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Abstract 

This thesis describes the implementation of different types of genosensors for microRNA 

(miRNA) electrochemical detection. 

 

miRNAs are intensely studied as candidates for diagnostic and prognostic biomarkers. They 

are naturally occurring small RNAs (approximately 22 nucleotides in length) that act as 

regulators of protein translation. Because many diseases are caused by the misregulated 

activity of proteins, miRNAs have been implicated in a number of diseases including a broad 

range of cancers, heart diseases, immunological and neurological diseases. Therefore, a great 

deal of effort has been devoted to develop analytical methods for miRNA analysis with a 

PCR-free approach.  

 

In this thesis, miRNA 221 and 222 detection was studied since it is well known that these two 

sequences are involved into different type of lung, liver and brain cancers. Both 

electrochemical and photoelectrochemical transduction method was adopted.  

 

The analytical approaches were based on a recognition event through the hybridization of 

miRNAs to a specific capture probe. Several modifications of the sensor surface were studied 

in order to obtain the optimal analytical performances.  

 

In a first approach, the genoassay was developed using disposable screen printed gold 

electrodes (SPGE). The surface of a SPGE was modified with a thiol-tethered DNA capture 

probe, a spacer thiol, and then exposed to the target miRNA sequence. Electrochemical 

Impedence Spectroscopy (EIS) was chosen as electroanalytical technique due to its intrinsic 

property that allows a label-free detection scheme. Moreover, in order to increase the 

sensitivity of the assay, an enzyme amplification route was investigated. In this case, the 

hybrid formed on the electrode surface was labeled using the enzyme Alkaline-Phosphatase. 

The electrochemical transduction of the hybridization process was performed by means of 

EIS, after a biocatalyzed conversion of a soluble substrate into an insoluble and insulating 

product. Enzyme-decorated liposomes were then tested as labels in order to amplify the 

miRNA-electrochemical sensing. The possibility to further increase the sensitivity of the 

assay by nanostructuration of the working electrode surface was also investigated using 
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carbon screen printed electrodes modified with gold nanoclusters through electrodeposition, 

obtaining a detection limit in the picomolar range. 

 

In another approach, an electroconductive polymer film was investigated in order to obtain a 

label-free assay. In particular, a biotinylated bisthiophene monomer was potentiodynamically 

polymerized to form films on the SPGEs surface. On top of these films, streptavidin was 

immobilized by complexing the biotin moieties of the polymer. Finally, biotinylated 

oligonucleotide capture probe was immobilized by complexing the surface-immobilized 

streptavidin. This structure served as recognition element of the complementary miRNA 

sequence via hybridization event. EIS was chosen as electroanalytical technique. The use of 

conductive polymer resulted in a label-free assay with sensitivity in the picomolar range. 

The last part of the thesis was focused on the development of a photoelectrochemical system 

for miRNAs detection. Recently, with the emergence of novel photo-electrochemically active 

species and new nanomaterials, photoelectrochemistry has received increasing attention in the 

field of biosensors. Commercial ITO-nanoTiO2 electrodes were modified with gold nanorods 

and characterized in order to develop an enzyme-based genosensor. A white LED was used as 

a light source. 
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Chapter 1 – Introduction 

 

 

1.1 Cancer 

 

Cancer is a major public health problem in Italy and in many other parts of the world. 

According to ISTAT, 1 of 3 deaths in Italy is due to cancer [1]. The words “cancer”, 

“neoplasia” and “tumor” are referred to a complex disease in which cells in a specific 

tissue are no longer fully responsive to the signals within the tissue that regulate cellular 

differentiation, survival, proliferation and death. As a result, these cells accumulate 

within the tissue, causing local damage and inflammation. In normal conditions, for an 

adult, the number of cells is widely constant. The transformation from a normal cell into a 

tumor cell is a multistage process, typically a progression from a pre-cancerous lesion to 

malignant tumors. These changes are the result of the interaction between a person's 

genetic factors and external agents, like physical carcinogens (ultraviolet and ionizing 

radiation), chemical carcinogens (food and water contaminant, components of tobacco 

smoke) and biological carcinogens (infections from certain viruses, bacteria or parasites) 

[2]. Actually, there are over 200 different types of cancer. According the International 

Agency for Research on Cancer, cancers figure among the leading causes of death 

worldwide, accounting for 8.20 million deaths in 2012 with 32.55 million people living 

with cancer (within 5 years of diagnosis). Europe counts 1.28 million deaths in 2012 

(15.6% of total) with 7.25 million people (22.3% of total) living with cancer (within 5 

years of diagnosis).  Italy, instead, counts 0.17 million deaths in 2012 (13.3% of Europe) 

with 1.01 million people (14.0% of Europe) living with cancer (within 5 years of 

diagnosis). In Italy, according ISTAT’s evaluation, cancer is the second death cause 

(30.9% of total) after cardiovascular diseases (42.3% of total), with an highest mortality 

for men respect to women [3]. The most common causes of cancer death in Italy, 

according to WHO, are summarized in table 1.1. The highest incidence in Italy, in 2012, 

is connected to breast cancer for women (33.0% of total women cancer incidence) and 

prostate cancer for men (24.8% of total men cancer incidence). For the total of the sample 

analyzed breast cancer results the one with highest incidence (15.2% of the total) 

followed by colorectum cancer (14.4% of the total). 
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 mortality % 

Lung 33531 22.4% 

Colorectum 19279 12.9% 

Breast 12796 8.6% 

Pancreas 10637 7.1% 

Stomach 9917 6.6% 

Prostate 7814 5.2% 

Others 55452 37.1% 

Total 149426  

 

Table 1.1 – Cancer mortality in 2012 according the International Agency for Research on Cancer 

[3]. 

 

Temporal trends analysis, in terms of cancer incidence and mortality, represents one of 

the main tools for efficiency evaluation of preventions, therapies, as well as changes in 

habits and exposition to environmental factors of the population. As reported in the 

AIRTUM bulletin of 2013 “I numeri del cancro in Italia”, in the temporal range from 

1996 to 2007, it is evident a statistically significant reduction in mortality for the totality 

of tumors in both sexes. In particular emerges a 17% and 10% decrease, for men and 

women respectively, in the observed period. This reduction in mortality can be attributed 

to the effect of a reduction in the number of people who is affected by neoplasia, or the 

introduction of more effective treatments with a consequent improved survival. In 

example, mortality decreasing trends in lung cancer in men are probably connected to the 

reduction of incidence; mortality decreasing trends in breast cancer in women is mainly 

due to the effectiveness of new therapies associated to intervention for early diagnosis. 

The increased mortality in some cases is related to the increase in number of subjects 

affected by tumor in absence of therapies available. The increase in incidence is a 

complex phenomenon and can be attributed to several factors, including increased 

exposure to risk factors related to tumor, or to anticipation of diagnosis due to screening 

programs introduced (e.g. is notable an increased number of incidence linked to the 

spread of the test of detection diffused in the early 90’s of the last century). 

Knowledge about the causes of cancer, and interventions to prevent and manage the 

disease is extensive. Cancer can be reduced and controlled by implementing evidence-

based strategies for cancer prevention, early detection of cancer and management of 

patients with cancer. Many cancers have a high chance of cure if detected early and 
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treated adequately.  Cancer mortality can be reduced if cases are detected and treated 

early. There are two components of early detection efforts: the awareness of early signs 

and symptoms (for cancer types such as cervical, breast, colorectal and oral) in order to 

get them diagnosed and treated early before the disease becomes advanced; screening 

aims to identify individuals with abnormalities suggesting a specific cancer or pre-cancer 

and refer them promptly for diagnosis and treatment.  

Carcinogenesis is a process by which normal cells are transformed into cancer cells. It is 

characterized by a progression of changes at the cellular, genetic and epigenetic level that 

ultimately reprogram a cell to undergo uncontrolled cell division, thus forming a 

malignant mass. Cell division is a physiological process that occurs in almost all tissues 

and under many circumstances. Under normal circumstances, the balance between 

proliferation and programmed cell death, usually in the form of apoptosis, is maintained 

by regulation of both processes to ensure the integrity of tissues and organs. Changes in 

DNA that lead to cancer interrupt these orderly processes by disrupting the regulation of 

this process. In the beginning of 80’s of the last century, Berenblum gave great attention 

to carcinogenesis permitting to arrive to the generally accepted multistep theory [4], in 

which there are three distinct stages: the initiation stage, the promotion stage and the 

progression stage. If the first two stages underlie the triggering of cell transformation, the 

third stage determines the transformation of a benign tumor into a malignant form, with 

the maintenance and evolution of malignancy. The period between the fixation of a 

carcinogen to chromosomal DNA and the appearance of a population of neoplastic cells 

can be divided in the following stages: initiation, promotion and progression [5].  

Initiation represent the starting stage with the action of the carcinogen on chromosomal 

DNA, inducing a lesion, which can be repaired or reproduced. The biological 

mechanisms of repair are complex. In the repair of a cell lesion, the time factor is 

essential. Thus, if mitosis is delayed, DNA can be repaired; if not, the lesion will be 

replicated and transmitted to the new cells. The initiation stage of a cell starts with the 

impossibility of repairing of the DNA lesion. 

Promotion is the stage in which genetic alterations of the initiated cell determine the 

neoplastic transformation and the appearance of cells that are capable of autonomous 

growth. The promoter is applied several times after the simple administration of an 

initiating carcinogen. Carcinogens are agents that induce cancer without the need for the 

subsequent action of a promoter. Tumor promotion is to a great extent associated with 

epigenetic factors that alter, directly or indirectly, the genomic DNA expression [6]. 
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Promotion would consist of events occurring in the genetic program of terminal 

proliferation and differentiation. The promoted cell does no longer recognize the 

differentiation signals, which would normally remove it from the replication population. 

Unlike initiators, promoters do not bind to DNA, their major target being the cell 

membrane. 

Progression is characterized by marked malignancy and the tendency to induce changes 

that cause the death of the host. Cells in the progression stage are characterized by 

genetic changes, gene alterations and rearrangements and the tumor is phenotypically 

characterized by a rapid proliferation rhythm, invasive and metastasizing properties, with 

biochemical and morphological changes.  

Studies have shown that there are genetic mechanisms involving hereditary transmissible 

DNA alterations, as well as epigenetic mechanisms that involve the expression of one or 

several genes. Genetic mechanisms have been demonstrated by the presence of hereditary 

cancer or by the increased incidence of cancer in congenital chromosomal lesions or in 

disorders characterized by DNA repair deficiencies. Spandidos and Anderson mention 

three main classes of genes [7]: 

- oncogenes, which derive from altered normal genes, proto-oncogenes, so that they 

become activated; 

- modeling genes, which can predispose to cancer and are submitted to a mutation. In 

general, there is a group of heterogeneous genes, some of which are involved in the repair 

of damaged DNA; 

- onco-suppressor genes, which is a very diverse group of genes which share the property 

of inhibiting the cancer phenotype. The mode of functioning and identification of onco-

suppressor genes is difficult; it seems that their role is to inhibit cell proliferation, not to 

directly regulate oncogenes. 

The involvement of mutations in various phases of carcinogenesis is certain; it seems that 

some epigenetic events also contribute to the development of cancerous cells. These 

events cannot be avoided and include DNA, RNA and protein changes that can influence 

the cell phenotype, but not the genotype. Differentiation, which can be estimated to 

derive from a series of epigenetic changes, can modify the tumorigenic phenotype of the 

cells. 

The results of the investigations regarding oncogenes and onco-suppressor genes suggest 

possible applications in practical oncology. In this sense, the use for diagnosis (tumor 

classification, malignancy diagnosis, early metastasizing); prognosis (oncogene 
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amplifications); therapy (monoclonal antibodies and radiochemotherapy); and 

epidemiology (genetic consultation) is intended. The determination of changes in 

oncogenes and onco-suppressor genes in tumors can be useful for diagnosis, prognosis 

and the therapeutic approach. The molecular hybridization technique involving tumor 

DNA or RNA, as well as immunohistochemical techniques, can be used in determining 

quantitative and/or qualitative changes of oncogenes and onco-suppressor genes, as well 

as their expression.  

The discovery of cellular microRNA and its functions, in particular, has provided 

important data on cell biology, especially on the understanding of cancer diseases. In 

cancer cell cultures, microRNA has been shown to delay cell division, consequently 

acting as tumor suppressor. Another important function of microRNA is to regulate the 

amount of messenger RNA produced in a cell. The actions and functions of microRNAs 

are multiple, on the one hand due to their diversity, and on the other hand due to the 

diversity of their targets, which makes them essential in cell differentiation. It has been 

demonstrated that each tumor type possesses a specific “expression profile” of 

microRNA, which opens the perspective for a certainty diagnosis of the tumor type and, 

implicitly, for the application of adequate therapy.  

A cancer diagnosis results really important in order to assign the best therapy for patients. 

Possible signs and symptoms include: a new lump, abnormal bleeding, a prolonged 

cough, unexplained weight loss, and a change in bowel movements, among others. While 

these symptoms may indicate cancer they may also occur due to other issues. For this 

reason, specific test are necessary. One of the possible diagnosis is nearly always made 

by an expert looking at cell or tissue samples under a microscope. The procedure that 

takes a sample for this testing is called a biopsy, and the tissue sample is called the biopsy 

specimen. The testing process is sometimes referred to as pathology. Lumps that might be 

cancer might be found by imaging (radiology) studies or felt as lumps during a physical 

exam, but they still must be sampled and looked under a microscope to find out what they 

really are. Not all lumps are cancer. In fact, most tumors are benign (not cancer). A 

malignant tumor (cancer) can spread into nearby tissues and even to distant parts of the 

body. A benign tumor cannot do this. In order to confirm a diagnosis, lab tests of specific 

molecules like cells proteins, DNA, and RNA can help to make the diagnosis. These tests 

can also help in choosing the best treatment options. These molecules could be altered in 

patients affected by tumors, and their analysis could help confirming a specific diagnosis. 

These molecules are known as biomarkers. 
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1.2 Biomarkers 

 

Biological marker, better known as “biomarker” refers to medical signs that are objective 

indications of a medical state and that is possible to measure accurately and reproducibly. 

It is important to note that medical signs are in contrast with symptoms, that are instead 

indications of health or illness perceived by patients. There are several definitions of 

biomarkers in the literature, but in 1998, the National Institutes of Health Biomarkers 

Definitions Working Group defined a biomarker as “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention” [8]. Another 

definition has been proposed by the International Programme on Chemical Safety, led by 

the World Health Organization (WHO) and in coordination with the United Nations and 

the International Labor Organization: “any substance, structure, or process that can be 

measured in the body or its products and influence or predict the incidence of outcome or 

disease” [9]. A biomarker associated with cancer is commonly defined “tumor marker”. 

Tumor markers are substances that are produced by malignant cells and that can be 

determined in body fluids or tissues. Tumor markers can be either substances that can be 

found in normal organisms in much lower or higher concentrations. Ideally, a tumor 

marker would always be detected, but only when a certain type of cancer is present. In 

reality, tumor markers are rarely like that. In order to evaluate a good candidate as tumor 

marker is important to know its sensitivity and specificity. The sensitivity of a marker 

reports the proportion of patients bearing a specific type of tumor in which the marker 

concentration is elevated: the more patients with the same type of cancer have an elevated 

level, the more sensitive is the marker, and the lower is the expected number of false 

negative determinations. The specificity of a marker represents the proportion of 

individuals who have a certain type of malignancy and in whom the marker level is 

present at high level. That means that the lower is the number of individuals not bearing a 

certain type of tumor and having a low marker level, the higher is the specificity, and 

lower is the expected number of false positive determinations. The ideal case of 100% of 

specificity and sensitivity is not yet possible. In order to increase sensitivity, it is possible 

to combine two or more tumor markers associated with a specific cancer, but we have to 

consider that in this way, the specificity of detection is decreased. The choice of 

combining tumor marker must be focused bearing in mind that specificity can be slightly 
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lowered, while the sensitivity is significantly increased. The prerequisite for a proper 

combination of different markers is their high specificity and complementarity for the 

type of tumor. In example, the CA125 tumor marker is used to help predict the presence 

of ovarian cancer [10]. Because elevated CA125 levels occur in many benign 

gynecologic conditions, combining other biomarkers that would increase the sensitivity 

and specificity of CA125 is necessary. In literature is reported a logistic regression model 

for a set of markers and their combinations, with cross-validation analysis performed to 

obtain the sensitivities keeping specificities at 95%. In this study, CA125 had a low 

sensitivity of 43%, instead HE4 marker had a sensitivity of 73%. Comparatively, 

combining CA125 and HE4 sensitivity increase to 76% [11]. This result show how 

CA125 and HE4 combination gives a more accurate predictor of malignancy than either 

alone, but also how is difficult to obtain good sensitivities and specificities. Because of 

these limitations, a tumor marker could only be considered as a probabilistic indication of 

the presence of a certain type of cancer, not a specific diagnosis: the only way to have a 

precise diagnosis is biopsy. Anyway, it is important to underline all the potentiality of a 

tumor marker in clinical oncology: it could be used in order to evaluate the response to 

treatment detecting its level before and after the beginning of the therapy; it could also be 

used in order to identify the presence of new metastasis. Even if tumor markers present 

limits, in clinical oncology their detection for monitoring the course of cancer is an 

established and often an irreplaceable oncological laboratory method. Tumor markers are 

reliable predominately in monitoring the treatment response, as well as in early detection 

of disease recurrence. Tumor markers can be classified according to their chemical 

structure or types of cancer in which they are elevated: tumor antigens, enzymes, 

hormones, oncogens and nucleic acids. Tumor antigen is an antigenic substance produced 

in tumor cells, i.e., it triggers an immune response in the host. In this group we could 

find: Carcino Embryonic Antigen (CEA) that is specific marker for  colon carcinoma 

[12]; and Alpha FetoProtein (AFP) that is specific marker for hepatocellular carcinoma 

[13]. Enzymes represent good markers if they result overproduced by cancer cells: 

Alkaline phosphatase is normally synthesized in the liver, bones or placenta and an 

elevated serum concentration could be associated to liver cancer or osteosarcoma [14]. 

Hormones represent  good tumor markers when the cancer affect their natural secretions. 

This group comprises hormones of malignant endocrine tumors as parathyroid hormone, 

insulin and others. An oncogene is a gene that has the potential to cause cancer and in 

tumor cells are often mutated or expressed at high levels. Effective diagnosis and 
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surveillance of complex multi-factorial disorders such as cancer can be improved by 

screening of easily accessible biomarkers. Highly stable Circulating Nucleic Acids 

(CNA) have been discovered in the blood, plasma and other fluids of humans. Alterations 

in CNA levels are strong predictors of the utility of this biomarker class as promising 

clinical indicators [15]. Towards this goal, microRNAs (a class of naturally occurring 

small non-coding RNAs of 19–25 nt in length) have emerged as an important set of 

biomarkers that can associate their specific expression profiles with cancer status. 

 

1.3  microRNA 

 

Starting from the initial discovery by Ambros group in 1993 [16], over the last decade 

has become more clear that a large class of small noncoding RNAs with approximately 

22 nucleotides in length, better known as microRNAs (miRNAs), play important role in 

many biological process as modulator of gene expression. Ambros group identified two 

strands of small RNAs studying the developmental pathways of the soil nematode 

Caenorhabditis elegans (figure 1.1): they discovered that lin-4 gene does not encode a 

protein product, but instead gives rise to a precursor gene that matured to a more 

abundant small transcript. In parallel, Ruvkun group founded that lin-14 protein synthesis 

is regulated posttranscriptionally and that lin-14 levels are inversely proportional to those 

of lin-4 gene [17]: analyzing the sequences the lin-4 RNA is complementary to the 3′ 

untranslated region of the lin-14 gene. These discoveries revealed the possibility of a base 

pair regulation of lin-14 by lin-4: in other words, they revealed the first miRNA and 

mRNA target interaction. 
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Figure 1.1 - Wild-type Caenorhabditis elegans hermaphrodite stained to highlight the nuclei of 

all cells [18] 

 

RNA lin-4 was considered an anomaly until 2000, when Ruvkun group discovered  

another small RNA, called let-7 [19], which is complementary to elements in the 3' 

untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, 

indicating that expression of these genes may be directly controlled by let-7. Moreover, 

the same lab identified let-7 homologs in many vertebrate species including humans [20], 

demonstrating that miRNAs are evolutionarily conserved across many species and are 

often ubiquitously expressed. Since that time, has become clear that this class of small 

noncoding RNAs plays important role in many biological processes as modulator of gene 

expression. 

miRNAs have a peculiar mechanism of action and biogenesis. The main biological role 

of miRNAs is to perform gene regulation either directly through cleavage of mRNA or 

indirectly through translational repression. In either case, miRNA hybridizes with its 

target mRNA strand at the mRNA’s 3′ untranslated region. Initially, miRNA is part of a 

much larger piece of RNA with stem-loop structures, which may contain multiple 

potential miRNAs as reported in figure 1.2. This long strand of RNA, known as primary 

miRNA (pri-miRNA) is transcribed by RNA polymerase II in the nucleus of the cell [21]. 

Next, the pri-miRNA is cleaved by an RNase III endonuclease known as Drosha, which 

cuts the RNA into an approximately 60-base stem-loop structure [22]. This piece of RNA 

is known as pre-miRNA. The pre-miRNA is then exported to the cytoplasm via the 

carrier protein Exportin-5 (Exp-5). Once the Exp-5 has mediated pre-miRNA delivery 
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into the cytoplasm, the pre-miRNA separates from the Exp-5, and is cleaved by an RNase 

III enzyme known as Dicer, which results in the mature form of miRNA [23]. 

 

Figure 1.2 -  Biosynthetic pathway of miRNA. Reproduced from [24] 

 

An abnormal miRNA expression (overexpression or downexpression) could be linked to 

many diseases, like cardiovascular pathologies [25], cancer [15], immunological [26] and 

neurological [27] diseases. For instance in cancer, miRNAs are implicated in each one of 

the main essential features of cancer progression: from cell proliferation to inhibition of 

cell apopotosis and in the same cancer type, different miRNAs can be up-or down-

regulated respect to a basal level.  

The first evidence of involvement of miRNAs in human cancer came from molecular 

studies which revealed that two miRNAs, mir-15 and mir-16, were involved in chronic 

lymphocytic leukemias (CLL) [28]. Particularly, these first studies were performed in an 

attempt to identify tumor suppressors at chromosome 13q14, frequently deleted in CLL. 

Indeed, as demonstrated later by the same group and other groups, chromosomal regions 

encompassing microRNAs involved in the negative regulation of a transcript encoding a 

known tumor suppressor gene can be amplified in cancer development. This 

amplification would result in the increased expression of the microRNA and consequent 

silencing of the tumour suppressor gene. Conversely, microRNAs repressing oncogenes 
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are often located in fragile loci, where deletions or mutations can occur and result in 

reduced microRNA levels and overexpression of the target oncogene. microRNAs 

playing an oncogenic role by targeting oncosuppressor molecules are called oncomiRs, 

instead microRNAs playing an oncosuppressive role by targeting oncogenes are tumor 

suppressor miRNAs. In Table 1.2, are reported some examples of miRNA expression 

deregulated in human cancer. These deregulated miRNAs may function as either tumour 

suppressors or oncogenes by targeting each one of these features. 

miRNA profiles can distinguish not only between normal and cancerous tissue and 

identify tissues of origin, but they can also discriminate different subtypes of a particular 

cancer, or even specific oncogenic abnormalities. Gene expression profiling has already 

demonstrated its effectiveness at subtyping various cancers. However, miRNA profiles 

are equally discriminatory and can even be more informative, as expression changes can 

provide insights into the multitude of gene permutations observed in various cancer 

subtypes [29]. 

 

miRNA Tumor associated Type of Targeting 

miR-15/16 

 

Chronic lymphocytic leukemia [30] Tumor suppressor gene 

miR-17/92 Colon [31] Oncogene 

miR-21 Cholangio carcinoma [32] Oncogene 

miR-34 Gastric cancer [33] Tumor suppressor gene 

miR-155 Breast cancer [34] Oncogene 

miR-200 

family 

Bladder cancer [35] Tumor suppressor gene 

miR-222/221 

 

Glioblastoma [36], prostate [37], and 

thyroid carcinoma [38] 

Oncogene 

 

Table 1.2 - Tumor-suppressor and oncogene microRNAs 

 

Following this initial discover, other researches were focused on the investigation of 

miRNA expression deregulation in human cancer. For example  mir143 and mir145 are 

down-regulated in colon carcinomas [39] and mir122 is involved in breast cancer [40]. 

For all these reasons and considering that they are more stable than long mRNA, 
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miRNAs are intensely studied as candidates for diagnostic, prognostic and predictive 

tumor markers.  

 

 

1.3.1 microRNA as tumor marker 

 

microRNAs have revealed a great potential as tumor markers, and especially as early 

diagnosis markers. Indeed, they are able to discriminate tumor origins, subtypes, 

oncogenic mutations and cancer predisposition. Moreover, since miRNAs regulate the 

most important cellular processes, they can be useful to predict also cancer prognosis 

and/or response to specific therapies. Furthermore, the presence of miRNAs not only 

in body cells and tissues, but also in body fluids (circulating miRNAs ) may be an 

important feature for minimally invasive analysis [41, 42]. However, these circulating 

miRNA are present at very low level and in some cases are secreted from cells 

packaged in microparticles (exosomes, microvesicles, and apoptotic bodies) or by their 

association with RNA-binding proteins, including Argonaute 2 or lipoprotein 

complexes such as high-density lipoprotein (HDL) [43]. For these reasons, proper 

extraction procedures have to be performed. Moreover, the composition of these fluids 

is quite dissimilar, which implies that isolation methods cannot be directly transposed 

from one tissue/fluid to another [44]. Obviously, these findings complicate the 

detection of miRNA in biological fluids. 

Thus, to use miRNAs as reliable diagnostic, predictive or prognostic tumor markers, 

the development or optimization of efficient, sensitive and reproducible detection 

methods, including robust sample extraction selection or preparation procedure, are of 

primary importance [29]. Since deregulated miRNA expression is an early event in 

patients with cancer, measuring circulating miRNA levels may also be useful for early 

diagnostic, with high advantages to the success of treatment. How miRNAs are 

selected for secretion is still unknown. Cells secrete miRNAs as lipoprotein 

complexes, small membranous vesicles known as exosomes [45]. It is important to 

note that these findings do not yet eliminate the necessity of using invasive cancer 

screening techniques. 

 

1.3.2 miRNA 221 and miRNA 222 
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The miR-222/221 cluster is among the most dysregulated miRNAs implicated in 

cancer. Expression of miR-222/221 is highly upregulated in a variety of solid tumors, 

including lung cancer [46], hepatocarcinoma [47], breast cancer [48], thyroid cancer 

[38], and melanoma cells [49]. 

The miR-221 is one of the most frequently and consistently up-regulated miRNAs in 

human cancer. It has been demonstrated that miR-221 may act as a tumor promoter 

with a concomitant down-regulation of miR-221 target proteins (i.e., cyclin-dependent 

kinase inhibitor [Cdkn]1b/p27, Cdkn1c/p57, and B-cell lymphoma 2–modifying 

factor) [50].  

Stinson et al. [51] reported that miR-221 and miR-222 decrease expression of 

epithelium-specific genes and increase expression of mesenchymespecific genes. They 

showed that the transcription factor FOSL1 directly stimulates the transcription of 

miR-222/221, which in turn, by targeting TRPS1 (trichorhinophalangeal syndrome 

type 1, a Zeb2 inhibitor), reduces Ecadherin abundance, contributing to the aggressive 

clinical behavior of basal-like breast cancer. Elevated miR-221 and miR-222 

expression is linked not only to proliferation [52] and migration [51] but also to 

apoptosis [53]. Despite advances in standard treatment, non small cell lung cancer and 

hepatocellular carcinoma, are often diagnosed at an advanced stage and have poor 

prognoses. The development of innovative early diagnosis represent an important goal 

for the treatment of these cancers. For these reasons, in this thesis different 

genosensors for miRNA 221 and 222 detection are studied in order to obtain a fast and 

simple method of detection. 

 

 

1.3.3 microRNA detection 

 

Actually, there are different methods for the detection of miRNAs, each of them with 

their own unique advantages and disadvantages. Many detection methods rely on 

hybridization event with a complementary sequence. The hybridization event could 

occur either with solid-phase approach (a capture probe is adsorbed or bound to a solid 

surface for hybridization to the target) or with a solution-phase approach (target 

hybridization occurs in solution). Solution-phase methods often result in much more 
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rapid analysis times, while solid-phase methods, in general, are more appropriate for 

high-throughput analysis. Once the hybridization event occurs, it is necessary to 

translate the event in something that is possible to detect. Northern blotting is the most 

widely used miRNA detection method because it is generally a readily available 

technology for laboratories and does not require special equipment and technical 

knowledge. In general, target RNA run on an electrophoresis gel and then it is 

transferred, by blotting, onto a membrane to which the RNA is covalently bound. 

