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Abstract After summarising the failure criteria adopted by the new Italian Seismic Code

(NTC 2008) for the seismic assessment of unreinforced masonry panels (URM), the paper

presents a numerical study aimed at investigating the b shape factor. This factor is a

coefficient, function of the panels’ slenderness, employed to evaluate the ultimate shear

strength of URM for the failure mechanism with diagonal cracking. The results herein

presented show that the actual values of the coefficient b are higher than those proposed by

the NTC (2008); consequently, the shear strength obtained by applying the Italian Seismic

Code is not conservative. An amendment is proposed for the b shape factor, and its effects

are evaluated through the analysis of three plane-URM walls with regular openings and

different slenderness of the masonry beams. Pushover analyses were performed to estimate

their seismic capacity and their collapse modes. The walls were modelled by both the finite

element method (FEM) and the equivalent frame approach (EFM). In the EFM approach

the b shape factor was selected both according to the NTC (2008) and as proposed in the

paper. The seismic capacity curves show that the EFM approach significantly overestimate

the ultimate shear strength of the walls with respect to the results obtained by the FEM, and

this effect is amplified when the b shape factor is evaluated as recommended by the NTC

(2008).
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List of main symbols
b Shape factor associated to the shear stress distribution in the central horizontal

section of the masonry panel

c Cohesion

dcu Maximum displacement of the control point

e Axial load eccentricity

g Dilatancy angle

E Longitudinal modulus of elasticity

u Friction angle

fd Design compressive strength of the masonry

ftd Design tensile strength of the masonry

fvd Design shear strength of the masonry for sliding

fvd0 Ultimate design shear strength of masonry without compression

fhd Ultimate design compressive strength of the masonry in the horizontal direction

fvk0 Characteristic shear strength for sliding without axial force on the panel section

ft Tensile strength of the masonry

G Shear modulus of elasticity

cM Partial safety factor

h Height of vertical section of the spandrel or height of the pier

Ke Initial stiffness

l Panel width

l0 Length of the compressive portion of the transversal section of the masonry panel

k Slenderness of masonry panels (k = h/l)

M Acting bending moment

Mu Ultimate bending moment

m Poisson’s ratio

P Actual compressive axial load

r0 Average normal stress acting on the whole masonry panel section [r0 = P/(lt)]

rn The same as r0 calculated as rn = P/(l0t), being l0 less than l

t Wall thickness

s0d The same as fvk0 considering the shear failure with diagonal cracking

sk Characteristic shear strength of the masonry

su Ultimate average shear stress

Vt Ultimate shear strength

Vp Shear strength required for the equilibrium of a beam subject to Mu

Vb Base shear

Vbu Maximum base shear

w Weight per unit volume

1 Introduction

In 2008 the Italian Ministry of Public Works issued the new Seismic Code for buildings

and infrastructures (NTC 2008; Circular 2009). These technical Recommendations intro-

duced significant changes for the assessment of existing buildings and for the design of
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new ones in seismic areas. Main revisions, for masonry constructions, concerned both the

methods of structural analysis and the criteria to be adopted to verify the masonry walls

under seismic loads.

For a masonry wall subjected to in-plane seismic loads the previous Italian Recommenda-

tions (DM 1996; Circular 1981) assumed two collapse typologies. The first failure mode was

adopted for masonry walls with very stiff and strong spandrels (Fig. 1a). In this case, it was

assumed thatwalls collapse for shear failure of themasonry piers. The second failuremodewas

employed for walls with slender spandrels and, in this case, it was assumed that walls collapse

for combined shear and bending loads of the masonry spandrels (Fig. 1b). According to a

common interpretation thefirst calculus schemewas associatedwith shortwalls suchas those of

buildingswith few stories (twoor three stories); equally, the second schemewas associatedwith

slender walls such as those of multi-storey buildings (four or more stories). As a result, the

slenderness of the piers was habitually confused with the slenderness of the walls, whereas it is

evident that the panels’ slenderness depends on the dimensions of the neighbouring openings

rather than the overall slenderness of the wall (Augenti 2004). In addition, the Circular (1981)

adopted the Turnšek and Cacovic shear failure criterion (Turnšek and Cacovic 1971) to verify

each masonry panel under in-plane seismic loads. This criterion assumes that a masonry pier

fails for shear, developing a main diagonal crack starting from the centre of the panel. Some

examples of application were also reported in the Appendix of the Circular (1981) were the

calculus steps were detailed for masonry buildings with regular openings. According to the

scheme of Fig. 1a, the same employed for the so-called shear-type frame structures, each floor

of the buildingwas analysed separately from the other floors, and for eachmasonry pier a shear

collapse mode with diagonal cracking was assumed. The PORmethod (Tomaževic 1978) was

one of the most common tools used to implement this calculus. Hence, as highlighted by

Augenti (2004), many structural designers, and the public authorities, were convinced that the

POR method had general validity so it was applied for the seismic verification of all masonry

buildings, regardless of the effective failure mode of each masonry panel.

The current Italian technical Recommendations (Technical standards for constructions,

NTC 2008) have partially removed these ambiguities since they assume both shear and

flexure collapse modes for masonry panels, and require that the structural analysis of a

construction must be carried out for the entire building, to satisfy the global balance

equations. This is specifically requested for the design of new buildings, even if the NTC

2008 still allows the use of the POR method for the assessment of structural masonry units

masonry piers
masonry spandrels
rigid joints

(a)                              (b)

Fig. 1 Models of masonry walls
according to the Circular (1981);
a buildings with 2 or 3 stories,
b buildings with 4 or more stories
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(SU) of aggregation buildings (i.e. adjacent and/or interconnected structures having an

unitary behaviour from a static and seismic point of view). This is underlined at point 8.7.1

of the Recommendations, where it is reported that: ‘‘the verification of a structural unit

with stiff enough floors can be performed, even for buildings with more than two floors, by

static nonlinear analysis, analysing and verifying each level separately, and neglecting the

variation of the axial force in masonry panels due to the effect of the seismic loads’’.

However, even in these cases, as the specific failure criteria to be adopted are not indicated,

it is understood that the masonry piers and beams may collapse for shear with diagonal

cracking or for combined flexure and axial loads, depending on their slenderness.

Within this general context, the paper deepens the diagonal cracking shear failure cri-

terion for unreinforced masonry panels (URM) as assumed by the NTC (2008), and is

organised as follows: in Sect. 2, a review of the failure modes of masonry panels (piers and

spandrels) proposed by the Italian Code is briefly sketched, together with a comparison with

other international Standards. The criticisms of the shear strength criterion with diagonal

cracking, which are motivations of the research, are explained in Sect. 3 where the effects of

the b shape factor are discussed. In Sect. 4 it is shown that the b factor, here evaluated by

linear and nonlinear finite element (FE) analyses, assumes values that significantly differ

from those adopted in Circular (2009). According to the numerical results, an amendment

for the b shape factor as function of the panel slenderness is proposed in Sect. 5. Eventually,

in Sect. 6, the effects of the proposed formulation are evaluated analysing the seismic

behaviour of three plane masonry walls, characterised by different slenderness of the ma-

sonry panels, and comparing the results among different numerical approaches.

2 Failure modes of masonry panels

The behaviour of masonry elements under in-plane loads (shear walls) depends on several

factors, among which: the materials, the boundary conditions, the precompression level

and the aspect ratio. Different combinations of these variables can lead to different failure

modes. The observation of the damages induced by past seismic events to masonry

buildings, together with laboratory experimental investigations, showed that masonry

panels subjected to in-plane loads have two basic typologies of behaviour (Calderini et al.

2009; FEMA 306 1998): I) Failure by flexure. Two different types of failure for flexure

may occur, depending on the precompression level. If the applied vertical load is low, the

horizontal load produces tensile flexural cracking at the corners, and the panel begins to

behave as a nearly rigid body rotating about the toe (rocking). If, due to a high applied

vertical load, no significant flexural cracking occurs, the panel is progressively charac-

terised by a widespread damage pattern, with sub-vertical cracks oriented towards the more

compressed corners (crushing). II) Failure by shear. A first shear failure mode is the shear

sliding failure, where the collapse is characterised by sliding on a horizontal bed joint,

usually located at one of the end section of the masonry panel. The second failure mode

occurs with diagonal cracking where the collapse is reached with the formation of a

diagonal crack, which develops from the centre of the panel and subsequently propagates

towards the corners. This failure mode may be activated when the principal tensile stresses

developed in the centre of the panel exceed the tensile strength of masonry, due to a

combination of vertical and horizontal loads.

