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Preface

Cause-and-e�ect questions are the motivation for much research in many branches

of science and public policy. For example, one might be interested in determining

whether poverty causes early death, a job training programs improves prisoners

behavior after release or whether legalization increases drug consumption. The art

of making a causal claim about the relationship between two factors is central to

how we view and react to the world around us, to our decision making, and to

the advancement of science. We care about causal inference because, ultimately,

we want to intervene to improve our lives, and interventions can be targeted on

adding known causes of beneficial outcomes (or removing known causes of adverse

outcomes).

Causality has been a pivotal concept in the history of philosophy since the time

of the Ancient Greeks. After the middle ages, where western philosophers were still

debating on the interaction between the primary cause, identified as God, and sec-

ondary causes, given by human decisions and laws of nature, in the sixteenth century

the concept of ‘homo faber’, underlying humanism and the following enlightenment

movements as well as eastern philosophies, laid the foundations of intervention-based

causality. From the Buddhist point of view, our actions are the principal cause that

will lead to happiness or su�ering for ourselves or others. In the modern age, this

concept has been interiorized and individuals as well as social institutions are con-

tinuously involved in a careful decision-making process of selecting optimal actions,

in accordance to their final objectives. To this end, an understanding of the causal

e�ects of any possible action and the ability of predicting the optimal one is crucial.

This requires an emphasis on the e�ect of causes rather than on the causes of the

e�ects.

The one field most suited to address such problems is the field of statistics, which

makes use of inductive procedures to draw inferences from the observed world. How-

ever, since the time of Hume, many have questioned whether there is any metaphys-

vi



ical meaning of causality, or valid inferences based upon it. In the eighteenth cen-

tury Hume began the modern tradition of regularity models by defining causation

in terms of repeated "conjunctions" of events. Hume argued that the labeling of two

particular events as being causally related rested on an untestable metaphysical as-

sumption. Under this framework, causation was defined purely in terms of empirical

criteria, rather than unobservable assumptions. Due to its well-known di�culties,

regularity models of causation have largely been abandoned in favor of counterfac-

tual models. Rather than defining causality purely in reference to observable events,

counterfactual models define causation in terms of a comparison of observable and

unobservable events. Linguistically, counterfactual statements are most naturally

expressed using subjunctive conditional statements such as "if India had not been

poor, mortality rates would have been lower". Thus, the counterfactual approach

to causality begins with the idea that some of the information required for inferring

causal relationships is and will always be unobserved, and therefore some assump-

tions must be made. In stark contrast to the regularity approach of Hume, the idea

of counterfactual causation is fundamentally separate from the tools used to infer

it. As a result, philosophers like David Lewis (1973) could write about the meaning

of causality with little discussion of how it might be inferred. It was statisticians,

beginning with Jerzy Neyman (1923) and Ronald A. Fisher (1918; 1925), who began

to clarify the conditions under which causal inferences were possible if causation was

fundamentally a ‘missing data problem’.

The gold standard approach to answering causal questions is to conduct a con-

trolled experiment in which treatments/exposures are allocated at random, all sub-

jects are perfectly compliant, and all the relevant data are collected and measured

without error. Randomized experiments first appeared in psychology and in edu-

cation. Later, they became popular in others fields thank to Neyman and Fisher.

In the real world, however, such experiments rarely attain this ideal status (with

the presence of non-compliance, non-response, missing data, measurement error...),
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and for most important questions, an experiment would not even be ethically, prac-

tically, or economically feasible. In these situations, as Hume anticipated, moving

from measuring an association to inferring a causal link is not trivial.

Fisher, who was also a smoker, testified before Congress that the correlation

between smoking and lung cancer could not prove that the former caused the latter.

His claim was that one cannot substantiate causal conclusions from associations

alone, even at the population level, as implied by the slogan ‘Correlation does not

imply causation’, with the now-standard appendix, ‘But it sure is a hint’.

This has led some researchers to dismiss the search for causes as something that

is outside the realm of science. Until very recently, in fact, the dominant method-

ology has been based almost exclusively on statistical analysis which, traditionally,

has excluded causal vocabulary both from its mathematical language and from its

educational program. The aim of standard analysis, typified by regression and other

estimation techniques, is to infer parameters of a distribution from samples drawn

from that population. With the help of such parameters, one can infer associations

among variables, estimates the likelihood of past and future events, as well as up-

date such likelihood in light of new evidence or new measurements. These tasks

are managed well by statistical analysis so long as experimental conditions remain

the same. Causal analysis goes one step further; its aim is to infer aspects of the

data generating process. With the help of such aspects, one can deduce not only

the likelihood of events under static conditions, but also the dynamics of events

under changing conditions, for example, changes induced by treatments or external

interventions. This capability include predicting the e�ects of interventions, (e.g.,

treatments or policy decisions) and spontaneous changes, (e.g., epidemics or natu-

ral disasters), identifying the cause of reported events, and assessing responsibility

and attribution. This distinction implies that causal and statistical concepts do not

mix. Statistic deals with static conditions and observed phenomena, while causal

analysis deals with changing conditions. There is nothing in distribution function
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that would tell us how that distribution would di�er if external conditions were to

change because the laws of probability theory do not dictate how one property of

a distribution ought to change when another property is modified. The joint dis-

tribution of symptoms and diseases cannot tell us whether curing the former would

or would not cure the latter. Even the theory of stochastic processes, which pro-

vides probabilistic characterization of certain dynamic phenomena, assumes a fixed

density function over time-indexed variables. The additional information needed

for making such predictions must be provided by causal assumptions, which iden-

tify relationships that remain invariant when external conditions change. The role

of these assumptions is to recover the unobserved information on the dynamics of

events if external conditions were to change from their observed status to a di�erent

hypothesized status.

Over the last thirty years a formal statistical language has been developed in

which causal e�ects can be unambiguously defined, and the assumptions needed for

their estimation clearly stated. A statistical framework for causal inference that has

received increasing attention in recent years is the one based on potential outcomes.

It is rooted in the statistical work on randomized experiments by Fisher (1918, 1925)

and Neyman (1923), as extended to nonrandomized studies and to other modes of

inference by Rubin (1974, 1976, 1977, 1978, 1990) and subsequently by others. This

framework was called ‘Rubin’s Causal Model’ (RCM) by Holland (1986). The RCM

allows the direct handling of complications, such as noncompliance with assigned

treatment (which bridges experiments and the econometric instrumental variables

methods, Angrist et al. 1996). Thank to the clarity it brings in questions of causal-

ity, in the late 1980s and 1990s this framework has become increasingly popular

in many fields including statistics (Holland, 1986; Rubin, 1974, 2006; Rosenbaum,

2002), medicine (Christakis & Iwashyna, 2003; Rubin, 1997), economics (Bjorklund

& Mo�tt, 1987; Heckman & Hotz, 1989; Manski, 1990; Manski et al., 1992; Angrist

& Imbens, 1995; Abadie & Imbens, 2006), political science (Bowers & Hansen, 2005;
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Imai, 2005), sociology (Winship & Morgan, 1999; Smith, 1997) and even law (Rubin,

2001).

The RCM has two essential parts and one optional part. The first parts defines

causal e�ects using the concept of potential outcomes. Assume that there are just

two levels of treatment, denoted by 0, the control, and 1,the active treatment..

The starting essential feature of the approach is to define a causal e�ect as the

comparison of the potential outcomes on the same unit measured at the same time:

Y (0), the value of the outcome variable Y if the unit is exposed to treatment 0,

and Y (1), the value of Y if exposed to the active treatment 1. The key problem of

causal inference is that, for any unit, only one of these two potential outcomes can

be observed, namely the one corresponding to the treatment actually received, and

the potential outcome under the other treatment is missing. Thus, causal inference

becomes a problem of inference with missing data.

This definition of causal e�ects as the comparison of potential outcomes is fre-

quently used in contemporary culture, for example, as revealed by movies. Most

of us have probably seen the film ‘Sliding Doors?, with Gwyneth Paltrow as Helen

Quilley. The film reveals two parallel story lines: what happens when Helen makes

it through the "sliding doors" onto the train and what happens when she misses

the train. When she squeezes through the sliding doors and catches the train, she

meets a charming man called James and gets home to find her boyfriend Gerry in

bed with another woman. In the other reality, Helen misses the train, gets mugged,

goes to hospital and eventually arrives home to find Gerry alone in the shower. The

stream of events that would occur under the two scenarios are Helen?s potential

outcomes. Looking forward into the future at the moment of the sliding doors, both

could potentially occur. Whichever narrative will take place, will be the ‘actual’

world or the ‘observed’ outcome. The one that does not occur would be termed

‘counterfactual’ or the ‘missing’ outcome.

The second part of the RCM concerns the definition of a model for the assignment
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mechanism, a stochastic rule for assigning treatments to units and thereby for re-

vealing Y (0) or Y (1) for each unit. The assignment mechanism can depend on other

measurements; if these other measurements are observed values, then the assignment

mechanism is ignorable and the assignment can be treated as if it were random; if

the given observed values involve missing values, possibly even missing Ys, then it is

nonignorable. All forms of statistical inference for causal e�ects, whether Bayesian

or frequentist, require the positing of an assignment mechanism. The realization

that the primacy of the assignment mechanism holds true for observational data no

less than for experimental, is due to Donald Rubin. This insight has been turned

into a motto: ‘no causation without manipulation’. The third optional part of the

framework is the use of Bayesian posterior predictive inference for causal e�ects.

In order to define for each unit of one and only one potential outcome for each

treatment level, a key assumption is the stable unit treatment value assumption

(STUVA, Rubin (1978, 1980, 1990)), which requires that the potential outcomes for

any given unit be invariant with respect to the treatment assignment as well as to

the treatment status of other units. The second part of this assumption is what Cox

referred to as the absence of ‘interference between di�erent units’ (Cox, 1958), mean-

ing that the outcome for a given unit is una�ected by the treatment status of other

units. This phenomenon is common in social settings where people communicate,

compete, or spread disease. Such interference between units may pose a threat to

the inference of causal treatment e�ects. Interference implies that treatment e�ects

are not comparisons of two potential responses that a unit may exhibit, one under

treatment and the other under control, but instead are inherently more complex.

Sometimes this interference is a nuisance, in which case we might design the study

perhaps by isolating experimental units from one another, so interference does not

occur. Although this is good advice in many settings, it is highly impractical or

not logically possible in many common situations. Also, the e�ect of the treatment

received by other units, called ‘spillover e�ect’, may be of intrinsic interest. Treat-
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ments may be applied to people in an existing network, and we may wish to study

how e�ects transmit to peers in the network. For instance, it might be of interest

to know the extent to which an individual is protected as a result of receiving a

vaccine and the extent to which the individual is protected due to others in the

same cluster receiving the vaccine. One design that facilitates causal inference in

the presence of interference is a two-stage randomized experiment in which specific

clusters are randomized to having a certain proportion of the cluster treated and

then, within each cluster, once the proportion is determined, individuals are ran-

domized to receive the treatment or not. However, detecting interference between

units represents a generally challenging problem in observational studies as well as

in single-stage randomized experiments, when the two-stage design is infeasible due

to practical reasons or when interference is not considered in the design phase, and

even in two-stage randomized experiments when non-compliance arises.

Sometimes, interference is confused with another quite di�erent issue that also

may arise in contexts that produce interference: statistical dependence produced by

pretreatment clustering. There is dependence between outcomes of di�erent units

when there are common unmeasured factors that may a�ect a cluster of individuals,

but also if there is reciprocal influence between outcomes of di�erent subjects at

di�erent times. For example, people in the same family may tend to exhibit similar

responses to a viral infection because of shared genes; this is clustering. In this work

we will deal with both issues, interference and clustering.

Although impact assessment, i.e. the assessment of the e�ect of an interven-

tion, is certainly of primary importance in many substantive contexts, it is often

of both scientific and practical interest to explain why and how an intervention

works. Answering such questions will not only enhance the understanding of causal

mechanisms behind the intervention, but may also enable policymakers to prescribe

better policy alternatives, so that the key elements of programs can be supported,

and the key problems in programs that fail to reach their goals can be repaired.
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For instance, a job training may prevent recidivism not only through employment

but also trough a change in motivation, in the level of personal skills or in commit-

ment to conventional social bonds. An understanding of these processes can help

designing the various components of the program.

Average causal e�ects do not themselves provide information about the reasons

why the interventions have the e�ects they do. These reasons are left as an unopened

black box. An explanation of causal mechanisms can help analysts overcome the

"black box" problem. During the past decade, such intriguing analysis have received

considerable attention mostly in social and health sciences. Nonetheless, mediation

analysis can be an arduous task, given that it magnifies the almost inevitable se-

lectivity and omitted variable biases that plague research. Recently a number of

statisticians have taken up the challenge. Robins and Greenland (1992) formalized

this type of analysis in causal terms, and a number of articles have appeared in

more recent years (e.g. Pearl, 2001; Petersen et al., 2006; Imai et al., 2010a; Ten

Have & Jo�e, 2012). In causal mediation analysis the definition of causal mecha-

nisms hinges on particular potential outcomes that are based on a joint hypothetical

manipulation of both the intervention and the intermediate variable. Due to this

joint hypothetical manipulation - that is generally never observable - the lack of

information on these quantities requires additional identifying assumptions, such as

sequential ignorability.

Exploration of causal mechanisms can be crucial in clustered encouragement de-

signs (CED). Encouragement design studies arise frequently when the treatment

cannot be enforced because of ethical or practical constrains and an encouragement

intervention (information campaigns, incentives...) is conceived with the purpose

of increasing the uptake of the treatment of interest (drugs, job trainings, vaccines,

preventive measures...). By design, encouragements always entail the complication

of non-compliance and whether an individual takes the treatment or not under

alternative encouragement conditions depends on observed and unobserved charac-
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teristics. Encouragements can also give rise to a variety of mechanisms, particularly

when encouragement is assigned at cluster level. In fact, social interactions among

units in the same cluster can result in mechanisms of interference, that is one sub-

ject’s outcome is a�ected not only by treatment he himself received but also by the

treatment received by the other subjects belonging to the same social group (e.g.,

neighbourhood or village). Because of the presence of this and other mechanisms,

estimation of the e�ect of the treatment in CED typically cannot appeal to the com-

mon assumptions used in non-compliance settings, i.e., exclusion restrictions, which

precisely rule out any mechanism where assignment a�ects the outcome not through

the intermediate variable, i.e., the treatment. Knowledge of these alternative path-

ways is not only relevant for ensuring the unbiased estimation of treatment e�ects

but also often of substantive importance. Disentangling the e�ect of encouragement

through spillover e�ects from that through the enhancement of the treatment would

give a better insight into the intervention and it could be compelling for planning

the scaling-up phase of the program. Given the di�culty, there have been few, if

any, attempts to probe mechanisms in clustered encouragement designs. Building

on previous works on CEDs and non-compliance, we use the Principal Stratification

(PS) framework to define stratum-specific causal e�ects, that is, e�ects for spe-

cific latent subpopulations, defined by the joint potential compliance statuses under

both encouragement conditions. The Principal Stratification approach was first in-

troduced to generalize the Instrumental Variable (IV) method used to estimate the

e�ect of a treatment in non-compliance settings (Imbens & Angrist, 1994; Angrist

et al., 1996; Imbens & Rubin, 1997). PS was then proposed by Frangakis & Rubin

(2002) as a general framework for the evaluation of treatment e�ects while adjusting

for post-treatment variables.

We show how the latter stratum-specific causal e�ects provide flexible homo-

geneity assumptions under which an extrapolation across principal strata allows to

disentangle the e�ects. To face identification issues, estimation of causal estimands
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can be performed with Bayesian inferential methods using hierarchical models to

account for clustering.

Outline of the Thesis
In this work the above mentioned subjects are elaborated in the particular context

of clustered encouragement designs. The thesis is divided into two chapters. The

objective of the first chapter is to disentangle two causal mechanisms through which

the clustered encouragement exerts its e�ect on the individual outcome of interest:

the one through the individual uptake of the treatment that is promoted by the

encouragement, and the one through other processes, including through interfer-

ence by the treatment received by the unit’s neighbors or through other behavioral

changes that can result from the encouragement. To this purpose, we present a new

framework that defines each causal mechanism within individual principal strata,

that is, latent subpopulations characterized by the potential values of the individ-

ual treatment receipt under alternative situations defined by the clustered encour-

agement assignment. In order to accomplish identification of the stratum-specific

mechanisms, we proposed novel homogeneity assumptions that allow a limited ex-

trapolation of the missing information across a subset of principal strata. Bayesian

estimation is obtained by means of an imputation approach, where each step of the

algorithm follows from the hypothesized assumptions. We illustrate the proposed

methodology analyzing a cluster randomized experiment implemented in Zambia

and designed to evaluate the impact on malaria prevalence of an agricultural loan

program intended to increase the bed net coverage.

The second chapter is devoted to the separation from all the other mechanisms

of the e�ect of the clustered encouragement through the treatment received by all

the units belonging to the same cluster, that is, the e�ect through a mechanism

of interference. Therefore, the objective here is to disentangle three causal mech-

anisms: the one through the individual uptake of the treatment, the one through

interference by the treatment received by the neighbors, and another separate one
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through other behavioral changes that can follow from the encouragement both at

individual and cluster level. Building on the framework presented in the previous

chapter, we propose an extension that further develops the concept of principal

stratification to take into account both individual and neighborhood compliance,

that is the behavior in terms of potential treatment uptake under the alternative

encouragement conditions of both the unit itself and the other subjects of the same

cluster. With this auxiliary neighborhood principal stratification, identification of

the three causal mechanisms is achieved by additional homogeneity assumptions,

that are similar in flavor to those proposed in chapter one but will also take into

account the neighborhood compliance. An extended bayesian imputation algorithm

attains the estimation of such causal estimands. To assess the frequentist perfor-

mance of our bayesian estimation procedure, we performed a simulation study that

is based on a real randomized experiment, whose aim was to determine the extent

to which mobile immunization camps can help boosting immunization coverage in

rural India.
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Chapter 1

Disentangling Causal Mechanisms using

Individual Principal Strata

1.1 Introduction

The main purpose of clinical trials and impact evaluations, as well as social or epi-

demiological studies, is to provide evidence to guide the implementation of policies

and programs or the development of control measures and prevention procedures for

specific target populations. Evidence-based practice, as an approach for decision-

making grounded in experiential evidence from the field and relevant contextual

information, has gained considerable interest and influence over the last decades

in the fields of economics, psychology, political, social and health sciences. With

mediation analysis, defined as the analysis of the mechanisms through which an in-

tervention or exposure has an e�ect on the outcome of interest, research has gone far

beyond providing evidence of overall e�ects. This type of analysis is mostly still con-

fined in scientific investigation studies to test competing theories such as behavioral,

epidemiological or economic models but evidence on how the e�ect of the exposure

or treatment is actually accomplished is rarely turned into practice. A deep under-

standing of underlying mechanisms could be used by psychologists, social workers,

health service managers or policymakers to better design their intervention in order

to achieve the expected development goals. Improvements could include tailoring

and focusing on particular successful components of the interventions, di�erentially

targeting the beneficiaries and/or seeking additional components or substitute inter-
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ventions that might alternatively a�ect the intermediate variables, i.e., variables that

appear in the causal process relating the intervention and the outcome. "Unpacking

the black box" by disentangling the di�erent mechanisms involved is certainly a fas-

cinating field of research but doubtless an arduous task. Sometimes the more you

try to unravel a tangle the more you end up tying new knots. It all depends on how

tight the knots are, the knowledge you have of the structure and how deep you are

willing to dig. If the structure of the tangle is not completely known, assumptions

have to be made before starting to pull the needles.

Modern causal inference approaches to mediation analysis, grounded in the poten-

tial outcomes framework (Rubin, 1974, 1978), have garnered tremendous support

among both researchers and practitioners, although they still require strong and

untestable assumptions. Indeed, since the first attempts to exploration of causal

mechanisms (Baron & Kenny, 1986; MacKinnon et al., 2002), researchers have pro-

vided a more formal framework, based on causal e�ects whose definitions depend

on hypothetical interventions on the intermediate variables. These estimands are

known in the literature as ‘direct’ (or net) and ‘indirect’ (or mediational) e�ects,

which essentially refer to the e�ect of the exposure or intervention on the outcome

respectively not through or through a change in the intermediate variable (Robins

& Greenland, 1992; Pearl, 2001). Because of their definitions, they involve quan-

tities, sometimes named a priori counterfactuals, that cannot be estimated from

the observed data without strong and untestable assumptions. Most of the ap-

proaches to mediation analysis hinge on sequential ignorability assumption (Imai

et al., 2010a,b; Hafeman & VanderWeele, 2011) that, in addition to the interven-

tion being randomly assigned, requires unconfoundedness of both the assignment

and the intermediate variable, given the baseline covariates. The key assumption of

unconfoundedness of the intermediate variable is highly controversial, given that is

often untenable in many clinical and behavioral studies. Several authors have tried

to address the problem through di�erent techniques such as instrumental variables
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(Ten Have et al., 2007; Dunn & Bentall, 2007; Albert, 2008; Small, 2012), sensitivity

analysis (Imai et al., 2010b; VanderWeele, 2010a), or Principal Stratification (PS)

(Frangakis & Rubin, 2002). The former method uses baseline covariates interacted

with random assignment as instrumental variables, trading sequential ignorability

with alternative assumptions such as homogeneous e�ects across all individuals. In

the latter approach causal e�ects of the intervention are defined within principal

strata, latent sub-populations defined by potential values of the intermediate vari-

able. These stratum-specific e�ects, named Principal Causal E�ects (PCE), have

the property to always have a causal interpretation (provided that principal strata

are una�ected by the assignment).

Principal Stratification has been introduced in the context of mediation analysis

primarily as a way to highlight the limitations of standard approaches, in terms

of questionable assumptions and conceptual issues (Mealli & Rubin, 2003; Rubin,

2004; Mealli & Mattei, 2012). Its use to address these limitations has been then

proposed by Hill and colleagues (2002) and subsequently applied with Bayesian es-

timation techniques by Gallop and colleagues (2009), Elliott and colleagues 2010,

and Page (2012), and finally improved by Mattei & Mealli (2011) who developed

an augmented design to ease identification and estimation. Further comparisons of

identifying assumptions and estimation procedures between PS and other mediation

methods can be found in the literature (e.g. see Jo (2008) for a comparison with

structural equation models (SEM), or Lynch et al. (2008) and Ten Have & Jo�e

(2012) for a comparison with g-estimation approach). Vanderweele (2008) clarifies

the relationship between these two di�erent type of e�ects defined by PS approach

and by the standard approach based on hypothetical interventions on the interme-

diate variable. He shows how the e�ect of the assignment (Principal Causal E�ect,

PCE) for those whose treatment uptake does not depend on the assignment, referred

to as Principal Strata Direct E�ects (PSDE), can be interpreted as only "direct" ef-

fects, whereas for the rest of the population PCE can be thought as a mixture of
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both "direct" and "indirect" e�ects. The use of PS is still an ongoing debate because

of these conceptual issues and because it has been argued that it provides an esti-

mate of the "direct" e�ects solely in a specific subgroup and little information on

"indirect" e�ects (Pearl, 2011; Mealli & Mattei, 2012; VanderWeele, 2012).

Oftentimes, the so called Principal Strata Direct E�ects (PSDE), that is the ef-

fect of the assignment for those whose intermediate variable does not depend on

the assignment, are "naively" interpreted as "direct" e�ects for the whole popula-

tion, implicitly making some kind of homogeneity assumptions across all principal

strata. This approach leads to the statement saying that if there is no e�ect of

the intervention for the strata where the intermediate variable is constant then all

the e�ect of the intervention is through a change in this variable (see e.g. Elliott

et al. (2010)) Homogeneity assumptions needed for the identification of causal e�ect

defined with a priori counterfactuals on the basis of PS have been briefly discussed

by Jo (2008), in terms of constancy of coe�cients of SEM, by Page (2012) and

by Flores & Flores-Lagunes (2009a), who also provided a set of weak monotonicity

assumptions to derive nonparametric bound for the e�ects.

Interesting questions concerning mechanisms can be raised in a typical non-

compliance setting, where the treatment itself mediates the e�ect of the assignment.

When compliance to treatment assignment is not perfect, sometimes assignment

is itself source of alternative behaviors that would a�ect the outcome even with-

out involving a change in the treatment received. A particular design that can be

viewed as a randomized controlled trial with non-compliance is the encouragement

design. Encouragements are used when a treatment cannot be enforced for ethical

or practical reasons. Treatments can be therapeutic drugs or programs, preventive

measures (vaccines, condoms, bed nets...), protective or risky behaviors (drug or

alcohol abuse,...). It is evident how many of the mentioned factors are not manip-

ulable because inherently subject to self-selection or because of ethical or practical

constrains. When a treatment cannot be randomly assigned, as the best practice
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for clinical trials and impact evaluation would require. In these situations, encour-

agements, such as di�erent conditions of o�ering or promoting the treatment, can

be used as ex-ante instruments to induce an exogenous variation of the uptake of

the treatment (Bradlow, 1998). Alternatively it can also be the case that the target

treatment is an exposure or intervention that has already been evaluated in previous

experimental or observational studies, providing evidence of its beneficial or detri-

mental e�ect on the outcome of interest, but its use or disuse cannot be imposed in

the population. In these other circumstances encouragement interventions can be

conceived to foster a behavioral change of the target population, that is to increase

the probability of adoption of a beneficial treatment or decrease the likelihood of

a negative behavior. In this case, encouragements can take the form of incentives,

additional information, di�erent strategies for treatment supply or public policies

in general.

Hirano et al. (2000) were the first to apply the Principal Stratification approach to

encouragement designs to estimate intention-to-treat e�ects within principal strata,

i.e. PCE, with and without exclusion restriction assumptions (Imbens & Angrist,

1994; Angrist et al., 1996; Imbens & Rubin, 1997). Oftentimes, in fact, the encour-

agement is itself source of alternative behaviors that would a�ect the outcome even

without involving a change in the treatment received. When the encouragement is

solely an "instrument" to induce the target treatment and the aim of the study is

to evaluate the treatment e�ect, even if the presence of alternative pathways would

prevent the estimation of the e�ect of the treatment, we will show how disentan-

gling the total e�ect of the encouragement would give insight into the dynamic of

the process. On the other hand, even when the major interest relies on the e�ect

of the encouragement on the tratment uptake and in turns on the outcome, in-

vestigating the underlying mechanisms through which the encouragement program

achieves its goal is important for both descriptive and prescriptive reasons. Indeed

such analysis would primarily enable assessing whether the intervention is working
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the way we expect it to, that is by changing the behavior in terms of treatment

uptake, with the treatment having an e�ect on the outcome, and secondly it would

allow probing for other potential mechanisms of the cluster intervention. Based on

this analysis, we believe that future interventions might more e�ciently impact the

outcome of interest, through tweaking the encouragement programs or policies and

tailoring them to specific sub-populations with targeted components.

Here we consider Cluster Randomized Encouragement Designs (CED), where en-

couragement is randomized at the level of a cluster of subjects (e.g villages or com-

munities) because of the specific structure of a community-based intervention (e.g.

information campaigns, immunization camps, prevention measures...) or because of

particular constrains, but compliance is at the individual level. CEDs with indi-

vidual non-compliance can be found relatively frequently in many field experiments

(Sommer & Zeger, 1991; McDonald et al., 1992; Hirano et al., 2000; Morris et al.,

2004; among others). Frangakis, Rubin & Zhou (2002) extended previous work with

PS to account for clustering using Bayesian hierarchical models for inference. To

the best of our knowledge no previous work has attempted to apply concepts of

mediation analysis to general non-compliance settings, with the treatment being

the intermediate variable, and certainly not to the very common clustered encour-

agement designs. CEDs are intriguing because they can give rise to many di�erent

mechanisms that it is worthwhile to investigate. In fact, not only their relationship

with the outcome depends on a change in the treatment uptake but also most of

the times encouragements, incorporating sensitization towards the problem related

to the outcome of interest, lead to an overall behavioral change and other actions

that can substantially a�ect the outcome. Furthermore, since the encouragement is

randomized at the cluster level, social interactions occurring among people living or

working in the same environment give rise to mechanisms of what in the literature

is referred to as interference or spillover e�ects (Sobel, 2006; Hong & Raudenbush,

2006; Hudgens & Halloran, 2008; Tchetgen Tchetgen & VanderWeele, 2012). Specif-
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ically, neighbors’ behaviors adopted as a result of the encouragement assignment,

concerning the treatment uptake as well as other preventive or risky measures, a�ect

not only their own outcomes but also those of the entire community.

By way of example, let us mention Conditional Cash Transfers (CCT), programs

that have been extensively adopted in the last decade in the field of education, espe-

cially in Latin America (e.g. Mexico’s Progresa, Schultz, 2004; Nicaragua, Maluccio,

2010; Honduras, Galiani & McEwan, 2013: Malawi, Baird et al., 2003) with the pur-

pose of boosting schooling. CCT provide cash transfers to poor families, but their

receipt is conditional on children attending school. Oftentimes these programs are

assigned to all the poor household belonging to randomly selected municipalities or

villages. This setting is a good example of compliance to encouragement. Not all

the children whose families are o�ered the transfers would go regularly to school and

even without additional money some children in control clusters would go to school

anyway, with compliance depending on many socio-economic factors. The o�ering

of cash transfers not only achieves its purpose of keeping children at school but it

can also make families more aware of the education problem and make them support

their children in their studies, it can motivate more e�ort or it can result in children

getting higher grades at school because of a better psychosocial environment in the

house. Furthermore, in the field of education usually social interactions cannot be

neglected. In fact children attending school would share their textbook or infor-

mation learnt with their peers, and also peer influence in motivation or emotional

competency may occur. Thus, the presence of CCT program in a cluster may a�ect

all types of children, attending or not attending school with or without conditional

cash transfers.

VanderWeele et al. (2013) have already attempted to disentangle spillover e�ects

in cluster randomized trials. Nevertheless, we argue that their identifying assump-

tions, which essentially extend sequential ignorability assumptions to accommodate

cluster-level assignment and spillovers, are too stringent and rarely apply to the
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extreme case of CEDs, where compliance behavior depend on the overall individual

decision-making system.

The work presented in this chapter makes three contributions to the literature.

First, we conceptualize the mediating role of the treatment variable in clustered

encouragement designs using definitions of e�ects based both on hypothetical inter-

ventions on the treatment uptake and on principal strata. Second, we provide two

alternative sets of homogeneity assumptions that enable to extrapolate information

across principal strata and use the estimated PCE to recover the e�ects involving a

priori counterfactuals. We discuss the flexibility of these assumptions and make clear

what specific causal e�ects can be identified by each of them. Throughout the arti-

cle, the reference to the application will be useful to outline possible ways to assess

their plausibility. Third, building on previous work (specifically Frangakis, Rubin

& Zhou, 2002), we incorporate an imputation-based procedure for the estimation of

these intervention-based causal e�ects under the required assumptions.

This chapter is organized as follows. Section 1.2 describes the motivating study

that we will use to illustrate the methodology. Section 1.3 provides notation and

setup. In Section 1.4 we introduce the Principal Stratification approach and define

a new class of causal estimands that adapt to the context of CED the notion of

mechanisms based on a priori counterfactuals. Section 1.5 presents our innovative

structural assumptions deriving the identification results. Section 1.6 concerns the

models we will consider in the bayesian inference laid out in Section 1.7 together

with the new imputation-based procedure. In Section 1.8 the methods are applied

to KAHS study. We conclude in Section 1.9 with some discussion.
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1.2 Motivational Study:

Katete Agriculture and Health Study (KAHS)

The proposed methodology is motivated by the Katete Agriculture and Health

Study (KAHS) implemented in the Katete District, a rural area with highly en-

demic malaria in Zambia’s Eastern Province (Fink & Masiye, 2012). From a list of

256 clusters, corresponding to small rural settlements of about 250 households each,

the study was restricted to 49 non-contiguous clusters, with a minimum distance of

3 km between each other. The 49 clusters were randomly assigned to one of three

arms: 15 were assigned to the control group, 15 to a free net distribution and the

other 19 to a subsidized bed net loan program. The purpose of the two ‘encourage-

ment’ interventions was to increase bed nets coverage and ultimately reduce malaria

prevalence. Here, we use a subset of the original data from the first and the third

arms.

The target population of the study comprised rural farmers, known to be a pop-

ulation group at high risk of malaria. In each cluster, 11 farmer households were

randomly selected from a complete listing of all farmers working with Dunavant

Cotton, the partner organization of the program. All the households enrolled in

the study, in all the three arms, were surveyed twice, once prior to the rainy season

and a second time five months later. All the 11 households selected in the clus-

ters assigned to the third arm, after the baseline interview, were allowed to obtain

bed nets at a subsidized price, with repayments due at the end of the harvesting

season with a crop sale deduction system. However, not all households o�ered the

subsidies took advantage of them ordering new bed nets, whereas in the control

clusters families could also buy new bed nets from local markets. Fink & Masiye

(2012) evaluated the average e�ect of o�ering the agricultural loan program on the

household prevalence of malaria with an intent-to-treat analysis.

