
Finite-dimensional representations

for controlled diffusions with delay

Salvatore Federico∗ Peter Tankov†

Abstract

We study stochastic delay differential equations (SDDE) where the coefficients depend
on the moving averages of the state process. As a first contribution, we provide sufficient
conditions under which the solution of the SDDE and a linear path functional of it admit
a finite-dimensional Markovian representation. As a second contribution, we show how
approximate finite-dimensional Markovian representations may be constructed when these
conditions are not satisfied, and provide an estimate of the error corresponding to these
approximations. These results are applied to optimal control and optimal stopping problems
for stochastic systems with delay.
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1 Introduction

In this paper we study a class of controlled stochastic differential equations with memory,
where the coefficients of the equation depend on the moving average of the past values of
the solution process (so called distributed delay):

dSt = b

(
St,

∫
R−

α̃1(ξ)St+ξdξ, ut

)
dt+ σ

(
St,

∫
R−

β̃1(ξ)St+ξdξ, ut

)
dWt, (1)

where b, σ, α̃1, β̃1 are given functions and u = (ut)t≥0 is a control process. Equations of this
type appear in a variety of domains such as economics [23, 24] and finance [1, 4, 5, 19, 25], as
well as in physical sciences [29]. In general this equation is infinite-dimensional, which means
that it can be formulated as evolution equation in an infinite-dimensional space of the form
R × H1, where H1 is a Hilbert space, for the process Xt = (St, (St+ξ)ξ≤0), but cannot be
represented via a finite-dimensional controlled Markov process. This makes solving stochastic
control and optimal stopping problems associated to such systems notoriously difficult.

For this reason we are interested in finding exact - when possible - or approximate finite
dimensional Markovian representations for St and also for linear path functionals of the form
Zt = 〈γ,Xt〉, where γ is fixed. Indeed, the latter functional may represent for example the
reward process of a control problem and make the problem non-Markovian even when the
state process S is Markovian. We say that the process (S,Z) admits a finite-dimensional
Markovian representation if there exists a finite-dimensional subspace V of the space R×H1
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such that: 1) V contains the vector (1, 0) ∈ R×H1; 2) the projection of Xt on this subspace,
call it XV

t , satisfies a finite dimensional stochastic differential equation; 3) the processes S
and Z can be written respectively as St = 〈(1, 0),XV

t 〉 and Zt = 〈γ,XV
t 〉. On the other hand,

to find an approximate finite dimensional Markovian representation for (S,Z), we need to
find a sequence of processes (Xn

t ) and a sequence of subspaces (Vn), such that for every n, the
projection Xn,Vn satisfies a finite-dimensional (controlled Markovian) SDE, and such that

for a sequence (γn) to be determined, Snt = 〈(1, 0),Xn,V
t 〉 and Znt = 〈γn,Xn,V

t 〉 converge
respectively to St and Zt as n −→∞.

Our approach is different from most existing studies of invariance for stochastic equations
on Hilbert spaces (see e.g. [15, 16]), which require that the entire solution stays on a finite-
dimensional submanifold of the original space. Instead, we require that a projection of the
solution or an approximation thereof evolves on a finite-dimensional space. This projection
only contains partial information about the solution, but if the reward function of the control
problem only depends on this projection, this information is sufficient to solve the control
problem.

Optimal control problems for stochastic systems with memory have been considered by
many authors starting with [26]. Solving the problem in the infinite-dimensional setting being
very difficult, some recent contributions focus on special cases where the problem reduces to
a finite-dimensional one [2, 9, 28, 30]. In the general case, [27] extends the Markov chain
approximation method to stochastic equations with delay. A similar method is developed in
[32], and [17] establish convergence rates for an approximation of this kind. The infinite-
dimensional Hilbertian approach to controlled deterministic and stochastic systems with
delays in the state variable was employed in some papers. For the deterministic case we can
quote [12, 13], which perform a study of the Hamilton-Jacobi-Bellman (HJB) equation in
infinite dimension1; for the stochastic case we can quote [11, 23, 24] with some partial results
on the solution of the control problem (in [23, 24] the delay is considered also in the control
variable, but the diffusion term is just additive). We should also mention the Banach space
approach employed by [20]: the problem is embedded in the space of continuous functions
and the HJB equation is approached using the concept of mild solutions. Optimal stopping
problems for stochastic systems with delay can be treated with methods similar to those
used for optimal control. [14] and [21] discuss special cases where the infinite-dimensional
problem reduces to a finite-dimensional one. In the specific context of American options
written on the moving average of the asset price, [4] propose a method based on Laguerre
polynomial approximation, which is extended and refined in the present paper.

Let us now briefly summarize the contents of the paper. In section 2 we define the
stochastic delay differential equation, state the assumptions on the coefficients and introduce
the main notation. In Section 3 we introduce and study an alternative representation for
this equation, as an evolution equation in an infinite-dimensional Hilbert space. Section 4
contains the main results of the paper. First, we provide sufficient conditions for existence of
an exact finite dimensional Markovian representation for the output process, namely that the
coefficients belong to a certain exponential-polynomial family (sum of exponential functions
multiplied by polynomials). Second, we describe a method for constructing an approximate
finite-dimensional representation using a specific exponential-polynomial family based on
Laguerre polynomials. The error of the approximation is also analyzed here (Proposition
4.8). Finally, Section 5 briefly discusses the applications of our method to the solution of
optimal control and optimal stopping problems for stochastic systems with delay. Detailed
analysis of these applications and numerical examples is left for further research.

1When the delay appears also in the control variable the infinite-dimensional representation is more involved.
We refer to [3, Part II, Ch. 4], where a general theory is developed based on the paper [34].
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2 The controlled stochastic delay differential equation

Let (Ω,F,P) be a complete probability space endowed with a filtration F = (Ft)t≥0 satisfying
the usual conditions. We assume defined on this filtered probability space a Brownian motion
W = (Wt)t≥0.

Let R− := (−∞, 0]. To distinguish, deterministic functions of time will be denoted with
the time index in parentheses, while time-continuous stochastic processes will be denoted
with the time index as subscript.

Let S = (St)t≥0 be a controlled diffusion on this space solving a stochastic delay differ-
ential equation (SDDE)

dSt = b

(
St,

∫
R−

α̃1(ξ)St+ξdξ, ut

)
dt+ σ

(
St,

∫
R−

β̃1(ξ)St+ξdξ, ut

)
dWt, (2)

where b, σ, α̃1, β̃1 are given functions and u = (ut)t≥0 is an adapted control process. Due to
the dependence on the past, S is not a controlled Markov diffusion. Moreover, in order to
define the process S, one needs to specify an initial condition not only at t = 0, but also for
all t < 0. In other terms, (2) has to be completed (in general) with an initial condition of
the form

S0 = s0 ∈ R; Sξ = s1(ξ), ξ < 0, (3)

where s1 is a given function. So, the initial datum is a function. From what we have said it
is clear that, even if the process S is one-dimensional, it may not in general be represented
as a finite-dimensional controlled Markov diffusion.2 Moreover, even when the process S is
a controlled Markov diffusion, i.e. α1 ≡ 0, β1 ≡ 0 in (2), the control problem may still not
be a finite-dimensional Markovian one, as one may need to consider also the process3

(Zt)t≥0 =

(∫
R−

γ̃1(ξ)St+ξdξ

)
t≥0

, (4)

where γ̃1 is a function. Also in this case it is clear that in general the Markovian representa-
tion of the system must be infinite-dimensional. In this paper we deal with the problem of
rewriting the above system in an exact or approximate way in terms of a Markov controlled
finite-dimensional diffusion when at least one among the functions α̃1, β̃1, γ̃1 is not identically
equal to 0.

Remark 2.1. We stress that, altough we take one-dimensional processes W,S,Z, the argu-
ment can be easily generalized to the case of multi-dimensional processes. Also we have taken
an autonomous equation for S, i.e. there is no explicit time dependence in the coefficients
b, σ; this is done just for notational convenience: all computations can be performed also in
the non-autonomous case.

In the sequel, we are going to reformulate equation (2) as an evolution equation in a
Hilbert space. To allow a set of initial data possibly containing the constant functions, we
work with weighted spaces. We consider on R− a weight function w and make the following
standing assumption.

Assumption 2.2. w ∈ C1(R−;R), w > 0, w′/w is bounded.

Moreover, without any loss of generality, we also suppose that w(0) = 1. Denote

L2
w := L2(R−, w(ξ)dξ ; R). (5)

2Nevertheless there are examples where a finite-dimensional Markovian representation can be obtained. We
will study this kind of situation in Section 4.2, giving sufficient conditions for a finite-dimensional Markovian
representation.

3For example this process could appear in the cost functional of a control problem.
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When w ≡ 1 we simply denote the space above by L2. Throughout the paper, we shall work
under the following assumptions on the model, guaranteeing existence and uniqueness for
the solution to (2) and good properties for the problem we aim to study.

Assumption 2.3.

1. The control process u takes values in a Borel set U ⊂ Rd;

2. u ∈ U , where

U = {(ut)t≥0 adapted process belonging to L2
loc(R+;L2(Ω;U))};

3. b, σ : R2 × U → R are such that there exist constants C1, C2 ≥ 0 with

|b(x, y, u)− b(x′, y′, u)| + |σ(x, y, u)− σ(x′, y′, u)|
≤ C1 (|x− x′| + |y − y′|), ∀x, x′, y, y′ ∈ R, ∀u ∈ U ;

|b(x, y, u)| + |σ(x, y, u)| ≤ C2 (1 + |x|+ |y|), ∀x, y,∈ R, ∀u ∈ U ;

4. There exists w satisfying Assumption 2.2 such that the functions
α̃1w

−1/2, β̃1w
−1/2, γ̃1w

−1/2 belong to L2.

Remark 2.4. Typical weights are the exponential ones: w(ξ) = eλξ, λ ∈ R. However, in
some cases it may be necessary to use other weight functions. For example, let γ̃1(ξ) = 1

1+|ξ|p

with p > 2. Then, taking w(ξ) = 1

1+|ξ|
p
2

, we ensure that simultaneously γ̃1w
−1/2 ∈ L2 and

the constant functions belong to L2
w. These two properties cannot hold simultaneously with

an exponential weight function.

Define
α1 = α̃1w

−1 β1 = β̃1w
−1, γ1 = γ̃1w

−1.

Then, due to Assumption 2.3(4), we have α1, β1, γ1 ∈ L2
w. Moreover, (2)-(3) can be rewritten

as 
dSt = b

(
St,
∫
R− α1(ξ)St+ξw(ξ)dξ, ut

)
dt+ σ

(
St,
∫
R− β1(ξ)St+ξw(ξ)dξ, ut

)
dWt,

S0 = s0, Sξ = s1(ξ), ξ < 0,

(6)

and (4) can be rewritten as

Z = (Zt)t≥0 =

(∫
R−

γ1(ξ)St+ξw(ξ)dξ

)
t≥0

. (7)

Proposition 2.5. For every s := (s0, s1(·)) ∈ R×L2
w and u ∈ U , (6) admits a unique up to

indistinguishabiliy strong solution Ss,u on the probability space (Ω,F ,P), and this solution
admits a version with continuous paths.

Proof. This result is an easy corollary of Theorem IX.2.1 in [33] (note that with-
out making any changes to the proof, this theorem can be extended to the case when
the coefficients depend on a random adapted control). Let T > 0 and define the maps
B̃, Σ̃ : [0, T ]× C([0, T ];R)× Ω −→ R

B̃(t, z(·), ω) := b
(
z(t),

∫ −t
−∞

α1(ξ)s1(t+ ξ)w(ξ)dξ +

∫ 0

−t
z(t+ ξ)α1(ξ)w(ξ)dξ, ut(ω)

)
,

Σ̃(t, z(·), ω) := σ
(
z(t),

∫ −t
−∞

β1(ξ)s1(t+ ξ)w(ξ)dξ +

∫ 0

−t
z(t+ ξ)β1(ξ)w(ξ)dξ, ut(ω)

)
.

By localizing in time, to use the aforementioned result we need to check that:
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1. t 7→ B̃(t, z(·), ω), t 7→ Σ̃(t, z(·), ω) are bounded for every constant function z(·) ≡ z0
uniformly in ω ∈ Ω;

2. B̃(t, ·, ω), Σ̃(t, ·, ω) are Lipschitz continuous, with respect to the uniform norm on
C([0, T ];R), uniformly in t ∈ [0, T ], ω ∈ Ω.

Let us focus on B̃, the proof for Σ̃ being the same. We first check the local boundedness
on constant functions. Let z(·) ≡ z0. By the linear growth assumption,

|B̃(t, z(·), ω)| = |b(z0,
∫ −t
−∞

α1(ξ)s1(t+ ξ)w(ξ)dξ + z0

∫ 0

−t
α1(ξ)w(ξ)dξ, ut(ω))|

≤ C2

(
1 + |z0|+

∣∣∣∣∫ −t
−∞

α1(ξ)s1(t+ ξ)w(ξ)dξ

∣∣∣∣+ |z0|
∣∣∣∣∫ 0

−t
α1(ξ)w(ξ)dξ

∣∣∣∣) .
Let us denote the upper bound of |w′|/w by K. Then, by Gronwall’s inequality, for all
a, b ≤ 0,

w(a) ≤ w(b)eK|b−a|. (8)

The term involving s1 then satisfies∣∣∣∣∫ −t
−∞

α1(ξ)s1(t+ ξ)w(ξ)dξ

∣∣∣∣ ≤ (∫ −t
−∞

α2
1(ξ)w(ξ)dξ

) 1
2
(∫ −t
−∞

s21(t+ ξ)w(ξ)dξ

) 1
2

≤
(∫ 0

−∞
α2
1(ξ)w(ξ)dξ

) 1
2
(∫ 0

−∞
s21(ξ)w(ξ − t)dξ

) 1
2

≤ eKt
2

(∫ 0

−∞
α2
1(ξ)w(ξ)dξ

) 1
2
(∫ 0

−∞
s21(ξ)w(ξ)dξ

) 1
2

,

which is bounded in [0, T ] since α1, s1 ∈ L2
w. Similarly,∣∣∣∣∫ 0

−t
α1(ξ)w(ξ)dξ

∣∣∣∣ ≤ ∫ 0

−t
|α1(ξ)|w(ξ)dξ ≤

(∫ 0

−t
α2
1(ξ)w(ξ)dξ

) 1
2
(∫ 0

−t
w(ξ)dξ

) 1
2

, (9)

which is bounded in [0, T ] as well since α1 ∈ L2
w and w ∈ C1(R−;R).

Let us now check the Lipschitz condition. By the Lipschitz property of b,

|B̃(t, z(·), ω)− B̃(t, z′(·), ω)| ≤ C1

(
|z(t)− z′(t)|+

∫ 0

−t
|z(t+ ξ)− z′(t+ ξ)||α1(ξ)|w(ξ)dξ

)
≤ C1

(
1 +

∫ 0

−T
|α1(ξ)|w(ξ)dξ

)
· max
0≤u≤T

|z(u)− z′(u)|,

and the functional Lipschitz property follows from inequality (9). �

3 Product space infinite-dimensional representation

In this section we provide an infinite-dimensional representation of SDDE (6) in the product
Hilbert space

Hw := R× L2
w.

When w ≡ 1 we simply denote the space above by H. We denote by x = (x0, x1) the generic
element of Hw, noting that the second component is a function. The norm and the inner
product of Hw, defined in the usual way from the norm and the inner products of the two
components, will be denoted, respectively, by ‖ · ‖w, 〈·, ·〉w. Also, when w ≡ 1 we simply
denote the norm and the inner product above by ‖ · ‖, 〈·, ·〉.
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3.1 Preliminaries

Let us introduce the weighted Sobolev spaces on R− as follows (we refer to [6, Ch. VIII]
for an introduction to Sobolev spaces under the Lebesgue measure on intervals). Given
f ∈ L2

loc(R−;R), we say that f admits weak derivative g ∈ L2
loc(R−;R) if∫

R
f(ξ)ϕ′(ξ)dξ = −

∫
R
g(ξ)ϕ(ξ)dξ, ∀ϕ ∈ C1

c ((−∞, 0);R).

It is well known that, if such a function g exists, it is unique. Moreover it coincides with the
classical derivative f ′ when f ∈ C1(R−;R). By extension, the function g is denoted by f ′

in general, i.e., also when f /∈ C1(R−;R). We denote the space of functions of L2
loc(R−;R)

admitting weak derivative in L2
loc(R−;R) by W 1,2

loc (R−;R). [6, Th. VIII.2] states that for

every f ∈ W 1,2
loc (R−;R) there exists a locally absolutely continuous version of f on R−, so

that it holds

f(ξ)− f(ξ0) =

∫ ξ

ξ0

f ′(r)dr, ∀ ξ0 ≤ ξ ≤ 0. (10)

Given f ∈ W 1,2
loc (R−;R), we shall always refer to its absolutely continuous version. By [6,

Cor. VIII.10], if f, g ∈W 1,2
loc (R−;R), then fg ∈W 1,2

loc (R−;R) and

(fg)′ = f ′g + fg′, (11)

so the integration by parts formula∫ b

a

f ′(ξ)g(ξ)dξ = f(b)g(b)− f(a)g(a)−
∫ b

a

f(ξ)g′(ξ)dξ, ∀ a ≤ b ≤ 0,

holds true for all f, g ∈ W 1,2
loc (R−;R). On the elements of the space W 1,2

loc (R−;R) we define
the norm

‖f‖W 1,2
w

:=

∫
R−

(|f(ξ)|2 + |f ′(ξ)|2)w(ξ)dξ,

and, moreover, we define the space

W 1,2
w :=

{
f ∈W 1,2

loc | ‖f‖W 1,2
w

<∞
}
.

Clearly W 1,2
w ⊂ L2

w. The linear maps

(W 1,2
w , ‖ · ‖W 1,2

w
) −→ (L2

w, ‖ · ‖L2
w

)× (L2
w, ‖ · ‖L2

w
),

f 7−→ (f, f ′),

and
(L2

w, ‖ · ‖L2
w

) −→ (L2, ‖ · ‖L2),

f 7−→ fw
1
2 ,

are isometries, so, since L2 is a separable Banach space, we deduce that W 1,2
w is a separable

Hilbert space when endowed with the inner product

〈f, g〉W 1,2
w

:=

∫
R−

(f(ξ)g(ξ) + f ′(ξ)g′(ξ))w(ξ)dξ.

By the assumption that w′/w bounded, denoting the upper bound of |w′|/w by K, we see
that if f ∈W 1,2

w , then

‖fw1/2‖2W 1,2 =

∫
R−

{
f2(ξ)w(ξ) +

(
f ′(ξ)

√
w(ξ) + f(ξ)

w′(ξ)

2
√
w(ξ)

)2}
dξ

≤
∫
R−

(
f2(ξ) + 2f ′(ξ)2 +

K2

2
f2(ξ)

)
w(ξ)dξ ≤

(
2 +

K2

2

)
‖f‖2

W 1,2
w
. (12)
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Thus, if f ∈ W 1,2
w , then fw1/2 ∈ W 1,2. Hence, Corollary [6, Cor. VIII.8] applied to fw1/2

yields
lim

ξ→−∞
f(ξ)w

1
2 (ξ) = 0, ∀f ∈W 1,2

w .

Recalling again our assumptions on w, we see that the following weighted integration by
parts formula holds for all f, g ∈W 1,2

w :∫
R−

f ′(ξ)g(ξ)w(ξ)dξ = f(0)g(0)−
∫
R−

f(ξ)

(
g′(ξ) + g(ξ)

w′(ξ)

w(ξ)

)
w(ξ)dξ. (13)

Now, consider on the space Hw the family of linear bounded operators (T (t))t≥0 acting as
follows:

T (t)x = ([T (t)x]0, [T (t)x]1) =
(
x0, x01(0,t](t+ ·) + x1(t+ ·)1R−(t+ ·)

)
. (14)

Simple computations show that

‖T (t)‖L(Hw) ≤ 1 + t, ∀t ≥ 0. (15)

We are going to study the semigroup properties of (T (t))t≥0. For basic facts about the theory
of semigroups we refer to the classical monographs [8, 10].

Proposition 3.1. The family of linear operators (T (t))t≥0 defined in (14) is a strongly
continuous semigroup on the space Hw, generated by the closed unbounded operator A defined
on

D(A) = {x = (x0, x1) ∈ Hw | x1 ∈W 1,2
w , x0 = x1(0)} (16)

by
Ax = (0, x′1) . (17)

Proof. The fact that (T (t))t≥0 is a semigroup is immediate by the definition. The fact
that it is strongly continuous follows by the continuity of translations in L2

w, which can be
proved, e.g., starting from the continuity of translation in L2 and exploiting (8).

Now let us show that (T (t))t≥0 is generated by A. Set

D := {x = (x0, x1) ∈ Hw | x1 ∈W 1,2
w , x0 = x1(0)}

and take x ∈ D. Since x1 ∈ W 1,2
w , it is absolutely continuous. So, extending x1 to R by

setting x1(ξ) = x1(0) for ξ > 0, we can write

x1(t+ ξ)− x1(ξ) = t

∫ 1

0

x′1(ξ + λt)dλ, ∀ξ ∈ R−, ∀t ≥ 0.

Hence, taking into account that x1(0) = x0, we have∥∥∥∥T (t)x− x

t
− (0, x′1)

∥∥∥∥2
w

=

∫
R−

w(ξ)dξ

∣∣∣∣∫ 1

0

(x′1(ξ + λt)− x′1(ξ))dλ

∣∣∣∣2
≤

∫ 1

0

dλ

∫
R−
|x′1(ξ + λt)− x′1(ξ)|2 w(ξ)dξ

=

∫ 1

0

dλ

∫
R−
‖T (λt)(0, x′1)− (0, x′1)‖2Hw

dξ.

By (15) and from the inequality above, we can conclude by dominated convergence that
D ⊂ D(A) and that A acts as stated in (17) on the elements of D.

We need now to show that D = D(A). For that, we notice that D is clearly dense in Hw

and that T (t)D ⊂ D for any t ≥ 0. Hence, by [10, Ch. II, Prop. 1.7, p. 53], D is a core for

7



D(A) (i.e. is dense in D(A) endowed with the graph norm ‖ · ‖D(A)). Hence, it just remains
to show that D is closed with respect to the graph norm to conclude D = D(A). So, take a
sequence (xn) = (xn0 , x

n
1 ) ⊂ D converging with respect to ‖·‖D(A) to some x = (x0, x1) ∈ Hw.

Then we have
xn0 → x0 in R; xn1 → x1 in W 1,2

w . (18)

We immediately deduce that x1 ∈W 1,2
w . By (12), the linear map

L : W 1,2
w → W 1,2, f 7→ fw1/2,

is continuous. Since we have (see, e.g. [6, Th. 8.8]) the Sobolev continuous embedding
ι : W 1,2 ↪→ L∞(R−;R), the map ι ◦ L is continuous. Taking into account also that x1 is
absolutely continuous, we deduce from the second convergence in (18)

xn1 (0)→ x1(0) in R.

Since xn0 = xn1 (0), we conclude x1(0) = x0, and the proof is complete. �

3.2 Infinite-dimensional representation

Define the elements of Hw

e0 := (1, 0), α := (0, α1), β := (0, β1),

and the Lipschitz continuous nonlinear operators

B : Hw × U → Hw, B(x, u) := b(〈e0,x〉w, 〈α,x〉w, u) e0;

Σ : Hw × U → Hw, Σ(x, u) := σ(〈e0,x〉w, 〈β,x〉w, u) e0.

Given x ∈ Hw and u ∈ U , we consider the following stochastic evolution equation in the
space Hw: {

dXt = AXtdt+B(Xt, ut)dt+ Σ(Xt, ut)dWt,

X0 = x,
(19)

At least formally (19) should represent (6) in Hw: if there exists a unique solution (in some
sense) X to (19), we expect that

Xt =
(
St, (St+ξ)ξ∈R−

)
, ∀t ≥ 0,

where S is the solution to (6) with s = x. We notice that (19) is an equation in infinite
dimension, but the noise is one-dimensional4.

We are going to introduce two concepts of solution to (19), which in this case coincide
with each other. Before that we introduce the operator A∗ adjoint of A.

Proposition 3.2. The adjoint A∗ of the operator A is defined on

D(A∗) = {x ∈ Hw | x1 ∈W 1,2
w }, (20)

by

A∗x =

(
x1(0), −x′1 − x1

w′

w

)
. (21)

4In the usual language of stochastic integration in infinite-dimension (see [7, 22, 31]), Σ(x, u) ∈ Hw should be
seen as a Hilbert-Schmidt operator from R to Hw.
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Proof. Let D := {x ∈ Hw | x1 ∈ W 1,2
w }, x ∈ D and y ∈ D(A). Using (13) and the fact

that y1(0) = y0, we can write

〈Ay,x〉w =

∫
R−

y′1(ξ)x1(ξ)w(ξ)dξ

= y1(0)x1(0)−
∫
R−

y1(ξ)

(
x′1(ξ) + x1(ξ)

w′(ξ)

w(ξ)

)
w(ξ)dξ

= y0x1(0)−
∫
R−

y1(ξ)

(
x′1(ξ) + x1(ξ)

w′(ξ)

w(ξ)

)
w(ξ)dξ.

So, we can conclude that D ⊂ D(A∗), and that A∗ acts as in (21) on D.
Now let us show that actually D(A∗) = D. Simple computations shows that the expres-

sion of the adjoint semigroup of T (·) in Hw is

T ∗(t) =

(
x0 +

∫ 0

−t
x1(ξ), x1(· − t)w(· − t)

w(·)

)
, x ∈ Hw.

The set D is clearly dense in Hw and T ∗(t)D ⊂ D for any t ≥ 0. Hence, by [10, Ch. II,
Prop. 1.7, p. 53], D is a core for D(A∗). On the other hand, in analogy with the proof of
Proposition 3.1, one can show that D is closed with respect to the graph norm, so we conclude
that D = D(A∗). �

Definition 3.3. (i) Let x ∈ Hw, and let u ∈ U . An adapted process X = Xx,u ∈
L2
loc(R+;L2(Ω;Hw)) is called mild solution to (19) if for every t ≥ 0

Xt = T (t)x +

∫ t

0

T (t− r)B(Xr, u(r))dr +

∫ t

0

T (t− r)Σ(Xr, u(r))dWr. (22)

(ii) Let x ∈ Hw, u ∈ U . An adapted process X = Xx,u ∈ L2
loc(R+;L2(Ω;Hw)) is called

weak solution to (19) if for each ϕ ∈ D(A∗) and every t ≥ 0

〈Xt,ϕ〉w = 〈x,ϕ〉w +

∫ t

0

〈Xs,A∗ϕ〉wds

+

∫ t

0

〈B(Xs, us),ϕ〉wds +

∫ t

0

〈Σ(Xs, us),ϕ〉wdWs.

Theorem 3.4. For each x ∈ Hw and u ∈ U , the SDE (19) admits a unique (up to indistin-
guishabiliy) continuous-paths mild solution X = Xx,u which coincides with the unique weak
solution.

Moreover, we have the equality in L2(Ω,F ,P;Hw)

Xt =
(
St, (St+ξ)ξ∈R−

)
, ∀t ≥ 0,

where S is the solution to (6) under the control u and with initial datum s = x.

Proof. Due to our assumptions, the existence and uniqueness of the continuous-paths
mild solution, as well as the fact that it coincides with the (unique) weak solution, is a
straightforward application of the theory of infinite-dimensional stochastic differential equa-
tions (see, e.g., [7, Th. 7.4] or [22, Th. 3.3] for the existence and uniqueness of mild solutions
and [22, Th. 3.2] for the equivalence of weak and mild solutions).

For the second part of the claim, let S be the solution of (6) and define

X̃t :=
(
St, (St+ξ)ξ∈R−

)
, x := (s0, (s1(ξ))ξ∈R−).
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Then,

St = s0 +

∫ t

0

b(Sr,

∫
R−

Sr+ξα1(ξ)w(ξ)dξ, u(r))dr +

∫ t

0

σ(Sr,

∫
R−

Sr+ξβ1(ξ)w(ξ)dξ, u(r))dWr

= s0 +

∫ t

0

b(〈e0, X̃r〉w, 〈α, X̃r〉w, u(r))dr +

∫ t

0

σ(〈e0, X̃r〉w, 〈β, X̃r〉w, u(r))dWr

= [T (t)x]0 +

∫ t

0

[T (t− r)B(X̃r, u(r))]0dr +

∫ t

0

[T (t− r)Σ(X̃r, u(r))]0dWr

and for every ξ ∈ R−,

St+ξ = 1t+ξ<0s1(t+ ξ) + 1t+ξ≥0

{
s0 +

∫ t+ξ

0

b(Sr,

∫
R−

Sr+ηα1(η)w(η)dη, u(r))dr

+

∫ t+ξ

0

σ(Sr,

∫
R−

Sr+ηβ1(η)w(η)dη, u(r))dWr

}

= 1t+ξ<0s1(t+ ξ) + 1t+ξ≥0

{
s0 +

∫ t+ξ

0

b(〈e0, X̃r〉w, 〈α, X̃r〉w, u(r))dr

+

∫ t+ξ

0

σ(〈e0, X̃r〉w, 〈β, X̃r〉w, u(r))dWr

}

= s01t+ξ≥0 + s1(t+ ξ)1t+ξ<0 +

∫ t

0

1t−r+ξ≥0 b(〈e0, X̃r〉w, 〈α, X̃r〉w, u(r))dr

+

∫ t

0

1t−r+ξ≥0 σ(〈e0, X̃r〉w, 〈β, X̃r〉w, u(r))dWr

=

{
[T (t)x]1 +

∫ t

0

[T (t− r)B(X̃r, u(r))]1dr +

∫ t

0

[T (t− r)Σ(X̃r, u(r))]1dWr

} ∣∣∣∣∣
ξ

which shows that X̃ satisfies (22) and therefore coincides with the unique mild solution. �

Since the two concepts of solutions coincide each other in this case, from now on we
just say solution to refer to the mild or weak solution. The following technical result will be
used in the following section.

