3  variables   (PC’s).  Monthly,  
seasonal and annual datasets and their combinations (monthly-seasonal; monthly-annual etc.) were 

also applied for PCA in order to obtain the highest possible variance. 
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                   Table 5: Outputs of “prcomp” function to do principal component analysis in R   

 
 
 
 
 
 
 
 
 
 
 
 
 
3.6 Genotyping Data Analyses 
 

 

Genotyping of SNPs was performed by Illumina GoldenGate platform utilizing BeadArrayTM platform for 

384-plex assays at Parco Tecnologico Padano in Lodi, Italy. The process of genotyping was initialized by 

submission of final assay panel that were included designs predicted to have a high likelihood of success 

for genetic analysis experiments.  

 

GoldenGate assay was described by Fan et al. (2003) explaining design steps. In particular, assay 

performs allelic discrimination directly on genomic DNA (gDNA), generates a synthetic allele-specific 

PCR template afterward, and then performs PCR on the artificial template. Genomic DNA (gDNA) is 

attached to a solid support prior the start of the assay. Assay oligonucleotides targeted to specific SNP 

(single nucleotide polymorphism) of interest are annealed to gDNA, since two allele specific 

oligonucleotides are designed for each SNP. Correctly hybridized oligonucleotides remain on the solid 

phase, whereas non-specifically hybridized oligonucleotides are removed by washing. For each SNP, 

two allele-specific oligonucleotides (ASOs) and one locus-specific oligonucleotide (LSO) are designed. 

After washing and annealing, an allele primer extension is carried out with DNA polymerase, followed 

by ligation of extended ASOs to their corresponding LSOs to create PCR templates. Lastly, primers that 

are fluorescently labeled, each with different dye, are added for two alleles for each SNP and 

generating a fluorescent image for each genotype (i.e. AA as homozygous, AT as heterozygous and TT 

and homozygous) (Fan et al. 2003). 

 

 

All genotypes are visualized in GenomeStudio software v. 3.1.3.0 (Illlumina Inc. 

http://www.illumina.com). Each SNP has been analyzed independently to determine the genotype. 

Prior clustering of SNPs, preliminary quality sample evaluation has been made for samples, which 

required removal of failed samples. Additionally, GenomeStudio parameters have been optimized in 

order to achieve the highest genotyping accuracy.  

 

 

prcomp(x) Interpretation 

sdev*sdev Eigenvalues 

rotation Eigenvectors 

x Scores 

sdev Standard deviations of each column of the rotated data 

center Mean value used for centering 

summary(x)$ Proportion of variance explained 
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First optimized parameter was gencall cutoff or no-call threshold, a quality metric calculated for each 

genotype, which ranges from 0-1. The gencall threshold of 0.25 was set up prior SNPs clustering 

meaning that genotype scores below this threshold were not assigned as genotypes since they were 

considered  to  be  too  far  from  the  cluster  and  they  were  assigned  a  “no  call”  for  that  particular   locus.  
Additionally, for each SNP has been optimized GenCall Score, a quality metrics, which indicates the 

reliability of the genotypes called. A GenCall score value is calculated for every genotype and it was set 

up to 0.45, and generally it could range from 0-1.  

 

Each SNP was analyzed independently to identify genotypes. Manual edition for each SNP was done 

based on the angle of the clusters, dispersion of the clusters, overlap between clusters and their 

intensity, after what they have been classified as successfully and non successfully clustered SNPs. 

Secondly, they have been categorized based on the segregation rate on polymorphic and monomorphic 

ones.  Minor allele frequency (MAF) is helpful to identify loci where homozygotes were incorrectly 

identified. It can range from 0-1 and all SNPs with Minor Frequency less then 0.1 should be evaluated as 

potentially false homozygotes, however the threshold of 0.5 was used as a minimum threshold to 

classify SNPs as monomorphic ones.  

 

Clustering of each SNP was done by manual edition based on quality metrics and on criteria referred. It 

was carefully examined each choice of manual edition, always taking into consideration the The Law of 

Segregation  (“The  First  Law”). 
 

 

 

 

3.7 Basic diversity statistics of genotype data 
 

 

SNP genotype data are provided into a sample x SNP matrix where samples are listed across columns 

and SNPs are listed down the rows provided by full table report from GenomeStudio software v2011.1 

(Illumina Inc. http://www.illumina.com). This is particularly one of default formats to export data from 

GenomeStudio software. Within each cell into matrix, are presented diploid genotypes in the form 

allele1/allele2 (e.g. AT). The matrix of genotype data contained all 384 SNPs, which were included into 

genotyping as well as 400 individuals.  

 

Firstly, this genotype data matrix was used to identify the number of successfully genotyped individuals 

and those failed during genotyping. Additionally, failed and successfully genotyped SNPs were 

identified. For every failed SNPs, was identified their source, annotation, final rank score and 

disagnability score.  

 

Secondly, SNP data table report was extracted from GenomeStudio software v2011.1 (Illumina Inc.). 

The SNP Table column Minor Freq measures the SNP minor allele frequency and could help identify loci 

where homozygotes were incorrectly identified. Minor Freq values are ranging from 0-1. Based on 

minor allele frequency (MAF), which was obtained for every single SNP, classification was done on 

monomorphic, polymorphic and rare SNPs. All SNPs with minor allele frequency (MAF) less than 0.5 

http://www.illumina.com/
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were discarded from further basic diversity statistics analyses, which were assumed not to be 

statistically important since their genotypes are considered to be monomorphic and not to provide 

genetic information.  

 

SNP data quality was estimated based on call frequency (Call Freq), which presents the proportion of all 

samples at each locus with call scores above no-threshold and which range from 0-1. Additionally, GC50 

score (50%_GC_Score) was considered as indicator of SNP quality. It represents the 50th percentile of 

the distribution of GenCall scores across all called genotypes. Lastly, missing data for each SNP were 

also considered as important indicator of SNP quality data also known as No_Calls presenting the total 

number of genotypes in each sample with a GenCall score below the no-call threshold as defined at the 

beginning of genotype data analyses.  

 

Analyses of the basic diversity statistics of genotype data, sample x SNP matrix containing successfully 

genotyped individuals and polymorphic loci (loci   with   minor   allele   frequency   ≥   0.5)   was   done   in   R  
software v.3.0.2 (http://www.R-project.org). Prior the genetic analyses, it was launched a library 

package GENETICS v. 1.3.8.1 (Warnes et al. 2012), which provided an access to useful functions in 

population genetics. For each SNP was obtained allele frequency, genotype frequency, expected 

heterozygosity (He) and Poly. Inf. Content. However, obtained expected heterozygosity was additionally 

calculated by using a loop (developed by Andrew Eckert) and which provided output for major allele 

frequency, minor allele frequency, observed heterozygosity (i.e. the sample of heterozygote genotypes) 

and sample size for each SNP (i.e. number of genotyped samples minus missing data).  

 

Further,   calculation   of   sample   Fis  was   based  on  Wright’s   definition  of   Fis   =   (He-Ho)/He, where He is 

expected heterozygosity and Ho presents observed heterozygosity. It indicates the average difference 

between observed and Hardy-Weinberg expected heterozygosity within each population due to the 

non-random mating. To calculate expected heterozygosity (He) was used function in R (developed by 

Andrew Eckert) and as result was obtained Fis across all SNP. 

 

In the continuation, the same matrix data was used to calculate hierarchical fixation indices with R 

library package HIERFSTAT (Goudet, 2013), which allows estimation of hierarchical F statistics from 

haploid and diploid genetic data. F-statistics (hierarchical fixation indices) was performed in R software 

v.3.0.2 (http://www.R-project.org). Beside converted data, which were previously used in basic 

diversity statistics analyses, additional file with population identifiers was included into F-statistic 

analyses. Population identifiers were listed into one single file where all individuals were listed across 

the rows. Assignment of individuals into populations was done based on the assumption where each 

population represents a family (a group of individuals) at the same site (geo-referenced location). The 

total number of populations assigned was 152. Firstly, was calculated multilocus F-statistics, which was 

obtained in the matrix providing the total Fst for populations. 

 
 
 
 
 
 

http://www.r-project.org/
http://www.r-project.org/
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3.8 Population structure analyses 
 

A population consisted of 394 individuals successfully genotyped and 284 loci, was used to infer 

population structure and classify individuals into populations based on their genotypes. The main aim 

was to identify the number of populations where each population is characterized by allele frequencies 

at each locus.   

 

Prichard et al. (2000) described a Bayesian clustering method for using multilocus genotype data to 

infer population structure and assign individuals (probabilistically) to populations. Bayesian method 

particularly accounts for the presence of Hardy-Weinberg within populations, complete linkage 

disequilibrium between loci within populations and attempts to find a population grouping that are not 

in disequilibrium (Pritchard et al. 2000). Since each population is modeled by allele frequencies, the 

knowledge about populations of origin of the individuals and allele frequencies in all populations is 

given by the posterior distribution (Pritchard et al. 2000).  

 

A Bayesian model-based clustering method is implemented in the program STRUCTURE v.2.3.4 

(http://pritchardlab.stanford.edu/structure.html) for inferring population structure using multilocus 

genotype data consisted of unlinked markers. It also provides identification of distinct genetic 

populations, assignment of individuals to populations and identification of migrants and admixed 

individuals. The model works well with the most common molecular markers such as SNPs (single 

nucleotide polymorphism), RAPD (random amplification of polymorphic DNA) or SSRs (microsatellites). 

This method and the software usage was introduced and described by Pritchard et al. (2010).  

 

A final report from GenomeStudio software v.2011.1 (Illumina Inc.) was used to construct input file, 

which was launched into STRUCTURE v2.3.4 software. The format of the genotype data was arranged as 

a matrix in a single file, in which individuals were placed in the rows and the loci in columns. Each locus 

was stored in two columns for diploid organism, each one for one allele. Every genotype was coded by a 

numbers, where every nucleotide was numbered as following: Adenine (A)=1, Thymine (T)=2, Guanine 

(G)=3 and Cytosine (C)=4. Missing data (genotypes with no call) were numbered as a -9 (a number that 

does not occur elsewhere in dataset). File was saved in txt (text) format and launched in STRUCTURE 

software v.2.3.4.  

 

The beginning of genetic clustering of individuals into populations was previously arranged by 

admixture model as ancestry model of preference with allele frequency correlation. Admixture model 

indicates that each individual has inherited some fraction of the genome from ancestors in population k 

reporting as posterior mean estimates of these proportions (Pritchard et al. 2010). Admixture model 

was useful to estimate population structure and explain the spatial repartition of genetic markers. 

Among parameters used to perform admixture model was the length of burnin period was selected to 

100,000 with number of MCMC (Markov Chain Monte Carlo) Reps after burnin was set up to 500,000. 

Initial value of ALPHA (Dirichlet Parameter for Degree of Admixture) was set up to 1. Number of genetic 

clusters (K) from 1 to 10 was tested and for each value, it was run 10 independent MCMC simulations 

(10 iterations). 

 

 

http://pritchardlab.stanford.edu/structure.html
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3.9 Outlier detection methods 
 

3.9.1 BayeScan outlier detection method 

 

The program, BayeScan is an approach, which provides identification of candidate loci under natural 

selection from genetic data using differences in allele frequencies between populations. It estimates the 

probability that each locus is under selection using a Bayesian method, which implements the 

multinomial-Dirichlet likelihood. BayeScan approach was described and developed by Foll and Gaggiotti 

(2008). The software BayeScan is available at http://cmpg.unibe.ch/software/BayeScan/download.html. 

 

BayeScan method is based on an island model (Wright 1931) in which subpopulation allele frequencies 

are correlated through a common migrant gene pool from which they differ in different strength (Foll 

and Gaggiotti, 2008). The difference in allele frequency between common gene pool and each 

subpopulation is measured by a subpopulation Fst. In particular, this method estimates the posterior 

probability of given locus being under the selection, suggesting if positive that locus i is under 

directional selection, whereas if negative, locus i is under balancing selection. The evidence of selection 

occurring is provided by Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm (Green 1995) 

that estimates the posterior probability (Foll and Gaggiotti, 2008).  

 

BayeScan is command line software and it has been coded using standard C++ (UNIX platform). Input 

file for BayeScan was based on genotype matrix file after clustering of genotypes from Illumina 

GenomeStudio v.2011.1 (Illumina Inc. http://www.illumina.com). Genotyping matrix composed of 392 

individuals and 280 loci, was used to create input file. Genotypes are labeled as AA (dominant), AB 

(heterozygous) and BB (recessive). Prior submission to BayeScan program, all genotypes was coded as 

numbers that provided exact input file when   dominant   genotypes   (AA)   were   coded   as   “0”   (zero),  
heterozygous  (AB)  were  coded  as  “1”  and  recessive  (BB)  as  “2”.  Missing  data  or  no  calls  was  coded  as  “-

9”.     
 

For each population, total number of genes for particular locus was estimated based on number of 

individuals per population. The total number of genes represented twice the number of individuals for 

diploid data, considering also missing data. The number of observations for each of two alleles in each 

population was estimated. For each individual at each locus, the observed genotypes were coded as 

“0”,  ”1”  and  “2”.  This  number  summed  the  total  number  of  genes  for  that  particular  population. 
 

Since BayeScan is a population-based approach, all individuals were assigned in the populations. Each 

population was defined as a group of individuals sampled at the same geographic location (site) 

provided by geo-reference data (i.e. latitude, longitude) (Supplement 3). BayeScan was running under 

following parameters: Burn in: 5000, Thining interval: 10, Number of MCMC (Markov Chain Monte Carlo 

iterations): 1000000, Number of pilot runs: 20 and Length of each pilot run: 5000.  

 

 

 

 

 

http://www.illumina.com/
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3.9.2 Bayesian linear mixed model (BayEnv) 
  

 

As outlier detection method, a Bayesian liner mixed model (Bayenv) has been applied to detect loci 

potentially involved in the local adaptation based on mapping population of Norway spruce. This model 

has been designed and described by Coop et al. (2010). Bayesian method estimates the empirical 

pattern of covariance in allele frequencies between populations from a set of markers and then uses 

this as a null model for a test at individual SNP (Coop et al. 2010). Bayenv software is available at 

http://www.eve.ucdavis.edu/gmcoop/. 

 

The main aim was to perform a test of selection on genetic markers, in such case SNPs (single 

nucleotide polymorphism) based on identification of loci, which might show allele frequency correlation 

within one or more environmental variable. These loci could be under selection driven by 

environmental factors or correlation selection pressures (Coop et al. 2010). 

 

Bayesian model was applied to the genotype data for 392 individuals sampled across Alps. It was 

applied an approach when all individuals were assigned in the populations based on their geo-reference 

data (e.g. latitude, longitude). All individuals were prior assigned in populations for each provenance, 

Italy-Slovenia-France (8 adjusted groups); Austria (5 adjusted groups) and Switzerland (7 adjusted 

groups). For pursuing Bayenv analyses, this time genotyping data were organized that individuals were 

assigned in 20 populations and all 280 loci were included. After estimation of covariance-variance 

matrix (for a million MCMC (Markov Chain Monte Carlo iterations), an average matrix was used for the 

second step when was estimated the correlation between environmental variables (included in 

ENVIRONFILE) with SNPFILE (contained of 280loci).  

 

In the genotype data were included 280 loci, which were successfully genotyped. The program has been 

coded using standard C++ and designed to run in UNIX environment and it is basically divided in two 

main steps.  

 

In the first step, the program estimated covariance-variance matrix. The covariance-variance matrix 

provides information how much allele frequencies co-vary among populations due to their shared 

ancestry or gene flow. Its role is basically to indicate how well populations are genetically divergent or 

estimating neutral population structure. Covariance-variance estimation was done based on genotype 

matrix, which contained allele counts across populations for each SNP. Allele counts were placed in the 

two columns, for each allele. The sum of allele counts was equal to the sample size for each SNP for 

each population. Covariance matrix was estimated for million iterations providing an output every 5000 

iterations.    

 

In the second step, the program was running separately on each SNP providing quick estimation of 

Bayes factors for the environmental variable of interest. The main aim was to investigate whether some 

loci are indicating allele frequencies having strongly correlation with environmental variables taking into 

account previously estimated neutral population structure (covariance-variance matrix). 

 

Among required input files for pursuing the second step, SNPFILE was submitted, which presented 

count data for every allele for single SNP, being in the same order as they appeared in covariance 

http://www.eve.ucdavis.edu/gmcoop/
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matrix. In SNPFILE were included all 280 loci. Secondly, ENVIRONFILE, is the file of environmental 

variables previously standardized (i.e. the mean was subtracted from the value of each variable, 

followed  by  calculation  of  difference  between  individual’s  score  and  the  mean  and  then  divided  through  
by the standard deviation of the variable across populations). In ENVIRONFILE were included four 

principal components, geographic data (latitude, longitude and elevation) as well as all monthly 

environmental variables (monthly minimum temperature, monthly maximum temperature, monthly 

mean temperature, monthly average precipitation, and monthly aridity). The last input file was 

MATRIXFILE, which presented an average covariance matrix over million iterations. Bayes factors were 

estimated by using a million MCMC (Markov Chain Monte Carlo) iterations. 

 

Although Bayenv was done with approach when individuals were assigned into 20 populations based on 

their provided geo-reference data (i.e. latitude, longitude and elevation), additionally it was applied 

individual based approach where each population represent an individual sampled at the geographic 

site (location) provided with geo-reference data (i.e. latitude, longitude, elevation).  

 

Bayenv analyses were performed in UNIX environment and both steps were done by following 

command lines provided in the manual. The manual is available: 

(http://www.eve.ucdavis.edu/gmcoop/Software/Bayenv/bayenv_manual.pdf).  

 

 

 

3.9.3 Spatial analyses detection (Samβada) 

 

Samβada  software  presents   integrated  software   for   landscape  genomics  analyses  of   large  datasets.   It  
was applied in order to access whether some markers are potentially associated with an environmental 

variable.   Samβada   is   command   line   software,   a   successive version of MatSAM software developed 

several years ago by Joost et al. (2007).  

 

The key features are the study of local adaptation correlated with environment and the measure of 

spatial autocorrelation in environmental and molecular datasets (Stucki and Joost,  2014).  Samβada  uses  
logistic regression to estimate the probability of presence of an allelic variant for a polymorphic marker 

given the environmental conditions of the sampling (Joost et al., 2007).  

 

Samβada software intends to correlate allele frequency with environmental variables to look for 

signatures for selection following logistic model of regression. It uses logistic regression model to 

estimate probability of an allelic variant for a polymorphic marker for environmental conditions for a 

sampling locations. To fit the models, maximum likelihood approach is used. In this case was applied 

univariate model where the probability of presence is same at each location and is equal to frequency 

of genotype. Significance is assessed with both log-likelihood G ratio and Wald test.  

 

The likelihood ratio or G statistics is  

 

G = -2  ln  L  /  L’ 
 

http://www.eve.ucdavis.edu/gmcoop/Software/Bayenv/bayenv_manual.pdf
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,  where  L  is  the  likelihood  of  the  initial  model  (with  a  constant  only)  and  L’  is  the  likelihood  of  the  new  
model including the examined variable.  

 

The Wald statistics is  

 

 

 

W =  

 

 

Where E is the maximum likelihood for parameter i;   βi   is   the  maximum   likelihood   estimate   of   the  
parameter  βi  and  σ(βi)  is  an  estimate  of  its  standard  error  (Joost  et al., 2007).  

 

For  Samβada  analyses  were  prepared  input  files  for  molecular  and  environmental  data.  Molecular  data  
were consisted of genotyping data for 392 individuals and 280 loci, which were extracted from 

GenomeStudio Illumina v.2011.1 (Illumina Inc. http://www.illumina.com). Each line in the file provided 

information of genotypes for each individual. Molecular data set used for analyses were arranged in the 

form of matrices; each row of the matrix corresponded to a sampled individual, while the columns were 

organized   according   to   the   sampled   individual’s   geographic   coordinates   and   contained   binary  
information (1 or 0) depending on presence or absence of allele at locus in question. For each SNP was 

recorded presence of absence of  alleles  when  each  allele  if  present  for  a  given  individual  was  set  as  “1”  
and   if   absent   allele,  was   set   as   “0”.   The   results   were   tree   columns   for   each   SNP   presenting   all   tree  
genotypes  (i.e.  AA  as  dominant  was  recorded  as  “1”  “0”,  AB  as  heterozygous  was   recorded  as  “1”  “1”  
and  BB  as  recessive  was  recorded  as  “0”  ”1”).  Since  there  were  totally  280  loci  successfully  genotyped,  
the total number of columns in molecular data set was 840 (280*3=840). Molecular markers were all 

screened for minor allele frequency and filtered only those where maf >0.5 considering these as 

polymorphic ones. The number of SNPs after pruning (filtering) was 208 loci. For each locus were 

recorded tree versions of genotypes and totally were assigned 624 columns in the molecular data set.  

 

Environmental file contained a dataset for seasonal variables. Totally 21 environmental variables 

including geo-reference data (latitude and longitude) for each sampled individual, were included into 

analyses. Among seasonal environmental variables, a seasonal minimum temperature; a seasonal 

maximum temperature; a seasonal mean temperature; a seasonal precipitation and seasonal aridity 

were included for the period from 1980 until 2012. Environmental file was pruned (filtered) to keep all 

variables showing low correlations. Variables showing high correlations with others might lead to over-

significant  threshold  with  the  Bonferroni  correction.  For  instance,  “t_max_win”  (temperature  maximum  
winter) showed to be highly correlated with other temperature variables and if included all 

temperature variables, models might result in very similar results.  

 

Additionally, a parameter file was prepared, which is needed as well to set up the analyses. The 

parameter file contained one line per parameter where specified following: the number of 

environmental variables was 25 (where 21 columns were environmental variables, 2 columns presented 

geo-reference data such as longitude and latitude, and two other columns presented the state where 

sampled and id number for each individual); the number of molecular markers was 625 (where (208*3) 

E i 

σ	
  (βi) 

⌃ 
  ⌃ 

http://www.illumina.com/
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plus one column presenting id for sampled individual); the number of individuals included in the 

analyses (392). The next parameter was option which indicates which column contain identifiers of 

individuals  when  id  code  was  set  up  as  “id”  followed  by  subset  of  environmental  variables  defined with 

only   those   showing   high   correlation   and   further   processed   “ppt_sum”,   “ppt_aut”,   “t_max_win”,  
“altitude”,   “Ai_spring”.   Further  parameter  was   a  model   chosen   for  processing  analyses   as  dimmax=1  
indicating a model with a constant and 1 explanatory variable and as a final one parameter was selected 

best model indicating that only save significant univariate models and rank them according to Wald 

score. The threshold applied was 2.67*10-6 (= 0.01/(208*3*6)) where 0.01 presents a threshold, 208 

presents   all   loci   with   maf   ≥   0.5,   tree   different   scenarios   for   each   SNP   were   presented   with   3   and  
number of environmental variables only considered to be evaluated in the model was 6.  

 

Samβada  software  is  available http://lasig.epfl.ch/sambada. It is a command line program designed in 

C++  (UNIX  environment).  Program  is  launched  with  an  indication  of  the  correct  path  to  Samβada  folder  
and listing of all input files along previously stored in the same folder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://lasig.epfl.ch/sambada
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4. RESULTS 
 

4.1 Climatic data estimation within Norway spruce population 
 

Principal component analyses (PCA) were performed on the subsets of environmental variables in order 

to estimate the percentage of proportion of variance. Each subset was independently used to reduce its 

dimensionality as well as combination of subsets. PCA analyses were performed in R software with 

“prcomp”  function. 
 

Among all environmental subsets, all three main ones (i.e. seasonal, monthly and annual) had a 

proportion of variance higher than 90% as well as their combinations. The main aim was to estimate 

which one would have the highest proportion of variance indicating the most variation extracted from 

the dataset. This parameter was important one in decision which dataset to include in outlier detection 

analyses.  

 

As the final choice to be included, seasonal environmental  dataset  was  selected  since  it’s  proportion  of  
variance was higher than 90% and it presents the simplest dataset. It is composed of thirty different 

variables   grouped   in   five  different  categories   (“ppt_seas”- seasonal  precipitation;   “AI_seas”- seasonal 

aridity   index;   “tmax_seas”- maximum   seasonal   temperature;   “tmean_seas”   – mean temperature 

seasonal;  “tmin_seasonal”  – minimal seasonal temperature).  

 

In general, no strong correlation existed between climate data and geographic variables (e.g. latitude, 

longitude and elevation) and among climate variables (Figure 8). Longitude was strongly and negatively 

correlated  to  precipitation  variables  (Pearson’s  r < - 0.72) and aridity index variables (aridity index for 

winter and aridity index for summer, Pearson’s  r < -0.67), whereas low and positively with temperature 

variables   (Pearson’s   r < 0.47). Latitude was also negatively correlated to precipitation variables 

(Pearson’s  r < - 0.38) and aridity index variables (aridity winter and aridity summer, Pearson’s  r < - 0.41) 

and   low   and   positively   to   temperature   variables   (Pearson’s   r < 0.43). Elevation was strongly and 

negatively   correlated   to   temperature   variables   (Pearson’s   r  <  - 0.91) whereas moderately and 

positively  with  precipitation  (Pearson’s  r < 0.56).  

 



                               Results 

37 
 

             
Figure 8: Visualization of correlation matrix between 20 climatic variables and geographic variables 

reveals no strong and generally negative correlation among variables. Variables abbreviations were 

listed on left axis and on the top. The correlation plot was generated in R studio software v. 098.51 by 

using  library  “corrplot”.  

 

 

Among environmental variables, the correlation was generally positive and moderate. Particularly, the 

correlation between aridity index and temperature variables was from moderate to strong and positive 

(Pearson’s   r from 0.47 up to 0.90) whereas exception was aridity for winter, which was negatively 

correlated   (Pearson’s   r….).   Temperature  and  precipitation  were  negatively   and   strongly   correlated  as  
well (Pearson’s  r < - 0.79) whereas temperature and aridity index for all seasons were moderately to 

strongly   correlated   (Pearson’s   r from 0.50 - 0.90). Aridity index and precipitation were strongly and 

negatively   correlated   (Pearson’s   r < - 0.98) where an exception was aridity index for winter to 

precipitation,  which  were  positively  and  strongly  correlated  (Pearson’s  r  <  0.88).   
 

The top three principal components (PCs) captured the most (i.e. 90%) variance for the climatic 

variables included in dataset (Table 6). These top three PCs also had eigenvalues greater than 1 (Figure 

9) and cumulative proportion of variance was indicated for each (Figure 10). For every PCs, loadings 

were obtained explaining an arrangement of variables for each PCs (Table 7). In particular, for the first 

PCs aridity index as well as temperature variables were loaded, for the second only aridity index for 

-�1 
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spring, summer and autumn, whereas for the third PCs precipitation for winter, spring and autumn; 

aridity index for summer, autumn and winter; mean temperature for autumn and minimum 

temperature for autumn and winter. The cumulative proportion of variance was ranged from 64% for 

the first PCs, 83% for the second PCs and 90% for the third PCs (Figure 9).  

 

Table 6: Summary statistics of the PCA on climatic variables presenting the importance of principal 

components explaining the distribution for the proportion of variance and cumulative proportion if 

variance for top three principal components. 

       
Parameter PC1 PC2 PC3 

Standard 

deviation 

 

3.58 

 

 1.95 

 

 1.18 

 

Proportion of 

variance 

 

0.64 

 

0.19 

 

0.06 

Cumulative 

proportion 

 

0.64 

 

0.83 

 

0.90 

                                     

 

 

                                                         

         

 

 

Figure 9: Visualization of loadings for each principal component indicating the first three are having 

loadings greater than 1. 
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Figure 10: Visualization of the cumulative proportion of variance (%) for each principal component 

subsequently increasing for the first three PCs.  

 

Table 7: Multivariate measures of climate for the seasonal dataset 

 

PC* Eigenvalue PVE+ Description 

 

1 

 

12.87 

 

64 

 

Spring, summer, autumn aridity, temperature 

 

2 

 

3.83 

 

19 

 

Spring, summer and autumn aridity 

 

 

 

3 

 

 

1.39 

 

 

6 

Winter, spring, autumn precipitation 

Winter, summer, autumn aridity 

Winter maximum temperature 

Autumn mean temperature 

Winter and autumn minimum temperature 

 * Principal component. 
   +  Percent variance explained. 

 

 

Additionally, Principal component analyses (PCA) were performed on the monthly subset of 

environmental variables in order to estimate the percentage of proportion of variance. The monthly 

subset was independently used to reduce its dimensionality. PCA analyses were performed in R 

software  with  “prcomp”  function.  The  monthly  dataset  contained  totally  60  variables  grouped  as  “ppt”  
(precipitation)/year,   “ai”   (aridity)/year,   “tmax”   (maximum   temperature)/year,   “tave”   (average  
temperature),  “tmin”  (minimum  temperature)/year.   
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The top four principal components (PCs) captured the most (i.e. 90%) variance for the climatic variables 

included in dataset (Table 8). These top four PCs also had eigenvalues greater than 1 (Figure 10) and 

cumulative proportion of variance was indicated for each (Figure 11). For every PCs, loadings were 

obtained explaining an arrangement of variables for each PCs (Table 9).  

 

In particular, for the first PCs aridity index as well as temperature variables were loaded, for the second 

only aridity index for months from March until October, whereas for the third PCs precipitation for 

June, July, August and September; aridity index for months from April and May; maximum temperature 

for all months except for November and December, average temperature for months from March to 

September, minimum temperature for months from April to September. For the fourth PCs, 

precipitation for months January, February, March, July and August, aridity index for January, February, 

September, November and December, average temperature for January, April, May, October, 

December and minimum temperature for all months except for June, July and August. 

 

The cumulative proportion of variance was ranged from 62.1% for the first PCs, 81.4% for the second 

PCs, for the third PCs 89% and 92% for the fourth PCs (Figure 9).  

 

 

Table 8: Summary statistics of the PCA on climatic variables presenting the importance of principal 

components explaining the distribution for the proportion of variance and cumulative proportion if 

variance for top three principal components. 

 

       

Parameter PC1 PC2 PC3 PC4 

Standard 

deviation 
6.10 3.40 2.14 1.45 

Proportion 

of variance 
0.62 0.19 0.07 0.03 

Cumulative 

proportion 
0.62 0.81 0.89 0.92 
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Figure 11: Visualization of loadings for each principal component indicating the first four are having 

loadings greater than 1. 

 

                                                              

 
Figure 12: Visualization of the cumulative proportion of variance (%) for each principal component 

subsequently increasing for the first four PCs.  
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Table 9: Multivariate measures of climate for monthly dataset 

 

 

PC* Eigenvalue PVE+ Description 

1 3.72 62 
Aridity, maximum temperature, average temperature, 

minimum temperature for all months 

2 1.16 19 Aridity for March-October 

3 4.59 7 

Precipitation from June-September, Aridity for April and 

May, Maximum temperature for February-October, 

Average temperature for March to September, Minimum 

temperature for April to September 

4 2.11 3 

Precipitation for January to March and July to August, 

Aridity for January to February, September, November, 

December, Average temperature January, April, May, 

October and December, Minimum temperature for all 

months except June, July and August 
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4. 2 Analyses of 384 Illumina GoldenGate genotyping data 
 

 

Analyses of genotyping data were performed in GenomeStudio Illumina v.2011.1 (Illumina Inc. 

http://www.illumina.com) software when each SNP was analyzed independently to determine 

genotypes. Total number of genotyped individuals were 400 and successfully genotyped 394 whereas 6 

individuals failed due to the low quality of genomic DNA. From total 384 SNPs genotyped, clusters were 

reliable and genotypes were successfully assigned in case of 284 SNPs (Figure 13). 

 

                                A        

                                      B  

 

 

Figure 13: Examples of successfully clustered SNP providing a clear separation between three clusters 

when genotypes are well distinguished (A, B) 
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The number of SNPs failed during genotyping was 100. In case of these SNPs, clustering was ambiguous 

due to the formation of diffuse/poor cluster formation with unreliable genotypes and such SNPs have 

been zeroed (Figure 14). Additionally, SNPs were also zeroed when their frequency was too low to be 

attributed to a potential biological effect. 

 

                                         A     

                  

                                      
                                         B 

                                          
 

 

Figure 14: Examples of unsuccessfully clustered SNPs showing low call frequency (A) and overlapping of 

clusters with unreliable genotypes (B). 
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Additionally, remaining SNPs were classified based on minor allele frequency on polymorphic (208), 

monomorphic (47) and rare (29) SNPs. In particular, as polymorphic SNPs were assigned when maf 

(minor  allele  frequency)  ≥  0.05;  as  monomorphic  SNPs  when  maf  <  0.05  and  as  rare  SNPs  when  maf  <  
0.01 (Table 10). Minor allele frequencies measures were extracted from the SNP table provided by 

GenomeStudio Illumina v.2011.1 (Illumina Inc. http://www.illumina.com). 

       

 

Table 10: Basic diversity statistic of genotyping data from 384 Illumina dataset 

 

 

 

 

 

 

 

 

 

 

 

                     * Estimation based on minor allele frequency for each SNP  

 

 

Regarding SNPs that failed during genotyping, the highest number (63) originated from Arborea project 

(Canada). The Arborea project was conducted on specie Picea glauca (White spruce) that is common for 

boreal forest of Canada and Alaska. Same SNPs were applied in study of Chen et al. (2012), when SNPs 

obtained from Arborea project were tested in 12 diploid individuals of Norway spruce from 12 

populations in central Europe (Latvia, Poland and Germany). In particular, SNPs that came from Arborea 

project proved to be unsuccessful when genotyping on Picea abies due to non-existence of SNPs in a 

mapping population of Norway spruce (Table 11).  

 

Additionally, 27 SNPs from Uppsala (Sweden) specie Picea abies (Norway spruce) and 10 SNPs from 

CRSP re-sequencing panel were also not successful during genotyping. Design-ability score was equal to 

one, predicting successful performance in genetic analyses (Supplement 4). 

 

Table 11: Overview of unsuccessfully genotyped SNPs 

SNPs source Species Number Final score 

(average) 

Design-ability score 

(average) 

Canada  Picea glauca 63 0.824 1 

CRSP reseq. Picea abies 10 0.864 1 

Uppsala (SW) Picea abies 27 0.83 1 

384 Illumina chip Number Percentage 

SNPs failed during genotyping 100 26% 

Polymorphic SNPs* 208 54% 

Monomorphic SNPs* 47 12% 

Rare SNPs* 29 7% 

http://www.illumina.com/
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Overall the quality for SNP genotype data was overall high (e.g. the median Call Freq is equal to 0.97) 

indicating that the proportion of all samples at each locus with call scores above the no-threshold. In 

addition, the mean value for GC50 score (50%_GC_score) was 0.70 indicating that there was a high 

percentage of distribution of GenCall score across all called genotypes (Table 12). The missing data per 

SNP (the median) was 8.30. 

              

Table 12: SNP genotype quality data 

SNP genotype quality data Median 

Call frequency 0.97 

Missing data per SNP 8.30 

GC50 score 0.70 

 

 
 
 
4.3 Basic diversity statistics on genotype data 
 

The calculation of basic diversity statistics was done based on genotyping matrix composed of only 

polymorphic  SNPs  (maf  ≥  0.5).  It  has  been  generated  following  summaries  based  on  entire  genotyping  
matrix: MAF (major allele frequency), which average, was equal to 0.76; maf (minor allele frequency), 

which average, was equal to 0.23; He (expected heterozygosity), which average was equal to 0.3262; Ho 

(observed heterozygosity), which average was equal to 0.3258 (Table 13). Both expected and observed 

heterozygosity  were  used  to  calculate  Wright’s  Fis  inbreeding  coefficient  across  all  loci,  which  formula  is  
defined as Fis=(He-Ho)/He (Figure 15). The mean value of Fis estimated based on 208 polymorphic loci 

was equal to 0.0004 (Supplement 5). 

                                  

 

Table 13: Basic diversity statistics of genotype data 

Basic diversity statistics Mean 

MAF – major allele frequency 0.76 

maf – minor allele frequency 0.23 

Hexp – expected heterozygosity 0.3262 

Hobs – observed heterozygosity 0.3258 

Fis across all loci 0.0004 
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Figure  15:  Visualization  of  Wright’s  Fis  inbreeding  coefficient  across  all  loci  where  Fis=(He-Ho)/He 

 

 

Fis compares average observed heterozygosity of individuals in each subpopulation and the average 

Hardy-Weinberg  expected  heterozygosity   for  all   subpopulations   (the  “i”  stands  for   individuals  and  “s”  
stands for subpopulations) thereby accounting for deviations from Hardy-Weinberg expected genotype 

frequencies due to the two main reasons such as excess or deficit in heterozygotes due to the non 

random mating within populations either due to the possible deficit of heterozygotes among 

subpopulations compared to panmixia. Fis value (fixation index per sample) for each SNP is the value to 

be considered before launching SNPs for the next analyses, having in mind of exclusion of all SNPs 

whose value is out of its optimal range (between -0.25 and +0.25).  SNPs which were out of the optimal 

range counted for 59 SNPs having Fis <-0.25 and 78 SNPs having Fis > +0.25 leaving only 71 SNPs whose 

Fis values were in the optimal range. The number of SNPs for which Fis was within the optimal range, 

was quite low to retain, therefore the final decision was to include all SNPs into further analyses.  

 

 

Fst represents a reduction in heterozygosity due to subpopulation divergence in allele frequency. It is 

equal to difference between averaged expected heterozygosity of subpopulations and the expected 

heterozygosity of the total population reflecting different degrees of allele frequency divergence among 

the sets of subpopulations. Fst range of values indicated less heterozygosity on average for 

subpopulations compared to heterozygosity expected to ideal case when the entire population is 

panmicitic (Figure 16A). The range of Fst values are ranging from -0.03 to 0.03. In addition, allele 

frequencies of subpopulations are slightly different and each has expected heterozygosity less than ½. 

In such case when heterozygosity of total population equal to 0.5 (maximum) that means there is no 

allele frequency divergence between two subpopulations (Figure 16B). 
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     A                                                                   B 

 

 

 

Figure 16.  (A) Fst range of values indicating no presence of genetic variation within populations. (B) 

Expected heterozygosity range of values are less than 0.5 indicating no divergence in allele frequency 

between subpopulations. 

 

 

 

 

4.4 Population structure estimation 
 

An attempt to identify the number of clusters was based on a mapping population consisted of 394 

individuals and 284 successfully genotyped loci. The simulation summary of admixture model (the 

length of burnin period was selected to 100,000 with number of MCMC (Markov Chain Monte Carlo) 

Reps after burnin was set up to 500,000) was launched in STRUCTURE HARVESTER (available at 

http://taylor0.biology.ucla.edu/structureHarvester/), a web-based program for visualization and 

generating the results from software STRUCTURE (Pritchard et al. 2000). The program was developed 

and described by Earl and vonHoldt (2011).  

 

STRUCTURE HARVESTER (Earl and vonHoldt, 2011) provided visualization of plot of the mean likelihood 

L(K) per K value including standard deviation bars to display likelihood variance based on output files 

from STRUCTURE (Pritchard et al. 2000) (Figure 16). Use of L(K) is one of two approaches to determine 

the best K. This approach is known as Wilcoxon test (Nonparametric test) and it is based on assumption 

when K is approaching a true value, L(K) becomes plateaus (or continues increasing slightly) and has a 

high variance between runs. In this particular case, L(K) did not show clear mode of true K. 

 

http://taylor0.biology.ucla.edu/structureHarvester/
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Figure 16. Plot of mean likelihood L(K) and variance per K value from STRUCTURE on dataset consisted 

of 394 individuals genotyped for 284 loci. 

 

 

Additionally were provided a plot of rate of change of the likelihood distribution (mean ±SD) calculated 

as  L’(K)=L(K)-L(K-1) and plot of the absolute values for the second order rate of change of the likelihood 

distribution (mean±SD) calculated according  to  the  formula  [L’’(K)]=[L’(K+1)-L’(K)]  (Figure  17).   
 

                       

A 
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B 

                                
Figure 17. (A) The rate of change of the likelihood distribution (mean±SD) and (B) absolute values of the 

second order change of the likelihood distribution (mean±SD).   

 

 

The use of an ad hoc quantity based on the second order of the rate of change of the likelihood function 

with  respect  to  K   (ΔK)   is  another  method  of  estimating  the  optimal  K,  also  known  as  Evanno  method  
(Evanno et al. 2005). The Evanno method is defined as formula   ΔK=   m([L’’K])/s[L(K)]   where   ΔK   is  
estimated   as   the   mean   of   the   absolute   values   of   L”(K)   averaged   over   10   runs   divided   by   standard  
deviation  of  L(K).  The  ΔK  shows  a  clear  peak  at  the  true  value  of  K  (Figure  18).  The  highest  peak  of  ΔK  
was when K=2 indicating   the   presence   of   two  main   genetic   clusters.   The   second   highest   peak   of   ΔK  
value was when K=6.  

 

                  
Figure  18.  Plot  of  ΔK  (Evanno  method)  for  detection  of  the  real  number  of  K  groups,  which  best  fit,  the  
dataset  
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Since Evanno method indicated presence of two main genetic clusters, the conclusion is that within a 

mapping  population  of  394  individuals  is  no  strong  population  structure.  The  second  highest  rate  of  ΔK  
was when K=6 (Figure 18), however the membership of individuals in such clustering occasion, did not 

indicate any six cluster grouping, assuming there is an existence of panmixia or a population where 

process such as mating and individuals movement are uniform (Supplement 6). 

 

              
Figure 19. Barplot when K =2 for original order for 394 individuals assuming grouping two main 

populations. Each individual is represented by a single vertical line, which is partitioned into K colored 

segments  that  represent  that  individual’s  estimated  membership  fraction  in  each  of  K  inferred clusters.  

 

 

 

Table 14. Table output of the Evanno method results. Yellow highlight is indicating the largest value of 

the Delta K column. Data as in Figure 18.  

 

K Reps MeanLnP(K) Stdev LnP(K) Ln’(K) |Ln’’(K)| Delta K 

1 10 -84041.17 0.133749 — — — 

2 10 -83623.28 3.662968 417.89 224.89 61.395571 

3 10 -83430.28 7.24259 193 10.22 1.411097 

4 10 -83247.5 9.196255 182.78 18.51 2.012776 

5 10 -83083.23 12.623439 164.27 61.54 4.875058 

6 10 -82980.5 18.326726 102.73 204.25 11.144926 

7 10 -83082.02 305.105045 -101.52 166.06 0.544272 

8 10 -83349.6 892.291293 -267.58 98.65 0.110558 

9 10 -83518.53 1164.593194 -168.93 389.78 0.334692 

10 10 -83297.68 719.453359 220.85 — — 
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4. 5 BayeScan outlier detection method 
 

BayeScan  calculation  ended  with  output  file  “prefixname_fst.txt”.  In  this  file,  each  line  corresponded  to  
one locus and contained following values: (1) the index of the locus corresponding to the index in the 

input file; (2) the posterior probability for the model including selection; (3) the logarithm of Posterior 

Odds to base 10 for the model including selection; (4) the estimated alpha coefficient indicating the 

strength and direction of selection; (5) the Fst coefficient averaged over populations.  

 

An R   function   provided   to   plot   and   identify  outliers  using   output   file   “prefixname_fst.txt”  when  was  
calculated PO (Posterior Odds) threshold leading to a False Discovery Rate of no more than 5%. The 

outcome is the plot with outliers and their list. However, the plot merged did not indicate any outliers 

and the list was empty meaning that no outlier loci were detected within FDR of 5%.  

 

As provided, Fst coefficient was obtained where in each population Fst was calculated as the posterior 

mean using model averaging (Supplement 7). Fst was plotted together with the logarithm of Posterior 

Odds to base 10 (which is fixed to 1000 when posterior probability is equal to 1). Fst averaged over 

populations indicated the highest value for 0.045 for the locus number 27 indicating its presence under 

purifying or balancing selection as it showed low level of genetic differentiation. The highest logarithm 

of the Posterior Odds to base 10 was equal to 0.76 for the locus PGWD-1034 (Arborea project, Canada) 

(Figure 20). The locus PGWD1-1034 is belonging to the AUX/IAA transcription factor gene family (auxin 

response regulator). The logarithm of the Posterior Odds corresponded to a Bayes factor equal to 3 

indicating   a   “substantial”   evidence   for   selection   (Table   13).   Posterior   odds could be included in the 

Jeffrey’s  scale  of  evidence  for  Bayes  factors  (Jeffrey,  1935,  1961).  Posterior  odds  are  defined  as  a  ratio  
of posterior probabilities and indicate how likely the model with selection is compared to the neutral 

model (Foll, 2010).  

         

 

                            PO = P(M2|N)/P(M1|N)= BF*P(M2)/P(M1) 

 

, where M1 presents a model under selection, M2 presents a neutral model, N represents a given 

dataset, BF presents Bayes factor and P posterior probability.    
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Figure 20. R plot visualization of logarithm for the Posterior Odds to base 10 and averaged Fst across 

populations.  

 

 

Table  15.  Interpretation  of  Jeffrey’s  scale  of  evidence  for  the  selection 

(Jeffrey, 1961) 

 

Posterior probability Bayes factor (BF) log10(BF) Evidence of the selection 

0.50 -> 0.76 1 -> 3 0 -> 0.5 Barely worth mentioning 

0.76 -> 0.91 3 -> 10 0.5 -> 1 Substantial 

0.91 -> 0.97 10-> 32 1 -> 1.5 Strong 

0.97 -> 0.99 32 -> 100 1.5 -> 2 Very strong 

0.99 -> 1.00 100 ->  ∞ 2 ->  ∞ Decisive 

 

 

 

For most of loci, the logarithm of the posterior odds was negative corresponding to non-existence of 

outlier loci potentially under the selection. In conclusion, BayeScan did not detect any outlier loci at 5% 

significance level given for 384 loci screened (Figure 21). 
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Figure 21. R plot visualization of logarithm for the Posterior Odds to 384 loci under the investigation for 

the signal of selection. 

 

 

 

 

 

4. 6 Environmental association analyses: Bayesian linear mixed model    detection (BayEnv) 
 
The first outcome file from BayEnv analyses was the covariance-variance matrix estimated over 20 

populations and for million iterations. The rows and columns for each population were in the same 

order as has appeared in allele count file. The covariance-variance matrix was estimated each 5000 

iterations until the final million iterations. For the further analyses, the mean covariance matrix over 

million iterations was used as input for the second step-environmental correlations analyses.  

 

The covariance-variance matrix indicated how well populations are genetically differentiated due to the 

neutral process such as genetic drift and gene flow. Under the neutral model, the population allele 

frequency in each population may deviate away from an ancestral (or global) allele frequency due to 

the genetic drift. Some populations could be more genetically close to each other due to the effect of 

shared population history or gene flow. In such case, the neutral model is specified by covariance 

structure of allele frequencies across the populations (Coop et al, 2010).  

 

Next, it was explored the correlation between allele frequencies and environmental variables based on 

average covariance-variance matrix estimated in the first step. In this step, Bayes factors have been 

estimated for every SNP for each environmental variable across 20 populations and for a million 

iterations. An output file contained Bayes factors, which presented the measure of correlation strength 

between allele frequency and environmental variable. A Bayes factor (BF) presented a ratio of the 

posterior probability under the alternative model and the neutral (null) model. Every Bayes factor was 
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adjusted to the logarithm of base 10 for each SNP and was used  for  an   interpretation  within  Jeffrey’s  
scale of signal of the selection (Jeffrey, 1961).  

 

As environmental matrix was used a dataset containing tree PCs values from PCA analyses performed 

on seasonal environmental dataset, geo-reference data (e.g. longitude, latitude and elevation) and 20 

environmental variables from the seasonal dataset. For every variable, Bayes factor (BF) was estimated 

and totally there were available 26 Bayes factor, which were converted to logarithm of base 10.  

 

                       A 
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        E 

                
                      F 

                
Figure 22: R plots visualization of 280 SNPs and logarithm of Bayes factors for latitude (A); (B) longitude; 

(C) elevation; (D) PC 1 (the first principal component value); (E) PC 2 (the second principal component 

value); (F) PC 3 (the third principal component value).  

 

Overall, from total 284 loci, two of them showed strong correlation with geo-climatic variables, 

indicating a strong evidence of selection. The estimation of the strength for evidence of selection is 

interpreted  based  on  Jeffrey’s  scale  of  evidence described by Jeffrey (1961). Two SNPs indicated strong 

association to longitude, in particular SNP id 23 (locus name PGWD1-0634) whose logarithm of Bayes 

factor was equal to 1.29  (Bayes factor equal to 19.6) (Figure 22- B). Another SNP id 134 (locus name 

PaPHYN_RIII272) showed also strong correlation to longitude, whose logarithm of Bayes factor was 

equal to 1.07  (Bayes factor equal to 11.72) (Figure 22- B). Regarding other geo-variables (e.g. latitude 

and elevation), loci indicated weak to moderate correlation (Figure 22- A, C). In addition, all three 

principal components loaded mainly on the seasonal environmental dataset, did not show to be in 

strong correlation with loci, when logarithms of Bayes factors in all three cases did not reach 1 which 

presents a signal for substantial evidence of selection (Figure 22- D, E, F). Beside principal component 
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values, for all seasonal environmental variables, was estimated a Bayes factor as well. These variables 

have not been previously used to reduce their own dimensionality via principal component analyses. 

Two loci indicated strong evidence of selection when for SNP id 23 (locus PGWD1-0634), logarithm of 

BF was equal to 1.01 (Bayes factor equal to 10.27) showing strong correlation to winter aridity (Figure 

23). The second SNP id 96 (PGLM2-0703) whose logarithm of BF was equal to 1.14 (Bayes factor equal 

to 14.02) was strongly correlated to autumn precipitation (Figure 23).  

 

The locus PGWD1-0634 shared both correlations to longitude and winter aridity. It has originated from 

Arborea dataset (Canada) and encodes a GMD1 (GDP-D-mannose 4,6-dehydratase 1) and it is involved 

in the fucose biosynthesis pathway and catalytic and coenzyme binding. The second locus whose 

correlation was to longitude, was PaPHYN_RIII272 sourced from Uppsala (Sweden) dataset and located 

in the Picea abies partial gene for phytochrome N. The last locus strongly correlated to autumn 

precipitation was PGLM2-0703 originated from Arborea (Canada) dataset and encoding for 

mitochondrial substrate carrier family protein. 

                       

                  A 

               
                  B 

               
Figure 23: R plots visualizations for correlation between locus id 23 (PGWD1-0634) and logarithm of 

base 10 of Bayes factors for winter aridity (A) and locus id 96 (PGLM2-0703) and logarithm of base 10 of 

Bayes factors for autumn precipitation (B). 
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In general, there was no detection of signals for the very strong correlations, indicating that most of 

SNPs were not very strongly associated with geo-climatic variables.  Logarithms of Bayes factors 

indicated the evidence more in favor of the null model (neutral) over alternative (selective) model. 

Among all loci included in analyses, three loci appeared to be strongly associated, whose Bayes factor 

was >10. However, Bayes factor did not attend to be higher than 100 signaling very strong signal of 

adaptation (Table 16). 

 

 

Table 16: Summary of SNPs showed to have strong association to geo-climatic variables. Listed are SNPs 

for which BFs greater than 10 with their functional annotations. 

 
Variable BF    SNP Annotation 

Longitude 

Winter AI 

19.6 

10.27 

PGWD1-0634 

PGWD1-0634 

GDP-D-mannose 4,6 dehydratase 

1(BT106868) 

 

Autumn P 14.02 PGLM2-0703 Mitochondrial substrate carrier 

protein (BT115596) 

Longitude 11.72 PaPHYN_RIII272 P. abies partial phynrl gene for 

phytohrome N (JQ970263) 

 

AI, aridity; P, precipitation; BF, Bayes factor 

 

 

Individual based approach reveled very weak signal detection of the selection when tested only four 

PCs (principal component values) from the monthly dataset. For this approach, was decided to include 

environmental dataset for monthly variables since it has showed slightly the higher proportion of 

variance (92.4%) than for the seasonal dataset (90.4%). Results revealed that logarithm of base 10 of 

Bayes factors for all four principal components were very low and ranged from -0.52 up to -0.40 

indicating no presence of selection when this approach applied (Figure 24.). 
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         B 

                
         C 

            
        D   

            
 

Figure 24: R plots visualization of 280 SNPs and logarithm of Bayes factors for PC 1 (the first principal 

component value) (A); (B) PC 2 (the second principal component value); (C) PC 3 (the third principal 

component); (D) PC 4 (the fourth principal component value.  
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4.7 Spatial  analyses  detection  (Samβada) 
 

Spatial   analyses   detection   method   (Samβada   v.   0.4)   produced   two   output   files,   where   for   logistic  
regression analyses, was obtained one unsorted file for constant models (Supplement 8). The first 

column is the name of the molecular marker combined with allele name. The following columns are 

Loglikelihood  values,  the  frequency  of  the  marker,  estimation  of  the  parameter  β0 for the logistic model 

and the error   code   (default   “0”   if   success).   The   second   obtained   file   was   file   for   univariate  models,  
which contained list of molecular markers sorted according to G score and WaldScore as well as 

Loglikelihood values. Next columns were containing measures for the regression (pseudo-R2), followed 

by AIC (Akaike information criterion) and BIC (Bayesian information criterion). The last columns were 

placed parameters for regression (E), one constant parameter and one corresponding to the 

environmental variable (Figure 2).  The second file is the most informative one since it contained the 

most significant models based on the threshold criterion, which in this particular case was equal to 

0.00056=0.01/(280*3*21)   where   0.01   is   a   threshold   for   significance   or   Bonferroni’s   correction 

threshold; 280 is a number of loci included in analyses and screened for signal of selection, 3 represents 

three distinct genotypes for each marker and 21 presents a number of environmental variables 

considered which came from seasonal dataset. However, none of significant model was detected within 

this threshold.  

 

In addition, another trial has been done when genetic and environmental data have been previously 

pruned and when a new threshold of significance was created. Pruning of environmental variables was 

done to keep only those which are not highly correlated since it could lead to an over conservative 

significance threshold with the Bonferroni correction. After pruning, only six variables remained which 

did not have high correlation. Pruning of genetic data was based on minor allele frequency when loci 

were kept if their minor allele frequency is equal or higher than 0.05, retaining only polymorphic loci. 

Samβada  analyses  were  conducted  based  on  revised  dataset  by  using  option  BEST  saving  only the best 

models corresponding to significance level specified with new threshold applied which was equal to 

2.67 10-5 = (0.01/(208*3*6) where 208 presents polymorphic SNPs, 3 presents three distinct genotypes 

for each loci and 6 represents six environmental variables which have not been highly correlated 

(“ppt_win”- winter   precipitation;   “tmax_win”   – maximum   temperature  winter;   “ppt_sum”   – summer 

precipitation;  “ppt_aut”  – autumn  precipitation;  altitude  and  “AI  spring”  – spring aridity). No significant 

model has been detected either.   
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5. DISCUSSION 
 

 
5.1 The thesis summary 
 
 
This study represents one of the several exploratory studies conducted on adaptive genetic potential in 

Conifer species. Although other examples of similar studies are available, from these discoveries not 

very high proportion of novel putative genes has been discovered. The genetic basis of adaptation in 

forest species, especially in Conifers is still not entirely investigated. 

 

We used a 384 Illumina GoldenGate genotyping approach with single nucleotide polymorphisms (SNPs) 

to   estimate   adaptive   genetic   potential   in   Norway   spruce’s   population.   Totally   400   individuals   were  
genotyped, resulting in successful genotyping of 394 individuals where 6 failed due to the bad quality of 

genomic DNA used for sequencing. Basic diversity statistics of genotyping dataset indicated that from 

total 384 loci, a hundred loci failed during genotyping where the most of them are originated from 

Arborea project designed on white spruce (Picea glauca). The reason of such high number of SNPs, 

which failed during genotyping, is due to the very little conservation of SNPs even between closely 

related species, in this case within Picea abies and Picea glauca. Finally, a total number of polymorphic 

SNPs were 208, which were included into outlier detection analyses.  

 

Attempt to cluster of individuals into populations did not result with a strong population structure, 

indicating in particular existence of panmictic population where all individuals are randomly mating or 

all mixed. In such case, population is a single entity where processes such as mating and movement of 

individuals are uniform showing no heterogeneity. Within absence of the strong population structure, 

potentially strong gene flow or the rate of mixing is going on. Norway spruce has an ability of strong 

pollen and seed dispersal enabling their movement for hundreds of kilometers away or even further via 

waterways and human or animal distribution.   

 

With no strong population structure ongoing within natural population, outlier detection analyses were 

individually based oriented.  The search for signal of selection resulted in a relatively weak signal 

detection where the highest Bayes factor was around 20 showing a strong association to longitude 

whereas association with climatic gradients was common for winter aridity and autumn precipitation 

among all environmental gradients from the seasonal dataset.  

 

Environmental association analyses to search for correlations between climate variables and single 

nucleotide polymorphisms (SNPs) across the range sample of loblolly pine, were performed by Eckert et 
al. (2012b). Applications of a Bayesian linear mixed model provided identification of 22 SNPs with very 

strong signal of selection (Bayes factor >100) being located in genes with functional annotations 

involved in different mechanisms of plant response (e.g. oxidative stress, cell membrane related, sugar 

metabolism) to abiotic stress to drought, salt or cold tolerance. Statistical power for detection of loci 

under the selection was higher when included 1730 loci from 682 individuals of loblolly pine (Pinus 
taeda L.), which were sampled from 54 populations. This genome-wide dataset for loblolly pine was 

based on the large geographic scale coverage resulted in a discovery of associated loci thanks to 

population structure, which was accounted within natural populations of loblolly pine. 
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Another evidence of the local adaptation within conifer species across the Alps, was reported by Mosca 

et al. (2012). In this study single nucleotide polymorphisms (SNPs) were genotyped in 24 to 37 

populations from four subalpine conifer species: Abies alba Mill, Larix decidua Mill, Pinus cembra L. and 

Pinus mugo Turra. A total of 3898 individuals were genotyped and tested for a correlation with geo-

environmental data. In all four conifer species, was detected population structure ranking from K=5 

(Abies alba); K=3 (Larix decidua), K=4 (Pinus cembra) and K=4 (Pinus mugo). This study resulted in the 

successful detection of loci ranging from six in Larix decidua to 18 in Pinus mugo mostly associated to 

winter precipitation and seasonal minimum temperature, whereas in Abies alba, two loci resulted in 

association to the seasonal minimum temperature.  

 

A more powerful attempt to detect patterns of local adaptation in forest species when used landscape 

genomics approach, lies in the high number of loci and individuals. In this study were applied two 

different detection methods for outlier scans and none of them resulted with strong signal detection. A 

Bayesian liner mixed model-BayEnv2 (Gunther and Coop, 2013) implements a Bayesian method to 

compute correlations between allele frequencies and ecological variables into account, whereas 

Samβada’s   approach   (Stucki   and   Joost, 2014) integrates logistic regression method to model the 

probability of the presence of an allelic variant for the polymorphic marker given the environmental 

conditions. Stucki et al. (2014) compared several population-based  methods  with   Samβada   analyses  
and concluded that top detection methods in number of outlier loci are Bayesian linear mixed model 

(Bayenv2.0)  and  Samβada  often  resulting  also  in  a  common  detection  of  loci.  Although  different,  these  
two approaches often provide the highest percentage of detected SNPs. Stucki et al. (2014) emphasized 

the possibility of false positives when used Spatial analyses methods, whereas for Bayesian linear mixed 

model false positives are less common showing some higher power and greater robustness to 

population structure (Gunther and Coop, 2013). Although computationally demanded, an advantage of 

this Bayesian method is the possibility where each individual is treated as a population, allowing to the 

natural population differentiation test statistics to be calculated without regard of any prior population 

label (Gunther and Coop, 2013).  

 

Lotterhos and Whitlock (2014) compared several methods to test for selection: FDIST2, BayeScan, FLK 

and Bayenv2 for the false-positive rates and the power of those four methods to detect loci which 

differentiated by spatially heterogeneous selection. Older and more widely used methods, such as 

FDIST and BayeScan showed to have more false-positive rates for loci under either divergent or 

balanced selection, whereas Bayenv2 and FLK methods showed to be more promised (Lotterhos and 

Whitlock, 2014).  

When identifying outlier loci, it is generally necessary to perform multiple tests to minimize the false 

positive rate (Perez-Figueroa et al., 2010). It is therefore important to validate the detected outlier loci 

in multiple ways to determine whether or not they are adaptive such as quantitative trait locus 

mapping, testing for genotyping errors or consideration of their genomic location (Luikart et al. 2003). 
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5.2 Limitations of the study 

 

As genomic data became more available, genome scans for signatures of adaptation became more 

common (Tiffin and Ross Ibarra, 2014). Although several studies have been conducted to explore an 

adaptive genetic potential in conifer species, a small proportion of novel putative genes was discovered. 

Similar, in case of Norway spruce, a genomic approach with 384 Illumina GoldenGate method provided 

only a small insight of adaptation based on studies conducted so far.  

 

One of the pioneer attempts to investigate adaptive genetic variation in Norway spruce was done by 

Scalfi et al. (2014). A total of 384 SNPs representing 290 genes covering different cellular metabolic 

functions, were genotyped at micro and macro-geographic scale (Table 17). To identify outlier loci 

methods such as testing Fst outliers (BayeScan software v.2.1) and linear regression methods were 

combined when seven Fst-outliers were detected at macro-geographic scale whereas two outliers were 

detected at micro-geographic scale by linear regression method. Totally eight genes potentially involved 

for adaptation, were identified within these two methods when seven genes were identified with 

BayeScan v.2.1 method (Foll and Gagiotti, 2006) and one gene with linear regression method (Table 18). 

Di Pierro et al. (in preparation) continued to explore an adaptive potential in Norway spruce when 

totally 826 trees were genotyped with 384 SNPs belonging to 285 putative candidate genes (Table 17). 

Outlier analyses were performed with BayeScan program v. 2.1 (Foll and Gagiotti, 2008) resulted in two 

genes discovery. To access the correlation between SNP allele frequencies and climatic variables, a 

Bayesian generalized linear mixed model was applied (Coop et al. 2010) which provided detection of 

four genes (Table 18). The most recent attempt to investigate adaptive variation was performed when 

used 392 mother trees of Norway spruce sampled across Alps for 384 SNPs representing 242 genes 

(Table 17). In this particular approach, Fst outlier analysis with BayeScan v. 2.1 (Foll and Gagiotti, 2008) 

was performed when none of loci were detected as outliers at 5% significant level. On the other hand, 

Bayenv analyses resulted in weak signal detection for two loci showing strong correlation to geo-

climatic variables when two genes were potentially correlated (Table 18). 

 

 

Table 17. Norway spruce sampled individuals included for 384 Illumina genotyping assay 
 

Number of 
individuals 

Sampling design 
Number of 

SNPs 
genotyped 

Reference 

300 trees 
(microscale) 

6 populations  
(25 ind/site) 

384 SNPs Scalfi et al. 2014 

546 trees 
(macroscale) 

27 populations (15-
24 ind/site) 

384 SNPs Scalfi et al. 2014 

826 trees 
24 populations (25-

65 ind/site) 
384 SNPs 

Di Pierro et al. 
(in preparation) 

392 trees 2-4 ind/site (mean) 384 SNPs 
Calic et al. 

(unpublished) 
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Table 18. Summary of candidate genes potentially involved in adaptation process when different outlier 
detection methods performed. 
 

 

 

 

 

 

 

 

 

 

               

 

 

Overall, among these three studies, the most common method of detection was BayeScan v.2.0, that is 

using allele frequencies between populations to identify candidate loci. In particular, it resulted in 

detection of nine candidate genes within studies both conducted by Scalfi et al. (2014) and Di Pierro et 
al. (in preparation) but not providing any detection of outlier loci in the case of the last study (Calic et 
al. unpublished). Both Scalfi et al. (2014) and Di Pierro et al. (in preparation) studies provided 

estimation of population structure of the sampled Norway spruce population. For instance, Scalfi et al. 
(2014) scanned the genome of Norway spruce on macro scale when 6 populations (25 individuals/site) 

were included and 27 populations (15-24 individuals/site) were included in macro-geographic scale. 

Population structure was revealed only on macro scale indicating four clusters with Bayesian cluster 

analyses –STRUCTURE (Pritchard et al. 2000). Di Pierro et al. (in preparation) also estimated population 

structure when detected four genetic clusters. On the other hand, the study by Calic et al. unpublished, 

estimated an existence of panmictic population indicating a strong gene flow or a rate of mixing going 

on. Norway spruce is known to have a strong pollen and seed dispersal enabling their movement for 

hundreds of kilometers away or even further via waterways and human or animal distribution. An 

efficient detection of outlier loci is usually fruitful when the population structure is stronger. Other 

genomic approaches are available such as Sambada method, which integrates logistic regression 

method to model the probability of presence of an allelic variant for the polymorphic marker given the 

environmental conditions (Stucki et al. 2014). Although not requiring any population structure of 

sampled natural population, its disadvantage is the possibility of existence of false positives.  

 
A 384 Illumina GoldenGate method provided only a small percentage of genes identified to be 

responsible for adaptation. In particular, less than 3% of genes have been discovered from the total 

number of genes included (Table 19). The highest number of genes (8) was discovered by Scalfi et al. 
(2014) when 846 trees were included on both micro and macro geographic scale. Di Pierro et al. (in 

preparation) resulted in discovery of six genes when 826 individuals were genotyped, where Calic et al. 
(unpublished) resulted in three genes relatively correlated to geo-environmental variables when 

included 392 individuals.  

 
As outcome from each study on N. spruce, a pairwise combination of genes 8-6-3 has been discovered 

(Table 19). However, among genes potentially adapted, there was no evidence of repeatability (Table 

Reference Methods 
Number of 

genes 
Total 

Scalfi et al. 2014 

BayeScan v.2.1 7 

8 Linear regression 
method 

1 

Di Pierro et al.  
(in prep.) 

BayeScan v.2.1 2 
6 

Bayenv 4 

Calic et al. 
(unpublished) 

Bayescan v.2.1 0 
3 Bayenv 3 

SamEada 0 
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20). Discovered genes are putatively involved in various biological processes (e.g. plant defense, 

photosystem regulation, sugar or lipid metabolism etc.) when each study resulted with uncommon 

candidate gene annotations.  

 

 
 
Table 19.  The percentage (%) of discovered genes from the total number of genes screened for signal 
of selection 
 

 
 
 
 

 

 

 

 

Limitations in discoveries of novel candidate genes are related to both numbers of loci genotyped as 

well as sampling design of the population. An approach based on 384 SNPs did not approve a high 

detection power for adaptive loci in studies conducted so far in N. spruce. The discovery of genes 

potentially adapted, only tells about a small proportion of genome which has been screened and that 

there is still much more to be discovered. To provide this, GWAS (genome wide association studies) 

certainly could provide more detection power in search for adaptation in N. spruce, whose genome is 

estimated to 20 gigabases (GB) (Nysted et al. 2013).  

 
On the other hand, if sampling provides an estimation of the population structure, the probability to 

detect more outlier loci is higher. Besides the number of loci, the genetic diversity plays important role 

when selection ongoing. With the presence of homogeneous population, the signal of selection will be 

lost or with weak signal detection. For instance, Di Pierro et al. (in preparation) and Scalfi et al. (2014) 

have observed a sufficient genetic diversity within natural populations, which enabled the discovery of 

outlier loci. On the other hand, Calic et al. (unpublished) has observed a homogenous population with 

very low Fst values, indicating that all individuals are uniform and in such case there was no strong 

signal of selection to be detected.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of 
genes  

Genes responsible 
for adaptation 

Percentage 
(%) 

Reference 

290 8 2.76% Scalfi et al. (2014) 
285 6 2.11% Di Pierro et al. (in prep.) 
242 3 1.24% Calic et al. (unpublished) 
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Table 20. Summary of gene candidates potentially involved in adaptation generated with different 
outlier methods confirms no repeatability existence 
 
                          Gene classification                                     Methods                 Reference 
 

Plant defense responses 

Fst_outlier 
detection  

Scalfi et al.2014 

Lipid metabolism 
Sucrose synthase protein in                   
Pinus halepensis 
F box protein 
Sugar metabolism 
Various biological functions 
Nucleic acid-binding protein  
Pentatricopeptide (PPR) repeat-
containing protein of A. 
thaliana 

Regression 
method 

Poly-adenilate binding domain Fst outlier 
detection  

Di Pierro et al. 
(in preparation) 

Putative galactokinase 
Gene encoding for SNF2 
proteins 

Bayenv 

Oxygen-evolving protein 1 
(photosynthesis) 
Phosphoenolpyruvate 
carboxynase 2 
(Gluconeogenesis) 
NADP(P)-linked oxidoreductase 

/ Fst outlier 
detection 

Calic et al. 
(unpublished) 

GMD1(GDP-D-mannose 4,6-
dehydratase 1) 

Bayenv Phytochrome N 
Mitochondrial substrate carrier 
family protein 

/ 
Spatial 

analyses 
method  
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5.3 Future perspectives 
  

 

Forest tree species have not been extensively domesticated as crop species and natural populations are 

still abundant (Tsumura et al. 2012). The new insights into the adaptive mechanisms are possible by 

identifying and studying adaptive genes in these natural populations (Neale and Savolainen, 2004, 

Neale and Ingvarsson, 2008). Since forest tree species are facilitated by relatively low genetic 

differentiation between populations on average, are widely distributed in different environments and 

have relatively large population sizes (Tsumura et al., 2012). As a consequence, the selective pressures 

acting on a population in a given environment tend to result in adaptation by selecting for a relatively 

small number of genotype changes at a few specific loci (Pelgas et al., 2011).  

 

Current population genomic methods are not well posed to identify adaptive loci (Berg and Coop, 

2014). However, recent advances in population genetics allowed for genome-wide identification of 

individual recent selective events by identifying unusually large allele frequency differences among 

populations and environments o by detecting effects of these events on linked diversity (Nielsen et al. 
2005). Berg and Coop (2014) explained limitations of these population genomic method approaches 

correlated to the possibility only to identify traits under the selection where an individual allele has a 

large and/or sustained effect on fitness. As explained, when selection acts on a phenotype that is 

underwritten by a large number of loci, the response at any given locus is expected to be modest and 

the signal manifests in shift in allele frequency across many loci (Kremer and Corre, 2011). This signal 

would be very weak at the level of individual loci that it may be impossible to identify it against the 

genome-wide background without a specific annotation of which sites are the targets of selection on a 

give trait (Pritchard et al. 2010). 

 

The genome wide association studies are more powered when available large set of individuals enabling 

mapping of many small effects alleles associated with phenotypic variation down to the scale of linkage 

disequilibrium in the population (Berg and Coop, 2014). The development and application of GWAS has 

provided an identification of thousands of loci associated with a wide range of traits and in the same 

time confirming a polygenic view of phenotypic variation (Visscher et al. 2012). GWAS is providing a 

powerful way to identify the signal of adaptation in polygenic traits.  

 

Additionally, more intention should be focused on genotype to phenotype approach, which has proved 

to be informative on adaptive genetic potential in forest species. Forest trees are difficult to phenotype 

since they are long lived and sessile organisms, however an improvement in phenotyping is expected to 

provide more informative, precise and standardized high-throughput phenotyping technologies (Neale 

and Kremer, 2011). In addition, a good combination of landscape genomics and common garden 

experiments could provide more insight into the adaptive potential of forest species. 
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Supplement 1: List of mother trees sampled across the European Alps with geo-reference data 
provided. Total number of genotyped individuals is 392 where 205 individuals from Italy-
Slovenia-Austria, 107 individuals from Switzerland and 80 individuals from Austria. 

 
ID COUNTRY LATITUDE LONGITUDE ELEVATION 
1 SLOVENIA 45.85535 14.106136 779 

2 SLOVENIA 45.558689 14.442744 1142 

3 SLOVENIA 46.413892 14.330322 1278 

4 ITALY 45.76277034 10.87599277 1555 

5 ITALY 45.76253831 10.87548852 1570 

7 ITALY 45.76297991 10.87557435 1555 

8 ITALY 46.13353065 10.80138445 1640 

9 ITALY 46.14412432 10.80221057 1670 

10 ITALY 46.14497173 10.8034122 1670 

11 ITALY 46.14508323 10.80446362 1670 

12 ITALY 46.1430985 10.80311179 1670 

13 ITALY 46.358539 11.49359822 1820 

14 ITALY 46.35927203 11.49029374 1820 

15 ITALY 46.36035306 11.48886681 1820 

16 ITALY 46.48599804 11.15234613 1400 

17 ITALY 46.48604975 11.15306497 1400 

18 ITALY 46.4862492 10.30208588 1370 

19 ITALY 46.46715756 10.2636981 1515 

20 ITALY 46.46745315 10.26337624 1515 

21 ITALY 46.46718712 10.26352644 1515 

22 ITALY 46.46972912 10.26279688 1525 

23 ITALY 46.32482361 9.502229691 900 

24 ITALY 46.32566823 9.509289265 900 

25 ITALY 46.32586086 9.509589672 900 

26 ITALY 46.32531261 9.508559704 800 

27 ITALY 46.32476434 9.486393929 860 

28 ITALY 44.18589693 7.26998806 1590 

29 ITALY 44.18571229 7.269945145 1590 

30 ITALY 44.18629699 7.269730568 1590 

31 ITALY 44.18758947 7.269945145 1590 

32 ITALY 44.18820492 7.270116806 1590 

33 ITALY 44.18555842 7.269644737 1590 

34 ITALY 44.18525068 7.269558907 1590 

35 ITALY 44.33818402 7.054252625 1250 

36 ITALY 44.33822815 7.053002715 1300 

37 ITALY 44.33818019 7.053407729 1300 

38 ITALY 44.32817686 7.028428316 1460 

39 ITALY 44.28298521 7.067062855 1300 

40 ITALY 44.25864748 7.045326233 1675 
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41 ITALY 44.258732 7.046248913 1680 

42 ITALY 44.25848611 7.046324015 1680 

43 ITALY 46.13935185 11.47203326 1260 

44 ITALY 46.14764022 11.45871878 1325 

45 ITALY 46.14686719 11.45973802 1310 

46 ITALY 46.14688206 11.45939469 1310 

47 ITALY 46.14697125 11.46019936 1312 

48 ITALY 46.12890597 11.47687197 1100 

49 ITALY 46.12956029 11.47652864 1100 

50 ITALY 46.41701013 11.72039509 1550 

51 ITALY 46.41709149 11.72057748 1550 

52 ITALY 46.41730598 11.72089934 1550 

53 ITALY 46.42127774 11.70846462 1430 

54 ITALY 46.42148483 11.7081213 1433 

55 ITALY 46.42175108 11.70782089 1440 

56 ITALY 46.41805302 11.71061039 1500 

57 ITALY 46.49079209 11.78062677 1725 

58 ITALY 46.5021144 11.79169893 1865 

59 ITALY 46.5012799 11.79201007 1865 

60 ITALY 46.53169049 11.78120613 1890 

61 ITALY 46.48254075 11.73736811 1520 

62 ITALY 46.48289535 11.73702478 1530 

63 ITALY 46.48596849 11.73048019 1580 

64 ITALY 46.48309482 11.73720717 1570 

65 ITALY 46.48255552 11.73642397 1520 

66 ITALY 46.32211185 11.59942746 1100 

67 ITALY 46.32314174 11.60028577 1090 

68 ITALY 46.29718847 11.50802851 1080 

69 ITALY 46.29781854 11.50733113 1120 

70 ITALY 46.30080577 11.50885463 1160 

71 ITALY 46.30090212 11.5105176 1180 

72 ITALY 46.27468616 11.36267424 1200 

73 ITALY 46.27468616 11.36267424 1245 

74 ITALY 46.28023289 11.37005568 1240 

75 ITALY 46.26668394 11.35178447 850 

76 ITALY 46.18130125 11.43693924 1760 

77 ITALY 46.18219266 11.43666029 1780 

78 ITALY 46.18295034 11.43418193 1770 

80 ITALY 46.31716958 11.65374756 1320 

81 ITALY 46.31501321 11.65921926 1350 

82 ITALY 46.29572072 11.7800796 1930 

83 ITALY 46.29533525 11.78065896 1933 

85 ITALY 46.30967752 11.74735665 1530 

86 ITALY 46.30669819 11.74003959 1510 

87 ITALY 46.30737263 11.74228191 1515 
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88 ITALY 46.29524629 11.79241776 1940 

89 ITALY 46.34040253 11.79800749 2015 

90 ITALY 46.27271353 11.79880142 1610 

91 ITALY 45.99986087 10.49755454 1496 

92 ITALY 46.00041983 10.49695373 1496 

93 ITALY 46.00025587 10.49746871 1496 

94 ITALY 46.00009191 10.49753308 1496 

95 ITALY 45.97919759 10.53968668 960 

96 ITALY 45.97928706 10.53957939 960 

97 ITALY 45.91366072 11.23493671 1445 

98 ITALY 45.91449674 11.23356342 1445 

99 ITALY 45.91503417 11.23253345 1445 

100 ITALY 45.91509389 11.2319541 1445 

101 ITALY 46.41478373 10.78331709 1400 

102 ITALY 46.41173616 10.78938961 1360 

103 ITALY 46.41030108 10.7920289 1360 

104 ITALY 46.41049341 10.79022646 1360 

105 ITALY 46.40720147 10.69576979 1740 

106 ITALY 46.40885117 10.69134951 1770 

107 ITALY 46.40998299 10.69067359 1780 

108 ITALY 46.40975367 10.68962216 1800 

109 ITALY 46.40888815 10.69173574 1770 

110 ITALY 46.51437205 12.08912373 1555 

111 ITALY 46.4951721 12.07562685 1840 

113 ITALY 46.49438919 12.07446814 1860 

114 ITALY 46.51455663 12.09148407 1530 

115 ITALY 46.62431595 12.65882492 1340 

116 ITALY 46.62226752 12.65378237 1332 

117 ITALY 46.62263595 12.65377164 1332 

118 ITALY 46.62316648 12.65355706 1332 

119 ITALY 46.53545464 12.27400303 1165 

120 ITALY 46.57585481 12.25215912 1740 

122 ITALY 46.54652415 12.24321127 1377 

123 ITALY 46.54609617 12.24175215 1377 

124 ITALY 46.54627326 12.24100113 1377 

127 ITALY 46.62030743 12.62799025 1288 

128 ITALY 46.62024111 12.6282692 1288 

129 ITALY 46.62016742 12.62835503 1288 

130 ITALY 46.61071229 12.62099504 1288 

131 ITALY 46.46859114 13.6611557 1006 

132 ITALY 46.46969956 13.66158485 1006 

133 ITALY 46.54581577 13.01414251 750 

134 ITALY 46.54631754 13.0148077 750 

135 ITALY 46.55052338 13.02959204 1300 

136 ITALY 46.55052338 13.02959204 1300 



                               Supplements 

80 
 

137 ITALY 46.55052338 13.02959204 1300 

138 ITALY 46.55052338 13.02959204 1300 

139 ITALY 46.55052338 13.02959204 1300 

140 ITALY 46.55052338 13.02959204 1300 

141 ITALY 46.55052338 13.02959204 1300 

142 ITALY 46.51667559 13.67918015 1250 

143 ITALY 46.51667559 13.67918015 1250 

144 ITALY 46.51667559 13.67918015 1250 

145 ITALY 46.51667559 13.67918015 1250 

146 ITALY 46.51667559 13.67918015 1250 

147 ITALY 46.51667559 13.67918015 1250 

148 ITALY 46.46829556 13.66094112 1006 

149 ITALY 46.4672019 13.66094112 1006 

150 ITALY 46.46114201 13.6648035 1010 

151 ITALY 46.46399468 13.66538286 1010 

152 ITALY 46.43548347 13.56790066 920 

153 ITALY 46.390872 13.47582579 1190 

154 ITALY 46.48908578 11.84815407 1800 

155 ITALY 46.4669876 12.4736774 1000 

156 ITALY 46.70400477 10.90142012 1540 

157 ITALY 46.70432114 10.90139866 1540 

158 ITALY 46.70454922 10.90110898 1540 

159 ITALY 46.82992077 11.29863381 1520 

160 ITALY 46.82942163 11.29853725 1520 

161 ITALY 46.834578 11.3054198 1750 

162 ITALY 46.83448258 11.30525887 1750 

163 ITALY 46.85735918 11.34645224 1780 

164 ITALY 47.05454739 12.13592291 1630 

165 ITALY 47.05440851 12.13609457 1630 

166 ITALY 47.0550883 12.1367383 1630 

167 ITALY 47.05530758 12.13654518 1630 

168 ITALY 47.05407227 12.13400245 1630 

169 ITALY 46.92893092 11.27435446 1430 

170 ITALY 46.92983943 11.27057791 1490 

171 ITALY 46.93023507 11.26883984 1510 

172 ITALY 46.92777328 11.26793861 1600 

173 ITALY 46.83604958 12.23653793 1420 

174 ITALY 46.83587343 12.23641992 1425 

175 ITALY 46.83285682 12.23266482 1500 

176 ITALY 46.83431744 12.23382354 1500 

177 ITALY 46.84595695 12.25091457 1470 

178 ITALY 46.84516443 12.2507 1470 

179 ITALY 46.84595695 12.25091457 1470 

180 ITALY 46.74252217 11.44336581 1550 

181 ITALY 46.74473515 11.44479275 1550 
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182 ITALY 46.74573501 11.44535065 1560 

183 ITALY 46.74263981 11.45134807 1540 

184 ITALY 46.55052338 13.02959204 1300 

185 ITALY 46.55052338 13.02959204 1300 

186 ITALY 45.012488 6.849343 1665 

187 ITALY 45.013633 6.848688 1640 

188 ITALY 45.017881 6.852765 1580 

189 ITALY 46.230767 8.296094 1100 

190 ITALY 46.229528 8.293734 1150 

191 ITALY 46.229936 8.29354 1180 

192 ITALY 46.230351 8.292575 1210 

193 ITALY 46.234329 8.289013 1250 

194 ITALY 46.231687 8.289742 1220 

195 ITALY 45.754529 7.704228 1620 

196 ITALY 45.754529 7.704248 1610 

197 ITALY 45.753481 7.710428 1590 

198 ITALY 45.830967 6.985921 1590 

200 ITALY 45.830534 6.987004 1590 

201 ITALY 45.822504 6.96914 1430 

202 FRANCE 45.026455 6.656858 1774 

203 FRANCE 45.02609 6.656914 1772 

204 FRANCE 45.02579 6.656929 1769 

205 FRANCE 45.02423 6.857508 1755 

206 FRANCE 44.351132 6.495313 1559 

207 FRANCE 44.351385 6.495627 1580 

208 FRANCE 44.351246 6.49657 1596 

209 FRANCE 44.351434 6.494705 1580 

210 FRANCE 44.113144 7.286122 1482 

211 FRANCE 44.11099 7.298147 1547 

212 FRANCE 44.111293 7.297478 1543 

213 FRANCE 44.111687 7.296281 1534 
215 AUSTRIA 47.280364 11.246395 900 
216 AUSTRIA 47.280364 11.246395 900 

217 AUSTRIA 47.191404 14.279823 1080 
218 AUSTRIA 47.191404 14.279823 1080 

219 AUSTRIA 47.191404 14.279823 1080 
220 AUSTRIA 47.601707 13.371048 885 
221 AUSTRIA 47.601707 13.371048 885 

222 AUSTRIA 47.601707 13.371048 885 
223 AUSTRIA 47.891831 14.973249 1000 
224 AUSTRIA 47.891831 14.973249 1000 

225 AUSTRIA 47.891831 14.973249 1000 

226 AUSTRIA 47.55504 14.487534 1320 
227 AUSTRIA 47.55504 14.487534 1320 

229 AUSTRIA 46.659864 14.065762 840 
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232 AUSTRIA 46.899616 15.15976 1120 

233 AUSTRIA 46.899616 15.15976 1120 

234 AUSTRIA 46.918848 12.318892 1680 
235 AUSTRIA 46.918848 12.318892 1680 

236 AUSTRIA 46.918848 12.318892 1680 

237 AUSTRIA 46.899616 15.15976 1120 

238 AUSTRIA 47.286216 14.608126 1400 

239 AUSTRIA 47.286216 14.608126 1400 
240 AUSTRIA 47.286216 14.608126 1400 

241 AUSTRIA 47.379057 13.573952 1000 

242 AUSTRIA 47.379057 13.573952 1000 
243 AUSTRIA 47.379057 13.573952 1000 

244 AUSTRIA 47.764772 13.22402 700 

245 AUSTRIA 47.764772 13.22402 700 
246 AUSTRIA 47.764772 13.22402 700 
247 AUSTRIA 47.091441 11.45359 1220 

248 AUSTRIA 47.091441 11.45359 1220 
249 AUSTRIA 47.091441 11.45359 1220 
250 AUSTRIA 46.748477 14.563622 1040 

251 AUSTRIA 46.748477 14.563622 1040 
252 AUSTRIA 46.748477 14.563622 1040 

253 AUSTRIA 47.573688 15.232029 1590 
255 AUSTRIA 47.573688 15.232029 1590 
256 AUSTRIA 47.565755 15.804348 1280 

257 AUSTRIA 47.565755 15.804348 1280 
258 AUSTRIA 47.565755 15.804348 1280 

259 AUSTRIA 47.409089 16.041278 490 
261 AUSTRIA 47.409089 16.041278 490 

262 AUSTRIA 48.415644 15.50231 415 
263 AUSTRIA 48.415644 15.50231 415 
264 AUSTRIA 48.415644 15.50231 415 

265 AUSTRIA 48.05046 15.517201 580 
266 AUSTRIA 48.05046 15.517201 580 

267 AUSTRIA 48.05046 15.517201 580 
268 AUSTRIA 48.32664 15.381761 620 

270 AUSTRIA 48.32664 15.381761 620 
271 AUSTRIA 48.08883 13.412944 645 

274 AUSTRIA 46.868997 14.931048 1025 

276 AUSTRIA 46.868997 14.931048 1025 

277 AUSTRIA 46.722991 14.659286 1040 
279 AUSTRIA 46.722991 14.659286 1040 

280 AUSTRIA 47.588148 15.742625 960 

281 AUSTRIA 47.588148 15.742625 960 

282 AUSTRIA 47.588148 15.742625 960 
283 AUSTRIA 48.154327 16.109937 405 
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284 AUSTRIA 48.154327 16.109937 405 
285 AUSTRIA 48.154327 16.109937 405 
286 AUSTRIA 47.071393 10.633564 1505 

287 AUSTRIA 47.071393 10.633564 1505 
288 AUSTRIA 47.071393 10.633564 1505 

290 AUSTRIA 47.182552 12.266278 1680 
291 AUSTRIA 47.182552 12.266278 1680 
292 AUSTRIA 47.373201 10.685449 1450 
293 AUSTRIA 47.373201 10.685449 1450 
294 AUSTRIA 47.373201 10.685449 1450 
295 AUSTRIA 47.430257 12.354877 1360 

300 AUSTRIA 47.438273 15.115433 1290 
304 AUSTRIA 47.605121 12.103071 1040 

307 AUSTRIA 47.846391 14.845474 1325 
310 AUSTRIA 48.097673 13.119575 465 
315 AUSTRIA 46.498946 14.643016 1080 
320 AUSTRIA 47.220326 15.785514 560 
325 AUSTRIA 48.375031 15.383445 640 
330 AUSTRIA 46.74919 15.154631 1065 
335 AUSTRIA 48.319402 15.027712 1000 
339 AUSTRIA 46.587064 13.776855 1120 
340 SWITZERLAND 47.64560829 8.74410406 450 
341 SWITZERLAND 47.64560829 8.74410406 450 
342 SWITZERLAND 47.64560829 8.74410406 450 
344 SWITZERLAND 47.63568582 9.13815627 530 
345 SWITZERLAND 47.63568582 9.13815627 530 
346 SWITZERLAND 47.45708745 9.32027616 903 
347 SWITZERLAND 47.45708745 9.32027616 903 
348 SWITZERLAND 47.45708745 9.32027616 903 
349 SWITZERLAND 47.20682328 7.03419565 1035 
350 SWITZERLAND 47.20682328 7.03419565 1035 
351 SWITZERLAND 47.20682328 7.03419565 1035 
352 SWITZERLAND 47.31632067 7.40269057 655 
353 SWITZERLAND 47.31632067 7.40269057 655 
354 SWITZERLAND 47.31632067 7.40269057 655 
355 SWITZERLAND 47.22661252 7.83178805 480 
357 SWITZERLAND 47.22661252 7.83178805 480 
358 SWITZERLAND 47.36547457 7.82263008 865 
359 SWITZERLAND 47.36547457 7.82263008 865 
360 SWITZERLAND 47.36547457 7.82263008 865 

361 SWITZERLAND 47.16551536 9.28739407 1640 
362 SWITZERLAND 47.16551536 9.28739407 1640 

363 SWITZERLAND 47.26273861 9.42940434 1460 
364 SWITZERLAND 47.26273861 9.42940434 1460 

365 SWITZERLAND 47.26273861 9.42940434 1460 
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366 SWITZERLAND 47.04378493 7.59787919 620 

367 SWITZERLAND 47.04378493 7.59787919 620 
368 SWITZERLAND 47.04378493 7.59787919 620 

369 SWITZERLAND 47.02175967 7.85270326 1165 

370 SWITZERLAND 47.02175967 7.85270326 1165 

371 SWITZERLAND 47.02175967 7.85270326 1165 

372 SWITZERLAND 46.98249309 8.84995893 1490 

374 SWITZERLAND 46.98249309 8.84995893 1490 

376 SWITZERLAND 47.04802314 8.7131424 1180 

378 SWITZERLAND 47.09604765 9.1873817 1120 

380 SWITZERLAND 47.09604765 9.1873817 1120 

381 SWITZERLAND 47.1093514 9.02649182 1460 

382 SWITZERLAND 47.1093514 9.02649182 1460 

385 SWITZERLAND 47.07806309 9.25058022 1700 

386 SWITZERLAND 46.97507113 9.78725991 1540 

388 SWITZERLAND 46.75785885 6.46841406 1130 

392 SWITZERLAND 46.79710185 7.00496603 610 

394 SWITZERLAND 46.79710185 7.00496603 610 

395 SWITZERLAND 46.8423952 8.00545824 1170 

396 SWITZERLAND 46.8423952 8.00545824 1170 

398 SWITZERLAND 46.77391207 8.33660654 1740 

400 SWITZERLAND 46.90255281 8.32981578 1500 

401 SWITZERLAND 46.90255281 8.32981578 1500 

402 SWITZERLAND 46.77469683 8.73527876 1460 

404 SWITZERLAND 46.77469683 8.73527876 1460 

405 SWITZERLAND 46.79100679 9.04987194 1520 

406 SWITZERLAND 46.79100679 9.04987194 1520 

408 SWITZERLAND 46.75285117 9.39301711 1500 

410 SWITZERLAND 46.75285117 9.39301711 1500 

411 SWITZERLAND 46.90924229 9.42832499 1020 

412 SWITZERLAND 46.90924229 9.42832499 1020 

414 SWITZERLAND 46.87704426 9.80245449 1740 

416 SWITZERLAND 46.59078608 6.16219861 1265 

418 SWITZERLAND 46.65812784 7.16304745 1270 

420 SWITZERLAND 46.65812784 7.16304745 1270 

421 SWITZERLAND 46.51003045 7.54756334 1550 

422 SWITZERLAND 46.51003045 7.54756334 1550 

424 SWITZERLAND 46.699867 7.76395538 1520 

427 SWITZERLAND 46.6582495 8.53320812 1360 

428 SWITZERLAND 46.6582495 8.53320812 1360 

430 SWITZERLAND 46.53274412 8.36579642 1670 

431 SWITZERLAND 46.53274412 8.36579642 1670 

432 SWITZERLAND 46.53274412 8.36579642 1670 

434 SWITZERLAND 46.58437271 9.13285987 1725 

436 SWITZERLAND 46.70439244 8.92097277 1640 
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438 SWITZERLAND 46.70439244 8.92097277 1640 

439 SWITZERLAND 46.70479772 9.19115549 960 

440 SWITZERLAND 46.70479772 9.19115549 960 

442 SWITZERLAND 46.54413293 9.31789976 1630 

444 SWITZERLAND 46.54413293 9.31789976 1630 

445 SWITZERLAND 46.66836787 10.06171181 1670 

446 SWITZERLAND 46.66836787 10.06171181 1670 

448 SWITZERLAND 46.29332706 7.23490265 1630 

450 SWITZERLAND 46.4489104 6.918335 920 

451 SWITZERLAND 46.4489104 6.918335 920 

453 SWITZERLAND 46.35868883 6.97130339 1225 

454 SWITZERLAND 46.35868883 6.97130339 1225 

456 SWITZERLAND 46.45078563 7.51350254 1850 

458 SWITZERLAND 46.33079901 7.54058404 1490 

460 SWITZERLAND 46.33079901 7.54058404 1490 

461 SWITZERLAND 46.39823609 7.78450259 1600 

463 SWITZERLAND 46.39823609 7.78450259 1600 

465 SWITZERLAND 46.36536073 8.17153512 1680 

467 SWITZERLAND 46.38453564 8.12629561 1250 

469 SWITZERLAND 46.38453564 8.12629561 1250 

470 SWITZERLAND 46.38199651 8.01707381 2010 

471 SWITZERLAND 46.38199651 8.01707381 2010 

473 SWITZERLAND 46.27886891 8.47579076 1380 

475 SWITZERLAND 46.31857028 8.52095467 1280 

477 SWITZERLAND 46.45532806 9.19264644 1620 

479 SWITZERLAND 46.45532806 9.19264644 1620 

480 SWITZERLAND 46.27404204 9.14834001 1050 

482 SWITZERLAND 46.27404204 9.14834001 1050 

484 SWITZERLAND 46.32439664 9.55064465 1590 

486 SWITZERLAND 46.297474 10.05252477 1430 

488 SWITZERLAND 46.14846407 7.10438891 905 

489 SWITZERLAND 46.14846407 7.10438891 905 

490 SWITZERLAND 46.14846407 7.10438891 905 

493 SWITZERLAND 46.22334638 7.44512528 1630 

495 SWITZERLAND 46.25937612 7.51440954 780 

497 SWITZERLAND 46.25937612 7.51440954 780 

498 SWITZERLAND 46.21572485 7.46286487 1970 

499 SWITZERLAND 46.21572485 7.46286487 1970 
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Supplement 2: List of SNPs submitted to 384 Illumina GoldenGate genotyping assay. Total 94 
SNPs originated from CRSP dataset, 102 SNPs from Uppsala (Sweden) and 188 SNPs from 
Arborea dataset (Canada) 
 
CRSP dataset 
 
SNP name Source Annotation 
2_9603_01-Paab_139 CRSP NA 

2_4196_01-Paab_201 CRSP 
GTP binding protein, Similar to Arabidopsis 
thaliana (NP_569023), e=3e-17 & 
max.identity=35% 

UMN_853_01-Paab_38 CRSP Anonymous locus 

UMN_3055_01-Paab_224 CRSP 
Similar to Arabidopsis thaliana (NP_177203), 
e=1e-48 & max.identity=78%, protein root hair 
specific 10 

CL1694Contig1_02-365 CRSP 

Similar to Arabidopsis thaliana (NP_172112), 
e=1e-99 & max.identity=84%, U5 small 
nuclear ribonucleoprotein component, 116 kD, 
GTPase activity, GTP binding, translation factor 
activity, nucleic acid binding,translation 
elongation factor activity, INVOLVED IN: 
regulation of embryo sac egg cell 
differentiation, embryo development ending in 
seed dormancy 

2_9665_01-Paab_175 CRSP 

Similar to Ricinus communis 
(XP_002509420.1), e=5e-86 
&max.identity=62%, interferon-induced 
guanylate-binding protein, putative 

CL717Contig1_05-Paab_95 CRSP 
Similar to Medicago truncatula 
(XP_003601864.1), e=1e-20 & max. 
identity=61%, photosystem II core complex 
proteins psbY, chloroplast precursor 

0_13978_01-Paab_102 CRSP binding protein 
0_177_01-Paab_165 CRSP Anonymous locus 

0_8531_01-Paab_157 CRSP 

Similar to Ricinus communis 
(XP_002518462.1), e=2e-55 & 
max.identity=62%, multicopper oxidase, 
putative 

CL3507Contig1_03-
Paab_191 CRSP 

Similar to Arabidopsis thaliana, (NP_566474), 
e=3e-82 &max.identity=65%, Ca2+ 
antiporter/cation exchanger, cation/calcium 
exchanger 3 

0_13957_02-Paab_309 CRSP receptor-like protein kinase HSL1-like (leucine-
rich repeat receptor-like protein kinase) 

2_7725_01-Paab_466 CRSP 
Similar to Arabidopsis thaliana 
(NP_001189624.1), e=4e-85 & max. 
identity=62%, beta-galactosidase 8 

0_13957_02-132 CRSP 
receptor-like protein kinase HSL1-like (leucine-
rich repeat receptor-like protein kinase), 
Anonymous locus 

CL3771Contig1_04-
Paab_419 CRSP Ubiquitin carrier protein E, ubiquitin-

conjugating enzyme E2 32-like 
CL3582Contig1_03-Paab_63 CRSP trehalose-6-phosphate synthase (TPS) 
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0_15639_01-392 CRSP Anonymous locus 
0_13680_01-Paab_216 CRSP VAC14-like protein 

0_7171_01-Paab_233 CRSP Glycogen synthase kinase-3 beta, putative, 
Anonymous locus 

0_9457_01-Paab_421 CRSP pentatricopeptide repeat-containing protein, 
putative 

CL304Contig1_01-202 CRSP Oxygen-evolving enhancer protein 1, 
chloroplast precursor, putative 

CL1758Contig1_04-288 CRSP NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 8,mitochondrial electron transport 

2_9280_01-Paab_123 CRSP Anonymous locus, chromatin remodeling 
complex subunit 

0_11772_01-Paab_103 CRSP o-sialoglycoprotein endopeptidase 

2_9280_01-Paab_338 CRSP Anonymous locus, chromatin remodeling 
complex subunit 

0_8531_01-Paab_363 CRSP multicopper oxidase, putative 

CL1692Contig1_05-
Paab_178 CRSP 

histone ubiquitination proteins group, 
chromosome segregation protein SMC, 
primarily archaeal type 

0_4541_02-266 CRSP BTB/POZ domain-containing protein 
2_9280_01-Paab_193 CRSP chromatin remodeling complex subunit 

CL304Contig1_01-Paab_118 CRSP Oxygen-evolving enhancer protein 1, 
chloroplast precursor, putative 

2_10438_01-351 CRSP amidophosphoribosyltransferase, putative  

0_9383_01-Paab_438 CRSP ubiquitin carboxyl-terminal hydrolase-like 
protein  

0_366_02-Paab_380 CRSP Heat stress transcription factor B-4 
2_4892_01-Paab_39 CRSP ccaat-binding transcription factor, putative 
2_3947_01-Paab_298 CRSP AT hook motif DNA-binding family protein 
2_9845_01-Paab_282 CRSP Papain family cysteine protease 
CL4284Contig1_01-
Paab_180 CRSP Anonymous locus 
0_1439_01-Paab_226 CRSP Pre-mRNA-splicing factor 38B 
PabiesCol1_583 CRSP picea abies col1 gene for constans-like 1 
0_17587_01-Paab_42 CRSP Anonymous locus 
2_6491_01-Paab_360 CRSP Coiled-coil domain-containing protein, putative 

0_9457_01-Paab_46 CRSP pentatricopeptide repeat-containing protein, 
putative 

0_10754_01-Paab_320 CRSP FACT complex subunit, global transcription 
factor group, partial 

2_5636_01-Paab_399 CRSP pentatricopeptide repeat-containing protein 
0_9749_01-Paab_337 CRSP Serine/threonine-protein kinase PBS1, putative 
0_3128_02-Paab_79 CRSP f-box family protein 
UMN_1023_01-267 CRSP F-box/LRR-repeat protein 14 
0_2433_01-Paab_290 CRSP histidine triad family protein 
2_4976_01-Paab_176 CRSP 26S proteasome regulatory subunit N6 
0_7171_01-Paab_359 CRSP Glycogen synthase kinase-3 beta, putative 

CL4511Contig1_02-
Paab_223 CRSP 

oligopeptidase, putative [Ricinus communis) 
calmodulin-binding region domain containing 
protein (Oryza sativa) 

2_5636_01-Paab_209 CRSP pentatricopeptide repeat-containing protein 
UMN_4748_01-Paab_38 CRSP peptide transporter 
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2_9087_01-Paab_39 CRSP Anonymous locus 
0_10267_01-Paab_148 CRSP myb domain protein 55  
UMN_2809_01-104 CRSP Hypothetical protein 
0_10515_01-Paab_158 CRSP Anonymous locus 
CL1308Contig1_03-
Paab_181 CRSP NA 
CL1148Contig1_08-
Paab_134 CRSP malate dehydrogenase 
UMN_4091_02-Paab_137 CRSP F box family protein 

2_4586_01-Paab_365 CRSP Oligosaccharyltransferase complex/magnesium 
transporter family protein 

2_9328_01-Paab_425 CRSP transducin/WD40 domain-containing protein 
CL1694Contig1_01-
Paab_235 CRSP U5 small nuclear ribonucleoprotein component, 

116 kD  
2_2937_01-127 CRSP ATP/ADP transporter, partial 
CL1343Contig1_05-
Paab_165 CRSP Phosphoenolpyruvate carboxykinase [ATP], 

putative 
0_17215_01-Paab_225 CRSP Magnesium-chelatase subunit H, putative 
CL3602Contig1_03-
Paab_219 CRSP protochlorophyllide reductase B, 
CL1148Contig1_08-
Paab_225 CRSP malate dehydrogenase 
2_3851_01-Paab_280 CRSP Anonymous locus 
UMN_4091_02-Paab_39 CRSP F box family protein 
0_10631_01-Paab_193 CRSP heat-shock protein 70T-2  
CL3795Contig1_01-Paab_45 CRSP amino acid dehydrogenase family protein  

CL1694Contig1_04-Paab_90 CRSP U5 small nuclear ribonucleoprotein component, 
116 kD  

0_2354_01-Paab_194 CRSP armadillo repeat only 1 protein 

2_7803_01-Paab_235 CRSP glycoside hydrolase family 28 protein / 
polygalacturonase (pectinase) family protein 

2_3867_02-Paab_440 CRSP profilin, putative 
2_4723_01-Paab_276 CRSP coatomer gamma subunit, putative 
0_489_01-Paab_316 CRSP Anonymous locus 

0_12021_01-161 CRSP 
STRUBBELIG-receptor family 6-protein 
serine/threonine kinase activity, protein kinase 
activity, ATP binding 

2_9466_01-Paab_179 CRSP Protease ecfE, putative (present in plastid and 
chloroplast) 

0_7471_01-Paab_399 CRSP Similar to EX309936.1 [Picea glauca] 
0_7921_01-Paab_212 CRSP short chain dehydrogenase, putative 
0_13058_01-Paab_551 CRSP Polygalacturonase 

0_9457_01-Paab_115 CRSP pentatricopeptide repeat-containing protein, 
putative 

UMN_1604_01-Paab_348 CRSP SNF2 family DNA-dependent ATPase 
0_17215_01-Paab_108 CRSP Magnesium-chelatase subunit H, putative 
0_14976_01-Paab_305 CRSP ATP binding protein, putative 
0_11090_01-Paab_251 CRSP protein binding protein, putative 
UMN_7021_02-141 CRSP Hypotetical protein 
0_8111_01-39 CRSP 3-hydroxyisobutyrate dehydrogenase 

CL3771Contig1_04-Paab_68 CRSP Ubiquitin carrier protein E, ubiquitin-
conjugating enzyme E2 32-like 
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0_13957_02-Paab_27 CRSP receptor-like protein kinase HSL1-like (leucine-
rich repeat receptor-like protein kinase) 

CL4257Contig1_01-
Paab_391 CRSP Hypotetical protein 

CL1530Contig1_04-Paab_64 CRSP 
histone H2B - performs performs essential roles 
in maintaining structural integrity of the 
nucleosome, 
chromatin condensation, and binding 

 
Arborea dataset (Canada) 
 
SNP name Source Annotation 
PabiesPRR1_1632 Canada Picea abies Putative PRR1 gene 

PabiesZTL_397 Canada Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) gene, 
partial cds 

PaPHYN_RI204 Canada Picea abies partial phynrI gene for phytochrome N 
PaPHYO_RI145 Canada Picea abies partial phyo gene for phytochrome O 
PGLM2-0013 Canada Anonymous locus 
PGLM2-0021 Canada NA 
PGLM2-0024 Canada KH domain-containing protein 
PGLM2-0049 Canada oxidoreductase, 2OG-Fe(II) oxygenase family protein 
PGLM2-0081 Canada galactosyltransferase family protein 

PGLM2-0098 Canada PP2AA2 (PROTEIN PHOSPHATASE 2A SUBUNIT A2); protein 
phosphatase type 2A regulator 

PGLM2-0127 Canada PHS2 (ALPHA-GLUCAN PHOSPHORYLASE 2); phosphorylase/ 
transferase, transferring glycosyl groups 

PGLM2-0130 Canada Clone WS02756_M22 unknown mRNA 
PGLM2-0134 Canada Anonymous locus 
PGLM2-0138 Canada ZAC; ARF GTPase activator/ phospholipid binding 

PGLM2-0140 Canada Transcribed locus, moderately similar to XP_001771189.1 
predicted protein [Physcomitrella patens subsp. patens] 

PGLM2-0154 Canada unknown protein 

PGLM2-0158 Canada SK13 (SHAGGY-LIKE KINASE 13); ATP binding / protein 
kinase/ protein serine/threonine kinase 

PGLM2-0160 Canada NA 
PGLM2-0169 Canada ATCUL1 (ARABIDOPSIS THALIANA CULLIN 1); protein binding 
PGLM2-0193 Canada LINC1 (LITTLE NUCLEI1) 

PGLM2-0195 Canada 

LOCATED IN: endomembrane system; EXPRESSED IN: 24 
plant structures; EXPRESSED DURING: 15 growth stages; 
CONTAINS InterPro DOMAIN/s: LMBR1-like conserved region 
(InterPro:IPR006876); BEST Arabidopsis thaliana protein 
match is: LMBR1 integral membrane family protein 
(TAIR:AT5G01460.1); Has 250 Blast hits to 249 proteins in 81 
species: Archae - 0; Bacteria - 0; Metazoa - 107; Fungi - 39; 
Plants - 31; Viruses - 0; Other Eukaryotes - 73 (source: NCBI 
BLink). 

PGLM2-0227 Canada Transcribed locus 
PGLM2-0242 Canada SEC22; transporter 
PGLM2-0271 Canada cpHsc70-1 (chloroplast heat shock protein 70-1); ATP binding 

PGLM2-0285 Canada 
MRH1 (morphogenesis of root hair 1); ATP binding / protein 
binding / protein kinase/ protein serine/threonine kinase/ 
protein tyrosine kinase 
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PGLM2-0288 Canada Transcribed locus 
PGLM2-0295 Canada binding 

PGLM2-0296 Canada ARFA1D; GTP binding / phospholipase activator/ protein 
binding 

PGLM2-0314 Canada ATCS; ATP binding / ATP citrate synthase/ citrate (SI)-
synthase 

PGLM2-0349 Canada Transcribed locus 
PGLM2-0353 Canada haloacid dehalogenase-like hydrolase family protein 

PGLM2-0360 Canada 

FUNCTIONS IN: molecular_function unknown; INVOLVED IN: 
biological_process unknown; LOCATED IN: cellular_component 
unknown; EXPRESSED IN: 17 plant structures; EXPRESSED 
DURING: 7 growth stages; BEST Arabidopsis thaliana protein 
match is: proline-rich family protein (TAIR:AT3G09000.1); Has 
94255 Blast hits to 49644 proteins in 1573 species: Archae - 
225; Bacteria - 11215; Metazoa - 37735; Fungi - 21320; 
Plants - 3339; Viruses - 2662; Other Eukaryotes - 17759 
(source: NCBI BLink). 

PGLM2-0368 Canada FLA7 (FASCICLIN-LIKE ARABINOOGALACTAN 7) 

PGLM2-0383 Canada Transcribed locus, moderately similar to XP_002283272.1 
PREDICTED: hypothetical protein [Vitis vinifera] 

PGLM2-0391 Canada Transcribed locus 
PGLM2-0395 Canada NA 
PGLM2-0404 Canada 40S ribosomal protein S15 (RPS15D) 

PGLM2-0425 Canada 
ATCOAD (4-phosphopantetheine adenylyltransferase); 
nucleotidyltransferase/ pantetheine-phosphate 
adenylyltransferase 

PGLM2-0433 Canada splicing factor Prp18 family protein 
PGLM2-0437 Canada folic acid binding / transferase 
PGLM2-0440 Canada Os11g0167800 
PGLM2-0450 Canada unknown protein 
PGLM2-0460 Canada NLI interacting factor (NIF) family protein 
PGLM2-0465 Canada unknown protein 
PGLM2-0489 Canada NHL repeat-containing protein 

PGLM2-0520 Canada BIN4 (brassinosteroid-insensitive4); double-stranded DNA 
binding 

PGLM2-0565 Canada SNAP33 (SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR 
ADAPTOR PROTEIN 33); SNAP receptor/ protein binding 

PGLM2-0571 Canada LIN2 (LESION INITIATION 2); coproporphyrinogen oxidase 
PGLM2-0584 Canada thylakoid lumenal 17.4 kDa protein, chloroplast 
PGLM2-0592 Canada TRN1 (TORNADO 1) 

PGLM2-0610 Canada PRMT11 (ARGININE METHYLTRANSFERASE 11); protein-
arginine N-methyltransferase 

PGLM2-0624 Canada SDRB (SHORT-CHAIN DEHYDROGENASE-REDUCTASE B); 
binding / catalytic/ oxidoreductase 

PGLM2-0642 Canada INVOLVED IN: biological_process unknown 
PGLM2-0645 Canada bile acid:sodium symporter family protein 
PGLM2-0674 Canada NIC1 (NICOTINAMIDASE 1); catalytic/ nicotinamidase 

PGLM2-0702 Canada ATP binding / aminoacyl-tRNA ligase/ leucine-tRNA ligase/ 
nucleotide binding 

PGLM2-0703 Canada mitochondrial substrate carrier family protein 

PGLM2-0733 Canada NF-YA7 (NUCLEAR FACTOR Y, SUBUNIT A7); specific 
transcriptional repressor/ transcription factor 
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PGLM2-0762 Canada Anonymous locus, unknown protein 
PGLM2-0769 Canada tetratricopeptide repeat (TPR)-containing protein 

PGLM2-0780 Canada PPX2 (PROTEIN PHOSPHATASE X 2); protein serine/threonine 
phosphatase 

PGLM2-0784 Canada thioesterase family protein 

PGLM2-0796 Canada Transcribed locus, moderately similar to XP_001759251.1 
predicted protein [Physcomitrella patens subsp. patens] 

PGLM2-0798 Canada DNAJ heat shock N-terminal domain-containing protein 

PGLM2-0810 Canada 
WIN1 (HOPW1-1-INTERACTING 1); N2-acetyl-L-ornithine:2-
oxoglutarate 5-aminotransferase/ catalytic/ pyridoxal 
phosphate binding / transaminase 

PGLM2-0818 Canada DNAJ heat shock N-terminal domain-containing protein 

PGLM2-0828 Canada 
CLPB4 (CASEIN LYTIC PROTEINASE B4); ATP binding / 
ATPase/ nucleoside-triphosphatase/ nucleotide binding / 
protein binding 

PGLM2-0886 Canada thylakoid lumenal 20 kDa protein 

PGLM2-0887 Canada 

AMK2 (Adenosine monophosphate kinase); ATP binding / 
adenylate kinase/ nucleobase, nucleoside, nucleotide kinase/ 
nucleotide kinase/ phosphotransferase, phosphate group as 
acceptor 

PGLM2-0901 Canada Anonymous locus 
PGLM2-0923 Canada dormancy/auxin associated family protein 

PGLM2-0924 Canada DFR (DIHYDROFLAVONOL 4-REDUCTASE); dihydrokaempferol 
4-reductase 

PGLM2-0944 Canada oxidoreductase NAD-binding domain-containing protein 
PGLM2-1030 Canada postsynaptic protein-related 
PGLM2-1031 Canada Transcribed locus 
PGLM2-1037 Canada COBL1 (COBRA-LIKE PROTEIN 1 PRECURSOR) 
PGLM2-1069 Canada Transcribed locus 
PGLM2-1091 Canada fringe-related protein 
PGLM2-1099 Canada unknown protein 
PGLM2-1147 Canada unknown protein 
PGLM2-1166 Canada AIR9; protein binding 
PGLM2-1170 Canada PEX11D 

PGLM2-1171 Canada flavodoxin family protein / radical SAM domain-containing 
protein 

PGLM2-1178 Canada FUNCTIONS IN: molecular_function unknown 

PGLM2-1182 Canada 
SYNC1; ATP binding / aminoacyl-tRNA ligase/ asparagine-tRNA 
ligase/ aspartate-tRNA ligase/ nucleic acid binding / nucleotide 
binding 

PGLM2-1191 Canada unknown protein 
PGLM2-1223 Canada FUNCTIONS IN: molecular_function unknown 
PGLM2-1269 Canada Anonymous locus 
PGLM2-1273 Canada amino acid transporter family protein 

PGLM2-1385 Canada fructose-1,6-bisphosphatase, putative / D-fructose-1,6-
bisphosphate 1-phosphohydrolase, putative / FBPase, putative 

PGLM2-1476 Canada aconitase C-terminal domain-containing protein 
PGLM2-1477 Canada signal peptide peptidase family protein 
PGLM2-1492 Canada RGLG2 (RING domain Ligase2); ubiquitin-protein ligase 
PGLM2-1514 Canada Transcribed locus 
PGLM2-1528 Canada SYP124 (SYNTAXIN OF PLANTS 124); SNAP receptor 
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PGWD1-0007 Canada 
ATEBP (ETHYLENE-RESPONSIVE ELEMENT BINDING 
PROTEIN); DNA binding / protein binding / transcription 
activator/ transcription factor 

PGWD1-0024 Canada PMEPCRF (PECTIN METHYLESTERASE PCR FRAGMENT F); 
pectinesterase 

PGWD1-0029 Canada pectinacetylesterase family protein 
PGWD1-0041 Canada NA 
PGWD1-0042 Canada POM1 (POM-POM1); chitinase 
PGWD1-0051 Canada reversibly glycosylated polypeptide, putative 

PGWD1-0053 Canada 
ATOMT1 (O-METHYLTRANSFERASE 1); caffeate O-
methyltransferase/ myricetin 3'-O-methyltransferase/ 
quercetin 3-O-methyltransferase 

PGWD1-0117 Canada HSP18.2 (heat shock protein 18.2) 

PGWD1-0118 Canada anac028 (Arabidopsis NAC domain containing protein 28); 
transcription factor 

PGWD1-0132 Canada AtMYB93 (myb domain protein 93); DNA binding / 
transcription factor 

PGWD1-0142 Canada Transcribed locus 

PGWD1-0147 Canada ATGH9A1 (ARABIDOPSIS THALIANA GLYCOSYL HYDROLASE 
9A1); cellulase/ hydrolase, hydrolyzing O-glycosyl compounds 

PGWD1-0152 Canada unknown protein 

PGWD1-0158 Canada CAD9 (CINNAMYL ALCOHOL DEHYDROGENASE 9); binding / 
catalytic/ oxidoreductase/ zinc ion binding 

PGWD1-0184 Canada 
ATOMT1 (O-METHYLTRANSFERASE 1); caffeate O-
methyltransferase/ myricetin 3'-O-methyltransferase/ 
quercetin 3-O-methyltransferase 

PGWD1-0191 Canada Anonymous locus 

PGWD1-0220 Canada PIP2A (PLASMA MEMBRANE INTRINSIC PROTEIN 2A); water 
channel 

PGWD1-0242 Canada gibberellin-responsive protein, putative 

PGWD1-0257 Canada ATFD3 (ferredoxin 3); 2 iron, 2 sulfur cluster binding / 
electron carrier/ iron-sulfur cluster binding 

PGWD1-0269 Canada 
GMD1 (GDP-D-MANNOSE 4,6-DEHYDRATASE 1); GDP-
mannose 4,6-dehydratase/ binding / catalytic/ coenzyme 
binding 

PGWD1-0282 Canada 
GATL6; polygalacturonate 4-alpha-galacturonosyltransferase/ 
transferase, transferring glycosyl groups / transferase, 
transferring hexosyl groups 

PGWD1-0337 Canada UDP-glucose 6-dehydrogenase, putative 

PGWD1-0344 Canada AtGH9A4 (Arabidopsis thaliana Glycosyl Hydrolase 9A4); 
catalytic/ hydrolase, hydrolyzing O-glycosyl compounds 

PGWD1-0362 Canada CESA1 (CELLULOSE SYNTHASE 1); cellulose synthase/ 
transferase, transferring glycosyl groups 

PGWD1-0375 Canada NA 

PGWD1-0391 Canada GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water 
channel 

PGWD1-0396 Canada pectinesterase family protein 

PGWD1-0400 Canada MYB31 (MYB DOMAIN PROTEIN 31); DNA binding / 
transcription factor 

PGWD1-0413 Canada universal stress protein (USP) family protein 



                               Supplements 

93 
 

PGWD1-0418 Canada 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan 
endotransglycosylase, putative / endo-xyloglucan transferase, 
putative 

PGWD1-0421 Canada LHCB4.3 (light harvesting complex PSII); chlorophyll binding 

PGWD1-0453 Canada LDOX (LEUCOANTHOCYANIDIN DIOXYGENASE); leucocyanidin 
oxygenase 

PGWD1-0468 Canada MTHFR2 (METHYLENETETRAHYDROFOLATE REDUCTASE 2); 
methylenetetrahydrofolate reductase (NADPH) 

PGWD1-0485 Canada MYB4; DNA binding / transcription factor 
PGWD1-0510 Canada unknown protein 

PGWD1-0511 Canada 
XT2 (UDP-XYLOSYLTRANSFERASE 2); UDP-xylosyltransferase/ 
transferase/ transferase, transferring glycosyl groups / 
xyloglucan 6-xylosyltransferase 

PGWD1-0519 Canada CESA1 (CELLULOSE SYNTHASE 1); cellulose synthase/ 
transferase, transferring glycosyl groups 

PGWD1-0533 Canada WRKY65; transcription factor 
PGWD1-0551 Canada unknown protein 
PGWD1-0556 Canada cysteine proteinase, putative 

PGWD1-0557 Canada ribulose bisphosphate carboxylase small chain 1B / RuBisCO 
small subunit 1B (RBCS-1B) (ATS1B) 

PGWD1-0578 Canada TUB6 (BETA-6 TUBULIN); structural constituent of 
cytoskeleton 

PGWD1-0586 Canada PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water 
channel 

PGWD1-0589 Canada PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water 
channel 

PGWD1-0613 Canada pollen Ole e 1 allergen and extensin family protein 

PGWD1-0634 Canada 
GMD1 (GDP-D-MANNOSE 4,6-DEHYDRATASE 1); GDP-
mannose 4,6-dehydratase/ binding / catalytic/ coenzyme 
binding 

PGWD1-0640 Canada RSR4 (REDUCED SUGAR RESPONSE 4); protein 
heterodimerization/ protein homodimerization 

PGWD1-0667 Canada 
GATL4 (Galacturonosyltransferase-like 4); polygalacturonate 
4-alpha-galacturonosyltransferase/ transferase, transferring 
glycosyl groups / transferase, transferring hexosyl groups 

PGWD1-0737 Canada pectate lyase family protein 

PGWD1-0787 Canada PGSIP1 (PLANT GLYCOGENIN-LIKE STARCH INITIATION 
PROTEIN 1); transferase, transferring glycosyl groups 

PGWD1-0788 Canada PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water 
channel 

PGWD1-0794 Canada calcium-binding EF hand family protein 
PGWD1-0802 Canada fringe-related protein 
PGWD1-0805 Canada cupin family protein 
PGWD1-0807 Canada PSAT; O-phospho-L-serine:2-oxoglutarate aminotransferase 
PGWD1-0808 Canada myb family transcription factor 

PGWD1-0813 Canada MYB20 (myb domain protein 20); DNA binding / transcription 
factor 

PGWD1-0853 Canada TIP4;1 (tonoplast intrinsic protein 4;1); water channel 

PGWD1-0875 Canada GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water 
channel 

PGWD1-0909 Canada CUC2 (CUP-SHAPED COTYLEDON 2); transcription factor 
PGWD1-0932 Canada UDP-glucose 6-dehydrogenase, putative 
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PGWD1-0963 Canada MYB36 (myb domain protein 36); DNA binding / transcription 
factor 

PGWD1-0965 Canada ATHB-3 (ARABIDOPSIS THALIANA HOMEOBOX 3); DNA 
binding / sequence-specific DNA binding / transcription factor 

PGWD1-0972 Canada cinnamoyl-CoA reductase family 
PGWD1-1016 Canada MYB4; DNA binding / transcription factor 
PGWD1-1027 Canada RAP2.12; DNA binding / transcription factor 

PGWD1-1034 Canada IAA9 (INDOLE-3-ACETIC ACID INDUCIBLE 9); transcription 
factor 

PGWD1-1048 Canada APE2 (ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 
2); antiporter/ triose-phosphate transmembrane transporter 

PGWD1-1070 Canada BETA-TIP (BETA-TONOPLAST INTRINSIC PROTEIN); water 
channel 

PGWD1-1080 Canada TIP4;1 (tonoplast intrinsic protein 4;1); water channel 

PGWD1-1094 Canada LACS9 (LONG CHAIN ACYL-COA SYNTHETASE 9); long-chain-
fatty-acid-CoA ligase 

PGWD1-1121 Canada NA 

PGWD1-1127 Canada anac075 (Arabidopsis NAC domain containing protein 75); 
transcription factor 

PGWD1-1154 Canada PRLI-interacting factor-related 
PGWD1-1197 Canada pectate lyase family protein 

PGWD1-1206 Canada DNAJ heat shock N-terminal domain-containing protein / cell 
division protein-related 

PGWD1-1208 Canada glycosyl hydrolase family 18 protein 
PGWD1-1212 Canada WRKY7; calmodulin binding / transcription factor 
PGWD1-1219 Canada reversibly glycosylated polypeptide, putative 
PGWD1-1223 Canada pectate lyase family protein 

PGWD1-1282 Canada MYB83 (myb domain protein 83); DNA binding / transcription 
factor 

PGWD1-1284 Canada G6PD2 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 2); 
glucose-6-phosphate dehydrogenase 

PGWD1-1295 Canada unknown protein 

PGWD1-1304 Canada LDOX (LEUCOANTHOCYANIDIN DIOXYGENASE); leucocyanidin 
oxygenase 

PGWD1-1319 Canada pectate lyase family protein 

PGWD1-1346 Canada MTHFR2 (METHYLENETETRAHYDROFOLATE REDUCTASE 2); 
methylenetetrahydrofolate reductase (NADPH) 

PGWD1-1421 Canada oxidoreductase, zinc-binding dehydrogenase family protein 

PGWD1-1422 Canada GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water 
channel 

PGWD1-1437 Canada TIP4;1 (tonoplast intrinsic protein 4;1); water channel 
PGWD1-1492 Canada glycosyl hydrolase family 18 protein 
PGWD1-1501 Canada polygalacturonase 
PGWD1-1510 Canada pectinesterase family protein 

PGWD1-1518 Canada 

HCT (HYDROXYCINNAMOYL-COA SHIKIMATE/QUINATE 
HYDROXYCINNAMOYL TRANSFERASE); quinate O-
hydroxycinnamoyltransferase/ shikimate O-
hydroxycinnamoyltransferase/ transferase 
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Uppsala dataset (Sweden) 
 
SNP name Source Annotation 
PabiesGI_F6_8_261 Uppsala circadian clock 
PabiesGI_F8_56_324 Uppsala circadian clock 
PaCCA1-Like_1842 Uppsala circadian clock 
PabiesFT4pr_1472 Uppsala photoperiodic pathway 
PabiesFT4pr_1824 Uppsala photoperiodic pathway 
PabiesFT4pr_1951 Uppsala photoperiodic pathway 
PabiesFT4pr_2046 Uppsala photoperiodic pathway 
PabiesFT4pr_2173 Uppsala photoperiodic pathway 
PaFTL2pr_2454 Uppsala photoperiodic pathway 
PaFTL2pr_2509 Uppsala photoperiodic pathway 
PaFTL2pr_2694 Uppsala photoperiodic pathway 
PaCCA1-Like_3194 Uppsala Picea abies CCA1-Like gene partial sequence 
PaCCA1-Like_3893 Uppsala Picea abies CCA1-Like gene partial sequence 
PabiesCol1_711 Uppsala picea abies col1 gene for constans-like 1 
PabiesCol1_660 Uppsala picea abies col1 gene for constans-like 1 
PabiesPrMYB2_932 Uppsala picea abies col1 gene for constans-like 1 
PabiesCol1_846 Uppsala picea abies col1 gene for constans-like 1 
PabiesCol1_1495 Uppsala picea abies col1 gene for constans-like 1 
PabiesPrMYB2_753 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_1302 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_2004 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_3403 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_4049 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_4128 Uppsala picea abies col1 gene for constans-like 1 
PabiesMYB2_4183 Uppsala picea abies col1 gene for constans-like 1 
PabiesPrMYB2_595 Uppsala picea abies col1 gene for constans-like 1 
PabiesCol2_989 Uppsala picea abies constans-like protein gene 
PaFTL2pr_2790 Uppsala Picea abies FTL2 promoter gene 
PaFTL2pr_1560 Uppsala Picea abies FTL2 promoter gene 
PaFTL2pr_1757 Uppsala Picea abies FTL2 promoter gene 

PabiesKN2b_2317 Uppsala 
Picea abies genotype 5433 homeobox transcription 
factor KN2 (KN2) gene 

PabiesHB3_5122 Uppsala 
Picea abies genotype 5433 homeobox transcription 
factor KN2 (KN2) gene 

PabiesHB3_385 Uppsala 
Picea abies genotype 5434 homeodomain-leucine 
zipper trancription factor HB-3 (HB-3) gene 

PabiesHB3_2495 Uppsala 
Picea abies genotype 5434 homeodomain-leucine 
zipper trancription factor HB-3 (HB-3) gene 

PabiesHB3_2316 Uppsala 
Picea abies genotype 5434 homeodomain-leucine 
zipper trancription factor HB-3 (HB-3) gene 

PabiesHB3_5700 Uppsala 
Picea abies genotype 5434 homeodomain-leucine 
zipper trancription factor HB-3 (HB-3) gene 

PaKN1b_08525f Uppsala 
Picea abies genotype 5460 homeobox transcription 
factor KN1 (KN1) gene 

PabiesKN2a_196 Uppsala 
Picea abies genotype 86453 homeobox transcription 
factor KN2 (KN2) gene  

PabiesKN2a_253 Uppsala 
Picea abies genotype 86453 homeobox transcription 
factor KN2 (KN2) gene  
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PabiesKN4b_489 Uppsala 
Picea abies genotype 86453 homeobox transcription 
factor KN4 (KN4) gene 

PaKN4b_01687n Uppsala 
Picea abies genotype 86453 homeobox transcription 
factor KN4 (KN4) gene 

PaMFTL1_2136 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PabiesFT1_1718 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PaMFTL1_1251 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PaMFTL1_2215 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PaMFTL1_1613 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PabiesFT1_1050 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PabiesFT1_2091 Uppsala Picea abies MFT1-like protein (MFT1) gene 
PabiesFT1_911 Uppsala Picea abies MFT1-like protein (MFT1) gene 

PabiesCry_454 Uppsala Picea abies partial cry gene for putative cryptochrome 

PaPHYN_R0111 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RIII418 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RIII272 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RII465 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RI330 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RIII185 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_RIII88 Uppsala Picea abies partial phynrI gene for phytochrome N 

PaPHYN_R0319 Uppsala Picea abies partial phynrI gene for phytochrome N 
PaPHYO_RIII336 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RIV211 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RIII510 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RII229 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RIV39 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RII283 Uppsala Picea abies partial phyo gene for phytochrome O 
PaPHYO_RIV402 Uppsala Picea abies partial phyo gene for phytochrome O 

PaPHYP_RII122 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PaPHYP_RII177 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PaPHYP_RI96 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PaPHYP_RIII76 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PaPHYP_RIII345 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PaPHYP_RIII274 Uppsala 
Picea abies partial phyP gene for putative 
phytochrome P, 

PabiesGI_F2_9_1470 Uppsala Picea abies Putative Gigantea gene,partial sequence 
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PabiesGI_F2_9_420 Uppsala Picea abies Putative Gigantea gene,partial sequence 
PabiesPRR1_240 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_2953 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_3828 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_1039 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_3301 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_1168 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_3722 Uppsala Picea abies Putative PRR1 gene 
PaPRR1_3_GQ0178.B
7-E07.1-180 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_2381 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_2741 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_2920 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_2990 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR1_3883 Uppsala Picea abies Putative PRR1 gene 
PabiesPRR3_F2_481 Uppsala Picea abies Putative PRR3 gene, partial sequence 
PabiesPRR3_F1_2570 Uppsala Picea abies Putative PRR3 gene, partial sequence 
PabiesPRR3_F1_2978 Uppsala Picea abies Putative PRR3 gene, partial sequence 
PabiesPRR3_F2_331 Uppsala Picea abies Putative PRR3 gene, partial sequence 
PabiesPRR7_F3_104 Uppsala Picea abies Putative PRR7 gene,partial sequence 
PabiesPRR7_F1_1505 Uppsala Picea abies Putative PRR7 gene,partial sequence 
PabiesPRR7_F2_534 Uppsala Picea abies Putative PRR7 gene,partial sequence 
PabiesPRR7_F1_2518 Uppsala Picea abies Putative PRR7 gene,partial sequence 
PabiesPRR7_F1_771 Uppsala Picea abies Putative PRR7 gene,partial sequence 
PabiesPRR7_F2_417 Uppsala Picea abies Putative PRR7 gene,partial sequence 

PabiesZTL_793 Uppsala 
Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) 
gene, partial cds 

PabiesZTL_514 Uppsala 
Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) 
gene, partial cds 

PabiesZTL_958 Uppsala 
Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) 
gene, partial cds 

PabiesZTL_367 Uppsala 
Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) 
gene, partial cds 

PaMFTL1_3441 Uppsala shoot apical development 
PaMFTL1_802 Uppsala shoot apical development 
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Supplement 3. Assignment of 392 individuals based on the geo-reference data when individuals 
from Austria were assigned in the five populations (A), from Italy-Slovenia and France in 8 
populations (B) and from Switzerland, individuals are assigned in the 7 adjusted populations 
(C). 
 
(A) Assignment of individuals in 5 adjusted groups 
 
            

 
 
(B) Assignment of individuals in 8 adjusted groups 
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(C) Assignment of individuals in 7 adjusted groups 
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Supplement 4. List of SNPs failed during 384 Illumina GoldenGate genotyping assay 
 
 

SNPs name Source Species Final 
score 

Design-
ability score 

PGWD1-1437 Canada P.glauca 0.626 1 
PGWD1-1048 Canada P.glauca 0.869 1 
PGWD1-0257 Canada P.glauca 0.956 1 
PGWD1-0965 Canada P.glauca 0.947 1 
PGLM2-0195 Canada P.glauca 0.995 1 
PGWD1-1510 Canada P.glauca 0.993 1 
PGLM2-0360 Canada P.glauca 0.978 1 
PGLM2-1273 Canada P.glauca 0.706 1 
PGLM2-0349 Canada P.glauca 0.977 1 
PGLM2-0924 Canada P.glauca 0.956 1 
PGWD1-0963 Canada P.glauca 0.958 1 
PGLM2-0733 Canada P.glauca 0.955 1 
PGWD1-0613 Canada P.glauca 0.937 1 
PGWD1-0519 Canada P.glauca 0.971 1 
PGLM2-0465 Canada P.glauca 0.927 1 
PGWD1-1027 Canada P.glauca 0.911 1 
PGLM2-1223 Canada P.glauca 0.931 1 
PGLM2-1171 Canada P.glauca 0.918 1 
PGWD1-1422 Canada P.glauca 0.609 1 
PGLM2-0314 Canada P.glauca 0.96 1 
PGLM2-0383 Canada P.glauca 0.932 1 
PGLM2-0810 Canada P.galuca 0.951 1 
PGWD1-0972 Canada P.glauca 0.947 1 
PGLM2-0227 Canada P.glauca 0.993 1 
PGWD1-0557 Canada P.glauca 0.818 1 
PGLM2-0887 Canada P.glauca 0.82 1 
PGWD1-0578 Canada P.glauca 0.968 1 
PGLM2-1147 Canada P.glauca 0.913 1 
PGWD1-0053 Canada P.glauca 0.99 1 
PGLM2-0780 Canada P.glauca 0.946 1 
PGLM2-0450 Canada P.glauca 0.986 1 
PGWD1-0556 Canada P.glauca 0.917 1 
PGWD1-1208 Canada P.glauca 0.944 1 
PGLM2-0024 Canada P.glauca 0.924 1 
PGWD1-0468 Canada P.glauca 0.969 1 
PGLM2-0271 Canada P.glauca 0.911 1 
PGLM2-0368 Canada P.glauca 0.989 1 
PGWD1-0808 Canada P.glauca 0.918 1 
PGLM2-0762 Canada P.glauca 0.964 1 
PGWD1-0640 Canada P.glauca 0.957 1 
PGWD1-1121 Canada P.glauca 0.931 1 
PGWD1-1197 Canada P.glauca 0.912 1 
PGLM2-0796 Canada P.glauca 0.975 1 
PGWD1-0485 Canada P.glauca 0.945 1 
PGLM2-0013 Canada P.glauca 0.918 1 
PGWD1-0533 Canada P.glauca 0.977 1 
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PGLM2-1037 Canada P.glauca 0.961 1 
PGLM2-0674 Canada P.glauca 0.956 1 
PGLM2-0049 Canada P.glauca 0.989 1 
PGWD1-0051 Canada P.glauca 0.98 1 
PGWD1-0551 Canada P.glauca 0.98 1 
PGLM2-1492 Canada P.glauca 0.935 1 
PGWD1-1094 Canada P.glauca 0.93 1 
PGWD1-0413 Canada P.glauca 0.965 1 
PaPHYN_R0319 Canada P.glauca 0.879 1 
PGWD1-0117 Canada P.glauca 0.932 1 
PGLM2-0296 Canada P.glauca 0.921 1 
PGWD1-0875 Canada P.glauca 0.781 1 
PGWD1-0932 Canada P.glauca 0.945 1 
PGWD1-1080 Canada P.glauca 0.824 1 
PGWD1-0242 Canada P.glauca 0.985 1 
PGWD1-0142 Canada P.glauca 0.917 1 
PGWD1-1206 Canada P.glauca 0.888 1 
0_8531_01-Paab_157 CRSP reseq P.abies 0.979 1 
2_4196_01-Paab_201 CRSP reseq P.abies 0.629 1 
0_4541_02-266 CRSP reseq P.abies 0.97 1 
2_10438_01-351 CRSP reseq P.abies 0.818 1 
CL4511Contig1_02-
Paab_223 CRSP reseq P.abies 0.956 1 
CL1308Contig1_03-
Paab_181 CRSP reseq P.abies 0.993 1 
CL1343Contig1_05-
Paab_165 CRSP reseq P.abies 0.972 1 
0_10631_01-Paab_193 CRSP reseq P.abies 0.64 1 
0_7471_01-Paab_399 CRSP reseq P.abies 0.88 1 
0_8111_01-39 CRSP reseq P.abies 0.919 1 
PaFTL2pr_2790 Uppsala P.abies 0.908 1 
PaPHYP_RI96 Uppsala P.abies 0.954 1 
PGWD1-0007 Uppsala P.abies 0.909 1 
PaPRR1_3_GQ0178.B7-
E07.1-180 Uppsala P.abies 0.62 1 
PaCCA1-Like_3194 Uppsala P.abies 0.767 1 
PabiesPrMYB2_753 Uppsala P.abies 0.981 1 
PabiesPRR7_F2_534 Uppsala P.abies 0.886 1 
PaPHYP_RII122 Uppsala P.abies 0.84 1 
PabiesPRR1_3301 Uppsala P.abies 0.775 1 
PaPHYP_RIII76 Uppsala P.abies 0.64 1 
PaPHYN_RIII418 Uppsala P.abies 0.859 1 
PabiesCol1_583 Uppsala P.abies 0.607 1 
PabiesMYB2_2004 Uppsala P.abies 0.988 1 
PabiesPRR1_2741 Uppsala P.abies 0.843 1 
PabiesPRR1_2920 Uppsala P.abies 0.947 1 
PabiesCol1_846 Uppsala P.abies 0.937 1 
PabiesMYB2_1302 Uppsala P.abies 0.77 1 
PabiesHB3_5122 Uppsala P.abies 0.962 1 
PaPHYP_RIII345 Uppsala P.abies 0.998 1 
PabiesFT4pr_1951 Uppsala P.abies 0.786 1 
PaPHYP_RIII274 Uppsala P.abies 0.923 1 
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PabiesKN2a_196 Uppsala P.abies 0.672 1 
PabiesFT4pr_2173 Uppsala P.abies 0.746 1 
PabiesPrMYB2_595 Uppsala P.abies 0.867 1 
PabiesFT4pr_1824 Uppsala P.abies 0.902 1 
PaPHYO_RIV402 Uppsala P.abies 0.813 1 
PabiesPRR1_3722 Uppsala P.abies 0.62 1 
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Supplement 5. Basic diversity statistics indices on genotyping matrix on polymorphic SNPs. Listed observed and expected heterozygosity for each 
SNP  when  maf  ≥  0.5  and  Fis  across  all  loci. 
 
 

SNP Ho 
 

SNP He 
 

SNP Fis 
CL1148Contig1_08.Paab_225 0.17829457 

 
CL1148Contig1_08.Paab_225 0.20803377 

 
PGWD1.1319 -0.89532 

PGWD1.0396 0.48818898 
 

PGWD1.0396 0.48390662 
 

PGWD1.0337 -0.57551 
PGWD1.1319 0.94805195 

 
PGWD1.1319 0.5002063 

 
PGLM2.0353 -0.40109 

PGWD1.0282 0.13350785 
 

PGWD1.0282 0.1249227 
 

X0_9457_01.Paab_421 -0.37184 
CL1530Contig1_04.Paab_64 0.27109974 

 
CL1530Contig1_04.Paab_64 0.23867795 

 
PGWD1.0391 -0.30481 

X0_9457_01.Paab_115 0.49739583 
 

X0_9457_01.Paab_115 0.50007819 
 

PGWD1.1421 -0.27803 
PGWD1.1501 0.4 

 
PGWD1.1501 0.42731565 

 
PGLM2.0169 -0.13983 

CL1694Contig1_01.Paab_235 0.43121693 
 

CL1694Contig1_01.Paab_235 0.40111644 
 

X0_9749_01.Paab_337 -0.13778 
PGLM2.0886 0.40220386 

 
PGLM2.0886 0.40996606 

 
CL1530Contig1_04.Paab_64 -0.13584 

PGWD1.0667 0.11658031 
 

PGWD1.0667 0.11464572 
 

PGLM2.0158 -0.11699 
X0_8531_01.Paab_363 0.30343008 

 
X0_8531_01.Paab_363 0.43676969 

 
PabiesCol1_1495 -0.09658 

X0_9749_01.Paab_337 0.24675325 
 

X0_9749_01.Paab_337 0.21687297 
 

PabiesZTL_514 -0.09283 
CL1148Contig1_08.Paab_134 0.41239892 

 
CL1148Contig1_08.Paab_134 0.44352371 

 
PGLM2.1166 -0.08264 

PGWD1.0634 0.42506812 
 

PGWD1.0634 0.48465627 
 

PGLM2.1170 -0.07720 
CL1694Contig1_04.Paab_90 0.43421053 

 
CL1694Contig1_04.Paab_90 0.43424177 

 
PabiesZTL_793 -0.07579 

X0_366_02.Paab_380 0.18324607 
 

X0_366_02.Paab_380 0.18382323 
 

CL1694Contig1_01.Paab_235 -0.07504 
PGWD1.1034 0.16397849 

 
PGWD1.1034 0.30802756 

 
PabiesZTL_958 -0.07391 

PGWD1.0337 0.73385013 
 

PGWD1.0337 0.4657857 
 

X0_9383_01.Paab_438 -0.07324 
X0_9457_01.Paab_46 0.5078125 

 
X0_9457_01.Paab_46 0.50103011 

 
X2_5636_01.Paab_209 -0.06955 

CL4284Contig1_01.Paab_180 0.4488189 
 

CL4284Contig1_01.Paab_180 0.4316791 
 

PGWD1.0282 -0.06872 
PaCCA1.Like_3893 0.1865285 

 
PaCCA1.Like_3893 0.19036404 

 
PGLM2.0140 -0.06777 

PGLM2.0645 0.32992327 
 

PGLM2.0645 0.33675979 
 

PGLM2.1030 -0.06673 
PGWD1.0807 0.41578947 

 
PGWD1.0807 0.40333287 

 
CL1694Contig1_02.365 -0.06577 

CL304Contig1_01.Paab_118 0.41732283 
 

CL304Contig1_01.Paab_118 0.41290579 
 

PGLM2.0489 -0.06526 
PGWD1.0391 0.48266667 

 
PGWD1.0391 0.36991444 

 
PabiesKN2b_2317 -0.06505 

PGLM2.0127 0.47164948 
 

PGLM2.0127 0.44926277 
 

PGWD1.0421 -0.06296 
PGWD1.1223 0.45646438 

 
PGWD1.1223 0.4755099 

 
PGLM2.0642 -0.06285 

X2_9328_01.Paab_425 0.41494845 
 

X2_9328_01.Paab_425 0.42129186 
 

X0_11090_01.Paab_251 -0.05961 
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X0_1439_01.Paab_226 0.22135417 
 

X0_1439_01.Paab_226 0.21735952 
 

PaPHYO_RIII336 -0.05786 
PGWD1.0589 0.10789474 

 
PGWD1.0589 0.11634148 

 
PGLM2.0154 -0.05735 

PabiesPRR1_2953 0.36458333 
 

PabiesPRR1_2953 0.35422106 
 

CL4257Contig1_01.Paab_391 -0.05331 
PGLM2.0901 0.1761658 

 
PGLM2.0901 0.18625934 

 
PGLM2.0433 -0.05296 

PGLM2.1269 0.09511568 
 

PGLM2.1269 0.11381616 
 

PabiesCol1_660 -0.05292 
PabiesFT1_1050 0.34574468 

 
PabiesFT1_1050 0.35948936 

 
PGLM2.0127 -0.04983 

PGLM2.0169 0.50793651 
 

PGLM2.0169 0.44562334 
 

PaFTL2pr_1560 -0.04846 
X0_177_01.Paab_165 0.45736434 

 
X0_177_01.Paab_165 0.49224471 

 
X0_13680_01.Paab_216 -0.04592 

PGWD1.0029 0.18298969 
 

PGWD1.0029 0.17922361 
 

PGLM2.0404 -0.04484 
PGLM2.1031 0.17268041 

 
PGLM2.1031 0.17506793 

 
PabiesKN4b_489 -0.04002 

PGWD1.0184 0.15721649 
 

PGWD1.0184 0.16667666 
 

CL4284Contig1_01.Paab_180 -0.03970 
PGLM2.0433 0.48812665 

 
PGLM2.0433 0.46357373 

 
PGLM2.0160 -0.03967 

PGLM2.0098 0.26030928 
 

PGLM2.0098 0.2744579 
 

X2_7725_01.Paab_466 -0.03948 
PaPHYO_RIII510 0.27055703 

 
PaPHYO_RIII510 0.26104746 

 
PaPHYN_RI330 -0.03764 

PGWD1.0853 0.35752688 
 

PGWD1.0853 0.4500442 
 

PaPHYO_RIII510 -0.03643 
PGLM2.0353 0.57622739 

 
PGLM2.0353 0.4112711 

 
PaPHYP_RII177 -0.03619 

PGLM2.0160 0.44125326 
 

PGLM2.0160 0.42441527 
 

PGWD1.1346 -0.03618 
UMN_1604_01.Paab_348 0.25510204 

 
UMN_1604_01.Paab_348 0.25636776 

 
X2_9280_01.Paab_338 -0.03581 

CL3795Contig1_01.Paab_45 0.49041096 
 

CL3795Contig1_01.Paab_45 0.49955216 
 

PGWD1.1127 -0.03469 
PGLM2.0584 0.27466667 

 
PGLM2.0584 0.3160107 

 
PabiesPRR1_2990 -0.03468 

PGWD1.0132 0.36814621 
 

PGWD1.0132 0.36732943 
 

X0_13978_01.Paab_102 -0.03460 
PGWD1.0787 0.13554987 

 
PGWD1.0787 0.13110696 

 
CL1692Contig1_05.Paab_178 -0.03423 

PGWD1.1421 0.46498599 
 

PGWD1.1421 0.36383093 
 

PGWD1.0787 -0.03389 
PGLM2.0437 0.25064599 

 
PGLM2.0437 0.25366175 

 
PGLM2.0395 -0.03381 

PGLM2.0140 0.13178295 
 

PGLM2.0140 0.12341848 
 

PGWD1.0807 -0.03088 
PabiesHB3_2495 0.18586387 

 
PabiesHB3_2495 0.19005854 

 
PGLM2.1182 -0.02953 

X0_489_01.Paab_316 0.36528497 
 

X0_489_01.Paab_316 0.37597403 
 

PabiesPRR1_2953 -0.02925 
PabiesZTL_367 0.13265306 

 
PabiesZTL_367 0.14602798 

 
X0_17215_01.Paab_108 -0.02850 

PGWD1.0041 0.18974359 
 

PGWD1.0041 0.19268341 
 

PabiesFT4pr_2046 -0.02799 
PGLM2.0285 0.47135417 

 
PGLM2.0285 0.50073093 

 
PabiesPRR7_F1_771 -0.02672 

PGLM2.0391 0.47860963 
 

PGLM2.0391 0.49789609 
 

PGWD1.1304 -0.02644 
X2_3947_01.Paab_298 0.1056701 

 
X2_3947_01.Paab_298 0.11409135 

 
X2_9845_01.Paab_282 -0.02460 

PGWD1.1346 0.2377261 
 

PGWD1.1346 0.22942523 
 

PGWD1.0029 -0.02101 
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CL3771Contig1_04.Paab_68 0.34173669 
 

CL3771Contig1_04.Paab_68 0.36087244 
 

X0_17587_01.Paab_42 -0.02095 
PGLM2.0923 0.30287206 

 
PGLM2.0923 0.3433352 

 
CL3507Contig1_03.Paab_191 -0.01872 

CL3582Contig1_03.Paab_63 0.47382199 
 

CL3582Contig1_03.Paab_63 0.49015061 
 

PGWD1.1219 -0.01842 
PGWD1.1492 0.43832021 

 
PGWD1.1492 0.46814822 

 
X0_1439_01.Paab_226 -0.01838 

PabiesHB3_385 0.15979381 
 

PabiesHB3_385 0.16878446 
 

PGWD1.0667 -0.01687 
CL1694Contig1_02.365 0.42708333 

 
CL1694Contig1_02.365 0.40072889 

 
PGWD1.0344 -0.01641 

PGWD1.1154 0.11734694 
 

PGWD1.1154 0.1197218 
 

PabiesPRR7_F1_1505 -0.01631 
X0_12021_01.161 0.14578005 

 
X0_12021_01.161 0.14420946 

 
PaPHYO_RII283 -0.01416 

PGWD1.0042 0.27393617 
 

PGWD1.0042 0.28147163 
 

X0_9457_01.Paab_46 -0.01354 
PabiesPRR7_F1_771 0.18911917 

 
PabiesPRR7_F1_771 0.18419689 

 
PGWD1.1070 -0.01295 

PGLM2.1170 0.45406824 
 

PGLM2.1170 0.42152576 
 

X2_9665_01.Paab_175 -0.01098 
PGLM2.0565 0.10209424 

 
PGLM2.0565 0.11115348 

 
X0_12021_01.161 -0.01089 

CL304Contig1_01.202 0.39037433 
 

CL304Contig1_01.202 0.42283265 
 

CL304Contig1_01.Paab_118 -0.01070 
PaMFTL1_1613 0.41145833 

 
PaMFTL1_1613 0.45070442 

 
PGWD1.0118 -0.00936 

PabiesZTL_793 0.43569554 
 

PabiesZTL_793 0.40500069 
 

PGWD1.0396 -0.00885 
CL1692Contig1_05.Paab_178 0.51168831 

 
CL1692Contig1_05.Paab_178 0.49475446 

 
PGLM2.0592 -0.00841 

PabiesZTL_514 0.43264249 
 

PabiesZTL_514 0.39589193 
 

PGWD1.0510 -0.00471 
PGLM2.0081 0.10309278 

 
PGLM2.0081 0.10724846 

 
PGLM2.0571 -0.00273 

PGLM2.1182 0.43617021 
 

PGLM2.1182 0.42365957 
 

X0_2354_01.Paab_194 -0.00235 
PGWD1.0024 0.10103627 

 
PGWD1.0024 0.10083776 

 
PGWD1.0132 -0.00222 

X2_5636_01.Paab_399 0.33506494 
 

X2_5636_01.Paab_399 0.34057427 
 

PGWD1.0024 -0.00197 
CL4257Contig1_01.Paab_391 0.27083333 

 
CL4257Contig1_01.Paab_391 0.25712576 

 
CL1694Contig1_04.Paab_90 0.00007 

X0_9457_01.Paab_421 0.54593176 
 

X0_9457_01.Paab_421 0.39795552 
 

PGWD1.0147 0.00095 
UMN_3055_01.Paab_224 0.16795866 

 
UMN_3055_01.Paab_224 0.20803377 

 
PGLM2.0818 0.00102 

PaKN4b_01687n 0.19845361 
 

PaKN4b_01687n 0.20359826 
 

PGLM2.1091 0.00108 
PabiesFT1_1718 0.41836735 

 
PabiesFT1_1718 0.43363432 

 
PGWD1.0400 0.00214 

PGWD1.0400 0.2997416 
 

PGWD1.0400 0.30038425 
 

X0_366_02.Paab_380 0.00314 
X0_7921_01.Paab_212 0.14138817 

 
X0_7921_01.Paab_212 0.14488975 

 
PGLM2.0610 0.00354 

X0_13680_01.Paab_216 0.51570681 
 

X0_13680_01.Paab_216 0.49306386 
 

UMN_4748_01.Paab_38 0.00391 
PGLM2.1030 0.37665782 

 
PGLM2.1030 0.35309555 

 
X0_14976_01.Paab_305 0.00474 

PabiesPRR3_F2_481 0.47311828 
 

PabiesPRR3_F2_481 0.49889865 
 

UMN_1604_01.Paab_348 0.00494 
PGWD1.0421 0.26493506 

 
PGWD1.0421 0.24924242 

 
PabiesHB3_5700 0.00512 

PGLM2.1166 0.28608924 
 

PGLM2.1166 0.26425266 
 

PabiesHB3_2316 0.00523 
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PGWD1.0158 0.46933333 
 

PGWD1.0158 0.48233868 
 

X0_9457_01.Paab_115 0.00536 
X2_4723_01.Paab_276 0.14948454 

 
X2_4723_01.Paab_276 0.15173553 

 
X0_17215_01.Paab_225 0.00621 

X2_9466_01.Paab_179 0.29473684 
 

X2_9466_01.Paab_179 0.29800028 
 

PabiesPRR1_1168 0.00786 
X0_14976_01.Paab_305 0.49481865 

 
X0_14976_01.Paab_305 0.49717718 

 
PGLM2.0784 0.01029 

X0_2433_01.Paab_290 0.34036939 
 

X0_2433_01.Paab_290 0.36171839 
 

X2_9466_01.Paab_179 0.01095 
PGWD1.0147 0.09793814 

 
PGWD1.0147 0.09803138 

 
X0_7171_01.Paab_359 0.01154 

PGLM2.0642 0.33766234 
 

PGLM2.0642 0.31769481 
 

PGLM2.0437 0.01189 
PabiesPRR1_3883 0.15284974 

 
PabiesPRR1_3883 0.16745508 

 
X2_3851_01.Paab_280 0.01229 

CL1758Contig1_04.288 0.36787565 
 

CL1758Contig1_04.288 0.38238342 
 

PaMFTL1_2215 0.01232 
PabiesCol1_1495 0.18108108 

 
PabiesCol1_1495 0.16513221 

 
PabiesGI_F8_56_324 0.01271 

X2_6491_01.Paab_360 0.46648794 
 

X2_6491_01.Paab_360 0.491222 
 

X0_13957_02.Paab_27 0.01305 
PGWD1.0737 0.48958333 

 
PGWD1.0737 0.49737544 

 
X2_7803_01.Paab_235 0.01340 

PabiesZTL_958 0.42408377 
 

PabiesZTL_958 0.39489632 
 

PabiesFT1_911 0.01357 
PGWD1.0220 0.2025974 

 
PGWD1.0220 0.21095779 

 
PGLM2.1031 0.01364 

X2_4892_01.Paab_39 0.46194226 
 

X2_4892_01.Paab_39 0.49493024 
 

PabiesGI_F2_9_1470 0.01463 
PGLM2.0489 0.17571059 

 
PGLM2.0489 0.16494625 

 
X2_4723_01.Paab_276 0.01483 

PabiesPRR1_2990 0.5128866 
 

PabiesPRR1_2990 0.49569448 
 

X2_9328_01.Paab_425 0.01506 
PaMFTL1_2136 0.18814433 

 
PaMFTL1_2136 0.19153081 

 
PGWD1.0041 0.01526 

PGLM2.0784 0.44186047 
 

PGLM2.0784 0.44645607 
 

PGWD1.0737 0.01567 
PabiesKN4b_489 0.31770833 

 
PabiesKN4b_489 0.30548303 

 
X2_5636_01.Paab_399 0.01618 

PGLM2.0021 0.44973545 
 

PGLM2.0021 0.49962809 
 

PaMFTL1_2136 0.01768 
X0_17587_01.Paab_42 0.36702128 

 
X0_17587_01.Paab_42 0.35948936 

 
PGWD1.0418 0.01798 

PGWD1.0362 0.40837696 
 

PGWD1.0362 0.42808262 
 

PGWD1.0794 0.01826 
PabiesKN2b_2317 0.53367876 

 
PabiesKN2b_2317 0.50108337 

 
CL3795Contig1_01.Paab_45 0.01830 

PabiesPRR3_F2_331 0.48302872 
 

PabiesPRR3_F2_331 0.49899867 
 

PGLM2.0886 0.01893 
PabiesPRR1_3828 0.38845144 

 
PabiesPRR1_3828 0.41400746 

 
PGWD1.1154 0.01984 

PabiesPRR7_F1_1505 0.41005291 
 

PabiesPRR7_F1_1505 0.40347424 
 

PaCCA1.Like_3893 0.02015 
PGWD1.1127 0.43617021 

 
PGWD1.1127 0.4215461 

 
PGLM2.0645 0.02030 

PaPHYN_RI330 0.51036269 
 

PaPHYN_RI330 0.49184779 
 

PabiesPRR3_F1_2570 0.02067 
PaPHYO_RIII336 0.24528302 

 
PaPHYO_RIII336 0.23186785 

 
PabiesCol1_711 0.02131 

X2_3851_01.Paab_280 0.33676093 
 

X2_3851_01.Paab_280 0.34095155 
 

PabiesCry_454 0.02185 
PaPHYO_RI145 0.18670077 

 
PaPHYO_RI145 0.21399764 

 
PabiesHB3_2495 0.02207 

PGLM2.0134 0.18251928 
 

PGLM2.0134 0.21883033 
 

X2_9280_01.Paab_123 0.02367 
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UMN_4748_01.Paab_38 0.25848564 
 

UMN_4748_01.Paab_38 0.25950064 
 

X0_7921_01.Paab_212 0.02417 
PabiesHB3_2316 0.45844504 

 
PabiesHB3_2316 0.46085575 

 
PaKN4b_01687n 0.02527 

PGWD1.0909 0.33695652 
 

PGWD1.0909 0.36488568 
 

PaKN1b_08525f 0.02557 
X0_11090_01.Paab_251 0.22454308 

 
X0_11090_01.Paab_251 0.21191202 

 
PGWD1.0042 0.02677 

PabiesGI_F8_56_324 0.26165803 
 

PabiesGI_F8_56_324 0.26502591 
 

PabiesPRR1_2381 0.02678 
PGLM2.1528 0.34210526 

 
PGLM2.1528 0.37333704 

 
PGLM2.0944 0.02695 

PaPHYO_RIV211 0.09793814 
 

PaPHYO_RIV211 0.10724846 
 

PGWD1.0158 0.02696 
PGLM2.1477 0.15789474 

 
PGLM2.1477 0.19975762 

 
PabiesPRR1_1039 0.02776 

CL3771Contig1_04.Paab_419 0.12532637 
 

CL3771Contig1_04.Paab_419 0.13139584 
 

X0_489_01.Paab_316 0.02843 
PabiesGI_F2_9_1470 0.38120104 

 
PabiesGI_F2_9_1470 0.38686042 

 
PabiesPRR3_F2_331 0.03200 

X0_15639_01.392 0.1285347 
 

X0_15639_01.392 0.13834044 
 

X0_10267_01.Paab_148 0.03273 
PabiesCol1_660 0.10539846 

 
PabiesCol1_660 0.10010137 

 
CL3582Contig1_03.Paab_63 0.03331 

PGWD1.1212 0.0987013 
 

PGWD1.1212 0.10340909 
 

PabiesFT1_1718 0.03521 
X2_9845_01.Paab_282 0.28238342 

 
X2_9845_01.Paab_282 0.27560393 

 
PGLM2.0828 0.03729 

CL3507Contig1_03.Paab_191 0.11825193 
 

CL3507Contig1_03.Paab_191 0.11607876 
 

PGWD1.0152 0.03757 
PabiesHB3_5700 0.19948187 

 
PabiesHB3_5700 0.20050804 

 
CL1758Contig1_04.288 0.03794 

UMN_853_01.Paab_38 0.32891247 
 

UMN_853_01.Paab_38 0.35309555 
 

PabiesFT1_1050 0.03823 
PabiesPRR1_1632 0.22797927 

 
PabiesPRR1_1632 0.24127582 

 
PGLM2.0391 0.03874 

PGWD1.0794 0.14615385 
 

PGWD1.0794 0.14887285 
 

PGLM2.0081 0.03875 
PaPHYO_RII283 0.21649485 

 
PaPHYO_RII283 0.21347132 

 
PGWD1.0220 0.03963 

PGLM2.0818 0.45108696 
 

PGLM2.0818 0.45154603 
 

PGLM2.1514 0.03999 
PGLM2.0798 0.27272727 

 
PGLM2.0798 0.28992492 

 
PGWD1.1223 0.04005 

PabiesCry_454 0.2159383 
 

PabiesCry_454 0.22076167 
 

X0_10515_01.Paab_158 0.04066 
PabiesPRR1_1039 0.34748011 

 
PabiesPRR1_1039 0.35740236 

 
PGLM2.0624 0.04417 

X2_5636_01.Paab_209 0.4 
 

X2_5636_01.Paab_209 0.3739893 
 

X0_11772_01.Paab_103 0.04421 
X0_17215_01.Paab_225 0.49206349 

 
X0_17215_01.Paab_225 0.49513705 

 
PGWD1.1212 0.04553 

X2_9280_01.Paab_123 0.44507042 
 

X2_9280_01.Paab_123 0.45586059 
 

PGWD1.0362 0.04603 
PGWD1.0344 0.47668394 

 
PGWD1.0344 0.46898594 

 
CL3771Contig1_04.Paab_419 0.04619 

PGWD1.1282 0.15762274 
 

PGWD1.1282 0.16706497 
 

PGWD1.1295 0.04935 
X0_7171_01.Paab_233 0.26165803 

 
X0_7171_01.Paab_233 0.27560393 

 
X2_6491_01.Paab_360 0.05035 

X0_2354_01.Paab_194 0.16494845 
 

X0_2354_01.Paab_194 0.16456219 
 

X0_7171_01.Paab_233 0.05060 
X0_11772_01.Paab_103 0.45876289 

 
X0_11772_01.Paab_103 0.47998082 

 
PGLM2.0098 0.05155 

PaFTL2pr_1560 0.37886598 
 

PaFTL2pr_1560 0.36135419 
 

PabiesPRR3_F2_481 0.05167 
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PabiesMYB2_3403 0.16710875 
 

PabiesMYB2_3403 0.1964452 
 

PabiesPRR1_240 0.05188 
PabiesFT4pr_2046 0.49473684 

 
PabiesFT4pr_2046 0.48126649 

 
CL3771Contig1_04.Paab_68 0.05303 

PaMFTL1_2215 0.44827586 
 

PaMFTL1_2215 0.45386661 
 

PGLM2.0288 0.05303 
X2_3867_02.Paab_440 0.12403101 

 
X2_3867_02.Paab_440 0.13458114 

 
PabiesHB3_385 0.05327 

X2_9280_01.Paab_338 0.47229551 
 

X2_9280_01.Paab_338 0.45596529 
 

PGLM2.0901 0.05419 
X0_10267_01.Paab_148 0.1761658 

 
X0_10267_01.Paab_148 0.18212772 

 
X2_4976_01.Paab_176 0.05502 

PGWD1.0418 0.18766067 
 

PGWD1.0418 0.19109599 
 

PabiesPRR1_1632 0.05511 
PGWD1.1219 0.44356955 

 
PGWD1.1219 0.43554704 

 
PGWD1.1282 0.05652 

X2_4976_01.Paab_176 0.2845953 
 

X2_4976_01.Paab_176 0.30116673 
 

PGWD1.0184 0.05676 
PGLM2.0395 0.44675325 

 
PGLM2.0395 0.43214286 

 
PGLM2.0285 0.05867 

PabiesCol1_711 0.48924731 
 

PabiesCol1_711 0.49989856 
 

X0_2433_01.Paab_290 0.05902 
PGLM2.0571 0.4961039 

 
PGLM2.0571 0.49475446 

 
PGLM2.0798 0.05932 

PGWD1.1304 0.51302083 
 

PGWD1.1304 0.49980622 
 

PabiesPRR1_3828 0.06173 
PabiesPRR3_F1_2570 0.48806366 

 
PabiesPRR3_F1_2570 0.49836334 

 
PGWD1.1492 0.06371 

PGLM2.0158 0.28940568 
 

PGLM2.0158 0.25909413 
 

PGWD1.1501 0.06392 
X2_7725_01.Paab_466 0.52105263 

 
X2_7725_01.Paab_466 0.50126371 

 
PabiesPrMYB2_932 0.06443 

X0_17215_01.Paab_108 0.44845361 
 

X0_17215_01.Paab_108 0.43602653 
 

X2_4892_01.Paab_39 0.06665 
X2_7803_01.Paab_235 0.48076923 

 
X2_7803_01.Paab_235 0.48729679 

 
UMN_853_01.Paab_38 0.06849 

X0_13957_02.Paab_27 0.4947644 
 

X0_13957_02.Paab_27 0.5013089 
 

CL1148Contig1_08.Paab_134 0.07018 
PaPHYP_RII177 0.2 

 
PaPHYP_RII177 0.19301486 

 
X0_177_01.Paab_165 0.07086 

PabiesPRR1_2381 0.23896104 
 

PabiesPRR1_2381 0.24553571 
 

X0_15639_01.392 0.07088 
PGWD1.0152 0.48 

 
PGWD1.0152 0.49873797 

 
PGWD1.0589 0.07260 

PabiesPrMYB2_932 0.39417989 
 

PabiesPrMYB2_932 0.42132612 
 

X2_3947_01.Paab_298 0.07381 
PaKN1b_08525f 0.11311054 

 
PaKN1b_08525f 0.11607876 

 
PGWD1.0909 0.07654 

PabiesPRR1_1168 0.42447917 
 

PabiesPRR1_1168 0.42784147 
 

CL304Contig1_01.202 0.07676 
PGLM2.0404 0.49597855 

 
PGLM2.0404 0.47469299 

 
X2_3867_02.Paab_440 0.07839 

PGLM2.0288 0.28316327 
 

PGLM2.0288 0.2990207 
 

PGLM2.0565 0.08150 
PGWD1.0510 0.1038961 

 
PGWD1.0510 0.10340909 

 
PGLM2.1528 0.08366 

X0_7171_01.Paab_359 0.2372449 
 

X0_7171_01.Paab_359 0.24001448 
 

PaPHYO_RIV211 0.08681 
PGLM2.1514 0.2408377 

 
PGLM2.1514 0.25086916 

 
PaMFTL1_1613 0.08708 

X0_10515_01.Paab_158 0.33684211 
 

X0_10515_01.Paab_158 0.3511179 
 

PabiesPRR1_3883 0.08722 
X2_9665_01.Paab_175 0.44473684 

 
X2_9665_01.Paab_175 0.43990765 

 
PabiesZTL_367 0.09159 

PGWD1.1518 0.31213873 
 

PGWD1.1518 0.46599648 
 

PGLM2.0021 0.09986 
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PGLM2.0592 0.50130548 
 

PGLM2.0592 0.49712247 
 

PGLM2.0923 0.11785 
X0_13978_01.Paab_102 0.1974026 

 
X0_13978_01.Paab_102 0.19080087 

 
X0_10754_01.Paab_320 0.12266 

PGLM2.0624 0.47354497 
 

PGLM2.0624 0.49542826 
 

PGWD1.0634 0.12295 
X0_10754_01.Paab_320 0.2519685 

 
X0_10754_01.Paab_320 0.28719436 

 
PaPHYO_RI145 0.12756 

PabiesFT1_911 0.31524548 
 

PabiesFT1_911 0.31958335 
 

PGLM2.0584 0.13083 
PGLM2.0154 0.16537468 

 
PGLM2.0154 0.15640439 

 
CL1148Contig1_08.Paab_225 0.14295 

PGLM2.1091 0.09768638 
 

PGLM2.1091 0.09779238 
 

PabiesMYB2_3403 0.14934 
PGLM2.0610 0.27105263 

 
PGLM2.0610 0.2720143 

 
PGLM2.1269 0.16430 

PGWD1.1070 0.46276596 
 

PGWD1.1070 0.45685106 
 

PGLM2.0134 0.16593 
PGWD1.1295 0.47058824 

 
PGWD1.1295 0.49501799 

 
UMN_3055_01.Paab_224 0.19264 

X0_9383_01.Paab_438 0.14136126 
 

X0_9383_01.Paab_438 0.13171456 
 

PGWD1.0853 0.20557 
PGLM2.0944 0.28981723 

 
PGLM2.0944 0.29784493 

 
PGLM2.1477 0.20957 

PabiesPRR1_240 0.38522427 
 

PabiesPRR1_240 0.40630453 
 

X0_8531_01.Paab_363 0.30529 
PGLM2.0828 0.22997416 

 
PGLM2.0828 0.23888086 

 
PGWD1.1518 0.33017 

PGWD1.0118 0.14507772 
 

PGWD1.0118 0.14373192 
 

PGWD1.1034 0.46765 
     Mean Ho                                       0.3262                    Mean He                                          0.3258                     Mean Fis                                      4.08E-03 
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Supplement 6. (A) Barplot when K=6 for original order for 394 individuals assuming existence of panmixia. Each individual is represented by a single 
vertical   line,  which   is  partitioned   into  K   colored   segments   that   represent   that   individual’s  estimated  membership   fraction in each of K inferred 
clusters. (B) Individuals plotted on Google map when K=6 indicating process such as mating and individuals movement are uniform (population in 
panmixia). 
 
 
(A) 
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(B) 
 

             



                               Supplements 

112 
 

Supplement 7.  Fst coefficient estimated as the posterior mean using model averaging 
(BayeScan) 
 

SNP prob log10(PO) qval alpha Fst 
1 0.10082 -0.950299 0.846194 0.057304 0.014897 
2 0.079816 -1.0618 0.88903 -0.035053 0.012822 
3 0.065613 -1.1535 0.90316 -0.028613 0.012881 
4 0.30206 -0.36372 0.36972 -0.427 0.010312 
5 0.071614 -1.1127 0.89798 -0.028071 0.012928 
6 0.095019 -0.97883 0.86141 -0.06329 0.012594 
7 0.086017 -1.0264 0.88081 0.035907 0.014068 
8 0.080616 -1.0571 0.88747 -0.016852 0.013305 
9 0.087818 -1.0165 0.8775 0.015633 0.01393 
10 0.065613 -1.1535 0.90316 0.0014538 0.01323 
11 0.070614 -1.1193 0.89931 -0.023277 0.012932 
12 0.075615 -1.0872 0.8944 -0.041188 0.012757 
13 0.093019 -0.98903 0.86605 -0.056935 0.012688 
14 0.09962 -0.95608 0.84802 0.059047 0.014345 
15 0.083017 -1.0432 0.88422 -0.01475 0.013203 
16 0.09762 -0.96585 0.85443 -0.068909 0.012594 
17 0.088218 -1.0143 0.87495 -0.0027569 0.013682 
18 0.10722 -0.92046 0.82292 0.062538 0.014645 
19 0.10202 -0.94458 0.83884 -0.070137 0.012585 
20 0.096219 -0.9728 0.85844 0.015005 0.014213 
21 0.093019 -0.98903 0.86605 -0.063531 0.012563 
22 0.064013 -1.165 0.90387 -0.0093525 0.013056 
23 0.65513 0.27867 0.26032 0.8337 0.03567 
24 0.079616 -1.063 0.88977 -0.030404 0.012882 
25 0.077816 -1.0738 0.89185 -0.028228 0.013001 
26 0.076615 -1.0811 0.89315 0.011553 0.013493 
27 0.85197 0.76008 0.14803 1.1283 0.044796 
28 0.13003 -0.82548 0.71396 0.10465 0.01652 
29 0.080216 -1.0594 0.88846 0.0039764 0.013464 
30 0.11362 -0.89215 0.80295 -0.081506 0.012477 
31 0.070814 -1.118 0.89892 -0.0029809 0.013218 
32 0.087818 -1.0165 0.8775 -0.028485 0.013113 
33 0.087217 -1.0198 0.87921 -0.020272 0.013177 
34 0.082016 -1.0489 0.88513 0.014476 0.013835 
35 0.11582 -0.88274 0.78635 -0.094102 0.01241 
36 0.09822 -0.9629 0.85139 -0.071333 0.012564 
37 0.089818 -1.0058 0.8713 0.013322 0.013968 
38 0.090218 -1.0036 0.86967 -0.042268 0.012913 
39 0.079616 -1.063 0.88977 -0.017874 0.013087 
40 0.12783 -0.83399 0.73373 -0.10683 0.012299 
41 0.062813 -1.1738 0.9047 -0.010433 0.01306 
42 0.11282 -0.89561 0.8106 0.06993 0.014672 
43 0.081816 -1.0501 0.88535 -0.048654 0.01271 
44 0.079216 -1.0653 0.89031 -0.031914 0.012961 
45 0.082016 -1.0489 0.88513 0.029261 0.013801 
46 0.064613 -1.1607 0.90363 -0.010742 0.013067 
47 0.083017 -1.0432 0.88422 0.032612 0.013844 
48 0.079016 -1.0665 0.89083 -0.044301 0.012766 
49 0.09922 -0.95802 0.84975 0.051549 0.014276 
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50 0.091818 -0.99524 0.867 -0.05791 0.012628 
51 0.089818 -1.0058 0.8713 -0.014362 0.013366 
52 0.10542 -0.92869 0.83238 0.067294 0.014782 
53 0.070814 -1.118 0.89892 -0.0012604 0.013262 
54 0.066013 -1.1507 0.9028 -0.0095085 0.013092 
55 0.092218 -0.99316 0.86653 -0.055311 0.012666 
56 0.079216 -1.0653 0.89031 0.010718 0.013533 
57 0.068814 -1.1314 0.90096 -0.016336 0.013043 
58 0.081416 -1.0524 0.88664 -0.043007 0.012739 
59 0.080216 -1.0594 0.88846 -0.043399 0.012758 
60 0.063413 -1.1694 0.90411 0.0046024 0.013247 
61 0.097419 -0.96684 0.85514 -0.07341 0.012481 
62 0.065413 -1.155 0.90327 0.023726 0.01354 
63 0.078216 -1.0713 0.89168 -0.021643 0.013035 
64 0.072214 -1.1088 0.89771 -0.026862 0.01291 
65 0.09922 -0.95802 0.84975 -0.070396 0.012565 
66 0.064813 -1.1592 0.90351 0.00014235 0.013237 
67 0.070614 -1.1193 0.89931 -0.0013348 0.01323 
68 0.069014 -1.13 0.90059 -0.0040371 0.013223 
69 0.10382 -0.93611 0.83509 -0.078797 0.01245 
70 0.11442 -0.88871 0.7937 0.070042 0.015645 
71 0.066013 -1.1507 0.9028 -0.0035155 0.01313 
72 0.069414 -1.1273 0.90046 -0.0028567 0.01321 
73 0.11282 -0.89561 0.8106 0.065525 0.014652 
74 0.068614 -1.1327 0.90109 0.012372 0.013427 
75 0.12202 -0.85704 0.76793 -0.10786 0.012261 
76 0.13043 -0.82394 0.70196 -0.11546 0.012206 
77 0.087618 -1.0176 0.87779 0.029723 0.013903 
78 0.11022 -0.90701 0.81511 -0.092376 0.012392 
79 0.069414 -1.1273 0.90046 0.0019057 0.013225 
80 0.085017 -1.0319 0.88183 -0.046421 0.012722 
81 0.095019 -0.97883 0.86141 -0.066277 0.01258 
82 0.093419 -0.98697 0.86459 -0.069295 0.012536 
83 0.15143 -0.74847 0.56146 0.12023 0.015912 
84 0.10862 -0.91415 0.82108 -0.090969 0.012375 
85 0.10702 -0.92137 0.82634 -0.077278 0.01253 
86 0.087417 -1.0187 0.87837 -0.0070443 0.013521 
87 0.071414 -1.114 0.89825 -0.020727 0.012986 
88 0.081416 -1.0524 0.88664 0.032915 0.013786 
89 0.13223 -0.81709 0.65189 -0.12519 0.012151 
90 0.075015 -1.091 0.89529 -0.017402 0.013021 
91 0.090618 -1.0015 0.86836 -0.05655 0.012639 
92 0.061612 -1.1827 0.90518 -0.010627 0.01304 
93 0.087818 -1.0165 0.8775 -0.033803 0.012977 
94 0.12382 -0.84978 0.74211 -0.10377 0.012306 
95 0.068014 -1.1368 0.90133 0.0017037 0.013282 
96 0.13103 -0.82165 0.68799 0.1034 0.01662 
97 0.078216 -1.0713 0.89168 -0.036852 0.012777 

98 0.084817 -1.033 0.88233 
-

0.00063773 0.013604 
99 0.09882 -0.95997 0.85058 -0.064014 0.012625 
100 0.081616 -1.0512 0.88579 -0.020255 0.013063 
101 0.076215 -1.0835 0.89378 -0.0077562 0.013145 
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102 0.063613 -1.1679 0.90399 -0.010297 0.013041 
103 0.12783 -0.83399 0.73373 -0.11593 0.012222 
104 0.080416 -1.0582 0.88767 -0.042695 0.012767 
105 0.15463 -0.73775 0.5136 0.12908 0.016547 
106 0.070414 -1.1206 0.89944 -0.010035 0.013117 
107 0.11402 -0.89043 0.797 -0.1031 0.012333 
108 0.067413 -1.1409 0.9017 -0.024483 0.012916 
109 0.075215 -1.0897 0.89485 -0.029479 0.012886 
110 0.094419 -0.98187 0.86196 -0.072212 0.012554 
111 0.083017 -1.0432 0.88422 -0.041755 0.012775 
112 0.086417 -1.0241 0.88055 0.02933 0.013916 
113 0.084417 -1.0353 0.88328 -0.041627 0.012754 
114 0.078816 -1.0677 0.891 -0.039454 0.012794 
115 0.089818 -1.0058 0.8713 -0.065192 0.012593 
116 0.091218 -0.99838 0.86791 -0.066629 0.012545 
117 0.070214 -1.122 0.89957 0.0091001 0.013386 
118 0.091418 -0.99733 0.86746 -0.062508 0.012639 
119 0.084417 -1.0353 0.88328 -0.0090183 0.013435 
120 0.11582 -0.88274 0.78635 -0.10407 0.012283 
121 0.075015 -1.091 0.89529 -0.03072 0.012859 
122 0.075415 -1.0885 0.8947 -0.030528 0.012879 
123 0.072214 -1.1088 0.89771 -0.0019451 0.01323 
124 0.11002 -0.9079 0.81719 -0.089156 0.012398 
125 0.084817 -1.033 0.88233 0.037983 0.013879 
126 0.088218 -1.0143 0.87495 -0.060394 0.012603 
127 0.062813 -1.1738 0.9047 -0.017201 0.012954 
128 0.063213 -1.1708 0.90435 0.0030615 0.013231 
129 0.074215 -1.096 0.89588 -0.026448 0.012916 
130 0.10142 -0.94743 0.84325 -0.079236 0.012451 
131 0.075815 -1.086 0.89409 -0.037096 0.012839 
132 0.061212 -1.1857 0.9053 0.0013268 0.013217 
133 0.065813 -1.1521 0.90292 -0.0038352 0.013159 
134 0.084017 -1.0375 0.88352 -0.032124 0.013003 
135 0.079016 -1.0665 0.89083 -0.03857 0.012819 
136 0.073215 -1.1024 0.89673 -0.021339 0.013002 
137 0.068814 -1.1314 0.90096 -0.012059 0.013096 
138 0.096619 -0.97081 0.85716 -0.035635 0.013124 
139 0.087417 -1.0187 0.87837 -0.056909 0.012663 
140 0.074215 -1.096 0.89588 -0.024545 0.01293 
141 0.13343 -0.81256 0.6279 -0.12104 0.012193 
142 0.069614 -1.126 0.90021 0.011314 0.013439 
143 0.088818 -1.0111 0.87391 -0.063247 0.012629 
144 0.087217 -1.0198 0.87921 -0.051657 0.012693 
145 0.086617 -1.023 0.88002 0.037491 0.013936 
146 0.087217 -1.0198 0.87921 0.03876 0.014078 
147 0.10582 -0.92685 0.82795 0.068398 0.014611 
148 0.077215 -1.0774 0.89267 -0.041944 0.012735 
149 0.087818 -1.0165 0.8775 -0.038575 0.012871 
150 0.24265 -0.49432 0.44725 0.23683 0.018816 
151 0.077015 -1.0786 0.89283 -0.024048 0.012957 
152 0.079616 -1.063 0.88977 -0.043848 0.01272 
153 0.073415 -1.1011 0.89645 -0.024216 0.012951 
154 0.070814 -1.118 0.89892 -0.014438 0.013034 
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155 0.095019 -0.97883 0.86141 -0.065047 0.012596 
156 0.071214 -1.1153 0.89852 -0.0046079 0.013177 
157 0.069614 -1.126 0.90021 0.015852 0.013473 
158 0.094019 -0.9839 0.86357 -0.064073 0.012609 
159 0.088418 -1.0133 0.87427 -0.05163 0.012708 
160 0.096019 -0.9738 0.85905 -0.059119 0.012648 
161 0.067013 -1.1437 0.90207 -0.0088133 0.013093 
162 0.071214 -1.1153 0.89852 -0.016787 0.013071 
163 0.090418 -1.0026 0.86924 -0.061049 0.012592 
164 0.062613 -1.1753 0.90482 0.0054506 0.013273 
165 0.078416 -1.0701 0.89134 0.0015925 0.013304 
166 0.093619 -0.98595 0.86409 -0.063522 0.012604 
167 0.079616 -1.063 0.88977 0.018617 0.013547 
168 0.11082 -0.90436 0.81291 -0.084159 0.012484 
169 0.11782 -0.87432 0.77784 -0.10779 0.012285 
170 0.14563 -0.7684 0.59807 -0.13931 0.012048 
171 0.067614 -1.1396 0.90158 0.0073837 0.013291 
172 0.085417 -1.0297 0.88107 0.0312 0.013858 
173 0.066013 -1.1507 0.9028 -0.014082 0.013042 
174 0.09782 -0.96487 0.85296 0.021335 0.014369 
175 0.076415 -1.0823 0.89331 -0.041744 0.012756 
176 0.066413 -1.1479 0.90244 -0.010606 0.013087 
177 0.085017 -1.0319 0.88183 -0.020249 0.01319 
178 0.090018 -1.0047 0.87009 -0.052983 0.012703 
179 0.088818 -1.0111 0.87391 0.00081756 0.013643 
180 0.080216 -1.0594 0.88846 -0.038095 0.012824 
181 0.073215 -1.1024 0.89673 -0.022865 0.012973 
182 0.069814 -1.1246 0.89983 0.016466 0.013503 
183 0.063213 -1.1708 0.90435 0.0070222 0.0133 
184 0.088018 -1.0154 0.87562 -0.0033285 0.013509 
185 0.11362 -0.89215 0.80295 -0.097184 0.012358 
186 0.081016 -1.0547 0.88706 0.018077 0.01354 
187 0.079016 -1.0665 0.89083 -0.035444 0.012835 
188 0.080216 -1.0594 0.88846 -0.023142 0.012967 
189 0.11442 -0.88871 0.7937 -0.09128 0.012396 
190 0.090418 -1.0026 0.86924 -0.053887 0.012668 
191 0.082817 -1.0443 0.88445 -0.044322 0.012748 
192 0.10182 -0.94553 0.84 0.050624 0.014379 
193 0.087818 -1.0165 0.8775 0.013687 0.013761 
194 0.12202 -0.85704 0.76793 -0.10566 0.012299 
195 0.076215 -1.0835 0.89378 -0.020427 0.013032 
196 0.089018 -1.01 0.8732 -0.053705 0.012689 
197 0.09762 -0.96585 0.85443 0.023042 0.014181 
198 0.093219 -0.988 0.86509 -0.03404 0.013117 
199 0.097219 -0.96783 0.85583 -0.050957 0.012766 
200 0.076815 -1.0798 0.89299 -0.02179 0.013021 
201 0.71194 0.39297 0.21804 1.0147 0.043965 
202 0.10082 -0.9503 0.84619 -0.074771 0.012515 
203 0.072414 -1.1075 0.89729 -0.0038399 0.013243 
204 0.068214 -1.1354 0.90121 -0.0082674 0.013137 
205 0.079816 -1.0618 0.88903 0.023453 0.01366 
206 0.074415 -1.0948 0.89544 -0.028455 0.012932 
207 0.073615 -1.0998 0.89631 -0.018828 0.013043 
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208 0.075415 -1.0885 0.8947 -0.035002 0.01286 
209 0.094019 -0.9839 0.86357 -0.06522 0.012599 
210 0.074015 -1.0973 0.89616 -0.029732 0.012862 
211 0.067013 -1.1437 0.90207 -0.015437 0.013031 
212 0.11322 -0.89388 0.80566 -0.095856 0.012373 
213 0.084417 -1.0353 0.88328 -0.031968 0.012996 
214 0.079816 -1.0618 0.88903 -0.041902 0.012801 
215 0.062813 -1.1738 0.9047 0.0022691 0.01323 
216 0.062212 -1.1782 0.90506 0.003361 0.013248 
217 0.10442 -0.93332 0.83376 -0.073676 0.012501 
218 0.084417 -1.0353 0.88328 0.03184 0.01381 
219 0.089218 -1.009 0.87283 -0.0068411 0.013588 
220 0.12342 -0.85139 0.74958 -0.11469 0.012231 
221 0.094219 -0.98289 0.86251 0.0011068 0.013823 
222 0.077415 -1.0762 0.89234 -0.035014 0.012842 
223 0.077415 -1.0762 0.89234 0.033069 0.013821 
224 0.067213 -1.1423 0.90183 -0.0070271 0.013141 
225 0.079216 -1.0653 0.89031 -0.017918 0.013096 
226 0.088018 -1.0154 0.87562 -0.014548 0.013282 
227 0.070614 -1.1193 0.89931 -0.025147 0.01293 
228 0.081416 -1.0524 0.88664 -0.040387 0.012797 
229 0.081416 -1.0524 0.88664 -0.036549 0.012821 
230 0.086817 -1.022 0.87949 -0.057679 0.012664 
231 0.072214 -1.1088 0.89771 -0.010091 0.013102 
232 0.072014 -1.1101 0.89784 0.004488 0.013354 
233 0.076215 -1.0835 0.89378 -0.0085716 0.013215 
234 0.095219 -0.97782 0.85966 0.020628 0.014392 
235 0.10082 -0.9503 0.84619 -0.070718 0.01255 
236 0.065013 -1.1578 0.90339 -0.010019 0.013057 
237 0.069614 -1.126 0.90021 -0.018496 0.013011 
238 0.071414 -1.114 0.89825 -0.034537 0.012804 
239 0.096419 -0.9718 0.85781 0.033865 0.014053 
240 0.10562 -0.92777 0.83097 -0.081658 0.012475 
241 0.064413 -1.1621 0.90375 0.010117 0.013325 
242 0.10142 -0.94743 0.84325 -0.076683 0.012506 
243 0.081216 -1.0536 0.88685 -0.02075 0.013068 
244 0.069814 -1.1246 0.89983 -0.015899 0.013012 
245 0.072815 -1.1049 0.89701 -0.030581 0.012867 
246 0.060012 -1.1949 0.90554 -0.015298 0.012977 
247 0.074215 -1.096 0.89588 -0.0093922 0.013131 
248 0.066813 -1.1451 0.90219 -0.0093158 0.013116 
249 0.10702 -0.92137 0.82634 -0.089447 0.012409 
250 0.060012 -1.1949 0.90554 -0.0024698 0.013125 
251 0.10162 -0.94648 0.84112 -0.077772 0.012491 
252 0.085017 -1.0319 0.88183 -0.015346 0.013288 
253 0.10302 -0.93986 0.83638 -0.075028 0.01254 
254 0.077616 -1.075 0.89201 -0.032046 0.01288 
255 0.074015 -1.0973 0.89616 0.0096781 0.01354 
256 0.077215 -1.0774 0.89267 -0.021655 0.013007 
257 0.13203 -0.81785 0.67153 -0.12713 0.012158 
258 0.066413 -1.1479 0.90244 0.0034851 0.013223 
259 0.073015 -1.1037 0.89687 -0.016141 0.013058 
260 0.075015 -1.091 0.89529 -0.0049445 0.013293 
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261 0.075615 -1.0872 0.8944 -0.035549 0.012819 
262 0.09782 -0.96487 0.85296 -0.070354 0.012587 
263 0.082416 -1.0466 0.88468 -0.050849 0.012696 
264 0.067814 -1.1382 0.90146 0.0032176 0.013263 
265 0.10022 -0.95318 0.84712 -0.078191 0.012502 
266 0.097019 -0.96882 0.8565 -0.064375 0.012595 
267 0.080616 -1.0571 0.88747 -0.043415 0.012774 
268 0.089418 -1.0079 0.87208 0.039803 0.013989 
269 0.087818 -1.0165 0.8775 -0.059116 0.012609 
270 0.086417 -1.0241 0.88055 -0.055548 0.012635 
271 0.11822 -0.87265 0.7731 -0.10488 0.012317 
272 0.078416 -1.0701 0.89134 -0.029514 0.012928 
273 0.068814 -1.1314 0.90096 -0.02051 0.012979 
274 0.089418 -1.0079 0.87208 -0.05537 0.012664 
275 0.10562 -0.92777 0.83097 0.067551 0.014541 
276 0.10222 -0.94363 0.83763 -0.078929 0.012468 
277 0.062212 -1.1782 0.90506 0.00012207 0.013202 
278 0.072615 -1.1062 0.89715 0.010363 0.013395 
279 0.081616 -1.0512 0.88579 -0.007806 0.013322 
280 0.12202 -0.85704 0.76793 0.084107 0.014891 
281 0.089218 -1.009 0.87283 -0.057623 0.012642 
282 0.086617 -1.023 0.88002 0.0032196 0.013608 
283 0.076015 -1.0848 0.89394 0.024764 0.013639 
284 0.10902 -0.91235 0.81918 -0.08205 0.012476 
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Supplement 8: Samβada  results  for  univariate  models. List of loci detected under the BEST model when threshold of 0.01 used indicating measures of regression 
(Efron, McFadden, McFaddenAdj, CoxSnell, Nagelkerke), Akaike information criterion (AIC), Bayesian information criterion (BIC), Parameters E for regression 
(Batea_0 and Beta_1). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                          
 
 

 

Marker Env_1 Loglikelihood Gscore WaldScore NumError Efron McFadden McFaddenAdj CoxSnell Nagelkerke AIC BIC Beta_0 Beta_1 

160_BB ppt_win -224.4376832 28.24125588 26.19277394 0 0.098208502 0.059191515 0.050807821 0.072918522 0.030327029 452.8753663 472.56168 -1.911515899 0.015787804 

7_AA ppt_sum -104.8122197 19.18984068 16.74221474 0 0.075780996 0.083866447 0.066385021 0.049372347 0.062654891 213.6244393 233.3745842 0.290170755 -0.024202408 

160_AA AI_spring -175.7283632 17.36421137 16.65538663 0 0.058371737 0.04708033 0.036234958 0.045485883 0.028230772 355.4567265 375.1430402 -1.96269716 0.534087802 

25_BB AI_spring -254.4247472 14.78875768 14.08623537 0 0.075423312 0.028242317 0.020603456 0.03836825 0.013317592 512.8494944 532.5890712 0.406946573 -0.401797977 

160_AA ppt_win -176.421083 15.97877185 14.07297719 0 0.051843497 0.043323928 0.032478557 0.041933924 0.025929762 356.842166 376.5284797 -0.362207754 -0.015221622 

183_BB AI_spring -257.44203 14.29546704 13.55672464 0 0.050788612 0.027014399 0.019455528 0.036173507 0.012891627 518.88406 538.7280814 -0.021398937 0.394899121 

174_AA t_win -68.30816205 14.76476205 13.08827444 0 0.045559385 0.09753373 0.07111035 0.03762398 0.08115835 140.6163241 160.4292974 -3.071267494 -0.421571509 

278_BB ppt_aut -159.7674513 15.33705443 12.65257429 0 0.066100714 0.045799757 0.033854893 0.03856256 0.029492912 323.5349027 343.3994896 -0.123523187 0.018281213 

278_AB ppt_aut -154.6469324 15.16984895 12.49290086 0 0.040883995 0.046753607 0.034425572 0.038150272 0.030561732 313.2938647 333.1584517 0.0957661 -0.018653562 

53_AA ppt_win -136.108697 14.52291671 12.40240165 0 0.089961772 0.050648326 0.036698421 0.036645656 0.034901596 276.2173939 296.0717113 0.771947745 0.018030778 

186_BB ppt_win -77.39457786 12.67304761 12.29611383 0 0.04756635 0.075677062 0.051791075 0.033230128 0.061059067 158.7891557 178.4968598 -4.552283128 0.020235258 

53_AB ppt_win -134.2423974 14.26183921 12.17458731 0 0.039873694 0.05044035 0.036293409 0.035998883 0.034947054 272.4847949 292.3391123 -0.796566141 -0.018042827 

204_BB altitude -249.009191 12.95805333 12.16825325 0 0.061078611 0.025359395 0.017531246 0.033875825 0.01212343 502.018382 521.7367385 -1.790721317 0.001100956 

165_BB ppt_win -175.5579592 12.26429668 12.10752549 0 0.043066348 0.03375059 0.022742836 0.032865499 0.020088845 355.1159184 374.7373658 -2.369950247 0.01213414 

86_AB ppt_win -142.2635915 13.90717299 12.00737781 0 0.041799013 0.046600442 0.03319716 0.035119565 0.03154902 288.527183 308.3815004 -0.763816568 -0.017008948 

99_AA ppt_sum -258.6960257 12.22265718 11.81241584 0 0.048984086 0.023078395 0.015525734 0.031168831 0.010929847 521.3920513 541.2154008 1.49627736 -0.010544751 

147_AA ppt_win -69.57244202 12.2362021 11.8022093 0 0.045803089 0.080830455 0.054407075 0.031282593 0.067037669 143.144884 162.9578574 -4.849886461 0.021207215 