There has been an extensive e�ort over the past decade to show the e�ectiveness

of bed nets uptake in reducing malaria morbidity (Alonso et al., 1993; D’Alessandro,
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1995; Nevill et al., 1996). Relying on these results, in the last years studies in this

field usually focus on the evaluation of strategies to improve coverage. However few

studies attempt to understand how these strategies work and whether their merit

goes beyond the increase in bed net uptake. One of the underlying mechanisms that

can occur in large-scale interventions is interference. Given the minimum distance of

3 km between clusters, any concerns of interference between cluster can be reason-

ably ruled out. On the contrary interference within clusters is likely to take place.

Bed nets usage yields protection from malaria infection not only for subjects sleeping

under them but also for individuals living in the same area. In the literature this ef-

fect is referred to as mass community e�ect. First and foremost, bed nets reduce the

reservoir of infection by preventing the physically protected individuals from being

infected. This e�ect is analogous to the contagion e�ect in vaccine trials (Vander-

Weele et al., 2012). In addition bed nets commonly used in the last two decades

are insecticide-treated nets (ITNs). As a matter of fact the bed nets distributed in

the program as well as those sold in the local markets in Zambia are treated with

insecticides. ITNs yield an additional mass e�ect by a�ecting the vector of trans-

missions in three ways. First, insecticides kill adult mosquitos infected with malaria

parasites reducing the probability of a person in the community being bitten by an

infected mosquito. Second, mass coverage shortens the lifespan of the mosquitos and

lowers the possibility for maturation of the parasites resulting in a reduction of the

proportion of mosquitos that become infective. Third insecticides repel mosquitos.

It has been argued that the repellant e�ect of the insecticides can be either harmful

or beneficial for those who do not sleep under the nets. In fact, mosquitoes could

be diverted to neighboring houses lacking nets. However this fear, plausible at low

coverage, has been largely allayed especially if the coverage is high. On the contrary,

a massive presence of bed nets might divert certain species of mosquitoes from hu-

man to animal biting, thereby reducing human-to-human transmission. These three

components are analogues to the infectiousness e�ect (VanderWeele et al., 2012).
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These components of the mass community e�ect of bed nets have already been

assessed by several researchers in trials where free distribution of bed nets was

randomized at cluster level and a comparison of malaria outcomes was carried out

between households belonging to villages assigned to the intervention arm but who

did not receive any net and households belonging to the control arm. Information on

the distance between treated and untreated households was also used for the scope

(Binka et al., 1998; Howard et al., 2000; Hawley et al., 2003). Nevertheless, none of

the encouragement studies have tried to investigate the extent to which interference

of the actual bed nets uptake or behavioral changes in the neighborhood plays a

role for those who are assigned to receive new bed nets. The purpose of our analysis

of the KAHS study is to investigate the di�erent mechanisms through which the

o�er of agricultural loans had an e�ect, by analyzing the heterogeneous e�ect across

di�erent compliance behaviors about new bed nets purchase.

1.3 Notations and Definitions

In this section we will give formal definitions of the aforementioned e�ects in the

potential outcomes framework (Rubin, 1974, 2005). The setting consist of j = 1, . . . , J

clusters and i = 1, . . . , N

j

units in each cluster with a total of N units uniquely denoted

by the pair of indices i j . Let A

j

denote a binary cluster encouragement assignment,

so that A

j

= 1 if cluster j is assigned to the encouragement program and A

j

= 0

otherwise. Let M

i j

2 {0,1} and Y

i j

2 Y denote the treatment received and outcome

variables for unit i in cluster j . Let also introduce a vector of covariates, C
i j

=
°
X

i j

,V
j

,h

i

(X°i j

)
¢
2 C , where X

i j

is a vector of covariates of unit i in cluster j , V
j

is a vector of cluster-specific characteristics and h

i

(X°i j

) is a function of the vector

of covariates of all the units living next to unit i . Finally let A, M and Y be the

(J£1)-dimensional vector of encouragement assignments and the (N£1)-dimensional

vectors of treatment received and outcomes, respectively.

In the KAHS study farmer households are the units of analysis and the clusters
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of settlements are the units of assignment to either the agricultural loan program

(A

j

=1) or control (A

j

=0). The treatment concerns the purchase of new bed nets

between the baseline and the follow-up survey. To simplify the methodology, the

analysis is based on a binary treatment variable, being M

i j

= 1 if household i in clus-

ter j has bought at least one more bed net and M

i j

= 0 if no purchase has been carried

out. In terms of the outcome, let Y

i j

be the proportion of reported cases of malaria

during the month prior to the follow-up interview in each household i belonging to

cluster j . Note that throughout this thesis we will use the term "individual" to refer

to the lowest level of the analysis, which in this case are households.

We now introduce notation for the primitive potential outcomes. Let M

i j

(A) de-

note the potential purchase of at least one bed net a household i would have decided

to carry out under assignment vector A. Similarly let Y

i j

(A,M) denote the potential

outcome that household i in cluster j would have experienced if A and M were the

vectors of assignments and treatments received in the whole population.

Assumption 1. Cluster-level SUTVA for the encouragement assignment

Cluster-level Stable Unit Treatment Value Assumption (SUTVA) for the encourage-

ment assignment consists of two parts:

(i) An individual’s potential outcomes and potential values of the intermediate

variable do not vary with encouragements assigned to clusters other than the

individual own cluster, i.e. M

i j

(A) ¥ M

i j

(A

j

) and Y

i j

(A,M) ¥ Y

i j

(A

j

,M
j

), where

M
j

is the vector of dimensions N

J

£1 of treatment received by individuals of

cluster j .

(ii) For each cluster there are no di�erent versions of each encouragement level.

Formally:

if A

j

= A

0
j

then M

i j

(A

j

) = M

i j

(A

0
j

)

and if A

j

= A

0
j

and M
j

= M0
j

then Y

i j

(A

j

,M
j

) = Y

i j

(A

0
j

,M0
j

)

Cluster-level SUTVA is an extension of the individual-level SUTVA introduced by
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Rubin (1978, 1980, 1990) to settings with cluster-level assignments and individual-

level intermediate variable. For further discussion on cluster-level SUTVA version

see VanderWeele (2008). Yet it is worth noting that part (i) of the assumption

requires that the outcome Y

i j

of individual i in cluster j does not vary with the

encouragement conditions or treatments received in other clusters. However the

previous assumption does not rule out the possibility of spillover e�ects of the inter-

mediate variable within clusters, that is Y

i j

can be a�ected by the treatment received

by other units of the same cluster j . Under cluster-level SUTVA we can use the

notation M

i j

(A

j

) and Y

i j

(A

j

,M
j

).

Note that the only observable potential outcome is the one where, if A

j

were set

to a, the treatment received by all the units in cluster j were left to the value it

would take under encouragement condition a, that is Y

i j

°
a,M

j

(a)
¢
. Throughout we

will use the notation Y

i j

(a) for potential outcomes of this type.

Based on these potential outcomes, the overall average e�ect of the cluster en-

couragement intervention on the individual outcome, referred to as Intent-to-Treat

E�ect (ITT), within each level c of baseline covariates, is defined as the following

contrast:

ITT(c) := E
£
Y

i j

(1) | C
i j

= c
§
°E

£
Y

i j

(0) | C
i j

= c
§

(1.3.1)

In the sequel, in order to be able to shed light on the heterogeneity of the e�ects,

we will define all causal estimands as average e�ects within levels of the baseline

covariates C
i j

.

1.4 Principal Stratification Approach

Principal stratification has been first introduced by Frangakis and Rubin (2002), in

order to address post-treatment complications in an experimental setting. Its use in

mediation analysis has been proposed as a way to relax the sequential ignorability

assumption but still being able to yield valid causal inference of what VanderWeele

(2008) called the principal strata direct e�ects (Gallop et al., 2009; Elliott et al.,
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2010; Page, 2012; Mattei & Mealli, 2011).

The units under study can be stratified in subpopulations, the so-called Principal

Strata, defined according to the potential values of the actual treatment received:

S

m0m1 :=
©
i : M

i j

(0) = m0, M

i j

(1) = m1
™

(1.4.1)

Since only one of the two potential values is observed, these four subpopulations

are latent, in the sense that in general it is not possible to identify the specific

subpopulation a unit i belongs to. Let S

i j

be the indicator of the latent group

to which subject i belongs. When both A

j

and M

i j

are binary there are 4 strata

S

i j

2 {S

00,S

11,S

01,S

10}, often referred in the literature on compliance as never-takers,

always-takers, compliers, and defiers. Strata membership can also be referred to as

compliance status.

In the bed nets application household can be divided in principal strata based

on the behavior in terms of bed nets uptake under both encouragement conditions.

Never-takers are the families who would not buy a new bed net neither if assigned

nor if not assigned to receive subsidies, always takers are those who would buy new

bed nets anyway, compliers those families who would buy new bed nets only if they

were o�ered subsidies and defiers would be those who would not buy new bed nets

with subsidies but would carry out the purchase at full price. We argue that this

last category is not plausible in this setting and thus we will make the following

monotonicity assumption.

Assumption 2. Monotonicity of Compliance

Monotonicity of encouragement assignment on treatment receipt requires

M

i j

(0) ∑ M

i j

(1) 8i , j

This assumption rules out the presence of defiers. Indeed it conveys that there

is no unit who would take the treatment if not encouraged to do so but would
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not if encouraged. This restricted pattern of compliance behavior enables the iden-

tification of the conditional distribution of compliance status. In fact, if we let

º
m0m1 (c) := P (S

i j

= S

m0m1 | C
i j

= c) denote the probability of belonging to stratum

S

m0m1 conditional on baseline covariates, the monotonicity assumption implies the

following result 8c 2C :

º10(c) = 0

º11(c) = P (M

i j

(0) = 1 | C
i j

= c)

º00(c) = P (M

i j

(1) = 0 | C
i j

= c)

º01(c) = 1°º11(c)°º00(c)

(1.4.2)

In what follows we will maintain this assumption. As mentioned previously in the

KAHS study this assumption is plausible because there should not plausibly be any

reason to buy a bed net at a full price but not with subsidies.

1.4.1 Principal Causal E�ects

The overall e�ect of the cluster encouragement within each principal stratum and

within levels of baseline covariates is named principal causal e�ect (PCE) and is

defined as:

PCE(m

0

,m

1

,c) := E
£
Y

i j

(1) | S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

m0m1 ,C
i j

= c
§

(1.4.3)

ITT is then a weighted average of PCEs, with weights given by the probability of

belonging to each principal stratum:

ITT(c) =
X

m0m1

PCE(m

0

,m

1

,c) ·º
m0m1 (c) (1.4.4)

In principal strata where the treatment receipt is una�ected by the encourage-

ment, i.e. never-takers and always-takers, principal causal e�ect, PC E(m,m,c) with
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m 2 {0,1}, are called dissociative causal e�ect (DC E(m,c)).

DCEs include all the mechanisms that do not involve a change in the treatment

received. In particular they are a combination of two di�erent types of e�ects: pure

encouragement e�ects, that is e�ects of the cluster encouragement through mod-

ification in the environment or behavioral changes, other than the one regarding

the treatment receipt, of both the unit itself or its neighbors (Frangakis, Rubin

& Zhou, 2002), and e�ects due to mechanisms of interference due to a change in

the treatment uptake of other inhabitants of the same cluster. Several behavioral

changes often occur when the encouragement to take a beneficial treatment (or not

take a risk behavior), is provided by information campaigns that will either increase

the awareness of the problem or just act as reminders. In this case the additional

information received would also encourage to make use of other measures to limit

risk of infection. Behavioral changes can lead to an e�ect on the outcome either

by themselves or in the way they vary the e�ect of the treatment on the outcome.

When clusters are the level of randomization, these behavioral changes can also be

at cluster level, such as structural interventions in the community. Interventions

designed to boost the use of bed nets often comprise di�erent components that are

responsible of di�erent mechanisms leading to malaria reduction. First, encourage-

ments, such as subsidies, could influence the usage as well as the quantity of new

bed nets; second, an awareness-raising component could lead to a better usage of

old bed nets as well as the uptake of other preventive measures such as repellents

or mosquito screens for windows and doors; third, another component could be a

village cleaning or disinfestation.

The di�erence between the two dissociative e�ects for never-takers and always-

takers can be substantial. On the one hand this can be due to the possible interaction

between encouragement and treatment, that is, a change on the e�ect of A

j

on Y

i j

depending on the treatment uptake M

i j

, on the other hand the di�erent inherent

characteristics of the two strata can influence the way the encouragement has an

16



e�ect on their outcome.

Estimation of the latter e�ect within levels of covariates C
i j

would allow to iden-

tify the individual as well as cluster characteristics of the units that do not get

any benefit from the cluster intervention if they don’t take the treatment, neither

through interference nor through other mechanisms. In the phase of scaling up the

intervention to other communities, alternative targeted strategies can be applied to

people with these characteristics and with a higher probability of being never-takers,

e.g., free distribution of bed nets or higher discounts. Moreover, estimation of the

e�ect for always-takers will provide us with a better understanding of the relevance

of the encouragement and also whether the encouragement itself has a beneficial

e�ect even for this sub-population.

As far as compliers are concerned, PC E(0,1,c) is a combination of all the afore-

mentioned mechanisms as well as the e�ect of the encouragement involving a change

in the individual treatment uptake.

1.4.2 Individual Treatment Mediated E�ect and

Net Encouragement E�ect

In order to disentangle for the whole population the two di�erent types of causal

mechanisms, through or not through a change in the individual treatment uptake,

it is necessary to introduce quantities based on hypothetical interventions on the

intermediate variable. Let us decompose M
j

into M
j

= [M

i j

,M°i j

], where M°i j

de-

notes the vector of treatment taken by all the individuals in cluster j , except for

unit i , and let M°i j

(a) be its potential value under A

j

= a. We can then rewrite

the potential outcomes Y

i j

(A

j

,M
j

), already defined in section 1.3, as Y

i j

(A

j

, M

i j

,M°i j

).

Let us now consider a particular intervention on the intermediate variables that

would set M
j

= [M

i j

,M°i j

] = [m,M°i j

(a)]. Among the 2N

j

+1 potential outcomes that

can be conceived for each unit, based on a joint intervention on the encouragement

and on the treatment receipt, we will focus solely on 4 of them, precisely the ones

of the form Y

i j

(a,m,M°i j

(a)), denoting the outcome that unit i in cluster j would
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have experienced if cluster j were assigned to the encouragement status A

j

= a, the

treatment received by unit i j were set to M

i j

= m and all the other individuals in

the cluster could take the treatment they would have taken under the encourage-

ment status that has been set to a. Since the third term in the potential outcome

is a function of the encouragement condition, we will use the simplified notation:

Y

i j

(a,m) ¥ Y

i j

(a,m,M°i j

(a)). A peculiar case occurs when M

i j

is set to the value

it would take under encouragement ã, i.e. Y

i j

°
a, M

i j

(ã)
¢
. As mentioned, potential

outcomes of this form require that we conceive, together with the clustered encour-

agement intervention, an additional intervention that is able to set the treatment

received by each subject to a specific value, without having any e�ect on the out-

come. For instance, the joint intervention underlying the potential outcome Y

i j

(1,0)

is conceivable if there were a rationing, that is the number of bed nets available in

the program were less than the number that households belonging to the villages

were the program was implemented could potentially request. We then can think of

an intervention that o�ers subsidized bed nets to household i j , but at the same time

creates the condition for which that household finds nets out of stock, assuming no

secondary consequences.

Potential outcomes of this type, whenever they can be deemed well-defined, allow

the definition of causal estimands that decompose the overall encouragement e�ect

into causal mechanisms, through or not through a change in the individual treatment

uptake: Individual Treatment Mediated E�ect (iTME) and Net Encouragement Ef-

fect (NEE). Note that in this article no attempt will be made to disentangle spillover

e�ects from pure encouragement e�ects. This being said, we can give formal defini-

tion of the two main casual mechanisms of interest, within principal strata.

We define Net Encouragement E�ect (NEE) within principal stratum S

m0m1 as

the following contrast:

NEE

ã(m0,m1,c) := E
£
Y

i j

°
1, M

i j

(ã)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(ã)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§

(1.4.5)
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In words, it is the di�erence between potential outcomes under the two encourage-

ment conditions intervening to keep the individual treatment received by unit i j ,

M

i j

, fixed at the value it would take under A

j

= ã, averaged over all units belonging

to the principal stratum S

m0m1 and with values of covariates C
i j

= c. This quantity

represents the e�ect of the encouragement on the outcome net of the e�ect of the

treatment uptake. By definition, NEEs are a combination of spillover e�ects by

intermediate variables of other subjects belonging to the same cluster and other

mechanisms that do not involve a change in the individual treatment uptake. In

the KAHS study, NEE

ã(m0,m1,c) indicates the average, over all units with C
i j

= c

and belonging to principal stratum S

m0m1 , of the e�ect of o�ering subsidies to the

11 farmer households enrolled in the study and belonging to the same cluster on

the risk of malaria for one of these units, not through the change in the number of

bed nets owned by the household itself and, specifically, if we intervened to keep the

binary indicator of bed nets purchase of this household to what it would have been

under the clustered encouragement status A

j

= ã.

Likewise, the Individual Treatment Mediated E�ect (iTME), for each encourage-

ment condition A

j

= a, is given by the following expression:

iTME

a(m0,m1,c) := E
£
Y

i j

°
a, M

i j

(1)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

°
a, M

i j

(0)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§

(1.4.6)

In words, it is the average di�erence of the potential outcomes, within each princi-

pal stratum and within each level of the covariates, resulting from an intervention

that varies the actual treatment for each unit i in cluster j , M

i j

, from the one that

this unit would have received having assigned cluster j to the active encouragement

condition, A

j

= 1, to the one that it would have received under the control encour-

agement condition, A

j

= 0, keeping the encouragement status fixed at a. Precisely

this quantity captures to what extent the encouragement achieves its aim through

its main characteristics, i.e. an increase or reduction of the treatment uptake in
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the population. The definition of the quantities NEE and iTME is not new in

the literature of mediation analysis. Indeed, they correspond to the natural direct

and indirect e�ects (Robins & Greenland, 1992; Pearl, 2001) within principal strata

(VanderWeele, 2008; Mealli & Mattei, 2012). VanderWeele (2010b) also provided

expressions for these e�ects when a treatment is administered at cluster level and

the intermediate variable is measured at individual level. The change in the termi-

nology is due, in our view, to a better fit to the setting of clustered encouragement

designs, where the terms direct and indirect would be confusing.

Let us focus now on the strata S

mm =
©
i : M

i j

(0) = M

i j

(1) = m

™
, with m = {0,1},

where the individual treatment received, M

i j

, does not depend on the encourage-

ment intervention A

j

, namely never-taker (m=0) and always-takers (m=1). Within

these two strata the individual treatment mediated e�ect is canceled out and the

dissociative causal e�ect equals both net encouragement e�ects:

DCE(m,c) ¥ N EE

0(m,m,c) = N EE

1(m,m,c) (1.4.7)

Proof. The proof is carried out bearing in mind that in the strata of the type S

mm

the two potential values of the intermediate variable, M

i j

(1) and M

i j

(1), coincide.

DCE(m,c) = E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

mm ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1)
¢
| S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

mm ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(0)
¢
| S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

mm ,C
i j

= c
§

= N EE

0(m,m,c)
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With similar manipulations we yield the second result:

DCE(m,c) = E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

mm ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1)
¢
| S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

mm ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1)
¢
| S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(1)
¢
| S

i j

= S

mm ,C
i j

= c
§

= N EE

1(m,m,c)

In contrast, the overall e�ect of the clustered encouragement for compliers de-

composes into the net encouragement e�ect and the individual treatment mediated

e�ect:

PCE(0,1,c) = NEE

1°a(0,1,c)+ iTME

(a)(0,1,c) (1.4.8)

Proof.

PCE(0,1,c) = E
£
Y

i j

(1) | S

i j

= S

01,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

01,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1)
¢
| S

i j

= S

01,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

01,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1)
¢
| S

i j

= S

01,C
i j

= c
§
°E

£
Y

i j

°
a, M

i j

(1°a)
¢
| S

i j

= S

01,C
i j

= c
§

+E
£
Y

i j

°
a, M

i j

(1°a)
¢
| S

i j

= S

01,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

01,C
i j

= c
§

= NEE

1°a(0,1,c)+ iTME

a(0,1,c)

In our example, iTME

a(0,1,c) represents the average e�ect of the agricultural loan

program on the proportion of malaria cases experienced by each complier household

with C
i j

= c through an increase in the number of bed nets owned by the household

itself, under the clustered encouragement status A

j

= a.

The choice of one or the other decomposition, indexed by a, depends on the

particular interest, the application, a descriptive or perspective approach and future
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interventions under assessment. As we can see compliers are the only units to

actually exhibit a non zero iTME besides a possible di�erence between the two NEEs.

The reason of the di�erence between the two e�ects NEE

0(0,1,c) and NEE

1(0,1,c),

as well as between iTME

0(0,1,c) and iTME

1(0,1,c), can be found in the interaction

between the encouragement and the individual treatment uptake, so that the e�ect

of the clustered encouragement might depend on whether the subject takes the

treatment and conversely the e�ect of the treatment on the outcome varies with the

presence of the encouragement.

In any case, a conceptual point has to be made. In this application the e�ects

NEE

1(0,1,c) iTME

0(0,1,c) are problematic because they involve the potential outcome

Y

i j

(0, M

i j

(1)), which for compliers is equal to Y

i j

(0,1). This quantity is not well-defined

because it would require an intervention that sets M

i j

to 1, namely that makes a

complier household i j buy at least one new bed net, while each household in cluster

j , including i j , is not assigned to the loan program. Since the purchase of bed

nets is a treatment that cannot be enforced such intervention is hard to conceive

and it would rather be another kind of encouragement that would a�ect the actual

number of bed nets bought as well as lead to other mechanisms. On the contrary,

NEE

0(0,1,c) iTME

1(0,1,c) involve the potential outcome Y

i j

(1, M

i j

(0)), which is equal

to Y

i j

(1,0) for compliers. This quantity hinges on an intervention that sets M

i j

to 0,

namely that precludes the purchase of any new bed net for a complier household i j ,

while each household in cluster j , including i j , is assigned to the loan program. In

a way this might be easier to conceptualize if we think on the rationing intervention

described earlier.

In light of these considerations, the scope of our analysis will be to disentangle

net encouragement e�ect and individual treatment mediated e�ect for compliers in

the form of NEE

0(0,1,c) and iTME

1(0,1,c), and estimate dissociative causal e�ects

for always-takers and never-takers.

We can now derive population e�ects. The population net encouragement e�ect,
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averaged over subgroups of the population with the same level of covariates, is given

by the weighted sum of the net encouragement e�ect of all the strata:

NEE

0(c) =
X

(m0,m1)
NEE

0(m0,m1,c)º
m0m1 (c)

=
X

m

DCE(m,c)º
mm

(c)+NEE

0(0,1,c)º
m0m1 (c)

(1.4.9)

Conversely, the population intermediate treatment mediated e�ect, averaged over

subgroups of the population with the same level of covariates, results from interme-

diate treatment mediated e�ect for compliers, scaled by the conditional probability

of belonging to this principal stratum:

iTME

1(c) =iTME

1(0,1,c)º01(c) (1.4.10)

As we will see more in details in section 1.5.2, by virtue of the particular behavior

of compliers, having M

i j

(0) = 0 and M

i j

(1) = 1, we can interpret their individual

treatment mediated e�ect for compliers as the average causal e�ect of the receipt

of treatment within this subpopulation. This makes it clear that the individual

treatment mediated e�ect, being a product of two quantities, represents both the

impact of the encouragement on the treatment take-up (º01(c)) and the treatment

e�ect on the outcome (iTME).

1.5 Identifying assumptions for causal mechanisms

Throughout we will make the following assumption:

Assumption 3. Unconfoundedness of the clustered encouragement assignment

Conditional on a set of covariates C
i j

, the encouragement status of each cluster, A

j

, is

independent of all the potential outcomes and the potential values of the treatment

received:
©
Y

i j

(a), M

i j

(ã)
™
?? A

j

| C
i j

= c 8c 2C , a = ã = {0,1} and 8i , j
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When the encouragement is randomized, unconfoundedness of the encouragement

assignment holds without conditioning on covariates. This is actually the case in

the KAHS study. We will henceforth maintain this assumption. It is worth to

remark that assumption (3) implies that the encouragement is also unconfounded

within principal strata and levels of baseline covariates, that is Y

i j

(a) ?? A

j

| S

i j

=

S

m0m1 ,C
i j

= c.

If strata memberships were known, this unconfoundedness assumption would al-

low to identify principal causal e�ects comparing the outcome under the two en-

couragement conditions of individuals with the same values of compliance status

and covariates. Unfortunately we do not in general know which individuals are in

which principal stratum. Individuals with the same observed value of the intermedi-

ate variables are in general mixtures of di�erent principal strata. The monotonicity

assumption (2) allows to identify the compliance status of some particular units:

those units who are assigned to the control group and take the treatment are iden-

tified as always-takers, and, similarly, those who do not take the treatment under

the encouragement are identified as never-takers. In randomized experiments with

non-compliance, exclusion restriction assumptions is commonly assumed to point-

identify (i.e., consistently estimate) principal causal e�ect for compliers. Exclusion

restriction basically rules out the presence of net e�ects, therefore it cannot be in-

voked in these settings where these are e�ects of interest. Nevertheless, the use

of Bayesian inference circumvents this identifiability problem because, even when

causal estimands are intrinsically not fully identified, posterior distributions are

always proper when proper priors are assumed. Weak identifiability is reflected

though in the flatness of the posterior distribution. We will explain in more details

the Bayesian inference procedures in the following sections. Once principal causal

e�ects have been estimated, a full assessment of causal mechanisms, as defined in

the previous section, requires a last step, which is the decomposition of PC E(0,1,c)

for compliers into N EE

0(0,1,c) and i T ME

1(0,1,c).
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NEEs and iTMEs involve potential outcomes of the form Y

i j

(a,m) and, in partic-

ular, causal estimands of interest in the malaria application are defined based on

comparisons between Y

i j

°
1, M

i j

(0)
¢
, Y

i j

°
0, M

i j

(0)
¢

and Y

i j

°
1, M

i j

(1)
¢
. Information about

potential outcomes of this form for each unit is not in general in the data. In

one specific experiment, where only the encouragement assignment is randomized,

only one of all these possible potential outcome is ultimately observed, namely

Y

i j

°
A

j

, M

i j

(A

j

)
¢
, where A

j

is the encouragement status assigned to cluster j . Poten-

tial outcomes of the type Y

i j

°
a,m

¢
, with m set to a particular value for all units or

to M

i j

(ã), are observable only if m ¥ M

i j

(a), which occurs if the treatment receipt for

unit i j is actually set to M

i j

(a) or if it is set to M

i j

(ã), with ã 6= a, but for this unit

M

i j

(0) ¥ M

i j

(1), i.e. the unit is a never-taker or an always-taker. In these two cases

the potential outcome is in the data and its expression collapses in Y

i j

(a). On the

contrary, potential outcomes can never be not even potentially observed for units

with M

i j

(a) 6= m, hence in this case they are called a priori counterfactuals (Rubin,

2004). Therefore here the only problematic counterfactuals that is never observable

is Y

i j

°
1, M

i j

(0)
¢

for compliers. In fact, for never-takers and always-takers Y

i j

°
1, M

i j

(0)
¢

is observable when A

j

= 1, provided that Y

i j

°
1, M

i j

(0)
¢
¥ Y

i j

°
1, M

i j

(1)
¢
, which is also

the reason why dissociative causal e�ects coincide with net encouragement e�ects.

Estimation of a priori counterfactuals would require an extrapolation from other

individuals in the data. Assumptions allowing this kind of extrapolation are re-

quired. As previously discussed, the definition of causal e�ects such as iTME and

NEE, is conceptually based on the existence of a possible intervention on the inter-

mediate variable. If such intervention is at least conceivable then the intermediate

variable M

i j

can be considered as another assignment and we can define a multivari-

ate assignment mechanism p

°
A

j

, M

i j

|C
i j

,Y

i j

(0,0),Y

i j

(0,1),Y

i j

(1,0),Y

i j

(1,1)
¢
. Intuitively

the possibility of an extrapolation of the information across groups of individuals

depends on the extent to which A

j

and M

i j

are independent of the values of the

potential outcomes.
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In the mediation literature it has widely been shown that non-parametric identi-

fication of population mediated and non-mediated e�ects, as the one defined with

a priori counterfactuals, can be obtained under sequential ignorability assumptions

(see Ten Have & Jo�e (2012) for a review of the di�erent specifications), which

would translate in the setting of cluster randomized trials in the unconfoundedness

of the cluster-specific intervention and the unconfoundedness of the intermediate

variable conditional on the observed cluster-specific intervention and baseline co-

variates (VanderWeele, 2010b). The validity of these assumptions actually allows

to extrapolate information on a priori counterfactuals from values of the observed

outcome of other units. Sequential ignorability consists of two assumptions. We

report here their expression in the setting of cluster-level interventions.

Assumption 4. Unconfoundedness of the encouragement assignment

Conditional on a set of covariates C
i j

, the encouragement status of each cluster, A

j

, is

independent of all the potential outcomes and the potential values of the treatment

received:

©
Y

i j

(a,m), M

i j

(ã)
™
?? A

j

| C
i j

= c,m 8c 2C ,m, a, ã = {0,1} and 8i , j

This assumption is an extension of unconfoundedness assumption 3 and is satisfied

when the encouragement is randomized.

Assumption 5. Conditional unconfoundedness of the treatment receipt

Conditional unconfoundedness of the treatment receipt requires that, after condi-

tioning for a set covariates C
i j

and the encouragement assignment, potential out-

comes are independent of the potential values of the intermediate variable:

Y

i j

(a,m) ?? M

i j

(ã) | A

j

= ã,C
i j

= c 8c 2C ,m, a, ã = {0,1} and 8i , j

Essentially, assumption (3) rules out the presence of unmeasured confounders of
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the relationships of A

j

with M

i j

and Y

i j

, while assumption (5) prohibits unmeasured

confounders of the relationships between A

j

and Y

i j

as well as measured or unmea-

sured confounders of the same relationships a�ected by the encouragement A

j

. We

should distinguish two types of counterfactuals: when a = ã and when a 6= ã. In the

former case, as already stressed, the potential outcome is potentially observable and

its expression collapses in Y

i j

(a). In this case identification results depend on the sole

assumption of unconfoundedness of the encouragement assignment. When this as-

sumption hold its average in subgroups of the population within levels of covariate,

E [Y
i j

(a) | C
i j

= c] can be estimated by the mean of the observed outcomes of indi-

viduals under encouragement status A

j

= a, E [Y
i j

| A

j

= a,C
i j

= c]. On the contrary,

counterfactuals of the type Y

i j

(a, M

i j

(ã)), with a 6= ã can be identified only if the two

sequential ignorability assumptions are satisfied and the identification expression is

as follows:

E
£
Y

i j

°
a, M

i j

(ã)
¢
| C

i j

= c
§
=

1X

m=0
E
£
Y

i j

| A

j

= a, M

i j

= m,C
i j

= c
§
£P

°
M

i j

= m | A

j

= ã,C
i j

= c
¢

(1.5.1)

For the proof see Pearl (2001, 2011) and Imai (2010b).

The critical feature of evaluating causal mechanisms in cluster randomized en-

couragement designs (CED) is that even if the experiment randomizes the encour-

agement, the intermediate variable, i.e., the actual treatment received, is instead

self-selected by individuals. Consequently, unconfoundedness of the intermediate

variable required by the sequential ignorability assumption is unlikely to hold, even

conditioning on observed covariates, because of possible unmeasured factors con-

founding the relation between M

i j

and Y

i j

. In fact, in our empirical study, house-

hold’s decision of carrying out the purchase of new bed nets depends on observed

but, presumably, also on unobserved characteristics. Here we propose the use of

Principal Stratification approach to , primarily, estimate the overall e�ect of the

clustered encouragement for each principal stratum and, subsequently, recover the

individual treatment mediated e�ect and the net encouragement e�ect for all strata,
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without relying on sequential ignorability assumptions.