Finally, the membrane is incubated with a labeled probe, which is a single-stranded 

DNA, forming a duplex with its target. The hybrid can be revealed by a radioactive or 

by an enzyme label (e.g. alkaline phosphatase or horseradish peroxidase). However, 

this method is time-consuming, semi quantitative and is characterized by a low 

sensitivity. In order to increase sensitivity, locked nucleic acid (LNA)-modified 

oligonucleotide probes were used to enhance the efficiency of hybridization [54].  

The use of microarray is another classical detection method and require immobilized 

oligonucleotides on a support with the same sequence as the target miRNA in order to 

detect cDNA from a sample [55]. The cDNA is produced via reverse transcription 

from a sample’s RNA using fluorescent or enzyme labeled primers. Recently, 

Quantum Dots (QDs) as fluorescent labels have been introduced because of the high 

extinction coefficient and high quantum yield, which should dramatically increase the 

sensitivity for microarray detection [56]. Even if microarrays can analyze thousands of 

samples in a day, they are very expensive to fabricate. Thus, the high cost limits the 

wide applications of miRNAs microarray, especially in clinical diagnosis. 

Another standard method of detection is the quantitative reverse transcriptase 

polymerase chain reaction (RT-PCR), which can detect miRNA in real time and is one 

of the most used due to the inherent sensitivity and reliability. Because of their small 

size, (similarly to the primers), miRNA detection based on PCR is complicated (i.e. 

ligation is needed), is low throughput and time consuming.  

A great deal of effort, therefore, has been devoted to developing new analytical 

methods for miRNA analysis that possess appropriate sensitivity, appropriate dynamic 

range and multiplexing capability without PCR. 

Alternative methods include bioassays and biosensor based on surface-enhanced 

Raman Scattering (SERS), surface plasmon resonance (SPR), surface plasmon 

resonance imaging, fluorescence, and bioluminescence-based techniques [57]. 

However, many of these methods are laborious and require the use of a well- equipped 
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laboratory with specialized and well-trained personnel, and are neither feasible for 

routine determination of miRNAs nor applicable for point-of-care (POC) testing. 

Electrochemical biosensors are emerging options for miRNA detection. In comparison 

with other techniques, like optical methods, electrochemistry is considered as one of 

the most appealing techniques in term of cost, ease of operation and automation. 

  

 

1.4 Electrochemical biosensor for microRNA detection 

 

Electrochemical biosensors have emerged as particularly attractive options for miRNA 

detection in terms of simplicity of use, low assay time, small amount of sample required. 

The role of electrochemical biosensors for miRNAs detection has been reviewed recently 

[58-60]. In this section the definition of electrochemical biosensors will be introduced 

and examples of miRNA detection using electrochemical biosensor will be discussed. 

 

 

1.4.1 Electrochemical biosensor: definition and classification 

 

According to the International Union of Pure and Applied Chemistry (IUPAC) an 

electrochemical biosensor is “a self-contained integrated device, which is capable of 

providing specific quantitative or semi-quantitative analytical information using a 

biological recognition element (biochemical receptor) which is retained in direct 

spatial contact with an electrochemical transduction element” [61]. There are two 

classes of different biosensors classified according to the biologically active part: 

catalytic and affinity biosensors. Catalytic biosensors are based on a biological 

catalysts such as enzymes, cells, microorganisms or biomimetic catalysts, which 

promote a specific reaction with the target analyte to produce a species to which the 

electrode responds [62]. Because of their immediate application in clinical tests and 

ease of preparation, these biosensors have been very popular, with thousands of 

articles published. Affinity biosensors instead are based on biomolecules able to 

selectively and reversibly bind specific ligands [63]. In this way, it is possible to 

monitor and quantify the binding of antibodies to antigens, cell receptors to their 

ligands, nucleic acid (DNA, RNA) with a complementary sequence and aptamers to 
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specific proteins. Biosensors based on antibodies and antigens, commonly known as 

immunosensors, have been the most investigated due their high affinity, versatility and 

commercial availability of the biological elements. However, the use of antibodies in 

biosensing has some limitations [64]: antibodies are labile and the identification and 

selection of rare antibodies is laborious. In order to overcome these limitations, new 

biorecognition elements are under study, like aptamers  [65], which offer new 

perspectives for the realization of affinity biosensors with higher selectivity, 

sensitivity and stability. 

Both physical and chemical methods have been developed for immobilizing the 

biological element on the sensor surface. Physical strategies comprise adsorption or 

entrapment in permeable membranes, while chemical methods rely on the covalent 

binding or cross-linking of reactive residues present within the biomolecule such as 

amine, carboxylic, aldheydic or thiolic groups. The immobilization step is a crucial 

aspect in biosensor development, which must be studied and optimized in order to 

avoid the denaturation of the receptor, with consequent loss of recognition ability, and 

to control steric hindrance, thus assuring a good accessibility for the analytes. 

Another key aspect is the transduction system. With respect to other transduction 

systems (optical, piezoelectric, acoustic, gravimetric, magnetic, calorimetric), 

electrochemical devices are highly sensitive, inexpensive, easy-to-use, portable and 

compatible with microfabrication technologies [66]. 

An important class of affinity biosensors are genosensors [67], which employ an 

oligonucleotide sequence as bio-recognition element. In this case recognition derives 

from complementary base coupling (hybridization). 

In particular, genosensors are analytical devices that result from the integration of a 

sequence-specific probe, usually a short synthetic DNA oligonucleotide, [67, 68] and a 

signal transducer. The probe, immobilized onto the transducer surface, acts as the 

biorecognition molecule and recognizes the target DNA (or RNA), while the 

transducer is the component that converts the biorecognition event into a measurable 

signal [66]. 

 

1.4.2 Electrochemical genosensors: key aspects 

 

Electrochemical genosensors monitor the reaction among a capture probe with its 

target nucleic acid [67]. The reaction being monitored electrochemically typically 



 
 

17 

generates a measurable current (amperometry, voltammetry), a measurable charge 

accumulation or potential (potentiometry) or alters the conductive properties of the 

medium between electrodes (conductometry). Use of electrochemical impedance 

spectroscopy by monitoring both resistance and reactance in the biosensor is also 

becoming more common. 

Amperometry is based on the application of a constant potential promoting a redox 

reaction, while in voltammetry current is measured upon varying the potential in a 

proper range. In both techniques the resulting current is proportional to the bulk 

concentration of electroactive species [69]. Potentiometry measures the accumulation 

of a charge or a potential at the working electrode (usually known as indicator 

electrode) compared to the reference electrode when zero or no significant current 

flows between them. In other words, potentiometry provides information about the ion 

activity in an electrochemical reaction. Conductometric detection monitors changes in 

the electrical conductivity of the sample solution, as the composition of the solution 

changes in the course of the chemical reaction.  Electrochemical impedance 

spectroscopy (EIS), measures the resistive and capacitive properties of electrode 

materials upon perturbation of a system by a small amplitude sinusoidal ac excitation 

signal typically of 2–10 mV. The frequency is varied over a wide range to obtain the 

impedance spectrum. The in-phase and out-of-phase current responses are then 

determined to obtain the resistive and capacitive components of impedance, 

respectively. Impedance methods are powerful because they are capable of sampling 

electron transfer at high frequency and mass transfer at low frequency. Tipically, this 

technique is used for the direct monitoring of the changes in conductivity or 

capacitance of an electrode as a result of the immobilization of DNA/RNA duplex, 

onto the electrode surface. In photoelectrochemical measurements, light is used to 

excite active species on the electrode and photocurrent is obtained as the detection 

signal. A photoelectrochemistry-based analytical method, has the advantages of both 

optical and electrochemical methods. Due to its separate source for excitation and 

detection, it is potentially very sensitive. As an additional benefit in comparison with 

all optical detection methods, such as fluorescence that have to use complex and 

expensive optical imaging devices and sophisticated image recognition software, the 

low cost inherent to electronic detection makes the photoelectrochemical 

instrumentation simple and low cost [70, 71]. Despite the advantages mentioned above 

only rather limited photoelectrochemical biosensors have been reported for nucleic 
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acid determination in the past decade. The emergence of nanomaterials with enhanced 

photoelectrochemical properties [72-75] shows great potential in the field of 

photoelectrochemical biosensors [76-79].  

The probe immobilization step plays an important role in determining the overall 

performance of a genosensor. Both physical and chemical methods have been 

developed for immobilizing the capture probe on the sensor surface. Physical 

strategies comprise adsorption or entrapment in permeable membranes, while 

chemical methods rely on the covalent binding or cross-linking of reactive residues 

present within the biomolecule such as amine, carboxylic, aldheydic or thiolic groups. 

The probes  have to be immobilized in a way that retains their stability, reactivity, 

accessibility to target analyte and optimal orientation. Sensor surface coverage by 

DNA probes is also important in minimizing nonspecific binding. 

The nature and the composition of the working electrode surface become important in 

order to choose the better immobilization procedure for a specific application. The 

achievement of high sensitivity and selectivity requires maximization of the 

hybridization efficiency and minimization of non-specific adsorption, respectively. 

Several kind of electrode surface have been investigated as electrochemical 

transducers in genosensor development: glassy carbon [80], screen printed carbon 

[81], screen printed gold [82-84], gold [85], indium tin oxide (ITO) electrodes [86]. 

Generally, use of disposable electrodes that avoid the regeneration step, appear to be 

the most promising approach [66]. Depending on the electrode surface, the 

immobilization of the probe could occur in different ways. One of the most simply 

method of immobilization on carbon based electrodes is adsorption at controlled 

potential. The biggest advantage of this method is the possibility to avoid capture 

probe modifications. A pretreatment of the carbon surface is necessary in order to 

enhance the immobilization of the probe [87]. However, in this immobilization 

procedure, washing steps must be performed carefully in order to avoid desorption. 

Moreover, immobilized DNA probe uses bases to interact with the surface, resulting 

not totally accessible for hybridization and, consequently, reducing hybridization 

efficiency. Another probe immobilization method with carbon based electrodes 

requires the use of N-hydroxysulfosuccinimide  with ethyl(dimethylaminopropyl) 

carbodiimide to activate carboxylate groups on the electrode surface in order to 

covalently immobilize single-stranded DNA probe [88]. The high stability of covalent 
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bound allows the regeneration of the probe-modified surface denaturating the hybrid 

formed for the detection.  

The use of gold electrodes for genosensor development is widely used. Self-assembly 

provide one of the most elegant approaches to obtain well defined and organized 

surfaces that can be an excellent platform for biosensor applications. One of the 

widely used approaches in literature involves the direct chemisorption of thiol-

modified DNA probes onto gold surfaces. The self-assembly of thiolated molecules 

was characterised at the beginnings of the 80’s [89]. Sulfur based molecules 

coordinate very strongly onto a variety of metals, but gold is the most favored, because 

it is reasonably inert. The assumed reaction between a thiolate compound and a gold 

substrate is: 

 

RSH + Au ↔ RS-Au + e
-
 + H

+ 

 

Chemisorption of thiolated single-stranded DNA probes (HS-ssDNA) onto gold 

substrates was extensively characterized using X-ray photoelectron spectroscopy 

(XPS), ellipsometry, 
32

P-radiolabeling, neutron reflectivity and electrochemical 

methods [90-92]. The ionic strength of HS-ssDNA solutions was found to have an 

effect on surface coverage, with chemisorption greatly enhanced at high salt 

concentrations. The authors hypothesized that intermolecular electrostatic repulsion 

between neighboring DNA strands was minimized under the high ionic strength 

conditions, as the charged strands were better electrostatically shielded. More precise 

control over surface coverage and probe availability was achieved by creating mixed 

monolayers of the HS-ssDNA and a spacer thiol, like mercaptohexanol (MCH), by a 

two-step method, where first the gold substrate was exposed to a micromolar solution 

of HS-ssDNA, followed by exposure to a millimolar solution of MCH. The post-

treatment with MCH allow DNA molecules to “stand up” from an initial disordered 

layer. Thus, the DNA strand is more accessible for specific hybridization. 

As the specificity of the hybridization reaction is essentially dependent on the 

biorecognition properties of the capture oligonucleotide, design of the capture probe is 

undoubtedly one of the most important pre-analytical step. The probes can be linear 

oligonucleotides or structured (hairpin) oligonucleotides, which are being used with 

increasing frequency [93, 94]. Design of linear probes takes great advantage of many 

commercially available softwares which can design capture oligonucleotides within 



 
 

20 

the hypervariable or highly conserved regions of different genomes after their 

assembly and alignment. Candidate sequences, usually 18–22 nucleotides in length, 

are finally tested for theoretical melting temperature (Tm), hairpins and dimers 

formation and for homologies using a Basic Local Alignment Search Tool (BLAST) 

search [93].  

The experimental variables affecting the hybridization event at the transducer–solution 

interface are referred to as stringency and they generally include hybridization and 

post-hybridization-washing buffers composition and reaction temperature. When 

dealing with complex sets of probes the basic requirement for a functional system is 

the ability of all the different probes to hybridize their target sequences with high 

affinity and specificity under the same stringency conditions.  

In addition, a number of probes, variable for chemical composition and 

conformational arrangement, have been used to assemble genosensors. Peptide 

Nucleic Acids (PNAs) are DNA mimics in which the nucleobases are attached to a 

neutral N-(2-aminoethyl)-glycine pseudopeptide backbone. If compared to the 

conventional oligonucleotide probes, PNAs have appeared particularly interesting for 

the development of electrochemical genosensing, the main reason being the drastically 

different electrical characteristics of their molecular backbone. Moreover, some 

reports described the synthesis and hybridization of a novel nucleotide termed LNA 

[68, 95]. LNA is a nucleic acid analogue of RNA, in which the furanose ring of the 

ribose sugar is chemically locked by the introduction of a methylene linkage between 

2′-oxygen and 4′-carbon. The covalent bridge effectively ‘locks’ the ribose in the N-

type (3-endo) conformation that is dominant in A-form DNA and RNA. This 

conformation enhances base stacking and phosphate backbone pre-organization and 

results in improved affinity for complementary DNA or RNA sequences, with each 

LNA substitution increasing the melting temperatures (Tm) by as much as 3.0–9.6 °C 

[96]. LNA bases can be interspersed with DNA bases, allowing binding affinity to be 

tailored for individual applications. Due to the very high affinity of the LNA 

molecules, it demonstrates that LNA probes hybridize with very high affinity to 

perfectly complementary targets, and at the same time shows an extraordinary 

specificity to discriminate the targets that differ by a single-base. 

As well as specificity, sensitivity is also a key factor in the performances of a 

biosensor: sensitive detection of specific DNA/RNA sequence on the basis of the 

hybridization reaction can be achieved by increasing the immobilization amount and 
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controlling over the molecular orientation of the probes. At this purpose, 

nanomaterials have been increasingly introduced in the fabrication of biosensors in 

order to increase the immobilization amount of the probe and to magnify the detection 

signal and lower the detection limit [97-100]. Finally, the use of electroactive or 

enzymatic labels is a strategy widely performed to increase the sensitivity of the 

device, even if many examples of label free format have been reported. 

 

1.4.3 Impedimetric genosensor 

 

Impedimetric genosensor is a specific sub-class of genosensor that use impedance 

spectroscopy as transducer. A DNA biosensor based on EIS detection is a device that 

measures changes in interfacial properties between the electrode surface and the 

electrolyte solution induced by DNA hybridization, conformational changes, or DNA 

damages. In most electrochemical DNA biosensors, the target DNA must be labeled 

for its detection. On the contrary, DNA biosensors based on EIS detection can be 

label-free. Due to these properties, an impedimetric genosensor hold great promise for 

applications such as point-of-care diagnostics. As a result, the interfacial impedance, 

which is obtained upon application of a small AC voltage overlaid on a DC bias 

potential to the sensing electrode and the AC current obtained in the steady state, has 

been frequently employed for sensing various analytes [101, 102]. An 

electrode/electrolyte interface may be simplified by the schematic diagram in figure 

1.3.  

 

 

Figure 1.3 - Schematic diagram for an electrode/electrolyte interface in a faradaic sensor and 

its exemplary model circuit. 



 
 

22 

When an electrode is perturbated by an applied DC potential, solvated counter ions 

form an electrical double layer by aligning along the electrode surface, which is 

represented by the so-called double layer capacitor with a capacitance of Cd. The 

electron transfer to/from the electroactive species, which may approach the electrode 

as close as two solvent molecules away in the outer Helmholtz plane (OHP), takes 

place across the inner Helmholtz plane (IHP) by overcoming the activation barrier, Rp, 

which is termed a polarization resistance, and the solution resistance, Rs. Once the 

electron transfer gets started, the Warburg impedance (W) due to the mass transport 

begins to play a role in determining the electrode kinetics. In the non-faradaic EIS 

detection with no redox indicator added, the capacitance or the dielectric constant of 

the probe layer can be utilized as a main sensing signal. The electron transfer 

resistance (Ret), which is the polarization resistance at an equilibrium potential, is 

utilized as a main indicator in the faradaic EIS detection. A redox couple such as 

[Fe(CN)6]
3-/4-

 or [Ru(NH3)6]
2+/3+

 is frequently used as a redox indicator for the 

electrode kinetics at the interface, which is modified by a substrate layer as well as 

probe and target DNAs on the electrode surface. Thus, the Ret values indicate how 

crowded the electrode surface is when it is modified by a functional molecule, which 

is capable of selectively capturing a given analyte. The Ret values are determined by 

how selective binding has taken place with the analyte and how much analyte is in the 

test solution. The changes in resistances or capacitances of the interface are induced 

by the DNA hybridization events with a single-stranded target DNA on a suitably 

designed probe platform. To improve the performance of the DNA sensor, the probe 

layer should be constructed using a well-defined surface chemistry preventing the non-

specific binding as well as other side reactions so that it would exhibit high selectivity 

for a specific target DNA. As a result, various DNA sensors have been embodied on 

the electrodes modified with the various platforms such as self-assembled monolayers 

(SAMs), mixed SAMs, conducting polymer films, various nanomaterials such as gold 

nanoparticles, and peptide nucleic acids. The design of the probe layer depends on 

whether the sensor is of faradaic or non-faradaic nature. For example, a compact SAM 

or an insulating layer without a leakage current is needed for non-faradaic signal 

processing while a less-packed SAM or a conductive layer accessible to the redox 

species are more desirable for a faradaic sensor. Changes in electrical properties 

occurring at the DNA probe layer are usually extracted using a best fitting model. 

Each circuit element obtained by fitting impedance responses to an electrical circuit 
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can be utilized for analyzing the type and the amount of target DNA as well as its 

conformational changes [16,17]. In general, the changes in impedances are linearly 

related to the surface coverage by a target analyte in a low concentration region, but 

sometimes it is logarithmically related to the amount for the target analyte in the case 

of high concentration ranges or the heterogeneous binding between the probe and the 

target molecules. In a faradaic sensor, the charge-transfer resistance, Rct, is associated 

with the energy barrier for electron transfer to/from the redox indicator approaching to 

the electrode surface, which is determined by the change in the crowdedness of the 

probe layer caused by its binding with target DNA. In a non-faradaic sensor, the 

capacitance of the probe layer is a main indicator exhibiting the conformational 

changes of double-stranded DNA due to its hybridization. 

 

1.4.4 Electrochemical microRNA detection 

 

Electrochemistry is an emerging technique for miRNA biosensing [58-60]. 

Electrochemical detection of miRNA was first reported by Gao and Yang in 2006 

[103] using electrocatalytic nanoparticle tags (figure 1.4). The assay was based on a 

direct chemical ligation procedure involving a chemical reaction to tag miRNAs with 

OsO2 nanoparticles. The nanoparticles catalyze the oxidation of hydrazine and 

enhance the detectability of miRNAs, thereby lowering the detection limit to 

femtomolar level. 

 

 

 

Figure 1.4 - Schematic illustration of miRNA assay using electrocatalytic OsO2 nanoparticles. 

Reprinted with permission from [103] 



 
 

24 

Labeling of miRNAs for electrochemical assay is often necessary for miRNA sensitive 

detection. Gao and Yu reported a miRNA labeling procedure that utilizes a chemical 

ligation to directly label miRNA, via a covalent bond, to an isoniazid-substituted 

osmium complex [104]. In a separate attempt, the same group made use of the 

Ru(PD)2Cl2 (PD = 1,10-phenanthroline-5,6-dione) electrocatalytic moiety to monitor 

the oxidation of hydrazine [105]. Both these biosensors were applied to the 

quantitation of miRNA in total RNA extracted from HeLa cells. 

Recently, it has been reported the use of ruthenium oxide (RuO2) nanoparticles-

initiated polymerization of 3,3’-dimethoxybenzidine and miRNA-templated deposition 

of an insulating poly(3,3’–dimethoxybenzidine) film [106]. In a separate work, RuO2 

nanoparticles tagged to target miRNA strands served as a catalyst for polymerization 

of aniline and the hybrid acted as templates for the deposition of polyaniline at the 

hybridized miRNA strands [107]. 

A biosensor based on palladium (Pd) nanostructured microelectrodes has been  

developed [108]. Differential Pulse Voltammetry (DPV) was used to monitor the 

electrochemical reduction current of Ru
3+

 accumulated on the electrode surface after 

hybridization with the target miRNA. The signals observed with this reporter system 

(Ru
3+

) are amplified by the inclusion of ferricyanide, which can regenerate Ru
3+

 

chemically after its electrochemical reduction. After a 30 min hybridization, the 

detection of 10 aM of target was reported and the RNA extracted in a panel of RNA 

samples tested. 

Enzymes have been used as label in many biosensor formats. The use of such a label 

greatly amplify the hybridization signals, offering considerable promise for 

ultrasensitive electrochemical detection of DNA hybridization. An esterase as 

amplifier in a gap-hybridization assay format was used [109]. Another strategy for 

miRNA detection is through the use of an electrochemically activated glucose oxidase 

(GOx) tag/amplifer [110, 111]. A miRNA biosensor based on triple-signal 

amplification due to the immobilized graphene and dendritic gold nanostructure and 

subsequent monitoring of the reduction current as a result of the oxidation of 

hydroquinone by H2O2 and horseradish peroxidase was also reported[112]. 

A horseradish peroxidase (HRP)-modified LNA hairpin probe was used by Zhou’s 

group in order to detect miRNA 21 [113]. The LNA incorporated hairpin probe was 

modified with biotin at its 5′-end and –SH at its 3′-end. After the probe hybridized 

with target miRNA-21, its loop-and-stem structure was unfolded to force the biotin 
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away from the electrode surface. Through the specific interaction between biotin and 

streptavidin-HRP, target can be quantified by electrochemical detection of the 

enzymatic product of benzoquinone in the presence of H2O2 and hydroquinone. Liu’s 

group designed an enzyme-labelled amperometric genosensor based on streptavidin 

conjugated alkaline phosphatase (SA-ALP) [114]. The analytical procedure consisted 

of 6 steps: (a) immobilization of 3’ thiolated DNA probe; (b) miRNAs were then 

captured forming an hybrid; (c) cis-diol group of ribose sugar at the end of the 

miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified 

multifunctional AuNPs (APBA–biotin–AuNPs) to be attached through the formation 

of a boronate ester covalent bond; (d) biotin in AuNPs facilitated the capture of SA–

ALP via the biotin–streptavidin interaction; (e) addition of the 4-

aminophenylphosphate (p-APP) substrate in presence of the enzyme produce the 

conversion from p-APP to p-aminophenol (p-AP) occurred. The resulting p-AP could 

be cycled by a chemical reducing reagent after its electro-oxidization on the electrode 

(known as p-AP redox cycling), thus enabling an increase in the anodic current, 

obtaining a detection limit of 3 fM (figure 1.5). 

 

 

 

Figure 1.5 - Schematic representation of the label-free detection of miRNAs based on the 

triple signal amplification of APBA–biotin–AuNPs, SA–ALP and the p-AP redox-cycling 

reaction. Reprinted with permission from [114]. 

 

Bettazzi et al. were the first to report an electrochemical method based on 

paramagnetic beads and alkaline phosphatase amplification for miRNA detection [81]. 

Label free-detection schemes have been also reported. Such direct detection can be 

accomplished by monitoring the changes in some electrical parameter generated by the 
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hybridization event. This approach greatly simplify the sensing protocol, as they 

eliminate the use of indicators and labeling reaction in the real samples. Moreover, the 

assay safety is improved, since the indicators are usually toxic or carcinogenic 

compounds. The first indicator-free scheme in genosensors was described and 

consisted on the recognition of the hybridization event through the decrease of the 

guanine peak (that occur around 1.0 V vs SCE) of the immobilized probe [115]. 

However, this procedure is not applicable in most cases (e.g. for guanine containing 

targets). This limitation has been overcome by developing a new approach, based on 

the use of inosine-modified (guanine-free) probes [116, 117]. The inosine still forms a 

specific base-pair with the cytosine residue [118], but its oxidation signal is well 

separated from that of guanine. This approach was also used for miRNA detection 

[119]. A flat baseline (around +1.0 V) for the probe-modified electrode was observed. 

The hybrid formation was thus detected through the appearance of the guanine 

oxidation peak of the target sequence in differential pulse voltammetry. Detection 

limit of 1.4 µM of oligonucleotide target sequence were reported for an indicator-free 

hybridization biosensor based on magnetic beads coated with streptavidin and screen 

printed carbon electrode as transducer surface. 

A different label-free approach, based on hybridized miRNA-templated deposition of 

an insulating polymer film and electrochemical impedance spectroscopic detection, 

was reported [120]. The biosensor described in this work was based on an indium tin 

oxide (ITO)-coated glass slide modified with a DNA morpholino capture probe. After 

hybridization, the neutral surface of the biosensor is converted to anionic by the 

hybridized miRNA strands. The deposition of the insulating polymer film, poly(3,3′-

dimethoxybenzidine) (PDB), is then carried out by the horseradish peroxidase (HRP) 

catalyzed polymerization of 3,3′-dimethoxybenzidine (DB) in the presence of H2O2. 

Electron transfer resistance in presence of a Fe(CN)6
4-

/Fe(CN)6
3-

 equimolar solution 

increased with the miRNA concentration and used as analytical signal. This occurs 

because of negative hybrid nature that interact with DB producing a high density of 

monomer on the biosensor surface and, consequently, this facilitates DB 

polymerization and the deposition of PDB in the presence of HRP and H2O2. A 

detection limit of 2.0 fM was reported. In 2007, Fan and colleagues introduced a 

strategy for sensitive and label-free detection of miRNA based on conducting polymer 

nanowires [121]. In 2009 a miRNA biosensor based on PNA capture probes 

immobilized on silicon nanowire was proposed [122]. Resistance change measured 
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before and after hybridization correlates directly to concentration of the hybridized 

target miRNA. A detection limit of 1 fM was obtained. 

In addition to the common hybridization-based strategies employed to detect and 

quantify miRNAs, several peculiar approaches have also been reported in the 

literature. Recently a three-mode electrochemical biosensor which exploited the strong 

and non- sequence specific binding of a p19 fused dimer protein to double-stranded 

miRNAs was proposed incorporating three modalities based on hybridization, p19 

protein binding, and protein displacement [123]. Recently, an amperometric 

magnetobiosensors again involving protein p19 as a selective biorecognition element 

was reported [124, 125]. This p19-based magneto-sensors were able to detect 0.04 nm 

of a synthetic target and endogenous miR-21 (selected as a model for its role in a wide 

variety of cancers) in total RNA extracted from cancer cells and human breast-tumor 

specimens without PCR amplification and sample preprocessing. 

