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Abstract: 

Solar chimneys are large devices which are becoming frequently proposed in new energy systems. The early 
prototypes (Manzanares) have demonstrated a potential for improvements with increasing size and height. 
The new trends in tall buildings technology allow to reach tower heights exceeding 1000m, so that the idea of 
integrating a solar chimney in a tall building is attracting the attention of architects, building designers and real 
estate investment companies. Model of solar chimneys can be found in the literature; also, the fundamentals 
of the design of turbines to  handle the large volumetric flows have been investigated by some researchers. In 
practice, however, the system composed of tower and turbine should be investigated together, because the 
turbine design determines its characteristic curve, and the solar chimney/turbine system is operated in variable 
conditions over the year, thereby changing both the buoyancy effects in the tower, and the operating conditions 
of the turbine. The model applied is a simple buoyancy-driven flow model for the tower; for the turbine, once 
the sizing has been performed considering the design operating conditions, a simplified off-design model is 
applied to predict the turbine losses and efficiency, considering the full characteristic curve in terms of 
resistance versus flow rate. The overall model allows to investigate parametrically the relevance of the 
fundamental design variables (such as degree of reaction, flow and work coefficient for the turbine; tower 
height and diameter) and the sensitivity to variable daily meteorological conditions. 
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1. The attractiveness of Solar Chimneys 

Solar Chimneys (SC) are relatively simple devices, working on the basic principle of inducing a draft 

by means of naturally buoyant flows. After the original ideas by Cabanyes (1903) and Günther (1931) 

[1], the idea has become feasible because of advances in structural engineering, and this lead to the 

design and construction in 1980 of the first significant-scale (50 kW nominal) prototype in 

Manzanares [2, 3]. The development of large Solar Chimneys requires tower heights as large as 1000-

1500 m; although this may seem a very hard challenge, these heights have been nearly reached for 

most recent skyscrapers, and should be possible in the near future for a dedicated (power conversion) 

design. The growth in size allows a considerable decrease in the production cost of electricity, with 

an expected value of about 0,1 €/kWh and a capital cost of 10000 €/kWp (this figure is based on a 

100 MWe unit, with a tower about 1000m high having a diameter of about 110 m [4]); moreover, 

SCs have low maintenance costs and a very long lifespan is projected. The environmental 

performance of solar chimneys is potentially superior to that of most other renewable energy 

conversion systems (a value of 10 g of CO2 per kWh is reported in [1]). This makes them attractive 

for the future development of renewable energy. The main challenge is still the structural design of 

the tower, with large safety margins imposed by the lack of knowledge on the full-scale dynamic 

effects of wind action at heights exceeding 1000 m. 
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2. Models for the performance of Solar Chimneys 
Solar Chimneys (Figure 1) are energy conversion devices based on the development of a buoyant 

flow inside the draft tower; this flow is determined by heating of air across the solar collector section. 

Work extraction devices (typically, a set of turbines) are installed inside the tower to produce power 

from the heated air stream. As for all solar energy conversion systems, the power produced is highly 

influenced by the available radiation, which is subject to the natural daily and seasonal cycle, and 

presents a stochastic nature which depends considerably on the local climate. 

Relevant literature is available on the design of Solar Chimneys; apart of the several structural models 

considering the unsteady effects of wind (which are very important for future development, [1, 2]), 

thermodynamic models of the SC have been developed [5, 6, 7]. Most of them treat with considerable 

accuracy the heat transfer across the collector section [6, 7, 9, 10, 12]; exergy analysis has also been 

applied [8, 13] as well as computational fluid dynamics [11, 16, 17]. The fundamentals of turbine 

design, focusing on the axial solution (suitable for large flow rates and small enthalpy and pressure 

drops) are examined in [13, 14]. 
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Fig. 1.  Sketch of a Solar Chimney. 

Most of the attention of the researchers is focused on design guidelines: however, it appears that 

reliable models capable of predicting the year-round performance of a given SC have not been 

developed. This appears to be very important from several point of views, namely: 

- The nature of solar radiation is time-dependent, with typical daily and seasonal cycles; 

consequently, a SC is seldom operated at its nominal design conditions 

- In order to obtain a reliable calculation of the economics, the design data are relevant for 

estimating the capital and maintenance costs; however, the final costs of energy (€/kWh), as 

well as the environmental performance (e.g., gCO2/kWh) need to be calculated with reference 

to an year-round operation 

- The flow rate across the tower should be estimated by means by a simulation of the 

performance of the solar collector, coupled to a turbine model capable of predicting the turbine 

pressure drop as well as its efficiency 

 

From the technical literature, it appears that coupling of the SC/turbine models has only been 

performed considering the characteristic curve of the turbine [6] (which allows to calculate the turbine 

pressure drop given the flow rate), usually extending general, non-dimensional curves; or 

implementing improved correlations for the turbine inlet loss [9]; in all these cases, the turbine 

efficiency is considered constant. 



3. Coupled model of the Solar Chimney and turbine 
The purpose of the present work is to develop a fully-coupled model of the solar chimney (including 

the collector section) and of the turbine, operated in the normal, fixed-speed mode. The complete 

model is divided in the following in three sections: the solar collector, the turbine (design and off-

design), and the tower/system assembly. 

3.1. Model of the solar collector 
The model of the solar collector applies the fundamental guidelines of [18], considering the 

absorbance and transmissivity of the glass cover; the greenhouse effect on the inner side is modelled 

considering mutual radiation exchange between the inner side of the cover and the ground; convection 

effects are included (outside air and inside channel); the ground is modelled as a linear conductive 

layer leading to a constant temperature value at a depth of 10m. The model is implemented as a set 

of equivalent resistances, using a simplified approach similar to the one described in [19].  

The global radiation is the sum of the beam and diffuse components: 

𝐺 = 𝐺𝑏 + 𝐺𝑑         (1) 

The collector is set horizontally so that no correction should be done for tilt and ground reflectance. 

Figure 2 is a schematic of how the solar radiation is transferred across the collector. 
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Fig. 2.  Schematic of solar radiation transfer process. 

Table 1 reports the fundamental data assumed for the heat transfer properties. Air is treated as a fully 

transparent medium, that is, αa = 0, τa=1; heat transfer to air takes place only by means of convection. 

Table 1.  Solar collector design variables 

Variable Value 

αa 0 

αc 0,05 

αg 0,9 

εc 0,05 

ρc 0,05 

ρg 0,1 

τc 0,9 

 

Under these assumptions, the radiation flux on the ground is given by: 

𝐺𝑔 = 𝜏𝑐𝛼𝑔 𝐺         (2) 



Figure 3 is a sketch of the general scheme applied for the calculation of heat transfer (radiation, 

convection and conduction). 
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Fig. 3. General schematic of solar collector heat transfer. 

 

For external heat transfer, forced or natural convection correlations for fluid flow over an horizontal 

surface are applied [20, 21]; moreover, radiation from the glass cover to the sky was considered with 

Tsky = T0 – 8 and the emissivity of the glass cover εc = αc. The scheme represented in Fig. 3 is solved 

through an equivalent representation of a thermal resistance network, represented in Figure 4; the 

solution is applied proceeding from the inlet section 0 to the solar collector outlet 1.  
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Fig. 4. Equivalent thermal resistance network for the solar collector. 

 

 



The energy balance for the j-the section is written as: 

𝑚̇ 𝑐𝑝(𝑇𝑎,𝑗+1 − 𝑇𝑎,𝑗) =  (𝐺 +  𝑞𝑢𝑝 + 𝑞𝑑𝑤 − 𝑞𝑖𝑟𝑟) (𝑟𝑗
2 − 𝑟𝑗+1

2 )  (3) 

𝑞𝑑𝑤 = ℎ𝑔 (𝑇𝑔_𝑗 − 𝑇𝑎𝑣_𝑎_𝑗)       (4) 

𝑞𝑢𝑝 = ℎ𝑐 (𝑇𝑐_𝑑𝑤_𝑗 −  𝑇𝑎𝑣_𝑎_𝑗)       (5) 

𝑞𝑖𝑟𝑟 = 𝜀𝑐   (  𝑇𝑔_𝑗
4 −  𝑇𝑐_𝑑𝑤_𝑗

4 )       (6) 

 

The values of the heat transfer coefficients hc and hg were calculated using the internal procedures for 

pipe flow available in [21]. The set of equations (3-6) allow to calculate the temperature increase (T1 

– T0) = Ta,n – Ta,0 once the mass flow rate is known. Knowledge of the flow rate depends on the 

pressure loss characterization of the whole circuit, composed of: tower, turbine and solar collector. 

For this last, a simplified approach for the friction coefficient was adopted, applying the well-known 

formula of Colebrook: 

1
√𝑓𝑠𝑐

⁄ =  −2 𝑙𝑜𝑔10 [(
𝛿

3,7𝐷ℎ 
) +

2,51

(𝑅𝑒 √𝑓𝑠𝑐)
]     (7) 

 

3.3. Model of the turbine 
The design of the turbine has strong drawbacks on the whole system performance. Detailed guidelines 

can be found in [22], analysing the fundamentals of turbine design in terms of non-dimensional 

variables , , and DR.  