1.5.1 Homogeneity Assumptions

When the sequential ignorability assumption does not hold, information about a

prior counterfactuals for compliers cannot be extrapolated across strata and thus

principal causal e�ect for this sub-population cannot be decomposed into the two

causal mechanisms of interest. Here we provide two alternative homogeneity as-

sumptions that enable us to make use of the information available in the strata

S

mm , with m = 0,1, where all potential outcomes are observable, to estimate a pri-

ori counterfactuals in other strata. Essentially, these assumptions concern solely

the missing information and allow only the extrapolation that is strictly needed

across strata with a similar compliance behavior at least under one encouragement

condition, in contrast with the stronger assumption of sequential ignorability that

enables a greater extrapolation across strata. For the sake of clarity, here we fo-

cus on identification of the e�ects of interest for the application of bed nets, that is,

N EE

0(0,1,c) and i T ME

1(0,1,c), where the only a priori counterfactual is Y

i j

°
1, M

i j

(0)
¢

for compliers. In the appendix, we provide a generalization of these homogeneity

assumptions, for identification of N EE

ã(0,1,c) and i T ME

1°ã(0,1,c), with ã 2 {0,1},

and not restricted to the monotonicity assumption. The proofs of the theorems are

reported in the appendix for the general case.

Assumption 6. Stochastic Homogeneity of the Counterfactual across Never-

Takers and Compliers

Stochastic homogeneity of the counterfactual Y

i j

°
1, M

i j

(0)
¢

across never-takers and

compliers is said to be assumed if the following conditional independence holds:

Y

i j

(1,0) ?? M

i j

(1) | M

i j

(0) = 0,C
i j

= c 8c 2C and 8i , j
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Assumption (6) coveys the idea that the distribution of the counterfactual Y

i j

°
1, M

i j

(0)
¢
,

which corresponds to Y

i j

(1,0) for never-takers and compliers, is that same for these

two principal strata, conditioning on baseline covariates.This allows to estimate the a

priori counterfactual Y

i j

°
1, M

i j

(0)
¢

for compliers using the information on Y

i j

(1,0) pro-

vided by never-takers assigned to A

j

= 1, for whom we observe Y

i j

(1). This assumption

is neither testable nor can find support in the data. If never-takers and compliers

share the same conditional distribution of the potential outcome Y

i j

°
0, M

i j

(0)
¢
, we

could assume that it is also true when encouragement is set to the opposite condi-

tion. However, this is neither a su�cient nor a necessary condition.

Theorem 1. If assumption 6 holds, the net encouragement e�ect for compliers

within levels of covariates, NEE

0(0,1,c), is given by:

NEE

0(0,1,c) = E
£
Y

i j

(1) | S

i j

= S

00,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

01,C
i j

= c
§

Often assumption (6) with a 6= ã cannot be supported, especially when the data do

not provide evidence on the equality of the distribution of Y

i j

(0) for never-takers and

compliers, even within the same levels of covariates. For example in KAHS study

never-takers and always-takers can be substantially di�erent households. Therefore,

we will provide an alternative assumption that might be more reasonable in some

applications.

Assumption 7. Homogeneity of Mean Di�erence between Counterfactuals for

Never-takers and Compliers:

E
£
Y

i j

(1,0)°Y

i j

(0,0) | M

i j

(0) = 0, M

i j

(1),C
i j

= c
§
= E

£
Y

i j

(1,0)°Y

i j

(0,0) | M

i j

(0) = 0,C
i j

= c
§

8c 2C

Assumption 7 states that the average di�erence of potential outcomes under the two

encouragement conditions and intervening to set the treatment receipt of each unit
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to 0, is the same for all those with M

i j

(0) = 0, that is those who would not take the

treatment if A

j

were set to 0, i.e. never-takers and compliers, and is independent of

the potential treatment receipt under the opposite encouragement status, M

i j

(1).

In KAHS study this means that households that would not buy any new bed net

without loans, would have the same average e�ect of the o�er of the program to their

cluster on the reduction of risk of infection, if we intervened to keep their number

of bed nets bought at follow-up fixed at 0, regardless of their behavior under the

control condition. Given this assumption we are able to introduce the following

theorem:

Theorem 2. If assumption 7 is satisfied, the net encouragement e�ect for compliers,

N EE

0(0,1,c), within levels of covariates, can be extrapolated from the dissociative

causal e�ect for never-takers:

NEE

0(0,1,c) ¥ DCE(0,c)

The e�ect of the encouragement is the same for never-takers and compliers, in-

tervening to set M

i j

to 0 or in other words to prevent any purchase of new bed

nets. Assumption (7) allows then to estimate N EE

0(0,1,c) for compliers and hence

N EE

0(c) in the entire population.

Assumptions (6) and (7) provide the possibility of a generalization of the poten-

tial outcome Y

i j

°
1, M

i j

(0)
¢

or the net encouragement e�ect NEE

0 from never-takers

to compliers, as stated by the theorems 1 and 2. As a fair consequence, these as-

sumptions also yield identification of the individual treatment mediated e�ect in the

latter principal stratum, iTME

1(0,1,c).

Corollary 1. If assumption (6) holds the individual treatment mediated e�ect for

compliers, iTME

1(0,1,c), within levels of covariates, is given by:

iTME

1(0,1,c) =PCE(0,1,c)°
≥
E
£
Y

i j

(1) | S

i j

= S

00,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

01,C
i j

= c
§¥
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If assumption (7) holds the individual treatment mediated e�ect for compliers,

iTME

1(0,1,c), within levels of covariates, is given by:

iTME

1(0,1,c) =PCE(0,1,c)°DCE(0,c)

1.5.2 Average Treatment E�ect

In a canonical non-compliance setting the main goal is to estimate the average

treatment e�ect (ATE), i.e., the average e�ect of the non-randomized treatment on

the outcome. The average treatment e�ect in the entire population, within levels of

covariates, can be defined as the following di�erence:

ATE

a(c) := E
£
Y

i j

(a,1)°Y

i j

(a,0) | C
i j

= c
§

=
X

(m0=m1)
E
£
Y

i j

(a,1)°Y

i j

(a,0) | S

i j

= S

m0m1 ,C
i j

= c
§
º

m0m1 (c)

+
X

(m0 6=m1)
E
£
Y

i j

(a,1)°Y

i j

(a,0) | S

i j

= S

m0m1 ,C
i j

= c
§
º

m0m1 (c)

(1.5.2)

where the last expression simply expands the definition taking an average of the

specific average treatment e�ects within the di�erent principal strata. Referring to

the definition in (1.5.2) we have to make two main considerations. First, we can

see that the average treatment e�ects in general depends on the specific value of a

we consider for the encouragement condition, while we compare the two scenarios

where the treatment is or is not taken. The possible di�erence between ATE0(c)

and AT E

1(c) is due to the interaction between the encouragement and the individual

treatment uptake on the outcome. In clustered encouragements it can also be due

to the interaction of the individual treatment uptake with other behavioral changes

in other subjects in the same cluster. Second, unfortunately the empirical data do

not provide any information on the treatment e�ect for principal strata where the

treatment uptake is una�ected by the encouragement assignment if M

i j

(0) = M

i j

(1) =

0 because there is no individual information on the counterfactual Y

i j

(a,1) and vice

versa for the symmetric stratum. The only strata where we could learn something
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about the treatment e�ect are those where M

i j

(0) 6= M

i j

(1).

Let us define the complier average causal e�ect (CACE), i.e. the average treatment

e�ect for compliers, within levels of covariates, as follows:

CACE

a(c) := E
£
Y

i j

(a,1)°Y

i j

(a,0) | S

i j

= S

01,C
i j

= c
§

(1.5.3)

Because of non-compliance the treatment is not randomized. Instrumental vari-

able methods use the e�ect of the assignment on the the treatment receipt to recover

the average treatment e�ect from the intention-to-treat analysis. Typically, these

methods appeal to exclusion restriction assumptions, which substantially rule out

the presence of net e�ects. Formally, the exclusion restriction assumption for a

stratum S

m0m1 states that Y

i j

(a,m) = Y

i j

(a,m

0) 8i , j : S

i j

= S

m0m1 , which implies the

same equality in terms of the mean outcome and thus zero net e�ects for this princi-

pal stratum. Assumptions of exclusion restriction for always-takers and never-takers

jointly with monotonicity of compliance result in the point identification of the prin-

cipal causal e�ect for compliers, whereas exclusion restriction for compliers enables

to interpret it as the average treatment e�ect for this sub-population, also known

as compliers average causal e�ect (CACE). For this same reason, when exclusion

restriction for compliers applies, CACE can be written in terms of principal causal

e�ect: E
£
Y

i j

(1)°Y

i j

(0) | S

i j

= S

01,C
i j

= c
§
.

Nevertheless, when exclusion restriction assumptions are violated, if assumption

(6) or (7) hold, the resulting identification of the individual treatment mediated

e�ect for compliers iTME

1(0,1,c) will also yield identification of C AC E

1(c), given the

following equality:

CACE

1(c) ¥ iTME

1(0,1,c) (1.5.4)

Proof.

CACE

a(c) = E
£
Y

i j

(a,1)°Y

i j

(a,0) | S

i j

= S

01,C
i j

= c
§

= E
£
Y

i j

°
a, M

i j

(1)
¢
°Y

i j

°
a, M

i j

(0)
¢
| S

i j

= S

01,C
i j

= c
§
= i T ME

a(0,1,c)
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When we are evaluating a new treatment that cannot be randomized and we

use the encouragement as an instrument, the e�ect of primary interest is CACE

0(c).

In that case assumptions similar to (6) and (7) are needed (see section A 1 in

the appendix for a generalization of the assumptions). Alternatively, when the

treatment e�ect has already been assessed in previous experiments, that is CACE

0(c)

is already known, and an encouragement, designed to increase or decrease its uptake,

is the intervention of interest, the estimated CACE

1(c) will give insight into how the

encouragement itself changes the e�ect of the treatment on the outcome. This is

the case when the treatment is the purchase of new bed nets.

1.6 Hierarchical Models for Cluster Interventions

In this section we describe the models used for our analysis: a model for the out-

come and a model for the principal strata membership. Because of the cluster-level

randomization the use of the hierarchical framework is needed. In cluster random-

ized trials, when the unit of intervention is a community or a group of individuals,

we cannot ignore correlation among individuals arising from common environmental

factors and even reciprocal influence. Failure in taking this correlation into account

may lead to wrong inference conclusions in terms of standard errors. In our setting,

individuals living in the same community are likely to show resemblance not only

in terms of outcomes, but also in terms of individual treatment uptake. In fact, in-

dividual compliance in participating to the program o�ered in the community may

be related not only to individual characteristics, but also to the cluster environment

and not least to reciprocal peer influence. Further, the level of resemblance in out-

comes may vary across di�erent individual strata. Correlation in cluster randomized

trials with individual non-compliance has been intensively studied by Jo (2008), af-

ter Frangakis, Rubin & Zhou (2002), who were the first authors to accommodate

in their analysis correlation in both outcome and non-compliance status. Here we

33



extend the model framework used by Frangakis, Rubin & Zhou (2002).

Potential Outcome Model

We will report here the model used to analyze the particular application of KAHS

study. We want to emphasize, though, that the general framework presented here

can be also used for all kinds of outcome models. In our malaria example, the

outcome of interest, Y

i j

, is the proportion of malaria cases that household i in cluster

j has experienced in the month prior to the follow-up interview. Therefore, we

assume a relative binomial distribution for the potential outcomes of the form Y

i j

(a)

Y

i j

(a)|S
i j

,C
i j

ª
Bi n

°
n

i j

, p

i j

¢

n

i j

(1.6.1)

and we specify a hierarchical generalized linear model for the probability

p

i j

= p

i j

°
a,S

i j

,C
i j

¢
, as a function of the encouragement A

j

= a, the principal stratum

S

i j

and the vector of covariates C
i j

:

g

≥
p

i j

°
a,S

i j

,C
i j

¢¥
=ØØØS

i j

T ZY f

i j

+bT

j

ZY r

i j

=ØS

i j

T

0 C0
i j

+ØS

i j

T

1 C0
i j

a +b0 j

+bT

1 j

X
i j

b
j

ª N (0,ß
b

)

(1.6.2)

where C0
i j

= (1,C
i j

), g (·) is a link function, ØS

i j are the fixed e�ects for each principal

stratum and b
j

are the random e�ects, with variable vectors ZY f

i j

=
£
1,C

i j

, a,C
i j

a

§

and ZY r

i j

=
£
1,X

i j

§
respectively, allowing for random intercepts and random individual

covariates slopes. We also assume that the two potential outcomes Y

i j

(0) and Y

i j

(1)

are independent, given the covariates and strata membership.

Principal Strata Model

Principal strata membership can also be modeled by a hierarchical generalized linear

model to take into account cluster correlation in individual treatment:
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g

≥
P

°
S

i j

= S

m0m1 |C
i j

¢¥
=ÆT ZS f

i j

+aT

j

ZSr

i j

=ÆT C0
i j

+a0 j

+aT

1 j

X
i j
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j

ª N (0,ß
a

)

(1.6.3)

where g (·) is the link function, ÆS

i j are the fixed e�ects and a
j

are the random e�ects,

with variable vectors ZS f

i j

=
£
1,C

i j

§
and ZSr

i j

=
£
1,X

i j

§
respectively, assuming covariate

C
i j

to be predictors of strata membership.

Here we follow the approach used in Frangakis, Rubin & Zhou (2002) and Barnard

et al. (2003), who modeled the strata membership using an Ordinal Probit Model.

In general in an ordinal probit model for an ordinal outcome with L categories the

probability of belonging to a category lower than l is modeled as P (Y

i

∑ l )| C
i j

) =

©
°
Æ

l

C
i j

)
¢
, with l = 1, . . . ,L°1, so that the probability of belonging to the category l

ends up being P (Y

i

= l | C
i j

) =
°
P (Y

i

∑ l +1)| C
i j

)
¢°

1°©
°
Æ

l

C
i j

)
¢¢

. The function ©(·) is

the standard normal cumulative distribution function.

According to this parametrization here we illustrate the ordinal probit model for

S

i j

when monotonicity is assumed, so that we end up with three strata with two

linked probit models, the first modeling membership in the never-taker stratum and

the second modeling membership in the complier stratum conditional on not being a

never-taker. In our setting of custer-based intervention we extend the above model

to an Ordinal Mixed Probit Model, parameterized as:

™
n

(C
i j

,Æ,a) = P (S

i j

= S

00)|C
i j

) = 1°©
°
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n
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(1.6.4)

with Æ=
°
Æ

n

,Æ
c

¢
and a =

°
a

n

=
°
a

n1, . . . ,a
n J

¢
,a

c

=
°
a

c1, . . . ,a
c J

¢¢
and

a
n j

ª N

°
0,ß

a

n

¢
a

c j

ª N

°
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¢

The above model has an equivalent formulation as a latent-variable model. In this

formulation the two probit models are represented as arising from two underlying
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continuous random variables S

n

i j

and S

c

i j

:

S
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(1.6.5)

where U

i j

and V

i j

are independently distributed as N (0,1). The latter formulation

is going to facilitate computation later.

1.7 Bayesian Inference

Let A

obs

j

be the observed encouragement assigned to cluster j . Assuming that

all the potentially observable information for each cluster is in the random vector
°

A

j

,C
j

,Mobs

j

,Mmi s

j

,Yobs

j

,Ymi s

j

¢
, where each vector with subscript j contains the cor-

responding variable for all the units in cluster j , whereas we denote with superscript

obs and mis, respectively, the observed and missing but observable potential out-

comes, that is: Yobs

j

¥ Y
j

(A

j

), Ymi s

j

¥ Y
j

(1°A

j

), Mobs

j

¥ M
j

(A

j

) and Mmi s

j

¥ M
j

(1°A

j

).

As extensively discussed, counterfactuals of the form Y

i j

°
a, M

i j

(ã)
¢

are never observ-

able unless M

i j

(ã) ¥ M

i j

(a). Under assumptions (6) or (7) presented above, all the

causal estimands depend solely on the observable potential outcomes Y

i j

obs and Y

i j

mi s

of individuals belonging to each principal stratum. Therefore we can assume that

all the missing information required for each cluster is contained in the vectors
°
Mmi s

j

,Ymi s

j

¢
.

In particular, Bayesian inference for causal estimands, which are functions of
°
Mobs ,Mmi s ,Yobs ,Ymi s ,C

¢
, follows from their joint posterior predictive distribution,

that is their conditional distribution given the observed data, which can be written

as the product of independently identically distributed random variables conditional

on a generic parameter µ (de Finetti, 1974). Let µ denote the vector of parameters
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of the models described above:

µ =
°
Ø,Æ,b,a,ß

b

,ß
a

¢

where we have collected each set of parameters such that Ø=
°
ØS

00
,ØS

11
,ØS

01¢,

b =
°
b1,b2, . . . ,b

J

¢
, and ß

a

=
°
ß

a

n

,ß
a

c

¢
.

The posterior distribution of µ can be written from the joint distribution, men-

tioned above, marginalized over the missing values:

p(µ | Yobs ,Mobs , C , A) / p(µ)
ZZ

JY

j=1
p

°
Yobs

j

,Mobs

j

,Ymi s

j

,Mmi s

j

, C
j

| µ
¢
dYmi s

j

dMmi s

j

(1.7.1)

which is a result of randomization of assignment A (assumption 3) and the indepen-

dence between clusters (assumption 1) and where p(µ) is the prior distribution of

the parameters µ. The di�culty in the integration over Mmi s

j

leads us to consider

the joint posterior of
°
µ,Mmi s

¢
, or alternatively the joint posterior of

°
µ,S

¢
:

p(µ,S | Yobs , C , A) / p(µ)
JY

j=1
p

°
Yobs

j

,S
j

, C
j

,A | µ
¢

(1.7.2)

which follows from the assumed independence between the potential outcomes.

The second term in (1.7.2) is the complete-data likelihood function, which results

in the likelihood function of a finite mixture model with known membership, unlike

the observed likelihood where the strata membership is unknown. The complete-

data likelihood function, namely L (µ;Yobs ,S,C,A) := p(Yobs ,S,C,A | µ), can be fac-

torized in p(Yobs | S,C µ)p(S | C, µ)p(C | µ). We will assume throughout that the

vector of random e�ects b
j

accounts for all the unmeasured common factors af-

fecting the outcome of all the units in cluster j , as well as unmeasured individual

post-intermediate variables of every unit in the cluster a�ecting not only the unit’s

final outcome but also his neighbors’, including the unit’s outcome measured at pre-
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vious time points or other behavioral characteristics. As a consequence, we make

the assumption of independence between units’ potential outcomes, conditioning on

b
j

. As a result we have the further factorization of the the complete-data likelihood

function:

L (µ;Yobs ,S,C,A) =
JY

j=1

N

jY

i=1
p

°
Y

i j

| A

j

,S,C, µ
¢
£P

°
S | C,µ

¢
p(C | µ) (1.7.3)

where assumption of consistency (1) has been used to express the distribution of

the observed potential outcome in terms of the distribution of the observed values.

Letting ±
i j

(S

m0m1 ) = ±(S

m0m1 ,S

i j

) be 1 if S

i j

= S

m0m1 and 0 otherwise, we can write:

L (µ;Yobs ,S,C,A) =
JY

j=1

N

jY

i=1

X

m0m1

±
i j

(S

m0m1 )p

°
Y

i j
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j

,S

i j

= S

m0m1 ,C
i j

, µ
¢

£P

°
S

i j

= S

m0m1 | C
i j

,µ
¢
p(C

i j

| µ)

(1.7.4)

The two models involved in the likelihood for Y

i j

and S

i j

have already been de-

fined in (1.6.1) and (1.6.4) respectively. The complete-data likelihood allows the

full conditional distributions p(µ | Yobs ,S,C , A) and p(S | Yobs , C , A,µ) to be an-

alytically tractable. Therefore, the joint posterior distribution of
°
µ,S

¢
motivates

a two-stage Gibbs-sampling strategy that first samples the missing strata member-

ships S

i j

, thereby allowing assessment of the distributions of Y

i j

conditional on the

complete data consisting of subpopulations without mixture components. This ap-

proach is well known as the Data Augmentation scheme (Tanner & Wong, 1987).

See the appendix A 4 for the detailed Gibbs-Sampling procedure.

1.7.1 Prior Specification

Here we describe our prior distribution p(µ). We assume an independence structure

expressed in the following factorization of the prior:
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(1.7.5)

where ß
a

n

and ß
a

c

are the submatrices of ß
a

corresponding to the covariance matrices

of vectors a
n

and a
c

, thought independent. It follows that the random e�ects a
n j

,

a
c j

and b
j

are independent across groups as well as of the coe�cients of each probit

model and of the model for Y

i j

. We have chosen to use proper but di�use priors

similar, in order to be relatively noninformative and to ensure fast convergence.

Accordingly, we posit a normal prior distribution for the coe�cients of the outcome

model. The fixed e�ects can be jointly modeled as

Øª N

≥
µØ0,§Ø0

¥
(1.7.6)

whereas the random e�ects are modeled independently for each cluster

b
j

|ß
b

ª N (0,ß
b

) (1.7.7)

with the covariance matrices following an inverse-Wishart distribution:

ß
b

ª IW

≥
¥b

0,¥b

0S

b

0

¥
(1.7.8)

Typical hyper-parameters can be: µØ0 = 0, §Ø0 = ªb I, where ªb is a scaling pa-

rameter, ¥b

0 = |b
j

| and S

b

0 is a preliminary estimates of ß
b

.

The parameters of the models for the principal strata follow the same patterns,

although property of conjugacy can here be satisfied. Thus, for the two vectors of

fixed e�ects of both models, we choose a prior normal distribution

Æ
n

ª N

°
µn

Æ0,§n

Æ0
¢

Æ
c

ª N

°
µc

Æ0,§c

Æ0
¢

(1.7.9)
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as well as for the random e�ects

a
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n
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(1.7.10)

with an inverse-Wishart prior for covariances matrices
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(1.7.11)

with the following possible choices for the hyper-parameters: µn

Æ0 = µc

Æ0 = 0, §n

Æ0 =

§c

Æ0 = ª I, ¥n

0 = |a
n j

|, ¥c

0 = |a
c j

| and S

n

0 and S

c

0 are preliminary estimates of ß
a

n

and

ß
a

c

respectively.

1.7.2 Imputation Approach for Finite Population E�ects

We introduce now a bayesian procedure for the estimation of the e�ects in the finite

study population. For the sake of simplicity, we will describe the procedure only

for the estimation of the e�ects of interest for the motivating application, although

a similar procedure could be used in future applications for the other e�ects. We

define individual e�ects as the di�erence of the corresponding potential outcomes

for each unit in the study. Thus, the intent-to-treat e�ect, the net encouragement

e�ect and the individual treatment mediated e�ect for unit i in cluster j take the

following expressions: I T T

i j

:= Y

i j

(1)°Y

i j

(0), N EE

0
i j

:= Y

i j

(1, M

i j

(0))°Y

i j

(0, M

i j

(0)) and

i T ME

1
i j

:= Y

i j

(1, M

i j

(1))°Y

i j

(1, M

i j

(0)). For each unit, one of the two potential out-

comes involved in the intent-to-treat e�ect is observed, Y

i j

obs = Y

i j

(A

obs

j

), whereas

for NEE and iTME all potential outcomes can be missing and one can be a pri-

ori counterfactual. Relying on one of the two homogeneity assumptions, we show

how estimation of the finite population e�ects can be accomplished. Let O be the

collection of observed outcomes, observed intermediated variables, encouragement

conditions and covariates in the entire population: O =
©

Yobs ,Mobs ,Aobs ,C
™
.

Bayesian simulation-based approach enables to simulate from the posterior distri-
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butions of the causal estimands. In a model-based imputation approach to causal

inference missing information for each unit is imputed using its predictive posterior

distribution and causal estimands, as function of the observed and missing info-

mation, are computed resulting in a draw from their posterior distribution. Let

f

m0m1 (a | c) denote the predictive posterior distribution of the potential outcome

Y

i j

(a):
f

m0m1 (a | c) = p

°
Y

i j

(a) | S

i j

= S

m0m1 ,C
i j

= c, O
¢

(1.7.12)

We can easily generate replicates of Y

i j

(a) from the posterior predictive distribution

of each principal stratum by adding a simple step within the MCMC using the

conditional distribution of the potential outcomes, evaluated at parameter values

µk :
f

m0m1 (a | c,µk ) = p

°
Y

i j

(a) | S

i j

= S

m0m1 ,C
i j

= c,µk

¢
(1.7.13)

This result follows from f

m0m1 (a,c) =
R

p

°
Y

i j

(a) | S

i j

= S

m0m1 ,C
i j

= c,µ
¢
p(µ |O )dµ. At

each iteration k=1, . . . ,K of the MCMC, samples from the posterior distribution of

PC E for each principal stratum S

m0m1 are drawn as follows:

1. For units belonging to S

m0m1 at iteration k, missing potential outcomes, Y

i j

mi s =

Y

i j

(1° A

obs

j

), are imputed from their conditional distribution:

Y

i j

k,mi s ª f

m0m1

°
1° A

obs

j

| C
i j

,µk

¢
8i , j : S

k

i j

= S

m0m1

2. PCE within each principal stratum S

m0m1 is computed as:

Å
PC E

k

(m0,m1,c) = 1

|S m0m1
c

|
X

i , j2S
m0m1

c

°
2A

obs

j

°1
¢°

Y

i j

obs °Y

i j

k,mi s

¢

where S
m0m1

c

= {i , j : S

k

i j

= S

m0m1 ,C
i j

= c}. If the number of covariates is large

and/or they are continuous we might want to categorize some of them and/or

consider groups S
m0m1

c

defined based on few covariates for which a subgroup

analysis might be of interest.
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Let us now turn to the analysis of mechanisms. As depicted in (1.4.7), for prin-

cipal strata of the type S

mm , i.e., never-takers and always-takers, there is no ef-

fect through a change in the treatment received and principal causal e�ects are

called dissociative causal e�ects, Å
DC E(m,c) = Å

PC E(m0,m1,c), as they are entirely

net encouragement e�ects. On the contrary for the stratum S

01 of compliers, which

is, under monotonicity, the only stratum where the treatment is a�ected by the

encouragement, the overall e�ect of the encouragement comprises both individual

treatment e�ect from the net encouragement e�ect. With sequential ignorability (5)

not holding, disentangling these two e�ects for this stratum can be accomplished un-

der one of the two assumptions (6) or (7). In general we can separate the derivation

of N EE

0(0,1,c) into two three steps. The first two steps involve, respectively, the

counterfactual Y

i j

(0) = Y

i j

(0, M

i j

(0)) and Y

i j

(1, M

i j

(0)), whereas the third step concerns

the mean di�erence.

3. For each unit being a complier at iteration k, the potential outcome Y

i j

k (0)

is derived as follows: if assumption (6) holds, Y

i j

k (0) is simply taken from

Y

i j

obs or Y

i j

mi s , depending on A

obs

j

; if assumption (7) holds, in order to follow

the identification result in theorem 2, Y

i j

k (0) is imputed from the conditional

distribution of Y

i j

(0) for never-takers, given his values of covariates C
i j

:

Y

i j

k (0) :

8
>><

>>:

3a. if assumption 6: Y

i j

k (0) = Y

i j

obs · (1° A

obs

j

)+Y

i j

k,mi s · A

obs

j

3b. if assumption 7: Y

i j

k (0) ª f00(0 | C
i j

,µk )

8i , j : S

k

i j

= S

01

4. For each unit being a complier at iteration k , Y

i j

k

°
1, M

i j

(0)
¢

is imputed from

the conditional distribution of Y

i j

(1) for principal stratum S

00, i.e. never-takers,

given his values of covariates C
i j

:

Y

i j

k

°
1, M

i j

(0)
¢
ª f00(1 | C

i j

,µk ) 8i , j : S

k

i j

= S

01

5. N EE

k,0 for compliers is computed by taking the average, within levels of co-
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variates, of the di�erence between the two imputed potential outcomes:

Å
N EE

k,0
(0,1,c)= 1

|S 01
c

|
X

i , j :Sk

i j

=S 01
c

°
Y

i j

k

°
1, M

i j

(0)
¢
°Y

i j

k

°
0
¢¢

Again subgroup analysis based on covariates might require some restrictions.

Estimation of individual treatment e�ects requires a last step: subtracting the

estimated net encouragement e�ects from the principal causal e�ects for compliers:

6. i

É
T ME

k,1
(0,1,c) = Å

PC E

k

(0,1,c)° Å
N EE

k,0
(0,1,c)

These steps, for either assumption, are resulting in draws from the posterior dis-

tribution of the causal estimands. Finally, point estimates are derived as summary

statistics of these distributions, such as the mean or the median.

1.8 Application to KAHS Study

We now show in details the application of the methodology presented in the previous

sessions to the KAHS study. With regards to the choice of covariates, let C
i j

be a

collection of baseline covariates, that a preliminary analysis has shown to be useful

for predicting strata membership. In particular, these are the number of household

members (C1
i j

), an education characteristic, being the maximum grade reached by

any member of the households (C2
i j

), the number of bed nets per sleeping space

(C3
i j

, labeled household baseline coverage), the number of sleeping spaces per house-

hold member (C4
i j

), and finally the proportion of members that have been sick with

malaria during the year prior to the baseline survey (C5
i j

). We also included a neigh-

bors’ characteristic, being the average number of bed nets per sleeping space owned

at baseline by all the remaining households of the cluster (C6
i j

, labeled neighborhood

baseline coverage). Cluster covariates (V
j

) are not considered.

As far as priors specification is concerned, priors hyper-parameters for the fixed

e�ects of the principal strata model are set as follows: µn

Æ0 = µc

Æ0 = 0, §n

Æ0 = §c

Æ0 =
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10 I. Furthermore, we argue that random intercepts su�ce to explain within cluster

correlation of the compliance status, meaning that, while the overall principal strata

distribution might vary across clusters, the extent to which compliance status for

each household depend on baseline covariates is su�ciently constant. Accordingly,

we set to zero every random slope, i.e. a
n1 j

= a
c1 j

= 0. As a consequence, random

e�ects are assumed to follow a uni-dimensional normal distribution, a

n0 j

| æ2
a

n

ª

N

°
0,æ2

a

n

¢
and a

c0 j

| æ2
a

c

ª N

°
0,æ2

a

c

¢
, and the conjugate prior distribution of their

variances reduces from inverse-Wishart to inverse-gamma, æ2
a

n

ª IG

°
¥n

0 , s

n

0

¢
and æ2

a

c

ª

IG

°
¥c

0, s

c

0

¢
, where we set ¥n

0 = ¥c

0 = 0.01 and s

n

0 = s

c

0 = 0.01.

As already said, we posit a binomial distribution for the potential outcomes, with

probability p

i j

(a,S

i j

,C
i j

) being a function of the principal stratum, the encourage-

ment condition and baseline covariates, as modeled in (1.6.2). We adopt a logit link

g (·). In the outcome model we consider a subset of C
i j

given by all the covariates

used in the strata model excluding the number of household members. Moreover,

we are particularly interested in probing the heterogeneity of the e�ect of the en-

couragement on malaria risk between di�erent levels of household bed net coverage

at baseline. Thus, we consider only the interaction term corresponding to the vari-

able of interest, namely C3
i j

a, while all the other interaction coe�cients are set to

zero: Ø
S

i j

11 = Ø
S

i j

12 = Ø
S

i j

14 = Ø
S

i j

15 = Ø
S

i j

16 = 0,8S

i j

2 {S

00,S

01,S

11}. In addition, we let the

coe�cients for baseline covariates to be the same across strata, with the exception

for the covariate that is also present in the interaction term: ØS

00

0k

=ØS

01

0k

=ØS

11

0k

=Ø0k

,

with k = 1,2,4,5.

As with the principal strata model, between clusters variation is taken into account

by the inclusion of random intercepts, with the argument that the dependance of the

outcome from covariates should not vary consistently across clusters and also that

the small sample size does not enable to explore the variation of the e�ects between

clusters. Random intercepts are also deemed constant for all principal strata. Hence,

the potential outcome model is characterized by the following constraint: b1 j

= 0,8 j .
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Finally, the model in (1.6.2) for the probability of the binomial potential outcome,

can be rewritten as follows:

logit

°
p

i j

°
a,S

i j

,C
i j

¢¢
=Ø

S

i j

00 +Ø02C2
i j

+ØS

i j

03 C3
i j

+Ø04C4
i j

+Ø05C5
i j

+Ø06C6
i j

+ØS

i j

10 a +ØS

i j

11 C3
i j

a +b0 j

b0 j

ª N (0,æ2
b

)

(1.8.1)

The choice for the prior distributions follows the specification outlined in section

1.7.1. Specifically, we postulate a multivariate normal prior for Ø, Øª N

°
µØ0,§Ø0

¢
,

with hyper-parameters µØ0 = 0 and §Ø0 = 10 I, and an inverse-gamma distribution for

the variance of the random intercept, æ2
b

ª IG

°
¥b

0, s

b

0

¢
, setting ¥b

0 = 0.01 and s

b

0 = 0.01.