Many interactions may occur between the above mentioned collapse mechanisms,

hence it is not always simple to recognise the occurrence of a specific failure mode. In the
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past, many experimental researches have attempted to assess the influence of the relevant

parameters (boundary conditions, precompression level, aspect ratio, masonry texture, etc.)

on the failure mode of masonry panels. As a general remark, it is possible to observe that

the flexural failure mode (rocking mechanism) prevails when there are low compression

load levels or high aspect ratios; rocking tends to prevail in slender piers. For increasing

levels of vertical compression, diagonal cracking prevails over rocking in moderately

slender piers, while bed joint sliding occurs only in very squat piers. Furthermore, diagonal

cracking is typically more relevant for panels with double-bending boundary conditions

since the response is mainly dominated by the shear behaviour (Magenes and Calvi 1997;

Calderini et al. 2009; FEMA 306 1998).

Among the above reported collapse mechanisms, the Italian Seismic Code (NTC 2008;

Circular 2009) considers the following three different failure modes for URM panels

(Fig. 2), distinguishing between masonry piers and masonry beams (spandrels): (a) flexural

failure under combined axial load and bending moment, (b) shear failure with diagonal

cracking and (c) shear sliding failure. Accordingly, the Code provides the proper equations

for evaluating the ultimate design strengths as next summarised.

2.1 Strength of masonry piers

For masonry piers, the design flexural strength, expressed in terms of ultimate bending

moment, is given by:

Mu ¼
Pl

2
1� r0

0:85fd

� �
ð1Þ

The ultimate shear strength for the diagonal cracking collapse mode is defined through

Eq. (2):

Vt ¼ lt
ftd

b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

ftd

r
¼ lt

1:5s0d
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

1:5s0d

r
ð2Þ

Strictly Eq. (2) is proposed for the assessment of existing buildings, but is also useful

for the design of new structures.

The ultimate shear sliding strength is given by Eq. (3):

Fig. 2 In-plane failure modes of masonry piers subjected to shear: a flexural; b shear with diagonal
cracking; c shear sliding
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Vt ¼ l0t fvd ¼ l0t
fvk0 þ 0:4rn

cM
¼ l0t

fvk0 þ 0:4 P
l0t

� �
cM

ð3Þ

Symbols corresponding to the geometrical items in Eqs. from (1) to (3) denote: l is the

panel width, t is the wall thickness and b is a shape factor (the shear stress distribution

factor) associated to the shear stress distribution in the central cross horizontal section of

the panel. Symbols corresponding to the mechanical items denote: fd is the design com-

pressive strength of the masonry, ftd is the design tensile strength of the masonry, fvd is the

design shear strength for sliding, fvk0 is the characteristic shear strength for sliding without

axial force on the panel cross-section and s0d is the same as fvk0 considering the shear

failure with diagonal cracking. The coefficient cM is a partial safety factor. Finally, P is the

compressive axial load, r0 is the average normal stress acting on the whole section of the

masonry panel [r0 = P/(lt)] and rn is the same as r0 calculated as rn = P/(l0t) being l0 \ l;

l0 is the length of the compressed portion of the section, and it may be evaluated as follows:

l0 ¼ 3
l

2
� e

� �
¼ 3

l

2
�M

P

� �
ð4Þ

in which e denotes the axial load eccentricity and M is the actual bending moment (l0 = 0

if e[ l/2).

Analysing Eq. (2) it is possible to observe that, according to the Circular (2009), the

characteristic shear strength s0d and the tensile strength ftd of the masonry are associated by

the following relation:

ftd ¼ 1:5s0d ð5Þ

Hence, according the NTC (2008), the strength s0d loses its original meaning of ma-

sonry shear strength without compressive stress, unless b is equal to 1.5. Actually, s0d is a
purely mechanical characteristic associated to ftd adopted to define the ultimate shear Vt.

2.2 Strength of masonry beams (spandrels)

Previous Eqs. from (1) to (3) can be also employed for the design of masonry beams if the

axial load P on the spandrels is known.

On the contrary, if the axial load is unknown (as in those cases where the numerical

analyses are performed with shear-type equivalent frame models with the assumption of

floor diaphragms perfectly rigid in-plane), the ultimate bending moment is given by:

Mu ¼
Hph

2
1� Hp

0:85fhdht

� �
ð6Þ

whereas the ultimate shear strength is defined as the lowest value between Eqs. (7) and (8):

Vp ¼
2Mu

l
ð7Þ

Vt ¼ ht fvd0 ð8Þ

Vp is the shear strength required for the equilibrium of the beam subject to Mu, and Vt is

the ultimate shear sliding strength. Symbols corresponding to the geometrical items in Eqs.

from (6) to (8) denote: h is the height of the vertical section of the masonry beam, t is the

wall thickness and l is the span of the beam. Symbols corresponding to the mechanical

3156 Bull Earthquake Eng (2015) 13:3151–3186

123



items are: fvd0 is the ultimate design shear strength of masonry without compression, fhd is

the ultimate design compressive strength of masonry in the horizontal direction and Hp is

the lowest value between the tensile strength of a tie passing across the beam (if existing)

and the quantity 0.4fhd ht. The technical Rules NTC (2008) and Circular (2009), allow the

use of Eqs. (6), (7) and (8) only if the masonry beam is reinforced with a horizontal tie

passing across the spandrel like a steel rod or a reinforced concrete (RC) beam. The tensile

force developed by the tie is, in fact, essential to equilibrate the compressive force acting

on the beam section at the opposite side. For URM beams the only proper shear failure

criterion, even though not expressly specified, is the one with diagonal cracking. So, the

ultimate shear may be evaluated through Eq. (2) with h instead of l (if r0 is unknown it

may be supposed equal to zero).

Besides, the NTC (2008) introduced a significant difference between the design of new

buildings and the assessment/rehabilitation of existing constructions. In the first case, the

design strengths of the masonry are evaluated applying specific safety factors to the

characteristic strength values. In the second case, the design strengths are evaluated ap-

plying the same safety factors but to the average values.

It is worth noting that the NTC (2008) is one of the few Codes that explicitly provide

different expressions for the evaluation of the shear strength of masonry panels distin-

guishing between failure modes with diagonal cracking and joint sliding. The majority of

Codes assumes a Mohr–Coulomb-type verification criterion without explicitly declare the

failure mode. This is the case, for instance, of the Eurocode 6 (EN 1996-1 2005). Recently

Tomaževic (2009), discussing the results of a series of laboratory tests, shows that in case

of shear diagonal cracking failure, the provisions of the Eurocode 6 are not in agreement

with the actual resistance of masonry walls, highlighting that the shear failure mechanism

with diagonal cracking is predominant. On the contrary, FEMA 306 (1998) and FEMA 356

(2000) clearly distinguish between the two shear failure modes and, in case of shear failure

with diagonal cracking, they adopt an expression similar to those assumed by the Italian

Rules. In particular, the FEMA 306 (1998) incorporate an equation for evaluating the

diagonal shear strength Vdt of URM panels subjected to in-plane shear forces according to

Turnšek and Sheppard (1980):

Vdt ¼ f
0

dt An bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fae

f
0
dt

s
ð9Þ

where f
0

dt denote the diagonal tension strength, An the area of net grouted section, fae the

vertical axial compressive stress and, finally, b is a coefficient (reciprocal to the b shape

factor of the Italian Code) equal to 0.67 for L/heff\ 0.67, L/heff when 0.67 C L/heff B 1.0,

and 1.0 when L/heff[ 1 with heff the height to resultant of lateral force, and L the length of

wall or pier. This expression was also maintained by the FEMA 356 (2000) [Eq. (10)], but

with modified applicable L/heff limits:

QCL ¼ f
0

dt An

L

heff

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fa

f
0
dt

s
ð10Þ

where An, heff and L, are the same as given for previous equation.

Turnšek and Sheppard (1980) and FEMA 306 (1998) [Eq. (9)] capped L/heff at 1.0, but

there was no upper limit on this ratio in FEMA356 (2000), hence the shear strength evaluated

according Eq. (10) could be increased according to the wall aspect ratio (Tremayne et al.