 

1.5 Nanostructures and nanoarchitectures 

 

Nanomaterials have dimension in the 1-100 nm range and can be obtained by different 

methods as illustrated in the next paragraphs. A wide variety of nanostructures have been 

reported in the literature for interesting analytical applications. Among them organic and 

inorganic nanotubes, nanoparticles and metal oxide nanowires have provided promising 

building blocks for the realization of nano-scale electrochemical biosensors due to their 

biocompatibility and technologically important combination of properties such as high 

surface area, good electrical properties and chemical stability. Moreover, the integration 

of nanomaterials in electrochemical devices offers the possibility of realizing portable, 

easy-to-use and inexpensive sensors, due to the ease of miniaturization of both the 

material and the transduction system. Nanowires, carbon nanotubes, nanoparticles and 

nanorods are merely some of the myriad objects that are emerging as candidates to 

become crucial elements of future biosensors [126, 127]. Over the last decade, this field 

has been widely investigated and a huge number of papers have been published. Many 

progress have been reported in the integration of nanomaterials such as nano vesicles, 

nanoparticles and polymer nanostructures, in electrochemical biosensing systems. In this 

thesis two different types of nanomaterials have been investigate for genosensor 

developing as described in the following paragraphs. 
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1.5.1 Liposomes 

 

Liposomes are artificial spherical vesicles, which membranes contain one or more 

phospholipid bilayers. The lipid molecules consist of hydrophilic head groups and 

hydrophobic tails; in aqueous solutions they self-organize in order to increase their 

solubility in the surrounding medium and minimize the surface-to-volume ratio. In the 

final structure, they consist of a series of concentric bilayers of lipids with aqueous 

compartments within which soluble substances can be entrapped.  Liposomes were 

discovered by Bangham et al. [128] and were initially used as drug carriers by 

Gregoriadis [129]. The name liposome is derived from two ancient greek words Lypos 

(fat) and Soma (body). Liposomes can be formed as uni-lamellar vesicles (ULV) or 

multi-lamellar vesicles (MLV) in different sizes that range from nanometers to 

micrometers [130]. Because of the similar structure and composition of cell 

membrane, one of the advantages in the use of liposome is the possibility to simulate 

and investigate cell phenomenon. They could be synthetized with a biological 

recognition element or label on the surface, or with various signal markers 

encapsulated on the inside cavity. The simplicity to conjugate the bilayer lipid with a 

variety of biorecognition elements ensures that liposomes are able to recognize various 

analytes for transduction of the signal: nucleic acids, antigen, enzyme, protein, biotin, 

etc. Another potential for liposomes is the simplicity to encapsulate different signaling 

molecules for biosensor development: colorimetric, fluorescent, chemiluminescent, 

electrochemical, etc. Phospholipids, that represent the main component of liposome, 

possess different advantages like relatively low cost, biocompatibility and lack of 

toxicity that make liposomes, with all the characteristics already mentioned, as 

versatile candidate for biosensor development. To the best of my knowledge, no work 

in literature report the use of liposomes in microRNA detection. Willner group 

developed a liposome-based electrochemical genosensor for detection of model 

nucleic acid sequence for the Tay-Sachs genetic disorder [131]. In particular, they 

synthetized HRP-tagged biotinylated liposome to bind directly to a biotinylated hybrid 

immobilized on a gold electrode through an avidin molecule. HRPs on liposomes were 

used to catalyze 4-chloronaphthol in the presence of H2O2 to form the insoluble 

product, which deposited on the gold electrode increasing the impedance signal. 

Sensitivity reported corresponds to 0.65 pM. Starting from this work, in this thesis 
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have been developed two different genosensors based on biotin-tagged liposomes 

coupled with an enzymatic detection scheme. 

   

1.5.2 Nanoparticles 

Nanoparticles (NPs) have been employed in an enormous variety of bioanalytical 

formats; in the last decade many papers have been published in the main international 

scientific journals, illustrating the versatile range of application of nanoparticles as 

quantification tags, immobilization substrates, signal amplifier and as carriers. This 

section will present only a brief overview of the fundamental characteristics which 

have made nanoparticles so interesting for biological sensing, with some examples in 

gold nanorods (AuNRs) such as electrodeposited gold. Depending on their 

composition (metal, semiconductor, magnetic), nano-size particles exemplify different 

functions in electroanayltical applications. Metal nanoparticles provide three main 

functions: enhancement of electrical contact between biomolecules and electrode 

surface, catalytic effects and, together with semiconductor ones, labelling and signal 

amplification [132]. They are typically obtained by chemical reduction of 

corresponding transition metal salts in the presence of a stabilizer, which give the 

surface stability and proper functionalization, in order to modulate charge and 

solubility properties [133]. Among metal nanoparticles, the most widely used have 

been gold nanoparticles (Au-NPs) because of their unique biocompatibility, structural, 

electronic and catalytic properties. The first scientific literature evidence of Au-NPs 

was reported by Michael Faraday in the middle of 19
th

 century [134]. The highly 

favorable properties, including the large surface to volume ratio, unique optical and 

electronic properties, and easy surface modification, have brought intensive focus on 

Au-NPs from both research and industry. The morphology, solubility, surface 

functionality and stability of Au-NPs can be controlled via different synthetic routes, 

such as Turkevich method [135] and Brust method [136]. An important use of 

nanoparticles in biosensing is their employment as platforms for the immobilization of 

biological elements. Their large surface area greatly increases biomolecule loading. 

Due to the ease of functionalization with thiol groups, gold nanoparticles have also 

been widely employed in this field.  

Nanorods (NRs) represent one of the possible one dimensional nanoparticles. The 

optical properties, hydrodynamic behavior as well as phase behavior of Au-NRs, 
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unlike spheric nanoparticles, are influenced by their shape anisotropy [137]. A typical 

adsorption profile of these materials is reported in figure 1.6. It is possible to 

distinguish two absorption bands: one due to light absorbed along the short axis and 

the other due to absorption along the long axis. 

 

Figure 1.6 – Typical extinction spectra of Au-NRs from [138] 

 

As the rod length increases, so does the longitudinal band red shift together with an 

increase in the extinction coefficient. As a result of this optical control and sensitivity 

to changes in local environment, gold nanorods are useful materials for sensing, 

photothermal therapy, and imaging [139]. 

There are three main methods for Au-NRs synthesis: a template method, an 

electrochemical method, and a seeded growth method. Chemical methods are 

characterized by reduction of an aqueous solution of chloroauric acid where reduced 

gold atoms initially can form a sub-nanometer cluster particle in the first nucleation 

stage, leading to growth. Particle aggregation is prevented through vigorous stirring 

and by adding appropriate stabilizing agents [137]. Template method was introduced 

by Martin in 1994 [140]. This method is based on the electrochemical deposition of 

gold within the pores of nanoporous polycarbonate or alumina template membranes. 

The diameter of the nanorod is determined by the pore diameter of the membrane, 

while the length can be controlled through the amount of gold deposited within the 

pores of the membrane. The electrochemical process for gold nanorods production 

was introduced by Wang´s group [141]. The synthesis is conducted with a two 

electrodes electrochemical cell:  a gold plate as a sacrificial anode while the cathode is 
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platinum plate, both immersed in an electrolytic solution containing a cationic 

surfactant such as, hexadecyltrimethylammonium bromide (CTAB). The anode is 

initially consumed forming AuBr4
-
. These anions are complexed to cationic surfactants 

and migrate to the cathode where reduction occurs. An important factor for controlling 

the dimensions of gold nanorods is the presence of a silver plate inside the electrolytic 

solution. The redox reaction between gold ions generated from the anode and the 

silver metal leads to the formation of silver ions. The concentration of silver ions and 

their release rate determined the length of the nanorods.  

The next advance was to replace the gold electrode as the source of gold and move to 

a chemical source, chloroauric acid [142]. Electrochemical reduction was replaced 

with chemical reduction using a weak reducing agent (ascorbic acid) and silver nitrate 

in presence of CTAB used during the synthesis as surfactant, although hexane and 

acetone were still added. The ascorbic acid is unable to reduce gold to the metallic 

state under the high CTAB concentration, but limit the reduction to Au(I) [143]. 

However, addition of small seed particles of about 3 nm in diameter into the Au(I) 

solution resulted in complete reduction to metallic gold, which is catalyzed by the 

surface of the seeds and leads to the gradual change in shape from quasi-spherical to 

rod-like crystal. It was determined that addition of less seed generally led to higher 

aspect ratio rods. However, the shape-yield of nanorods was still relatively low and a 

large amount of spheroidal shapes was present. Jana’s group concluded that the 

formation of anisotropic nanoparticles was dependent on both, the nucleation rate as 

well as surfactant concentration, and also that their method is suitable for gram-scale 

synthesis of gold nanorods. Significant improvement of this method was achieved by 

El-Sayed [144] that introduced a modified seed-mediated method by using a 

cosurfactant mixture of CTAB and benzyldimethyl hexadecyllammonium chloride 

(BDAC), and concluded that the use of binary surfactant results in nanorods of fairly 

good uniformity, higher yield, and yet fewer byproducts. Another recent strategy in 

order to obtain Au-NRs with controlled aspect ratio in the presence of silver ions with 

a photochemical reduction was proposed by Kim and coworkers [145]. The synthesis 

allow the photoreduction of Au(III) to Au(0) starting from a gold chloride solution 

within a mixed CTAB and tetradodecylammonium bromide surfactant system with 

silver nitrate, acetone, and hexane additives. This solution is irradiated with a 254 nm 

UV light for more than 24 hours. A good yield of rods of different aspect ratio can be 

obtained by changing the silver concentration. It is possible to shorten the necessary 
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reaction time to less than 30 minutes by combining the chemical and photochemical 

techniques as proposed by Niidome and coworkers [146]. The method has the 

advantages of the photo-reduction and chemical reduction methods, making the 

process easier in a short time. 

An electrochemical genosensor based on gold nanorods decorated graphene oxide 

sheets has been developed by Han et al. [147] obtaining a 3.5 fM of detection limit. In 

Congur et al. [148] is shown the increasing in sensitivity of a genosensor using a 

disposable graphite electrode modified with Au-NRs. 

Despite chemical synthesis of Au-NPs is widely studied, with his own advantages and 

disadvantages, an interesting method for electrode modification with gold in order to 

obtain an immobilization route for DNA sensing is represented by electrodeposition 

starting from an Au(III) salt. Au-NPs modified electrodes can be prepared by 

potential-step or pulse-potential electrodeposition and the control of particle density 

and size distribution could achieved by adjusting the electrodeposition parameters 

[149]. Electrodeposition is a short version of electrolytic deposition. In this process an 

electrical current reduces cations of a desired material from a solution and deposes that 

material as a thin film onto a conductive substrate surface. Figure 1.7 shows a simple 

electrodeposition system for the deposition of metal from its salt solution. 

 

Figure 1.7 – Electrolysis scheme involved in electrodeposition 

 

The electrolytic solution contains positively charged metal ions (cations) and anions. 

Under the applied external electric field, the cations migrate to the electrode where 

they are discharged and deposited as metallic particle. 

M
+
 + e

-
 → M 
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Under the influence of an applied potential, rearrangement of ions near the electrode 

surface results in an electrical double layer called the Helmholtz double layer, 

followed by the formation of a diffusion layer as shown in figure 6. These two layers 

are referred as the Gouy-Chapman layer. The process is as follows: 

- migration: the hydrated metal ions in the solution migrate towards the cathode 

under the influence of impressed current as well as by diffusion and convection; 

- electron transfer: at the cathode surface, a hydrated metal ion enters the diffused 

double layer where the water molecules of the hydrated ion are aligned. Then the 

metal ion enters the Helmholtz double layer where it is deprived of its hydrate 

envelope. The dehydrated ion is neutralized and adsorbed on the cathode suface;  

- the adsorbed atom then migrates or diffuses to the growth point on the cathode 

surface. 

Thickness of the electrodeposited layer on the substrate is determined by the time 

duration of the process. In other words, the longer the time the object remains in the 

operating electrodeposition bath, the thicker the resulting electroplated layer will be. 

The key to electrodeposition of nanoparticles with controlled shape and size is the 

knowledge of the kinetics and mechanism of initial electrocrystallization stages in the 

particular electrochemical system. Electrodeposition of isolated metal nanoparticles 

can be achieved successfully in systems with weak metal–substrate interaction. No 

underpotential deposition (UPD) takes place in such systems and the 

electrocrystallization process starts in the overpotential deposition (OPD) range with 

the formation and growth of 3D metal nanoparticles (3D Me island formation) on an 

unmodified foreign substrate (Volmer–Weber growth mechanism) [150]. 

Several groups have used as electrolytes for electrodeposition of Au-NPs AuCl4
−
 salts 

in HClO4 or H2SO4 aqueous solutions and investigated the influence of deposition 

conditions on the size, structure, morphology and electrochemical properties of 

electrodeposited nanoparticles [151-154]. Komsiyska and Staikov reported a study of 

the kinetics and mechanism of electrodeposition of Au-NPs using glassy carbon 

electrodes with 1mM AuCl4
−
 in 0.1M HClO4 by means of cyclic voltammetry, 

chronoamperometry and scanning electron microscopy [155]. They demonstrate that 

gold electrodeposition follows the theoretical model for nucleation and 3D growth 

controlled by hemispherical diffusion. The potential dependences of the nucleation 

rate and the size of critical nuclei were determined from the analysis of initial parts of 

current transients at relatively positive electrode potentials. In order to study the 
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electrochemical behavior of AuCl4
-
 ions with glassy carbon electrode, O’Mullane and 

coworkers reported a cyclic voltammetry investigation [156]. The cyclic 

voltammogram shown in figure 1.8 illustrates the electrochemical process expressed 

by this reaction: 

 

AuCl4
−
 +3e

−→ Au + 4Cl
−
 (*) 

 

 

 

 

 

Figure 1.8 - Cyclic voltammograms obtained at a GC electrode at a sweep rate of 100 mV/s 

initiated at 0.70 V vs Ag/AgCl in the negative direction in 6.9 mM HAuCl4. The second 

negative sweep is indicated as a dashed line. Reprinted with permission from ref [156]. 

 

On the chatodic sweep, a peak is observed at +0.28 V (vs. Ag/AgCl) corresponding to 

the reduction of AuCl4
-
 to metallic gold as outlined in equation (*). On the reverse 

sweep, a current crossover is observed at +0.49 V (vs. Ag/AgCl) which is indicative of 

nucleation growth kinetics as reported by [157] and [158]. This is followed by a large 

anodic peak due to electrodissolution of adsorbed Au(0) in chloride media generated 

through the reduction of the AuCl4
-
 salt in the first sweep and the formation of an 

oxide layer on the electrodeposited gold. On the second sweep, the cathodic peak 

observed at +0.28 V (vs. Ag/AgCl) shift to positive potential due to nucleation sites 

created on the first sweep. In other words, the higher potential required for gold 

reduction indicates that the deposition of gold on gold is easier than the nucleation of 

gold on GC. 
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An example in miRNA detection using elctrodeposited gold is reported in [100]. 

Developed genosensor is based on luminol anodic electrochemiluminescence (ECL) 

for the detection of microRNA-155 using H2O2 as a co-reactant and hemin as a 

catalyzer for signal amplification. The bare glassy carbon electrode (GCE) was first 

electrodeposited with AuNPs. The proposed biosensor showed a wide linear range 

from 5 fM to 50 pM with a relatively low detection limit of 1.67 fM for microRNA-

155 detection. 

In this thesis, gold was electrodeposited on graphite surface of a disposable screen 

printed carbon electrode and used as surface for immobilization of a thiolated DNA 

capture probe for the development of a genosensor for miRNA recognition with an 

enzymatic detection scheme. 

 

1.5.3 Conductive polymer films 

 

Another class of nanomaterials, which in the last few years has found a greatly 

increasing number of applications, is constituted by conductive polymer 

nanostructures. Conducting polymers are materials that can be employed as receptors 

as well as transducers or immobilization matrix in electrochemical biosensing. Before 

1970, conventional polymers such as plastics, were considered dielectrics or insulators 

due to their significant resistance to electrical conduction. The discover by Alan J. 

Heeger, Alan G. MacDiarmid and Hideki Shirakawa of conductive polymers, 

culminated in 2000 with a Nobel Prize in Chemistry, gives new perspectives in the 

field of electronics and sensing [159, 160]. Conductive polymers are characterized by 

an extended -conjugation along the polymer backbone which promotes an intrinsic 

conductivity. This conductivity is due to the formation of charge carriers upon 

oxidizing (p-doping) or reducing (n-doping) their conjugated backbone, because in 

neutral (uncharged) state they present no conductivity. They have the electrical 

properties like that of metals but with the characteristics of organic polymers such as 

light weight, resistance to corrosion, flexibility, lower cost and the added advantage 

that they can be simply modified in order to obtain the better structure or propriety for 

a specific application [161, 162]. Regarding sensing, conductive polymers assume 

further appealing properties: ease of preparation by chemical or electrochemical 

methods, sensitivity towards a wide range of analytes, great signal amplification due 

to their electrical conductivity and fast electron transfer rate. One of the widely used 
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method to synthetize polymers is the electropolymerization method. It consists in an 

electrochemical oxidation of opportune monomer, that is usually soluble only in 

organic media. Most of the polymer obtained through this method have alternative 

chemical synthesis, preferably by oxidation in organic media. However, chemical 

synthesis has the disadvantage that requires chemical oxidation that could result in 

pollution of the polymer product. Moreover, there is the problem to introduce the low-

soluble polymerization product on the sensor layer. Instead, the use of electrolysis 

provides the formation of the polymer directly on the surface of the working electrode. 

One of the most useful advantages using electropolymerization for is represented by 

the possibility to introduce functional groups on the polymer film modifying the 

monomer with that group, or using copolymerization with different monomer units.  

Regarding the development of genosensors, electropolymerization is surely an 

interesting technique, in order to covalently bind the capture probe to the electrode 

surface and to ensure a specific conductivity . 

Generally, electropolymerization is initiated by the anodic oxidation of unsaturated 

monomer units followed by coupling cation radicals usually with the removal of the 

hydrogen ion. If the intermediate products are stable enough, the propagation stage 

can continue to form oligomeric and polymeric products with no additional 

electrochemical stimuli similarly to the ion-radical polymerization initiated by 

chemical oxidants. However, usually is preferable that the electrochemical stimuli 

continue until the end of the process, because of the low coupling efficiency of the 

neutral monomer. The propagation stage involves the formation of the cation radicals 

of intermediate products (dimers/oligomers) of the previous stages in which the 

electrochemical activity is similar to that of monomer. The so called termination stage 

can include a deeper oxidation of the intermediates, the formation of stable radicals 

and the reactions with molecular oxygen or nucleophilic substance present in solution 

(figure 1.9). 
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Figure 1.9 – Electropolymerization scheme for bithiophene monomer. 

 

If the products of polymerization are electrochemically inactive and insoluble they 

precipitate on the electrode surface and hence suppress the electron transfer due to the 

electric insulation of the interface. In general, three types of electropolymerization 

products are used in the DNA sensor assembly: 

 

- electroconductive polymers that exhibit semi-conductors behavior and participate 

in the effective electron transduction between the mediators or redox centers of 

biomolecules and electrodes. Three polymers are mostly investigated as DNA 

supports and components of the signal transduction systems of biosensors, i.e., 

polyaniline, polypyrrole and polythiophene [163-165]; 

- electrochemically active but non-conductive polymers which can mediate electron 

exchange only in a very narrow potential window near their standard redox 

potential and are quite effective as mediators. Polycyclic heteroaromatic systems 

obtained from phenazines, phenoxazines and phenothiazines belong to this group 

of polymers. Many of them are known under different names as dyes or redox 

indicators like Methylene Blue [166] based genosensor; 

- non-conductive polymers that do not support electron transduction. Their use in 

the DNA sensor assembly is aimed at the mechanical protection of the 

biorecognition layer or the mechanical support for the immobilization of the DNA 

probes or mediators. They could be obtained by overoxidation of 

electroconductive materials like polypyrrole [167] or polyaniline [168]. 

There are two main strategies for the deposition of DNA on the electropolymerized 

surface.. The first one is performed in a polar organic solvent where the electrode is 

firstly modified and then transferred in an aqueous media in order to be covered with 
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the layer of a DNA probe and finally transferred into the aqueous media to record 

voltammograms and measure target analytes specifically bonded to DNA onto the 

electrode surface. The second approach involves electropolymerization in the aqueous 

solution of a monomer, in some cases containing the DNA oligonucleotides so that the 

immobilization can be performed simultaneously with the polymerization. The first 

strategy allows using monomers insoluble in water and results in formation of more 

dense and compact films with lesser permeability for ionic substances in comparison 

with the products of electropolymerization in aqueous media. Aqueous polymerization 

is more preferable for genosensor development due to its simpler realization and a 

better compatibility of the product with biopolymers bearing a sufficient amount of 

water and metal ions stabilizing the steric structure of the molecules and 

counterbalancing the negative charge of the phosphate skeleton of DNA and 

oligonucleotides. In this paragraph thiophene based polymer, which was one of the 

polymer investigated in this thesis, will be described.  

Electropolymerization of thiophene usually occurs in organic medium. 

Electropolymerization in aqueous solutions is much more problematic than that of 

pyrrole and aniline. This is due to several reasons: (i) the solubility of thiophene in 

water is much smaller than that of pyrrole and aniline, (ii) the potential oxidation of 

thiophene is higher than that of both monomers (pyrrole and aniline) and of water and 

(iii) the thienyl cation radicals are more reactive with nucleophilic solvents than 

pyrrole and aniline cation-radicals [169]. Because of these features, the 

electropolymerization of thiophene and its derivatives is carried out generally in dry 

organic solvents [170, 171]. As mentioned before, the use of water medium is always 

preferable for biosensor development. Besides, it has been found that thiophene and its 

derivatives can also be electropolymerized in acid solutions [172], and polythiophene 

films have properties and structures similar to those formed in organic media. In order 

to increase the solubility of the monomer in aqueous medium, a small amount of 

organic solvents like methanol, ethanol and acetonitrile could be used. Although the 

importance of polypyrrole in electroanalysis, polythiophenes could be considered the 

conductive polymers preferred nowadays for electrode systems devoted to 

genosensing due to their intrinsic variety of possible functionalization of the thiophene 

monomer ring. This aspect can be exploited to impart specific physical properties to 

the electrode, such as conductivity and stability, or to give peculiar chemical 

characteristics in order to increase the specific affinity or reactivity towards a certain 
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analyte or molecule. Many different polythiophene derivatives have been proposed in 

electroanalysis. 2,2′-Bithiophene is widely used due to the very high potentials 

required to oxidize the unsubstituted thiophene, which may concurrently induce 

overoxidation of the polymer chains formed. Overoxidation implies the formation of 

chemical functionalities on the thiophene ring that either lower or interrupt the 

conjugation of the π electron system: an irreversible dramatic decrease of the 

conductivity of the polymer may occur. Chemical or electrochemical oxidative 

methods can be used to synthesize polythiophenes. Developing an electrochemical 

platform, it is evident that the electrochemical oxidation at a conductive support is the 

most spontaneous and most effective way to conduct the synthesis and the realization 

of polymer film. Many experimental factors chosen for the polymer electrogeneration 

affect not only the structural and morphological characteristics of the film produced, 

but also its chemical characteristics. In example, the polymerization is dependent by 

the concentration of the monomer, the nature of the solvent and the supporting 

electrolyte. Another important factor that influences the film characteristics is the 

electrochemical procedure chosen for the synthesis and coating, varying from 

potentiodynamic to potentiostatic and galvanostatic procedures. Anyway, in each 

procedure, it is important to avoid the potential values at which overoxidation of the 

deposited polymer occurs. In order to confirm the coating of the polymer on the 

electrode surface, some information concerning the resulting polythiophene coating 

can be obtained by combining electrochemical measurements with different 

techniques, like atomic force spectroscopy [173].  

Recently, Kutner’s group developed a genosensor based on a thiophene derivative 

biotinylated monomer [173]. Similar works based on polymer film bearing biotin on 

its backbone were reported for thiophene and pyrrole monomers, however pyrrole-

based monomers are stable only in their doped state [174] and synthetic route of 

preparation of a monomer for thiophene based polymer was much more complicated 

and tedious if compared with the synthetic approach proposed by Kuter’s group. The 

biotin-avidin binding is widely used in biosensor development. The reason is in the 

very high stability constant of the resulting complex (10
15

 M
-1

) [175], making this 

non-covalent bind really strong. This high stability allows easy formation of stable 

assemblies of streptavidin or biotin conjugated substances. This approach was used, in 

this thesis, for miRNA detection in order to increase sensitivities and the possibility to 

obtain simple and portable and label free system. 
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1.6  Photoelectrochemical transducers 

 

Recently, with the emergence of novel photo-electrochemically active species and new 

detection schemes, photoelectrochemistry has received increasing attention in the field of 

biosensors. In classical photoelectrochemical measurements, irradiation of an electrode 

with light that is absorbed by the electrode material causes the production of a current (a 

photocurrent). This photocurrent is dependent on the wavelength, electrode potential and 

solution composition. Since most of photoelectrochemical measurements occur at 

semiconductor electrodes, briefly the nature of semiconductor materials and their 

interfaces with solution will be described in the following paragraph. Indeed, photoeffects 

are also observed at metal electrodes [176], although the resulting photocurrent are much 

smaller. Furthermore, photoelectrochemical active species can be coupled to 

semiconductor or metallic electrodes to perform photoelectrochemical measurements. 

These photoelectrochemically active species act as the light-absorbing species. If 

injection of a photogenerated charge carrier into the electrolyte or electrode competes 

effectively with relaxation of the excited state of the species, a photocurrent might be 

observed. Some examples of these photoactive species are here reported. Finally, some 

examples of detection scheme are also shown. 
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Figure 1.10 – A) Relative disposition of the CB and VB for a semiconductor (a) and an insulator 

(b). Ebg is the band gap energy. B) Relative disposition of the Fermi level (EF) for an intrinsic 

semiconductor (n=p) (a), for an n-type semiconductor (b), and a p-type semiconductor (c) 

. 

The behavior of semiconductor materials in presence of light absorption can be described 

in term of the semiconductor energy band model. Of particular interest are the highest 

occupied (valence band, VB) and the lower empty (conduction band, CB) energy bands: 

if these two bands are well separated by a bandgap then the solid is a semiconductor or an 

insulator (figure 1.10A); if these two bands overlap then the solid is a conductor. An 

extremely important parameter is the bandgap energy defined as the energy unity 

separation between valence and conduction bands (Ebg, expressed in eV) [177]. Solids 

with Ebg lower than 3 eV are semiconductors and solid with bandgap larger than 3 eV are 

considered insulators [178]. In example, α-tin has a Ebg of 0.09 eV [177] and it is 

considered a metal; silica has a Ebg of 1.12 eV [179] and it is considered a semiconductor; 

carbon diamond has a Ebg of 5.48 eV [179] and it is considered an insulator. An important 

concept in the description of semiconductor electrodes is that of Fermi level (EF), which 
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is defined as the energy for which the probability of electron occupancy is 50% (where it 

is equally probable that the level is occupied or vacant) [176]. 

Semiconductors can be made conductive by insertion of extra electrons in the free or 

partial free conduction band, or by removing electrons from the valance band. This could 

be generated in three different ways: thermal excitation, doping and photo-excitation. In 

general, the thermal excitation of an electron from VB to CB produces a free electron in 

the CB and a vacancy or hole in the VB. A material is called intrinsic semiconductor 

when the charge carriers, electrons and holes, exist in a dynamic equilibrium. Thermal 

excitation is important only for semiconductors with a Ebg lower than 0.5 eV [177]; 

doping is a process that introduce new energy levels into the bandgap by a partial 

reduction of the metal oxide, by adding impurity or, in general, by varying the 

stoichiometry. In these materials, EF shifts closer to the band edges. In particular, when 

EF shifts close to the VB, the semiconductor is termed p-type; instead, when EF shifts 

close to the CB, the semiconductor is termed n-type (figure 1.10B). An electron could be 

also promoted from the valance to the conduction band with the absorption of light. The 

optical band gap of the semiconductor is an important parameter in defining its light 

absorption behavior. In this quantized process, an electron-hole pair is generated in the 

semiconductor when a photon of energy hν (ν = frequency, h = Planck constant, with hν 

> Ebg) is absorbed. Optical excitation thus results in a delocalized electron in the CB, 

leaving behind a delocalized hole in the VB; this is the band-to-band transition [180]. A 

plot of photocurrent versus the wavelength of irradiating light can be employed to 

determine Ebg.  

When a semiconductor is immersed in a redox electrolyte solution, the EF could be 

identified as the electrochemical potential of the electron ( e). If electrostatic 

equilibrium is attained,  e in both phases (solid-liquid) must become equal, or 

equivalently EF must become equal, and this can occur by a charge transfer between the 

phases. Indeed, when a semiconductor is immersed in solution, the electrochemical 

potential (Fermi level) is disparate across the interface. Equilibration of this interface thus 

necessitates the flow of charge from one phase to the other and a ‘‘band bending’’ ensues 

within the semiconductor phase [176]. This band-bending phenomenon occurs whenever 

two dissimilar phases are in contact (e.g. semiconductor-gas, semiconductor-metal) and it 

is an important point of distinction from metal electrodes. At a metal-electrolyte 

interface, the charge on the metal side is localized just at the metal surface, whereas, at a 
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semiconductor-electrolyte interface, the charge on the semiconductor side is distributed 

deep in the interior of the semiconductor, forming a wide space charge region.  

Excellent reviews, book chapters, and research papers dealing with theory of 

photoelectrochemistry at semiconductor electrodes are available [176-180] and therefore, 

will be not described here in details. 

In term of electrode materials, semiconductor photoelectrochemistry has evolved from 

the use of semiconductor single crystals to polycrystalline thin films and, more recently, 

to nm-size semiconductor particles (nanocrystalline films) (figure 1.11).  