Table 1 gives some basic informations of our data and summary statistics of

the baseline covariates, the intermediate variable and the outcome. As we can

see, the randomization of the assignment leads to the baseline covariates being

closely balanced in the two subgroups defined by assignment. The lack of perfect

balance for some of them is handled by covariates adjustment. In the intervention

arm, 44% of the households did not buy new bed nets; these must be never-takers

and the remaining buyers households must be either always-takers or compliers.

Similarly in the control arm, 41% of the households did buy new bed nets after

the baseline survey; these must be always-takers and the remaining non-buyers

households must be either never-takers or compliers. Accordingly, as a result of the

monotonicity assumption 2, based on the set of equalities in (1.4.2) and method

of moments estimators, probabilities of belonging to each principal stratum are

estimated to be 0.15, 0.44 and 0.41 for compliers, never-takers and always-takers

respectively. The last row in table 1 provides an ITT analysis, indicating that

the encouragement intervention result in a 44.9%(= 0.0476/0.1060£ 100) reduction

of the risk of contacting malaria. The between arms di�erence of -0.0479 in the

mean proportion of malaria cases, among the households who do not buy new bed

nets, suggests that the encouragement itself has a beneficial e�ect, regardless of the

e�ect through the purchase of new nets. However this observed di�erence cannot

45



Table 1: Summary statistics of the baseline covariates, the intermediate variable and
the outcome.

Control
Assignment

A = 0

Encouragement
Assignment

A = 1

Di�erence
between

assignments

Clusters 15 19 - -
Households 161 195 - -

Household Members C1 5.4660 (0.1640) 6.2205 (0.2103) 0.7547 (0.2631)
Education C2 5.7826 (0.3505) 6.4410 (0.3286) 0.6584 (0.4734)
Household Baseline Coverage C3 0.4569 (0.0914) 0.5646 (0.0425) 0.1076 (0.0992)
Sleeping Spaces per Member C4 0.4532 (0.1612) 0.4913 (0.0192) 0.0380 (0.0248)
Malaria Risk (Baseline) C5 0.3533 (0.0295) 0.3195 (0.0338) -0.0338 (0.0442)
Neighborhood Baseline Coverage C6 0.4569 (0.0914) 0.5646 (0.0425) 0.1076 (0.0992)

Bed Net Purchase, (P (M | A)),
M = 0 0.5901 (0.0497) 0.4410 (0.0355) -0.1490 (0.0600)
M = 1 0.4099 (0.0497) 0.5590 (0.0355) 0.1490 (0.0600)

Malaria Risk (Follow-up) (E [Y | A, M ])
among bed nets non-buyers (M = 0) 0.1213 (0.0295) 0.0734 (0.0171) -0.0479 (0.0336)

among bed nets buyers (M = 1) 0.0840 (0.0199) 0.0466 (0.0181) -0.0374 (0.0228)
All 0.1060 (0.0215) 0.0584 (0.0111) -0.0476 (0.0241)

Estimates of population means with their standard errors (in parenthesis), based on the
method of moments, are reported. The second and third blocks of rows concern the in-
termediate variable and the outcome. Due to their bernoulli and binomial distributions,
estimated means are also estimates of the probability of buying new bed nets and the prob-
ability of infection, respectively.

be interpreted causally because of the di�erent compliance types involved in such

contrast, due to the intermediate variable not being randomized. An analysis based

on principal stratification could, to a certain extent, overcome this problem. In

order to disentangle net encouragement e�ects and individual treatment mediated

e�ects for compliers, we can argue that in the KAHS study we cannot rely on

assumption (6) of stochastic homogeneity of counterfactuals. Indeed, in such a

study concerning malaria, prevention behavior is di�cult to predict by observed

characteristics and the risk of infection from malaria depends on many di�erent

observed and unobserved factors. Therefore, we believe that, for each household,
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the distribution of the potential proportion of malaria cases under the loan program

assigned to the whole cluster and intervening to set M

i j

to 0 or, in other words,

if somehow we prevented the purchase of any new bed net for that household, is

arguably not shared by never-takers and compliers. On the contrary, it can be more

reasonable to assume homogeneity of the mean di�erence between counterfactuals,

as stated by assumption (7), which translates into homogeneity between never-takers

and compliers of the e�ect of the clustered encouragement when the household could

not make any new purchase of bed nets (theorem 2).

Furthermore, we can hypothesize that in KAHS most of the e�ect of the en-

couragement intervention on malaria risk for always-takers can be explained by an

increased number of bed nets bought under the loan program. This non-negative

dissociative e�ect DCE(1,c) is due to the particular choice of the binary intermediate

variable that only distinguishes the purchase of zero versus at least one new new bed

net at follow-up. Conversely, since no additional awareness campaign and no village

interventions was provided to clusters assigned to the agricultural loan program, we

can assume that for never-takers the e�ect of their cluster being assigned to the loan

program, i.e. DCE(0,c), is mostly due to spillovers of the purchase of new bed nets

by other households belonging to the same cluster. This assumption only a�ects the

interpretation of the estimated e�ects but does not alter the analysis.

1.8.1 Results

We will first focus on the characterization of principal strata. In table 2 we report

posterior means and 95% intervals for the coe�cients of the two latent variable

models in (1.6.5), jointly used to characterize the strata membership. We can see

that the only covariates that really matter in the prediction of compliance status

are those related to the household baseline coverage and household living space,

that is C3
i j

and C4
i j

. In particular, there is evidence that the probability of being

a never-taker increases with the number of bed nets per sleeping space (mean and

95% interval for Æ
n4: -2.227 [-2.775,-2.038]) and so does the probability of being
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Table 2: Estimated Parameters for Principal Strata Model

S

n

Model S

c

Model

Mean 95% Interval Mean 95% Interval

Household Members C1 0.061 [-0.014, 0.087] 0.016 [-0.161, 0.073]
Education C2 0.053 [-0.008, 0.074] -0.090 [-0.410, 0.013]
Household Baseline Coverage C3 -2.227 [-2.775,-2.038] -2.289 [-4.540,-1.634]
Sleeping Spaces per Member C4 -0.856 [-1.709,-0.568] -0.691 [-3.270, 0.184]
Malaria Risk (Baseline) C5 0.080 [-0.520, 0.280] 1.260 [-0.350, 1.827]
Neighborhood Baseline Coverage C6 0.938 [ 0.149, 1.210] 1.032 [-1.347, 1.805]
Random Intercept Variance, æ2

a

0.096 [ 0.017, 0.125] 1.588 [ 0.035, 1.597]

a complier (mean and 95% interval for Æ
c4: -2.289 [-4.540,-1.634]). The number of

sleeping spaces per household member has a similar pattern since this covariate gives

information on room sharing in the house and thus the need of bed nets per sleeping

space. This result is not surprising because overall it means that households with

higher coverage are less likely to buy new bed nets. Another expected result is that,

holding household coverage and the other covariates fixed, neighborhood baseline

coverage reduces the probability of being a never-taker, probably because of a peer

influence. The role of the remaining covariates is less evident. Nonetheless, in our

analysis some of these covariates have shown to be helpful in predicting compliance

status in our finite study population.

For this reason and also to overcome the di�culty in the interpretation of the

coe�cients, due to the structure of the ordinal probit model, we have derived esti-

mates of the sample mean of the covariates within each principal stratum, i.e.,

C

hm0m1 =
P

i , j :S
i j

=S

m0m1 C

h

i j

/|Sm0m1 |, 8k 2 {1, . . . ,5} and 8m0,m1 2 {0,1}. Posterior dis-

tributions of the sample means are averaged over all possible vectors of S and µ from

their joint posterior distribution. Means and 95% intervals of these distributions are

shown in table 3. Results confirm the interpretation of coe�cients given above, that

is, never-takers have on average higher coverage and, on the contrary, always-takers

are those with a smaller number of bed nets per sleeping spaces and also a greater
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number of members per room. In addition, there is evidence that compliers in our

study have a greater highest grade in the family, whereas always-takers have on av-

erage a greater proportion of malaria cases in the year prior to the baseline survey.

The latter result, together with the low household coverage, can explain most of the

compliance behavior of the always-takers. Finally, the mean of neighborhood base-

line coverage within principal strata, averaged over the remaining covariates, seems

to be lower for always-takers with no evidence of a di�erence between never-takers

and compliers.

Table 2 also reports estimates of the between-cluster variation in regard to com-

pliance status. The estimated variance of the random intercept a

n0 j

included in

the model for the conditional probability of being a never-taker versus being an

always-taker or a complier (model for S

n

i j

) is estimated to be 0.096 (95% quintiles:

[0.017,0.125]) reflecting in an intra-class correlation of 0.088. Similarly the estimated

variance of the random intercept a

c0 j

of the model for the conditional probability

of being an always-taker versus a complier (model for S

c

i j

), conditional on not being

never-takers, is estimated to be 1.588 (95% quintiles: [0.035,1.597]), reflecting in an

intra-class correlation of 0.614. These results can be interpreted saying that the

proportion of never-takers does not di�er substantially across clusters conditional

on covariates, whereas the proportion of always-takers and compliers does.

The left column of Table 4 shows posterior principal strata rates, in the over-

all population and within three coverage categories defined by household baseline

coverage:

e
C4

i j

=

8
>>>>>><

>>>>>>:

Low Coverage if C4
i j

∑ 0.4

Medium Coverage if 0.4 <C4
i j

∑ 0.8

High Coverage if C4
i j

> 0.8

The overall probabilities of compliance status, given by the bayesian procedure,

approximately match the aforementioned method of moments estimates.

A deeper characterization of principal strata is provided by the distribution of
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Table 3: Distribution of Covariates within Principal Strata
Compliers Never-Takers Always-Takers

Mean 95%
Interval

Mean 95%
Interval

Mean 95%
Interval

Household Members C1 6.409 [5.483,7.296] 5.443 [5.376,5.527] 6.192 [5.956,6.438]
Education C2 7.212 [6.247,8.228] 5.969 [5.873,6.110] 5.972 [5.678,6.227]
Household Baseline Coverage C3 0.483 [0.338,0.623] 0.786 [0.760,0.827] 0.218 [0.169,0.270]
Sleeping Spaces per Member C4 0.494 [0.422,0.562] 0.502 [0.491,0.509] 0.434 [0.415,0.455]
Malaria Risk (Baseline) C5 0.267 [0.179,0.358] 0.297 [0.279,0.307] 0.400 [0.379,0.425]
Neighborhood Baseline Coverage C6 0.529 [0.446,0.612] 0.545 [0.525,0.564] 0.476 [0.450,0.496]

potential outcomes. The right column of Table 4 summarizes the predictive pos-

terior distribution of potential malaria rates without encouragement, i.e. Y (0) =
1
N

P
i j

Y

i j

(0), by principal strata and by coverage categories e
C4

i j

. Several important

results merit attention here. First, we can see that, among never-takers, there is no

evidence of a reduction of risk with an increase of coverage. This unexpected result

must be due to other unmeasured factors a�ecting the relationship between bed nets

coverage at baseline and malaria risk without encouragement, as well as compliance

status. For example, never-takers with low coverage at baseline are likely to be

households at lower risk, because of housing conditions, environmental factors or

protective behaviors, such as the use of house spraying or windows screens. Con-

versely, for always-takers 95% intervals get wider as coverage augments due to the

small proportion of always-takers in higher levels, hence no conclusion can be drawn

on the di�erence between subgroups defined by coverage. For compliers posterior

means seem to decrease with e
C4

i j

, but still intervals makes this pattern consistent to

random fluctuation. The second and more important point concerns a comparison

between principal strata. At all coverage levels, compliers are those households who

would have a considerably higher risk of malaria infection if not encouraged to buy

new nets with loans, with an overall mean risk of 32.1% against 6% for never-taker

and 8.4% for always-takers. This result can be somewhat surprising, but we can give

some intuitive explanations. For never-takers, the low risk of contracting malaria
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compared to the other principal strata might be due to better housing conditions,

as well as a greater use, at least in 2010, of other preventive measures such as win-

dows screens and preventive behaviors such as keeping doors and windows closed at

night, being indoors after sunset or removing possible breeding sites in the house.

For always-takers, we should remember that this is the sub-population that would

buy new bed nets even without the encouragement, therefore their actual house-

hold coverage at follow-up has increased compared to the one at baseline. This

can be one of the reasons for their low risk, probably together with the take-up

of similar preventive behaviors to the ones used by never-takers. On the contrary,

compliers seem to be the sub-population most at risk of malaria, at all levels of base-

line coverage, when not encouraged and hence the number of ben nets owned does

not increase. The reason can be, besides the use of less preventive measures and

more risky behaviors, the presence of higher risk factors, such as livestock animals,

co-morbidities, pregnancies, house damage, as well as presumably, for those with

medium high coverage, old bed nets in bad physical integrity which makes them

ine�ective and no longer impregnated with insecticides.

In any case, the di�erent mean potential outcome under control encouragement

between principal strata supports our hypothesis of assumption 6 of partial stochas-

tic homogeneity of counterfactuals being implausible.

Table 5 concerns the estimated e�ects defined in section 1.4.1, that is principal

causal e�ects PCE, net encouragement e�ects NEE0 and individual treatment e�ects

iTME1, by principal strata and by coverage levelS e
C4

i j

. Estimates are based on

imputations from the predictive posterior distributions of potential outcomes, as

outlined in section 1.7.2. Results are based on 45000 iterations, combining three

chains, each run for 25000 iterations, with a burn-in of 10000 iterations. To check

for convergence, for each e�ect we computed the potential scale reduction factor

(Gelman and Rubin, 1992), giving a maximum value of 1.04, suggesting no evidence

against convergence.
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Table 4: Principal Strata Rates and Malaria Rates by principal strata

Principal Strata
Rates

P (S

i j

= S

m0m1 )

Malaria Rates
Y (0)

Principal Strata Mean (SD) 95% Interval Mean (SD) 95% Interval
NEVER-TAKERS

Low Coverage 0.198 (0.023) [0.147,0.231] 0.042 (0.019) [0.006,0.082]
Medium Coverage 0.520 (0.024) [0.459,0.561] 0.051 (0.022) [0.013,0.103]

High Coverage 0.788 (0.016) [0.745,0.804] 0.074 (0.036) [0.025,0.167]
All 0.456 (0.017) [0.418,0.483] 0.060 (0.026) [0.020,0.123]

ALWAYS-TAKERS
Low Coverage 0.671 (0.031) [0.603,0.724] 0.084 (0.011) [0.065,0.109]

Medium Coverage 0.283 (0.044) [0.204,0.367] 0.092 (0.053) [0.029,0.221]
High Coverage 0.094 (0.031) [0.039,0.157] 0.063 (0.075) [0.000,0.275]

All 0.399 (0.027) [0.345,0.452] 0.084 (0.020) [0.057,0.135]
COMPLIERS

Low Coverage 0.130 (0.045) [0.051,0.224] 0.348 (0.110) [0.177,0.574]
Medium Coverage 0.197 (0.058) [0.082,0.306] 0.331 (0.117) [0.165,0.592]

High Coverage 0.118 (0.039) [0.039,0.186] 0.290 (0.131) [0.123,0.633]
All 0.145 (0.038) [0.073,0.219] 0.321 (0.099) [0.179,0.545]

Reported results are means, standard deviations and 95% intervals of the posterior distribu-
tion of strata membership rates, and the posterior predictive distribution of malaria rates
by principal strata under encouragement status A

j

= 0, i.e. Y (0). Both distributions are
averaged over C

i j

(or just over C1
i j

, C2
i j

, C4
i j

and C5
i j

when results are presented within
household baseline coverage categories e

C4
i j

), the clusters and µ.

Consider principal causal e�ects, presented in the last block of columns. The es-

timated PCE for compliers is a reduction of malaria risk of 17.2% (posterior mean),

with similar estimates at every level of household baseline coverage. As expected,

this total e�ect, being the sum of NEE

0(0,1) and iTME

1(0,1), is much larger than

PCEs in the other principal strata. The estimated PCE for always-takers, i.e.,

DC E(1) is a reduction of the risk of infection of 6.2% (posterior mean). 95% inter-

vals provide a strong evidence of a beneficial e�ect of the encouragement for both

compliers and always-takers. These e�ects are slightly less pronounced if we look at

posterior medians.

For never-takers, instead, we find a negligible e�ect of the encouragement, i.e.,

DC E(0,c), for all levels of coverage. Proportion of malaria cases at baseline and
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Table 5: Estimated E�ects within Principal Strata and by coverage levels
NEE0 iTME1 PCE

Principal Strata Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval
NEVER-TAKERS DCE(0)

Low Coverage 0.025 0.023 (0.039)[-0.043, 0.114] ° 0.025 0.023 (0.039) [-0.043, 0.114]
Medium Coverage 0.011 0.014 (0.034)[-0.058, 0.079] ° 0.011 0.014 (0.034) [-0.058, 0.079]

High Coverage 0.010 0.017 (0.053)[-0.106, 0.118] ° 0.010 0.017 (0.053) [-0.106, 0.118]
All 0.014 0.018 (0.041)[-0.072, 0.097] ° 0.014 0.018 (0.041) [-0.072, 0.097]

ALWAYS-TAKERS DCE(1)
Low Coverage -0.062 -0.064 (0.017)[-0.095,-0.026] ° -0.062 -0.064 (0.017) [-0.095,-0.026]

Medium Coverage -0.066 -0.061 (0.048)[-0.186,-0.002] ° -0.066 -0.061 (0.048) [-0.186,-0.002]
High Coverage -0.050 -0.034 (0.073)[-0.258, 0.033] ° -0.050 -0.034 (0.073) [-0.258, 0.033]

All -0.062 -0.062 (0.023)[-0.118,-0.023] ° -0.062 -0.062 (0.023) [-0.118,-0.023]
COMPLIERS CACE1

Low Coverage 0.014 0.014 (0.044)[-0.073, 0.104] -0.208 -0.200 (0.132) [-0.470,0.027] -0.194 -0.183 (0.128) [-0.448, 0.029]
Medium Coverage 0.015 0.019 (0.050)[-0.091, 0.110] -0.170 -0.157 (0.144) [-0.473, 0.078] -0.155 -0.138 (0.141) [-0.456, 0.079]

High Coverage 0.015 0.022 (0.064)[-0.125, 0.138] -0.191 -0.175 (0.157) [-0.553, 0.071] -0.176 -0.152 (0.147) [-0.530, 0.047]
All 0.014 0.018 (0.041)[-0.072, 0.091] -0.186 -0.178 (0.125) [-0.452,0.030] -0.172 -0.159 (0.123) [-0.435, 0.032]

ALL ITT
Low Coverage -0.028 -0.026 (0.016)[-0.062,-0.006] -0.021 -0.019 (0.015) [-0.058, 0.002] -0.050 -0.049 (0.023) [-0.097,-0.014]

Medium Coverage -0.006 -0.004 (0.024)[-0.059, 0.043] -0.023 -0.017 (0.024) [-0.082, 0.011] -0.030 -0.022 (0.030) [-0.100, 0.019]
High Coverage 0.007 -0.005 (0.041)[-0.078, 0.097] -0.016 -0.012 (0.016) [-0.055, 0.005] -0.009 -0.007 (0.038) [-0.092, 0.070]

All -0.016 -0.014 (0.026)[-0.072, 0.034] -0.026 -0.024 (0.018) [-0.068, 0.004] -0.042 -0.042 (0.027) [-0.100, 0.008]
Means, medians, standard deviations and 95% intervals of the posterior distribution of net encouragement e�ects NEE0, individual
treatment mediated e�ect iTME1 and principal causal e�ects, are presented by principal strata and household baseline coverage

categories e
C4

i j

. The last block of rows concerns the estimated e�ect in the whole population.

potential proportion under control encouragement have not suggested lack of knowl-

edge and awareness of malaria for this subpopulation, but, on the contrary, probably

never-takers are the most aware of preventive measures or in general the less at risk

at least in 2010, regardless of the encouragement conditions. As said earlier, we can

argue that for this principal stratum there is little e�ect of the encouragement itself,

such as an increase in the usage of old bed nets or the undertaking of other mea-

sures. Thereby this result suggests no evidence of spillover e�ects for never-takers,

at any coverage level.

The overall ITT, given by the average of the three principal causal e�ects, is

estimated as a decrease in the risk of malaria of 4.2% (95% interval: [°10%,0.8%]),

which approximates the ITT estimated from the observed data. Note that 95%
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posterior intervals at medium and high coverage are wider and include zero making

the results consistent with random fluctuation. This is due to the high proportion

of never-takers in these categories.

When it comes to disentangling the e�ects for compliers, iTME

1(0,1) is estimated

by the posterior mean as a reduction of 18.6% (95% interval: [°45.2%,3.0%]) whereas

NEE

0(0,1) as a minimal increase with high uncertainty (posterior mean: 1.4%; 95%

interval: [°7.2%,9.1%]). The individual treatment e�ect for compliers is equivalent

to the average e�ect of the purchase of at least one bed net, i.e. CACE

1.

Average net encouragement e�ects in the whole population, computed taking the

average of the beneficial dissociative causal e�ects of always-takers, the negligible

dissociative causal e�ects of never-takers and the negligible net encouragement ef-

fects of compliers, are beneficial with strong evidence only within the low coverage

category with a posterior mean of °2.8%. Finally, by multiplying iTME

1(0,1) by the

proportion of complier, we obtain an estimate of the individual treatment e�ect in

the population given by °2.6% (95% interval: [°6.8%,0.4%]).

1.9 Discussion

In this chapter we provide a framework based on the principal stratification ap-

proach to investigate the di�erent mechanisms elicited in cluster encouragement

designs, through the individual treatment uptake or through other pathways, includ-

ing spillover e�ects. We define net encouragement e�ects and individual treatment

mediated e�ects within principal strata, with the latter only present among com-

pliers when monotonicity of compliance is assumed. The core of this work concerns

the proposal of homogeneity assumptions allowing to disentangle the two di�erent

e�ects for this subpopulation, under violation of sequential ignorability.

Principal causal e�ects themselves provide us with useful information on how

encouragement has an impact on the outcome, within di�erent subpopulations types

defined by compliance behavior. Our analysis of the KAHS study, gives evidence
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that for those households who would buy new bed nets only if agricultural loans were

o�ered, the compliers, the o�er of loans to 11 farmers living in their villages and the

surroundings helps reducing the risk of contracting malaria. It also suggests that

those who would purchase bed nets anyway, the always-takers, benefit from the loan

program, most likely through an increase in the number of bed nets purchased due to

the subsidized prize. On the contrary, it shows nonsignificant e�ect for never-takers,

that is for those who would not buy new bed nets regardless of the encouragement.

Consequently there is no evidence of spillover e�ects from the increased number of

bed nets in the cluster, due to the encouragement, at least for this subpopulation.

The slightly detrimental e�ect for this subpopulation, especially with low coverage,

even if intervals are too wide to draw definite conclusions, suggests the importance

to investigate spillover e�ects in large scale programs.

Furthermore, the analysis of compliance status provided by the principal stratifi-

cation framework, compared with simple ITT analysis, gives insight into the extent

to which encouragement enhances the treatment uptake, how di�erent types of the

population react to the encouragement and what are the characteristics of individu-

als that encouragement is able to reach. KAHS program evaluation has provided an

interesting case study in which principal strata di�er substantially by their potential

risk under control intervention. Specifically, compliers would have much higher risk

of infection. In any case, this analysis shows how the loan program was able to reach

the subpopulation most at risk and more in need to be prompted to take on better

prevention measures.

This characterization of principal strata can also help us understand whether

and which homogeneity assumption is more plausible to untie the mediated and

non-mediated e�ects among compliers, the one concerning the distribution of coun-

terfactuals or the one involving their mean di�erence. Besides the availability of two

possible forms of homogeneity, a further advantage of our formalization of identi-

fying homogeneity assumptions is the flexibility of specification. In fact, although
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we have focused on a particular case that is suitable for the application study, in

the appendix A 1 we provide more general homogeneity assumptions represented

in terms of two parameters whose specification leads to a particular assumption in-

volving two di�erent principal strata, always-takers or never-takers on the one hand

and compliers or defiers on the other hand. Each specific assumption enables the

identification of a combination of the two e�ects NEE

ã and iTME

1°ã , with ã = 0 or

ã = 1, for three principal strata, namely always-takers, never-takers and compliers

or defiers. Therefore, this general formalization would allow to assess the type of

e�ects that can be estimated according to the particular assumption that is deemed

plausible in the specific setting and, on the other hand, it gives insight into the as-

sumptions that would be required for the identification of the e�ects of interest. The

choice about which particular homogeneity assumption holds has to be determined

on a case-by-case basis, with the help of subject matter knowledge and comparison

of principal strata in terms of covariates and potential outcomes. In our application

we rely on homogeneity of the net encouragement treatment e�ect between never-

takers and compliers, conditional on covariates. Based on this assumption and the

application of the imputation approach for the estimation of causal mechanisms,

there is no evidence of a net encouragement e�ect among compliers, at any coverage

level. Therefore all the e�ect of the encouragement for this principal stratum would

be through the purchase of new bed nets, resulting in a quite high beneficial e�ect

of this treatment on the risk of malaria, when the encouragement is assigned in the

same cluster (i T ME(0,1) = C AC E

1). This conclusion is important in that is shows

how the solely purchase of few bed nets in a household at high risk can make a

real di�erence. Hopefully, if the loan program were o�ered to more farmers in each

cluster, an increased coverage in the community would exponentiate exponentially

reduce malaria through beneficial spillovers. This study does not allow us to assess

this hypothesis, arguably because of the small number of beneficiaries.

Final results suggest that the impact of the encouragement is mostly driven by

56



enhancing the purchase of bed nets in that 15% of population that otherwise would

have a high risk of infection and would not prioritize prevention, the compliers, for

whom the e�ect of new bed nets is high at every level of baseline coverage, but almost

as much is given by the e�ect due to subsidized price through the increased number

of new bed nets among those households who would carry out a new purchase

anyway, i.e., the alway-takers, who constitute 41% of the population.

Since a negligible e�ect was found among never-takers, if resources were limited,

baseline information were already available and the o�er of the loan program had a

cost itself even if subsidies were not used (e.g. mail service, door-to-door visits...), we

may want to exclude this subpopulation from the encouragement program. The lack

of knowledge of strata membership would force to exclude those units with higher

probability of being never-takers. In KAHS study these are mostly those with higher

coverage. Prediction errors in compliance status would result in a less beneficial

e�ect in the population, provided that for compliers the e�ect of encouragement on

risk reduction is estimated to be high, even at high coverage level. Maximization of

a risk reduction could be computed for beneficiaries selection. Collection of more

baseline features to better predict principal strata would ease this task.

Despite the expanded coverage under encouragement, the analysis shows that

the risk of malaria would still be quite high for the subpopulation of compliers

(with a posterior mean for Y (1) of 0.149 as can be seen from results reported in

tables 4 and 5, that is Y (0)°PC E(0,1) = 0.321°0.172). ITNs work by preventing

indoor night biting and by killing mosquitos, but do not protect from risk behaviors.

This alarming result suggests that interventions should be complemented with other

encouragement interventions to promote alternative vector control measures, such

as environmental management, windows screens or training to prevent high risk

practices. In addition, the observed heterogeneity in malaria risk highlights the need,

in the design phase, of a detailed characterization of behavioral, socio-economic and

environmental risk factors of the target population in order to select appropriate
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suites of interventions.

Our analysis of KAHS has several limitations. First, the choice of a binary inter-

mediate variable, although it allows to shed light on a well-defined principal stratifi-

cation of the population, it does not use information on actual number of bed nets.

A continuous intermediate variable could also be handled in the principal stratifi-

cation framework (Jin and Rubin 2008; Bartolucci and Grilli 2011; Schwartz et al.

2011), and homogeneity assumptions could be defined accordingly. Second, homo-

geneity of spillover e�ects that these assumptions imply can be problematic. When

net encouragement e�ects incorporate spillover e�ects by intermediate variables, the

validity of assumption (7) should raise more concerns and carefulness. Indeed, even

if we believe that an increase in the intermediate variables of one neighbor a�ects

a unit’s outcome in the same way for compliers and never-takers, assumption (7) is

not sustainable when the average compliance behavior in the vicinity of each unit

di�ers between the two principal strata. A clustering of principal strata, due to

mechanisms such as homophily or peer influence in the compliance behavior, would

make spillover e�ects of the clustered encouragement intervention di�er across prin-

cipal strata. In our example, the estimated intra-class correlation of compliance

status suggests a slight di�erence of the proportion of always-takers and compliers

across clusters, even after conditioning on covariates. However we can assume that

an increased number of bed nets in the remaining households of the clusters, due to

the encouragement, is on average the same for compliers and never-takers, making

assumption (7) more sustainable. Future works could focus on the estimation of

spillover e�ects accounting for a di�erential distribution of potential values of the

intermediate variable in the neighborhood. Another potential threat to homogene-

ity of spillover e�ects is a possible di�erential use of preventive measures other than

bed nets in the matching strata. If this is the case, then we expect compliers to be

more a�ected by an increased neighborhood coverage, either positively or negatively.

Third, it is also possible that the o�er of loans to compliers has encouraged them to
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take other preventive measures together with the usage of the new bed nets. In this

case the individual treatment mediated e�ect for compliers would be overestimated.

Nonetheless, it is also possible that these farmers felt already satisfied with their new

bed nets, also because the loan program in theory should not be associated with any

prevention campaign. Anyhow, in this article we have emphasized the arguments

that can be made in favor or against homogeneity assumptions in a challenging ap-

plication with possible spillover e�ects and the presence of important latent features

that make the distribution of potential outcomes di�er substantially across principal

strata. In many applications, the validity of homogeneity assumptions can be much

less controversial.
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Chapter 2

Disentangling Spillover Effects using

Neighborhood Principal Strata

2.1 Introduction

In the previous chapter we focused on individual principal strata defined by the po-

tential individual treatment uptake and we said that one of the two e�ects into which

principal causal e�ects were decomposed, namely the net encouragement e�ect, can

be interpreted as including the e�ect of the encouragement through a change in the

neighbors’ treatment. In this chapter we will now drill down into the details of this

type of e�ect, by giving formal definition and introducing a novel approach that,

relying on a new set of assumptions, will allow us to isolate such an e�ect.

When outcomes involve or depend on behavioral changes or transmittable objects

such as money, information material, parasites or virus, mechanisms of psycholog-

ical influence or physical transmission are likely to take place between individuals

who interact with one another or simply share the same environment in the daily

life. In these circumstances, the implementation of an intervention can give rise to

interdependent outcomes, that is, one’s outcome is a�ected by the treatment re-

ceived by other subjects. In general this interference mechanism can be found in

many applications in di�erent fields from behavioral economics and education to

psychology, social science and infectious diseases. Depending on the field of study

the e�ect of other subjects’ treatment is referred to as spillover e�ect or peer e�ect.
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In this chapter we will focus on the same setting of clustered encouragement

designs described in chapter 1 and we will assume a cluster-level SUTVA as defined

in 1. In this scenario, one subject’s outcome does not depend on the intervention

assigned to other clusters but can be a�ected by the treatment received by other

subjects belonging to the same cluster. This e�ect of the encouragement assigned to

the neighborhood might pass through several behavioral changes of the neighbors,

including the uptake of the treatment of interest or other unmeasured characteristics.

We can give several examples of clustered encouragement designs where interfer-

ence mechanisms are likely to take place.

A classical example of interference comes from the field of infectious diseases. In

areas where the low vaccine coverage is mainly due to the lack of local immunization

services, mobile immunization camps can be used to increase vaccination rates. In

a clustered randomized trial, mobile immunization camps are set up in randomly

selected villages (Banarjee et al., 2010). The presence of the camp has an overall

protective e�ect on all the inhabitants of the village. In fact not only it directly

prevents those receiving vaccines from being infected but it also protects both vac-

cinated and unvaccinated people by reducing the number of infected from whom to

contract the disease (contagion e�ect) and also by an alteration of the contagion

mechanism (infectiousness e�ect). If the presence of an immunization camp is as-

sociated with an information campaign, in the villages randomized to receive the

intervention, behavioral changes essential to reduce the risk of infection can also

be achieved as an e�ect of the additional information provided, regardless of the

vaccine receipt.

Another example of the same kind regards interventions to improve condom use

and hence reduce the risk of STD infection. The simplest intervention is a free

distribution of condoms. It has been claimed that di�erential distribution in a same

community can negatively a�ect condom purchase on those who don’t receive them

for free, either for psychological or market reasons. For this and other practical
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reasons many studies have assigned free distribution of condoms at village level.

The receipt of condoms can be thought as an encouragement and the actual use

of them as the individual treatment. In villages assigned to the intervention, an

individual who doesn’t use condoms even if given for free is less likely to contract

the disease thanks to the increase condom use of the subjects belonging to his social

network.

Sometimes such spillover e�ects can be desirable because they reinforce the e�ect

of the intervention. Other times an increase in the treatment uptake in the neigh-

borhood can be detrimental for a certain type subject and would reduce the e�ect

of the clustered encouragement intervention. A quantification of these mechanisms

would allow to optimize the design of the clustered intervention in a scale-up phase

in order to achieve better results with less resources, by tailoring and targeting the

encouragement both at individual and cluster level.