2012). The term L/heff was introduced in FEMA 356 (2000) with the aim to improve
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correlation with experimental results, but several authors (Chen et al. 2008) pointed out the

need of further investigation on its actual expression. The new ASCE/SEI 41-06 (2006) does

not include diagonal cracking as a failure mechanism, but considering that this is a relevant

observed collapse mode in buildings subjected to earthquakes, a subcommittee determined

that it should be reintroduced into the 2013ASCEprovisions.As discussed byTremayne et al.

(2012), the ASCE 41-13 will consider for the evaluation of diagonal cracking strength the

same equation included in FEMA306 (1998),maintaining the upper limit of 1.0 onL/heff. The

debate on this point highlighted the need of further investigation to cover the existing gaps in

the current understanding of URM shear diagonal cracking criteria.

3 The b shape factor of the shear diagonal cracking failure criterion

The previous Italian Standards, the one issued in 1996 (DM 1996), adopted Eq. (11) to

evaluate the shear strength of a masonry panel (implicitly assuming a shear failure mode

with diagonal cracking):

Vt ¼ lt sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

1:5sk

r
ð11Þ

in which sk is the so-called characteristic shear strength of the material (without com-

pressive stresses), depending on the masonry typology. Equation (11) was originally

provided in the Appendix of the technical document of 30 July 1981 (Circular 1981) and it

was the only failure criterion proposed to evaluate the shear strength of a masonry panel

and verify masonry buildings under seismic loading. Equation (11) was used within a

nonlinear method of structural analysis (the POR method) and was originally proposed by

Turnšek and Cacovic for masonry panels subjected to shear and compression under double

bending constraint conditions (Turnšek and Cacovic 1971). They assumed that the first

crack appears at the centre of the panel when the positive principal tensile stress reaches

the tensile strength ft of the masonry. Then the cracks propagate along the diagonal of the

panel up to collapse (Fig. 2b). Given the brittleness of the masonry, this condition can be

approximately considered concurrent with the failure of the panel. If ft = 1.5sk is assumed,

then Eq. (11) holds. It is worth noting that Eq. (11) is satisfactory only for panels in which

the values of the slenderness ratio k = h/l are in agreement with the de Saint–Venant’s

hypotheses. In fact, the quantity 1.5sk represents the maximum shear stress at the centre of

a panel with rectangular section only in case the de Saint–Venant’s hypotheses regarding

the slenderness ratio are met.

If s0d is assumed the same as sk, and ft = ftd, Eqs. (2) and (11) are equal only if b = 1.5.

The Circular (2009) connect ftd and s0d by Eq. (5) hence, the parameter s0d loses the

original meaning of masonry pure shear strength except when b = 1.5. However, at point

C8.7.1.5, b is defined as a function of the slenderness k of the panels, adopting the original

formulation of Benedetti and Tomaževic (1984). Explicitly: ‘‘b is a corrective coefficient

that takes into account the variability of the shear stresses along the central cross-section,

depending on the panel slenderness. It is proper to assume b = h/l, but no more than 1.5

nor less than 1.0, being h the height of the panel’’. Hence:

b ¼
1:0. . .. . . for k ¼ h=l� 1:0
k. . .. . . for 1:0\k ¼ h=l\1:5
1:5. . .. . . for 1:5� k ¼ h=l

8<
: ð12Þ
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The b shape factors according to Turnšek and Cacovic (1971) and Benedetti and To-

maževic (1984) are compared in Fig. 6.

Despite its simplicity for practical use, Eq. (12) is not fully proper since the shear

strength obtained by adopting Eq. (2) is overestimated for panels with slenderness ratios

lower than 1.5. This can be shown analysing some of the results of previous researches, as

next reported.

Chiostrini and Vignoli (1994) evaluated the mechanical characteristics of masonry

panels with unitary slenderness ratio (k = h/l = 1) by means of in situ tests through a

shear-compression setup. They calculated the b factor by applying the formula of Turnšek

and Sheppard (1980):

k ¼ 1ð Þ b ¼ 1:543� 0:478
su
r0

ð13Þ

where su denotes the ultimate average shear stress. Table 1 resumes the b values obtained

by the authors applying Eq. (13) to their experimental results. In the same table such values

are compared with those obtained by Eq. (12) of Benedetti and Tomaževic. The percentage

differences are significant.

Calderini et al. (2009) carried out nonlinear FE analyses of three masonry panels with

increasing slenderness ratio: k = 0.65 for panel Pier-1, k = 1.35 for panel Pier-2 and

k = 2.00 for panel Pier-3. The three panels were subjected to a constant axial load and to

an increasing horizontal displacement applied at the top section, under double bending

constraint conditions. The panels Pier-1 and Pier-2 collapsed for shear with diagonal

cracking, whereas Pier-3 collapsed for flexure (rocking). Analysing the numerical results

for each panel, it is evident that the b shape factor changes as a function of stresses and

deformations. In the elastic range the average values for b obtained by the numerical

analyses were: 1.33 for Pier-1 (k = 0.65), 1.44 for Pier-2 (k = 1.35) and 1.48 for Pier-3

(k = 2.00). The corresponding values near collapse were: 1.15 for Pier-1, 1.37 for Pier-2

and 1.50 for Pier-3. Hence, it is clear that for Pier-1 and Pier-2 the b factor has values

significantly dissimilar from those provided by Eq. (12), also in the nonlinear range. The

authors agree with these conclusions and observe that for Pier-1 (k = 0.65) the b shape

factor is never less than 1.15.

Therefore the results of the analysed researches show that the effective values of the

b shape factor are appreciably different from those suggested by the Circular (2009),

especially for short panels (k B 1) or panels with medium slenderness ratio (1\ k\ 1.5).

Table 1 b Shape factor values

Panel k b Eq. (12), from
(Circular 2009)

b Eq. (13), from (Chiostrini
and Vignoli 1994)

Difference (%)

T1 1 1.00 1.37 ?37

T2 1 1.00 1.40 ?40

T3 1 1.00 1.29 ?29

T4 1 1.00 1.19 ?19

COR1 1 1.00 1.23 ?23

COR2 1 1.00 1.33 ?33

Ist. Belm. 1 1.00 1.14 ?14
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4 Numerical investigations on the b shape factor

The above results highlight the need to deepen the relationship between the b shape factor

and the panel slenderness k. This relationship was herein analysed by performing first

linear and next nonlinear analyses on masonry panels with variable slenderness and

evaluating the shape factor as the ratio between the maximum and the average shear stress

in the central cross-section of each panel. A comprehensive study should also evaluate the

influence of the boundary conditions (i.e. limit cases of double bending and single bend-

ing), the influence of the mechanical properties of the masonry (i.e. elastic modulus,

Poisson’s ratio, masonry strength) and the effect of the vertical compressive stresses acting

on the panel. The numerical investigations herein presented do not consider all of the

above factors, being primarily focused on the relationship between b and the panel slen-

derness k. Nevertheless, in the authors’ opinion, these analyses provide effective infor-

mation to assess the variability of the factor b.

4.1 Linear analysis

A first set of numerical analyses was performed investigating the linear elastic range of

behaviour. This assumption agrees with the Turnšek and Cacovic hypothesis of the shear

failure criterion with diagonal cracking (i.e. ‘‘the stress state is evaluated by assuming

masonry as an elastic, homogeneous and isotropic material, until the beginning of the first

crack’’; Turnšek and Cacovic 1971). Two-dimensional isoparametric finite elements with 4

nodes were employed, and 67 different masonry panel geometries (variable aspect ratio) in

double bending boundary conditions were analysed (Fig. 3). The nodes at the base of the

models were fixed both in the x (horizontal) and z (vertical) direction, while the nodes at

the top section of the panels were constrained in the z direction and free in the x direction.

The adopted mechanical properties of the masonry are reported in Table 2.

The analyses denoted by A (m = 0, E/G = 2), although not fully relevant to real cases,

aim to analyse the function b(k) in this limit condition. The parameters used in the analyses

denoted by B (m = 0.5, E/G = 3) are very close to those of a real stone masonry walls (and

were selected according to the masonry typologies as defined in the Circular 2009).