Proposition 3.5. Let X = Xx,u be the solution to (19). Then

E
[

sup
0≤t≤T

‖Xt‖2w
]
≤ p1(T )‖x‖2w + p2(T ), ∀T ≥ 0

where p1, p2 are locally bounded functions.

Proof. We notice that

‖B(x, u)‖w ≤ Cb,α(1 + ‖x‖w), ‖Σ(x, u)‖w ≤ Cσ,β(1 + ‖x‖w), (23)

where
Cb,α = C2(1 + ‖α‖w), Cσ,β = C2(1 + ‖β‖w).

Let T > 0. Using Definition 3.3-(i) and (15), we have

E
[

sup
0≤t≤T

‖Xt‖2w
]
≤ 3(1 + T )2‖x‖2w + 3E

 sup
0≤t≤T

∥∥∥∥∥
∫ t

0

T (t− r)B(Xr, u(r))dr

∥∥∥∥∥
2

w


+ 3E

 sup
0≤t≤T

∥∥∥∥∥
∫ t

0

T (t− r)Σ(Xr, u(r))dWr

∥∥∥∥∥
2

w

 . (24)
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By Jensen’s inequality (using the convexity of ‖ · ‖2w) and by the estimates (23) and (15), we
deduce ∥∥∥∥∥

∫ t

0

T (t− r)B(Xr, u(r))dr

∥∥∥∥∥
2

w

≤ t
∫ t

0

‖T (t− r)B(Xr, u(r))‖2wdr

≤ t
∫ t

0

(1 + t− r)2C2
b,α(1 + ‖Xr‖w)2dr

≤ 2T (1 + T )2C2
b,α

(∫ T

0

(1 + ‖Xr‖2w)dr
)
. (25)

On the other hand, the estimates (23) and (15), Doob’s inequality and Itô’s isometry in
infinite dimension (see, e.g., [22, Ch, 2] or [31, Ch. 2]) also yield

E

 sup
0≤t≤T

∥∥∥∥∥
∫ t

0

T (t− r)Σ(Xr, u(r))dWr

∥∥∥∥∥
2

w

 ≤ 8(1 + T )2C2
σ,β

∫ T

0

(1 + E‖Xr‖2w)dr.

The claim follows from Gronwall’s inequality. �

4 Markovian representations

In this section we give sufficient conditions for the existence of exact representations and
provide a method to construct approximate representations for the process (S,Z) as a de-
terministic function of the current state of a finite-dimensional controlled Markov diffusion.

4.1 Preliminaries

The first step is to characterize the finite-dimensional subspaces of Hw which are stable with
respect to the operator A∗, which generates the infinite-dimensional structure of our delay
equation.

Set
λ∗ := inf {λ ∈ R | eλξw− 1

2 (ξ) ∈ L2}. (26)

We introduce the following assumption, which will hold from now on.

Assumption 4.1. We assume that the infimum in (26) is not attained, i.e.∫
R−

e2λ
∗ξw−1(ξ)dξ = ∞.

Recalling (21) we introduce the differential operator

Dw : W 1,2
w −→ Hw, v 7−→ − (vw)′

w
= −v′ − vw

′

w
.

Definition 4.2. We say that a finite dimensional subspace V of L2
w is Dw-stable if V ⊂W 1,2

w

and DwV ⊂ V.

We have the following characterization of Dw-stable subspaces.

Proposition 4.3. V is an n-dimensional Dw-stable subspace of L2
w if and only if

V = Span {v1w−1, ..., vnw−1}, (27)

where {v1, ..., vn} is a set of linearly independent functions such that the vector function
v = (v1, ..., vn) is solution of the vector-valued ODE

v′(ξ) = Mv(ξ), ξ ≤ 0, (28)

for some matrix M ∈ Rn×n whose eigenvalues have real part strictly greater than λ∗.
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Proof. Let V be in the form (27) with {v1, ..., vn} linearly independent functions such
that v = (v1, ..., vn) is solution of (28) for some matrix M ∈ Rn×n with eigenvalues
(λp)p=1,...,k such that Re(λp) > λ∗ for all p = 1, ..., k. Clearly dim(V ) = n. Since v
solves (28), the vi’s are linear combination of functions of the form

ξjeRe(λp)ξ cos(Im(λp)ξ), ξjeRe(λp)ξ sin(Im(λp)ξ). (29)

Then, since Re(λp) > λ∗ for all p = 1, ..., k, by definition of λ∗ we see that

w−1vi ∈ W 1,2
w , ∀i = 1, ..., n,

and therefore V ⊂ W 1,2
w . On the other hand, given f ∈ V, we have

f = w−1
n∑
i=1

µivi = w−1µTv, for some µ = (µi)i=1,...,n ∈ Rn.

Hence, since v solves (28), we see that

Dwf = − (ww−1µTv)′

w
= −w−1µTv′ = −w−1µTMv ∈ V,

showing the Dw-stability of V.
Conversely, let us suppose that V is an n-dimensional Dw-stable subspace, and let

{ṽ1, ..., ṽn} be a basis of V. Then {ṽ1w, ..., ṽnw} is a set of linearly independent functions,
and, for each i = 1, ..., n, there exists (m̃ij)j=1,...n, such that

− (ṽiw)′

w
=

n∑
j=1

m̃ij ṽ
j .

It follows that v = (v1, ..., vn) := (ṽ1w, ..., ṽnw) solves (28) with M = (mij), mij = −m̃ij .
Moreover, since v solves (28), the vi’s must be linear combination of functions of the form
(29), where the λp’s are the eigenvalues of M . So, we also deduce that the eigenvalues of M
must have real part strictly greater than λ∗, as ṽi ∈ L2

w for all i = 1, ..., n, and that actually
ṽi ∈W 1,2

w . �

In view of Proposition 4.3, we see that the n-dimensional Dw-stable subspaces V of L2
w

are of the form

V = Span
{
w(ξ)−1ξjeRe(λp)ξ cos(Im(λp)ξ), w(ξ)−1ξjeRe(λp)ξ sin(Im(λp)ξ),

0 ≤ j ≤ np − 1, 1 ≤ p ≤ k
}
, (30)

for some k ≥ 1, where

(n1, ..., nk) ∈ Nk s.t. n1 + ...+ nk = n, (31)

is the vector of multiplicities associated to the (vector of) eigenvalues

(λ1, ..., λk) ∈ Ck, (32)

with Ck defined by

Ck = {z = (z1, ..., zk) ∈ Ck | zi 6= zj , ∀i 6= j; Re(zj) > λ∗, ∀j = 1, ..., k;

∀j ∈ {1, ..., k} ∃i ∈ {1, ..., k} s.t. z̄i = zj}.

Conversely, all the subspaces V of the form (30) above, with (n1, ..., nk) and (λ1, ..., λp)
satisfying (31)-(32), are n-dimensional Dw-stable subspaces of L2

w.

Now, given an n-dimensional subspace V ⊂ L2
w, denote

V̄ := {x ∈ Hw | x0 = 0, x1 ∈ V}.

12



Definition 4.4. We say that an (n + 1)-dimensional subspace V ⊂ Hw is A∗- stable if
e0 ∈ V , V ⊂ D(A∗) and A∗V ⊂ V .

Noticing that A∗e0 = 0, we immediately get the following corollary.

Corollary 4.5. An (n+ 1)-dimensional subspace V ⊂ Hw is A∗- stable if and only if

V = Span {e0, V̄},

with V being some n-dimensional Dw-stable subspace of L2
w.

4.2 Exact finite-dimensional representation

Suppose that α,β ∈ V , where V is an (n + 1)-dimensional A∗-stable subspace of Hw. Let
{e0, e1, ..., en} be an orthonormal basis of (V, 〈·, ·〉w) and define

Xk
t := 〈ek,Xt〉w, αk := 〈ek,α〉w, βk := 〈ek,β〉w, k = 0, ..., n. (33)

Then, since the projection of α,β onto V ⊥ is the null vector and taking into account that
α0 = β0 = 0, we have

〈α, Xt〉 =

n∑
k=1

αkXk
t , 〈β, Xt〉 =

n∑
k=1

βkXk
t ,

and so from Theorem 3.4 we see that we can write the dynamics of St = X0
t as

dSt = b
(
St,

n∑
k=1

αkXk
t , ut

)
dt+ σ

(
St,

n∑
k=1

βkXk
t , ut

)
dWt. (34)

By A∗-stability of V we have the existence of a vector q = (qk0)k=1,...,n ∈ Rn and of a matrix
Q = (qkh)h,k=1,...,n ∈ Rn×n such that

A∗ek = qk0e
0 +

n∑
h=1

qkhe
h, k = 1, .., n. (35)

The dynamics of St involves the processes Xk
t , k = 1, ..., n, whose dynamics, plugging

e1, ..., en in place of ϕ in the definition of weak solution of (19), can be expressed in terms
of themselves and of S by means of the vector q and of the matrix Q as

dXk
t =

(
qk0St +

n∑
h=1

qkhX
h
t

)
dt, k = 1, ..., n. (36)

The system of n + 1 equations (34) and (36) provides an (n + 1)-dimensional Markovian
representation of (6), i.e. of St, with initial datum s = (s0, s1(·)), the corresponding initial
data being

(x0, x1, ..., xn) =
(
〈e0, s〉w, 〈e1, s〉w, ..., 〈en, s〉w

)
. (37)

If also
γ := (0, γ1) ∈ V,

then the projection of γ onto V ⊥ is the null vector and we can write

Zt =
n∑
k=0

γkXk
t ,

where
γk := 〈ek,γ〉w, k = 0, ..., n,

13



obtaining a representation of the process Z in terms of the (n+ 1)-dimensional (controlled)
Markov diffusion (St =X0, X1, ..., Xn).

So we see that in this case the process (S,Z) admits a finite-dimensional Markovian
representation in the sense of our definition given in the introduction: there exists a finite-
dimensional subspace V ⊂ Hw such that:

1. V contains the vector e0;

2. the projection of Xt on this subspace, i.e., in this case, the vector (St =X0, X1, ..., Xn)
defined above, satisfies a finite dimensional stochastic differential equation;

3. the processes S and Z can be written respectively as St = 〈e0,XV
t 〉 and Zt = 〈γ,XV

t 〉.

Remark 4.6. From Proposition 4.3, it is clear that α,β and γ belong to an (n + 1)-
dimensional A∗w-stable subspace of Hw (with A∗w being the operator A∗ realized with the
weight function w) if and only if the original coefficients α̃, β̃ and γ̃ belong to an (n + 1)-
dimensional A∗1-stable subspace of H (with A∗1 being the operator A∗ realized with the
weight function identically equal to 1). Therefore, the property of having a finite-dimensional
Markovian representation does not depend on the choice of the weight function.

4.3 Countable representation

In general α,β,γ fail to lie in an A∗-stable finite-dimensional subspace of Hw. However one
can consider an increasing sequence of A∗-stable subspaces of Hw and expand the problem
along this sequence. In order to construct such an increasing sequence, we consider specific
subclasses of the general representation (30). The simplest case to consider consists in taking
k = 1 in (30), i.e. considering a sequence of subspaces of L2

w of the form

Vn = Span
{
w(ξ)−1ξjeλξ, j = 0, ..., n− 1

}
, λ > λ∗. (38)

To simplify the orthogonalization procedure of the basis of such subspaces, we restrict our
analysis to the case of exponential weights, i.e. w(ξ) = epξ, p ∈ R, for which the construction
of an orthonormal basis can be reduced to a known case, as we will see below. In this case
clearly λ∗ = p/2 and we can choose, e.g., λ > max{p, p/2} to satisfy the constraint on λ in
(38). With this choice, setting p0 := λ − p we have p0 > 0, and the subspaces in (38) are
rewritten as

Vn = Span
{
ep0ξξj , j = 0, ..., n− 1

}
(39)

or equivalently

Vn = Span
{
ep0ξ(2p0ξ)

j , j = 0, ..., n− 1
}
. (40)

The subspaces (40) for different values of n are the sequence of subspaces we shall consider.
An orthogonal basis with respect to the inner product 〈·, ·〉L2

w
for the subspaces above can

be constructed from the Laguerre polynomials as follows. Define, for k ≥ 0, the Laguerre
poynomials

P̃k(ξ) :=

k∑
i=0

(
k
i

)
(−1)i

i!
ξi, ξ ≥ 0.

Since we are working with R− instead of R+ the sign of the argument is inverted so we
consider Laguerre’s polynomials on R− defined as

Pk(ξ) = P̃k(−ξ), ξ ≤ 0.

From the definition of Pk’s, we have

Pk(0) = 1, k ≥ 0, (41)
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and moreover, using an induction argument, we get

P ′k =

k−1∑
i=0

Pi, k ≥ 1. (42)

As is well known, the Laguerre functions

lk,p0(ξ) =
√

2p0 Pk(2p0ξ) e
p0ξ

are an orthonormal basis for L2. So the functions

Lk,p0,p(ξ) = e−
p
2 ξ lk,p0(ξ), k = 0, ..., n− 1, (43)

are an orthonormal basis with respect to the inner product 〈·, ·〉L2
w

for Vn defined in (40)
and the sequence of functions

(Lk,p0,p)k≥0

is an orthonormal basis for L2
w.

Consider the system of vectors (ek)k≥0 in Hw where

e0 = (1, 0); ek = (0, Lk−1,p0,p), k ≥ 1.

Then, from the argument above, this system is an orthonormal basis in Hw.
Using (41)–(43), we have for k ≥ 1 (with the convention that

∑0
i=1 = 0)

L′k−1,p0,p(ξ) =
√

2p0
d

dξ
(e(p0−p/2)ξPk−1(2p0ξ))

= (p0 − p/2)Lk−1,p0,p(ξ) + (2p0)
3
2 e(p0−p/2)ξ

k−2∑
i=0

Pi(2p0ξ)

= (p0 − p/2)Lk−1,p0,p(ξ) + 2p0

k−2∑
i=0

Li,p0,p(ξ)

So, by (21)

A∗e0 = 0; A∗ek = e0
√

2p0 − 2p0

k−1∑
i=1

ei − (p0 − p/2) ek, k ≥ 1. (44)

Remark 4.7. From (44) we see that, setting

V n := Span
{
e0, ..., en

}
, n ≥ 0,

we have the A∗-stability of V n for each n ≥ 0.

Setting

Xk(t) = 〈ek,Xt〉w, αk = 〈ek,α〉w, βk = 〈ek,β〉w, k ≥ 0, (45)

and taking into account that α0 = β0 = 0, we have the Fourier series expansions in Hw

Xt =

∞∑
k=0

Xk(t)ek, α =

∞∑
k=1

αkek, β = =

∞∑
k=1

βkek.

Then we can rewrite the dynamics of St = X0
t as

dSt = b
(
St,

∞∑
k=1

αkXk
t , ut

)
dt + σ

(
St,

∞∑
k=1

βkXk
t , ut

)
dWt. (46)
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Using the definition of weak solution Definition 3.3-(ii) and considering also (44) we have

dXk(t) =
(√

2p0St − 2p0

k−1∑
i=1

Xi
t − (p0 − p/2)Xk

t

)
dt, k ≥ 1. (47)

Setting the initial data (
s0, (x

k)k≥1
)

=
(
〈e0, s〉w, (〈ek, s〉w)k≥1

)
, (48)

equations (46)–(47) provide a countable Markovian representation of our original system (6).
Moreover, setting

γk := 〈ek,γ〉w, k ≥ 0, (49)

we have the Fourier series expansion for γ (note that γ0 = 0)

γ =

∞∑
k=1

γkek,

so we also have the representation of the process (4) as

Zt =

∞∑
k=1

γkXk(t). (50)

4.4 Approximate finite-dimensional representation

When α,β belong to some finite dimensional subspace V n, equations (46)-(47)-(48) provide
a finite-dimensional representation of (6) in the spirit of the previous subsection. In this
case the dynamics of S requires only the knowledge of (Xk)k=0,...,n and the dynamics of
these variables is given also in terms of themselves. Finally, when also γ belongs to V n,
then (4) can be written in terms of the finite-dimensional Markov process (Xk)k=0,...,n and
we fall into an exact finite-dimensional representation of the problem. When some of the
above conditions fail to be true (i.e. there is no finite dimensional subspace V n such that
α,β,γ ∈ V n), then we need to truncate the Fourier series for α,β,γ and work with an
approximate finite-dimensional representation of the problem. In this case, setting for n ≥ 0

αn :=

n∑
k=1

αkek, βn :=

n∑
k=1

βkek, γn :=

n∑
k=1

γkek,

we have the following estimate for the error.

Proposition 4.8. For each n ≥ 0, let (Sn, (Xn,k)k=1,...,n) be the finite dimensional Markov
diffusion solving

dSnt = b
(
Snt ,

n∑
k=1

αkXn,k
t , ut

)
dt + σ

(
Snt ,

n∑
k=1

βkXn,k
t , ut

)
dWt. (51)

dXn,k
t =

(√
2p0S

n
t − 2p0

k−1∑
i=1

Xn,i
t − (p0 − p/2)Xn,k

t

)
dt, k = 1, ..., n, (52)

with initial data (
s0, (x

n,k)k=1,...,n

)
=
(
〈e0, s〉w, (〈ek, s〉w)k=1,...,n

)
. (53)

Then for every T > 0, there exists C = CT,‖s‖w,‖α‖w,‖β‖w,‖γ‖w <∞ such that, uniformly on
u ∈ U ,

E

[
sup

0≤t≤T

∣∣∣St − Snt ∣∣∣2
]
≤ C(‖α−αn‖2w + ‖β − βn‖2w) (54)
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and

E

[
sup

0≤t≤T

∣∣∣Zt − n∑
k=1

γkXn,k
t

∣∣∣2] ≤ C(‖α−αn‖2w + ‖β − βn‖2w + ‖γ − γn‖2w). (55)

Proof. From Proposition 3.5 it follows that St, S
n
t , Xk

t and Xn,k
t are square integrable

for all t ≥ 0, all n ≥ 1 and all k ∈ {1, ..., n}. Using standard tools such as Doob’s inequality
and Itô’s isometry, one can show firstly that

E[ sup
0≤t≤T

(St − Snt )2] ≤ 2T

∫ T

0

E[(b(Sr,

∞∑
k=1

αkXk
r , ur)− b(Snr ,

n∑
k=1

αkXn,k
r , ur))

2]

+ 8

∫ T

0

E[(σ(Sr,

∞∑
k=1

βkXk
r , ur)− σ(Snr ,

n∑
k=1

βkXn,k
r , ur))

2]

≤ 48(T + 1)C2
1

∫ T

0

E

(Sr − Snr )2 +

( ∞∑
k=n+1

αkXk
r

)2

+

( ∞∑
k=n+1

βkXk
r

)2

+

(
n∑
k=1

αk(Xk
r −Xn,k

r )

)2
 dr <∞

and similarly,
E[ sup

0≤t≤T
(Xk

t −X
n,k
t )2] <∞, k = 1, . . . , n.

Then, let us introduce the quantity

MT := E[ sup
0≤t≤T

(St − Snt )2] +

n∑
k=1

E[ sup
0≤t≤T

(Xk
t −X

n,k
t )2] < ∞.

From the above estimates, we then get

E[ sup
0≤t≤T

(St − Snt )2] ≤ 48(T + 1)C2
1

∫ T

0

{(1 + ‖αn‖2)Mr + (‖α−αn‖2w + ‖β − βn‖2w)E[‖Xr‖2w]}dr

and also for k = 1, . . . , n,

E[ sup
0≤t≤T

(Xk
t −X

n,k
t )2] ≤ (k + 1)(4p2 + 2p)T

∫ T

0

Mrdr,

so that for some constant C depending on p, n, T and α,

MT ≤ C

∫ T

0

{Mr + (‖α−αn‖2w + ‖β − βn‖2w)E[‖Xr‖2w]}dr.

From Gronwall’s inequality and Proposition 3.5 it follows that there exists another constant,
also denoted by C, depending on p, n, T , α, β and the initial condition, such that

MT ≤ C(‖α−αn‖2w + ‖β − βn‖2w),

from which we deduce (54). Finally,

E

[
sup

0≤t≤T

∣∣∣Zt − n∑
k=1

γkXn,k
t

∣∣∣2] ≤ 2E

[
sup

0≤t≤T

∣∣∣ ∞∑
k=n+1

γkXk
t

∣∣∣2]+ E

[
sup

0≤t≤T

∣∣∣ n∑
k=1

γk(Xk
t −X

n,k
t )

∣∣∣2]
≤ 2‖γ − γn‖2wE[ sup

0≤t≤T
‖Xt‖2w] + ‖γn‖2wMT ,

Combining this with the bound on MT obtained above and Proposition 3.5, we get (55) and
the proof is complete. �
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This proposition shows that the error of approximating the process S with Sn and the
process Z with the linear combination

∑n
k=1 γ

kXn,k
t of components of the finite-dimensional

Markovian diffusion (X0, X1, ..., Xn) depends on the error of approximating the coefficients
α, β and γ with the corresponding truncated Fourier-Laguerre series. The actual conver-
gence rate as n→∞ will depend on the regularity of the functions α, β and γ. For example,
from [4, Lemma A.4] it follows that if these functions are constant in the neighborhood of
zero, have compact support and finite variation (this is the case e.g., for uniformly weighted
moving averages) and w ≡ 1 then ‖α−αn‖2w + ‖β−βn‖2w + ‖γ − γn‖2w ≤ Cn−3/2 for some
constant C and n sufficiently large. For C∞ functions, on the other hand, the convergence
rates are faster than polynomial.

5 Application to optimal control and stopping

In this last section we show how the results of the previous one can be implemented to treat
optimal control or optimal stopping problems. Within this section it is assumed that S
solves (2)-(3) and Z is the process defined in (4). Moreover the coefficients αk, βk, γk are the
ones defined in (45) and (49).

5.1 Optimal control problems

Let T > 0. Given measurable functions f : [0, T ] × R2 × U → R, φ : R2 → R, we consider
the following optimal control problem:

V (s) := inf
u∈U

J(s;u), s = (s0, s1) ∈ Hw,

where

J(s;u) := E

[∫ T

0

f(t, St, Zt, ut)dt+ φ(ST , ZT )

]
.

This problem cannot be solved by dynamic programming in finite dimension due to the lack
of markovianity. However, given n ≥ 0, we can consider the problem in Rn+1

V n(xn) := inf
u∈U

Jn(xn;u), xn = (xn0 , x
n
1 , ..., x

n
n) ∈ Rn+1,

where

Jn(xn;u) := E

[∫ T

0

f(t,Xn,0
t , Znt , ut)dt+ φ(ZnT )

]
,

and

(i) the “output” process ZnT is

Znt :=

n∑
k=1

γkX
n,k
t ; (56)

(ii) the state equation for the (n+ 1)-dimensional process (Xn,k)k=0,...,n is
dXn,0

t = b
(
Xn,0
t ,

∑n
k=1 α

kXn,k
t , ut

)
dt+ σ

(
Xn,0
t ,

∑n
k=1 β

kXn,k
t , ut

)
dWt,

dXn,k
t =

(√
2p0X

n,0
t − 2p0

∑k−1
i=1 X

n,i
t − (p0 − p/2)Xn,k

t

)
dt, k = 1, ..., n,

(57)
with initial data

Xn,k
0 = xnk , k = 0, ..., n. (58)
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This finite-dimensional problem can be solved via the corresponding Hamilton-Jacobi-
Bellman equation (e.g., [18]). The following proposition provides an error estimate for the
value function.

Proposition 5.1. Suppose that f(t, ·, ·, u) is Lipschitz continuous uniformly in t ∈ [0, T ]
and u ∈ U , and that φ is Lipschitz continuous. Set

xn(s) := (〈s, ek〉w)k=0,...,n, n ≥ 0.

Then there exists K = KT,‖s‖w,‖α‖w,‖β‖w,‖γ‖w such that

|V (s)− V n(xn(s))|2 ≤ K(‖α−αn‖2 + ‖β − βn‖2 + ‖γ − γn‖2), ∀n ≥ 0.

Proof. We shall use the notation Su,s, Zu,s and Xn,0,u,xn(s), Zn,u,x
n(s) to make the

dependence on the initial condition and the control explicit. The common Lipschitz constant
of f(t, ·, ·, u) and φ shall be denoted by K0. We have

|V (s)− V n(xn(s))| ≤ sup
u∈U
|J(s;u)− inf

u∈U
Jn(xn(s);u)|

≤ sup
u∈U

E

[∫ T

0

|f(t, Su,s, Zu,st , ut)− f(t,Xn,0,u,xn(s), Z
n,u,xn(s)
t , ut)|dt

]
+ sup
u∈U

E
[
|φ(Su,s, Zu,sT )− φ(Xn,0,u,xn(s), Z

n,u,xn(s)
T )|

]
≤ K0 sup

u∈U
E

[∫ T

0

|Su,st −Xn,0,u,xn(s)
t |dt+ |Su,sT −Xn,0,u,xn(s)

T |

]

+K0 sup
u∈U

E

[∫ T

0

|Zu,st − Zn,u,x
n(s)

t |dt+ |Zu,sT − Zn,u,x
n(s)

T |

]

≤ K0 sup
u∈U

{∫ T

0

E[|Su,st −Xn,0,u,xn(s)
t |2]

1
2 dt+ E[|Su,sT −Xn,0,u,xn(s)

T |2]
1
2

}

+K0 sup
u∈U

{∫ T

0

E[|Zu,st − Zn,u,x
n(s)

t |2]
1
2 dt+ E[|Zu,sT − Zn,u,x

n(s)
T |2]

1
2

}
≤ 2K0C

1
2

T (T + 1)(‖α−αn‖2w + ‖β − βn‖2w + ‖γ − γn‖2w)
1
2 ,

where the last inequality follows from Proposition 4.8, and CT is the bound on the constant
C of that proposition over t ∈ [0, T ]. �

The result above can be applied, for instance, to the problem investigated in [23, 24]
or to generalizations of the examples shown in [9].

5.2 Optimal stopping problems

Let T > 0 and consider (6) when b, σ do not depend on u (so that the diffusion is actually
uncontrolled). Letting T be the set of all stopping times with respect to the filtration
(Ft)t∈[0,T ] and taking values in the interval [0, T ], and given a measurable function φ :
[0, T ]× R2 → R, we consider following optimal stopping problem:

V (s) := inf
τ∈T

E [φ(τ, Sτ , Zτ )] .

Also in this case the problem cannot be solved by dynamic programming in finite dimension
due to the lack of markovianity. However, to approximate its solution, given n ≥ 0, we can
consider the problem in Rn+1

V n(xn) := inf
τ∈T

E
[
φ(τ,Xn,0

τ , Znτ )
]
, xn = (xn0 , x

n
1 , ..., x

n
n) ∈ Rn+1,
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where the “output” process Znt and the state equation for the (n + 1)-dimensional process
(Xn,k)k=0,...,n are given, respectively, by (56) and (57). The following proposition provides
an error estimate.

Proposition 5.2. Suppose that φ(t, ·, ·) is Lipschitz continuous uniformly in t ∈ [0, T ]. Set

xn(s) := (〈s, ek〉w)k=0,...,n, n ≥ 0.

Then there exists K = KT,‖s‖w,‖α‖w,‖β‖w,‖γ‖w such that

|V (s)− V n(xn(s))|2 ≤ K(‖α−αn‖2 + ‖β − βn‖2 + ‖γ − γn‖2), ∀n ≥ 0.

Proof. Similar to the proof of Proposition 5.1. �

This result can be applied, for example, to the problem of pricing American options
written on the moving average of the asset price. This problem was studied in [4] by approx-
imating the dynamics by a finite-dimensional Markovian one using Laguerre polynomials,
but without passing through the infinite-dimensional representation of the system. Let us
briefly recall the problem. Let T > 0 and let S be the price of a stock index and consider the
financial problem of pricing an American option whose payoff at the exercise time t ∈ [0, T ]
depends on a past average of the stock price, i.e.

φ

(
1

δ

∫ t

t−δ
Sξdξ

)
, δ > 0.

Suppose that the price S is a Markov diffusion solving the SDE

dSt = b (St) dt+ σ (St) dWt, S0 = s0 > 0, (59)

and set

Zt =
1

δ

∫ t

t−δ
S(r)dr =

1

δ

∫ 0

−δ
St+ξdξ.

Letting T be the set of all stopping times with respect to the filtration (Ft)t∈[0,T ] taking
values in the interval [0, T ], the value of the option at time 0 is

V (s0, s1) = sup
τ∈T

E [φ(Z(τ))] ,

where s1(ξ) is the value of the stock at the past time ξ ∈ [−δ, 0]. This problem is intrinsically
infinite-dimensional; it falls into our setting as a special case by taking

α,β = (1, 0) ∈ Hw, γ =

(
0,

1

δ
1[−δ,0]

)
∈ Hw.

For more details about this problem we refer to [4].
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