At the analysis stage, spillover e�ects can be a nuisance or the major e�ects of

interest. In both cases valid statistical inference have to take into account this

interdependence. In clustered encouragement schemes all individuals belonging to

the same cluster share the same encouragement assignment. However, since the

actual treatment received is not randomized but rather self-selected, in the same

cluster di�erent individuals end up either being exposed to the active treatment

or unexposed. It is precisely this within-cluster variability of the actual treatment

received that enables to investigate the relationship between one subject’s outcome

and the treatment received by other individuals of the same cluster. Nevertheless,

passing from an assessment of association to causal conclusions would require to

make explicit assumptions. This type of interference mechanism or spillover e�ect,

together with its identifying conditions, will be the focus of this chapter.

In the past decade extensive e�ort has been made to give proper definitions and

partitions of the e�ect of a treatment in the presence of interference in the framework

of causal inference (Sobel, 2006; Hong & Raudenbush, 2006; Hudgens & Halloran,
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2006; Rosenbaum, 2007; Manski, 2013). Tchetgen Tchetgen & VanderWeele (2011,

2012) have proposed a decomposition of spillover e�ects arising in vaccine trials into

contagion e�ect and infectiousness e�ect and provided bounds and identification

results, while Hudgens & Halloran (2006, 2008, 2012) have discussed the problem

of developing causal methods for estimating these e�ects. At the same time, re-

searchers have begun addressing their investigation through experimental methods

and proper designs. Non-parametric identification of causal e�ects in the presence

of interference of the treatment can be achieved with a two-stage randomized design

(Duflo & Saez, 2002; Giné & Mansuri, 2011; Sinclair et al., 2012): at the first stage

specific clusters, defined as to be independent, are randomized to having a certain

proportion of treated individuals; subsequently at the second stage, once the pro-

portion is determined, within each cluster individuals are randomly assigned to one

of the two treatment conditions. In this work we focus on a di�erent setting where

there is reason to believe that the actual treatment received by a subject also a�ects

the outcome of other subjects interacting with him, but the treatment cannot be

randomized and groups of subjects are randomly assigned to receive or not receive

an encouragement intervention.

In a previous work, VanderWeele et al. (2013) defined three di�erent e�ect arising

in a group randomized study when interference is given by an intermediate variable:

The methodological developments that was proposed to disentangle the three ef-

fects is accomplished accomodating the framework of mediation analysis to spillover

e�ects and it is shown that an extended version of the sequential ignorability as-

sumptions yields non-parametrical identification. In an encouragement design such

assumptions are generally questioned because of the self-selection of the treatment.

In the present study we draw on a similar decomposition of the e�ect of the clus-

tered encouragement: an e�ect mediated by the individual treatment (Individual

Mediated E�ect), a spillover e�ect mediated by the treatment received by neighbors

within the same cluster (Spillover Mediated E�ect) and an e�ect of the encourage-
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ment due to factors other than a change in the distribution of the treatment received

in the cluster (Pure Encouragement E�ect). Each of these e�ects answers di�erent

interesting questions and gives insight into a di�erent but complimentary set of un-

derlying consequences of the encouragement intervention. The way evidence can

be incorporated in decision-making depends on the specific setting. Though, in or-

der to get the best from the analysis and turn the results into policy decisions, it

would be crucial to investigate the heterogeneity of these e�ects in di�erent type

of subjects. As a matter of fact, identification issues are circumvented here by the

use of bayesian estimation applied to a novel principal stratification of the popula-

tion, based on both individual and neighborhood potential behavior in terms of the

treatment uptake under both encouragement conditions. The use of the individual

principal stratification coupled with the set of identifying assumptions, as presented

in the previous chapter, enables to untie in the entire population the individual

mediated treatment e�ect from all the other factors that are involved in the impact

of the encouragement intervention. The addition of a neighborhood stratification

along with suitable assumptions will allow us to further isolate the spillover mediated

e�ect.

The chapter starts with section 2.2 by introducing a second illustrative example,

taken from the vaccination field, that will help explaining the concepts discussed

in this part. The notation used in the previous chapter is applied to this example

and other variables are also introduced to account for the neighborhood treatment

status. The novel principal stratification approach, based on both the individual

and the neighborhood compliance behavior, is presented in section 2.3. In section

2.4, we define the new causal mechanisms of interest within each principal stratum.

The problem of identification is discussed in section 2.5, where we provide additional

homogeneity assumptions, followed by identification results. The modeling details

are presented in section 2.6, while section 2.7 is devoted to the Bayesian inference

with a new imputation algorithm for the estimation of the defined causal mecha-
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nisms. The frequentist performance of the bayesian estimation procedure is tested

by means of a simulation study, developed in section 2.8. Section 2.9 concludes the

thesis with a brief summary and discusses future research directions.

2.2 An illustrative Example: Notations and Definitions

In order to illustrate our approach aiming at disentangling the e�ect of spillover

by the neighbors’ treatment uptake, we will refer to a hypothetical study exam-

ple concerning vaccine trials, adapted from Banarjee et al. (2010). Immunization

is one of the most successful and cost-e�ective interventions in the past century,

preventing a series of major illness a�ecting children. However, in developing coun-

tries coverage rates wane, vaccines continue to be underused and undervalued and

vaccine-preventable diseases remain a threat to world health, killing two to three

million people every year. In India, immunization services are o�ered free in public

health facilities, but, despite many decades of e�orts to immunize children against

these diseases, only 44% of children aged 1-2 years have received the basic package

of immunization (as defined by WHO and Unicef) and that drops to 1-2% in rural

areas. Most common reasons for non vaccinations are the lack of local facilities,

poor supply of vaccines in the region and unreliability of health workers but also

unawareness of the need of vaccine, fear of side e�ects, mistrust, misconception

regarding the e�ect of vaccines and family members busy or ill. Religion, gender

and socio-economic status can be determinants of coverage inequalities. Mobile

immunization camps can help increasing coverage in rural areas thanks to a bet-

ter reliability of immunization services. Banarjee et al. (2010) provided randomly

selected poor villages of rural Rajastan with regular monthly, well-publicized im-

munization camps, which o�ered to all children aged 0-3 years the basic package.

The aim of the study was to assess the e�ectiveness of the intervention in terms

of an increase in vaccination coverage. Suppose now that researchers also wanted

to evaluate the final impact on diseases reduction three years after the the onset
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of the intervention so that endpoint measures are now available. As an example,

we will focus on the e�ect of immunization camps on tuberculosis (or TB), which

remains one of the major health problems in India accounting for one million new

cases every year. It is also the largest killer from a single major pathogen in adult

life. Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis,

which mostly a�ects the lungs but it can also damage other parts of the body. TB

spreads from person to person through the air when a person with TB of the lungs

or throat coughs, sneezes, or talk. People infected with TB bacteria can either keep

them in inactive (latent) form or develop the disease, with a probability depending

on his immune system and other risk factors. People with latent TB have a 10%

lifetime risk that symptoms will develop later into an active infection. A person

with active but untreated tuberculosis may infect 10-15 (or more) other people per

year,whereas those with latent infection are not contagious. Tuberculosis is closely

linked to both overcrowding and malnutrition, making it one of the principal dis-

eases of poverty. Other diseases can also increase the risk of developing TB. These

include HIV, chronic lung diseases, alcoholism and diabetes mellitus. The vaccine

against tuberculosis is called BCG. It activates specific antibodies, preparing the

subject to be ready to fight bacteria. In this way the vaccine does not prevent

someone being infected, but it prevents the development of the disease reducing the

bacterial load. It is specifically designed to defend children against TB and it has

been shown that it protects them for about 15 years. There is reason to suspect the

presence of interference mechanism by the vaccine received by other subjects. This

might occur precisely because if the vaccinated people are less likely to develop the

disease whenever infected, they are also less prone to transmit TB to others.

In this chapter we will use the same notation introduced in chapter 1. We will

now translate it to the illustrative example.

We consider as units of analysis all unvaccinated and healthy children aged 0-18

months at baseline and as units of randomization villages assigned to either the
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active encouragement group (A

j

=1), where mobile immunization camps are set up,

or to the control group (A

j

=0), where children are left to the unreliable municipal

immunization services. M

i j

is an indicator of the vaccine receipt, being M

i j

= 1 if

child i in village j gets vaccinated against TB between baseline and follow-up (18

months later) surveys and M

i j

= 0 otherwise. As for the outcome, let Y

i j

be the

bacterial load (log10 CFU) found in a sputum specimen of child i j in a laboratory

test performed 3 years after the onset of the program.

In order to incorporate spillover e�ects in the analysis let N
i j

be the neighborhood

of unit i j , N
i j

=
£
1 j , . . . , i °1 j , i +1 j , . . . , N

j

j

§
, that is all units in cluster j excluding

unit i j . Let M°i j

be the vector of vaccine receipt indicators of all the units in N
i j

,

M°i j

=
£
M1 j

, M2 j

, ..., M

i°1 j

, M

i+1 j

, ..., M

n

j

j

§
, and let N

i j

denote a scalar summarizing

this vector and taking values [0,1]:

N

i j

=G

i j

°
M°i j

¢

where G

i j

(·) is a linear functional G

i j

: {0,1}N

j

°1 ! [0,1].

For instance N

i j

can be a weighted proportion of units under treatment in the entire

cluster j or in a smaller vicinity of the unit i , G

i j

°
M°ij

¢
=P

k2N
i j

w

i k

M

k j

N

j

°1 , with weights

w

i k

such that w

i k

2 [0,1] and P
k2N

i

w

i k

= 1. For instance, weights can depend on the

distance between unit i and unit k in cluster j or on other characteristics. For this

reason we can call this variable neighbors’ treatment or neighbors’ vaccine receipt in

this specific example.

We now turn to the primitive potential outcomes. Banarjee et al. (2010) claim the

absence of any contamination between villages from all encouragement groups being

su�ciently far from each other (over 20 km). Formally this translates into cluster-

level SUTVA assumption in 1. Under this assumption we defined the potential

outcome Y

i j

(A

j

,M
j

) ¥ Y

i j

(A

j

, M

i j

,M°i j

), being in this example the potential presence

of active bacteria in child i j under encouragement condition A

j

and vaccine status

M
j

= [M

i j

,M°i j

] in village j . The latter expression of the potential outcome high-
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lights the possibility of conceiving two di�erent type of hypothetical intervention

on vaccine receipt, one for child i j and the other for his neighbors. We will also

assume that Y

i j

depends on the vaccination received by the neighbors only through

the summarizing variable N

i j

, so that, in all those cases where N

i j

= G

i j

°
M°i j

¢
,

Y

i j

(A

j

,M
j

) will be mapped into Y

i j

(A

j

, M

i j

, N

i j

). Hereafter we will use the following

notation: Y

i j

(a,m,n) ¥ Y

i j

(A

j

= a, M

i j

= m, N

i j

= n).

Let us turn our attention to the hypothetical interventions on the intermediate

variables, M

i j

and N

i j

. Let M

i j

(a) denote the potential bacterial load that child i j

would have experienced if the village j he belongs to were assigned to encouragement

condition A

j

= a. Similarly let N

i j

(a) = G

i j

(M°i j

(a)) be the potential neighbor’s

vaccine receipt that units living next to unit i j would have received if the cluster-

level encouragement intervention, A

j

, were set to a. A particular intervention on

the intermediate variables would set M
j

= [M

i j

,M°i j

] = [M

i j

((ã),M°i j

(a

0)], with ã, a

0 2

{0,1}. This kind of joint intervention leads to a particular potential outcome of the

form Y

i j

°
a, M

i j

(ã), N

i j

(a

0)
¢
, which denotes the potential bacterial load that child i in

cluster j would have experienced if A

j

, were set to a, the indicator of his vaccine

receipt, M

i j

, were set to the value it would have taken under encouragement condition

A

j

= ã and the neighbors’ vaccine receipt were set to the value it would have taken

under A

j

= a

0. Counterfactuals of this type are in general not observed. Indeed the

only one that can be found in the data for each unit is one of the two potential

outcomes of the form Y

i j

°
A

j

, M

i j

(A

j

), N

i j

(A

j

)
¢
, where A

j

is the encouragement status

assigned to cluster j . This coincides with the previously used notation Y

i j

(A

j

). We

will define the e�ects of interest based on counterfactuals of this type and we will

see later on in the chapter how the missing data problem can be solved.

In what follows we will maintain the assumptions of unconfoundedness of the

encouragement assignment, which is supported by the randomized experiment.

Assumption 8. Unconfoundedness of the encouragement assignment

Y

i j

(0),Y

i j

(1), M

i j

(0), M

i j

(1), N

i j

(0), N

i j

(1) ?? A

j

| C
i j

= c 8i , j
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2.3 Principal Stratification Approach

In order to investigate the di�erent mechanisms that arise in clustered encourage-

ment designs, involving not only the individual treatment uptake but also the neigh-

bors’ treatment, we will extend the principal stratification approach introduced

in the previous chapter. A basic principal stratification with respect to a post-

assignment variable is a partition of the population into sets in which all units share

potential values of the post-assignment variable under both assignment conditions.

We will define two basic principal stratifications: one with respect to the individual

treatment received M

i j

and the other with respect to the neighbors’ treatment N

i j

.

The former, which we will refer to as individual principal stratification, has already

been outlined in chapter 1, as it was first introduced by Frangakis & Rubin (2002).

Conversely, the latter, hereinafter referred to as neighborhood principal stratification,

is new in the literature and we will see how it is useful for the evaluation of spillover

e�ects.

Individual Principal Strata

The individual principal stratification is a partition of units in subpopulations, the

so-called individual principal strata, defined according to the potential individual

vaccine status under both encouragement conditions:

S

m0m1 := {i j : M

i j

(0) = m0, M

i j

(1) = m1} (2.3.1)

S

i j

be the indicator of the individual principal stratum to which subject i j belongs.

We will maintain here the assumption of monotonicity (2), so that there will be only

three principal strata S

i j

2 {S

00,S

01,S

11}: never-takers, compliers and always-takers,

respectively.

In the BCG vaccine example, never-takers are those children who would not get
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vaccinated against TB during the 18 months after the onset of the study, regardless

of the immunization service, compliers are those who would get vaccinated only

with the mobile immunization camp and finally always-takers are those children

who, during that period, would take a BCG vaccine, if not already received, either

in local facilities or in the program mobile camps.

We can formulate some hypotheses on the characteristics of these three di�erent

subpopulations. Always-takers might live closer to the public health centers, belong

to more educated families, be more aware of the importance of vaccination, or be

in contact with a large number of contagious TB adults making their relatives more

convinced to take the children to get vaccinated. On the contrary, never-takers and

compliers might be those children who live at a greater distance from public health

facilities, belong to families whose knowledge about vaccination is low and/or are

in contact with fewer TB adults. However, compliers do make use of the mobile

immunization camps and never-takers do not. This behavior might be explained

by, for instance, relatives of never-takers being busy or ill, having a greater fear

of side e�ects or misconception of the e�ects of vaccines. These subtle di�erences

between never-takers and compliers are likely not to a�ect the disease outcome or at

least the e�ect of the intervention, thus, as we will see later, either aforementioned

explanation will support our homogeneity assumptions.

Neighborhood Principal Strata

We propose here an innovative approach for the investigation of spillover e�ects

based on a neighborhood principal stratification. This partition of the population

under study is based on the neighbors’ treatment variable N

i j

. Neighborhood princi-

pal strata are sets of units with the same potential values of the neighbors’ treatment

uptake under both encouragement conditions:

nS

n0n1 := {i j : N

i j

(0) = n0, N

i j

(1) = n1} n0,n1 2 [0,1]

(2.3.2)
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Let nS

i j

be the indicator of the neighborhood principal stratum. The number

of all possible principal strata nS

n0n1 depends on the function G

i j

(·). If N

i j

is

simply the proportion of subject in cluster j taking the treatment, excluding unit

i j , then for each cluster j there will be N

2
j

neighborhood principal strata. When

the assumption of monotonicity holds, then the this number drops to
N

j

(N

j

+1)

2
.

Furthermore, if the number of observations per cluster does not depend on the

cluster, i.e. N

j

= N /J 8 j = 1, . . . , J , then the total number of possible neighborhood

principal strata will be N (N + J )
2J

2 .

Let us now consider, for every unit, three other variables, related to the neigh-

borhood principal stratum, but each one of them accounting for the presence of one

individual principal stratum in the unit’s neighborhood:

nS

m0m1
i j

=G

i j

°
±

i j

¢
(2.3.3)

where ±
i j

is a vector of indicator functions in N
i j

, ±
i j

=
£
±1 j

, . . . ,±
i°1 j

,±
i+1 j

, . . . ,±
N

j

j

§
,

with ±
k j

being being 1 if subject k j belongs to the individual principal stratum S

m0m1

and 1 otherwise, with k 2Ni|

±
k j

=

8
>><

>>:

1 if S

k j

= S

m0m1

0 otherwise

If G

i j

(·) is the proportion function, then nS

m0m1
i j

is simply the proportion of subjects

belonging to the individual principal stratum S

m0m1 in N
i j

. Due to the properties

of the function G

i j

(·) we have the following constraint:

nS

00
i j

+nS

11
i j

+nS

01
i j

= 1 8i j (2.3.4)

It is easy to show the relation between the potential values of the neighbors’ treat-
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ment and these three variables:

N

i j

(0) = nS

11
i j

= 1° (nS

00
i j

+nS

01
i j

); N

i j

(1) = nS

01
i j

+nS

11
i j

= 1°nS

00
i j

(2.3.5)

or interchangeably

nS

11
i j

= N

i j

(0); nS

01
i j

= N

i j

(1)°N

i j

(0); nS

00
i j

= 1°N

i j

(1) (2.3.6)

2.4 Neighborhood Principal Strata Causal Effects

The intersection between an individual principal stratum S

m0m1 and a neighborhood

principal stratum nS

n0n1 defines a superstratum that characterizes the compliance

behavior to the encouragement assignment in terms of treatment uptake, both of the

subject himself and of his neighbors. As we have already done in the previous chapter

with individual principal strata, we can define the e�ect of the encouragement within

each superstratum and level of covariates:

nPCE(m

0

,m

1

,n

0

,n

1

,c) := E
£
Y

i j

(1)°Y

i j

(0) |S
i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

(2.4.1)

Thanks to the relations shown in 2.3.5 and 2.3.6 we can also express the superstratum-

specific principal causal e�ects as:

nPCE(m

0

,m

1

,n

0

,n

1

,c) = E
h

Y

i j

(1)°Y

i j

(0) |S
i j

= S

m0m1 , nS

01
i j

= n1 °n0, nS

11
i j

= n0,nS

00
i j

= 1°n1, C
i j

= c
i

(2.4.2)

It is important to note that, given the constraint in (2.3.4), in the conditioning set

only two out of the three variables nS

01
i j

, nS

11
i j

and nS

00
i j

are su�cient.
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2.4.1 Three-Way Decomposition: Individual Treatment Mediated

E�ect, Spillover Mediated E�ect and Pure Encouragement

E�ect

In order to investigate how this e�ect is achieved we examine other contrasts of

the potential outcomes that would result intervening on the values of A

j

, M

i j

,

and N

i j

. To assess the extent to which the encouragement has an e�ect on the

outcome through a change in the individual treatment received we define, within

each superstratum and level of covariates, Individual Treatment Mediated E�ect

(iTME

a(m0,m1,n0,n1,c), with a 2 {0,1}) as the contrast

iTME

a(m0,m1,n0,n1,c) := E
£
Y

i j

°
a, M

i j

(1), N

i j

(a)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
a, M

i j

(0), N

i j

(a)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

(2.4.3)

In words, iTME

a(m0,m1,n0,n1,c) is the average di�erence of the potential outcomes,

within each superstratum and each level of the covariates, under two scenarios, one

where we intervene to set the encouragement A

j

to a, the actual treatment received

by each unit i in cluster j , M

i j

, to the value that would result having cluster j

assigned to the active encouragement condition, A

j

= 1, and the neighbor’s treatment

N

i j

to the value that would occur if A

j

were a, and the other where encouragement

status and the neighbor’s treatment are the same but we set the actual treatment

received by unit i j to the value that would result having cluster j assigned to the

control group, A

j

= 0. In the vaccine study, the quantity represents the e�ect of the

immunization camp on the TB bacterial load reported by the child i j at the end

point visit, solely through a change in the vaccine uptake of the child himself.

Likewise we define as Spillover Mediated E�ect (sME

a(m0,m1,n0,n1,c), with a 2

{0,1}) the following di�erence:
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sME

a(m0,m1,n0,n1,c) := E
£
Y

i j

°
a, M

i j

(1°a), N

i j

(1)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
a, M

i j

(1°a), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

(2.4.4)

It is the average e�ect on the outcome of unit i j , with values of covariates being

C
i j

= c and belonging to the principal strata S

i j

= S

m0m1 and nS

i j

= nS

n0n1 , of a

change in the neighbors’ treatment uptake N

i j

from the value that corresponds to

the control encouragement to the one corresponding to the active encouragement

assignment, having the encouragement status in cluster j set to A

j

= a and the

individual treatment receipt M

i j

set to what it would be under the encouragement

condition A

j

= 1°a. In the vaccine study the quantity represents the e�ect of the

immunization camp on the TB bacterial load reported by the child i j at the end

point visit, solely through a change in the vaccine received by the children located

in the surrounding area, where the relevance of each of these children depend on

function G

i j

(·). Finally the encouragement intervention can result in a decrease or

increase of the individual outcome Y

i j

through a change in underlying cluster or

individual behaviors other than in the treatment receipt. As already mentioned in

the previous chapter, this can happen when encouragements incorporate information

campaigns (e.g. advertisements, letters) that overall will increase the awareness or

simply bring public attention to the problem. We have already referred to this

e�ect as Pure Encouragement E�ect (PEE). Formally, this quantity is encoded by

the following contrast:

PEE

ã(m0,m1,n0,n1,c) :=E
£
Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

(2.4.5)

In words, PEE

ã(m0,m1,n0,n1,c), with ã 2 {0,1}, is the average di�erence, within

each superstratum and level of covariates, of the potential outcomes under the two
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encouragement conditions intervening to keep the individual treatment received,

M

i j

, and the neighbor’s treatment, N

i j

, fixed at the value they would take under

A

j

= a.

In the reference study, in each village belonging to the active group a social worker

was responsible for informing mothers about the availability of the immunization

camps and educating them about the benefits. These informative actions might be

responsible of di�erent mechanisms. A greater awareness and fear of TB infection

might boost the use of preventive measures, such as warding o� contact with known

TB patients or sick people in general or avoiding crowded or enclosed environments.

These behavioral changes and thus PEE will in general depend on the principal stra-

tum the unit belongs to. If we can assume that always-takers are those who already

have more knowledge on the disease, when the presence of immunization camps

draws their attention to the problem we can hypothesize that they will react by

intensifying their prevention strategies in a sharper way by, for instance, leading a

healthier life style with balanced diet, avoidance of smocking and alcohol and good

personal hygiene or by maintaining good indoor ventilation. Pure encouragement

e�ect is also accounting for behavioral changes in the neighborhood. Since subjects

belonging to di�erent individual principal strata, will react di�erently to the com-

ponents of the encouragement that are not responsible of a change in the treatment

uptake, PEE will also depend on the proportion of always-takers, never-takers and

compliers in the neighboring areas. Furthermore, the presence of an immunization

camp in the village may also lead children or adults who already have the disease,

and therefore not part of the study, but living in contact with participants, to tighten

up their isolation or to take and adhere to the treatment. This e�ect would also be

part of PEE.

It is easy to prove that the superstratum-specific principal causal e�ect can be

written as the sum of the individual treatment mediated e�ect, the spillover medi-

ated e�ect and the pure encouragement e�ect as follows:
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nPCE(m0,m1,n0,n1,c) = PEE

ã(m0,m1,n0,n1,c)+sME

1°ã(m0,m1,n0,n1,c)+iTME

1°ã(m0,m1,n0,n1,c)

(2.4.6)

Proof.

nPCE(m0,m1,n0,n1,c) =E
£
Y

i j

°
1, M

i j

(1), N

i j

(1)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
0, M

i j

(0), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(1), N

i j

(1)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

+E
£
Y

i j

°
1, M

i j

(0), N

i j

(1)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
1, M

i j

(0), N

i j

(1)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

+E
£
Y

i j

°
1, M

i j

(0), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
1, M

i j

(0), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

°E
£
Y

i j

°
0, M

i j

(0), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

= PEE

0(m0,m1,n0,n1,c)+ sME

1(m0,m1,n0,n1,c)+ iTME

1(m0,m1,n0,n1,c)

The second equality is obtained by adding and subtracting two terms: the condi-

tional expected value of Y

i j

°
1, M

i j

(0), N

i j

(1)
¢

and Y

i j

°
1, M

i j

(0), N

i j

(0)
¢
. It is easy to

show that the decomposition with ã = 1 would be given by two di�erent terms: the

conditional expected values of Y

i j

°
0, M

i j

(1), N

i j

(1)
¢

and Y

i j

°
0, M

i j

(1), N

i j

(0)
¢
.

The choice between the two decompositions, with ã = {0,1} depends on the ap-

plications and on the e�ects of interest for the study. Each e�ect has a specific

meaning. For instance, sME

1 is the e�ect of a change in the neighbors’ treatment,

while there is an active encouragement condition in the cluster and the unit is left

to take the treatment he would naturally take under the control encouragement

status. This is an interesting quantity to investigate because it will give a sense of

the spillover e�ect of the neighborhood while the clustered program is implemented
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but the unit itself is left in the treatment condition corresponding to the control

status. Moreover, potential outcomes based on hypothetical interventions on the

intermediate variables involved in the e�ects of interest must be conceivable. We

will get into the details of this problem in the following section. The choice of ã also

depends on the validity of identifying assumptions that allow to recover information

from the observed data on the corresponding e�ect. We will see what this means

later in the chapter.

The four superstratum-specific causal e�ects in equation (2.4.6) can be marginal-

ized over the conditional distribution of the neighborhood principal strata yielding

the average e�ects in the individual principal stratum S

m0m1 , within levels of covari-

ates:

iTME

a(m0,m1,c) =E
£
Y

i j

°
a, M

i j

(1), N

i j

(a)
¢
°Y

i j

°
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i j

(0), N

i j

(a)
¢
|
S

i j

= S

m0m1 ,C
i j

= c
§

=
Z

n0

Z

n1
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a(m0,m1,n0,n1,c) ·º
n0n1 (m0,m1,c)dn0dn1

sME
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Y

i j

°
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i j

(1°a), N

i j

(1)
¢
°Y

i j

°
a, M

i j

(1°a), N

i j

(0)
¢
|
S

i j

= S

m0m1 ,C
i j

= c
§

=
Z

n0

Z

n1

sME

a(m0,m1,n0,n1,c) ·º
n0n1 (m0,m1,c)dn0dn1

PEE

ã(m0,m1,c) =E
£
Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢
|
S

i j

= S

m0m1 ,C
i j

= c
§

=
Z

n0

Z

n1

PEE

ã(m0,m1,n0,n1,c)º
n0n1 (m0,m1,c)dn0dn1

(2.4.7)

where º
n0n1 (m0,m1,c) := P (nS

i j

= nS

n0n1 | S

i j

= S

m0m1 ,C
i j

= c) refers to the probabil-

ity of belonging to the neighborhood principal stratum nS

n0n1 conditional on the

individual principal stratum and on baseline covariates.

2.4.2 The role of interference

When the intervention is assigned at cluster level, many di�erent mechanisms can

occur because of social interactions, such as the simple fact of living in the same

area or more active interactions that can influence the behaviors of interacting in-

dividuals. In particular, in encouragement experiments, the e�ect of the cluster
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encouragement on behavioral changes, including but not restricted to changes in

the treatment uptake, in other participants living nearby, can also in turn have an

e�ect on one’s outcome. A deeper understanding of the role played by interference

and how they are included in NEEs and iTMEs can help us to better interpret the

results. In CEDs interference by the treatment uptake between units occurs when a

unit’s outcome depends on other subjects’ treatment, violating unit-level SUTVA.

In clustered encouragement designs mechanisms broadly referred to interference by

neighbors’ treatment uptake can happen through di�erent types of processes: one’s

outcome may be a�ected by neighbors’ treatment uptake either through their pre-

vious outcome (contagion e�ect) or through an e�ect on the unit’s own behaviors or

environmental factors or even because the e�ect of the neighbors’ previous outcome

on the subsequent unit’s outcome is modified by their behavioral changes (infec-

tiousness e�ect).

In the literature, the presence of interference is usually assessed through the evalu-

ation of the e�ect of a change of the neighbors’ treatment uptake, keeping everything

else fixed. This is generally referred to as spillover e�ects and can be formalized

by the causal estimand E
£
Y

i j

°
a,m,n

0¢°Y

i j

°
a,m,n

0¢§, with n 6= n

0. Spillover mediated

e�ects are just a special case of this quantity with the additional interpretation

of the e�ect of the encouragement "through" neighbors’ treatment. Furthermore,

if these quantities are not zero and interference is present, the di�erence of these

spillover e�ects under alternative values of a and m provides additional insight into

the mechanisms underlying this phenomenon. If spillover e�ects varies under di�er-

ent conditions a of the clustered encouragement, i.e. E
£
Y

i j

°
a,m,n

0¢°Y

i j

°
a,m,n

0¢§ 6=

E
£
Y

i j

°
a

0,m,n

0¢°Y

i j

°
a

0,m,n

0¢§ with a

0 6= a, then interaction between this variable A

j

and

neighbors’ treatment M°i j

on the e�ect on the outcome Y

i j

is said to be present. For

instance, the extent to which a unit’s probability of being infected by an infectious

disease can be a�ected by his neighbors’ getting vaccinated might depend on the

presence of an immunization campaign that might change preventive behaviors of
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inhabitants of the treated villages. Similarly, an interaction between the individual

treatment uptake M

i j

and neighbors’ treatment M°i j

on the e�ect on the outcome Y

i j

is found with the inequality E
£
Y

i j

°
a,m,n

0¢°Y

i j

°
a,m,n

0¢§ 6= E
£
Y

i j

°
a,m

0,n

0¢°Y

i j

°
a,m

0,n

0¢§

with m

0 6= m. In the vaccine example, this interaction can be explained by saying

that the e�ect of neighbors’ treatment on a unit’s risk of infection will most likely

vary according to the vaccination status of the unit itself, since a vaccine already

protects from infection with a high e�ectiveness on average.

Alternatively to spillover e�ects, to assess interference one may also be interested

on the e�ect of the individual treatment uptake or of the clustered encouragement

on the individual outcome under di�erent pre-fixed levels of neighbors’ treatment,

quantified for example by E
£
Y

i j

°
a,1,n

¢
°Y

i j

°
a,0,n

¢§
and E

£
Y

i j

°
1,m,n

¢
°Y

i j

°
0,m,n

¢§
, re-

spectively. The variability of these e�ects with respect to n could provide some

evidence on the presence of the interference. In fact, the two aforementioned inter-

actions are responsible of this variability. Pure encouragement e�ects and individual

treatment mediated e�ects follow in this category of e�ects. Therefore, a possible

interaction between the treatment received by the neighbors, M°i j

, and the treat-

ment received by unit i j , M

i j

, together with an interaction between A

j

and M

i j

,

could partially explain the di�erence between individual treatment mediated e�ects

for compliers, namely between iTME

a(0,1,n0,n1,c) with a = 0 or a = 1. In fact, the

e�ect of a vaccine on the unit who gets vaccinated will vary according to the overall

coverage in the neighborhood, this being encoded by the variable N

i j

we are inter-

vening on to keep it at the value N

i j

(a). Likewise, the di�erence between the pure

encouragement e�ects PEE

ã(m0,m1,n0,n1,c) with ã = 0 or ã = 1, as well as the dif-

ference between nDC E(0,n,c) for never-takers and nDC E(1,n,c) for always-takers,

can be due to an interaction between the A

j

and M°i j

. For example, the e�ect of a

mobile immunization camp through a change in preventive behaviors can depend on

the vaccination coverage in the village, as a sign of the average sensitization to the

problem of infectious diseases in the community, that is likely to have a reciprocal
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influence between units.

Without an accurate analysis that specifically addresses the problem of spillover

e�ects it can be hard to draw inference on these underlying mechanisms, because

of the complicated structure of the causal pathways. Yet estimation of the pure

encouragement e�ects, individual treatment mediated e�ects and spillover mediated

e�ects would allow a researcher to assess whether the data support hypothesis on

underlying mechanisms like those previously mentioned and also it could provide

insight into the direction of spillover e�ects, if present.