Overall, 134 cases were analysed (67 with material parameters A and 67 with material

parameters B). The height of the panels was updated to obtain varying slenderness between

x

z

P
V

l

h

P

l

z

xG h

ux

uz

P
VV

Fig. 3 Masonry piers subjected to shear (V) and compression (P) with double bending boundary conditions
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0.015 and 3.0, whereas the width and the thickness of each panel were fixed equal to

1000 mm. The panels were meshed with square finite elements whose dimensions were

modified according to the actual geometry. Panels were first subjected to a compressive

load P of 1 N, and subsequently a shear force V of 1 N was applied on the top section. The

b shape factor is defined as the ratio between the maximum shear stress szx,max and the

average shear stress szx,av (shear stresses are evaluated at the central cross-section of the

panels) through Eq. (14):

b ¼ szx;max

szx;av
¼ szx;max

V
lt ð14Þ

Results of the numerical analyses were also used to evaluate the distribution of szx along
the central cross-section of the panels as function of their slenderness. Figure 4 shows this

distribution for panels A, while Fig. 5 shows the same distribution for panels B. The plots are

presented in dimensionless form and refer to 12 different values of slenderness (k ranging

from 0.015 up to 1.526). They show that when k B 1 the distribution of the shear stresses szx
is not uniform along the cross-section; only in the cases where k is very small (0.015–0.053)

szx tends asymptotically to such a condition. Hence, in the panels with k B 1 the shape factor

cannot be assumed equal to 1.0. Figure 6 compares the function b(k) obtained by Eq. (14)

with the proposal of Turnšek and Cacovic (b = 1.5) and the formula suggested by Benedetti

and Tomaževic (1984). It is evident that for panels with k\ 1.5 the values of the b factor

obtained by the numerical analyses still differ appreciably from those obtained by Eq. (12)

adopted in the Circular (2009). For panels with k[ 1.5 (when the slenderness ratio k is in

agreement with the de Saint–Venant’s hypothesis) the b factor tends asymptotically to the

straight line b = 1.5. The functions b(k) shown in Fig. 6 are also reported in Table 3 for

selected slenderness values (where it is possible to observe that, as expected, the Poisson’s

ratio has a very limited effect on the calculated b shape factor).

Table 2 Mechanical properties
of masonry used in the linear
FEM analyses

E (N/mm2) G (N/mm2) m

Case A 2000 1000 0.00

Case B 2000 667 0.50
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Fig. 4 Shear stresses szx in the
central cross-section of panels
(linear FE analyses, case A)
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Results illustrate that the distribution of the shear stress in the central cross-section of a

masonry panel subject to shear load does not differ from the one predicted by the de Saint–

Venant’s model, even if the slenderness decreases. The distribution of the shear stress szx
differs from the uniform one (b = 1) already for very small slenderness (0.015–0.053). In

the actual load-bearing masonry structures it is rather unusual to find panels with slen-

derness less than 0.3, therefore, it is evident that the condition b = 1 is very rare, and

consequently Eq. (12) is not reliable for short panels.

4.2 Nonlinear analysis

A second group of tests was carried out analysing the masonry panels beyond the linear

elastic field. To this aim the general purpose code ANSYS (1992) was employed, and

three-dimensional isoparametric finite elements with 8 nodes (solid 65) were adopted to
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model the masonry panels. Mechanical nonlinearities were reproduced by combining the

Drucker–Prager plasticity criterion (DP) (Drucker and Prager 1952) with the Willam–

Warnke concrete failure criterion (WW) (Willam and Warnke 1975).

The material parameters required to define the DP model, the cohesion c and the

internal angle of friction u, are introduced in such a way that the circular cone yield surface
of the DP model corresponds to the outer vertex of the hexagonal Mohr–Coulomb yield

surface. The DP yield surface can be written as follows (Drucker and Prager 1952):

F ¼ aI1 þ
ffiffiffiffiffi
J2

p
� k ¼ 0 ð15Þ

where I1 is the first invariant of the Cauchy stress and J2 denotes the second invariant of the

deviatoric part of the Cauchy stress. The two parameters a and k, required to define the

yield DP surface, are connected with the cohesion c and the friction angle u by the

following equations:

a ¼ 2 sin uffiffiffi
3

p
3� sin uð Þ

; k ¼ 6c cosuffiffiffi
3

p
3� sin uð Þ

ð16Þ

The two parameters a and k allow to evaluate the yield stresses in uniaxial tension and

compression, respectively ftDP and fcDP, by:

Table 3 b Shape factor versus
panel slenderness (linear
analyses)

Slenderness k Case A Case B

0.015 1.01 1.05

0.028 1.01 1.05

0.040 1.02 1.05

0.053 1.02 1.05

0.095 1.04 1.07

0.137 1.06 1.08

0.200 1.09 1.10

0.242 1.11 1.12

0.298 1.14 1.14

0.333 1.16 1.15

0.404 1.20 1.18

0.509 1.26 1.24

0.614 1.32 1.31

0.719 1.37 1.37

0.860 1.42 1.43

0.930 1.44 1.45

1.000 1.45 1.47

1.105 1.47 1.49

1.211 1.48 1.50

1.316 1.49 1.50

1.491 1.49 1.50

2.053 1.50 1.50

2.579 1.50 1.50

3.000 1.50 1.50
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ftDP ¼ k
1ffiffi
3

p þ a
; fcDP ¼ k

1ffiffi
3

p � a
ð17Þ

Cohesion c and the angle of internal friction u were then assumed as the only two

material parameters to define the yield surface.

The WW failure criterion, originally proposed for concrete (Willam and Warnke 1975),

accounts for both cracking and crushing failure modes through a smeared model. The

criterion is defined by the following inequality:

F

fC
� S� 0 ð18Þ

where F is a function of the principal stress state (Willam and Warnke 1975), S is a failure

surface expressed in terms of principal stresses and fc is the uniaxial crushing strength. If

Eq. (18) is satisfied, cracking or crushing are not expected. Otherwise the material will

crack or crush.

The crisis criteria of masonry, cracking in tension and crushing in compression, were

reproduced through the proper intersection of the two surfaces. To calibrate the parameters,

the uniaxial tensile strength of the concrete model (ftWW) must be assumed smaller than the

correspondent value of the plastic domain (ftDP) to reproduce the actual masonry cracking

in tension. In addition, to reproduce the correct plastic behaviour of the masonry in the

mixed compression-traction zones, the compression of the concrete model (fcWW) must be

selected greater than the strength (fcDP) of the open curve of the Drucker-Prager model. As

a result, the material behaves as an isotropic medium with plastic deformation, cracking

and crushing capabilities. Both the DP and WW criteria are frequently employed in the

inherent literature to model the mechanical behaviour of masonry structures. Among the

others, Zucchini and Lourenço (2007) adopt, discussing the homogenisation approach for

masonry, the DP model for the simulation of the plastic deformation in masonry cells.

They show how it is possible by using the DP criterion to account for the degradation of the

mechanical properties of masonry in compression. Chiostrini et al. (1998) combine the DP

criterion with the WW failure surface to model, through a macro-element approach, the

results of several diagonal tests on masonry samples obtaining good agreement with the

experimental results. The DP criterion combined with the WW model has been recently

adopted in a whole masonry structure by Betti et al. (2014) to discuss the seismic be-

haviour of URM buildings with flexible diaphragms through the investigation of a refer-

ence masonry prototype tested on shaking table at the CNR-ENEA research centre of

Casaccia (Roma, Italy). Comparison between numerical and experimental results showed

the effectiveness of the approach.

The constitutive parameters here employed for the DP criterion and the WW failure

domain are reported in Table 4; these parameters were calibrated according to the masonry

typologies defined in the Circular (2009). It is worth mentioning, lastly, the difference of

the tensile and compressive strengths of the DP criterion (ftDP = 0.216 N/mm2,

fcDP = 1.522 N/mm2) and those of the WW failure criterion (ftWW = 0.15 N/mm2,

fcWW = 4.0 N/mm2). The combination of these parameters allows an elastic-brittle be-

haviour in case of biaxial tensile stresses or biaxial tensile-compressive stresses with low

compression level. On the contrary, the material is elastoplastic in case of biaxial com-

pressive stresses or biaxial tensile-compressive stresses with high compression level (Betti

et al. 2009; Betti and Vignoli 2011).
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With the nonlinear model, 23 distinct geometries of masonry panels were analysed.

These panels have the following geometrical dimensions: width l = 1000 mm, thickness

t = 200 mm and height increasing from 300 mm up to 2500 mm with step of 100 mm.

The analysed slenderness hence ranges from 0.3 up to 2.5, with increments Dk equal to 0.1.
The analyses were carried out using the same boundary conditions of double bending

adopted in the linear analyses (Fig. 3). Preliminary tests aimed at investigating mesh-

dependence were performed, and mesh sizes varying between 50 and 10 mm (with in-

creasing step-size of 5 mm) were considered. Stability of results was analysed checking

both stability of distribution and extent of the cracking/crushing pattern and stability of

shear stresses distribution along the cross section of a selected number of panels (height

h = 500, 1000, 1500 and 2000 mm). In all the analysed cases, results have not shown

significant mesh-dependence and a mesh size of 20 mm was employed as a compromise

between computational costs and discretization accuracy.

Each geometric model was used to perform four types of analysis (for a total of 92

cases):

• LCA 0.4: nonlinear static analysis (under force control), with compression level about

40 % the compressive strength (P = 0.4ltfd).

• DCA 0.4: nonlinear static analysis (under displacement control), with compression

level equal to about 40 % of the compressive strength (P = 0.4ltfd).

• LCA 0.6: nonlinear static analysis (under force control), with compression level equal

to about 60 % of the compressive strength (P = 0.6ltfd).

• DCA 0.6: nonlinear static analysis (under displacement control), with compression

level equal to about 60 % of the compressive strength (P = 0.6ltfd).

The selected compressive levels are rather high if compared to those of the real

buildings. Nevertheless this choice was necessary to allow shear (rather than flexural)

failures. Moreover, the assumption of medium to high compression vertical stresses is

consistent with the hypothesis of double bending boundary condition, which typically

occurs in the panels at the lower floors of multi-storey masonry buildings.

Table 4 Mechanical properties
of the masonry (FEM analyses)

Elastic parameters

E Longitudinal modulus of elasticity 2000 N/mm2

G Shear modulus of elasticity 800 N/mm2

m Poisson’s ratio 0.25

w Weight per unit volume 18.0 kN/m3

DP criterion parameters

c Cohesion 0.24 N/mm2

u Friction angle 55�
g Dilatancy angle 55�
fcDP Compressive strength 1.522 N/mm2

ftDP Tensile strength 0.216 N/mm2

WW criterion parameters

fcWW Compressive strength 4.00 N/mm2

ftWW Tensile strength 0.15 N/mm2

bc Shear stress coefficient (closed cracks) 0.75

bt Shear stress coefficient (open cracks) 0.25
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Each analysis was carried out in two steps: in the first step the compressive load P was

applied at the upper section of the panels, subsequently a shear load V (LCA), or an

horizontal displacement ux (DCA), was applied. The horizontal loading (shear force or

displacement) was monotonically applied up to the panel’s collapse. It is noteworthy to

specify that the nonlinear system of equations was solved by an incremental Newton–

Raphson method and consequently the numerical collapse of the panel corresponds to the

maximum load that the panel can withstand before the load–deflection capacity curve starts

a negative slope (i.e. the load step where the overall stiffness matrix becomes singular).

More advanced methods, such as the arc-length method, can be employed for passing limit

points during structural calculation but these methods were not used, as it is not required to

follow the descending branch of the load–deflection capacity curve.

Numerical results were hence employed to evaluate the shear stresses distribution in the

central cross-section of the panels as a function of the dimensionless abscissa n varying the

slenderness. Figures 7, 8, 9 and 10 show these diagrams, where the shear stresses are in

dimensionless form with respect to szx, av = V/A. The first figure (left) of each pair always

refers to the first step of the horizontal loading process (when the panels are still in the linear

elastic field), the second figure (right) refers to a step near to the panel (numerical) collapse.

Results allow a few comments. As long as the horizontal load (or displacement) applied

at the upper section of the panels does not produce significant cracking and crushing, the

distribution of the shear stresses szx does not differ from that one obtained with the linear

analyses. Again, even for short panels (k B 1.0) the szx have a trend significantly different

from the uniform distribution considered by Eq. (12). If k is close to one the shape of the

stresses szx is almost parabolic. After the first crack or crush occurs, the shapes of szx differ
one to each other as a consequence of the spread of the tensile cracking.

Figures 11, 12, 13 and 14 show the collapse cracking pattern with respect to four different

slenderness (k = 0.5, k = 1.0, k = 1.5 and k = 2.0). The pattern and extent of damage

differs, depending both on the slenderness and on the compressive level. The panels with low

slenderness (k = 0.5) reach collapse presenting a double systems of diagonal cracks in

eccentric position. This behaviour is more evident for the two LCA analyses. Panels with

high levels of compression (LCA 0.6 and DCA 0.6, see Figs. 11c, d,14c, d) show a crack

pattern that covers the whole base and top sections, which probably correspond to sliding

shear cracks. The panels with medium slenderness (k = 1.0, Fig. 12 and k = 1.5, Fig. 13)

show the typical shear collapse mode with a system of diagonal cracks. In the case DCA 0.4
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Fig. 7 Shear stresses szx in the central cross-section of panels (nonlinear FE analyses, case LCA 0.4; left:
step 1 and right: step 15)
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Fig. 8 Shear stresses szx in the central cross-section of panels (nonlinear FE analyses, case DCA 0.4; left:
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Fig. 9 Shear stresses szx in the central cross-section of panels (nonlinear FE analyses, case LCA 0.6; left:
step 1 and right: step 17)
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Fig. 10 Shear stresses szx in the central cross-section of panels (nonlinear FE analyses, case DCA 0.6; left:
step 1 and right: step 8)
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with k = 1.0 (Fig. 12b) the crack pattern is larger in width than in the other cases. In the

analyses LCA 0.6 (Figs. 11c, 12c, 13c, 14c) andDCA 0.6 (Figs. 11d, 12d, 13d, 14d) a system

of cracks appeared along the bottom and top sections of the panel. In the latter two cases is

also visible a crushing at the corners. The panels with high slenderness (k = 2.0, Fig. 14)

collapses developing a cracking pattern in proximity of the end sections. The damage in the

top and bottom sections is well interpreted as a crushing of the edges in compression and a

crack opening in the edges in tension. Only the panels DCA 0.4 and DCA 0.6 fail with a shear

diagonal cracking characterised by awider spread of the cracks at the end of the diagonal. It is

worth noting that the DCA analyses allow to obtain a few additional equilibrium condition

with respect to the corresponding LCA analyses, and it results in the more spread of the

diagonal shear cracks before the collapse.

Among all the results, a deepening of the DCA 0.4 analysis for the panels with slen-

derness equal to 0.5–1.0–1.5–2.0 is reported through the illustration of the stress state in

Fig. 11 Collapse cracking patterns of panels with slenderness k = 0.5: a LCA 0.4; b DCA 0.4; c LCA 0.6;
d DCA 0.6

Fig. 12 Collapse cracking patterns of panels with slenderness k = 1.0: a LCA 0.4; b DCA 0.4; c LCA 0.6;
d DCA 0.6

Fig. 13 Collapse cracking patterns of panels with slenderness k = 1.5: a LCA 0.4; b DCA 0.4; c LCA 0.6;
d DCA 0.6
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the middle cross-section of the panels (Figs. 15, 16, 17, 18). Concerning the tangential

component of the stress it is possible to observe that, in all cases, they start with a parabolic

distribution (more evident with the increasing values of slenderness). The distribution of

the ratio szx/szx, av remains almost parabolic until the panels are in the elastic range, after it

is possible to recognise a sudden fall of the stress components. This phenomenon is more

evident in panels with slenderness equal to 1.0 and 1.5, and for panels that fails for shear

with diagonal cracking. Regarding the normal component of the stress rxx, this is almost

negligible in the first phases of the analyses. With the activation of the nonlinear behaviour,

the rxx progressively passes to compression in all cases and increases until the collapse.

This phenomenon can be interpreted as a consequence of the spread of the tensile cracking

at the middle cross-sections. This evolution of the normal stresses, which diminishes for

increasing values of slenderness, was observed for all the cases and for all the values of the

applied axial load.

Linear and nonlinear analyses allowed to evaluate the b shape factor versus slenderness

k and shear V varying the axial load, and such diagrams are reported in Fig. 19 (the values

of V are dimensionless with respect to the compressive load P applied to the panels). The

surfaces represented in Fig. 19 present a number of irregularities in proximity of the

highest level of shear force. They correspond to those steps of the analyses in which, due to

nonlinear effects, cracking or crushing occur. As a consequence of the damage the shear

stresses lose their regularity and therefore also the b factor loses its smoothness, as indi-

cated by Eq. (14). The surfaces of the four diagrams are smooth until the response of the

panels is linear. Nevertheless, beyond a certain excursion in the nonlinear field, the

definition of the shape factor loses its meaning due to the irregularity of the distribution of

szx (a sudden fall occurs in correspondence of the activation of the diagonal cracks and

increases as a consequence of the spread of the tensile flexural cracking).

Given the impossibility to identify the b factor beyond a certain amount of damage of the

panels it was decided to evaluate the function b(k) just before the arising of the highlighted

irregularities. The diagrams b(k) as obtained through the four sets of numerical analyses are

shown in Fig. 20 (curve 3) where they are compared with those proposed by Turnšek and

Cacovic (curve 1) and Benedetti and Tomaževic [Eq. (12), curve 2]. The four numerical

Fig. 14 Collapse cracking patterns of panels with slenderness k = 2.0: a LCA 0.4; b DCA 0.4; c LCA 0.6;
d DCA 0.6
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curves are coincident indicating that neither the type of analysis (LCA rather than DCA) nor

the level of compression produces significant differences. The obtained values for the co-

efficient b are also reported in Table 5 as average of the four analysed series.

5 The correction proposal for the b(k) function

The results show that for masonry panels with slenderness k lower than 1.5 Eq. (12)

provides an evident underestimation of the b shape factor, thus producing in turn an

overestimation of the shear strength Vt, as defined by Eq. (2).
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This can be demonstrated by plotting the strength domains for masonry panels with

slenderness lower than 1.5, and comparing the shear strength predicted by Eq. (2) by using

different expressions for the b shape factor. To focus the role of the b factor and the

slenderness k Eq. (2) was rearranged in the following dimensionless form:

Vt

As0d
¼ 1:5

bðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3

r0
s0d

� �s
ð19Þ

The structure of Eq. (19) is not modified by the specific relation existing between the

b factor and the slenderness k, since the shear strength basically depends on the ratio r0/s0d
and the slenderness k of the panels.
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As example of panels with k lower than 1.5, Pier-1 and Pier-2 previously analysed by

Calderini et al. (2009) (k = 0.65 for Pier-1 and k = 1.35 for Pier-2) are considered.

Figure 21 shows the shear strength domains for these two panels [Eq. (19)] where the

Fig. 19 Variability of the b shape factor: a analyses LCA 0.4; b analyses DCA 0.4; c analyses LCA 0.6;
d analyses DCA 0.6
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coefficient b was evaluated according to: (a) the Turnšek and Cacovic criterion (curve 1),

(b) the Benedetti and Tomaževic criterion (curve 2), (c) the results of the linear FE

analyses of cases A and B (curves 3 and 4) and (d) the results of the nonlinear FE analyses

(curve 5).

Table 5 b Shape factor versus
panel slenderness (nonlinear
analyses)

Slenderness k b (average)

0.3 1.12

0.4 1.18

0.5 1.24

0.6 1.31

0.7 1.36

0.8 1.41

0.9 1.44

1.0 1.46

1.1 1.48

1.2 1.49

1.3 1.49

1.4 1.50

1.5 1.50

1.6 1.50

1.7 1.50

1.8 1.50

1.9 1.50

2.0 1.50

2.1 1.50

2.2 1.50

2.3 1.50

2.4 1.50

2.5 1.50
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Fig. 21 Comparisons of shear strengths Vt varying the definition of b; a panel Pier-1 (k = 0.65, Calderini
et al. 2009), b panel Pier-2 (k = 1.35, Calderini et al. 2009)
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The shear strength evaluated with b = 1 (Benedetti and Tomaževic criterion) obtained

for panel Pier-1 is greater than the others; the greatest difference is obtained when it is

compared with the strength evaluated assuming b = 1.5 (according to Turnšek and Ca-

covic criterion). This difference is less evident for panel Pier-2 due to its higher slen-

derness; yet, the shear strength evaluated assuming b according to the Circular (2009) is

still greater than those obtained when b is evaluated according the results of this study or

assuming b = 1.5 according to Turnšek and Cacovic. For both panels, the shear strengths

obtained according to the linear and nonlinear FE analyses are more in agreement with

those obtained with the Turnšek and Cacovic criterion than those obtained with the

Benedetti and Tomaževic one. Basically results of FE analyses show a significant dis-

agreement with the proposal of b of Eq. (12) as reported in the Circular (2009) that, in

addition, overestimates the shear strength.

It is consequently useful to propose an amendment to the actual expression for the b

shape factor adopted by the Italian Standards (Circular 2009). The numerical results were

hence employed to define an interpolating expression for the b shape factor, as function of

the panel slenderness k. To this aim, the values of b reported in Table 5 were interpolated

in the range 0.3 B k B 1.5 by using cubic splines. The whole range was divided in six sub-

intervals, and in each of them the function b(k) was interpolated through the following

third-degree polynomial expression:

SiðkÞ ¼ Aik
3 þ Bik

2 þ Cikþ Di i ¼ 1; 2; . . .; 6 ð20Þ

where i = 1, 2,…,6 is the subscript that identifies the sub-intervals, and the coefficients Ai,

Bi, Ci and Di vary in each sub-interval. By imposing the continuity of the second

derivatives of the polynomials at the beginning and at the end of each sub-interval the

following linear system holds:

SiðkiÞ ¼ bðkiÞ for i ¼ 1; 2; . . .; 6
Siðkiþ1Þ ¼ bðkiþ1Þ for i ¼ 1; 2; . . .; 6
S0iðkiþ1Þ ¼ S0iþ1ðkiþ1Þ for i ¼ 1; 2; . . .; 5
S00i ðkiþ1Þ ¼ S00iþ1ðkiþ1Þ for i ¼ 1; 2; . . .; 5

8>><
>>:

ð21Þ

where ki and ki ?1 are the abscissas of the edges of the i-th sub-interval. The whole number

of unknowns is 24, therefore the 22 equations in (21) must be completed with two addi-

tional conditions, i.e.: a) requiring that the second derivative is zero in the left corner of the

first sub-interval (natural spline):

S001ðk1Þ ¼ 0 ð22Þ

and b) imposing the tangency condition at the asymptote b = 1.5 at the right corner of the

last sub-interval (edge k7 = 1.5):

S06ðk7Þ ¼ 0 ð23Þ

Table 6 reports the coefficients resulting from the solution of the linear system, and

Fig. 22 shows the interpolating function [curve (1)] compared with the original numerical

results. The interpolating function matches quite well the numerical results. Nevertheless,

an even simpler expression can be proposed for b to approximate the numerical results

[Fig. 22, curve (2)]:

b kð Þ ¼ 1:0þ 0:5k; b� 1:5 ð24Þ
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Equation (24) is a simple bilinear expression able to offer a proper approximation of the

nonlinear FE results, and useful for practical purposes. It is worth remembering that the

results herein obtained are valid for masonry panels under double bending conditions, as

this is the hypothesis implicitly assumed in Eq. (2).

6 Analyses of unreinforced masonry façades

The effects of the b shape factor are discussed through the analysis of the capacity curves

and the damage patterns of three plane masonry walls with regular openings, which rep-

resent the typical façades of existing buildings. The capacity diagrams were evaluated

through a pushover approach, and both equivalent frame models (EFM), built using the

code SAM (Simplified Analysis Method) II (Magenes and Calvi 1996, 1997), and finite

element models (FEM), built using the code ANSYS, were employed. According to the

EFM approach each masonry wall is subdivided into piers and spandrels, modelled with

one-dimensional macro-elements (which are connected by rigid nodes) and the whole

masonry wall is analysed as a framed structure. The in-plane behaviour of the macro-

elements, both piers and spandrels, is assumed as elastic-perfectly plastic, with shear

resistance and ultimate displacement obtained according to the provisions of the Italian

Seismic Code (NTC 2008; Circular 2009). In particular the ultimate shear resistance is

evaluated as the minimum between the resistance values for bending and diagonal cracking

Table 6 Interpolation coeffi-
cients for the splines of Eq. (20)

Sub-interval Ai Bi Ci Di

0.3 B k\ 0.5 -0.6736 1.0104 0.14267 1.0021

0.5 B k\ 0.7 -1.1798 1.7697 -0.2370 1.0654

0.7 B k\ 0.9 0.4166 -1.5828 2.1098 0.5178

0.9 B k\ 1.1 0.2864 -1.2313 1.7934 0.6127

1.1 B k\ 1.3 0.3812 -1.5441 2.1375 0.4865

1.3 B k\ 1.5 -0.2727 1.0063 -1.1779 1.9232
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Fig. 22 Diagrams of b(k)
obtained by interpolation of the
nonlinear FE analyses (curve 1)
and simplified bilinear (curve 2)
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while the ultimate displacement is conventionally assumed as a percentage of the height of

the macro-elements, considering the corresponding typology of collapse. Since the code

SAM II is based on the EFM approach, it needs a limited number of degrees of freedom,

and it is hence possible to analyse large regular masonry structures with a relatively

reduced computational effort. The interested reader can refer to Magenes and Della

Fontana (1998) and Bucchi et al. 2013 for specific details and additional illustrative case

studies.

In the analyses performed with the code SAM II, the b shape factor of the masonry

beams was evaluated according to both the Eq. (12), as requested in the Circular (2009),

and the Eq. (20), as herein proposed.

6.1 Geometrical and mechanical characteristics of the walls

Each of the three plane masonry walls includes five stories. The walls have a width of

17.0 m, are 15.0 m high and have a thickness of 45 cm (Fig. 23). To have spandrels with

different slenderness the openings in each wall differ in their dimensions, as follows:

• FT wall has short spandrels. The slenderness of the spandrels in the three intermediate

stories is k = l/h = 0.75 (being l the span and h the height of the masonry beams). The

average slenderness of all the spandrels is 0.883, the average slenderness of all the

masonry piers is 1.086.

• FM wall has spandrels higher than the FT wall: the slenderness of the spandrels in the

three intermediate stories is k = 1.0. The average slenderness of all the spandrels is

1.150, the average slenderness of all the masonry piers is 1.314.

• FS wall has slender spandrels. The slenderness of the spandrels in the three

intermediate stories is k = 2.0. The average slenderness of all the spandrels is 2.0, the

average slenderness of all the masonry piers is 1.657.

The masonry walls were assumed not reinforced; only a concrete lintel well connected

to the surrounding masonry was supposed over each opening (as usual in this building

typology). The masonry mechanical parameters are the same assumed in Sect. 4.2, i.e.:

longitudinal modulus of elasticity E = 2000 N/mm2, shear modulus of elasticity

G = 800 N/mm2, compressive strength fm = fcDP = 1.522 N/mm2, tensile strength

ft = ftWW = 0.15 N/mm2, shear strength s0 = ft/1.5 = 0.1 N/mm2 and, compressive

strength in the horizontal direction fh = fm = 1.522 N/mm2. They correspond to a masonry

made of bricks and aerial lime mortar with poor mechanical characteristics, according to

the bounds reported in the Circular (2009).

The walls were subjected to their own weight (specific weight w = 18.0 kN/m3) and to

the vertical loads of the floors, supposed to be equal to 10 kN/m.

6.2 Masonry walls modelling and collapse modes for the EF models

The masonry walls were modelled with both the FEM technique and the EFM approach.

The FE models were built using 8-node three-dimensional isoparametric finite elements

(Solid 65) with size 0.2 9 0.2 9 0.2 m (Fig. 24 shows the discretization of the FT wall).

The mechanical nonlinear masonry behaviour was still reproduced by combining the

Drucker–Prager plasticity surface (Drucker and Prager 1952) with the Willam–Warnke

failure criterion (Willam and Warnke 1975), and the constitutive parameters are reported in

Table 4. Concrete lintels were modelled by using the same mechanical models, with

modified parameters to account for a concrete of resistance class C25/30.
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The code SAM II was employed to build the EF models. According to this approach

each masonry wall is schematised with a system of deformable beams (reproducing ma-

sonry piers and spandrels) connected by rigid links (Fig. 25, wall FT). Vertical loads are
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Fig. 23 Geometry of the three
plane masonry walls: a FT;
b FM; c FS (measures are in cm)
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applied to the joints of the model at floor levels; horizontal seismic forces are applied to the

centres of mass of each floor. The joints at the same level have the same horizontal

displacement, therefore the assumption of rigid floor diaphragms holds. The mechanical

properties required by SAM II are reported in Table 7.
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Fig. 24 FE model of FT wall (measures are in cm)
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According to the NTC (2008) three failure modes were considered for masonry piers:

bending, shear sliding and shear diagonal cracking (as discussed in Sect. 2). For instance,

in case of diagonal cracking shear collapse, Eq. (2) was considered where fv0 corresponds

to s0 and the values of the b shape factor were assumed according to the curve (2) of Fig. 6.

The mechanical behaviour adopted for the masonry piers is elastic-perfectly plastic until

they reach the limit values of the chord rotation. The shear drift limit dv and the bending

drift limit dp are reported in Table 7.

For the spandrels, bending [Eq. (6)] and shear diagonal cracking failure [Eq. (2)] modes

were considered. In the latter case, the values of the b shape factor in Eq. (2) were

evaluated according to both Eq. (12) (as requested in the Circular 2009) and Eq. (20). The

mechanical behaviour of the masonry spandrels, as assumed for the piers, is elastic-

perfectly plastic until they reach the drift limits.

All the safety factors were assumed unitary, thus differences among the capacity curves

are to be sought only in the different choice of the b shape factor.

6.3 Results of the pushover analyses

According to the pushover approach the horizontal forces were monotonically increased

until collapse, and the displacement of a control point at the top level of each wall was

recorded to build the capacity curves. The following distributions of the horizontal forces

were considered (NTC 2008):

• triangular distribution (TD), i.e. horizontal forces proportional to the product of the

masses times their height (measured from the base of the structure);

• modal distribution (MD), i.e. horizontal forces proportional to the product of the

masses for the components of the in-plane modal shape;

• uniform distribution (UD), i.e. horizontal forces proportional to the mass distribution.

Figure 26 shows the capacity curves of the three walls for the distributions TD and UD

for the three models: FEM, SAM II-A [EF models where b is evaluated according to

Eq. (12)] and SAM II-B [EF models where b is evaluated according to Eq. (20)]. The

results obtained with the modal distribution (MD) are very similar to those obtained with

the triangular distribution (TD) and are not reported for brevity’s sake. The capacity curves

report the base shear Vb against the horizontal displacement dc of the control point.

Table 7 Mechanical properties
of the masonry (EFM analyses)

Elastic parameters

E Longitudinal modulus of elasticity 2000 N/mm2

G Shear modulus of elasticity 800 N/mm2

w Weight per unit volume 18.0 kN/m3

Masonry strenght and collapse parameters

l Friction coefficient 0.4

fm Vertical compressive strength 1.522 N/mm2

fh Horizontal compressive strength 1.522 N/mm2

ft Diagonal shear strength 0.15 N/mm2

fv0 Pure shear strength 0.10 N/mm2

dp Flexural drift 0.006

dv Shear drift 0.004

FC Confidence factors 1.0
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Following quantities were analysed: the initial stiffness Ke, the maximum base shear Vbu

and the maximum displacement of the control point dcu. These results are summarised in

Tables 8, 9 and 10.

In terms of initial stiffness Ke there is a substantial agreement between the FE and EF

models, with differences ranging between -13 and ?10 %.
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Fig. 26 Capacity curves obtained with triangular (TD) and uniform (UD) distributions. FEM = finite
element model; SAM II-A = equivalent frame model with b evaluated according to NTC (2008); SAM II-
B = equivalent frame model with b evaluated according to Eq. (20)
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More interesting are the comparisons about the maximum base shear Vbu because the

b shape factor directly affects the shear strength of the spandrels: if the b values are

underestimated the shear strength is overestimated, causing an increase of Vbu. The ca-

pacity curves obtained with the FE models, which do not depend on factor b, are used as

reference to check the effectiveness of the results obtained with the EF models. A first

examination of the results shows that the EF models of FT and FM walls develop base

shear Vbu greater than those obtained with the FE approach. These differences tend to

decrease along with the uniform distribution; on the contrary a good agreement for all load

distributions is obtained for the FS wall. In detail, the SAM II-A models of FT and FM

walls for load distributions TD and MD, provide Vbu values exceeding 1.5 times those

obtained with the FE models (the maximum difference is about 70 %, which decreases to

about 28 % in the case of uniform load distribution UD). These differences appreciably

decrease with the SAM II-B models [where b is evaluated according to Eq. (20)]. The

maximum difference becomes about 38 % (FT wall with the triangular distribution TD),

the minimum is about 5 % (FM wall with the uniform distribution UD). The response of

the FS wall is slightly different from the other two. In almost all the analyses (TD, MD,

UD) the EF models offer values of Vbu lower than those obtained with the FE models.