Φ =
𝑣𝑎𝑥

𝑢
         (8) 

 =
Δh

u2         (9) 

𝐷𝑅 =
Δhrot

Δhst
         (10) 

 

In the present case, the simple and well-established correlation of Soderberg [23] was applied to 

calculate the stator and rotor losses, solving for the complete velocity triangles, flow angles and total-

to-static efficiency. Figures 5 (a) and (b) examine the sensitivity of design to the Degree of Reaction 

and Load Coefficient.  

 

 

Fig. 5. Effect of DR and  ( = 0,33): (a) Efficiency (b) Pressure drop 
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Fig. 6. Effect of load Coefficient  (DR = 0,7;   = 0,3): Efficiency and  Pressure drop 

 

As expected (Figure 6), optimization in terms of Load Coefficient can be achieved for   0,98; 

however, this would lead to  very high turbine pressure drops, which could be justified only for very 

tall solar chimneys (also the tower and solar collector pressure drops must be added). In any case, it 

makes little sense to pursue extreme values of turbine efficiency (leading to high load coefficients), 

sacrificing the collector performance (which is strongly affected by the flow rate and by the sizing of 

the collector field). Consequently, a relatively low value of  is usually selected. Figure 7 examines 

the sensitivity of the turbine design to the Flow Coefficient ; considering these constraints, the 

design set of non-dimensional variables was chosen at DR = 0,7;  = 0,33;  = 0,38; the resulting 

calculated value of ts at design conditions was about 0,67. 

 

 

Fig. 7. Effect of DR and  ( = 0,5): (a) Efficiency (b) Pressure drop 

 

In order to estimate the performance of the axial-flow turbine under off-design conditions, the 

simplified correlation proposed by Latimer [24] was adopted. The original data were correlated and 

fitted with an approximating polynomial, resulting in the functional dependence shown in Figure 8. 

In practice, working on the turbine non-dimensional characteristic curve =f() the value of the 

turbine efficiency can be adjusted applying the correction for the input value of the ratio /d. 
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Fig. 8. Off-design Efficiency correlation (adapted from [24]) 

 

3.3. Tower – System Assembly 
The tower is modeled as a circular channel with incompressible flow. The energy equation between 

the inlet/outlet sections is written as: 

𝑣2
2

2
+  𝑔𝐻 + 

𝑝2−𝑝0

r𝑎𝑣

+  𝑊 − 𝑄 + 𝑅 = 0     (11) 

 

Again, the friction losses along the tower are calculated by (7); the heat loss is evaluated considering 

internal and external convection and conduction across the structural material.  

Equation 11, together with the calculation of the overall resistance R (solar collector + tower + 

turbine) and with Euler’s equation for turbine work, provides the solution in terms of the outlet 

velocity v2; this last determines the flow rate as 

𝑚̇ = r2 𝑣2 𝐴2          (12) 

 

The power is determined from the turbine model as: 

 

𝑊 = 𝑚̇ ℎ𝑜 =  𝑚̇  𝑡𝑠   𝑢2        (13) 

 

considering that ts = f (/d) = f1(/d) = f2(𝑚̇ /𝑚̇𝑑). 

 

4. Preliminary results 
At the present development stage, the model is run for typical daily simulations (a preliminary design 

study). The model was applied on available data from the Manzanares plant [2, 25]. The main data 

for the reference case are resumed in Table 2. Meteorological data from Caceres, SP were assumed, 

for a reference day of July. 
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Table 2 –Manzanares reference case 

Input data 

Tower height, m 195 

Tower Diameter, m 10 

Collector Diameter, m 244 

Collector channel height, m 1,85 

Reference Case - Calculated values  - Design  

Flow rate, kg/s 480 

Power Output, kW 76 

Turbine inlet velocity, m/s 7,5 

Turbine pressure drop, Pa 218 

 

Table 2 cannot represent a point-by-point comparison with the experimental results, as the turbine 

design is completely different from the prototype; however, the values of the turbine inlet velocity 

are close to those documented in [25]. 

Fig. 9 shows the trend of efficiencies of the collector and of the turbine over a reference day in July. 

It is clear that the performance of the collector is optimized around noon; the turbine operates largely 

at over-design, however its performance is not severely hindered and achieves its maximum under 

relatively low radiation conditions in the morning and afternoon, thereby compensating to some 

extent for the lower performance of the collector assembly. Both efficiencies are affected by the flow 

rate. On the reference day of July, the SC would be able to produce about 650 kWh. The time history 

of the turbine and system performance non-dimensional indicators is resumed in Figure 10. The 

relevance of the off-design operation is made evident by the wide excursion of the ratios /d and 

/d over the day. The power is proportional to the product of the two, so that the result is that  0,25< 

W/Wd <1,15. 

 

 

Fig. 9. Daily trends of efficiencies: (a) collector (b) turbine (reference day in July) 
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Fig. 10. Time history of , , and non-dimensional power (reference day in July) 

 

The model has then be applied to an up-scaled case of a tower with H = 1000m, whose main data are 

resumed in Table 3. The performance parameters (efficiencies, non-dimensional indicators) have 

daily trends similar to those represented in Figs. 9 and 10 (with different values and wider excursion 

of the non-dimensional parameters). The large SC would be able - on the same reference day of July 

and location - to produce about 29000 kWh. 

 

Table 3 – Up-scaled ( H = 1000 m ) case 

Input data 

Tower height, m 1000 

Tower Diameter, m 25 

Collector Diameter, m 610 

Collector channel height, m 2,1 

Up-scaled case  - Calculated values – Design  

Flow rate, kg/s 4400 

Power Output, kW 3090 

Turbine inlet velocity, m/s 13 

Turbine pressure drop, Pa 923 

Flow | Work coefficients 0,32 | 0,50 

Total-to-static efficiency 0,73 
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4. Conclusions 
The model is a first attempt to a complete simulation of the standard solar chimney system (collector, 

axial turbine and tower), considering the complete coupled off-design performance of its three 

fundamental components. 

The collector was simulated by a complete heat transfer model (radiation, convection and conduction) 

considering the fundamental properties and applying well-established correlations for heat transfer 

and friction. 

The design of the turbine confirmed the fundamental guidelines which can be found in the literature, 

leading to a relatively high degree of reaction and values of the flow and work coefficient compatible 

with turbine operation within a natural-draft, buoyancy-driven flow.  

For off-design performance prediction of the turbine, a simplified global correlation was applied to 

assess the decrease of turbine efficiency when operating under off-design conditions. 

The tower is modeled as a buoyancy-driven flow channel with rough walls and low-conductivity 

material. 

The results consider a reference day in July using meteorological data from Caceres (SP).   

In the small-size reference case (a SC similar to the Manzanares unit), the degree of reaction was set 

at DR = 0,7;  = 0,35;  = 0,46; the resulting design value of ts was 0,67; in the reference day of 

July, the SC would be able to produce about 650 kWh. As an upscaling design exercise, a large unit 

with a 1000 m tower was also considered, which led to a nominal 3,1 MWe turbine with a productivity 

of about 29000 kWh in the same reference day. 

The results confirm that the model – which is largely improvable and extendable – is able to provide 

sensible results and that in a correct evaluation of the system the turbine should be designed to 

compensate to the possible extent the lower performance of the heat transfer/buoyancy driven flow 

mechanism, which has a poor performance under conditions of low radiation. 
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Nomenclature 
A cross section of flow passage, m2 

cp constant-pressure specific heat, J/(kg K) 

D  diameter, m 

DR degree of reaction 

Dh  hydraulic diameter, m 

f  friction coefficient 

g  gravitational constant, m/s2 

G  radiation of the sun, W/m2 

h  heat transfer coefficient, W/(m2 °C) 

H  height of the tower 

𝑚̇  mass flow rate, kg/s 
p  pressure, Pa 

r  radius, m 

s  thickness (glass cover), m 

R  friction loss, J/kg  

S  surface, m2 

T  temperature, °C 

u  peripheral speed, m/s 

v  velocity, m/s 



W  specific work, J/kg 

Q  heat per unit mass flow, J/kg 

 

Greek symbols 

α  absorbance 

δ  rugosity, m 

h  enthalpy drop, J/kg 

ε  emissivity 

η  efficiency 

l  thermal conductivity, W/(m °C) 
ρ  reflectance 

τ  transmissivity 

  Flow coefficient 

  Load coefficient 
 

Subscripts and superscripts 

a  air 

av  average 

ax  axial 

c  cover 

coll collector 

d  diffuse 

dw down side 

e  external 

g  ground 

i  internal 

r  radiative 

rot  rotor 

st  stage 

t  tower 

ts  total-to-static 

up  upper side 

0  section 0 (inlet) 

1  section 1 (solar coll. outlet/turbine inlet) 

2  section 2 (tower outlet) 
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