2.4.3 Two-Way Decomposition: Individual Treatment Mediated

E�ect and Net Encouragement E�ect

In this section we will show the relation between the quantities used in chapter 1

and those of the present chapter. As with the individual treatment mediated ef-

fect introduced in the previous chapter, the same notation is used to denote the

average individual treatment mediated e�ect in S

m0m1 resulting from the marginal-

ization in (2.4.7). This is due to the fact that the potential outcome of the form

Y (a, M

i j

(ã), N

i j

(a)), where we let the neighbor’s treatment take on the natural value

it would exhibit under the present encouragement condition A

j

= a, is equivalent to

Y (a, M

i j

(ã)), so that

iTME

a(m0,m1,c) =E
£
Y

i j

°
a, M

i j

(1)
¢
°Y

i j

°
a, M

i j

(0)
¢
|
S

i j

= S

m0m1 ,C
i j

= c
§

=E
£
Y

i j

°
a, M

i j

(1), N

i j

(a)
¢
°Y

i j
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a, M

i j

(0), N

i j

(a)
¢
|
S

i j

= S

m0m1 ,C
i j

= c
§

=
Z

n0

Z

n1

iTME

a(m0,m1,n0,n1,c) ·º
n0n1 (m0,m1,c)dn0dn1

(2.4.8)

As already mentioned, the net encouragement e�ect in CEDs can be viewed as

a combination of two di�erent mechanisms, namely interference by the treatment

received by other subjects and other mechanisms that are not related to changes in

the treatment receipt. The e�ects defined in this chapter allow us to formalize this
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concept. Indeed, we can prove that the net encouragement e�ect decomposes into

the spillover mediated e�ect and the pure encouragement e�ect:

NEE

ã(m0,m1,c) = sME

1°ã(m0,m1,c)+PEE

ã(m0,m1,c) (2.4.9)
Proof.

NEE
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(2.4.10)

Critical Principal Strata: M-invariant, N-invariant and

MN-invariant

Under homogeneity assumptions, identification of net encouragement e�ects in the

entire population relies on those individual principal strata where M

i j

(0) = M

i j

(1) =

m, namely never-takers and always-takers. As a matter of fact, units belonging to

these strata are the only ones where potential outcomes of the type Y

i j

(a, M

i j

(ã))) are

observable. Here, we are going to focus on two particular types of units, those with

M

i j

(0) = M

i j

(1) = m, i.e. with individual principal stratum of the form S

i j

= S

mm , and

those with N

i j

(0) = N

i j

(1) = n, i.e., with neighborhood principal stratum of the form

nS

i j

= nS

nn . We will refer to the former units as M-invariant and to the latter ones

as as N-invariant.

As already mentioned, potential outcomes of the form Y

i j

°
a, M

i j

(ã), N

i j

(a

0)
¢
, with
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a 6= ã 6= a

0, are in general not observable. As the analogous ones in the previous

chapter, these can be called a-priori counterfactuals. In the three-way decomposition

in (2.4.6), with any value of ã 2 {0,1}, we have two a-priori counterfactuals: Y

i j

°
1°

ã, M

i j

(ã), N

i j

(1° ã)
¢

and Y

i j

°
1° ã, M

i j

(ã), N

i j

(ã)
¢
.

M-invariant superstratum: an M-invariant superstratum is a superstratum of

the type [Smm ,nS

n0n1 ], which refers to the set of units with the same potential values

of the individual treatment uptake, i.e. M

i j

(0) = M

i j

(1) = m. In such a principal

superstratum, the potential outcome Y

i j

°
1° ã, M

i j

(ã), N

i j

(1° ã)
¢

is actually in the

observed data since M

i j

(ã) = M

i j

(1°ã). Therefore, this potential outcome is observed

for those units of this type under the encouragement assignment A

j

= 1° ã. As a

consequence, the individual treatment mediated e�ect for these units is zero:

iTME

1°ã(m,m,n0,n1,c) = 0 8ã 2 {0,1} (2.4.11)
Proof.

iTME
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N-invariant superstratum: an N-invariant superstratum is a superstratum of the

typer [Sm0m1 ,nS

nn], which refers to the set of units with the same potential values

of the neighbors’ treatment receipt, i.e. N

i j

(0) = N

i j

(1) = n. In such a principal

superstratum the spillover mediated e�ect for these units is zero:

sME

1°ã(m0,m1,n,n,c) = 0 8ã 2 {0,1} (2.4.12)
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Proof.
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Finally, we can define a third superstratum which is both M-invariant and N-

invariant.

MN-invariant superstratum: an MN-invariant superstratum is a superstratum

of the type [Smm ,nS

nn], which refers to the set of units with both the same potential

values of the individual treatment uptake, i.e. M

i j

(0) = M

i j

(1) = m, and the same

potential values of the neighbors’ treatment receipt, i.e. N

i j

(0) = N

i j

(1) = n. In such

a principal superstratum, the potential outcome Y

i j

°
1° ã, M

i j

(ã), N

i j

(ã)
¢

is actually

in the observed data since M

i j

(ã) = M

i j

(1° ã) and N

i j

(ã) = N

i j

(1° ã). Therefore, this

potential outcome is observed for those units of this type under the encouragement

assignment A

j

= 1° ã. As a consequence, the neighborhood principal causal e�ect

nPC E(m,m,n,n,c) for these units equals the pure encouragement e�ect:

nPCE(m,m,n,n,c) = PEE

ã(m,m,n,n,c) 8ã 2 {0,1} (2.4.13)

Proof.
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The proof is accomplished just by replacing the potential outcomes indexed only

with one argument with the corresponding potential outcomes indexed with three

arguments, and then by applying the properties of the superstratum, that is M

i j

(0) =

M

i j

(1) and N

i j

(0) = N

i j

(1). Similarly, an opposite substitution of these potential

values would yield PEE

0(m,m,n,n,c).

We refer to nPCE

1°ã(m,m,n,n,c) for these strata as neighborhood dissociative

causal e�ect, denoted by nDC E(m,n,c), which is dissociative of the e�ect on both

post-assignment variables, M

i j

and N

i j

. These particular superstrata is the only one

where the pure encouragement e�ect can be estimated from the observed data, sim-

ilarly to never-takers and always-takers who were the only units who could provide

information on net encouragement e�ects. Therefore, MN-invariant superstrata are

crucial for the investigation of pure encouragement e�ects in the population, as we

will see in later sections.

2.5 Identifying assumptions for Spillover Mediated Effects

As we did in section 1.5.1 in chapter 1, where we provided a set of assumptions

allowing extrapolation of the a-priori counterfactual or of the overall net encourage-

ment e�ect from never-takers to compliers, here we formulate similar homogeneity

assumptions that would endorse both an extrapolation of pure encouragement e�ects

from MN-invariant superstrata to all the other types of units, and an extrapolation

of spillover mediated e�ects from M-invariant superstrata to compliers. While in

chapter 1 we presented the assumptions in the particular case of interest for the ap-

plication, postponing the generalization to the appendix, here - given the acquired

familiarity of the reader with the concepts of this thesis - we will directly provide

rather general assumptions.

Assumption 9. Partial Homogeneity of the Pure Encouragement E�ect across

Principal Strata
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Partial homogeneity of the pure encouragement e�ect is assumed for specific values

of ã 2 {0,1} if the following identity holds 8c 2C ,m

ã

= {0,1},n

ã

2 [0,1]:
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ã

,n

ã
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§

(2.5.1)

In words, it states that units sharing the same level of covariates, the same potential

value of the individual and neighbors’ treatment receipt under the encouragement

status ã, i.e. M

i j

(ã) = m

ã

and N

i j

(ã) = n

ã

, have equivalent mean di�erence between

potential outcomes under the two encouragement conditions, intervening to set the

individual treatment receipt of unit i j to M

i j

(ã) = m

ã

and his neighbors’ treatment

receipt to N

i j

(ã) = n

ã

, regardless of the potential value of the individual and neigh-

bors’ treatment receipt under the opposite encouragement status 1°ã, i.e. M

i j

(1°ã)

and N

i j

(1° ã).

By virtue of the relations in (2.3.5) and (2.3.6), assumption 9 can also be expressed

in terms of the presence of never-takers, always-takers and compliers in the unit’s

neighborhood.
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ã

¢
°Y

i j

°
0,m

ã
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1°ã 1°ã
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(2.5.2)

This second expression of the partial homogeneity assumption 9 conveys the idea

that the mean di�erence between potential outcomes under the two encourage-

ment conditions, intervening to set the individual treatment receipt of unit i j to

M

i j

(ã) = m

ã

and his neighbors’ treatment receipt to N

i j

(ã) = n

ã

, only depends on
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the baseline covariates, the potential value of the individual treatment receipt under

the encouragement status ã, i.e., M

i j

(ã) = m

ã

and on the presence of the principal

stratum S

1°ã1°ã in the unit’s neighborhood, namely on the value of nS

1°ã1°ã

i j

. If

ã = 0 it only depends on nS

11
i j

, that accounts for presence of always-takers in the

unit’s neighborhood, whereas if ã = 1 it only depends on nS

00
i j

, that accounts for

presence of never-takers in the surroundings.

In our vaccine example, the validity of assumption 9 for ã = 0 requires that com-

pliers and never-takers, both with M

i j

(0) = 0, with the same level of covariates and

the same presence of always-takers in the neighborhood, have an equivalent e�ect

of the mobile immunization camp when the unit does not get vaccinated and his

neighbors’ are left under the vaccine status they would have without immunization

camp, regardless of presence of never-takers and compliers in the unit’s neighbor-

hood. Similarly, the validity of assumption 9 for ã = 1 requires that compliers and

always-takers, both with M

i j

(1) = 1, with the same level of covariates and the same

presence of never-takers in the neighborhood, have an equivalent e�ect of the mo-

bile immunization camp when the unit gets vaccinated and we intervene to set his

neighbors’ vaccine receipt to the one that they would naturally have with the im-

munization camp, regardless of presence of always-takers and compliers in the unit’s

neighborhood.

Assumption 9 with ã = 0 is more feasible than with ã = 1 if we assume that

compliers and never-takers are more similar than compliers and always-takers are,

in terms of their underlying characteristics a�ecting their compliance behavior. The

hypothesized di�erences between compliers and never-takers outlined earlier (e.g.

fear of side e�ects, misconception of vaccines, busy or ill relatives...) is likely not

to a�ect their behavioral changes induced by the presence of immunization camps,

while these children are kept without vaccine and their neighbors’ vaccine status is

kept unchanged. On the contrary, always-takers, assumed to be more educated or

in general more sensible to the problem of tuberculosis, are more prone to respond

87



to any additional information received. Furthermore, if this is true, it makes sense

to argue that the impact of the presence of immunization camps on never-takers’

and compliers’ outcome, net of any e�ect on the vaccine receipt, will not depend

on the individual presence of never-takers and compliers in their neighborhood, but

only on the presence of always-takers.

Theorem 3.

Part 1. If assumption 9 holds for a certain value of ã 2 {0,1}, then the pure encour-

agement e�ect

PEE

ã(m0,m1,n0,n1,c) for a superstratum [Sm0m1 ,nS

n0n1 ], within levels of covariates,

is equivalent to the neighborhood dissociative e�ect of an MN-invariant superstra-

tum with individual principal stratum S

m

ã

m

ã with M

i j

(0) = M

i j

(1) = m

ã

and neigh-

borhood principal stratum nS

n

ã

n

ã with N

i j

(0) = N

i j

(1) = n

ã

:

PEE

ã(m0,m1,n0,n1,c) ¥ nDCE(m0,n0,c)(1° ã)+nDCE(m1,n1,c)(ã) = nDCE(m

ã

,n

ã

,c)

That is, if ã = 0 the pure encouragement e�ect PEE

0 for compliers with any neighbor-

hood principal stratum or for never-takers with N

i j

(0) 6= N

i j

(1) is equivalent to the

neighborhood dissociative causal e�ect of N-invariant never-takers with the same

level of covariates and the same potential value of the neighbors’ treatment receipt

under the control encouragement condition, i.e. N

i j

(0) = N

i j

(1) = n0. Analogously,

if ã = 1 the pure encouragement e�ect PEE

1 for compliers with any neighborhood

principal stratum or for always-takers with N

i j

(0) 6= N

i j

(1) is equivalent to the neigh-

borhood dissociative causal e�ect of N-invariant always-takers with the same level

of covariates and the same potential value of the neighbors’ treatment receipt under

the active encouragement condition, i.e. N

i j

(0) = N

i j

(1) = n1.
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Proof.

PEE

ã(m0,m1,n0,n1,c) = E
£
Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢
| S

i j

= S

m0m1 ,nS

i j

= nS

n0n1 ,C
i j

= c
§

= E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

(0,m

ã

,n

ã

) | M

i j

(ã) = m

ã

, M

i j

(1° ã) = m1°ã

, N

i j

(ã) = n

ã

, N

i j

(1° ã) = n1°ã

,C
i j

= c
§

= E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
| M

i j

(ã) = m

ã

, N

i j

(ã) = n

ã

,C
i j

= c
§

= E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

(0,m

ã

,n

ã

) | M

i j

(ã) = M

i j

(1° ã) = m

ã

, N

i j

(ã) = N

i j

(1° ã) = n

ã

,C
i j

= c
§

= E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
| S

i j

= S

m

ã

m

ã ,nS

i j

= nS

n

ã

n

ã ,C
i j

= c
§
= nDCE(m

ã

,n

ã

,c)

The proof is accomplished by using the definition of PEE

ã(m0,m1,n0,n1,c) in the

first equality, the consistency assumption in the second equality and finally by ap-

plying (2.5.1) in assumption 9 twice in the last equalities.

Part 2. If assumption 9 holds for a certain value of ã 2 {0,1}, then the pure en-

couragement e�ect PEE

ã(m0,m1,n0,n1,c), for a superstratum [Sm0m1 ,nS

n0n1 ], within

levels of covariates, is equivalent to the neighborhood dissociative e�ect of an MN-

invariant superstratum with individual principal stratum S

m

ã

m

ã with M

i j

(0) = M

i j

(1) =

m

ã

and the same presence of the principal stratum S

1°ã1°ã in the unit’s neighbor-

hood, namely with nS

1°ã1°ã

i j

= ã ° (2ã °1)n

ã

, but with nS

01
i j

= 0:

PEE

ã(m0,m1,nS

11
i j

= n0,1°nS

00
i j

= n1,c) ¥nDCE(m0,nS

11
i j

= n0,c)(1° ã)

+nDCE(m1,1°nS

00
i j

= n1,c)(ã)

=nDCE(m

ã

, ã ° (2ã °1)nS

1°ã 1°ã

i j

= n

ã

,c)

That is, if ã = 0 the pure encouragement e�ect PEE

0 for compliers with any neighbor-

hood principal stratum or for never-takers with N

i j

(0) 6= N

i j

(1) is equivalent to the

neighborhood dissociative causal e�ect of N-invariant never-takers with the same

level of covariates and the same presence of always-takers in the neighborhood,

nS

11
i j

= n0, but without any complier among the neighbors, i.e. nS

01
i j

= 0. Analo-
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gously, if ã = 1 the pure encouragement e�ect PEE

1 for compliers with any neigh-

borhood principal stratum or for always-takers with N

i j

(0) 6= N

i j

(1) is equivalent

to the neighborhood dissociative causal e�ect of N-invariant always-takers with the

same level of covariates and the same presence of never-takers in the neighborhood,

n

i j

S

00 = 1°n1, but without any complier among the neighbors, i.e. nS

01
i j

= 0.

Proof. The proof follows from the expression of assumption 9 in (2.5.2).

Theorem 3 is compelling for the investigation of causal mechanisms arising in clus-

tered encouragement designs. Indeed, it allows the estimation of pure encourage-

ment e�ect for non-MN-invariant principal strata by using the information provided

by the observed data of MN-invariant principal strata.

Under assumption 9, deemed valid for a certain value of ã, by virtue of theorem

3, PEE

ã for any superstratum of the type
£
S

m0m1 ,S

n0n1
§

can be estimated from the

observed data of units belonging to the superstratum of the type
£
S

m

ã

m

ã ,S

n

ã

n

ã

§
.

GIven this result, the observed data will also provide information on the spillover

mediated e�ect in the particular superstratum
£
S

mm ,nS

n0n1
§

with M

i j

(0) = M

i j

(1) = m

but N

i j

(0) = n0 6= N

i j

(1) = n1 .

Corollary 2. If assumption 9 holds for a certain value of ã, the spillover mediated

e�ect in the superstratum
£
S

mm ,nS

n0n1
§

is expressed as follows:

sME

1°ã(m,m,n0,n1,c) =nPCE(m,m,n0,n1,c)°nDCE(m,n

ã

,c)

Proof. By simply rearranging the terms in the three-decomposition in equation

(2.4.6), we can write

sME

1°ã(m,m,n0,n1,c) =nPCE(m,m,n0,n1,c)° iTME

1°ã(m,m,n0,n1,c)°PEE

ã(m,m,n0,n1,c)

As shown in (2.4.11), in principal strata with M

i j

(0) = M

i j

(1) the individual treatment
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mediated e�ect is zero, so iTME

1°ã(m,m,n0,n1,c) = 0. The last step consists in

applying the result expressed by part 1 of theorem 3 simply by substituting the

term PEE

ã(m,m,n0,n1,c) with nDCE(m,n

ã

,c), and the proof is complete.

Information on the spillover mediated e�ect in the particular superstratum
£
S

mm ,nS

n0n1
§

is then given by the observed data of units belonging to this superstratum as well

as from units of the same M-invariant individual principal stratum S

mm and the

same value of N

i j

(ã) = n

ã

but belonging to an N-invariant neighborhood principal

stratum nS

n

ã

n

ã .

Assumption 10.A. Partial Homogeneity of the Spillover E�ect across Principal

Strata

Partial homogeneity of the spillover e�ect is said to be assumed for specific values

of ã 2 {0,1} if the following identity holds 8c 2C ,m

ã

= {0,1},n

ã

2 [0,1]:

E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§

¥

E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
M

i j

(ã) = m

ã

, N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§

(2.5.3)

In words, the assumption holds for ã 2 {0,1} when the mean di�erence between po-

tential outcomes under the two scenarios where the neighbors’ treatment receipt is

set to the values it would take under the two encouragement conditions, intervening

to keep the individual treatment receipt of unit i j to M

i j

(ã) = m

ã

and the clustered

encouragement assignment to A

j

= 1° ã, does not depend on the potential value

of the individual treatment receipt under the opposite encouragement status 1° ã,

i.e. M

i j

(1° ã), conditioning on baseline covariates, the individual treatment receipt

under encouragement status ã, i.e. M

i j

(ã) = m

ã

, and potential values of the neigh-

bors’ treatment receipt under the two encouragement conditions, i.e. N

i j

(0) = n0

and N

i j

(ã) = n1.
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By virtue of the relations in (2.3.5) and (2.3.6), assumption 10.A can also be

expressed in terms of the presence of never-takers, always-takers and compliers in

the unit’s neighborhood:

E
h

Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
S

i j

= S

m0m1 ,nS

00
i j

= 1°n1,nS

01
i j

= n1 °n0,nS

11
i j

= n0,C
i j

= c
i

¥

E
h

Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
|
S

i j

= S

m

0
0m

0
1 ,nS

01
i j

= n1 °n0,nS

11
i j

= n0,C
i j

= c
i

with m

0
ã

= m

ã

(2.5.4)

Again only two out of the three neighborhood variables are needed in the condition-

ing set.

This second expression of the partial homogeneity assumption 10.A conveys that

the mean di�erence between potential outcomes under the two scenarios where the

neighbors’ treatment receipt is set to the values it would take under the two encour-

agement conditions, intervening to keep the individual treatment receipt of unit

i j to M

i j

(ã) = m

ã

and the clustered encouragement assignment to A

j

= 1° ã, only

depends on the baseline covariates, the potential value of the individual treatment

receipt under the encouragement status ã, i.e. M

i j

(ã) = m

ã

and on the presence of

the three principal strata in the unit’s neighborhood, namely on the value of nS

00
i j

,

nS

01
i j

and nS

11
i j

, bearing in mind the constraint in (2.3.4) .

In the illustrative example, assumption 10.A with ã = 0 holds if compliers and

never-takers, with the same baseline covariates and overall the same type of neigh-

borhood, have an equivalent e�ect of a change in the neighbors’ vaccine status, while

an immunization camp is set up in their villages but they are kept without vaccine.

Similarly, assumption 10.A with ã = 1 holds if compliers and always-takers, with

the same baseline covariates and overall the same type of neighborhood, have an

equivalent e�ect of a change in the neighbors’ vaccine status, while an immunization

camp is set up in their villages and they are vaccinated. Again, if we assume that

always-takers are di�erent types of children, it is reasonable to support assumption
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10.A with ã = 0, since compliers and always-takers might use di�erent levels of pre-

ventive strategies a�ecting the impact of the neighbors’ vaccine uptake. Moreover,

the dependence on the neighborhood principal stratum as a whole is legitimated by

the fact that the impact of a change in the neighbors’ vaccine status is likely to de-

pend on the vaccination coverage under the control condition, that is N

i j

(0) = nS

11
i j

,

as well as on other cluster or neighborhood characteristics that are encoded by the

neighborhood principal stratum and that may a�ect the individual outcome. In-

deed, the presence of each individual principal stratum in the neighborhood might

depend on neighbors’ individual features and cluster factors, such as the level of

education in the village, the population density, the distance from the closest public

health facility, the amount of infection in the village and the vaccination coverage of

the entire village population. For instance, the level of education of the neighbors

has an influence on the extent to which they use preventive measures and hence on

the probability of them getting infected and hence on transmitting the infection.

The risk of transmitting the bacteria from infected people also depends on their

readiness on getting treated, which in turn can depend on the distance from the

closest dispensary.

Assumption 10.B. Partial Homogeneity of the Spillover E�ect across Principal

Strata

Partial homogeneity of the spillover e�ect is said to be assumed for specific values

of ã 2 {0,1} if the following identity holds 8c 2C ,m

ã

= {0,1},n

ã

2 [0,1]:

E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§

¥

E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
M

i j

(ã) = m

ã

, N

i j

(1)°N

i j

(0) = n1 °n0,C
i j

= c
§

(2.5.5)

In words, it states that units sharing the same level of covariates, the same poten-

tial value of the individual treatment receipt under the encouragement status ã, i.e.
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M

i j

(ã) = m

ã

, and the same di�erence between the two potential values of the neigh-

bors’ treatment receipt, i.e. N

i j

(1)°N

i j

(0) = n1°n0, have equivalent mean di�erence

between potential outcomes under the two scenarios where the neighbors’ treatment

receipt is set to the values it would take under the two encouragement conditions,

intervening to keep the individual treatment receipt of unit i j to M

i j

(ã) = m

ã

and

the clustered encouragement assignment to A

j

= 1° ã, regardless of the potential

value of the individual treatment receipt under the opposite encouragement status

1° ã, i.e. M

i j

(1° ã) and regardless of each individual value of N

i j

(0) and N

i j

(1).

By virtue of the relations in (2.3.5) and (2.3.6), assumption 10.A can also be

expressed in terms of the presence of never-takers, always-takers and compliers in

the unit’s neighborhood:

E
h

Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
|
S

i j

= S

m0m1 ,nS

00
i j

= 1°n1,nS

01
i j

= n1 °n0,nS

11
i j

= n0,C
i j

= c
i

¥

E
h

Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
|
S

i j

= S

m

0
0m

0
1 ,nS

01
i j

= n1 °n0,C
i j

= c
i

with m

0
ã

= m

ã

(2.5.6)

This second expression of the partial homogeneity assumption 10.B conveys that

the mean di�erence between potential outcomes under the two scenarios where the

neighbors’ treatment receipt is set to the values it would take under the two encour-

agement conditions, intervening to keep the individual treatment receipt of unit

i j to M

i j

(ã) = m

ã

and the clustered encouragement assignment to A

j

= 1° ã, only

depends on the baseline covariates, the potential value of the individual treatment

receipt under the encouragement status ã, i.e. M

i j

(ã) = m

ã

and on the presence of

the principal stratum S

01, i.e. the compliers, in the unit’s neighborhood, that is on

the value of nS

01
i j

.

In the illustrative example, assumption 10.B with ã = 0 holds if compliers and

never-takers, with the same baseline covariates and the same presence of compliers
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in the neighborhood, have an equivalent e�ect of a change in the neighbors’ vac-

cine status, while an immunization camp is set up in their villages but they are

kept without vaccine. Similarly, assumption 10.B with ã = 1 holds if compliers and

always-takers, with the same baseline covariates and the same presence of compliers

in the neighborhood, have an equivalent e�ect of a change in the neighbors’ vac-

cine status, while an immunization camp is set up in their villages and they are

vaccinated. Assumption 10.A is preferable to assumption 10.B when we can as-

sume that the presence of compliers in the unit’s neighborhood encodes the cluster

characteristics that have the most influence.

Under one of the two homogeneity assumptions 10.A or 10.B the spillover medi-

ated e�ect of a general superstratum with M

i j

(0) 6= M

i j

(1) and N

i j

(0) 6= N

i j

(1), can

be recovered from the corresponding e�ect of units belonging to an M-invariant su-

perstratum, which is identified under assumption 9 (see corollary 2). This result is

formalized by the following theorems.

Theorem 4.A. If assumption 10.A holds for a certain value of ã 2 {0,1}, then the

spillover mediated e�ect sME

1°ã(m0,m1,n0,n1,c) for a superstratum [Sm0m1 ,nS

n0n1 ],

within levels of covariates, is equivalent to the corresponding spillover mediated ef-

fect of an M-invariant superstratum with individual principal stratum S

m

ã

m

ã , where

M

i j

(0) = M

i j

(1) = m

ã

, and the same neighborhood principal stratum nS

n0n1, with

N

i j

(0) = n0 andN

i j

(1) = n1:

sME

1°ã(m0,m1,n0,n1,c) ¥ sME

1°ã(m

ã

,m

ã

,n0,n1,c)

That is, if ã = 0 the spillover mediated e�ectsME

0 for compliers (m0 = 0) is equiva-

lent to the spillover mediated e�ect of never-takers with the same level of covariates

and the same potential values of the neighbors’ treatment receipt under both en-

couragement condition. Analogously, if ã = 1 the spillover mediated e�ect sME

1 for

compliers (m1 = 1) is equivalent to the spillover mediated e�ect of always-takers with
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the same level of covariates and the same potential values of the neighbors’ treatment

receipt under both encouragement condition.

The theorem can also be expressed as follows:

sME

1°ã(m0,m1,nS

11
i j

= n0,1°nS

00
i j

= n1,c) ¥ sME

1°ã(m

ã

,m

ã

,nS

11
i j

= n0,1°nS

00
i j

= n1,c)

That is, if ã = 0 the spillover mediated e�ect sME

0 for compliers (m0 = 0) is equiva-

lent to the spillover mediated e�ect of never-takers with the same level of covariates

and the same presence of the three principal strata in the unit’s neighborhood, i.e.

nS

00
i j

,nS

01
i j

and nS

1
i j

. Analogously, if ã = 1 the spillover mediated e�ect sME

1 for com-

pliers (m1 = 1) is equivalent to the spillover mediated e�ect of always-takers with the

same level of covariates and the same presence of the three principal strata in the

unit’s neighborhood, i.e. nS

00
i j

,nS

01
i j

and nS

1
i j

.

Theorem 4.B. If assumption 10.A holds for a certain value of ã 2 {0,1}, then the

spillover mediated e�ect

sME

1°ã(m0,m1,n0,n1,c) for a superstratum [Sm0m1 ,nS

n0n1, within levels of covari-

ates, is equivalent to the corresponding spillover mediated e�ect of an M-invariant

superstratum [Sm

ã

m

ã ,nS

n

0
0n

0
1 with individual principal stratum S

m

ã

m

ã , where M

i j

(0) =

M

i j

(1) = m

ã

and the same presence of principal stratum S

01 in the unit’s neighbor-

hood, namely with nS

01
i j

= n

0
1 °n

0
0 = n1 °n0:

sME

1°ã(m0,m1,n0,n1,c) ¥ sME

1°ã(m

ã

,m

ã

,n

0
0,n

0
1,c) with n

0
1 °n

0
0 = n1 °n0

That is, if ã = 0 the spillover mediated e�ect sME

0 for compliers (m0 = 0) is equiv-

alent to the corresponding spillover mediated e�ect of never-takers with the same

level of covariates and the same di�erence between the two potential values of the

neighbors’ treatment receipt under both encouragement conditions. Analogously, if

ã = 1 the spillover mediated e�ect sME

1 for compliers (m1 = 1) is equivalent to the
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corresponding spillover mediated e�ect of always-takers with the same level of co-

variates and the same di�erence between the two potential values of the neighbors’

treatment receipt under both encouragement conditions.

The theorem can also be expressed as follows:‘

sME

1°ã(m0,m1,nS

11
i j

= n0,1°nS

00
i j

= n1,c) ¥ sME

1°ã(m

ã

,m

ã

,nS

11
i j

= n

0
0,1°nS

00
i j

= n

0
1,c)

with nS

01
i j

= 1° (nS

00
i j

+nS

11
i j

) ¥ n1 °n0 = n

0
1 °n

0
0

That is, if ã = 0 the spillover mediated e�ect sME

0 for compliers (m0 = 0) is equiv-

alent to the corresponding spillover mediated e�ect of never-takers with the same

level of covariates and the same presence of the principal stratum S

01, i.e. the com-

pliers, in the unit’s neighborhood, that is on the value of nS

01
i j

. Analogously, if ã = 1

the spillover mediated e�ect sME

1 for compliers (m1 = 1) is equivalent to the corre-

sponding spillover mediated e�ect of always-takers with the same level of covariates

and the same presence of the principal stratum S

01, i.e. the compliers, in the unit’s

neighborhood, that is on the value of nS

01
i j

.

Relation between Identifying assumptions

The results outlined in theorems 3 and 4 show the central role of assumptions 9

and 10.A/10.B for the investigation of spillover mechanisms. Analogously, in the

previous chapter the same role was played by assumption 7 with respect to net en-

couragement e�ects, that is e�ects of the encouragement that are net of any e�ect

on the individual treatment uptake. All the previous assumptions claim a par-

tial homogeneity of the mean di�erence between two types of potential outcomes

across principal strata. Assumption 7b concerns the mean di�erence between the

two potential outcomes that are involved in the net encouragement e�ect NEE

ã ,

that is Y

i j

°
1, M

i j

(ã)
¢
° Y

i j

°
0, M

i j

(ã)
¢
, and its homogeneity across specific individual

principal strata. Instead, assumptions 9 and 10.A/10.B concern, respectively, the

two potential outcomes involved in the pure encouragement e�ect PEE

ã , that is
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Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢

and those involved in the spillover medi-

ated e�ect sME

1°ã , that is Y

i j

°
1° ã, M

i j

(ã), N

i j

(1)
¢
°Y

i j

°
1° ã, M

i j

(ã), N

i j

(0)
¢
, providing

results on the homogeneity of their mean di�erence across both neighborhood and

individual principal strata. In general, assumptions 9 and 10.A/10.B do not imply

the identifying assumption 7, or rather its general version in 7b. Here we provide

a set of su�cient conditions for assumption 7b of partial homogeneity of the mean

di�erence between Y

i j

°
1, M

i j

(ã)
¢

and Y

i j

°
0, M

i j

(ã)
¢

across individual principal strata

sharing the value of M

i j

(ã) and consequently, by theorem 2b, of partial homogeneity

NEE

ã .

Theorem 5 (Su�cient conditions for partial homogeneity of the net encouragement

e�ect).

If for a certain values of ã 2 {0,1}

a) assumption 9 holds

b) either assumption 10.A or 10.B holds

c) the probability of belonging to a specific neighborhood principal stratum does

not depend on the potential value of the individual treatment uptake under

encouragement condition 1° ã,

i.e. 8c 2C ,8m0,m1 2 {0,1},8n0,n1 2 [0,1]

P (nS

i j

= S

n0n1 | S

i j

= S

m0m1 ,C
i j

= c) = P (nS

i j

= S

n0n1 | S

i j

= S

m

ã

m

ã ,C
i j

= c)

then assumption 7b is satisfied.