Table 8 FT wall: comparison between FEM and EFM pushover results

Load
distribution

Ke/KeFEM Vbu/VbuFEM dcu/dcuFEM

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

TD 1.00 1.10 1.10 1.00 1.68 1.38 1.00 2.45 2.41

MD 1.00 1.09 1.09 1.00 1.63 1.35 1.00 2.35 2.36

UD 1.00 1.05 1.05 1.00 1.29 1.10 1.00 2.46 2.90

Table 9 FM wall: comparison between FEM and EFM pushover results

Load
distribution

Ke/KeFEM Vbu/VbuFEM dcu/dcuFEM

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

TD 1.00 1.05 1.05 1.00 1.73 1.36 1.00 3.68 3.92

MD 1.00 1.03 1.03 1.00 1.51 1.19 1.00 2.25 2.47

UD 1.00 1.00 1.00 1.00 1.28 1.05 1.00 2.13 2.34

Table 10 FS wall: comparison between FEM and EFM pushover results

Load
distribution

Ke/KeFEM Vbu/VbuFEM dcu/dcuFEM

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

FEM SAM II-
A

SAM II-
B

TD 1.00 0.90 0.90 1.00 1.00 0.98 1.00 1.41 1.53

MD 1.00 0.87 0.87 1.00 0.94 0.93 1.00 0.99 1.06

UD 1.00 0.87 0.87 1.00 1.00 0.89 1.00 1.44 1.61
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Furthermore, the Vbu evaluated with the SAM II-B models are greater than those obtained

with the SAM II-A models.

Concerning the displacements, in case of FT and FM walls the EF models offer dis-

placements that differ of about ?292 % from those obtained with the FEM (reduced to

about 53 % in case of the FS wall). These discrepancies do not depend on the formulation

adopted for the b shape factor, but are instead a consequence of the different solution

algorithm adopted by the FE and the EF codes. The FE software performs a control force

analysis, hence it is only able to reproduce the initial branch of the pushover curve, but not

the descending one. Therefore the displacements obtained with the FEM are those cor-

responding to the maximum base shear. Save for this point, the results of the EFM of FT

and FM walls are in good agreement with the one obtained with the FEM when the b shape

factor is evaluated according to Eq. (20).

6.4 Analysis of the damage in the masonry walls

Figures 27, 28 and 29 show, for FT, FMand FSwalls respectively, the damagemaps obtained

at the end of each analysis (distributions TD andUD; the results obtainedwith the distribution

MD are similar to those obtained with TD and are not reported for brevity’s sake).

For the FE models, according to the assumption of the smeared crack, the damage is

shown as cracking and crushing distribution on the façade. For the EFM the damage of

piers or spandrels (symbolised at the end or in the middle section of each element) is

represented as follows: ( ) denotes bending failure, (9) denotes shear failure with diagonal

cracking and ( ) denotes shear sliding failure (only for masonry piers).

For the FS wall (Fig. 29) a good agreement between the damage maps obtained with the

two codes is observed. For FT and FMwalls (Figs. 27, 28) several differences arise. This can

be interpreted as follows: in the FE models the cracks propagate and spread around the

diagonals of thewalls (with amore evident spread for FTwall, less for FMwall). This result is

consistent: the shorter are the spandrels (the smaller are the openings), themore the behaviour

of the wall is similar to that of a masonry panel under horizontal loads. Consequently, the

principal tensile stresses take the direction of the diagonal of the panels, and cracking de-

velops where the tensile strength is exceeded. This does not occur for the FS wall, where the

damage affects first the thin spandrels and, subsequently, propagates to piers. In the EF

models the behaviour is different since the assumption of rigid floor diaphragms allows for a

global structural response of all resisting elements, ensuring a wider distribution of seismic

forces between them. The FE models do not have rigid diaphragms, which explain the

existing differences in these two walls (FT and FM). This is indirectly confirmed by the fact

that the capacity curves of the FS wall present the best agreement. Furthermore, for all the

walls the FE models show (regardless of the assumed distribution of horizontal forces) a

sensible damage in some parts of the joints between piers and spandrels. This does not occur

in the EF models where this area is assumed as infinitely stiff and strong.

Table 11 resumes the number of failures observed in each wall: M indicates the number

of bending collapses, VD denotes the number of diagonal cracking failures and VS indicates

the number of shear sliding collapses. None of the piers collapses for shear with diagonal

cracking: they collapse only for bending or shear sliding. It is also evident that evaluating

the b shape factor according to Eq. (20) originates an increase in the number of collapses

for diagonal cracking and a reduction in the number of collapses for shear sliding. A clear

change in the number of collapses for bending by varying the criterion for calculating the

b shape factor is not observed. SAM II-B models showed increases of bending failure in 4

cases out of 9: two for the uniform distribution of FT and FM walls, two for the triangular
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TD

UD  (a)

(a) (b) (c)
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Fig. 27 Damage maps of FT wall under triangular (TD) and uniform (UD) load distributions: a FEM;
b SAM II-A; c SAM II-B

UD (a)

TD (a) (b) (c)

(b) (c)

Fig. 28 Damage maps of FM wall under triangular (TD) and uniform (UD) load distributions: a FEM;
b SAM II-A; c SAM II-B
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and the modal distributions of the FS wall. In the remaining cases the number of bending

failures remains the same or decreases, with respect to the SAM II-A models.

7 Conclusive remarks

Results of this study suggest that the equation of the b shape factor adopted by the current

Italian Seismic Code (NTC 2008) is affected by a significant approximation when it is

applied to short masonry panels. The b values here evaluated by means of linear and

nonlinear numerical analyses are higher than those obtained from the simplified

TD (a) (b) (c)

UD (a) (b) (c)

Fig. 29 Damage maps of FS wall under triangular (TD) and uniform (UD) load distributions: a FEM;
b SAM II-A; c SAM II-B

Table 11 EF models: numbers
and typologies of masonry panels
failures

Wall Load distribution b—Eq. (12) b—Eq. (20)

M VD VS M VD VS

FT TD 33 12 17 33 17 9

FT MD 36 11 18 29 17 8

FT UD 20 11 4 28 15 1

FM TD 30 13 17 22 21 3

FM MD 33 14 16 21 21 4

FM UD 27 11 2 30 19 1

FS TD 23 23 – 30 24 –

FS MD 23 23 – 28 24 –

FS UD 30 24 – 30 24 –
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formulation adopted by the NTC (2008), resulting in a reduction in the shear strength of the

masonry panels. An amendment for the b shape factor is then proposed according to the

obtained numerical results. To assess the effects of the proposed amendment, the seismic

capacity of three plane URM walls with different slenderness of the masonry beams were

investigated through pushover analyses, focusing the attention on the b shape factor. The

walls were modelled by both finite element and equivalent frame models, and in the latter

case the b shape factor was assumed, for comparative purposes, according to both the NTC

(2008) and the proposed amendment. The FEM results are independent from the b coef-

ficient and were used as reference. Results of the investigations in terms of elastic stiffness

Ke show a good agreement in all the pushover analyses for all the walls. On the contrary,

differences were observed for the ultimate base shear Vbu. The EF models of FT and FM

walls produced higher values of Vbu with respect to the FE models results. This difference

was amplified when the b factor was evaluated according to the NTC (2008). The obtained

results thus highlighted a criticism of the actual Italian Seismic Code, and suggest the need

for further researches on the subject by an experimental campaign. In this respect, it is

proposed to adjust the formulation for b included in the NTC (2008) introducing the

alternative relationship herein suggested.
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