 

 

Figure 1.11 – Schematic representation of a nanocrystalline semiconductor-electrolyte interface: 

(a) in the dark, where no photocurrent is generated; (b) under illumination from the electrolyte 

side. Illumination induces an electron flux through the nanocrystalline interface. 

 

Novel semiconductor nanoparticles (NPs) have been of special interest. Such small 

particles have properties that differ from those of larger dimension (µm) [176]. General 

properties and in particular the band structure of large particles are comparable with those 

of bulk material. However, when the particle dimension start to decrease to nm dimension 

band gap increases as the particle size decreases. Furthermore, such NPs have very large 

surface area/volume ratios, and electrodes formed from such preparations tend to have a 

high porosity and large roughness factors. Nanocrystalline TiO2, for example, is an 

efficient electrode material for constructing photovoltaic devices, due to its high surface 
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area and porosity of the nanocrystal [181]. Similarly, SnO2 is an important wide band-gap 

semiconductor, which is well-known for its excellent transparency and conductivity. 

SnO2 NPs have been widely used in many fields such as dye-sensitized solar cells, 

transparent conductive electrodes and gas sensors [182]. SnO2 has two main features 

compared to TiO2: first, SnO2 (Ebg 3.8 eV) shows a 0.6 eV larger band gap than that of 

TiO2 (Ebg 3.2 eV) and creates fewer oxidative holes in the valence band under UV 

illumination; second, the mobility of charge carriers in SnO2 is faster than that in TiO2 

[183]. ZnO is another semiconductor (Ebg=3.37 eV) extensively used for many 

applications such as piezoelectric transducers [184], gas sensors [185], and optoelectronic 

devices [186]. It can be grown in a variety of nanostructured morphologies, by low and 

high temperature methods [187-189]. Even copper(I) oxide (Cu2O) is a well known p-

type semiconductor with an Ebg value of 1.9 eV and a proper photochemical behavior 

[190-193]. 

 

In 1839 Becquerel was the first to discover that illuminating certain materials it is 

possible to generate an electric current. Starting from that discovery, interest in this 

phenomenon increased with particular attention to solar energy conversion. When 

photoelectrochemically active species are excited by light, charge separation and charge 

transfer will occur, generating a photocurrent [194]. With the development of new 

photoelectrochemically active species, photoelectrochemistry represents an intriguing 

approach also in the field of biosensor development.  

Different nanomaterials have been used as photochemical active species for 

photoelectrochemical applications. Recently, Quantum Dots (QDs) have been extensively 

studied [195-198]. Photoexcitation of QDs produces the transfer of electrons from the 

valence band to the conduction band, yielding electron-hole pairs. This phenomenon is 

the primary event in the generation of a photocurrent. Ejection of the CB electrons to the 

electrode, in presence of an opportune donor in the electrolyte solution, generates an 

anodic photocurrent. In contrast, ejection of the CB electrons to an opportune acceptor in 

the electrolyte solution, with concomitant migration of an electron from the electrode to 

the VB, generates a cathodic photocurrent.  

Moreover, as already mentioned, other semiconductor inorganic nanomaterials (like 

SnO2, TiO2, ZnO, etc.) have been widely used for developing photoelectrochemical 

nanostructured electrodes [199-203]. Even gold NPs (AuNPs) have been used for the 

nanostructuration of the electrodes because of the high surface area and high conductivity 
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of this material [133]. Lahav and coworkers [204] reported the fabrication of an ITO 

electrode modified by a layer-by-layer deposition process of a photosensitizer/electron 

acceptor molecular cross-linked AuNPs arrays. The irradiation of the crosslinked AuNPs 

multilayer results in a photocurrent that increased with the number of the layers. To 

enhance the photocurrent generated by semiconductors, the retardation of the 

recombination of the electron–hole species is essential. Moreover, the accumulation of 

the electrons allows extending the spectral response from UV to visible or near infrared 

region simplifying the analytical procedures and the costs of the processes. A possible 

way to enhance photocurrents is the coupling of semiconductors with other 

semiconductor NPs or with conductive nanomaterials [205-207]. For instance, the 

coupling of a large bandgap semiconductor with a narrow bandgap semiconductor 

extends the photoresponse to longer wavelengths and facilitates charge separation [205].  

In figure 1.12 is reported an example of nanocrystalline semiconductor electrode, 

prepared by sequential deposition of SnO2 and CdSe films onto an ITO-glass electrode. 

Upon illumination of ITO/SnO2/CdSe electrodes with visible light, electron-hole pairs are 

generated in CdSe, as visible light is absorbed by CdSe only. Generally, the 

photogenerated electron-hole pairs recombine quickly in CdSe, resulting in loss of the 

charge carriers. On the contrary, in this coupled system the photogenerated electrons in 

CdSe (ECB = -0.8V vs. SHE) quickly migrate to the lower lying conduction band of SnO2 

(ECB = 0 eV vs. SHE). As a result, they escape recombination with photogenerated holes 

in CdSe, and are collected in greater number at the back contact ITO producing a larger 

photocurrent. Similarly, it was reported that TiO2/CdS present highest photocurrent in 

comparison to CdS alone because of the enhanced charge separation [208]. Wang and 

coworkers [209] reported a nanocomposite system based on TiO2/CdS modified ITO 

electrodes with alternately dipping the TiO2 modified ITO electrode into [Cd(NH3)4]
2+

 

and S
2-

 solution repeatedly. 
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Figure 1.12 – Schematic model of quantum dots coupling. Upon illumination of the 

ITO/SnO2/CdSe electrodes with visible light, electron-hole (e
-
-h

+
) pairs are generated in CdSe, as 

visible light is absorbed by CdSe only. The photogenerated electron-hole pairs can recombine, 

resulting in loss of the charge carriers, or the holes can be captured by the electrolyte 

[Fe(CN)6]
4- 

leaving the electrons in CdSe. The electrons in CdSe are then collected at the back 

ITO contact to produce an anodic photocurrent. The charge recombination is much more 

important in the simple CdSe electrode than in the coupled system. The reason is that in the 

coupled system the photogenerated electrons in CdSe quickly migrate to the lower lying 

conduction band of SnO2. As a result, they escape recombination with photogenerated holes in 

CdSe, and are collected in greater number at the back contact ITO producing a larger 

photocurrent. Modified from Ref. [205] Copyright © 1997, Elsevier. 

 

In order to increase photoresponse of CdS, Willner and coworkers developed a 

AuNPs/CdS nanoparticle system [210]. The enhanced photocurrent was attributed to the 

effective charge separation of the electrode hole pair by the injection of conduction-band 

electrons from CdS to AuNPs. Furthermore, the coupling of semiconductor materials 

such as TiO2 with AuNPs are expected to decrease the overvoltage that is necessary for 

the hole transfer to the redox couple in the electrolyte [211, 212]. By promoting the 

interfacial hole transfer to the redox couple, the adsorbed AuNPs should facilitate charge 

(electron) stabilization within the nanocrystalline TiO2 films. 
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1.6.1 Detection of Nucleic Acid by Photoelectrochemical Genosensors 

It is well known that plant cells and photosynthetic bacteria exert photoelectric 

behavior. Photoelectrochemistry has also been applied to investigate specific 

phenomena in mammalian cell such as the apoptosis process [213]. Nucleic acids are 

also claimed to be photoelectroactive. In other words, some analytes (including 

nucleic acids) can generate photocurrent by themselves, on the basis of which 

quantitative determination can be performed. In addition, the interaction between the 

analytes and the photoelectrochemical materials (semiconductor electrodes or 

photoactive species) can induce the changes of the photocurrent, which can also be 

used as the signal for photoelectrochemical detection.  

Starting from these considerations different sensing schemes can be developed and 

different analytical strategies have already been reported in literature for the detection 

of nucleic acids using photoelectrochemistry. In the following sections some examples 

of qualitative and quantitative analysis of nucleic acids are reported. The paragraph is 

organized considering label free strategies, namely sensing scheme based on the 

interaction of nucleic acid with the light and the electrode material, and label-based 

method. In the case of label-based methods, both photoactive materials and classical 

labels such as enzyme or particles that can cause or alter a photocurrent are described. 

 

1.6.2 Label-free genosensors 

 

It is generally accepted from the scientific community [214] that π-stacked double 

strand DNA (dsDNA) molecule is a one-dimensional electrical conductor comparable 

to that of conventional conducting polymers [215, 216]. However, debates on the 

exact mechanisms of conductivity and particularly on the electron transfer (ET) 

properties of dsDNA are ongoing, and it is still not completely clear how efficiently 

DNA can transport electrons over long distances [214, 217, 218]. Photoelectric 

behavior of nucleic acid has also been reported in literature [219, 220]. This behavior 

has been exploited for analytical purposes, using different electrode materials. 

Qingwen et al. reported, in 2000, an analytical attempt [221] for the detection of the 

hybridization reaction using a metal electrode. A gold electrode was modified with a 

thiolated DNA probe and a photocurrent was measured. In order to demonstrate that 

photoelectric activity of DNA was due to Guanine base (G), two different sequences 
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have been tested: one reach in G denoted as probe 1 and the other, total free of G, 

denoted as probe 2. Both these probes were hybridized with a complementary target. 

The authors reported that when probe 1 modified electrode was illuminated, the 

observed photoelectric behavior resulted from the electrons hoping from G to the 

substrate electrode mediated by the DNA helix. When it is hybridized with its 

complementary part, the photocurrent of the dsDNA modified electrode decreased. 

The authors ascribed this behavior to the decreased activity of G when specifically 

bound with cytosine (C). In order to further confirm the accuracy of this assumption, 

another probe containing only adenine (A) and timine (T) was tested. When probe 2 

modified electrode was hybridized with its complementary part, the photoelectric 

current of the dsDNA electrode decreased as well. The conclusion of the authors was 

that the observed photoelectric phenomenon did not merely come from G base in the 

DNA helix but reflected the total interfacial properties of the modified electrodes. The 

self-assembly of negatively-charged single stranded DNA (ssDNA) and specifically 

formed dsDNA molecule would alter the double-layer potential at the electrode 

surface, and further the Fermi energy difference at the electrode/solution interface. 

Lu and coworkers in 2006 [222] reported a label free genosensor using a 

semiconductor TiO2 film electrode deposited onto a conductive F-SnO2 electrode. 

Hairpin DNA was bound to TiO2 film electrode. After hybridization with the 

complementary target a decrease of photocurrent was observed. The authors attributed 

the photocurrent change to the oxidation of G and, consequently, to the charge transfer 

rate in the interfacial layer between the TiO2 surface and electrolytes. The 

photophysical process was elucidated by the authors as follows: an electron(e
-

)/hole(h
+
) charge pair was first generated when the excited light was absorbed by 

TiO2, instantaneously the charge separation occurred, and consequently e
−
 migrated to 

the F-SnO2 electrode while h
+
 migrated to the electrolyte, which simultaneously 

underwent undesired recombination. These processes led to the generation of an 

anodic photocurrent. Next, G of the hairpin DNA probes were oxidized into guanine 

radical cations (G
+
) by the photoinduced hole carriers (h

+
) and OH

−
 in the electrolyte. 

In the process, the hole trapping action of guanine served as a hole scavenger or as an 

electron donor, resulting in the significant increase of photocurrent. After 

hybridization with the complementary target, a decrease in the photocurrent was 

observed. The authors reported two possible reasons for photocurrent reduction after 

hybridization: 1) the charge transfer rate was inhibited due to the introduction of target 
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DNA molecules because the charge transfer efficiency of DNA is dependent on its 

sequence and on the distance. The lower charge transfer rate enhanced undesired 

recombination, and thus caused the photocurrent decrease; 2) the G base of the target 

DNA cannot interact with the oxidizer directly because of steric hindrance in the DNA 

helix, which diminished its hole trapping capacity and thus led to the lower 

photocurrent. Two years later, in 2008, the same group [223] optimized another 

genosensor based on the same electrode used in the previous work, but coupled with 

the use of AuNPs. The AuNPs served as a charge sink, reducing bulk recombination 

via band gap states and promoting the charge separation rate and transfer rate, 

resulting in a higher photocurrent compared with TiO2. A detection limit of 1 nM was 

reported. 

 

1.6.3 Label-based genosensors 

 

Different photosensitizers have been reported in literature for the detection of nucleic 

acids. Among them organic compounds known to be as intercalators of the DNA 

double helix have been extensively used. Liu and coworkers [224] developed a 

photoelectrochemical biosensor using a ruthenium bipyridine derivative as 

photosensitizer, a SnO2 electrode, and oxalate as electron donor. Ruthenium 2,2'- 

bipyridine - dipyrido[3,2-a:2'3'-c]phenazine [Ru(bpy)2dppz] generate an anodic 

photocurrent if irradiated with a 470 nm light. In presence of hybrid dsDNA, the 

photocurrent is reduced and this reduction was attributed to the intercalation of 

Ru(bpy)2dppz into DNA helix. Three possible reasons for the reduction of 

photocurrent were reported by the authors: (a) impeded electrode reaction of Ru-dppz 

after intercalating into DNA; (b) reduced mass diffusion due to the increased size of 

the DNA/Ru-dppz adduct; and (c) electrostatic repulsion between DNA phosphates 

and oxalate anion, which interferes with the catalytic reaction between intercalated 

Ru-dppz and oxalate. Even bisintercalator molecules have been used. The term 

bisintercalator is derived from the ability of these molecules to directly bind to duplex 

DNA through two planar intercalating moieties. Gao and Tansil [225] reported the use 

of a novel bisintercalator the N,N'-bis(3-propyl-imidazol)-1.4.5.8-naphtalene diimides 

(PIND) linked by Ru(bpy)3 complex (PIND-Ru-PIND). Using PIND-Ru-PIND as 

photosensitizer and a modified ITO electrode, a detection limit of aproximatevely 20 

fM, with a dynamic range of 50 fM - 1 nM and a RSD% of 13%, was obtained. The 
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biosensor was tested directly on genomic samples. In particular, a full-length TP53 

cDNA was analysed (the TP53 cDNA refers to the copy DNA of the Human tumor 

protein p53). 

However, photoactive species, like organic dyes or NPs, can also be bound covalently 

to the target DNA or RNA, instead of being intercalated within the helix. As an 

example, Tokudome et al. [226] reported a genosensor based on photoelectrochemical 

DNA detection with rhodamine B dye as photosensitizers. In particular, the DNA 

probe was chemically adsorbed on nanoporous crystalline TiO2 particles (through the 

affinity of phosphate groups condensed to OH groups of titanium dioxide), coated 

onto a transparent conducting oxide glass (TCO). After the hybridization between the 

probe and target DNA molecules, labeled with rhodamine B, light irradiation 

generates electrons in the dye molecules, and these electrons are injected into the TiO2 

electrode. The photocurrent generated was associated to target concentration. A 

detection limit of 100 pM was reported. One of the interesting aspect of this biosensor 

is the mechanism that allow to have simultaneous detection of different sequences. 

Varying the dye bound to a specific target sequence  (i.e. Alexa Fluor
TM

 647 and 

rhodamine B), different photocurrent spectra were obtained. 

Willner and coworkers demonstrated the possibility to use inorganic semiconductor 

NPs as labels in photoelectrochemical DNA sensing [196]. They described an 

interesting nanoarchitecture of DNA-cross-linked CdS nanoparticle on gold electrode 

and the structurally controlled generation of photocurrents upon irradiation of these 

systems. The array of CdS NP layers was constructed by layer by layer hybridization 

process using CdS NPs modified with thiolated DNA. The photocurrents were 

generated by the DNA-cross-linked CdS arrays that contained different generations of 

NPs. The mechanism of photocurrent generation probably involves the photoejection 

of conduction-band electrons of CdS particles in contact with or at tunneling distances 

from the electrode. However, some of the cross-linked NPs do not participate in the 

development of the photocurrent. To assist the generation of the photocurrent by 

inactive CdS particles, the arrays were treated with [Ru(NH3)6]
3+

. In the presence of 

[Ru(NH3)6]
3+

, which is electrostatically bound to the DNA, the photocurrents were 

two times higher. [Ru(NH3)6]
3+

 acts as an electron acceptor for the conduction-band 

electrons, and could thus mediate electron transfer from inactive CdS particles to the 

electrode. A similar work was proposed in 2011 by Guo and coworkers [227] using 

methylene blue as the intercalator molecule with target DNA modified with CdS NPs. 
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Increasing the concentration of target DNA, the photocurrent increased lineary in the 

range of 1 fM to 20 fM with a detection limit estimated to 1 fM and a reproducibility 

of 4.5%. A step further in the use of QD-DNA assembly was that proposed by Willner 

and coworkers [228]. These authors reported the organization of semiconductor 

NP/relay or photosensitizer/ electron-acceptor structures on electrodes modified by 

DNA sequences.  

Metal NPs are common labels in many biosensor formats. Recently, Xu and 

coworkers explored the possibility to use AuNPs and silver nanoparticles (AgNPs) as 

labels in photoelectrochemical genosensors. In particular they focused their studies on 

the energy transfer between CdS QDs and metal NPs [229, 230]. The probe was 

immobilized onto the QDs and the Ag NP was the label on the target sequence. Due to 

the overlap of the absorption spectra, the exciton and the plasmon could be induced 

simultaneously, resulting in the photoresponse of the QDs greatly attenuated by the 

stimulated exciton-plasmon interactions (EPI). The EPI resonant nature enabled 

manipulating photoresponse of the QDs via tuning inter-particle distances. With a 

light source of 420 nm and a potential of 0 V the lowest DNA concentration detected 

was 2 fM. 

Enzymes are frequently used labels in both electrochemical and optical DNA-based 

biosensors. They have been proposed as labels also in photoelectrochemical assay 

schemes. As an example, an enzyme-based approach coupled to a Bi2S3 nanorods 

modified ITO electrode for sensitive and specific detection of microRNA was 

proposed in [231]. Using alkaline phosphatase and L-ascorbic acid 2-phosphate (AAP) 

as enzymatic substrate, ascorbic acid (AA) was in situ generated and used as electron 

donor for photocurrent amplification. A low detection limit of 1.67 fM was reported. 

This high sensitivity is attributed, also, to the use of immunogold labeled streptavidin 

nanostructures that could bind more enzyme molecules inducing a highest catalytic 

activity in the in situ production of the AA electron donor. The same group reported a 

similar approach based on ascorbic acid loaded apoferritin and Trypsase [232]. In 

conclusions many different labels can be used in photoelectrochemical-based 

genosensors. 
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Electrode materials Label LOD [Ref] 

SiO2 Ru(bpy)2dppz 180 pM [224] 

ITO PIND-Ru-PIND 20 fM [225] 

TCO/TiO2 Rhodamine B 100 pM [226] 

FTO/TiO2 - 2.5 nM [222] 

FTO/TiO2/AuNPs - 1 nM [223] 

ITO/CdS AgNPs 2 fM [230] 

Au CdS 1 fM [227]  

ITO/Bi2S3/AuNPs Alkaline phosphatase 1.67 fM [231] 

ITO/Bi2S3/AuNPs Ascorbic acid loaded apoferitin + trypsase 0.35 fM [232] 

 

Table 1.3 -  Examples of different electrode materials and labels for quantitative analysis of 

nucleic acids using photoelectrochemical genosensors. 

 

In Table 1 are summarized some examples of different assay schemes for the 

quantitative analysis of nucleic acid. The materials used for the electrode development 

as well the employed labels are reported together with the limit of detection (LOD).  

 

 

1.7 Aim and objectives 

 

Starting from the initial discovery in the early 90’s, over the last decade has become more 

clear that miRNAs play important role in many biological process as modulator of gene 

expression. An abnormal miRNA expression could be linked to many diseases, like 

cancer. For this reason, miRNAs represent good candidates as diagnostic and prognostic 

tumor biomarkers. Lung cancer is the tumor with the highest mortality according to 

WHO, and miRNA-221 and miRNA-222 resulted overexpressed in patients affected by 

this particular disease. One of the most used standardized methods for detection of 

miRNAs, due to the inherent sensitivity and reliability, is RT-PCR. However, this method 

is laborious and require the use of a well-equipped laboratory with specialized and well-

trained personnel, and is neither feasible for routine determination of miRNAs nor 

applicable for point-of-care (POC) testing. Electrochemical biosensors represent good 

options for miRNA detection. Despite the attractive analytical performances of the 



 
 

53 

genosensing schemes described in the literature for electrochemical miRNA diagnostic, 

most of them are unlikely to be applicable to routine analysis. Typical levels of 

circulating miRNAs in serum were estimated to be in the aM to pM range [58-60].  

The present work was focused on the investigation of different types of nanomaterials 

(liposomes, gold nanoparticles, polymer films and titania films) and their application in 

highly sensitive genosensing systems. In particular, miRNA 221 and 222, considered as 

potential candidates for biomarkers of lung cancer, were detected. The choice of these 

particular materials and specific applications for each of them derived from the necessity 

to develop simple and low cost platforms for miRNAs subpicomolar detection. 

In a first part of the work EIS was used as electroanalytical technique due to the its 

intrinsic propriety that allow a label free genosensor development.  Firstly, a label-free 

detection scheme based on the recognition of the hybridization event through the 

enhancement of the electron transfer resistance was investigated with screen printed gold 

electrodes (SPGEs). Moreover, in order to increase the sensitivity of the assay, an 

enzyme amplification route was investigated. In this case, the hybrid formed on the 

electrode surface was labeled using the enzyme Alkaline-Phosphatase. The 

electrochemical transduction of the hybridization process was performed by means of 

EIS, after a biocatalyzed conversion of a soluble substrate into an insoluble and insulating 

product. Enzyme-decorated liposomes were then tested as labels in order to amplify the 

miRNA-electrochemical sensing. The possibility to further increase the sensitivity of the 

assay by nanostructuration of the working electrode surface was also investigated using 

carbon screen printed electrodes modified with gold nanoclusters through 

electrodeposition, obtaining a detection limit in the picomolar range. 

In another approach, an electroconductive polymer film was investigated in order to 

obtain a label-free assay. In particular, a biotinylated bisthiophene monomer was 

potentiodynamically polymerized to form films on the SPGEs surface. On top of these 

films, streptavidin was immobilized by complexing the biotin moieties of the polymer. 

Finally, biotinylated oligonucleotide capture probe was immobilized by complexing the 

surface-immobilized streptavidin. This structure served as recognition element of the 

complementary miRNA sequence via hybridization event. EIS was chosen as 

electroanalytical technique. The use of conductive polymer resulted in a label-free assay 

with sensitivity in the picomolar range. 
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The last part of the thesis was focused on the development of a photoelectrochemical 

system for miRNAs detection.  

Recently, with the emergence of novel photo-electrochemically active species and new 

nanomaterials, photoelectrochemistry has received increasing attention in the field of 

biosensors. Commercial ITO-nanoTiO2 electrodes were modified with gold nanorods and 

characterized in order to develop an enzyme-based genosensor. A white LED was used as 

a light source. Finally, hairpin capture probes were designed and applied for the 

genosensing. 

 

Papers published from this research were: 

 

1) RNA and DNA Diagnostics, Ed: Volker A. Erdmann, Stefan Jurga and Jan 

Barciszewski, Springer series RNA Technologies, Springer Verlag. Chapter title – 

Electrochemical biosensors for miRNA detection by Diego Voccia and Ilaria 

Palchetti. In press. 

2) D. Voccia, I. Palchetti, Photoelectrochemical Biosensors for Nucleic Acid Detection, 

Journal of Nanoscience and Nanotechnology, Vol. 15, 3320–3332, 2015. 

3) D. Voccia, F. Bettazzi, G. Baydemir, I.Palchetti, Enzyme-based nanoarchitectures for 

the electrochemical biosensing of microRNAs, Journal of Nanoscience and 

Nanotechnology, Vol. 15, 3378–3384, 2015. 
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Chapter 2 – Modified Screen Printed Gold Electrodes for 

Enzyme Amplified Impedimetric Sensing of microRNA 

 

 

This chapter describes the development of an enzyme-based genosensor using screen printed 

gold electrodes. Enzyme labels are herein investigated for signal amplification in the 

electrochemical detection of nucleic acids and in particular of has-miRNA-222. An enzyme 

amplification of the analytical signal is accomplished by the use of streptavidin conjugated 

alkaline phosphatase. Moreover, biotin-tagged liposomes are tested as functional tethers of 

multiple enzyme molecules.  Owing to their dimension in the nanoscale and thus to their large 

surface area they are capable of carrying a large number of enzyme molecules.  

 

 

 

Figure 2.1 - Illustration of the different assay schemes. The biotinylated hybrid is formed on the gold 

electrode surface (1,2,3). Streptavidin-Alkaline Phosphatase is added (4a). After incubation of the 

proper substrate, enzymatic product is revealed by EIS (5a). Otherwise, streptavidin (4b) and 

biotinylated liposomes (5b) are added. The liposome-modified hybrid is then exposed to streptavidin-

Alkaline Phosphatase (6b). After incubation of the substrate, the enzymatic product is revealed by EIS 

(7b). 
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These enzyme-rich nanoarchitectures are used as labels to amplify the miRNA-sensing events 

by their association to the probe-miRNA hybrid generated onto a gold transducer. Faradaic 

impedance spectroscopy was applied to characterize these amplification routes. 

Immobilization of the thiol-tethered DNA probe was qualitatively and quantitatively 

investigated by means of faradic impedance spectroscopy and chronocoulometry, 

respectively. Electrochemical transduction of the hybridization process was also performed by 

means of faradic impedance spectroscopy with an enzyme-amplified detection scheme, based 

on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target 

sequences (figure 2.1). Streptavidin-alkaline phosphatase conjugate catalyzes precipitation of 

an insoluble and insulating product onto the sensing interface increasing the resistance to the 

electron transfer, used as analytical signal. In a first approach a direct streptavidin-conjugated-

enzyme binding to the biotinylated hybrid formed on the sensor surface was used. In a second 

approach, biotin-tagged liposomes were used as functional tethers for streptavidin- enzyme 

conjugates.  

The two strategies have been characterized in term of analytical parameters and results, here, 

reported. 

 

2.1 Material and methods 

2.1.1 Reagents 

 

Dithiothreitol (DTT), 6-mercapto-1-hexanol (MCH), streptavidin–alkaline 

phosphatase (S2890, Strept-AP, 2:1 conjugation stoichiometry), streptavidin (S4762, 

Strept), diethyl pyrocarbonate (DEPC), 5-bromo-4-chloro-3- indolyl phosphate 

(BCIP), BCIP/nitro blue tetrazolium mixture [BCIP/NBT (cat. no. B-1911)], bovine 

serum albumin (BSA), Tris–HCl, diethanolamine (DEA), 

dimyristoylphosphatidylethanolamine (DMPE), distearoylphosphatidyl choline 

(DSPC) and cholesterol were obtained from Sigma–Aldrich (Milan, Italy). Biotin-

XDHPE was obtained from Invitrogen Molecular Probes (Eugene, OR). Disodium 

hydrogenphosphate, potassium hexacyanoferrate (III and II), sulphuric acid, 

magnesium and potassium chloride were purchased from Merck (Milan, Italy). NAP-

10 columns of Sephadex G-25 were obtained from Amersham Pharmacia Biotech 

(Uppsala, Sweden). MilliQ water (DEPC treated for RNA analysis) was used 
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throughout this work. Synthetic oligonucleotides were obtained from MWG Biotech 

AG (Germany): 

Probe (DNA-SH): 5’ GAG-ACC-CAG-TAG-CCA-GAT-GTA-GCT – SH 3’ 

Target hsa-mir-222: 5’ AGC-UAC-AUC-UGG-CUA-CUG-GGU-CUC –biotin  3’ 

Non-complementary hsa-mir-16 : 5′ UAG-CAG-CAC-GUA-AAU-A-biotin-3′ 

Prior to use, the thiol-modified oligonucleotides were treated with DTT. This reagent 

allowed reduction and cleavage of oligo dimers eventually obtained by oxidative 

coupling of two DNA-SH molecules (i.e. DNA-S-S-DNA). The lyophilized 

oligonucleotides were dissolved in a 10 mM Tris-HCl buffer solution (pH 8.3) 

containing 20 mM of DTT. The reaction was allowed to proceed for 2 h at room 

temperature. The thiolated DNA was then purified by elution through a NAP-10 

column of Sephadex G-25 using 0.5 M phosphate buffer (pH 7.4). DNA-SH stock 

were prepared in the same buffer and stored frozen. 

 

2.1.2 Liposome preparation and characterization 

 

Liposomes containing DSPC/cholesterol/DMPE/DHPE-X-Biotin in molar ratio 

40:40:19.5:0.5 were prepared by extrusion through polycarbonate membranes as 

described by Alfonta et al. [131]. Extrusion was carried out using a manual liposome 

extruder (LiposoFast-Basic, Avestin Inc., Canada). The dry lipids were dispersed in 20 

mM HEPES, pH 7.4, 0.15 M NaCl with vortex mixing. The solution containing the 

mixture was passed 20 time through a polycarbonate membrane of 100 nm pore size 

and 19 mm diameter (Avestin Inc., Canada), by pushing the sample back and forth 

between two syringes. The liposome solution was stored at 4°C until further use. 

Hydrodynamic diameters of liposomes were estimated by dynamic light scattering 

(DLS) using a commercial device (Zetasizer Nano ZS90, Malvern). Samples for size 

measurement were prepared by addition of 25 µl L of liposomes to 2 mL of 10 mM 

phosphate buffer, pH 7.4. The solution was filtered using 0.2 µm syringe filter and 

dispensed into a clean plastic cuvette.  
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In order to confirm the presence of biotin on the surface of liposomes, hydrodynamic 

diameters of liposome aggregates were estimated by dynamic light scattering (DLS) 

using a Brookhaven Instruments apparatus (BI 9000AT correlator card and BI200SM 

goniometer). The light source was the second harmonic of a diode-pumped Coherent 

Innova Nd:YAG laser ( = 532 nm), linearly polarized in the vertical direction and 

impinging on the sample with 60 mW power. The signal was detected by an EMI 

9863B/350 photomultiplier. To obtain the size distribution of the scattering objects, 

the autocorrelation functions were Laplace inverted using the CONTIN routine. 

Samples for aggregations test for liposome were prepared by addition of 25 μL of a 

1:1 mixture of liposomes and streptavidin (0.5 mg/L in PB) or liposomes and 

streptavidinalkaline phosphatase (8 U/mL in DEA) incubated in a vial for 20 minutes 

under mixing to 2 mL of 10 mM phosphate buffer, pH 7.4. A sample with only 

liposomes was used as negative control. The solution was filtered using 0.2 μm 

syringe filter and dispensed into a clean glass cuvette. 

 

2.1.3 Electrode pretreatment and modification 

 

Materials and procedures to screen-print the electrode transducers are described in 

previously published papers [84, 233]. 

Prior to immobilization of the thiol-tethered DNA probe, a multiple-pulse 

amperometric pretreatment of the gold surface was carried out in a stirred 0.5 M 

H2SO4, 10 mM KCl solution. The following triple-potential pulse sequence: −0.3 V 

for 0.30 s; 0.0V for 0.30s and +1.0V for 0.15s (150 cycles) was applied. 

The gold working electrode surface of these planar sensors was then exposed to the 

thiolated oligonucleotide solution (10 μL, 1 μM in 0.5 M phosphate buffer, pH 7). 

Chemisorption was allowed to proceed overnight (≈16 h) with electrodes stored in 

Petri dishes to protect the solutions from evaporation. The immobilization step was 

followed by treatment with a spacer thiol. A 10 μL drop of 1 mM aqueous solution of 

MCH was placed onto the probe-modified surfaces for 30 min. Prior to the 

hybridization reaction, the modified electrodes were washed twice with 15 μL of 

phosphate buffer. 
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2.1.4 Hybridization procedure 

 

Hybridization experiments were carried out using biotinylated target sequences in a 

direct format. Probe-modified gold electrodes were exposed to a 10 μL drop of the 

biotinylated target sequence solution (in 0.5 M phosphate buffer) for 20 min. A 

biotinylated non-complementary sequence was used as the negative control. After 

hybridization, the sensors were washed twice with 15 μL of DEA buffer 

(diethanolamine 0.1 M, MgCl2 1 mM, KCl 100 mM; pH 9.6) in the case of strept-AP 

assay or with 0.5 M phosphate buffer in the biotin-tagged liposome assay scheme. 

 

2.1.5 Labeling and EIS Detection 

 

Strept-AP-Based Assay: the biotinylated hybrid obtained at the electrode surface was 

reacted with a 10 µL drop solution containing 1 U/mL of the strep–AP conjugate and 8 

mg/mL of BSA in DEA buffer. After 20 min, the genosensors were washed twice with 

15 µL of DEA buffer. The enzyme-modified surfaces were then incubated with 30 µL 

of the BCIP/NBT mixture for 20 min. After precipitation of the insoluble and 

insulating product and prior to impedimetric measurements, the sensors were washed 

with 0.1 M KCl for 10 s. 

Biotin-tagged Liposome Assay: The biotinylated hybrid obtained at the electrode 

surface was reacted with a 10 μL drop solution containing 0.05 mg/L of streptavidin in 

0.5 M phosphate buffer. After 20 min, the genosensors were washed twice with 15 μL 

of HEPES buffer and were then reacted with liposome solution (20 min, room 

temperature). 

The final configuration was reacted with a 10 μL drop solution containing 4 U/mL of 

the streptavidin–alkaline phosphatase conjugate and 8 mg/mL of BSA in DEA buffer. 

After 20 min, the genosensors were washed twice with 15 μL of DEA buffer. The 

enzyme-liposome-modified surfaces were then incubated with 30 μL of the 

BCIP/NBT mixture for 20 min. After precipitation of the insoluble and insulating 

product and prior to impedimetric measurements, the sensors were washed with 0.1 M 

KCl for 10 s.  

Each result is the mean and standard deviation of at least three measurements. 
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2.1.6 Electrochemical measurement 

 

All electrochemical measurements were performed with an AUTOLAB PGSTAT 10 

digital potentiostat/galvanostat. The GPES 4.9004 software (Eco Chemie BV, Utrecht, 

The Netherlands) was used for cyclic voltammetry (CV), chronocoulometry (CC) and 

multi-pulse amperometry (MPA); the FRA2 module was used for faradaic impedance 

experiments. All potentials were referred to the screen-printed silver pseudo-reference 

electrode; the experiments were carried out at room temperature. 

Faradaic impedance measurements were carried out in the presence of 5 mM [Fe(CN)6 

]
3/4−

 redox probe (equimolecular mixture in 0.1 M KCl). An alternate voltage of 10 

mV in amplitude (peak-to-peak), within the frequency range 100 kHz–10 mHz, was 

superimposed to the applied bias potential. The dc potential was set up at +0.13 V, the 

formal potential of the [Fe(CN)6]
3/4−

 redox probe. Experimental spectra, presented in 

the form of complex plane diagrams (i.e., Nyquist plots), were fitted with proper 

equivalent circuits using the facilities of the FRA2 software 4.9004 (EcoChemie). 

Both charge transfer resistance and ∆ charge transfer resistance values were taken as 

analytical signals. The “Randles equivalent circuit” was successfully applied to fit data 

acquired. 

 

2.2 Results 

2.2.1 Electrochemical characterisation of the screen printed gold electrodes 

 

The screen-printed gold electrodes were firstly characterized by CV in 0.5 M H2SO4. 

Characteristic gold oxidation and reduction peaks were found near +1.11 V and +0.61 

V vs. silver pseudo-reference electrode, respectively (figure 2.2a). A characterization 

of bare screen printed gold electrode was also performed, showing a quasi-reversible 

voltammogram, indicating that a pretreatment was needed (figure 2.2b solid line). 
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a

 

b

 

 

Figure 2.2 – a) Cyclic voltammetric signal of a screen printed gold electrode in 0.5 M H2SO4. Potential 

scan: from 0.0 to +1.4 V; step potential = 2.44 mV; scan rate = 100 mV/s. b) Cyclic voltammetric 

signal of an unpretreated (dash line) and pretreated (solid line) screen printed gold electrode in 5 M 

Fe(CN)6
4-

 (0.1 M KCl supporting electrolyte). Potential scan: from –0.25 to +0.65 V; step potential = 

2.44 mV; scan rate = 10 mV/s. 

 

Mechanical or electrochemical cleaning of the gold surface is usually recommended 

and thiol-tethered DNA probe immobilization was found to be significantly affected 

by surface pretreatments. Two different pretreatment were performed: CV in 0.5 M 

H2SO4 (6 cycles) and MPA in a stirred 0.5 M H2SO4 and 10 mM KCl solution. A set 

of electrodes pretreated with both technique was modified with a 1 µM DNA-SH in 

phosphate buffer overnight followed by incubation with 1 mM MCH solution for 1h. 

and compared with bare electrodes in order to determine the best surface for DNA 

immobilization. A set of unpretreated electrodes was used as control. Results are 

summarized in figure 2.3 and show that the highest signal ratio (DNA/MCH:bare) is 

obtained for MPA pretreatment. Thus, MPA pretreatment was used in all subsequent 

experiments. 
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Figure 2.3 – Electron transfer resistance evaluated through EIS in 5 mM [Fe(CN)6 ]
3/4−

 redox 

probe (equimolecular mixture in 0.1 M KCl) in the condition described in paragraph 2.1.6 for 

bare and DNA modified screen printed gold electrodes with different pretreatment. 

 

The electrochemically active surface of pretreated screen printed gold sensors was 

then evaluated by CV, in presence of 5 mM ferrocyanide solution in KCl 0.1 M (figure 

2.2b dash line) and compared with unpretreated electrodes. 

The Randles-Sevcik equation: 

 

ip = (2.687·10
5
) n

3/2
 A D

1/2
 C 1/2

 

 

was used for the calculations of the active surface of the electrode. In the equation ip 

(A) is the ferrocyanide peak current, (experimentally determineted by CV), n the 

number of electrons involved, A the electrode area (cm
2
), D the diffusion coefficient 

(=6.50·10
-6

 cm
2
/s [234]), C the concentration (mol/cm

3
) and  the scan rate (V/s). An 

electrochemically active surface of 5.55 ± 0.06 mm
2
 was calculated from the results 

with pretreated electrodes and an active surface of 2.95 ± 0.65 mm
2
 for unpretreated 

electrodes (geometrical area = 7.07 mm
2
). The small relative standard deviation found 

for these measurements on pretreated electrodes (1.14 % [n = 5]) against unpretreated 

electrodes (22.1%  [n=5]) confirmed that a pretreatment was necessary in order to 
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obtain high reproducibility.  

Morover, the true area of a gold electrode was also evaluated from the charge needed 

to reduce a layer of adsorbed oxygen [176]. Gold oxide reduction peaks were 

measured in 0.5 M H2SO4 solution by CV (figure 2.2a). Assuming 482 µC/cm
2
 to be 

the charge required for the reduction of a monolayer of oxides on polycrystalline gold 

electrodes [235] an electrochemically active area of 7.96 ± 0.66 mm
2
 was calculated 

(n= 5). This value was in agreement with that previously evaluated and much closer to 

the geometrical area. 

 

2.2.2 Chronocoulometric quantification of probe surface density and of 

hybridization efficiency 

 

Qualitative information extracted from impedance spectra was integrated with the 

quantitative measurement of probe surface densities, according to the method 

developed by Steel et al. [92]. Briefly, this method relies on the CC measurement of a 

highly charged cationic redox marker, [Ru(NH3)6]
3+

. In low ionic strength buffers, this 

metal complex exchanges with cations naturally compensating the polyanionic 

backbone of the oligonucleotides. Therefore, at equilibrium conditions, the amount of 

[Ru(NH3)6]
3+

 electrostatically associated to the phosphate groups is directly 

proportional to the number of immobilized probe molecules. A series of sensors was 

exposed to thiolated oligonucleotide solutions (0.1 and 1 µM in 0.5 M phosphate 

buffer) with chemisorption allowed to proceed overnight. After treatment with MCH, 

each subset of modified sensors was exposed to the biotinylated complementary 

sequence (2.5 nM), while the phosphate buffer and non-complementary target were 

used as negative control. The results of CC measurements are displayed in table 2.1. 

Clear signals were obtained at 0.1 and 1 µM DNA-SH/MCH modified electrodes. 

Calculated probe surface densities were found to be similar to those reported for 

analogous immobilization accomplished onto evaporated gold films by Steel et al. 

[92]. Hybridization of the surface-tethered probes with the corresponding target 

sequence increases the number of [Ru(NH3)6]
3+

 binding sites (nucleotide phosphates) 

at the electrode interface. Therefore, the number of hybridized target molecules can be 

conveniently evaluated from the excess of [Ru(NH3)6]
3+

 found when comparing hybrid 

and probe-modified electrodes. Figures 2.4 shows typical CC signals obtained at 0.1 

and 1 µM DNA-SH modified electrodes, respectively. 
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 Oligonucleotide 

molecules (10
12

 

molecules/cm
2
) 

Hybridization 

efficiency (%) 

Ret (kΩ) 

0.1 µM DNA 

probe 

1.97 ± 0.4  1.3 ± 0.2 

Hybridization 1.99 ± 0.01 101 3.1 ± 0.6 

1 µM DNA probe 2.4 ± 0.2  1.6 ± 0.2 

Hybridization 1.97 ± 0.4 82 4.1 ± 0.7 

 

Table 2.1 - Chronocoulometric experiments were carried out in 10 mM Tris buffer (pH 7.4) in 

presence of 50 µM of [Ru(NH3)6]
3+

. Prior to measurements the solutions were deoxygenated 

via purging with N2 for at least 10 min; the electrochemical cell was blanketed with N2 during 

the experiments. Initial and final potentials were +0.1 and –0.4 V, respectively; a pulse 

duration of 2 s was applied. Faradic impedance spectra were recorded according to the 

conditions described in materials and methods. Each measurement was repeated at least three 

times. 

 

According to the literature, the hybridization efficiency (i.e. the percentage of surface 

bound probes undergoing hybridization) increased as the probe density was 

diminished. Such a behavior reflected the lower steric hindrance and electrostatic 

repulsion experienced by the target molecules at less tightly packed probe monolayers. 

Because of the non-destructive characteristics of CC measurements, the same batch of 

electrodes was further processed. Probe-modified sensors were exposed to the 

streptavidin-alkaline phosphatase conjugate and then incubated with the enzymatic 

substrate solution. The precipitation of an insoluble product, obtained through the 

catalyzed oxidative hydrolysis of the BCIP/NBT mixture, generated an insulating 

layer which inhibited the interfacial electron transfer of the [Fe(CN)6]
3/4- 

redox probe. 

The resulting electron transfer resistance values, detected by means of faradic 

impedance spectroscopy, were taken as the analytical signals. Such values are 

displayed in the last column of table 2.1 as a function of the DNA-SH concentration. 

The impedimetric results confirmed the CC experiments. Furthermore, comparable 

responses were observed for the 0.1 and 1 µM DNA-SH/MCH modified sensors. 
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a

 

b

 

 

Figure 2.4 - Typical chronocoulometric signals obtained at MCH-modified and 0.1 (a) and 1 

µM (b) probe-modified electrodes, before and after hybridization and in presence of 

[Ru(NH3)6]
3+

 complex (Ru in figures) and in Tris buffer only (Tris in figures). Other 

experimental conditions as described in table 2.1. 

 

Despite the difference in the hybridization efficiencies (100 and 82 %, respectively), 

the actual number of hybridized target molecules at these surfaces was, in fact, rather 

similar (1.8 vs. 2.4) · 10
12

 molecules/cm
2
. 

 

2.2.3 Liposome characterization 

 

These biotinylated liposomes were characterized by DLS, and a hydrodynamic 

diameter of 146 ± 9 nm was calculated as reported in figure 2.5a. Average diameters 

of prepared liposomes were determined at the day of preparation and compared with 

those after store for 30 days at 4°C (stability test). Aggregation of liposomes during 

the stability test was negligible (figure 2.5b). 
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a  

b  

Figure 2.5 – Size distribution intensity obtained with DLS with 25 µl L of liposomes 

preparative in 2 mL of 10 mM phosphate buffer, pH 7.4 a) at the day of preparation and b) 

after store for 30 days at 4°C . 

 

In this section, DLS was also used in order to confirm the presence of biotin in the 

structure through the ability of the biotin molecules to bind with streptavidin. The 

increase of particle size due to liposome aggregation in presence of streptavidin can be 

observed by DLS. Thus in the dispersions of biotinylated liposomes a known 

concentration of streptavidin was introduced (0.5 ppm) and after a proper incubation 

time under mixing condition at room temperature (20 min), the average hydrodynamic 

diameter was evaluated by DLS.  

 



 
 

67 

 

Figure 2.6 – Auto correlation function registered under a green laser in DLS in presence of 

free liposome dispersion (solid line), in presence of liposome and streptavidin dispersion (dot 

line) and liposome and streptavidin alkaline phosphatase dispersion (dash line). 

 

In all the experiments, the concentration of biotinylated liposomes and total volume of 

the solution were kept constant to allow for direct comparison. Because streptavidin 

has four biotin binding sites, it can act as a biological cross-linking agent and initiate 

the formation of liposome aggregates. Indeed, the hydrodynamic radius of the 

liposome population increases in presence of the streptavidin. However, the measured 

diameter is around the double of the diameter found in absence of streptavidin. The 

same experiment was performed using streptavidin alkaline phosphatase enzyme. This 

enzyme is conjugated with two streptavidin, permitting to this molecule to work in the 

same way of free streptavidin. Thus in the dispersions of biotinylated liposomes a 

known concentration of streptavidin alkaline phosphatase was introduced (8 U/mL) 

and after a proper incubation time under mixing condition at room temperature (20 

min), the average hydrodynamic diameter was evaluated by DLS. Also in this case an 

increasing of the hydrodynamic radius of the liposome population is observed. Auto 

correlation functions (ACF) of the DLS experiments are showed in figure 2.6. 

Hydrodynamic diameters calculated (Dh) are summarized in table 2.2. 
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 Dh (nm) 

Liposome 140 

Liposome + Streptavidin 250 

Liposome + Enzyme  214 

 

Table 2.2 - Hydrodynamic diameter of liposome formulations 

 

2.2.4 Liposome assay optimization  

 

In order to further optimize the analytical assay, the influence of the streptavidin, 

liposome and enzyme concentrations on electrochemical signals were investigated.  

 

Figure 2.7 - Influence of liposome dilution on the analytical signals registered in enzyme-

decorated liposome assay. A comparison with the enzymatic assay is also showed. Probe-

modified sensors were exposed to a 10 µL drop of phosphate buffer (blank) and biotinylated 

complementary target sequence solutions (target 1 nM in phosphate buffer) for 20 min. 

Biotinylated hybrid was then exposed to a 0.5 mg/L streptavidin solution in phosphate buffer 

for 20 min. Different liposome dilutions (1:10, 1:100 and 1:1000 in HEPES buffer) were 

incubated for 20 min. After labelling with the streptavidin-alkaline phosphatase conjugate (0.8 

U/mL), the sensors were exposed to 30 µL of BCIP/NBT mixture for 20 min. Further details 

are available in the Materials and Methods section. The bars are the average of at least three 

measurements and the error bars the corresponding standard deviation. 

 

A series of sensors was exposed to increasingly liposome dilutions (1:10, 1:100, 
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1:1000 in HEPES buffer) while keeping constant streptavidin and enzyme 

concentration. Experimental data, summarized in figure 2.7, show how both the signal 

due to the nonspecific adsorption of the liposome and that due to its specific coupling 

with the biotinylated hybrid changed with the dilution. These results suggested that 

optimal analytical signal (compatibly with minimal aspecific signal) could be achieved 

using 1:100 dilution. This value was used for all subsequent experiments. 

 

 

Figure 2.8 - Influence of streptavidin concentration on the analytical signals registered in 

enzyme-decorated liposome assay. A comparison with the enzymatic assay is also showed. 

Probe-modified sensors were exposed to a 10 µL drop of phosphate buffer (blank) and 

biotinylated complementary target sequence solutions (target 1 nM in phosphate buffer) for 20 

min. Biotinylated hybrid was then exposed to different streptavidin concentrations (0.005, 

0.05, 0.5 and 5 mg/L in phosphate buffer) for 20 min. Liposome 1:100 dilution  in HEPES 

buffer was  incubated for 20 min. After labelling with the streptavidin-alkaline phosphatase 

conjugate (0.8 U/mL), the sensors were exposed to 30 µL of BCIP/NBT mixture for 20 min. 

Further details are available in the Materials and Methods section. The bars are the average 

of at least three measurements and the error bars the corresponding standard deviation. 

 

Then, a series of sensors was exposed to increasingly amounts of streptavidin (0.005, 

0.05, 0.5 and 5 mg/L in 0.5 M phosphate buffer) while keeping constant liposome and 

enzyme concentration. 
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Experimental data, summarized in figure 2.8, shows a high non-specific signal at high 

concentration. At lower concentrations of streptavidin, Ret showed its highest result 

at 0.05 mg/L. These results suggested that optimal analytical signal (compatibly with 

minimal non-specific signal) could be achieved using the 0.05 mg/L concentration. 

This value was used for all subsequent experiments. 

 

 

Figure 2.9 - Influence of enzyme concentration on the analytical signals registered in enzyme-

decorated liposome assay. A comparison with the enzymatic assay is also showed. Probe-

modified sensors were exposed to a 10 µL drop of phosphate buffer (blank) and biotinylated 

complementary target sequence solutions (target 1 nM in phosphate buffer) for 20 min. 

Biotinylated hybrid was then exposed to a 0.05 mg/L streptavidin solution in phosphate buffer 

for 20 min. Liposome 1:100 dilution  in HEPES buffer was  incubated for 20 min. After 

labelling with the streptavidin-alkaline phosphatase conjugate (0.08, 0.8, 1.2 and 4 U/mL), the 

sensors were exposed to 30 µL of BCIP/NBT mixture for 20 min. Further details are available 

in the Materials and Methods section. The bars are the average of at least three measurements 

and the error bars the corresponding standard deviation. 

 

Finally, the influence of the enzymatic conjugate concentration on electrochemical 

signals was also investigated. A series of sensors was exposed to increasingly amounts 

of streptavidin-alkaline phosphatase (0.08, 0.8, 1.2 and 4 U/mL in a 8 mg/mL BSA in 

DEA buffer solution) while keeping constant streptavidin and liposome concentration. 
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Experimental data, summarized in figure 2.9, show how both the signal due to the 

nonspecific adsorption of the conjugate and that due to its specific coupling with the 

biotinylated hybrid increased with the streptavidin-alkaline phosphatase concentration 

(except for the highest concentration tested). These results suggested that optimal 

analytical signal (compatibly with minimal non-specific signal) could be achieved 

using 4 U/mL enzyme concentration. This value was used for all subsequent 

experiments. 

 

2.2.5 Calibration plot for synthetic oligonucleotides 

 

To demonstrate the analytical performances of the impedimetric assay a calibration 

experiment was designed (figure 2.10 and 2.11). When analyzing synthetic target 

solutions whose concentration was increased by orders of magnitude, a linear response 

were observed until a plateau was achieved.  

 

a b  

Figure 2.10 – a) Faradaic impedance spectra (in the form of Nyquist plots) for the 

measurements corresponding to increased concentration of miRNA target (0, 0.5,  2.5, 5 nM 

in phosphate buffer). Data are recorded in 0.1 M KCl in the presence of Fe(CN)6
3-/4-

, 5 mM 

(molar ratio 1:1). Further details are reported in the material and methods section. b) 

Calibration plot for synthetic oligonucleotides in enzymatic assay. Probe-modified sensors 

were exposed to a 10 µL drop of the biotinylated target sequence solution (0, 0.1, 0.25, 0.5, 1, 

2.5, 5 nM) for 20 min. Each point represents the mean of at least three measurements and the 

error bars the corresponding standard deviation. 

 

In the enzymatic assay, the analytical signals varied linearly (R
2
 = 0.995) with the 

target concentration from 0.1 to 5 nM (figure 2.10). Signals leveled off for higher 

concentrations, indicating that saturation of all available probes was achieved; 
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moreover, the non-specific signal of biotinylated non-complementary oligomers was 

negligible up to 5 nM (data not shown). Within the linear analytical range, the 

sensitivity was 1.89 kΩ/nM, with an estimated detection limit of 180 pM and an 

average RSD of 14%. 

 

a b  

Figure 2.11 - a) Faradaic impedance spectra (in the form of Nyquist plots) for the 

measurements corresponding to increased concentration of miRNA target (0, 0.5,  2.5, 5 nM 

in phosphate buffer). Data are recorded in 0.1 M KCl in the presence of Fe(CN)6
3-/4-

, 5 mM 

(molar ratio 1:1). Further details are reported in the material and methods section. b) 

Calibration plot for synthetic oligonucleotides in the enzyme-decorated liposome assay. 

Probe-modified sensors were exposed to a 10 µL drop of the biotinylated target sequence 

solution (0.1, 0.25, 0.5, 1, 2.5, 5 nM) for 20 min. Further details are available in the Materials 

and Methods section. Each point represents the mean of at least three measurements and the 

error bars the corresponding standard deviation. 

 

In enzyme-decorated liposome assay, the genosensor response varied linearly (R² = 

0.998 ) with the target concentration between 50 pM to 1 nM (figure 2.11). Signals 

leveled off for higher concentrations, indicating that saturation of all available probes 

was achieved; moreover, the non-specific signal of biotinylated non-complementary 

oligomers was negligible up to 1 nM (data not shown). Within the linear analytical 

range, the sensitivity was 10.3 kΩ/nM, with an estimated detection limit of 37 pM and 

an average RSD of 15%. 

 

2.3 Discussion 

 

The features of the DNA probe immobilization process and the formation of DNA-

SH/MCH mixed monolayers with different pretreatment of screen printed gold 
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electrodes were qualitatively investigated by faradic impedance spectroscopy, using the 

[Fe(CN)6]
3/4-

 mixture as the redox probe and cyclic voltammetry using [Fe(CN)6]
4-

 and 

H2SO4. Results show how pretreatment is necessary in order to obtain impedimetric 

reproducible signals. Electrochemical impedance spectroscopy (EIS) is the 

electrochemical technique where the electrode impedance is monitored as a function of 

the frequency of an applied alternate voltage [176]. The use of both electrochemical and 

faradic impedance spectroscopy to probe the interfacial properties of surface-modified 

electrodes and thus for monitoring biorecognition processes was proposed by Willner 

and co-workers [131, 236]. Compared to other electrochemical methods, faradic 

impedance spectroscopy is considered to be a gentle electrochemical method. The 

features of bio-modified electrodes can be studied by applying a small perturbation, so 

that the systems are investigated nearly in their steady-state. A combination of physical 

coverage by the oligonucleotides and electrostatic repulsion between the negatively-

charged redox ions and the polyanionic backbone of the oligos [237] was considered 

responsible for the enhanced electron transfer resistance measured at the modified 

electrodes. Amines are known to chemisorb weakly on gold. According to the literature 

[238], in order to avoid a non-specific adsorption of sequences on the electrode surface 

through a direct interaction of the nitrogen-containing purine and pyrimidine bases with 

the gold surface, a treatment with MCH is necessary.  

 

 

Figure 2.12 – Randles equivalent circuit modified with constant phase element Qdl. 

 

The equivalent circuit required to fit experimental impedance spectra is showed in 

figure 2.12. The constant phase element, Qdl, was always used instead of pure capacitive 

elements to take into account the roughness of the modified sensor surfaces [239]. This 

circuit, better known as the “Randles equivalent circuit” [176] was successfully applied 

to fit data acquired at modified sensors. The Warburg impedance (ZW) usually is 

registered at low frequencies and correspond to the diffusion to the electrode surface. 
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The amount of thiol-tethered DNA probe immobilized at the sensor surface was 

quantified through chronocoulometric measurements, in the presence of [Ru(NH3)6]
3+

. 

This complex exchanged with K
+
, the cation natively compensating the polyanionic 

backbone of the oligonucleotides. At saturation coverage of [Ru(NH3)6]
3+

, the surface 

density of the probe was calculated assuming complete charge compensation by these 

redox cations. The validity of this approach also relied upon the following 

assumptions:bthe redox marker associates with DNA strictly through electrostatic 

interactions;ball redox molecules are electrochemically accessible. The ruthenium 

complex was quantified using chronocoulometry. This method was selected because of 

its ability to differentiate between the double-layer charge, the charge due to reaction of 

species adsorbed at the interface and that due to diffusing species. Therefore, 

measurements of the surface-confined complex could be made in the presence of 

solution redox marker, so that the system was observed under equilibrium conditions. 

The measured charge (Q) as a function of time (t) is expressed by the integrated Cottrell 

equation: 

 

 

 

where n is the number of electrons involved; F the Faraday constant (Coul/equiv); A the 

electrode area (cm
2
); D0 the diffusion coefficient (cm

2
/s); Co* the bulk concentration 

(mol/cm
3
); Qdl the capacitive charge and (nFAΓ0) the charge for the reduction of Γ0 

(mol/cm
2
) of adsorbed redox marker. The term Γ0 (“surface excess”) expresses the 

amount of ruthenium hexaammine confined near the electrode surface. The 

chronocoulometric intercept for t = 0 is the sum of the double-layer charge and the 

charge due to reduction of adsorbed species. The latter term was then determined from 

the difference in chronocoulometric intercepts for identical potential step experiments in 

the presence and absence of the redox marker. The saturated surface excess of 

ruthenium hexaammine was converted to DNA probe density using the following 

relationship: 
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where: ΓDNA is the probe surface density (molecules/cm
2
); m the number of bases in the 

DNA probe; z the charge of the ruthenium complex and NA the Avogadro’s number. 

Interestingly, these measurements are insensitive to both base composition and chain 

order (single stranded vs. double stranded DNA).  

 

In this chapter, liposomes were used to tether multiple molecules of enzyme in order to 

increase sensitivity of enzyme label biosensor. Liposomes are spherical vesicles, which 

membranes contain one or more phospholipid bilayers. The lipid molecules consist of 

hydrophilic head groups and hydrophobic tails; in aqueous solutions they self-organize 

in order to increase their solubility in the surrounding medium and minimize the 

surface-to-volume ratio. As mentioned in the introduction, liposomes are promising for 

the development of sensitive bioanalytical methods [240] because they can carry a large 

number of receptor molecules or can be loaded with an appreciable amount of markers 

due to their large surface area and internal volume. Herein, a procedure to obtain biotin-

tagged liposomes has been adapted starting from procedure reported in literature [131]. 

These biotinylated liposomes were characterized by DLS, showing a hydrodynamic 

diameter of ≈150 nm. Average diameters of prepared liposomes were determined at the 

day of preparation and compared with those after incubation for 30 days at 4°C 

(stability test). Aggregation of liposomes during the stability test was negligible. 

In order to confirm the presence of biotin on the vesicle surface, free streptavidin and 

streptavidin conjugated alkaline phosphatase were used to allow the aggregation of 

liposomes through biotin-streptavidin binding. Results show how hydrodynamic 

diameter increase in presence of both molecules. However, the measured diameter is 

around the double of the diameter found in absence of both molecules. This suggests 

that only a small fraction of the biotin binding sites of streptavidin are available to 

biotinylated liposomes. This may be because the size of the streptavidin is 5-6-nm, thus 

small if compared with the size of the liposomes. Surface geometry prevents binding of 

liposomes into more than one or two sites on streptavidin, giving only a dimerization 

instead of an aggregation. Moreover, has been reported in literature that liposomes are 

negatively charged, so aggregation could be limited by electrostatic repulsion of the 

vesicles. 

As reported in figure 2.1, the assay consists in the incubation of the biotynilated hybrid 

immobilized on the electrode surface with streptavidin, then with the biotin-taged 

liposomes. The enzymatic conjugate (strept-AP) was, then, anchored trough biotin tags 
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present on the liposome.  

It is important to note that, due to their chemical composition, the giant liposome 

micromembrane alters the interfacial properties of the electrode. Indeed, this alteration 

can be successfully followed by impedance spectroscopy. However, in order to increase 

the sensitivity of the assay, the liposome-modified biosensor were incubated with 

enzyme molecules and then  with a proper enzymatic substrate. Thus, BCIP/NBT 

mixture was used as enzymatic substrate, since Alkaline Phosphatase stimulate the 

oxidative hydrolysis of the BCIP/NBT mixture to an insoluble product (figure 2.13).  

 

 

Figure 2.13 - BCIP/NBT mixture: enzymatic hydrolysis of BCIP and subsequent coprecipitation 

of two insoluble products. 

 

The precipitation of this insoluble product generated an insulating layer which inhibited 

the interfacial electron transfer of the redox probe ([Fe(CN)6]
3/4−

) in impedance 

measurements. The resulting charge transfer resistance values were taken as the 

analytical signals. In figure 2.14 are reported the electron transfer resistances for the 

different steps of the assay.  
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Figure 2.14 – Electron transfer resistances for the measurements corresponding to 1) probe 

functionalized electrode (blank); 2) after interaction with 1 nM miRNA target; 3) after 

treatment with streptavidin; 4) after interaction with liposome; 5) after interaction with strept-

AP; 6) after interaction with the substrate. Data are recorded in 0.1 M KCl in the presence of 

Fe(CN)6
3-/4-

, 5 mM (molar ratio 1:1). 

 

The hybridization event is accompanied by a relatively small increase of the electron-

transfer resistance at the electrode. These results are consistent with the fact that the 

formation of the duplex on the surface electrostatically repels the redox probe, 

[Fe(CN)6]
3/4−

, and thus the interfacial electron transfer resistance gradually increases 

upon the buildup of the assembly. The association of the streptavidin, slightly increases 

the interfacial electron-transfer resistance, as a result of the partial hydrophobic 

insulation of the electrode support. On the contrary, the association of the biotin-tagged 

liposome substantially increases the electrode transfer resistance due to the electrostatic 

repulsion of the redox label with the negatively charged liposomes [131] as well as due 

to the hydrophobic insulation of the electrode. Furthermore, the biocatalyzed 

precipitation of the insulating product determines an important increase of the electron-

transfer resistance. 

 

2.4 Conclusions 
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Both the enzymatic assay demonstrate the possibility to increase the sensitivity of the 

assay in comparison with the label free scheme. In the first strategy, streptavidin 

conjugated alkaline phosphatase was used as enzymatic label. A sensitivity of 1.89 

kΩ/nM, with an estimated detection limit of 180 pM and an average RSD of 14% was 

obtained. Liposomes, owing to their large surface area, are capable of carrying a large 

number of streptavidin conjugated alkaline phosphatase. The biotin tags provides an 

anchoring site that links the liposome probe to the biorecognition assembly and to 

enzyme molecules. Compared to the enzyme assay, the enzyme-decorated liposome 

assay allows a 10-fold enhancement of the electroanalytical signal using impedance 

spectroscopy. 

Moreover, it is important to note that this method is not limited to only the hybridization 

assay systems, but can also be extended other applications and other enzyme linked 

affinity assay. 
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Chapter 3 – Gold Modified Screen Printed Carbon 

Electrodes for Enzyme Amplified Impedimetric Sensing of 

microRNA 

 

 

Chapter 3 is an extension of the work described in Chapter 2 and reports on the complete 

characterization and further optimization of the electrochemical genosensor.  

In particular, a procedure to modify the screen-printed carbon electrode surface by gold 

electrodeposition has been optimized. Gold-nanostructuration of the transducer surface allows 

oriented immobilization and spacing of DNA probes at the electrode surface whilst at the 

same time enhances transducer sensitivity.  

 

 

 

Figure 3.1 - Illustration of the different assay schemes. The biotinylated hybrid is formed on the gold 

electrode surface (1,2,3). Streptavidin-Alkaline Phosphatase is added (4a). After incubation of the 

proper substrate, enzymatic product is revealed by EIS (5a). Otherwise, streptavidin (4b) and 

biotinylated liposomes (5b) are added. The liposome-modified hybrid is then exposed to streptavidin-

Alkaline Phosphatase (6b). After incubation of the substrate, the enzymatic product is revealed by EIS 

(7b). 
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Enzyme decorated liposomes are herein investigated for signal amplification in the 

electrochemical detection of miRNAs. The proposed method is based on thiolated DNA 

capture probes immobilized onto gold nanostructured carbon surfaces. The capture-probe-

modified electrode is, then, allowed to react with the analyte (the target miRNA). Enzyme and 

Enzyme-decorated liposomes are used as labels to amplify the miRNA-sensing, by their 

association to the probe-miRNA hybrid generated onto the transducer (figure 3.1). Faradaic 

impedance spectroscopy was employed to characterize this amplification route. 

Immobilization of the thiol-tethered DNA probe was qualitatively and quantitatively 

investigated by means of faradic impedance spectroscopy. Electrochemical transduction of the 

hybridization process was also performed by means of faradic impedance spectroscopy with 

an enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline 

phosphatase conjugate and biotinylated target sequences (figure 3.1). Streptavidin-alkaline 

phosphatase conjugate catalyzes precipitation of an insoluble and insulating product onto the 

sensing interface increasing the resistance to the electron transfer, used as analytical signal. In 

a first approach a direct streptavidin conjugated enzyme binding to the hybrid formed with the 

interaction of biotinylated target sequence with DNA probe immobilized on the surface was 

used. In a second approach, biotin-tagged liposomes were used as functional tethers for 

streptavidin enzyme conjugates. Owing to their dimension in the nanoscale and thus to their 

large surface area they are capable of carrying a large number of enzyme molecules.  

The two strategies have been characterized in term of analytical parameters and results, here, 

reported. 

 

3.1 Material and methods 

3.1.1 Reagents 
 

Dithiothreitol (DTT), 6-mercapto-1-hexanol (MCH), streptavidin–alkaline 

phosphatase (S2890, Strept-AP, 2:1 conjugation stoichiometry), streptavidin (S4762, 

Strept), diethyl pyrocarbonate (DEPC), 1-naphthyl phosphate, 5-bromo-4-chloro-3- 

indolyl phosphate (BCIP), BCIP/nitro blue tetrazolium mixture [BCIP/NBT (cat. no. 

B-1911)], bovine serum albumin (BSA), Tris–HCl, diethanolamine (DEA), 

dimyristoylphosphatidylethanolamine (DMPE), distearoylphosphatidyl choline 

(DSPC) and cholesterol were obtained from Sigma–Aldrich (Milan, Italy). Biotin-

XDHPE was obtained from Invitrogen Molecular Probes (Eugene, OR). Disodium 
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hydrogenphosphate, potassium hexacyanoferrate (III and II), sulphuric acid, 

magnesium and potassium chloride were purchased from Merck (Milan, Italy). NAP-

10 columns of Sephadex G-25 were obtained from Amersham Pharmacia Biotech 

(Uppsala, Sweden). MilliQ water (DEPC treated for RNA analysis) was used 

throughout this work. Synthetic oligonucleotides were obtained from MWG Biotech 

AG (Germany): 

 

Probe (DNA-SH): 5’ GAG-ACC-CAG-TAG-CCA-GAT-GTA-GCT – SH 3’ 

Target: 5’ AGC-UAC-AUC-UGG-CUA-CUG-GGU-CUC –biotin 3’ 

Non-complementary: 5′ UAG-CAG-CAC-GUA-AAU-A-biotin-3′ 

Prior to use, the thiol-modified oligonucleotides were treated with DTT. This reagent 

allowed reduction and cleavage of oligo dimers eventually obtained by oxidative 

coupling of two DNA-SH molecules (i.e. DNA-S-S-DNA). The lyophilized 

oligonucleotides were dissolved in a 10 mM Tris-HCl buffer solution (pH 8.3) 

containing 20 mM of DTT. The reaction was allowed to proceed for 2 h at room 

temperature. The thiolated DNA was then purified by elution through a NAP-10 

column of Sephadex G-25 using 0.5 M phosphate buffer (pH 7.4). DNA-SH stock 

were prepared in the same buffer and stored frozen. 

3.1.2 Liposome Preparation 

 

Liposomes were prepared as described in paragraph 2.1.2. 

 

3.1.3 Electrochemical measurement 

 

All electrochemical measurements were performed with an AUTOLAB PGSTAT 10 

digital potentiostat/galvanostat. The GPES 4.9004 software (Eco Chemie BV, Utrecht, 

The Netherlands) was used for cyclic voltammetry; the FRA2 module was used for 

faradaic impedance experiments. All potentials were referred to the screen-printed 

silver pseudo-reference electrode; the experiments were carried out at room 

temperature. Faradaic impedance measurements were carried out in the presence of 5 

mM [Fe(CN)6]
3/4−

 redox probe (equimolecular mixture in 0.1 M KCl). An alternative 
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voltage of 10 mV in amplitude (peak to peak), within the frequency range 100 kHz–10 

mHz, was superimposed to the applied bias potential. The dc potential was set up at 

+0.13 V, the formal potential of the [Fe(CN)6]
3/4−

 redox probe. Experimental spectra, 

presented in the form of complex plane diagrams (i.e., Nyquist plots), were fitted with 

proper equivalent circuits using the facilities of the FRA2 software 4.9004 

(EcoChemie). Both charge transfer resistance and Δ charge transfer resistance values 

were taken as analytical signals. The modified Randles circuit was successfully 

applied to fit data acquired. 

3.1.4 Electrode modification by gold electrodeposition 

 

The screen-printed electrochemical cell consisted of a planar, three electrodes strip, 

based on a carbon (or gold) working electrode, a carbon counter electrode and a silver 

pseudoreference electrode. Materials and procedures to screen-print the electrode 

transducers are described previously published papers [81]. Prior to immobilization of 

the thiol-tethered DNA probe, carbon working electrodes were modified with gold by 

potential-sweeping electrodeposition, through Cyclic Voltammetry (CV) with the 

following fixed parameters [16]: a scan rate of 50 mV/s, a cathodic switching potential 

of -0.6 V and an anodic switching potential of +1.5 V. Cycle number of potential scan 

and the Au(III) concentration in solution were optimized in order to obtain the better 

surface and morphology for the genosensor. The voltammetric behavior of Au(III) has 

been studied at a screen printed carbon electrodes (SPCEs) in a 0.01 M Na2SO4, 0.01 

M H2SO4, and 1 mM HAuCl4·3H2O solution. 

 

3.1.5 Probe immobilization 

 

The gold modified working electrode surface of these planar sensors was exposed to 

the thiolated oligonucleotide solution (10 μL, 2 μM in 0.5 M phosphate buffer, pH 7). 

Chemisorption was allowed to proceed overnight (≈16 h) with electrodes stored in 

Petri dishes to protect the solutions from evaporation. The immobilization step was 

followed by treatment with a spacer thiol. A 10 μL drop of 1 mM aqueous solution of 

MCH was placed onto the probe-modified surfaces for 1h. Prior to the hybridization 

reaction, the modified electrodes were washed twice with 30 μL of phosphate buffer. 
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3.1.6 Hybridization procedure 

 

Hybridization experiments were carried out using biotinylated target sequences in a 

direct format. Probe-modified gold electrodes were exposed to a 10 μL drop of the 

biotinylated target sequence solution (in 0.5 M phosphate buffer) for 20 min. A 

biotinylated non-complementary sequence was used as the negative control. After 

hybridization, the sensors were washed twice with 30 μL of diethanolamine 0.1 M, 

MgCl2 1 mM, KCl 100 mM; pH 9.6 (DEA buffer) in the case of strept-AP assay or 

with 0.1 M phosphate buffer, pH 7.4 (PB) in the biotin-tagged liposome assay scheme. 

3.1.7 Labeling and EIS detection 

 

Strept-AP-based assay: the biotinylated hybrid was reacted with 10 μL of a solution 

containing 0.8 U/mL of strept-AP conjugate and 10 mg/mL of BSA (as the blocking 

agent) in DEA buffer. After 20 min, the sensors were washed twice with 30 μL of 

DEA buffer. The enzyme-modified surfaces were then incubated with 30 μL of the 

BCIP/NBT mixture for 20 min. After precipitation of the insoluble and insulating 

product and prior to impedimetric measurements, the sensors were washed with 0.1 M 

KCl for 10 s. 

Enzyme-decorated Liposome assay: The biotinylated hybrid obtained at the electrode 

surface was reacted with a 10 μL drop solution containing 0.05 mg/L of streptavidin in 

PB. After 20 min, the genosensors were washed twice with 30 μL of HEPES buffer 

and were then reacted with liposome solution (20 min, room temperature). The final 

configuration was reacted with a 10 μL drop solution containing 0.8 U/mL of the 

streptavidin–alkaline phosphatase conjugate and 10 mg/mL of BSA in DEA buffer. 

After 20 min, genosensors were washed twice with 30 μL of DEA buffer. The 

enzyme-liposome-modified surfaces were then incubated with 30 μL of the 

BCIP/NBT mixture for 20 min. After precipitation of the insoluble and insulating 

product and prior to impedimetric measurements, the sensors were washed with 0.1 M 

KCl for 10 s. Each result is the mean and standard deviation of at least three 

measurements. 
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3.1.8 SEM-EDX Characterization of sensor surface 

 

Scanning electron microscopy (SEM) was performed on uncoated samples using a 

field emission scanning microscope ΣIGMA (Carl Zeiss Microscopy GmbH, 

Germany). The images were acquired using the in-lens secondary electron detector 

with an acceleration potential of 8 kV at a working distance of 8.4 or 8.5 mm and 

using the BSD detector with an acceleration potential of 9 kV at a working distance of 

8.4 or 8.5 mm. The elements contained into the matrix were determined using energy-

dispersive X-ray spectroscopy (EDX) that was performed by using a 10 mm
2
 silicon 

drift detector (X-Act) coupled with the SEM microscope operated by the INCA 

software (Oxford Instruments). In this second case, the operative voltage of the 

electron source was about 9 kV and the working distance was 8.5 mm to maximize the 

X-ray photon counts. Prior to SEM imaging, samples were thoroughly rinsed with 

Milli-Q water and dried underpressure in a vacuum desiccator with a standard 

membrane pump for few hours. 

3.2 Results 

 

3.2.1 Gold electrodeposition on screen printed carbon electrodes 

 

Cyclic voltammograms (CVs) for the electroreduction of a solution of 1 mM 

HAuCl4·3H2O, in 0.01 M Na2SO4 and 0.01 M H2SO4 at a SPCE are shown in figure 

3.2. On the negative sweep of the first scan (from +1.5 V to –0.6 V vs. silver pseudo 

reference) a broad reduction peak is observed at +0.16 V, indicating the reduction of 

Au(III) to Au(0) inducing the deposition of nanoparticles onto the electrode surface.  
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Figure 3.2 – Cyclic voltammetry in 1 mM HAuCl4·3H2O, 0.01 M Na2SO4 and 0.01 M H2SO4 

solution at a SPCE. Potential scan: from +1.5 to -0.6 V; step potential = 2.44 mV; scan rate = 

50 mV/s. 

 

On the reverse sweep, a current crossover is observed at +0.63 V which is indicative 

of nucleation growth kinetics. This is followed by a large anodic process (near +0.9 V) 

due to both electrodissolution of Au(0) and the formation of an oxide layer on the 

electrodeposited gold (solid line in figure 3.2). 

On the second scan, it can be seen that there is a large positive shift (from +0.16 to 

+0.51 V) in the onset for Au(III) reduction due to nucleation sites created on the first 

scan. There is also a cathodic peak at +0.64 V characteristic of the reduction of gold 

oxide formed in the first scan when the potential was scanned to 1.5 V. In addition, no 

current crossover was observed after the first scan (dashed line in figure 3.2). 

The concentration of HAuCl4 and the number of cycles for the electrodeposition of 

gold on the electrode surface play an important role for the morphology, size and 

uniformity of particles [241]. Figure 3.3 shows the influence of these variables by 

analyzing the electron transfer resistance values (Ret) of a redox probe by EIS 

measurement. 

The number of cyclic potential scans of the electrodeposition step were varied from 1 

to 15 and optimal number of scans was assessed by EIS measurement of the electron 

transfer resistance of a redox probe. Thus, after each electrodeposition scan, the sensor 
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is rinsed with deionized water and then exposed to a 5 mM [Fe(CN)6]
3/4-

 redox probe 

(1:1 mixture in 0.1M KCl) solution and the impedance spectra recorded.  

 

Figure 3.3 – Electron transfer resistance recorded on screen printed carbon electrodes 

modified varying cycles number (1, 3, 7, 10, 15) and Au(III) concentration (0.5, 1 and 2 mM 

0.01 M Na2SO4 and 0.01 M H2SO4). All other experimental condition are the same reported in 

figure 3.2. Each point represents the mean of at least three measurements and the error bars 

the corresponding standard deviation. 

 

The electron transfer resistance decreases with increasing the cycle number of 

potential scan (figure 3.3), reaching a constant value after 7 cycles (an Ret value of 

54.8±8.6 Ω, 133.4±19.0 Ω and 205.0±26.0 Ω for 2 mM, 1 mM and 0.5 mM Au(III) 

concentration respectively). Based on shortening the time necessary for 

electrodeposition, the number of potential scans for electrodeposition was determined 

to be 7 in the following experiments. The AuCl4
-
 concentration was varied in the range 

0.5 - 2.0 mM, obtaining a decrease of Ret increasing the Au(III) concentration. 

However, as reported in literature [241], the most homogenous deposits have been 

obtained using low Au(III) concentrations. This data was also confirmed by SEM 

morphological studies. For this reason, an AuCl4
-
 concentration of 1 mM was chosen 

as compromise among Ret value and morphology of the surface. 
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3.2.2 Electrochemical characterization of the sensor surface 

 

The resulting modified electrodes (AuSPCEs) were then characterized using CV in 0.5 

M H2SO4. Figure 3.4a (dashed line) shows the electrochemical response of the 

AuSPCE electrode scanning between +0.2 and +1.4 V. The presence of a broad 

oxidation peak is indicative of the formation of several kinds of Au ‘‘oxides’’ 

resulting from a very complicated sorption mechanism of OH
-
 ions onto different 

crystallographic faces [156, 242].  

a

 

b

 

 

Figure 3.4 – a) Cyclic voltammetric signal of SPCE (solid line) and AuSPCE (dashed line) in 

0.5 M H2SO4. Potential scan: from 0.2 to +1.4 V; step potential = 2.44 mV; scan rate = 100 

mV/s. b) Cyclic voltammetric signal of  SPCE (solid line) and AuSPCE (dashed line) in 5 M 

Fe(CN)6
4-

 (0.1 M KCl supporting electrolyte). Potential scan: from –0.2 to +0.65 V; step 

potential = 2.44 mV; scan rate = 10 mV/s. 

 

On the reverse sweep, the peak at +0.76 V corresponded to the subsequent reduction 

of the oxides previously formed. In order to confirm the presence of gold on the 

carbon surface, a CV in 0.5 M H2SO4 was performed using unmodified screen printed 

carbon electrode (solid line in figure 3.4a).  

The recorded charge under the reduction peak was used for the characterisation of the 

electroactive electrode area [176]. Assuming 482 μC/cm
2
 to be the charge required for 

the reduction of a monolayer of oxides on polycrystalline gold electrodes [235] and 

calculating the area of the peak 23.64 ± 1.16 μC at +0.76 V, an electrochemically 

active area of 4.90 ± 0.24 mm
2
 was calculated (RSD 4.9% n= 5). Furthermore, the 

electrochemically active surface of the Au-SPCEs was also evaluated by CV in 

presence of the 5 mM ferrocyanide in 0.1 M KCl (dashed line in figure 3.4b) with the 
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same procedure reported in chapter 2 using the Randles-Sevcik equation. An 

electrochemically active surface of 4.87 ± 0.16 mm
2
 for SPCEs modified with 7 cycles 

in 1 mM of Au(III) was calculated from the results (geometrical area = 7.07 mm
2
). 

This value was in good agreement with that previously evaluated. Additionally, the 

small relative standard deviation (RSD) found for these measurements (3.27 % [n= 5]) 

indicated the good reproducibility of the gold electrodeposition. 

3.2.3 Surface Characterization of Electrodeposited Gold using SEM and 

EDX 

 

Information on the shape and size of gold deposits was obtained by SEM observations. 

The SEM micrographs were analyzed with Image J Software (http://imagej.nih.gov/ij/) 

to obtain the information about particle size distribution. Figure 3.5 shows typical 

SEM micrographs of the bare SPCE (A) and AuSPCE (electrodeposited from 1 mM 

Au(III) solution) (B). Au was electrodeposited following the CV optimized conditions 

reported above. The SEM images confirm the formation of nanosized gold cluster with 

an average size of 65.1 ± 38.4 nm (figure 3.6) on the carbon surface. The 

electrodeposited gold can be separated into two distinct populations: the first one is 

related to small and spherical-shaped NPs and the second one to larger, aggregate-like 

NPs. Au-deposits were absent in the negative control (the unmodified carbon surface). 

In order to further characterize the Au-deposits, SEM analyses were carried out for 

two different concentration of Au(III). An increase in the particle density and in 

average size as a function of the Au(III) concentration was observed (figure 3.5C and 

D) illustrating a gradual coalescence phenomenon [241]. Electrode surface element 

analysis by EDX of the Au-SPCE was also performed.  
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Figure 3.5 - SEM image of bare (A) and 1 mM gold modified (B) screen-printed carbon 

electrode prepared in experimental conditions as reported in the text using BSD detector; 

SEM image of 2 mM (C) and 1 mM gold modified (D) screen-printed carbon electrode 

prepared in experimental conditions as reported in the text using InLens detector. 

 

 

Figure 3.6 – Size distribution (radius) of clusters analyzed through the SEM image obtained 

on a SPCE modified with 1 mM Au(III) electrodeposition solution. 
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In tables 3.1 are reported the results. Analyses were carried out on two sets of 

electrodes in an attempt to determine the presence of gold.  

 

 SPCE 1mM Au-

SPCE 

2mM Au-SPCE 

C 92.91 85.16 77.87 

O 3.17 2.44 2.03 

Cl 3.91 2.69 3.81 

Au - 9.71 16.29 

 

Table 3.1A – Weight% EDX analysis of elements of a big area of the electrode 

 SPCE 1mM Au-

SPCE 

2mM Au-SPCE 

C 96.16 96.23 95.34 

O 2.47 2.07 1.86 

Cl 1.37 1.03 1.58 

Au - 0.67 1.22 

 

Table3.1B – Atomic% EDX analysis of elements of a big area of the electrode 

 SPCE 1mM Au-

SPCE 

2mM Au-SPCE 

C 96.83 86.71 91.25 

O 1.85 - - 

Si 0.32 - - 

Cl 0.99 - - 

Au - 13.29 8.75 

 

Table 3.1C - Weight% EDX analysis of elements of a point of the electrode 

 SPCE 1mM Au-

SPCE 

2mM Au-SPCE 

C 98.11 99.07 99.42 

O 1.40 - - 

Si 0.14 - - 

Cl 0.34 - - 

Au - 0.93 0.58 

 

Table 3.1D - Atomic% EDX analysis of elements of a point of the electrode 

 

One set of electrodes was used as a negative sample and was not expected to contain 



 
 

91 

gold because it underwent CV in 10 mM H2SO4. The other electrode underwent gold 

electrodeposition and might exhibit a gold peak. Results confirm that the main 

components of the AuSPCE electrode surface are C and Au, with traces of chloride, 

silicon and oxygen.  

The presence of Si, O and Cl elements is due to the screen-printing ink composition, 

according to the information provided with the ink by the manufacturer. In particular, 

quartz (SiO2) is present in the ink as mineral filler whereas the chlorine peak is due to 

the presence of vinyl chloride and acrylate copolymer, the binder used in the printing 

process. EDX analysis also confirms that gold deposits are dependent from the Au(III) 

concentration of the electrodeposition solution: both weight and atomic analysis 

confirm an increasing of gold with a 2 mM Au(III) solution. 

 

3.2.4 Optimization of the impedimetric genosensor 

 

Electrode surfaces with lower probe densities show a limited number of biorecognition 

sites, whereas higher surface densities can cause steric and electrostatic interference 

between packed probes and the incoming target and liposomes.  

 

Figure 3.7 - Influence of probe concentration on hybridisation reaction. 0.1, 1 and 2 µM in 

0.5 M phosphate buffer of DNA-SH were tested with exposure of the modified surface to a 

blank solution or 25 nM target concentration. Other conditions as described in the materials 

and methods section. The bars are the average of at least three measurements and the error 

bars the corresponding standard deviation. 
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The optimal surface coverage was then experimentally assessed by varying the capture 

probe concentration in a range between 0.1 and 2 μM. The higher hybridization yields 

were obtained with electrodes modified with 2 μM of the thiolated probe solution 

(figure 3.7) and thus this concentration was used for further measurements. 

Electrochemical measurements were also performed in order to evaluate the effect of 

hybridization time (figure 3.8). 

 

Figure 3.8 - Influence of  hybridization time reaction. 2 µM in 0.5 M phosphate buffer of 

DNA-SH was tested with exposure of the modified surface to a blank solution or 25 nM target 

concentration fr 5, 10, 20 and 30 min. Other conditions as described in the materials and 

methods section. The bars are the average of at least three measurements and the error bars 

the corresponding standard deviation. 

The higher hybridization yields were obtained with electrodes modified with 2 μM of 

the thiolated probe solution exposed for 20 min to complementary sequence and thus 

this time was used for further measurements. 

3.2.5 Liposome assay optimization 

 

In order to further optimize the analytical assay, the influence of the liposome 

concentration on electrochemical signals were investigated. 
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Figure 3.9 - Influence of liposome dilution on the analytical signals registered in liposome 

enzymatic assay. A comparison with enzymatic assay is also showed. Probe-modified sensors 

were exposed to a 10 µL drop of non-complementary sequence solutions (blank) and 

biotinylated complementary target sequence solutions (target 1 nM in phosphate buffer) for 20 

min. Biotinylated hybrid was then exposed to a 0.5 mg/L streptavidin solution in phosphate 

buffer for 20 min. Different liposome dilutions (1:10, 1:100, 1:1000 and 1:10000 in HEPES 

buffer) were incubated for 20 min. After labelling with the streptavidin-alkaline phosphatase 

conjugate (0.8 U/mL), the sensors were exposed to 30 µL of BCIP/NBT mixture for 20 min. 

Further details are available in the Materials and Methods section. The bars are the average 

of at least three measurements and the error bars the corresponding standard deviation. 

 

A series of sensors was exposed to increasingly liposome dilutions (1:10, 1:100, 

1:1000 and 1:10000 in HEPES buffer) while keeping constant streptavidin and 

enzyme concentration. Experimental data, summarized in figure 3.9, show how both 

the signal due to the nonspecific adsorption of the liposome and that due to its specific 

coupling with the biotinylated hybrid changed with the dilution. These results 

suggested that optimal analytical signal (compatibly with minimal aspecific signal) 

could be achieved using 1:1000 dilution. This value was used for all subsequent 

experiments. 
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3.2.6 Calibration Curves 

 

A non-complementary target (miRNA-16) at concentrations of 50, and 100 pM was 

analyzed on a thiolated capture probe layer formed after gold electrodeposition 

deposition. The non-complementary control target sequence was biotynilated but was 

otherwise non-complementary to the immobilized capture probe. All the 

concentrations tested gave a similar impedrimetic signal (ΔRet 0.10 ± 0.01 kΩ), 

comparable to the phosphate buffer measurement, demonstrating that the non-

complementary amplicon has no cross reactivity with the electronucleated 

immobilized capture probes and did not interact non specifically with the unprotected 

SPCE. To demonstrate the analytical performances of the label based impedimetric 

assay a calibration experiment was designed for both assays (figure 3.10 and 3.11). 

When analyzing synthetic target solutions whose concentration was increased by 

orders of magnitude, a linear response were observed until a plateau was achieved.  

 

a

 

b

 

Figure 3.10 – a) Calibration plot for synthetic oligonucleotides from 0 to 1 nM miRNA-222 

concentration.0.05 and 1 nM miRNA-16 was exposed to probe modified electrode as negative 

control; b) Calibration plot in the low concentration range (0, 0.001, 0,008, 0.016, 0.025 and 

0.05 nM of miRNA-222).Further details are available in the materials and methods section. 

Each point represents the mean of at least three measurements and the error bars the 

corresponding standard deviation. 

In the streptavin alkaline phosphatase conjugated assay, the analytical signals varied 

linearly (R
2
 = 0.975) with the target concentration from 0 to 0.05 nM (figure 3.11b). 

Signals leveled off for higher concentrations, indicating that saturation of all available 
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probes was achieved; moreover, the non-specific signal of biotinylated non-

complementary oligomers was negligible up to 1 nM. Within the linear analytical 

range, the sensitivity was 41.6 kΩ/nM, with an estimated detection limit of 1 pM and 

an average RSD of 15%. 

 

a b  

Figure 3.11 – a) Calibration plot for synthetic oligonucleotides from 0 to 1 nM miRNA-222 

concentration; b) Calibration plot in the low concentration range (0, 0.001, 0,0025, 0.005 and 

0.01 nM of miRNA-222).Further details are available in the materials and methods section. 

Each point represents the mean of at least three measurements and the error bars the 

corresponding standard deviation. 

 

In the liposome assay, the genosensor response varied linearly (R² = 0.994 ) with the 

target concentration between 0 pM to 10 pM (figure 3.11b). Signals leveled off for 

higher concentrations, indicating that saturation of all available probes was achieved; 

moreover, the non-specific signal of biotinylated non-complementary oligomers was 

negligible up to 1 nM (data not shown). Within the linear analytical range, the 

sensitivity was 229.1 kΩ/nM, with an estimated detection limit of 0.6 pM and an 

average RSD of 18%. 

 

3.3 Discussion 

 

In the present chapter the use of Alkaline Phosphatase-decorated liposome as label for 

the impedimetric detection of miRNA was proposed using screen printed carbon 

electrodes modified with gold nanoclusters by electrodeposition. Liposomes prepared 

and optimized as described in chapter 2 has been used in the present work. These biotin 

tagged liposomes were exposed to the biotinylated hybrid formed on the electrode 
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surfaces and then to streptavidin-alkaline phosphatase. Furthermore, since transducer 

surface gold nano-structuring presents an excellent potential for the optimal oriented 

immobilization and spacing of DNA probes at the electrode surface whilst at the same 

time enhancing transducer sensitivity, it has been optimized a procedure to 

nanostructure the screen-printed carbon electrode surface by gold electrodeposition. The 

capture probe is immobilized on the nanostructured surface with the well-known 

chemistry of thiols. The capture-probe-modified electrode is, then, allowed to react with 

the analyte (the target biotinylated miRNA). Then, the biotinylated hybrid is exposed to 

the enzyme-decorated liposomes. The product of the enzymatic reaction was then 

electrochemically monitored using impedance spectroscopy. 

The number of cyclic potential scans of the electrodeposition step were varied from 1 to 

15 with Au(III) concentration and optimal parameters were assessed by EIS 

measurement of the charge transfer resistance of a redox probe. Modified sensors with 

optimized procedure for nanostructuration with gold, where then characterized by 

electrochemical, SEM and EDX experiments. CV in H2SO4 and EDX confirm the 

presence of gold in treated electrodes. For all these experiments unmodified screen 

printed electrodes were used as negative control. Microscopy allows to determinate the 

size distribution, showing the presence of some aggregate, but with an high 

concentration of small particles with radius minor than 100 nm.  

In figure 3.12 are reported the electron transfer resistances for the different steps of the 

assay.  
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Figure 3.12 – Electron transfer resistances for the measurements corresponding to 1) probe 

functionalized electrode; 2) after interaction with 1 nM miRNA target; 3) after treatment with 

streptavidin; 4) after interaction with liposome; 5) after interaction with strept-AP; 6) after 

interaction with the substrate. Data are recorded in 0.1 M KCl in the presence of Fe(CN)6
3-/4-

, 5 

mM (molar ratio 1:1). 

 

The hybridization event is accompanied by a relatively small increase of the electron-

transfer resistance at the electrode. These results are consistent with the fact that the 

formation of the duplex on the surface electrostatically repels the redox probe, 

[Fe(CN)6]
3/4−

, and thus the interfacial electron transfer resistance gradually increases 

upon the buildup of the assembly. The association of the streptavidin, slightly decreases 

the interfacial electron-transfer resistance. On the contrary, the association of the biotin-

tagged liposome and enzyme alter the electrode transfer resistance, probably due to the 

beared negative charge. Furthermore, the biocatalyzed precipitation of the insulating 

product determines an important increase of the electron-transfer resistance.  

3.4 Conclusions 

 

Both the assays studied demonstrate the possibility to increase the sensitivity of the 

assay in comparison with the label free scheme. In the first strategy, streptavidin 

conjugated alkaline phosphatase is bound to the biotinylated hybrid causing the 

formation of an enzyme rich network. This signal amplification produces a sensitivity of 
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41.6 kΩ/nM, with an estimated detection limit of 1 pM and an average RSD of 15%. 

This higher sensitivity was attributed to the biocatalytic product used as biorecognition 

element for the hybridization event. Another hypothesis is the increased probe density 

immobilized on the surface. In order to confirm two different experiment were 

performed: a chronocoulometric detection and EDX measurements. Both measure 

failed. Chronocoulometric detection gives high aspecific signals, probably due to the 

adsorbion on ruthenium complex on graphite. The EDX measurement was performed in 

order to quantify probes through the sulfur atom of the thiolated capture probe. 

Unfortunately, sulfur was also present on the negative control, probably due to the 

electrodeposition process made in presence of sulfuric acid.   

 

In the second strategy biotin-tagged liposomes have been tested. Liposomes, owing to 

their large surface area, are capable of carrying a large number of streptavidin 

conjugated alkaline phosphatase. The biotin tags provides an anchoring site that links 

the liposome probe to the biorecognition assembly and to enzyme molecules. Compared 

to enzyme assay, liposome assay allows a 5-fold enhancement of the electroanalytical 

signal using impedance spectroscopy. 

In summary both the strategies seems interesting for signal amplification. Moreover, it 

is important to note that this method is not limited to only the hybridization assay 

systems, but can also be extended other applications and other enzyme linked affinity 

assay. 
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Chapter 4 – Label-Free impedimetric detection of miRNA 

using biotinylated conducting polymer modified electrodes 

 

 

This chapter describes the development of a label-free genosensor using screen printed 

electrodes. Conducting polymer of biotinylated bis(2,2′-bithien-5-yl)methane is herein 

investigated as recognition unit of a biosensor for selective electrochemical detection of 

miRNAs sequences. This monomer was potentiodynamically polymerized to form films on 

the surface of screen printed electrodes for the EIS transduction. On top of these films, 

streptavidin was immobilized by complexing the biotin moieties of the polymer. Finilly, 

recognizing biotinylated oligonucleotide capture probe was immobilized by complexing the 

surface-immobilized streptavidin. This structure served as recognition element of the 

complementary miRNA sequence via hybridization event. Faradaic impedance spectroscopy 

was applied to characterize these amplification routes. 

 

 

Figure 4.1 - Illustration of the assay scheme. Electrode surface is exposed to a biotinylated monomer 

water solution and electropolymerization is started (1). The biotinylated film is then exposed to a 

streptavidin solution (2). Biotinylated DNA capture probe is immobilized on the surface (3). After 

incubation of target oligonucleotide solution (4) the hybrid is formed on the electrode surface and 

revealed by EIS (5). 

 

4.1 Materials and methods 
 

4.1.1 Reagents 

 

Streptavidin from Streptomyces avidinii and ethanol (96%) were from Sigma-Aldrich. 

Disodium hydrogen phosphate, sodium dihydrogen phosphate, potassium 
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hexacyanoferrate (III and II), sodium chloride, tetra-n-butylammonium bromide 

[(TBA)Br] and acetonitrile were from Merck. Bis(2,2′-bithien-5-yl)-(4-

hydroxyphenyl)methane biotin ester was synthesized according to the literature 

procedure [173] by Kutner’s group. MilliQ water (DEPC treated for RNA analysis) 

was used for preparation of solutions. Synthetic oligonucleotides were from MWG 

Biotech AG. 

Probe (DNA-biot): 5’ GAA-ACC-CAG-CAG-ACA-ATG-TAG-CT – biotin 3’. 

Target: 5’ AGC-UAC-AUU-GUC-UGC-UGG-GUU-UC –  3’. 

Non-complementary: 5′ UAG-CAG-CAC-GUA-AAU-A-3′ 

4.1.2 Electrochemical measurements 

  

Electrochemical measurements were performed with a three-electrode cell using the 

Autolab PGSTAT10 electrochemistry system equipped with the FRA2 module 

(EcoChemie). The SPE devices were composed of planar electrodes, i.e., a carbon 

auxiliary electrode, an Ag pseudo-reference electrode, and a gold working electrode. 

CV measurements were performed in the range between +0.5 and +1.3 V with a scan 

rate of 50 mV/s. The EIS measurements were performed with an alternating voltage of 

the 10 mV amplitude at open circuit potential (OCP) of +0.20V used as the bias 

potential in the frequency range of 10 mHz to 50 kHz. The EIS spectra were plotted as 

the complex plane diagrams (Nyquist plots). All potentials are referred to pseudo-

reference electrode for measurements at the SPE. 

 

4.1.3 Electropolymerization 

 

Prior to the polymerization process, a multiple-pulse amperometric pretreatment of the 

gold surface was carried out in a stirred 0.5 M H2SO4, 10 mM KCl solution. The 

following triple-potential pulse sequence: -0.3 V for 0.30 s; 0.0 V for 0.30 s and +1.0 

V for 0.15 s (150 cycles) was applied. Potentiodynamic deposition of this polymer on 

the electrode surface was performed by linear cycling the potential in the range of +0.5 

to 1.5 V as reported in figure 4.2. An anodic peak current is observed at +1.1 V 

resulted from oxidation of the bisthiophene moiety of the functional monomer leading 

to formation of the polymer film. In the first scan, two crossover occur at +0.9 and 
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+1.0 V, confirming that a nucleation process is occurring on the surface of the gold 

electrode [243].  

 

Figure 4.2 – Cyclic voltammetry at SPGE performed from +0.5 to 1.3 V at a scan rate of 50 

mV/s in a 0.1 mM monomer solution in 10 mM [(TBA)Br] Ethanol:Acetonitrile:Water 1:1:10 

(//) mixture. Voltammograms showed are referred to scans from 1 to 8. 

 

Starting from the second scan, no crossover is present. This result confirm the 

deposition of a polymer film. A decreasing of the peak current is also observed 

increasing the number of scans, suggesting a conductivity decreasing. In paragraph 

3.1.5 EIS characterization confirm this result through electron transfer resistance 

analysis.  

 

In order to optimize the electropolymerization process for DNA probe immobilization, 

a set of electrodes was modified by using a different number of CV scan, exposed to 4 

µM of DNA probe phosphate buffer solution and then tested with EIS. Another set of 

electrodes was modified by using the same number of scan and then tested with EIS 

(negative control). Another set of electrodes was modified with different number of 

scan, exposed to. Impedimetric measurements were performed in a 10 mM Fe(CN)6
3-

/4-
 solution in 0.1 M phosphate buffer pH 7.4 (PB) The Ret values obtained are showed 

in figure 4.3. 
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Figure 4.3 – Influence of number of cycles on the immobilization of DNA capture probe. 10, 

20, 30 and 40 cycles were performed on two set of SPGEs, the first was analyzed by EIS in 10 

mM Fe(CN)6
3-/4-

 solution in 0.1 M PBS as supporting electrolyte, the second was exposed to a 

0.2 mg/L streptavidin solution in 0.1 M PBS for 20 min and then to a 4 µM biotinylated DNA 

probe solution in 0.1 M PBS. The bars are the average of at least three measurements and the 

error bars the corresponding standard deviation. 

 

Results show an increasing of electron transfer resistances with the number of cycles 

for electropolymerization, reaching a constant value after 30 cycles. Based on 

shortening the time necessary for electropolymerization, the number of potential scans 

was determined to be 30 in the following experiments. 

 

4.1.4 Redox probe optimization for EIS 

 

In order to optimize the experimental conditions, the redox probe concentration was 

varied and Ret signals were monitored. SPGEs were modified with polymer using 

optimized conditions and then rinsed with deionized water. SPGEs were then exposed 

to 100, 10 and 1 mM Fe(CN)6
3-/4-

 solution in 0.1 M PB as supporting electrolyte. 

Figure 4.4 show the results obtained by EIS. 
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Figure 4.4 – Influence of redox probe concentration on EIS measurements of polymer 

modified sensors. The bars are the average of at least three measurements and the error bars 

the corresponding standard deviation. 

 

The highest value of Ret was obtained with 1 mM Fe(CN)6
3-/4-

 that was used as 

optimized concentration in the following experiments. 

 

4.1.5 EIS characterization and calibration curve 

 

An impedimetric characterization was performed in order to evaluate the surface 

change after each step of incubation. In figure 4.5 impedance spectra (as Nyquist plot 

form) of different step of the assay (i.e. polymerization, streptavidin incubation, 

capture probe incubation and hybridization with different concentrations of target) are 

reported. Impedance increases after each step of incubation, and, moreover, the sensor 

is sensitive even when exposed to 1 pM concentration of miRNA. 
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Figure 4.5 – Influence of the surface modification on impedimetric signals. Impedance spectra 

(Nyquist plots) are shown after polymerization, streptavidin incubation, capture probe 

incubation and 1,10 and 100 pM miRNA conctenctration. Further details are available in the 

materials and methods section. 

 

To demonstrate the analytical performances of the impedimetric assay a calibration 

experiment was designed (figure 4.6). When analyzing target solutions whose 

concentration was increased by orders of magnitude, a linear response was observed. 

In the concentration range tested (0 to 100 pM), the genosensor response exhibited 

linear (R
2
 = 0.98) dependence on target concentration with 0.14 kΩ/pM sensitivity and 

a relative standard deviation of 15% (expressed as mean of all concentration tested). 

Signals levelled off for higher concentrations, indicating that saturation of all available 

probes was achieved (data not showed); moreover, the non-specific signal of non-

complementary oligomers was negligible up to 100 pM. 
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Figure 4.6 - Calibration plot for synthetic oligonucleotides. Probe-modified sensors were 

exposed to a 10 µL drop of the target sequence solution (0, 1, 5, 10, 50 and 100 pM) for 20 

min. Further details are available in the materials and methods section. Each point represents 

the mean of at least three measurements and the error bars the corresponding standard 

deviation. 

 

4.2 Discussion 
 

This chapter describes the development of a label-free electrochemical genosensor 

based on the use of screen printed gold electrode transducers. The use of inexpensive 

sensors and the label-free detection scheme made such a biosensing approach 

particularly attractive. The short analysis time and the simplicity of the procedure were 

two additional advantages of the proposed assay. This indicator-free scheme relied on 

the increasing of electron transfer resistance as hybridization recognize event. It is 

usually accepted that the immobilization of the DNA probe onto the sensor surface 

plays a crucial role in genosensor preparation, deeply determining its bio-recognition 

capabilities. Immobilization of densely packed DNA probe layers was required during 

the analysis of synthetic oligonucleotides for efficiently suppressing the non-specific 

adsorption of such short sequences. Conductive polymer film was used as 

immobilization strategy for DNA capture probe. 

A biotinylated monomer was potentiodynamically polymerized on the electrode surface 
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via CV. An anodic peak current is observed at +1.1 V (vs. silver pseudo reference 

electrode) resulted from oxidation of the bisthiophene moiety of the functional 

monomer leading to formation of the polymer film [173]. In the first scan, two 

crossover occur at +0.9 and +1.0 V, confirming that a nucleation process is occurring on 

the surface of the gold electrode [243]. Even if a conductive polymer film was deposited 

during the first scan, an increasing of peak current is expected during the following 

scans. Voltammograms instead show a decreasing of the peak current. This result could 

be explained with the negative charge beard by biotin, that increases the resistance of 

the surface, with consequent loss of conductivity. This result is also confirmed by EIS 

characterization, that show an increasing of Ret from 70.1 ± 1.2 Ω (bare electrode) to 

183.4 ± 41.5 Ω (polymerized electrode with 30 cycles) registered in 10 mM Fe(CN)6
3-/4-

 

in PBS.  

Impedimetric characterization of figure 4.5  show how Ret increases with all step of 

incubation. This is due to intrinsic negative charged possessed by streptavidin, DNA 

capture probe and miRNA target, that naturally increase the resistance of the electron 

transfer. 

In order to obtain the higher sensitivity of the genosensor, a characterization of 

electropolymerization process was performed. In particular, number of cylces tested 

show an increasing of the Ret value from 10 to 40 cycles. This is probably due to the 

increasing of thickness of the film and biotin coverage of the surface. Ret values in 

presence of capture probe also increase with the number of cycles, indicating an higher 

immobilization of the probe on the surface, reaching a highest and stable value at 30 

cycles. 

Calibration plot made with synthetic miRNA sequences show a linear range with 0.14 

kΩ/pM (or 140 kΩ/nM) with a calculated LOD of 1.1 pM. 

 

4.3 Conclusions 

 

This chapter has described a disposable, indicator-free, electrochemical genosensor, based on 

polymer modified screen-printed gold electrodes. Biotinylated bis(2,2′-bithien-5-yl)methane 

monomer efficiently electropolymerized under potentiodynamic conditions. The biotin-

containing resulting polymer film irreversibly bound streptavidin. This binding enabled 

preparation of a label-free biosensor for sequence-specific oligonucleotide determination. 

Noteworthy, the electropolymerization used for polymer deposition is a straightforward, low 
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cost, and repeatable way of the transducer surface modification, thus making biotin 

immobilization very attractive. The indicator-free genosensor was characterized by EIS 

measurements using mir221 synthetic oligonucleotide as a model. Specific detection of non 

complementary sequence (miR16) was achieved in conjunction with a 20 minute 

hybridization assay; a detection limit of 1.1 pM of miR-221 target sequence was obtained 

with a 140 kΩ/nM sensitivity. The use of conductive polymer film seems interesting for 

signal amplification. Moreover, it is important to note that this method is not limited to only 

the hybridization assay systems, but can also be extended to other affinity biosensors based on 

biotin-streptavidin chemistry. 
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Chapter 5 – Electrochemical and Photoelectrochemical 

Characterization of ITO-TiO2-AuNRs Electrodes for 

Enzymatic miRNA Photoelectrochemical Detection  

 

 

This chapter describes the electrochemical and photoelectrochemical characterization of ITO-

TiO2-AuNRs electrodes for the development of a photoelectrochemical genosensor. The use 

of AuNRs has two proprieties: reduce the bandgap of semiconductive TiO2, that normally 

require UV source, permitting the use of visible light as source for photocurrent development; 

moreover, the layer of gold on the sensor surface, allow thiolated DNA probe to be 

immobilized.  

Preliminary characterization and optimization of the photoelectrochemical route is herein 

described with preliminary results of enzymatic assay showed in figure 5.1, where ascorbic 

acid was used as enhancer of the photocurrent as product of the biocatalytic reaction with 

streptavidin conjugated alkaline phosphatase. 

 

 

Figure 5.1 - Illustration of the assay scheme. The biotinylated hybrid is formed on the gold modified 

electrode surface (1,2,3). Streptavidin-Alkaline Phosphatase is added (4). After incubation of the 

proper substrate, enzymatic product is revealed by Chronoamperometry (5). 

 

5.1 Materials and methods 
 

5.1.1 Reagents 
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Dithiothreitol (DTT), 6-mercapto-1-hexanol (MCH), streptavidin–alkaline 

phosphatase (S2890, Strept-AP, 2:1 conjugation stoichiometry), diethyl pyrocarbonate 

(DEPC), ascorbic acid, L-ascorbic acid 2-phosphate trisodium salt, mercaptosuccinic 

acid (MSA), bovine serum albumin (BSA), Tris–HCl, were obtained from Sigma–

Aldrich (Milan, Italy). Magnesium and potassium chloride were purchased from 

Merck (Milan, Italy). NAP-10 columns of Sephadex G-25 were obtained from 

Amersham Pharmacia Biotech (Uppsala, Sweden). ITO-TiO2 electrode were 

purchased from Solaronix (Aubonne, Switzerland). AuNRs were synthetized and 

characterized by Dr. Ingrosso, CNR-IPCF. MilliQ water (DEPC treated for RNA 

analysis) was used throughout this work. Synthetic oligonucleotides were obtained 

from MWG Biotech AG (Germany): 

 

Probe (DNA-SH): 5’ GAA-ACC-CAG-CAG-ACA-ATG-TAG-CT – SH 3’ 

Target: 5’ AGC-UAC-AUU-GUC-UGC-UGG-GUU-UC –biotin 3’ 

 

Prior to use, the thiol-modified oligonucleotides were treated with DTT. This reagent 

allowed reduction and cleavage of oligo dimers eventually obtained by oxidative 

coupling of two DNA-SH molecules (i.e. DNA-S-S-DNA). The lyophilized 

oligonucleotides were dissolved in a 10 mM Tris-HCl buffer solution (pH 8.3) 

containing 20 mM of DTT. The reaction was allowed to proceed for 2 h at room 

temperature. The thiolated DNA was then purified by elution through a NAP-10 

column of Sephadex G-25 using 0.5 M phosphate buffer (pH 7.4). DNA-SH stock 

were prepared in the same buffer and stored frozen. 

 

5.1.2 Electrochemical measurements 
  

Electrochemical measurements were performed with a three-electrode cell using the 

Autolab PGSTAT10 electrochemistry system equipped with the FRA2 module 

(EcoChemie). A Pt wire, Ag/AgCl, and ITO-TiO2-AuNRs disk served as the auxiliary, 

reference, and working electrode respectively using a 1 mL Plexiglas cell. Cyclic 

Voltammetry (CV) measurements were performed with a scan rate of 50 mV/s in 

different potential ranges. EIS measurements were performed with Edc from -0.2 to 
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+0.8 V, in the range between -0.2 and +0.8 V, every 0.1 V with all the parameters 

showed in table 5.1. 

Subscan number Points Frequency [Hz] Eac [V] 

1 10 50000-5000 8·10
-4

 

2 25 4900-50 1·10
-3

 

3 15 49-4 2·10
-3

 

4 15 3-0.1 1·10
-2

 

5 9 0.09-0.02 1.5·10
-2

 

 

Table 5.1 – EIS parameters for impedimetric characterization of the sensor 

Photocurrents were measured with amperometry at a defined potential where the 

electrode show no capacitive current. 

 

5.1.3 Light sources 

 

Three different light sources were used. An UV lamp (Jelosil HG500, effective 

intensity: 30 mW cm
-2

) emitting in the UV-A (315–400 nm) in air. An UV lamp 

emitting at 366 nm (CAMAG, Switzerland) and a commercial white LED (Nichia 3 

mm White LED, 25 ° Through Hole from RS, Northants, UK) emitting in the visible 

range 400-700 nm with two maximum at 456 and 549 nm. .   

 

5.1.4 Sensor modification 
 

20 µL of the thiolated oligonucleotide solution (10 µM in 0.5 M in phosphate buffer) 

were placed on the electrode surface. Chemisorption was allowed to proceed overnight 

(≈ 16 h). During this period, the electrode cell was covered with parafilm in order to 

prevent the evaporation of the oligonucleotide solution. The immobilization step was 

followed by a post-treatment with 20 µL of 1 mM MCH water solution for 1 hour. 

Prior to hybridization reaction, the modified electrode were washed twice with 0.5 M 

phosphate buffer pH 7.2 (PB). The probe-modified electrodes were exposed to a 20 µL 

of the biotinylated target sequence in PB solution for 20 min. After hybridization, the 

sensor was washed twice with 0.1 M Tris-HCl, pH 9.8 (Tris). The biotinylated hybrid 
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obtained at the electrode surface was reacted with a 20 µL solution containing 4 U/mL 

of the streptavidin-alkaline phosphatase conjugate and 10 mg/mL of BSA in Tris 

buffer. After 20 minutes, the sensors were washed twice with Tris buffer. The 

photoelectrochemical cell was then covered with 750 µL of an L-ascorbic acid 2-

phosphate trisodium salt solution (10 mg/mL in Tris buffer). After 20 minutes of 

incubation, photocurrent was measured with an amperometric detection under 

illumination of opportune light source. The ascorbic acid enhanced photocurrent was 

taken as the analytical signal. All photoelectrochemical measurements were referred to 

the Ag/AgCl wire reference electrode. The experiments were carried out at room 

temperature (25°C). 

5.2 Results 

5.2.1 Characterization of ITO-TiO2 electrode with CV 
 

Different potential ranges were tested in CV in order to determinate the potential 

window of capacitive current. In figure 5.2a are reported all the voltammograms 

registered at 50 mV/s in 0.1 M KCl. 

a

 

b

 

 

Figure 5.2 – a) Cyclic voltammograms registered in 0.1 M KCl at 50 mV/s on TiO2/ITO 

electrode from negative to positive potential direction; b) Cyclic voltammograms registered in 

0.1 M KCl at 50, 100 and 200 mV/s from -1 to 1 V. 

All voltammograms show a large potential range where the current is only capacitive. 

In this range the absence of faradaic phenomenon on the electrode surface preserves 

the electrode to be modified with degradative processes. The window of interest 
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resulted between -0.2 to +0.8 V. In order to determinate the scan rate influence on the 

sensor, in figure 5.3b are reported voltammograms registered at different scan rate. 

The voltammograms show that at high scan rate no big difference occurs on the 

faradaic current at potential lower than -0.5 V. The anodic peak registered around -

0.75 V is probably related to the H
+
 reduction to H2, but it is not possible to exclude a 

tribute to this peak current from TiO2 film. 

 

5.2.2 Characterization of ITO-TiO2 electrode with EIS 

 

Impedance spectroscopy was used in order to estimate some TiO2 properties as 

semiconductor electrode. In particular, the flat band potential Efb, donor density ND 

and the spacial charge thickness Ldl. Efb and ND were obtained from Mott – Schottky 

equation [244]: 
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Here C and A are the interfacial capacitance and area, respectively, E the applied 

voltage, kB is Boltzmann’s constant, T the absolute temperature, and e is the electronic 

charge. Therefore, a plot of 1/C
2
 against E should yield a straight line from which Efb 

can be determined from the intercept on the E axis. The value of ND can also be 

conveniently found from the slope knowing ε and A of the electrode.  

Ldl was instead calculated from the equation: 
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Figure 5.3a show the Nyquist plot registered at +0.8 V, and figure 5.3b all plots 

registered for each Edc (from -0.2 to +0.8 V). For this and for all the other spectra 

registered a fitting with the following circuit was made in order to evaluate the 

capacitance for Mott – Schottky method: Rs(R1C1)(R2C2)(R3C3)(R4C4) (figure 5.4). 
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a

 

b

 

 

Figure 5.3 – a) Nyquist plot registered in 0.1 M KCl at ITO-TiO2 electrode; b) Nyquist plots 

registered in 0.1 M KCl at ITO-TiO2 electrode from -0.2 to +0.8 mV.  

 

 

Figure 5.4 – Equivalent circuit used for fitting. 

All the data calculated with the fitting are here reported in table 5.2. Rs is the 

resistance of the solution, and is usually independent to the applied Edc.  

Edc Rs (Ω) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) C1 (F) C2 (F) C3 (F) C4 (F) 

-200 407 5,91E+06 4,80E+04 4,28E+03 6,20E+02 1,16E-05 7,10E-06 7,97E-06 2,22E-06 

-100 403 6,72E+06 5,12E+04 5,15E+03 6,70E+02 1,14E-05 7,06E-06 7,55E-06 2,12E-06 

0 399 6,34E+06 5,28E+04 5,32E+03 6,65E+02 1,10E-05 6,75E-06 7,18E-06 2,04E-06 

100 396 3,79E+06 5,51E+04 5,82E+03 6,92E+02 1,10E-05 6,45E-06 6,74E-06 1,96E-06 

200 391 1,19E+06 5,92E+04 7,95E+03 7,02E+02 1,37E-05 6,20E-06 5,90E-06 1,88E-06 

300 387 1,25E+06 6,38E+04 7,59E+03 6,80E+02 1,29E-05 5,94E-06 5,73E-06 1,85E-06 

400 382 1,61E+06 6,32E+04 6,63E+03 6,94E+02 1,16E-05 5,63E-06 5,86E-06 1,80E-06 

500 378 1,63E+06 6,27E+04 6,09E+03 6,66E+02 1,09E-05 5,43E-06 5,88E-06 1,73E-06 

600 374 1,60E+06 6,36E+04 5,74E+03 6,69E+02 1,05E-05 5,27E-06 5,88E-06 1,69E-06 

700 370 9,48E+05 6,52E+04 5,82E+03 6,50E+02 1,07E-05 5,07E-06 5,59E-06 1,67E-06 

800 366 5,67E+05 6,23E+04 5,32E+03 6,79E+02 1,06E-05 4,77E-06 5,82E-06 1,63E-06 

 

Table 5.2 – Resitances and Capacitance calculated from the fitting with the circuit 

Rs(R1C1)(R2C2)(R3C3)(R4C4). 
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In this particular case, instead, a slow linear dependence to Edc is observed, even if the 

average value is 387±14 Ω. Starting from the value of Rs evaluated at 0 V, with a 

conductivity for 0.1 M KCl assumed 12.9 mS·cm
-1

 [245] a cell constant of 5.11 cm
-1

 

was calculated. Mott – Schottky diagram as C1
-2

 vs E is reported in figure 5.5, with the 

linear range from +0.2 to +0.6 V. Intercept and slope were calculated (intercept = 

3.36·10
9
 F

-2
 slope = 9.75·10

6
 F

-2
/mV), assuming  for TiO2 equal to 173 [246], 0 = 

8.85 ·10
-12

 F/m [247], A = 7.07 ·10
-6

 m
2
 (3 mm diameter) and e = 1.6·10

-19 
C [247], 

give a -344 mV and 1.68·10
22

 cm
-3

 as Efb and ND respectively. 

 

Figure 5.5 - Mott–Schottky plot for ITO/TiO2 in 0.1 M KCl solution. 

Finally, knowing Efb and ND, it is possible to estimate the dimension of the charge 

space Ldl versus Edc (figure 5.6). In the range potential evaluated Ldl profile is linear 

(R
2
 0.98) with a slope of 0.71 nm/V and intercept of 0.61 nm. 
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Figure 5.6 – Influence of the applied potential on the spacial charge thickness (Ldl) for ITO-

TiO2 electrode assuming a flat band potential Efb and a donor density ND of -344 mV and 

1.68·10
22

 cm
-3

 respectively. 

5.2.3 Photoelectrochemical characterization of ITO-TiO2 electrode 
 

A photoelectrochemical characterization of the bare ITO-TiO2 electrode, MSA 

modified electrode (ITO-TiO2-MSA) and AuNRs modified electrode (ITO-TiO2-

AuNRs) were performed. MSA was used in order to bind AuNRs to TiO2 through its –

COOH moieties. Finally, a DNA-SH modified ITO-TiO2-AuNRs was also tested. The 

lamp used for all of these investigations is a UV lamp from Jelosil.  

ITO-TiO2 

This electrode was used for an intensive electrochemical characterization (showed in 

the previous paragraph) and successively used for photoelectrochemical tests. CV tests 

were performed with this electrode in dark and under UV illumination from -0.2 to 

+0.8 V in 0.1 M KCl and in 10 mM Ascorbic Acid (AA) at 50 mV/s (figure 5.6a). 
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a

 

b

 

 

Figure 5.6 – a) Cyclic voltammograms from -0.2 to +0.8 V in dark and under UV illumination 

in 0.1 M KCl and 10 mM Ascorbic Acid in 0.1 M KCl; b) Voltage-dependent photocurrent at 0 

V in 0.1 M KCl as a function of time upon turning the incident UV light on and off without 

(black line) and with (gray line) Ascorbic Acid of ITO-TiO2 electrode. 

Photocurrents were registered at 0 V. This potential was chosen in the range -0.2 and 

+0.8 V estimated in the previous paragraph as the range where current is only 

capacitive. Chronoamperograms show an increase of photocurrent with the enhancer 

AA and an increase of the current under illumination. 

From the reported data is clear the light dependence of the current, especially in the 

presence of AA. The small increase of the current with ligh was attributed to change in 

the crystal structure due to the electrochemical characterization.  

 

ITO-TiO2-MSA 

Electrode modified with MSA was first tested with CV from -0.2 to +0.8 V in 0.1 M 

KCl and from -0.2 to +1.4 V in 10 mM AA in 0.1 M KCl. Voltammograms in figure 

5.7 show an evident light dependence. 
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b

 

 

Figure 5.7 – a) Cyclic voltammograms from -0.2 to +0.8 V in dark and under UV illumination 

in 0.1 M KCl and from -0.2 to +1.4 V in 10 mM Ascorbic Acid in 0.1 M KCl; b) Voltage-

dependent photocurrent at 0 V in 0.1 M KCl as a function of time upon turning the incident 

UV light on and off without (solid line) and with (dash line) Ascorbic Acid of ITO-TiO2-MSA 

electrode. 

Also in this experiment photocurrents were registered at 0 V. Chronoamperograms 

show a high increase of photocurrent under illumination. 

ITO-TiO2-AuNRs 

Electrode modified with AuNRs was first tested with CV from -0.2 to +0.8 V in 0.1 M 

KCl and from -0.2 to +1.4 V in 10 mM AA in 0.1 M KCl. Voltammograms in figure 

5.8 show an evident light dependence. 
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b

 

 

Figure 5.8 – a) Cyclic voltammograms from -0.2 to +0.8 V in dark and under UV illumination 

in 0.1 M KCl and 10 mM Ascorbic Acid in 0.1 M KCl; b) Voltage-dependent photocurrent at 0 

V in 0.1 M KCl as a function of time upon turning the incident UV light on and off without 

(solid line) and with (dash line) Ascorbic Acid of ITO-TiO2-MSA-AuNRs electrode. 

Also in this experiment photocurrents were registered at 0 V. Chronoamperograms 

show a high increase of photocurrent under illumination. 

ITO-TiO2-AuNRs-DNA 

DNA modified electrode was first tested with CV from -0.2 to +0.8 V in 0.1 M KCl 

and from -0.2 to +1.4 V in 10 mM AA in 0.1 M KCl.  
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b

 

 

Figure 5.9 – a) Cyclic voltammograms from -0.2 to +0.8 V in dark and under UV illumination 

in 0.1 M KCl and 10 mM Ascorbic Acid in 0.1 M KCl; b) Voltage-dependent photocurrent at 0 

V in 0.1 M KCl as a function of time upon turning the incident UV light on and off without 

(solid line) and with (dash line) Ascorbic Acid of ITO-TiO2-MSA-AuNRs-DNA electrode. 

Voltammograms in figure 5.9 show an evident light dependence. Also in this 

experiment photocurrents were registered at 0 V. Chronoamperograms show an 

increase of photocurrent under illumination. 

 

5.2.4 Ascorbic acid calibration plot 

 

In order to use a smaller and easy to use light source, photoelectrochemical 

characterization in presence of AA were performed with a CAMAG lamp (366 nm).  

Morover, due to the gold propriety to reduce the band gap energy of titanium dioxide, 

a visible light source was tested using a white LED (RS).  

The LED used in these experiment was characterized and the spectra registered 

reported in figure 5.10. 
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Figure 5.10 - Spectrum of the white LED showing blue light (peak at about 456 nm) and the 

more broadband Stokes-shifted light emitted at roughly 500–700 nm. 

Photocurrents were registered using an unmodified ITO-TiO2 electrode in PB (figure 

5.11). In table 5.3 are reported results using both light source at different concentration 

of Ascorbic Acid (AA). Currents reported are extrapolated from the third photocurrent 

registered. Photocurrents registered with UV source presented an irregular form, 

probably due to the light power of the lamp, not designed for this kind of experiments 

(data not shown).   

 

Figure 5.11 - Voltage-dependent photocurrent at 0 V as a function of time upon turning the 

incident LED  light on and off at 0, 0.5, 1, 5 and 10 mM Ascorbic Acid in 10 mM phosphate 

buffer pH 7.4 of ITO-TiO2 electrode. 
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AA in PB (mM) LED (nA) UV 366 nm (nA) 

0 14 215 

0.25 - 294 

0.5 32 542 

1 53.7 582 

5 237 935 

10 999 932 

 

Table 5.3 – Influence of AA concentration in phosphate buffer 10 mM on the photocurrents 

registered at 0 V applied potential on a ITO-TiO2 electrode with LED and UV source light. 

The same experiment was then performed with a gold modified ITO-TiO2 electrode. 

Photocurrents registered with LED source are reported in figure 5.12 and results 

summarized in table 5.4 

 

Figure 5.12 - Voltage-dependent photocurrent at 0 V as a function of time upon turning the 

incident LED  light on and off at 0, 0.25, 0.5, 1, 5 and 10 mM Ascorbic Acid in 10 mM 

phosphate buffer pH 7.4 of gold modified ITO-TiO2 electrode. 
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AA in PB (mM) LED (nA) UV 366 nm (nA) 

0 25.6 856 

0.25 37.9 901 

0.5 57.3 897 

1 71.4 880 

5 288.2 812 

10 940 690 

 

Table 5.4 – Influence of AA concentration in phosphate buffer 10 mM on the photocurrents 

registered at 0 V applied potential on a ITO-TiO2-AuNRs electrode with LED and UV source 

light. 

 

Currents reported are extrapolated from the third photocurrent registered. Also in this 

experiment, photocurrents registered with UV source presented an irregular form, 

probably due to the light power of the lamp, not designed for this kind of experiments 

(data not shown). 

An interesting route of these electrodes is the possibility to regenerate the surface after 

exposure to AA. During experiments was observed that an accurate wash with water 

was necessary in order to obtain the starting photocurrent. This was observed after a 

measure performed on the blank (0 mM AA in phosphate buffer) immediately after a 

10 mM AA solution measurement. 

In order to confirm the same photoelectrochemical behavior of AA on gold ITO-TiO2 

electrode with Tris buffer, another calibration was performed. Because of the irregular 

and not reproducible form of the photocurrents generated by the UV lamp, starting 

from this experiment, the only light source used was the white LED. In table 5.5 are 

summarized all the photocurrent registered: it is evident that the photoelectrochemical 

behavior of AA in Tris buffer pH 9.8 is lower than in phosphate buffer pH 7.4. 

 

AA in TRIS (mM) LED (nA) 

0 9.3 

0.25 10.9 

0.5 13.9 

1 23 

5 125.5 

10 252 

 

Table 5.5 – Influence of AA concentration in Tris buffer 10 mM on the photocurrents 

registered at 0 V applied potential on a ITO-TiO2-AuNRs electrode with LED source light. 
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5.2.5 Hybridization assay 

 

In order to demonstrate the analytical performances of the label based 

photoelectrochemical assay a preliminary calibration experiment was designed starting 

from these conditions (figure 5.13). 

The analytical signals increased with the target concentration from 0 to 50 nM (figure 

5.13b). Within the linear analytical range, the sensitivity was 1.85 nA/nM, with an 

estimated detection limit of 2 nM and an average RSD of 5%. In order to exclude any 

phenomenon of non-specific adsorbtion of the enzyme on the surface or a spontaneous 

hydrolysis of the substrate AAP, the following experiments were performed using 

electrodes exposed to 50 nM target solution used for calibration experiment. 

 

 

a  b  

Figure 5.13 – a) Amerograms for the measurements corresponding to increased concentration 

of miRNA target (0, 10,  25, 50 nM in PB). Data are recorded at 0.0 V in Tris buffer in 

presence of 10 mg/mL AAP. Further details are reported in the material and methods section. 

b) Calibration plot for synthetic oligonucleotides in the enzymatic assay. Probe-modified 

sensors were exposed to a 20 µL drop of the biotinylated target sequence solution  for 20 min. 

Each point represents the mean of at least three measurements and the error bars the 

corresponding standard deviation. 

The hybrid modified gold electrodes were washed with Tris buffer and a measure in 

absence of AA or AAP was made in Tris buffer showing a photocurrent value 

comparable to the one registered with the blank (6.3 nA vs 10.5 nA respectively). The 

same sensor was then washed with 0.5 M PB and exposed for 30 min to a AAP 

solution in PB. Phosphate ions present in solution naturally inhibits the enzyme, 
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avoiding the AA product of the biocatalysis. The photocurrent registered was 

comparable to the one registered with the blank (12.6 nA vs 10.5 nA). 

 

5.3 Discussion 

 

In the present chapter the use of Alkaline Phosphatase as label for the 

photoelectrochemical detection of miRNA was proposed using gold modified titania 

electrodes. Gold nanorods, (prepared and charachterized by Dr. Ingrosso) were used in 

order to immobilize thiolated DNA probe. Streptavidin alkaline phosphatase was 

exposed to the biotinylated hybrid formed on the electrode surface. Prior to biosensor 

development, an electrochemical and photoelectrochemical characterization of the 

electrode surface was performed.  

One of the fundamental properties of any semiconductor–electrolyte system is its flat-

band potential. Of primary importance in the development of photoelectrochemical 

systems is understanding the relationship between semiconductor and electrolyte energy 

levels. As described in chapter 1, the valence and conduction-band edges (VB and CB, 

respectively), the band-gap energy (EG), and the Fermi level (EF), which is the energy at 

which the probability of an electronic state being occupied is 0.5, represent important 

parameter that characterized a semiconductor-electrolyte interface. Mott–Schottky 

equation was used to determine the flat-band potential of the TiO2 electrode in order to 

demonstrate its n-type semiconductor behavior. Prior to obtain the Mott–Schottky plot, 

a series of CVs were performed in order to establish the non-faradaic potential range, 

that resulted from -0.2 to +0.8 V.  Mott–Schottky plot was constructed showing an n-

type semiconductor for TiO2-ITO electrode. Mott–Schottky diagram as C1
-2

 vs E 

reported in figure 5.5 gave an intercept and a slope of 3.36·10
9
 F

-2
 and 9.75·10

6
 F

-2
/mV 

respectively. From Mott – Schottky equation is possible to calculate -344 mV and 

1.68·10
22

 cm
-3

 as Efb and ND respectively. Results are in good agreement with data of 

the literature [248]. 

A photoelectrochemical characterization with AA was performed in order to 

demonstrate the enhancement behavior of an electron donor molecule. Calibration plot 

obtained with AA in Tris buffer, indicate the effective increase of the photocurrent 

registered on the gold modified titania electrodes. 
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A LED lamp with maximum  in the visible region was experimentally chosen for the 

assay. Starting from the scheme of the enzymatic assay developed in the previous 

chapters, a phosphorylated ascorbic acid was used as substrate of the biocatalytic 

reaction in order to recognize the hybridization event on the gold modified electrode 

surface. The capture probe was immobilized on the nanorods with the well-known 

chemistry of thiols. The capture-probe-modified electrode is, then, allowed to react with 

the analyte (the target biotinylated miRNA). Then, the biotinylated hybrid is exposed to 

the enzyme streptavidin conjugate and the product of the enzymatic reaction was then 

electrochemically monitored using chronoamperometry. With non-optimized parameter 

of the scheme, a preliminary calibration plot with synthetic miR-221 oligonucleotide 

was performed in the range of 0 to 50 nM in PB. 

 

 

5.4 Conclusions 

 

Commercial titania electrode modified with gold nanorods was used in order to 

develop a genosensor for miRNA detection. After an electrochemical and a 

photoelectrochemical characterization of the electrode surface, a preliminary 

calibration plot was evaluated. First results showed that photoelectrochemistry 

recognizes hybridization event of miRNA target with its capture probe. Moreover, the 

use of AuNRs allows the use of visible source light with titania nanocrystals based 

electrodes, and the possibility to immobilize thiolated capture probe. The investigated 

assay demonstrate the possibility to develop a simple detection scheme with 

commercial semiconductor electrode and commercial low cost light sources. This 

enzyme amplification produces a sensitivity of 1.85 nA/nM, with an estimated 

detection limit of 2 nM and an average RSD of 5%. LOD estimated is too high for the 

specific application, but the possibilities to develop new assay scheme with 

nanoarchitectures rich in enzyme (like liposome) could further increase the sensitivity 

of the method. 
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Chapter 6 – General discussion and conclusions 
 

 

The present work was focused on the development of electrochemical geno-assay using 

different types of nanomaterials (liposomes, gold nanoparticles, polymer films and titania 

films) for miRNA detection. In particular, miRNA 221 and 222, considered as potential 

candidates for biomarkers of lung cancer, were chosen as analytical target. The final goal is to 

develop simple and low cost platforms for miRNAs subpicomolar detection. 

  

6.1 Electrochemical genosensors 

 

6.1.1 Enzyme and Enzyme decorated liposome based assays 

 

The features of the DNA probe immobilization process and the formation of DNA-

SH/MCH mixed monolayers with different pretreatment of screen printed gold 

electroes were qualitatively investigated by faradic impedance spectroscopy, using the 

[Fe(CN)6]
3/4-

 mixture as the redox probe and cyclic voltammetry using [Fe(CN)6]
4-

 and 

H2SO4. Results show how pretreatment is necessary in order to obtain impedimetric 

reproducible signals. The amount of thiol-tethered DNA probe immobilized at the 

sensor surface was quantified through chronocoulometric measurements, in the 

presence of [Ru(NH3)6]
3+

. This complex exchanged with K
+
, the cation natively 

compensating the polyanionic backbone of the oligonucleotides. 

Electrochemical Impedence Spectroscopy (EIS) was chosen as electroanalytical 

technique due to its intrinsic property that allows a label-free detection scheme. In a 

first approach, a label-free detection scheme, based on the recognition of hybrid 

formed exposing target sequence on the capture probe modified gold electrode, was 

tested showing a low sensitivity. In order to increase the sensitivity of the assay, an 

enzyme amplification route was investigated. In this case, the hybrid formed on the 

electrode surface was labeled using the enzyme Alkaline-Phosphatase. The high bio-

catalytic activity of the alkaline phosphatase label provided a huge number of 

insoluble molecules for each target strand recognized by the immobilized probe. 

Therefore, compared to the label-free detection scheme, the sensitivity of the assays 
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was dramatically enhanced. Interesting detection limits were obtained upon using the 

BCIP/NBT mixture as the enzymatic substrate and EIS as the electrochemical method 

(180 pM of synthetic oligonucleotides with a sensitivity of 1.89 kΩ/nM and an RSD of 

14%). A total analysis time of about 1 h was employed for the analysis of synthetic 

sequences.  

Enzyme-decorated liposomes were then tested as labels in order to amplify the 

miRNA-electrochemical sensing. Liposomes were used to tether multiple molecules of 

enzyme in order to increase sensitivity of enzyme label biosensor. Herein, a procedure 

to obtain biotin-tagged liposomes has been adapted starting from procedure reported in 

literature [131]. These biotinylated liposomes were characterized by DLS, showing a 

hydrodynamic diameter of ≈150 nm. Average diameters of prepared liposomes were 

determined at the day of preparation and compared with those after incubation for 30 

days at 4°C (stability test). Aggregation of liposomes during the stability test was 

negligible. In order to confirm the presence of biotin on the vesicle surface, free 

streptavidin and streptavidin conjugated alkaline phosphatase were used to allow the 

aggregation of liposomes through biotin-streptavidin binding. Results show how 

hydrodynamic diameter increases in presence of both molecules.  

Biotin tagged liposomes were anchored on biotinylated hybrid thorough a streptavidin 

molecule. The enzymatic conjugate was, then, anchored trough biotin tags present on 

the liposome. Therefore, compared to the enzyme based detection scheme, the 

sensitivity of the assays was enhanced. Interesting detection limits were obtained upon 

using the BCIP/NBT mixture as the enzymatic substrate and EIS as the 

electrochemical method (37 pM of synthetic oligonucleotides with a sensitivity of 10.3 

kΩ/nM and an RSD of 15%). A total analysis time of about 2 h was employed for the 

analysis of synthetic sequences. 

 

6.1.2 Nanostructuration of the electrode surface 

 

In order to increase sensitivity, screen printed carbon electrodes were modified with 

gold nanoclusters by electrodeposition. Biotin tagged liposomes were exposed to the 

biotinylated hybrid formed on the electrode surfaces and then to streptavidin-alkaline 

phosphatase. The product of the enzymatic reaction was then electrochemically 

monitored using impedance spectroscopy. 
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Cyclic voltammetry conditions for gold electrodeposition were optimized in order to 

obtain the best analytical performance. Modified sensors with optimized procedure for 

nanostructuration with gold, where then characterized by electrochemical, SEM and 

EDX experiments. CV in H2SO4 and EDX confirm the presence of gold in treated 

electrodes. For all these experiments unmodified screen printed electrodes were used 

as negative control. Scanning Electron Microscopy allows to determinate the size 

distribution, showing the presence of some aggregate, but with an high concentration 

of small particles with radius minor than 100 nm. 

Biotin-tagged liposome based assay has been tested and compared with an enzyme 

based assay. Both the schemes studied demonstrate the possibility to increase the 

sensitivity of the assay in comparison with the label free scheme. In a first strategy, 

streptavidin conjugated alkaline phosphatase is bound to the biotinylated hybrid 

causing the formation of an enzyme rich network. This signal amplification produces a 

sensitivity of 41.6 kΩ/nM. This higher sensitivity was attributed to the biocatalytic 

product used as biorecognition element for the hybridization event. Another 

hypothesis is the increased probe density immobilized on the surface. In order to 

confirm the increased probe density on the electrode surface, two different 

experiments were performed: a chronocoulometric detection and EDX measurements. 

Both measure failed. Chronocoulometric detection gives high aspecific signals, 

probably due to the adsorbtion of ruthenium complex on the graphite surface. The 

EDX measurement was performed in order to quantify probes through the sulfur atom 

of the thiolated capture probe. Unfortunately, sulfur was also present on the negative 

control, probably due to the electrodeposition process made in presence of sulfuric 

acid.  

In a second strategy biotin-tagged liposomes have been tested. Liposomes, owing to 

their large surface area, are capable of carrying a large number of streptavidin 

conjugated alkaline phosphatase molecules. Compared to enzyme assay, liposome 

assay allows a 5-fold enhancement of the electroanalytical (229 kΩ/nM) signal using 

impedance spectroscopy and an estimated detection limit of 0.6 pM. 

 

6.1.3 Polymer based assay 

 

The use of inexpensive gold-based electrodes and the label-free detection scheme 

made this biosensor particularly attractive. Consisting of a few basic steps, such an 
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analytical protocol should be easily followed even by untrained personnel. The short 

analysis time (less than 2 h) was the last, important, advantage. The indicator-free 

scheme adopted relied on the increasing of electron transfer resistance after hybrid 

formation. It is usually accepted that the immobilization of the DNA probe onto the 

sensor surface plays a crucial role in genosensor preparation, deeply determining its 

bio-recognition capabilities. Immobilization of densely packed DNA probe layers was 

required during the analysis of synthetic oligonucleotides for efficiently suppressing 

the non-specific adsorption of such short sequences. Biotinylated conductive polymer 

film was used as immobilization strategy for DNA capture probe. A biotinylated 

monomer was potentiodynamically polymerized on the electrode surface via CV. In 

order to obtain the higher sensitivity of the genosensor, a characterization of 

electropolymerization process was performed. Calibration plot made with synthetic 

miRNA sequences show a linear range with 0.14 kΩ/pM (or 140 kΩ/nM) with a 

calculated LOD of 1.1 pM. 

 

6.1.4 Electrochemical genosensors conclusions 

 

Over the past decade, enormous progresses have been made towards the development 

of electrochemical genosensors for miRNA detection. Such devices are of 

considerable interest due to their promise for obtaining sequence-specific information 

in a faster, simpler and cheaper manner compared to traditional nucleic acid assays. 

The first part of the work of this thesis has described the implementation of different 

electrochemical geno-assays using inexpensive screen-printed electrodes as disposable 

transducers. Graphite and gold-based electrodes were obtained by screen-printing 

polymeric inks requiring low curing temperatures onto polyester flexible substrates. 

In a first approach, the genoassay was developed using disposable screen printed gold 

electrodes (SPGE). The surface of a SPGE was modified with a thiol-tethered DNA 

capture probe, a spacer thiol, and then exposed to the target miRNA sequence. 

Electrochemical Impedence Spectroscopy (EIS) was chosen as electroanalytical 

technique due to its intrinsic property that allows a label-free detection scheme. 

Moreover, in order to increase the sensitivity of the assay, an enzyme amplification 

route was investigated. In this case, the hybrid formed on the electrode surface was 

labeled using the enzyme Alkaline-Phosphatase. The electrochemical transduction of 

the hybridization process was performed by means of EIS, after a biocatalyzed 
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conversion of a soluble substrate into an insoluble and insulating product. Sensitivity 

and LOD obtained were too high for the specific application. Thus, enzyme-decorated 

liposomes were then tested as labels in order to amplify the miRNA-electrochemical 

sensing. Compared to the enzyme-based scheme, the use of biotin tagged liposome 

increases sensitivity of 5-fold of magnitude (see table 6.1).  The possibility to further 

increase the sensitivity of the assay by nanostructuration of the working electrode 

surface was also investigated using carbon screen printed electrodes modified with 

gold nanoclusters through electrodeposition, obtaining an highest sensitivity and a 

detection limit in the picomolar range. 

In another approach, an electroconductive polymer film was investigated in order to 

obtain a label-free assay. In particular, a biotinylated bisthiophene monomer was 

potentiodynamically polymerized to form films on the SPGEs surface. This structure 

served for capture probe immobilization as recognition element of the complementary 

miRNA sequence via hybridization event. EIS was chosen as electroanalytical 

technique. The use of conductive polymer resulted in a label-free assay with 

sensitivity in the picomolar range. 

The label based assays showed to have some important limitations (i.e. the target 

labeling process and analysis time needed). In contrast, the label-free impedimetric 

assay developed using the gold sensors offered the best performances.  

 

Electrode Label Sensitivity 

(kΩ/nM) 

LOD (pM) 

SPGE Enzyme 1.89 180.0 

SPGE Liposome 10.3 37.0 

AuSPCE Liposome 229 0.6 

SPGE Label-free 140 1.1 

 

Table 6.1 – Sensitivities and LODs obtained with developed genosensors. 
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6.2 Photoelectrochemical genosensor 

 

Preliminary results obtained for the development of a photoelectrochemical genosensor 

demonstrate the possibility to recognize a hybridization event of a specific miRNA 

sequence. Titanium dioxide electrodes are commonly used as photocurrent generator 

under UV illumination. The use of gold nanorods, instead, allow the possibility to 

obtain a photocurrent under visible light. A commercial white LED was used for the 

development of the genoassay in a three electrode configuration.  

An enzymatic detection scheme, based on the use of streptavidin conjugated alkaline 

phosphatase, was proposed and preliminary calibration plot performed. This enzyme 

amplification produces a sensitivity of 1.85 nA/nM, with an estimated detection limit of 

2 nM and an average RSD of 5%. LOD estimated is too high for the specific 

application, but further optimization and the possibilities to develop new assay schemes 

with nanoarchitectures rich in enzyme could further increase the sensitivity of the 

method. 

6.2.1 Conclusions and future work 

Preliminary results obtained with a photoelectrochemical transduction underline the 

possibility to develop e genosensor for miRNA detection. Enzymatic assay for 

hybridization event transduction is necessary, but the possibility to introduce an 

hairpin capture probe, coupled with a biotinylated signaling probe, could permit the 

development of a label free enzymatic detection scheme. Morover, the use of 

nanorchitectures for enzyme reach structures could further increase sensitivity.   
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