Proof. Let us consider the following mean di�erence within individual principal

strata: E
£
Y

i j

°
1,m

ã

¢
°Y

i j

°
0,m

ã

¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§
. This represents the

net encouragement e�ect NEE

ã in the particular individual principal stratum with

potential values of the the individual treatment uptake M

i j

(ã) = m and M

i j

(1° ã). In

equation 2.4.9 we have shown that the net encouragement e�ect can be written as
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the sum of pure encouragement and spillover mediated e�ects. Therefore, using the

consistensy assumptions and similar manipulations used to prove equation 2.4.9,we

can write:

E
£
Y

i j

°
1,m

ã

¢
°Y

i j

°
0,m

ã

¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§

+E
£
Y

i j

°
1, M

i j

(ã), N

i j

(1)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(0)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§

+E
£
Y

i j

°
1° ã, M

i j

(ã), N

i j

(1)
¢
°Y

i j

°
1° ã, M

i j

(ã), N

i j

(0)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã),C
i j

= c
§

which can be averaged over all the possible values of N

i j

(0) and N

i j

(1)

X

n0n1

h
E
£
Y

i j

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã), N

i j

(ã)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(ã) = n

ã

, N

i j

(1° ã) = n1°ã

C
i j

= c
§

+E
£
Y

i j

°
1° ã, M

i j

(ã), N

i j

(1)
¢
°Y

i j

°
1° ã, M

i j

(ã), N

i j

(0)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(0) = n1, N

i j

(1) = n1,C
i j

= c
§i

£P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c)

and by consistency we have

X

n0n1

h
E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(ã) = n

ã

, N

i j

(1° ã) = n1°ã

C
i j

= c
§

+E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã), N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§i

£P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c)

We now apply assumption 9 to the first term and assumption 10.A to the second

one and we get

X

n0n1

h
E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
| M

i j

(ã) = m

ã

, N

i j

(ã) = n

ã

,C
i j

= c
§

+E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
| M

i j

(ã) = m

ã

, N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§i

£P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c)
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that, using again assumption 9 on the first term, can also be expressed as

X

n0n1

h
E
£
Y

i j

°
1,m

ã

,n

ã

¢
°Y

i j

°
0,m

ã

,n

ã

¢
| M

i j

(ã) = m

ã

, N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§

+E
£
Y

i j

°
1° ã,m

ã

,n1
¢
°Y

i j

°
1° ã,m

ã

,n0
¢
| M

i j

(ã) = m

ã

, N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§i

£P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c)

As the second equivalence has been accomplished by adding and subtracting the

same term, again the two di�erences between potential outcomes can be contracted

in just the following

X

n0n1

E
£
Y

i j

°
1,m

ã

,n1
¢
°Y

i j

°
0,m

ã

,n0
¢
| M

i j

(ã) = m

ã

, N

i j

(0) = n0, N

i j

(1) = n1,C
i j

= c
§

£P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c)

Finally, by condition c), if nS

i j

does not depend on M

i j

(1 ° ã), then P (N

i j

(0) =

n0, N

i j

(1) = n1 | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c) = P (N

i j

(0) = n0, N

i j

(1) = n1 | M

i j

(ã) =

m, M

i j

(1° ã),C
i j

= c), which leads to the conditional average

E
£
Y

i j

°
1,m

ã

,n1
¢
°Y

i j

°
0,m

ã

,n0
¢
| M

i j

(ã) = m

ã

,C
i j

= c
§

that satisfies assumption 7b, concluding the proof. It is easy to show that assumption

10.A can be replaces by the stronger assumption 10.B, yielding the same result.

2.6 Hierarchical Models for Cluster Interventions

As in the previous chapter, we introduce here hierarchical models that can be used

for the analysis. As we will see in the next section, the complete-data likelihood

only depends on two models: a model for the potential outcome Y

i j

(a) and a model

for the individual principal strata membership S

i j

.
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Individual Principal Strata Model

As for the model for the individual principal strata membership we will maintain

the ordinal mixed probit model as it was defined in section 1.6. We report here the

latent variable formulation with two linked probit models:

S

i j

=

8
>>>>>><

>>>>>>:

S

00 if S

n

i j

¥ÆT

n

Z

S f

i j

+aT

n j

Z

Sr

i j

+V

i j

∑ 0

S

01 if S

n

i j

∏ 0 and S

c

i j

¥ÆT

c

Z

S f

i j

+aT

c j

Z

Sr

i j

+U

i j

∑ 0

S

11 if S

n

i j

∏ 0 and S

c

i j

∏ 0

(2.6.1)

where ZS f

i j

=
£
1,C

i j

§
and ZSr

i j

=
£
1,X

i j

§
are the covariate matrices of the fixed and

random part, respectively, whereas U

i j

and V

i j

are two random terms independently

distributed as N (0,1).

Potential Outcome Model

Conversely, in order to disentangle the spillover mediated e�ect from the pure en-

couragement e�ect under assumptions 9 and 10, the potential outcome model has

to be reformulated so as to include neighborhood principal strata indicators. Un-

der the monotonicity assumption, while a binary encouragement assignment and

a binary treatment lead to only three individual principal strata, the number of

neighborhood principal strata will be N (N + J )
2J

2 , which is already 55 with say J = 10

clusters and N

j

(= N /J ) = 10 observations per cluster. For this reason, modeling as-

sumptions are necessary. For notational convenience, instead of the indicator for

the neighborhood principal strata, we will use the three variables representing the

presence of never-takers, compliers and always takers. As already said, because of

the constraint in (2.3.4), only two of the three variables are independent and will be

incorporated in the model. For practical convenience and coherence with the identi-

fying assumptions, we will use nS

01
i j

and nS

1°ã1°ã

i j

, where ã depends on the value for

which assumptions 9 and 10.A hold. In the previous chapter, the outcome used in
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the bed nets application follows a relative binomial distribution. In the illustrative

example of this chapter, the outcome is continuous. Therefore, letting C0
i j

= [1,C
i j

],

we will use the following hierarchical linear model for the potential outcome:

Y

i j

(a) | S

i j

,nS

01
i j

,nS

1°ã1°ã

i j

,C
i j

=ØØØS

i j

T ZY f

i j

+bT

j

ZY r

i j

+≤
i j

=ØS

i j

T

0 C0
i j

+ØS

i j

T

1 C0
i j

a +ØS

i j

T

2 C0
i j

f1

≥
nS

1°ã1°ã

i j

¥
a +ØS

i j

T

3 C0
i j

f2

≥
nS

10
i j

¥
a

+ØS

i j

T

4 C0
i j

f3

≥
nS

10
i j

nS

1°ã1°ã

i j

¥
a +b0 j

+bT

1 j

X
i j

+≤
i j

≤
i j

ª N

≥
0,æ

2 S

i j

≤

¥

(2.6.2)

where for each principal stratum ØS

i j are the fixed e�ects and b
j

are the random ef-

fects, with variable vectors ZY f

i j

=
£
C0

i j

,C0
i j

a,C0
i j

f1
°
nS

1°ã1°ã

i j

¢
a,C0

i j

f2
°
nS

10
i j

¢
a,C0

i j

f3
°
nS

10
i j

nS

1°ã1°ã

i j

¢
a

§

and ZY r

i j

=
£
1,X

i j

§
respectively, allowing for random intercepts and random individual

covariates slopes. We let the variance of the individual random term æ2 S

i j depend on

the individual strata. It is worth noting that under assumption 10.B the interaction

term cancels out, i.e. Ø4 = 0.

Under this parametrization, neighborhood principal causal e�ect for MN-invariant

principal strata, referred to as neighborhood dissociative causal e�ect, is given by:

nDCE(m,n,c) =PEE

0(m,m,n,n,c) = PEE

1(m,m,n,n,c)

=ØS

mm

T

1 C0
i j

+ØS

mm

T

2 C0
i j

f1

≥
nã + (1°n)(1° ã)

¥ (2.6.3)

Now if assumption 9 holds with ã 2 {0,1}, by theorem 3, pure encouragement e�ects

for M-invariant principal [Smm ,nS

n0n1 ], with nS

01
i j

6= 0, can be expressed as follows:

PEE

ã(m,m,n0,n1,c) =ØS

mm

T

1 C0
i j

+ØS

mm

T

2 C0
i j

f1

≥
n

ã

ã + (1°n

ã

)(1° ã)
¥

(2.6.4)

The latter expression (2.6.4) also applies to pure encouragement e�ects PEE

ã(m0,m1,n

0
0,n

0
1,c)

for non-M-invariant principal strata [Sm0m1 ,nS

n

0
0n

0
1 ], i.e. compliers, with M

i j

(ã) =

m

ã

= m and N

i j

(ã) = n

0
ã

= n

ã

. Under the same assumption, we are also provided
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with an expression for spillover mediated e�ects for M-invariant principal strata

[Smm ,nS

n0n1 ], with nS

01
i j

= n1 °n0 and nS

1°ã1°ã

i j

= n

ã

ã + (1°n

ã

)(1° ã):

sME

1°ã(m,m,n0,n1,c) =ØS

mm

T

3 C0
i j

f2

≥
(n1°n0)

¥
+ØS

mm

T

4 C0
i j

f3

≥
(n1°n0)

°
n

ã

ã+(1°n

ã

)(1°ã)
¢¥

(2.6.5)

Finally if assumption 10.A holds with ã 2 {0,1}, by theorem 4.A, equation (2.6.5)

also estimates spillover mediated e�ects sME

1°ã(m0,m1,n

0
0,n

0
1,c) for non-M-invariant

principal strata [Sm0m1 ,nS

n0n1 ], i.e. compliers, with M

i j

(ã) = m

ã

= m, n

0
0 = n0 and

n

0
1 = n1.

To reduce the amount of uncertainty associated to the outcome model, given

by Ø coe�cients, the random e�ects b
j

with J = 1, . . . , J , the individual and the

neighborhood principal strata membership, we link the random coe�cients b
j

of the

outcome model to the random coe�cients a
n j

and a
c j

of the individual principal

strata model in the following way:

b
j

=Ør u
j

a
n j

=Ær

n

u
j

a
c j

=Ær

c

u
j

u
j

ª N (0, I ) (2.6.6)

The random e�ects consist now of a cluster-specific random part u
j

, that is nor-

mally distributed and common to the outcome and the two principal strata probit

models, and a di�erent fixed coe�cient for each model. It worth noting that this

modeling assumption is plausible in most applications, because it stipulates that the

cluster unmeasured factors that a�ect the outcome are also a�ecting the compliance

behavior, allowing for di�erent intensity of these e�ects. We can now simplify the

expression of the outcome model as

Y

i j

(a) | S

i j

,nS

01
i j

,nS

1°ã1°ã

i j

,C
i j

=Ø f r S

i j

T ZY f r

i j

+≤
i j

(2.6.7)
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where Ø f r S

i j =
£
ØS

i j ,Ør

§
and ZY f r

i j

=
£
ZY f

i j

,u
j

·ZY r

i j

§
. Likewise, the individual principal

strata model can be expressed as

S

i j

=

8
>>>>>><

>>>>>>:

S
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i j

¥Æ f r T

n

Z

S f r
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(2.6.8)

where Æ
f r

n

=
£
Æ

n

,Ær

n

§
, Æ f r

c

=
£
Æ

c

,Ær

c

§
and ZS f r

i j

=
£
ZS f

i j

,u
j

·ZSr

i j

§
. This new model-

ing scheme has an implication in the computation procedure as explained in the

appendix in A 4.

2.7 Bayesian Inference

Due to the way we have defined the models in this chapter, the parameter vector µ

is now given by:
µ =

°
Ø f r ,Æ f r ,u,æ2

≤

¢

where we have collected each set of parameters such that Ø f r =
°
ØS

00
,ØS

11
,ØS

01
,Ør

¢
,

Æ f r =
£
Æ

f r

n

,Æ f r

c

§
, u =

°
u1,u2, . . . ,u

J

¢
, and æ2

≤ =
£
æ2 S

00

≤ ,æ2 S

01

≤ ,æ2 S

11

≤

§
. In the previous

chapter, the complete-data likelihood function L (µ;Yobs ,S,C), has been factorized

into

p(Yobs ,S,C | µ) = p(Yobs | S,C µ)p(S | C, µ)p(C | µ). As before, we will assume that

the random vector u
j

accounts for all the unmeasured common factors a�ecting

the outcome of all the units in cluster j , as well as unmeasured individual post-

intermediate variables of every unit in the cluster a�ecting not only the unit’s final

outcome but also his neighbors’, including the unit’s outcome measured at previous

time points or other behavior characteristics. As a consequence, given that two

outcomes measured at the same time cannot causally a�ect one another, we make

the assumption of independence between units’ potential outcomes, conditioning

on u
j

. According to cluster-level SUTVA (1), a unit’s outcome does not depend
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on other clusters’ principal strata but only on those within the same cluster, i.e.

S
j

. Moreover, the dependence of the subject’s outcome from principal strata of

other units within the same cluster is assumed to be through the neighborhood

principal stratum, which is defined by a function of the two values M

i j

(0) and M

i j

(1)

representing individual principal strata in the neighborhood. Finally, we assume

independence between individual principal strata of di�erent units, conditioning on

the vector of random e�ects a
j

. For the foregoing reasons, letting ±
i j

(S

m0m1 ,nS

n0n1 ) =

±(S

m0m1 ,nS

n0n1 ,S

i j

,nS

i j

) be 1 if S

i j

= S

m0m1 and nS

i j

= nS

n0n1 and 0 otherwise, we

can write:
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JY
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£P
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m0m1 | C
i j

,µ
¢
p(C

i j

| µ)

(2.7.1)

The two models involved in the likelihood, for Y

i j

and S

i j

, have already been defined

in (2.6.2) and (1.6.4) respectively.

2.7.1 Prior Specification

The prior distribution can be specified in a similar way to section 1.7.1. We as-

sume an independence structure expressed in the following factorization of the prior

distribution:

p(µ) = p(Ø f r )p(æ2 S

00

≤ )p(æ2 S

01

≤ )p(æ2 S

11

≤ )p(Æ f r

n

)p(Æ f r

c

)
Y

j

p(u
j

) (2.7.2)

Since here the outcome is assumed to follow a normal distribution, normal prior dis-

tributions for the parameters of the outcome model reflect the conjugacy property.

This will ease the computation providing a closed form for full conditional distribu-

tions and hence avoiding Metropolis-Hastings steps (see A 4 for details). Therefore,

we posit a normal prior distribution for the coe�cients of the outcome model as

well as of the two principals strata probit probit models. The fixed e�ects of the
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outcome model can be jointly modeled as

Ø f r ª N

≥
µØ0,§Ø0

¥
(2.7.3)

whereas the fixed e�ects of the two principal strata models are separately modeled

as

Æ
f r

n

ª N

°
µn

Æ0,§n

Æ0
¢

Æ
f r

c

ª N

°
µc

Æ0,§c

Æ0
¢

(2.7.4)

For the variances æ2 S

m0m1
≤ , due to its conjugacy property, we use an inverse-gamma

distribution:

æ2 S

m0m1

≤ ª IG

°
¥≤0, s

≤
0
¢

(2.7.5)

2.7.2 Imputation Approach for Finite Population E�ects

So far we have defined superpopulation e�ects and, as seen in section 2.6, a model-

based estimation can be accomplished by expressing them as a function of the pa-

rameters of the model for potential outcomes in (2.6.2). We extend here the bayesian

procedure discussed in section 1.7.2 for the estimation of the finite population e�ects.

Relying on both homogeneity assumptions 9 and 10, we show how estimation of

the finite population e�ects can be accomplished.

It is worth reminding that we denote with (m0,m1,c) all e�ects within the in-

dividual principal stratum S

m0m1 with level of covariates being C
i j

= c, whereas

(m0,m1,n0,n1,c) implies the additional conditioning on the neighborhood principal

stratum nS

n0n1 . Furthermore, we will denote all individual e�ects with subscript i j .

Let f

n0n1
m0m1

(a | c) denote the predictive posterior distribution of the potential outcome

Y

i j

(a):

f

n0n1
m0m1

(a | c) = p

°
Y

i j

(a) | S

i j

= S

m0m1 ,nS

01
i j

= n1°n0,nS

1°ã1°ã

i j

= n

ã

ã+(1°n

ã

)(1°ã),C
i j

= c, O
¢

(2.7.6)

and f

n0n1
m0m1

(a | c,µk ) its conditional distribution evaluated at parameter values µ:
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f

n0n1
m0m1

(a | c,µk ) = p

°
Y

i j

(a) | S

i j

= S

m0m1 ,nS

01
i j

= n1°n0,nS

1°ã1°ã

i j

= n

ã

ã+(1°n

ã

)(1°ã),C
i j

= c,µk

¢

(2.7.7)

At each iteration k=1, . . . ,K of the MCMC, samples from the posterior distribution

of individual and finite population e�ects are drawn as follows:

1. For each unit, belonging to any superstratum [Sm0m1 ,nS

n0n1 ], i.e.

8i , j : S

k

i j

= S

m0m1 ,nS

k

i j

= S

n0n1 :

a) Missing potential outcomes, Y

i j

mi s = Y

i j

(1° A

obs

j

), are imputed from their

conditional distribution:

Y

i j

k,mi s ª f

n0n1
m0m1

°
1° A

obs

j

| C
i j

,µk

¢

b) Individual neighborhood principal causal e�ect is computed as:

‡
nPC E

k

i j

=
°
2A

obs

j

°1
¢°

Y

i j

obs °Y

i j

k,mi s

¢

Let us now turn to the analysis of mechanisms. As already discussed, for MN-

invariant principal strata of the type [Smm ,nS

nn], i.e. never-takers and always-

takers with no compliers in the neighborhood, pure encouragement e�ects coincide

with the overall e�ect of the clustered encouragement, i.e. neighborhood principal

causal e�ects, also called neighborhood dissociative causal e�ects in these strata.

Therefore, for units belonging to these type of superstrata, i.e. 8i , j : S

k

i j

= S

mm ,nS

k

i j

=

S

nn with m 2 {0,1} and n 2 [0,1], we can write Å
PEE

i j

= ‡
nDC E

i j

= ‡
nPC E

i j

. On the

contrary, for superstrata with M

i j

(0) 6= M

i j

(1) or N

i j

(0) 6= N

i j

(1), the overall e�ect

of the encouragement does not coincide with pure encouragement e�ects, including

in general individual treatment e�ect and spillover mediate encouragement e�ect.

Indeed, in these principal strata potential outcomes of the type Y

i j

(a, M

i j

(ã), N

i j

(ã))

with a 6= ã are not observable, hence pure encouragement e�ects are not identified

from the observed data. Nevertheless, if assumption 9 holds with ã 2 {0,1}, by virtue

of theorem 3 estimation of pure encouragement e�ect can be accomplished using
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the observed data of MN-invariant units. Note that individual pure encouragement

e�ects cannot be identified, however their computation underpins the estimation of

the corresponding finite population e�ects within principal strata. The estimation

of PEE

ã

i j

requires for each unit two potential outcomes: Y

i j

(0, M

i j

(ã), N

i j

(ã)) and

Y

i j

(1, M

i j

(ã), N

i j

(ã)). Although information on one of them could be given by the

observed data of units belonging to the same superstratum, theorem 3 involves an

equivalence with MN-invariant superstrata of the mean di�erence between the two

potential outcomes. Therefore, intuitively, both quantities should be drawn from

posterior distributions of the corresponding MN-invariant superstratum.

3. For each unit belonging to superstratum [Sm0m1 ,nS

n0n1 ], i.e.

8i , j : S

k

i j

= S

m0m1 ,nS

k

i j

= S

n0n1 :

a) Both potential outcomes Y

i j

k

°
a, M

i j

(ã), N

i j

(ã)
¢

with a = 0,1 are imputed

from the likelihood distribution of Y

i j

(a) for the MN-invariant superstra-

tum [Smm ,nS

nn] with m = m

ã

and n = n

ã

, given his values of covariates

C
i j

:

Y

i j

k

°
a, M

i j

(ã), N

i j

(ã)
¢

:

8
>><

>>:

Y

i j

k

°
a, M

i j

(0), N

i j

(0)
¢
ª f

n0n0
m0m0

(a | C
i j

,µk ) if ã = 0

Y

i j

k

°
a, M

i j

(1), N

i j

(1)
¢
ª f

n1n1
m1m1

(a | C
i j

,µk ) if ã = 1

b) Individual pure encouragement e�ects are computed:

Å
PEE

k,ã
i j

= Y

i j

k

°
1, M

i j

(ã), N

i j

(ã)
¢
°Y

i j

k

°
0, M

i j

(ã), N

i j

(ã)
¢

With regard to spillover mediated e�ects for units with N

i j

(0) 6= N

i j

(1) and hence

nS

01
i j

6= 0, we should distinguish between those where the individual treatment up-

take is not a�ected by the encouragement, i.e. M

i j

(0) = M

i j

(1), from those where

it is a�ected. For the former results depicted in corollary 2, whereas for the latter

theorem 4.

4. For each unit belonging to an M-invariant superstratum of the type [Smm ,nS

n0n1 ],
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that is never-takers and always takers with n0 6= n1, individual spillover medi-

ated e�ects are computed as follows:

Å
sME

k,1°ã

i j

= ‡
nPC E

k

i j

° Å
PEE

k,ã
i j

8i , j : S

k

i j

= S

mm ,nS

k

i j

= S

n0n1

5. For each unit belonging to a non-M-invariant superstratum of the type [Sm0m1 ,nS

n0n1 ],

namely compliers with m0 6= m1 and n0 6= n1, i.e. 8i , j : S

k

i j

= S

m0m1 ,nS

k

i j

= S

n0n1 :

a) Y

i j

k

°
a, M

i j

(ã), N

i j

(a)
¢

with a = 0,1 are imputed from the likelihood dis-

tribution of Y

i j

(a) for the M-invariant superstratum [Smm ,nS

n

0
0n

0
1 ] with

m = m

ã

and, depending on which of the two assumption 10.A or 10.B

holds, with n

0
0 = n0 and n

0
1 = n1 or n

0
1 °n

0
0 = n1 °n0, given his values of

covariates C
i j

:

Y

i j

k

°
a, M

i j

(ã), N

i j

(a)
¢

:

8
>>>>>>>>>><

>>>>>>>>>>:

Y

i j

k

°
a, M

i j

(0), N

i j

(a)
¢
ª f

n0n1
m0m0

(a | C
i j

,µk ) if 10.A holds with ã = 0

Y

i j

k

°
a, M

i j

(0), N

i j

(a)
¢
ª f

n

0
0n

0
1

m0m0
(a | C

i j

,µk ) with n

0
1 °n

0
0 = n1 °n0 if 10.B holds with ã = 0

Y

i j

k

°
a, M

i j

(1), N

i j

(a)
¢
ª f

n0n1
m1m1

(a | C
i j

,µk ) if 10.A holds with ã = 1

Y

i j

k

°
a, M

i j

(1), N

i j

(a)
¢
ª f

n

0
0n

0
1

m1m1
(a | C

i j

,µk ) with n

0
1 °n

0
0 = n1 °n0 if 10.B holds with ã = 1

b) Individual net encouragement e�ect is then given by:

Å
N EE

k,ã
i j

= Y

i j

k

°
1, M

i j

(ã), N

i j

(1)
¢
°Y

i j

k

°
0, M

i j

(ã), N

i j

(0)
¢

c) Since net encouragement e�ect consists of the spillover mediated e�ect

and pure encouragement e�ect, as proven in (2.4.9), spillover mediated

e�ects for these units can be obtained as follows:

Å
sME

k,1°ã

i j

= Å
N EE

k,ã
i j

° Å
PEE

k,ã
i j

6. Individual e�ects obtained in the previous steps are averaged out for each
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individual principal stratum S

m0m1 and within levels of covariates:

Å
PC E

k

(m0,m1,c)= 1

|S m0m1
c

|
X

i , j :Sk

i j

=S
m0m1

c

‡
nPC E

k

i j

Å
PEE

k,ã
(m0,m1,c)= 1

|S m0m1
c

|
X

i , j :Sk

i j

=S
m0m1

c

Å
PEE

k,ã
i j

Å
sME

k,1°ã

(m0,m1,c)= 1

|S m0m1
c

|
X

i , j :Sk

i j

=S
m0m1

c

Å
sME

k,1°ã

i j

where S
m0m1

c

= {i , j : S

k

i j

= S

m0m1 ,C
i j

= c}. Again if the number of covariates

is large and/or they are continuous some merging or marginalization across

certain covariates is needed.

7. A last step is required for the estimation of individual treatment mediated

e�ects for units with M

i j

(0) 6= M

i j

(1), i.e. compliers S

i j

= S

0,1:

i

É
T ME

k,1
(01,c) = Å

PC E

k

(01,c)° Å
sME

k,1°ã

(0,1,c)° Å
PEE

k,ã
(0,1,c)

These steps, for either assumption, are carried out repeatedly to account for the

uncertainty in the imputation, resulting in the posterior distribution of the causal

estimands. Finally, a summary statistics of these distributions, such as the mean or

the median, can provide us with point estimates.

2.8 Application to the Illustrative Example:
Simulation Study

In this section we apply our results to the aforementioned hypothetical study exam-

ple. To investigate the performance of the proposed methodology and the bayesian

estimation procedure, we conducted a simulation study based on a data generating

model that partially mimics the real clustered encouragement experiment under-

taken by Banarjee et al. (2010). As already said, we are going to focus on the e�ect

of a mobile immunization camp on tuberculosis through a change in neighbors’ BCG
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vaccine uptake, referred here as spillover mediated e�ect. We have already explained

in section 2.2 the variables used in the analysis. Suppose now that J = 200 villages

are randomly assigned to either the active or control encouragement intervention,

with N

j

= 508 j observations in each village. We should remember that observa-

tions are healthy and unvaccinated children aged 0-18 months at baseline. We will

make here some assumptions about the characterization of principal strata, that

will in turn underpin further modeling and identifying assumptions. We posit a

simplified setting where the compliance behavior of the study population hinges

on few individual and cluster characteristics: sex, the level of parents’ education,

the distance of the village from the closest public health center, presence of family

members in the child’s daily life, knowledge and cultural beliefs about vaccination.

In this simulation scenario, always-takers are those children belonging to educated

families and/or living in villages that are not far from public health facilities . On

the contrary, never-takers and compliers belong to less educated families and live

in villages that are farther form urban center . The di�erence between these two

principal strata relies on attitude towards immunization and sex. In fact, we can as-

sume that never-takers belong to families characterized by resistance to vaccination

due to lack of knowledge on the e�cacy of immunization, fear of side e�ects or even

to religious objections to vaccines. Moreover, gender di�erences in immunization

status have been widely reported in India. Due to this gender discrimination, we

can fairly think that females are more likely to never get vaccinated by their parents,

that is to be never-takers. Suppose now that we only observe five individual and

cluster characteristics for each study child: level of family education, sex, religion,

level of family presence in the child’s life, and distance of the village from the closest

public health facility. Conversely, we do not have information neither on the number

of infected subjects in the study villages nor on the level of knowledge and attitude

of the families towards vaccination not related to religion. Therefore, the analysis

will be based only on the five observed variables.
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We will further assume that the unobserved factors that are responsible of the dif-

ferent immunization behavior of never-takers and compliers, i.e. unobserved factors

related to the family’s attitude towards vaccination, do not a�ect neither directly

nor indirectly the disease outcome, i.e. bacterial load. For instance, we can as-

sume that, despite of di�erence in knowledge and cultural beliefs about vaccination,

never-takers and compliers have a similar behavior in terms of preventive measures

and treatment uptake if infected with and without immunization camp. Conversely,

we can suppose that always-takers are more prone to take preventive measures and

also will get treated whenever infected.

In view of all the foregoing considerations, we can make the identifying assump-

tion 9 and 10.A, both with ã = 0, that is we can assume that, conditioning on the five

observed covariates, pure encouragement e�ect PEE

0 and spillover e�ect sME

1 only

depend on M

i j

(0) together with the presence in the neighborhood of always-takers

and of the overall type of neighborhood, respectively. Furthermore, we can hypothe-

size that the protective e�ect of immunization camps through any type of mechanism

are likely to decrease with the presence of alway-takers in the surroundings, given

that this represents the immunization coverage without the immunization camp. In

the present simulation study, we postulate the following realistic scenario where the

expression of the e�ects within each super-stratum reflects the posited assumptions:

PEE

0(1,1,nS

11,nS

11 +nS

01,c) =°1+0.5nS

11

PEE

0(0,m,nS

11,nS

11 +nS

01,c) =°2+nS

11
m = 0,1

sME

1(1,1,nS

11,nS

11 +nS

01,c) =°2nS

01 +nS

01
nS

11

sME

1(0,m,nS

11,nS

11 +nS

01,c) =°5nS

01 +2nS

01
nS

11
m = 0,1

iTME

1(0,1,nS

11,nS

11 +nS

01,c) =°6+nS

01 +1nS

11

(2.8.1)

Pure encouragement e�ect for always-takers is assumed to be given by an increased

preventive and therapeutic behavior in the neighborhood, due to the presence of
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an immunization camp. For never-takers and compliers pure encouragement e�ect

is assumed higher because these subjects experience behavioral changes also for

themselves. With regard to spillover mediated e�ect, always-takers are more likely

to prevent contact with infected people, given the same type of neighborhood, and

thus the protective e�ect of neighbors’ being vaccinated is smaller than for compliers

and never-takers. Finally, the greatest e�ect of immunization camps is assumed to

the one through the individual vaccine receipt, that is the individual treatment

mediated e�ect for compliers.

2.8.1 Data Generating Model

We consider a simplified setting with five observed variables, X1 i j

for education,

X2 i j

for sex (1 if female, 0 if male), X3 i j

for religion (1 if Islamic, 0 if others), X4 i j

for the level of family presence (1 if low, 0 if high), and W

j

for the distance of the

village from the closest public health facility, with the following distributions:

X1 i j

ª di scr.U (10) X2 i j

ª ber (0.6) X3 i j

ª ber (0.3̄)

X4 i j

ª ber (0.4) W

j

ª di scr.U (10)

The five variables are collected in the covariates vector C
i j

=
°
X1 i j

, X2 i j

, X3 i j

, X4 i j

,W

j

¢
.

The clustered encouragement, i.e. the mobile immunization camp, is assumed to be

assigned to clusters with probability equal to 0.5, hence A

j

is distributed as:

A

j

ª ber (0.5)

Moreover, we have considered a generating model for individual principal strata

membership that reflects the assumed characterization of individual principal strata:
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S

i j

=

8
>>>>>><

>>>>>>:

S

00 if S

n

i j

¥ 2.3+3.5X1 i j

°3X2 i j

°3.5X3 i j

°2X4 i j

+0.5W

j

+a0n j

+V

i j

∑ 0

S

01 if S

n

i j

∏ 0 and S

c

i j

¥°1.5+5.1X1 i j

°0.3X2 i j

°1X3 i j

+1X4 i j

°2.5W

j

+a0c j

+U

i j

∑ 0

S

11 if S

n

i j

∏ 0 and S

c

i j

∏ 0

(2.8.2)

where U

i j

and V

i j

are independently distributed as N (0,1) . With respect to equation

(2.6.1) there are only random intercepts a0n j

and a0c j

, with a1n j

= 0 8 j = 1, . . . , J

and a1c j

= 0 8 j = 1, . . . , J . The outcome follows a normal distribution. Below is the

outcome generation model, mirroring the assumed e�ects in (2.8.1):

Y

i j

(a) | S

i j

= S

00,nS

01
i j

,nS

11
i j

,C
i j

=2.1°X1i j

+2W

j

°2a +1nS

11
i j

a °5nS

01
i j

a +2nS

10
i j

nS

11
i j

a +b0 j

+≤
i j

Y

i j

(a) | S

i j

= S

11,nS

01
i j

,nS

11
i j

,C
i j

=0.6°X1i j

+2W

j

°1a +0.5nS

11
i j

a °2nS

01
i j

a +1nS

10
i j

nS

11
i j

a +b0 j

+≤
i j

Y

i j

(a) | S

i j

= S

01,nS

01
i j

,nS

11
i j

,C
i j

=2.1°X1i j

+2W

j

°6a +2nS

11
i j

a °4nS

01
i j

a +2nS

10
i j

nS

11
i j

a +b0 j

+≤
i j

≤
i j

ª N (0,1)

(2.8.3)

With respect to equation (2.6.2) we can see that we have made the following

choices: f1(·), f2(·), f3(·) and f4(·) are all identity functions; there are no interactions

between A

j

and covariates, leading to e�ects that are independent of covariates

levels; there is only a random intercept b0 j

with b1 j

= 0 8 j = 1, . . . , J , and the variance

of the individual random noise does not depend on the individual principal stratum.

We considered two scenarios, a simplified one without random e�ects and the second

one where random e�ects are present in all models.

Scenario 1: Absence of Random E�ects in the Outcome Model

The first scenario simplifies the general setting in that there are no cluster unmea-

sured factors a�ecting the individual outcome, that is random e�ects are absent

from the outcome model, whereas they are present in the compliance behavior as

follows:
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b0 j

= 0

a0n j

ª N

°
0,0.25

¢

a0c j

ª N

°
0,0.25

¢
8 j = 1, . . . , J

(2.8.4)

In the same way as in chapter 1, the two random e�ects, a0n j

and a0c j

, are inde-

pendent. This will ease the computation of the estimation procedure.

Analysis Model

In the analysis we then use the following individual principal strata model

S

i j

=

8
>>>>>><

>>>>>>:

S

00 if S

n

i j

¥Æ0n

+Æ1n

X1 i j
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with a0n j

ª N

°
0,æ2

a

n

¢
and a0c j

ª N

°
0,æ2

a

c

¢
, and the following outcome model

Y
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,nS
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,nS

11
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=ØS
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ª N

°
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≤

¢

Both are well specified according to the data generating models. The specification

of the prior distribution has a similar structure to the one of the previous chapter

in section 1.7.1, with normal distributed coe�cients
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setting µØ0 = µn

Æ0 = µc

Æ0 = 0 and §Ø0 = §n

Æ0 = §c

Æ0 = 10 I, and the variance of the

random e�ects following an inverse -gamma distribution, æ2
a

n

ª IG

°
¥n

0 , s

n

0

¢
and æ2

a

c

ª

IG

°
¥c

0, s

c

0

¢
, where we set ¥n

0 = ¥c

0 = 0.01 and s

n

0 = s

c

0 = 0.01. In contrast to the prior

specification of chapter 1, here the outcome model lacks any random e�ect but
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requires the specification of the variance of the random noise: æ2
≤ ª IG

°
¥≤0, s

≤
0

¢
, with

¥≤0 = s

≤
0 = 0.01.

Scenario 2: Presence of Random E�ects in the Outcome Model

The second scenario generalizes the first one by including random e�ects in the

outcome models, as specified in section 2.6:

b0 j

= 0.5u

j

a0n j

= 0.5u

j

a0c j

= 0.5u

j

u

j

ª N

°
0,1

¢
8 j = 1, . . . , J (2.8.5)

Here the three random e�ects are linked together by the random variable u

j

. Cluster

unmeasured factors, represented by u

j

, a�ecting both the individual outcome and

the compliance behavior, can be, for instance, the level of infection or the level of

immunization in the cluster, the crowdedness, the absenteeism of health workers or

the lack of su�cient of vaccine supplies in the nearest public health facility.

Analysis Model

In the analysis phase, models are changed with respect to the previous scenario by

adding the random e�ects in the outcome model
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and specifying the three random e�ects as in (2.6.6). Prior specification follows

section 2.7.1, with normal distributed coe�cients
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setting µØ0 = µn

Æ0 = µc

Æ0 = 0 and §Ø0 = §n

Æ0 = §c

Æ0 = 10 I, and the variance of the
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Table 1: Individual Principal Strata Rates and Neighborhood Characterization:
mean and standard deviation of 500 Simulations

Principal Strata
Rates

P (S

i j

= S

m0m1 )

Compliers in the
Neighborhood
E

£
nS

01
i j

| S

m0m1
§

Always-takers in
the Neighborhood

E

£
nS

11
i j

| S

m0m1
§

Principal Strata Mean (SD) Mean (SD) Mean (SD)
NEVER-TAKERS 0.4219 (0.0069) 0.2527 (0.0088) 0.3144 (0.0081)
ALWAYS-TAKERS 0.3151 (0.0082) 0.2368 (0.0085) 0.3422 (0.0086)

COMPLIERS 0.2630 (0.0089) 0.3110 (0.0103) 0.2836 (0.0086)

random noise æ2
≤ ª IG

°
¥≤0, s

≤
0

¢
, with ¥≤0 = s

≤
0 = 0.01.

2.8.2 Results

The generating process in both scenarios gives the following probabilities:

P (S

i j

= S

00) = 0.26 P (S

i j

= S

01) = 0.42 P (S

i j

= S

11) = 0.32

These probabilities were empirically computed with 500 simulations using the data

generating model (2.8.2) with random e�ects as in (2.8.4) of scenario 1. Scenario 2

would yield the same results, given that the two random e�ects a0n j

and a0c j

, even

if not independent, have the same variance (=0.25) as those in scenario 1. Table

1 shows these individual principal strata rates as well as the average proportion of

compliers and always-takers in the neighborhood, i.e. nS

01
i j

and nS

11
i j

.

500 data sets were generated from the model of each scenario. The bayesian

estimation procedure outlined in section 2.7 was used to estimate the e�ects of

interest. For a convergence check three chains were run for the first simulation of

each model and only one chain was run for the subsequent simulations. Each chain

consisted of 6000 iterations and 1000 of these were discarded as burn-in. Each model

passed the convergence diagnostics of Gelman & Rubin (1996).

Scenario 1: Absence of Random E�ects in the Outcome Model
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Table 2: Estimated E�ects within Individual Principal Strata: Simulation Results of Scenario 1

PEE0 sME1

Principal Strata Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval
NEVER-TAKERS -1.7278 -1.7276 (0.0813) [-1.8877,-1.5693] -0.7182 -0.7182 (0.0818) [-0.8794,-0.5589]

ALWAYS-TAKERS -0.8336 -0.8339 (0.0909) [-1.0130,-0.6570] -0.1544 -0.1543 (0.0883) [-0.3380, 0.0078]

COMPLIERS -1.7330 -1.7328 (0.0924) [-1.9147,-1.5531] -0.7831 -0.7830 (0.1044) [-0.9951,-0.5862]

ALL -1.4767 -1.4766 (0.0649) [-1.6056,-1.3514] -0.5803 -0.5802 (0.0677) [-0.7317,-0.4665 ]

iTME1 PCE

Principal Strata Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval
NEVER-TAKERS ° -2.4466 -2.4465 (0.0349) [-2.5157,-2.3790]

ALWAYS-TAKERS ° -0.9984 -0.9983 (0.0308) [-1.0602,-0.9396]

COMPLIERS -3.4204 -3.4205 (0.0587) [-3.5347,-3.3049] -5.9422 -5.9419 (0.0451) [-6.0313,-5.8549]

ALL -1.0046 -1.0045 (0.0189) [-1.0427,-0.9686] -3.0784 -3.0783 (0.0373) [-3.1521,-3.0061]
Means, medians, standard deviations and 95% intervals of the posterior distribution of pure encouragement e�ects
PEE0, spillover mediated e�ect sME1, individual treatment mediated e�ect iTME1 and principal causal e�ects, are
presented by individual principal strata. The last block of rows concerns the estimated e�ect in the whole population.
All summary statistics are the average of the corresponding summary statistics obtained in 500 simulations.

Summary statistics of the posterior distributions of the estimated e�ects by in-

dividual principal strata are reported in Table 2. Pure encouragement e�ects and

spillover mediated e�ects are greater for never-takers and compliers and the di�er-

ence between these two principal strata is due to the di�erent neighborhood. In

fact, these e�ects are generated to be the same for never-takers and compliers with

the same type of neighborhood (see (2.8.1)). As we can see in Table 1, never-

takers have on average a slightly higher proportion of always-takers and a slightly

lower proportion of compliers in the neighborhood, resulting mainly in a barely

lower spillover mediated e�ect (sME(0,0): mean: -0.72, 95% interval: [-0.88,-0.56];

118



Table 3: Frequentist Performance of Bayesian Estimation Procedure for Causal
Estimands in Sceanario 1 (500 simulations)

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

NEVER-TAKERS
PEE0 93.5354 93.3333 0.0012 0.0014 -0.0693 -0.0791 0.0066 0.0066
sME1 94.9495 94.9495 -0.0012 -0.0012 0.1706 0.1699 0.0067 0.0067
PCE 94.1414 94.3434 -0.0006 -0.0005 0.0237 0.0216 0.0012 0.0012

ALWAYS-TAKERS
PEE0 95.3535 95.5556 0.0104 0.0101 -1.2290 -1.2025 0.0084 0.0084
sME1 94.7475 94.3434 -0.0026 -0.0025 1.6824 1.6404 0.0078 0.0078
PCE 94.5455 94.5455 -0.0024 -0.0023 0.2370 0.2356 0.0010 0.0010

COMPLIERS
PEE0 93.7374 93.5354 0.0050 0.0052 -0.2865 -0.2979 0.0086 0.0086
sME1 94.1414 94.1414 -0.0051 -0.0050 0.6523 0.6457 0.0109 0.0109

iTME1 91.9192 92.1212 0.0038 0.0037 -0.1096 -0.1086 0.0035 0.0035
PCE 94.9495 95.1515 -0.0022 -0.0019 0.0364 0.0320 0.0020 0.0020
ALL
PEE0 95.3535 95.3535 0.0053 0.0054 -0.3608 -0.3655 0.0042 0.0042
sME1 95.5556 95.9596 -0.0033 -0.0032 0.5708 0.5606 0.0046 0.0046

iTME1 93.3333 93.1313 0.0014 0.0015 -0.1382 -0.1462 0.0004 0.0004
PCE 95.7576 95.5556 0.0014 0.0013 0.0458 0.0411 0.0014 0.0014

sME(0,1): mean: -0.78, 95% interval: [-0.99,-0.59])). Although always-takers are

more likely to be protected against infection thanks to preventive measure taken by

their families, they still seem to benefit from the behavioral changes of the overall

community responding to the presence of the immunization camp (PEE(1,1): mean:

-0.83, 95% interval: [-1.01,-0.66], while there is little evidence that the camp a�ects

always-takers through a change in the vaccination coverage of the village (sME(1,1):

mean: -0.15, 95% interval: [-0.33,0.00]). This can occur, for example, if always-taker

children are more exposed to adults than other children. Nevertheless, overall there

is evidence of a spillover mediated e�ect in the population (sME: mean: -0.58, 95%

interval: [-0.73,-0.47]).The greater e�ect is the individual treatment mediated e�ect

for compliers (mean: -3.42, 95% interval: [-3.53,-3.30]). The individual treatment
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mediated e�ect in the population falls by more than a third due to a proportion

of 0.26 of compliers. The sum of the three e�ects gives a moderate average total

e�ect of the mobile immunization camp on TB bacterial load (ITT: mean: -3.08,

95% interval: [-3.15,-3.00]).

Table 3 shows frequentist performance of the bayesian estimation procedure when

the data generating process follows scenario 1. The performance is measured by the

coverage (proportion of the time that the interval contains the true value) of the

95% credible interval using a normal approximation of the posterior distribution,

the coverage of the quantile-based 95% credible interval, and three measures of the

accuracy of both the mean and the median as parameter estimates, the bias, the

percentage relative bias and the mean square error (MSE). Coverage rates are quite

close to the nominal value of 95% and both point estimates, the mean and the

median, show very little bias with a maximum MSE of 0.01. Therefore, even with

noninformative priors, the Bayesian estimates have good frequentist properties.

Scenario 2: Presence of Random E�ects in the Outcome Model

Summary statistics of the posterior distributions of the estimated e�ects are re-

ported in Table 4. The simulation results for the Bayesian estimates of scenario

2 are similar to those of scenario 1. Both the mean and the median of the pos-

terior distributions of all causal estimands are quite close to those in in Table 2.

In contrast, the presence of a higher level of uncertainty, given by the presence of

the random e�ect in the outcome model, results in bigger standard deviations and

larger confidence intervals.

Table 5 shows frequentist performance of the bayesian estimation procedure when

the data generating process follows scenario 2. The actual coverage probability is in

general noticeably less than the nominal level, with an average across all e�ects of

82.8%, a maximum of 94.05% and a minimum of 78.17%. The bias of point estimates

is still quite small but considerably larger than in scenario 1. In particular, the

bias that has increased the most is the one for spillover mediated e�ects estimates.
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Table 4: Estimated E�ects within Individual Principal Strata: Simulation Results of Scenario 2

PEE0 sME1

Principal Strata Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval
NEVER-TAKERS -1.7906 -1.7911 (0.1351) [-2.0540,-1.5248] -0.6287 -0.6282 (0.1272) [-0.8790,-0.3809]

ALWAYS-TAKERS -0.9580 -0.9587 (0.1454) [-1.2412,-0.6710] -0.0889 -0.0883 (0.1383) [-0.3619, 0.1801]

COMPLIERS -1.7896 -1.7902 (0.1404) [-2.0636,-1.5136] -0.6936 -0.6933 (0.1408) [-0.9703,-0.4188]

ALL -1.5571 -1.5577 (0.1217) [-1.7940,-1.3173] -0.4966 -0.4961 (0.1159 ) [-0.7251,-0.2709]

iTME1 PCE

Principal Strata Mean Median (SD) 95% Interval Mean Median (SD) 95% Interval
NEVER-TAKERS ° -2.4193 -2.4194 (0.0395) [-2.4962,-2.3417]

ALWAYS-TAKERS ° -1.0469 -1.0468 (0.0464) [-1.1379,-0.9563]

COMPLIERS -3.4329 -3.4330 (0.0556) [-3.5417,-3.3240] -5.9162 -5.9163 (0.0492) [-6.0121,-5.8196]

ALL -1.0103 -1.0102 (0.0175) [-1.0447,-0.9763] -3.0640 -3.0640 (0.0329) [-3.1282,-2.9995]
Means, medians, standard deviations and 95% intervals of the posterior distribution of pure encouragement e�ects
PEE0, spillover mediated e�ect sME1, individual treatment mediated e�ect iTME1 and principal causal e�ects, are
presented by individual principal strata. The last block of rows concerns the estimated e�ect in the whole population.
All summary statistics are the average of the corresponding summary statistics obtained in 500 simulations.

Nevertheless, MSE is still small for all causal estimands, with a maximum of 0.035.

In summary, even if the increased level of uncertainty of scenario 2 has a�ected the

accuracy of Bayesian estimates, the estimation procedure has still good frequentist

properties.
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Table 5: Frequentist Performance of Bayesian Estimation Procedure for Causal
Estimands of Scenario 2 (500 simulations)

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

NEVER-TAKERS
PEE0 89.6825 89.4841 -0.0617 -0.0622 3.5923 3.6187 0.0261 0.0262
sME1 86.9048 86.3095 0.0885 0.0889 -12.1749 -12.2408 0.0263 0.0263
PCE 86.3095 86.3095 0.0267 0.0266 -1.0936 -1.0898 0.0029 0.0029

ALWAYS-TAKERS
PEE0 86.3095 86.9048 -0.1138 -0.1145 13.6182 13.6993 0.0350 0.0351
sME1 93.4524 93.4524 0.0629 0.0635 -37.6908 -38.1678 0.0223 0.0224
PCE 78.1746 78.5714 -0.0509 -0.0508 5.0923 5.0815 0.0054 0.0054

COMPLIERS
PEE0 90.6746 90.8730 -0.0519 -0.0524 3.0054 3.0376 0.0260 0.0261
sME1 89.8810 89.4841 0.0845 0.0848 -10.7936 -10.8372 0.0284 0.0284

iTME1 94.0476 94.8413 -0.0087 -0.0088 0.2612 0.2624 0.0033 0.0033
PCE 90.2778 90.0794 0.0238 0.0237 -0.4020 -0.3997 0.0035 0.0035
ALL
PEE0 88.2937 88.0952 -0.0729 -0.0735 4.9230 4.9617 0.0226 0.0227
sME1 88.2937 88.4921 0.0805 0.0810 -13.9626 -14.0437 0.0209 0.0210

iTME1 92.4603 92.4603 -0.0039 -0.0038 0.3909 0.3840 0.0004 0.0004
PCE 91.0714 91.0714 0.0037 0.0037 -0.1220 -0.1213 0.0015 0.0015
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2.9 Concluding Remarks

This chapter extends the work presented in the previous one in that it is focused

on a deeper investigation of how a clustered encouragement exerts its e�ect. The

aim is to disentangle three causal mechanisms that may arise: through the individ-

ual uptake of the treatment, through the uptake of the treatment by other units of

the same cluster, and through other processes not related to the treatment. In the

decision-making process of the design phase, incorporating evidence on the diverse

mechanisms, ensuing from the implementation of an intervention, can be crucial for

increasing its cost-e�ectiveness. The first mechanism, here called individual treat-

ment mediated e�ect, consists of the product of the e�ect of the encouragement on

the treatment receipt and the e�ect of the treatment on the outcome of interest. This

is the primary scope of the intervention. If the e�ect of the treatment is estimated

to be high, but the encouragement is not much e�ective in achieving its main goal of

increasing the treatment uptake (i.e. few compliers), the essential component of the

intervention has to be improved. For example, if health workers hired to vaccinate

children in the immunization camps turn out to be unreliable, not all the families

that were convinced to vaccinate their children by the program promoters could ac-

tually get the vaccine. In this case, the fundamental element of the intervention, i.e.

the realization of vaccination, is inadequate. The mechanism of interference, here

referred to as spillover mediated e�ect, is of particular interest in resource limited

settings, because, if beneficial, it can reinforce the individual treatment e�ect (for

compliers) and it can also be a contribution for those whose treatment behavior

is not a�ected by the encouragement (for never-takers and always-takers). If this

e�ect is deemed substantial, one may, for example, think of an immunization camp

supplied with fewer vaccines or fewer workers than necessary, given that even those

who will not get the chance to receive the vaccine will get benefit from those who

will. Even if this spillover e�ect is detrimental for those who do not get treated, it

is useful to estimate the severity of such mechanism, because it provides insight into
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what is narrowing down the overall e�ect and it urges to take measures to prevent

this nuisance mechanism. Elucidating the e�ect of the clustered encouragement

through interference is also important for predicting the impact of the program in

its scale-up phase. The third mechanism, called pure encouragement e�ect, may

play an important role when the intervention intrinsically involves a component

that raises a general awareness on the issue related to the outcome and eventually

promotes as a solution, not only the uptake of the specific treatment that is the

focus of the intervention, but also other behavioral changes that may e�ective. An

understanding of the e�cacy of such component, net of the e�ect on the treatment

uptake, can shed light on the possibility of improving the intervention by enhancing

other elements that were not emphasized in the first place.

It is then clear how evidence-based policy demands that much greater priority

is given to research that more reliably and relevantly identifies the potential mech-

anisms arising from public interventions, including information on heterogeneities

of such mechanisms across subpopulations. The limited evidence on such causal

mechanisms points to important gaps in evidence-based research. This thesis, and

in particular this chapter, is an attempt to fill this gap. The framework presented

in the previous chapter has been extended with the neighborhood principal strat-

ification approach for the purpose of further disentangling the spillover mediated

e�ect from the pure encouragement e�ect. The proposed homogeneity assumptions,

that allow to identify such e�ects, take account of both individual and neighborhood

compliance behavior, encoded by individual and neighborhood principal strata, i.e.

superstrata. The two assumptions enables an extrapolation of information on pure

encouragement e�ects from MN-invariant superstrata and on spillover mediated

e�ects from M-invariant superstrata, respectively. As in the first chapter, our for-

malization of identifying assumptions allows a flexible specification of the principal

strata involved in the homogeneity requirements, resulting in the identification of

a combination of the three e�ects PEE

ã , sME

1°ã and iTME

1°ã , with ã = 0 or ã = 1.
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The plausibility of each homogeneity assumptions has to be determined on a case-

by-case basis, according to the prior knowledge on the application, and with the

help of information on the similarity of principal strata that can be retrieved from

the observed data.

The Bayesian estimation procedure accommodates an imputation-based approach

where causal estimands are imputed on the basis of the hypothesized homogene-

ity assumptions. Simulation results show good frequentist performances for the

Bayesian estimates, with an accuracy loss when the outcome model includes cluster-

specific random terms. However, it is important to understand that these results

have been obtained in two specific scenarios, with a particular sample size and spe-

cific values of the parameters. Hence, future work must be done to explore the

extent to which the performance of our Bayesian estimation procedure depends on

the sample size, the size of the e�ects and the variance of random terms. Likewise,

future research can potentially address the di�culty in the specification of the func-

tional form of the outcome model using a semi-parametric estimation, where the

functions f1(·), f2(·), f3(·) and f4(·) are unknown. Another direction is to include

a sensitivity analysis to assess the robustness of conclusions to departure from the

homogeneity assumptions.

In any case, the framework proposed in this work, with the inclusion of neigh-

borhood principal strata, provides a guideline to future research on spillover e�ects.

As in the first chapter we used the individual treatment mediated e�ect to estimate

the average treatment e�ect for the subpopulation of compliers (CACE), a natural

direction for future research includes using spillover mediated e�ects to estimate the

spillover e�ect of the treatment taken by other units for the subpopulation whose

neighbors are a�ected by the encouragement. Moreover, even though an application

from the vaccination field has been used to motivate the methodology proposed in

this chapter, its use transcends beyond that specific context and is applicable to any

clustered encouragement design.
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Furthermore, the framework proposed could be extended to encouragement de-

signs at individual level or to non-compliance settings where interference between

units of the actual treatment receipt could bias the estimation of the treatment

e�ect.
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Appendix

A 1 Identifying assumptions for Net Encouragement Effects and

Individual Treatment Mediated Effects

Here we provide a generalization of homogeneity assumptions (6) and (7) for net en-

couragement e�ects and individual treatment mediated e�ects presented in chapter

1. Each specification yields identification of N EE

ã(m0,m1,c) and the corresponding

i T ME

1°ã(m0,m1,c), with a specific value ã = 0,1 and for one of the two principal

strata with m0 6= m1. For each assumption we outline a comparison with sequential

ignorability presented in section 1.5.

Assumption 6b. Partial Stochastic Homogeneity of the Counterfactuals across

Principal Strata

Partial stochastic homogeneity of the counterfactuals across principal strata is said

to be assumed if for specific values of a, ã,m 2 {0,1} if the following conditional

independence holds:

Y

i j

(a,m) ?? M

i j

(1° ã) | M

i j

(ã) = m,C
i j

= c 8c 2C and 8i , j

If assumption (6b) holds for a certain value of m and a certain value of ã, with a = ã,

then the potential outcome Y

i j

(ã, M

i j

(ã)) is independent of M

i j

(1° ã), conditioning

on levels of covariates C
i j

and on strata where M

i j

(ã) = m. In this particular case

the assumption can be supported from the data if the distribution of outcomes

under encouragement status A

j

= ã, within levels of covariates, is the same for the

two strata that share the same potential value of the treatment receipt M

i j

(ã) = m.
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When a 6= ã, (6b) is an assumption on the distribution of potential outcomes of

the form Y

i j

(a, M

i j

(ã)), hence it is neither testable nor can find support in the data.

However if assumption 6b holds for a certain value of m and a certain value of ã,

with a = ã, we can also assume that it is valid for a 6= ã.

The main result that follows from assumption (6b) is that if it is deemed valid for

for specific values of ã, a and m, then the two principal strata that share the same

potential value M

i j

(ã) = m present equal conditional mean of the potential outcome

Y

i j

°
a, M

i j

(ã)
¢
:

E
£
Y

i j

°
a, M

i j

(ã)
¢
| M

i j

(ã) = m, M

i j

(1°ã) = m1°ã

,C
i j

= c
§
= E

£
Y

i j

°
1, M

i j

(ã)
¢
| M

i j

(ã) = M

i j

(1°ã) = m,C
i j

= c
§

(A 1.1)

Theorem 1b. If assumption (6b) holds for ã = 0, a = 1 and a specific value of

m 2 {0,1}, the net encouragement e�ect NEE

0(m,m1,c) for the stratum S

mm1 , with

M

i j

(0) = m and M

i j

(1) = m1 6= m, within levels of covariates, is given by:

NEE

0(m,m1,c) = E
£
Y

i j

°
1
¢
| S

i j

= S

mmC
i j

= c
§
°E

£
Y

i j

°
0
¢
| S

i j

= S

mm1 C
i j

= c
§

Consequently, the individual treatment mediated e�ect iTME

1(m,m1,c) for the stra-

tum S

mm1 , with M

i j

(0) = m and M

i j

(1) = m1 6= m, within levels of covariates, is given

by the following di�erence:

iTME

1(m,m1,c) = PCE(m,m1,c)°NEE

0(m,m1,c)

If assumption (6b) holds for ã = 1, a = 0 and a specific value of m = 0,1, the net

encouragement e�ect NEE

1(m0,m,c) for the stratum S

m0m , with M

i j

(0) = m0 6= m and

M

i j

(1) = m, within levels of covariates, is given by:

NEE

1(m0,m,c) = E
£
Y

i j

°
1
¢
| S

i j

= S

m0mC
i j

= c
§
°E

£
Y

i j

°
0
¢
| S

i j

= S

mmC
i j

= c
§

Consequently, the individual treatment mediated e�ect iTME

0(m0,m,c) for the stra-

128



tum S

mm1 , with M

i j

(0) = m0 6= m and M

i j

(1) = m, within levels of covariates, is given

by the following di�erence:

iTME

0(m0,m,c) = PCE(m0,m,c)°NEE

1(m0,m,c)

Proof. We show here the proof for the first part of the theorem relative to N EE

0. The

proof simply uses the implication of assumption (6b) shown in (A 1.1), concerning

homogeneity in terms of conditional mean:

NEE

0(m,m1,c) = E
£
Y

i j

°
1, M

i j

(0)
¢
| S

i j

= S

mm1 ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

mm1 ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(0)
¢
| S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(0)
¢
| S

i j

= S

mm1 ,C
i j

= c
§

= E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§
°E

£
Y

i j

(0) | S

i j

= S

mm1 ,C
i j

= c
§

where precisely the first equality, after the reported definition of N EE

0, makes use

of the homogeneity of counterfactual conditional mean across the two strata and

the second equality follows from the property of strata whose treatment uptake is

una�ected by the encouragement, that is Y

i j

°
1, M

i j

(0)
¢
= Y

i j

°
1, M

i j

(1)
¢
. Similar manip-

ulations demonstrate the second part of theorem.

Corollary 3. If assumption (6b) holds for ã = 0, a = 1 and 8m 2 {0,1}, the population

mean of the counterfactual Y

i j

(1, M

i j

(0)), within levels of covariates, can be estimated

using the following result:

E
£
Y

i j

°
1, M

i j

(0)
¢
| C

i j

= c
§
=

1X

m=0
E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)

so that the population NEE

0(c) is given by:

NEE

0(c) =
1X

m=0
E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)°

1X

m0=0

1X

m1=0
E
£
Y

i j

(0) | S

i j

= S

m0m1 ,C
i j

= c
§
º

m0m1 (c)

If monotonicity of compliers holds, the probability of defiers is zero, º10 = 0.
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Proof. The second term of NEE

0(c) is simply a weighted average of Y

i j

(0) = Y

i j

°
0, M

i j

(0)
¢

over the four principal strata. In the first term, E
£
Y

i j

°
1, M

i j

(0)
¢
| C

i j

= c
§
, the same

weighted average is performed but the change in the notation in the sums is used

to distinguish the two di�erent types of principal strata, so that:

E
£
Y

i j

°
1, M

i j

(0)
¢
| C

i j

= c
§
=

1X

m=0

1°mX

m1=m

E
£°

1, M

i j

(0)
¢
| S

i j

= S

mm1 C
i j

= c
§
º

mm1 (c)

=
1X

m=0
E
£
Y

i j

(1,m) | S

i j

= S

mm ,C
i j

= c
§ 1°mX

m1=m

º
mm1 =

1X

m=0
E
£
Y

i j

(1) | S

i j

= S

mm ,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)

where second equality follows from assumption (6b) and the consequent homogeneity

in (A 1.1) for the two strata sharing the same potential value M

i j

(0) = m. The last

equality uses the fact that Y

i j

(1,m) = Y

i j

(1) for strata where M

i j

(1) = m.

A similar result can be drawn for the counterfactual NEE

1(c).

Remark

Assumption (6b) di�ers from the assumption of conditional unconfoundedness of

the treatment receipt in (5) in a substantial way. (6b) assumes that, conditioning

on levels of covariates, a potential outcome of the form Y

i j

°
a, M

i j

(ã)
¢

only depends on

one of the two potential values of the treatment receipt, precisely the one that we

are assuming to keep fixed with the hypothetical intervention on M

i j

, namely M

i j

(ã),

and is instead independent of the other potential treatment receipt. On the contrary,

the second assumption of sequential ignorability (5) requires the independence of

the potential outcome from both potential values of the treatment receipt, so that

it makes possible to extrapolate information across strata relying on the observed,

instead of the potential, values of the treatment received. This substantial di�erence

can be better understood if we express the identification formula (1.5.1), following

from the sequential ignorability, in terms of principal strata:
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E
£
Y

i j

°
1, M

i j

(0)
¢
| C

i j

= c
§
=

1X

m=0

√
1°mX

m0=m

≥
E
£
Y

i j

(1) | S

i j

= S

m0m ,C
i j

= c
§ º

m0m

(c)

º
mm

(c)+º1°mm

(c)

¥ 1°mX

m1=m

º
mm1 (c)

!

(A 1.2)

Proof. The proof starts by developing the population mean as a weighted average

of the potential outcome over the four principal strata:

E
£
Y

i j

°
1, M

i j

(0)
¢
| C

i j

= c
§
=

=
1X

m=0

1°mX

m1=m

E
£
Y

i j

(1,m) | M

i j

(0) = m, M

i j

(1) = m1C
i j

= c
§
º

mm1 (c)

by virtue of unconfoundedness of the encouragement assignement (4)

=
1X

m=0

1°mX

m1=m

E
£
Y

i j

(1,m) | A

j

= 0, M

i j

(0) = m, M

i j

(1) = m1C
i j

= c
§
º

mm1 (c)

by virtue of unconfoundedness of the treatment receipt (5)

=
1X

m=0
E
£
Y

i j

(1,m) | A

j

= 0,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)

again by virtue of unconfoundedness of the encouragement assignement (4)

=
1X

m=0
E
£
Y

i j

(1,m) | A

j

= 1,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)

again by virtue of unconfoundedness of the treatment receipt (5)

=
1X

m=0
E
£
Y

i j

(1,m) | A

j

= 1, M

i j

(1) = m,C
i j

= c
§ 1°mX

m1=m

º
mm1 (c)

we conclude the proof by taking now an average over all possible values of M

i j

(0)

=
1X

m=0

1°mX

m0=m

E
£
Y

i j

(1) | S

i j

= S

m0m ,C
i j

= c
§
P

°
M

i j

(0) = m0 | M

i j

(1) = m,C
i j

= c
¢ 1°mX

m1=m

º
mm1 (c)

=
1X

m=0

√
1°mX

m0=m

≥
E
£
Y

i j

(1) | S

i j

= S

m0m ,C
i j

= c
§ º

m0m

(c)

º
mm

(c)+º1°mm

(c)

¥ 1°mX

m1=m

º
mm1 (c)

!
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If we now compare the identification result in corollary (3), yield by the homogeneity

assumption (6b), with the identification result in equation (A 1.2), yield by the

sequential ignorability assumptions (4) and (5), we can see that, in the latter, for

all the strata where M

i j

(0) = m, information on the mean of the counterfactual

Y

i j

°
1, M

i j

(0)
¢

for is taken from the mean value of the potential outcome Y

i j

(1) for those

units where the potential value of the treatment received under A

j

= 1, instead of A

j

=

0, M

i j

(1), equals m. On the contrary, in (3), for the principal strata where M

i j

(0) = m

and M

i j

(1) = m1 6= m information on the a priori counterfactual is borrowed just

from those strata where M

i j

(0) = M

i j

(1) = m, who are the only ones for whom the

mean value can be estimated from the data thanks to of the equality Y

i j

(1, M

i j

(0)) ¥

Y

i j

(1, M

i j

(1)) ¥ Y

i j

(1). For instance, when there are no defiers, this means to say

that sequential ignorability allows to estimate Y

i j

(1, M

i j

(0)) for always-takers, where

M

i j

(0) = 1, not only from the values of Y

i j

(1) = Y

i j

(1,1) for that sub-population but

also borrowing information from the values of Y

i j

(1) = Y

i j

(1,1) for compliers, whereas

assumption (6b) does not use this extrapolation across these two strata.

A similar comparison could be shown for E
£
Y

i j

°
0, M

i j

(1)
¢
| C

i j

= c
§
.

Assumption 7b. Partial Homogeneity of the Mean Di�erence between Counter-

factuals across Principal Strata

Partial homogeneity of the mean di�erence between counterfactuals is said to be

assumed if, for specific values of ã 2 {0,1} and m 2 {0,1}, the following identity holds:

E
£
Y

i j

(1,m)°Y

i j

(0,m) | M

i j

(ã) = m, M

i j

(1° ã),C
i j

= c
§

=

E
£
Y

i j

(1,m)°Y

i j

(0,m) | M

i j

(ã) = m,C
i j

= c
§

8c 2C

In words, it states that the mean di�erence between potential outcomes under the

two encouragement conditions and intervening to set the treatment receipt of each

unit to the value it would take if A

j

were set to ã, i.e. M

i j

(ã) = m, is independent

of the potential value of the treatment receipt under the opposite encouragement
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status, M

i j

(1° ã).

Theorem 2b. If assumption (7b) is satisfied for a certain value of ã 2 {0,1} and

a specific value of m 2 {0,1}, the net encouragement e�ect NEE

ã(m0,m1,c), within

levels of covariates, for the principal stratum S

m0m1 where M

i j

(ã) = m

ã

= m, is given

by:

NEE

ã(m0,m1,c) ¥ DCE(m0,c)(1° ã)+DCE(m1,c)(ã) = DCE(m

ã

,c) (A 1.3)

That is, if ã = 0 the corresponding net encouragement e�ect for compliers (m0 =

0) or defiers (m0 = 1), depending on the value of m, is equal to the dissociative

causal e�ect of never-takers or always-takers, respectively. