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ABSTRACT
The electrical activity signals in plants can provide use-

ful information to monitor environmental conditions, such as
atmospheric pollution. Nonetheless the study of the relation-
ship between environmental stimuli and electrical responses
of plants is still a critical step in developing technologies that
use plants as organic sensing devices. In this paper an auto-
matic method of analysis of plant electrical signals for ozone
critical levels detection is proposed, based on the fundamen-
tals of correlation theory. In order to classify the morphology
characteristics of plant response to ozone exposure we used a
segmentation of time series measurements of the electrical ac-
tivity of plants before, during and after the stimulation. Then,
we extracted the significant deviations from the baseline trend
to detect and identify the response to a known stimulus, in
terms of correlation coefficient. As a result, the proposed de-
tection algorithm represents a novel monitoring method for
detecting critical levels of ozone concentrations.

Index Terms— Plant electrical signal, ozone pollution,
spike detection, waveform correlation, data classification

1. INTRODUCTION

Atmospheric pollution has become one of the most serious
environmental problems of the modern world. Its adverse
effects are associated with the degradation of the quality of
life, affecting the sustainability of urban ecosystems [1]. The
problem of the worsening air quality in highly anthropized
environments exerts nowadays a high level of interest within
the scientific community and public opinion because of the
known strong relationship between exposure to many air pol-
lutants and increased adverse effects on human health [2–4].
Among air pollutants, ozone is one of the most important
greenhouse gas [5] with secondary origin, generated in the
troposphere through a series of complex photochemical re-
actions involving solar radiation and ozone precursors, i.e.
methane (CH4), carbon monoxide (CO), volatile organic
compounds (VOCs), and nitrogen oxides (NOx), which are
largely emitted from anthropogenic sources [6]. Background
O3 concentrations have risen from ∼10 ppb before the in-

dustrial revolution [7] to daytime summer concentrations ex-
ceeding 40 ppb in many parts of the Northern Hemisphere [8].
Due to its nature of reactive oxidant agent, ozone can gener-
ate several negative effects on human health including lung
inflammation, reduced lung function, degenerative diseases,
age related disorders and eventually cancer [9]. Ozone also
acts as a corrosive agent for many materials, surface coat-
ings and buildings [10]. Therefore, it is easy to understand
the importance of a proper air quality management and of
the attention to new reliable approaches for ozone moni-
toring, such as the use of plant as biosensors. The most
common air quality measurements exploit sensors based on
the use of physicochemical properties in order to measure
the concentrations of air pollutants. In comparison with the
traditional monitoring systems, the use of biosensors has the
advantage to show us the real pollutants impact on living
organisms, thus providing additional data to the electronic
instruments. Moreover, this allows to take into account the
concepts of bioavailability, dose and exposure, resulting in a
more realistic approach of the pollutants impact on environ-
mental and human health [11]. An ideal monitoring system
should be biologically-based and at the same time practi-
cal for wide use. Plants perfectly reflect this feature, being
naturally widespread in our environment, easy and cheap to
product and to maintain thanks to their self-sustainability.
Moreover, plants are more sensitive than humans and an-
imals in terms of physiological reaction to fluctuations of
multiple parameters [12]. Because of their sessile nature,
plants are indeed continuously exposed to a wide variety of
environmental changes to which they are able to respond by
adjusting their physiological characteristics to limit possible
damages. These remarkable characteristics make plants suit-
able tools for environmental monitoring. The advantage of
this kind of bio-monitoring is to allow the follow-up of air
quality evolution and the extent of its impact on vast zones at
low cost. On the other hand, the interpretation of the results
could be made difficult by the influence of other environmen-
tal parameters and of the ecosystems heterogeneity, requiring
the participation of specialists [11]. Moreover, this kind of
analysis can give us just long-term exposure information. In
the present study, we propose a new approach to use plants as
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easy and dynamic bio-sensors able to provide real-time data
on air quality changes, particularly referring to ozone concen-
tration. Ozone effect on plants determines changes in growth
and appearance of visible symptoms (e.g. chlorosis, necro-
sis) but this response is preceded by a series of biochemical
events, the so-called ”hidden injury” [13]. All these changes
at physiological level are reflected in the generation of elec-
trical signals. It is known from time that plants produce
electrical signals when subjected to various environmental
stimuli [14–18]. These electrical signals in essence represent
changes in underlying physiological processes influenced
by the external stimuli. Since plants react to environmental
changes generating responses in the bioelectrical activity, this
lead to the possibility to classify external stimuli from the
typical electrical signal response [18]. The focus of our work
was to find an association between ozone exposure and some
typical features in the resulting plant electrical signal, in order
to create a classification algorithm able to identify the stim-
ulus. In order to obtain reliable results, automatic response
detection and data classification for plant electrical signals
are necessary to be developed. Many papers reported artifacts
detection methods for EEG and EKG analysis [19–23]. Var-
ious advanced methods have been applied to detect artifacts
in EEG signals, such as independent component analysis
(ICA) [19–21], support vector machine (SVM) [19], wavelet
analysis [22] and autoregressive (AR) model [23]. These
methods were appropriate for human biological signals and
offline analysis. For the analysis of plants bio-electrical sig-
nals related to environmental changes the response detection
algorithm needs to be simplified. In this paper a correlation
based data classification system for plant electrical signal
analysis is proposed. A dataset of electrical signals was col-
lected from ligustrum and buxus plants exposed to ozone in
controlled conditions. These species have been selected for
the study because of their widespread use in urban sites. To
automatically segment the signals a derivative-based detec-
tion method was designed, similarly to those used in spike
detection [24]. Finally, the detected signals were classified
based on correlation waveform analysis of plant response to
ozone air pollution. The proposed data classification method
can be extended for various research purposes by defining
weight coefficients and adjusting thresholds.

2. DATA ACQUISITION

The experiments were performed inside a closed growth
chamber, the so-called iTreeBox, in order to control the
ozone concentration and the other environmental parameters.
Inside the box plants were exposed to standard artificial light
conditions by means of LED lights responding to the plants
photosynthetic needs (PAR radiation). About 50 cm high
plants of Ligustrum texanum and Buxus macrophilla were
used for the experiments and each plant was placed in the box
and exposed to ozone stimulus one at a time. Electrical sig-

Fig. 1. The iTreeBox plant growth chamber

nals were monitored by means of three stainless steel needle
electrodes, one placed at the base (reference for background
noise subtraction), one in the middle and the other on top
of the stem. After some preliminary test, the sampling fre-
quency was set as 10 samples/s for all the recordings. All the
experiments were carried out during the day time for about
8 hours and the ozone treatment always started at least one
hour after the beginning of the electrical signal acquisition to
allow the plant acclimating to the artificial light and the box
conditions. Before exposing plants to the pollutant, several
acquisitions in natural conditions (without ozone stimulus)
were performed, in order to monitor the physiological elec-
trical activity of each plant. The ozone treatment consisted
of one or two expositions (at a time distance of two hours) to
a constant concentration of 200 ppb for 60 minutes. More-
over, further experiments consisted in exposing the plant
to a gradual increase of ozone concentration, to simulate a
more realistic environmental condition of summer heat days.
The ozone was injected in the box at different increasing
concentrations every 60 minutes for a total duration of the
experiment of 4 hours. More specifically, ozone concentra-
tions used were 50, 100, 150 and 200 ppb, each of which was
maintained constant inside the box for 60 minutes.

3. DATA ANALYSIS

The proposed detection algorithm of plant response to ozone
is designed according to two approaches. The first is based on
a preliminary extraction of significant deviations from a cer-
tain baseline trend: in order to correctly identify the response
in an automatic way, a derivative-based algorithm has been
used. The second is based on the classification of the ozone
risk level by the method of correlation. In all applications
we used the signals from the experiments carried out in the



Fig. 2. Flow chart of the detection algorithm

iTreeBox chamber. The methods were developed under Mat-
lab software. The detailed flow chart of the proposed system
is shown in Figure 2.

3.1. Pre-processing of the plant electrical signal

The reference signals generated by a plant are generally con-
taminated by different sources of noise. Since most of the
energy of such biological signals is concentrated at low fre-
quencies, we applied a low-pass filter, followed in cascade
by a moving average filter to further clean the signal. Given
the fact that the responses to an ozone stimulus last approx-
imately 60 minutes, the used low-pass filter has a cutoff fre-
quency of 5 mHz.

3.2. Plant response detection

In general, in response to an environmental stimulus, the plant
electrical activity appears irregular for a certain time window.
We use the different characteristics induced by ozone air pol-
lution to detect the abnormal signal waveform. In order to
automatically segment the data and correctly identify the re-
sponse, we implemented a derivative-based algorithm. Given
the voltage signal V (t) and the following parameters vector:

P = (AdV ,∆td, SV ) (1)

a response is defined to occur when the first derivative of the
signal decreases below a negative threshold AdV :

dV (t)

dt
< AdV . (2)

In order not to associate very quick fluctuations to actual re-
sponses, we set another threshold, ∆td, as a minimum time
duration following the onset of the response. This condition
enables the accurate detection of long-lasting effects on the
plant electrical activity caused by ozone exposure. Based on
the supplied data, it has been noticed that the central posi-
tion of the response is related to the nearest local minimum
of the plant voltage signal: if the response voltage initially
decreases, after a certain time period it will start to increase
in order to restore the pre-stimulation baseline trend. In our
approach, the period taken for the plant to stabilize its poten-
tial after the stimulus has to be assigned to the same response.

Fig. 3. Response detection of ligustrum plant signal after
ozone exposure

This property was used to estimate the minimum variation in
the slopes of the ozone response and set an amplitude thresh-
old, SV , on the voltage signal. The ozone response is then
detected and extracted whenever the difference between the
central location of the response, Vc, and the basal voltage Vb,
that is the value of the voltage signal preceding the onset of
response, exceeds the threshold SV :

|Vc − Vb| > SV . (3)

An example of detected ozone response is depicted in Fig-
ure 3. A representative ozone response template, constructed
by coherent averaging of the respective response segments of
the recordings used for the training phase, was employed for
subsequent comparison with all the responses detected by the
proposed system. A window size of 60 minutes was used,
in order to effectively include the long-lasting repolarization
phase of the plant signal.

4. CORRELATION WAVEFORM ANALYSIS FOR
OZONE RESPONSE CLASSIFICATION

Cross correlation is a statistical technique which can show
whether and how strongly pairs of variables are related. It
is an excellent tool to match images and signals with each
other. It is robust to noise, and can be normalized for pattern
matching. The correlation coefficient, a statistical measure of
similarity of two waveforms, produces a value, ρ, which falls
within the range [-1,+1], where +1 indicates a perfect match
between signal and template. Mathematically, the correlation
coefficient is defined as follows:

ρ =

∑N
i=1(ti − t̄)(si − s̄)√∑N

i=1(ti − t̄)2
√∑N

i=1(si − s̄)2
(4)

where ti are the template points, si are the signal points under
analysis, t̄ is the average value of the template points, s̄ is the



average value of the signal points, N is the number of points
in the template, and ρ is the performance measure. The corre-
lation coefficient is independent of the relative amplitudes of
two signals and independent of any baseline changes. Based
on the supplied data, it was observed that the plant response to
ozone stimulus is characterized by a specific waveform. The
proposed detection system takes advantage of this property to
classify the risk level of ozone air pollution by using the corre-
lation coefficient. Several studies have offered guidelines for
the interpretation of the size of a correlation. The interpreta-
tion of the correlation coefficient depends on the context and
purposes. In our study an empirical approach was adopted, by
giving numerous plant signals to the system in order to adjust
and validate the detection and classification threshold values
of the proposed algorithm. The correlation-based classifier
has been implemented to distinguish electrical responses to
critical levels of ozone exposure by identifying the detected
responses with very strong correlation to the template.

5. EXPERIMENTAL RESULTS

To examine the efficiency of the algorithms, a database of 84
day-long recordings of plant electrical activity was employed.
The recordings were chosen to include a broad variety of
waveform responses. The database was collected from both
ligustrum and buxus plants, including experiments carried out
with various levels of exposure to ozone air pollution and in
natural conditions. The correctness of a classification can be
evaluated by computing the number of correctly recognized
class examples (true positives, tp), the number of correctly
recognized examples that do not belong to the class (true neg-
atives, tn), and examples that either were incorrectly assigned
to the class (false positives, fp) or that were not recognized as
class examples (false negatives, fn). According to [25], the
following performance measures for classification are consid-
ered:

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
(5)

Precision =
tp

tp+ fp
(6)

Sensitivity =
tp

tp+ fn
(7)

Specificity =
tn

fp+ tn
(8)

The detection results of the proposed algorithm are listed in
Table 1. The classification system is shown to be capable of
discriminating the response to critical levels of ozone air pol-
lution from the depolarizations induced by effects of natural
environmental conditions with 87% accuracy. However, in-
dividual thresholds were required for each plant species and
were based on the initial training phase. The total perfor-
mance is high since the achieved precision and specificity

are high for the ligustrum plant dataset (96% and 95% re-
spectively), compared to the results of the buxus plant dataset
(89% precision and 77% sensitivity). The main advantage of
the proposed system resides in the fact that the classification
algorithm based on correlation coefficient, by recognizing the
degree of similarity between plant electrical signal and tem-
plate waveform provides a very efficient and innovative moni-
toring technology for detecting ground-level ozone pollution.

Table 1. Results from the classification algorithm
ligustrum buxus Total Performance

Accuracy 92% 81% 87%
Precision 96% 89% 93%
Sensitivity 89% 77% 84%
Specificity 95% 85% 91%

6. CONCLUSIONS

In this paper has been presented an automatic method of anal-
ysis of plant electrical signal in order to detect critical lev-
els of ozone air pollution. The experimental data were com-
ing from plants exposed to various ozone concentrations in a
closed plant growth chamber, specifically designed to recre-
ate typical environmental and daylighting conditions. The
proposed classification algorithm is based on the correlation
theory; it mainly recognizes the degree of similarity between
a reference ozone response and the acquired plant electrical
signal. Then the decision is made based on the correlation
coefficient. The experimental results show that the proposed
system achieve over all accuracy of 87%. Moreover the in-
novative approach to the problem of atmospheric pollution
monitoring, based on plant electrical activity analysis, allows
the classifier to be easily extended to other major air pollutant
classes in future studies.
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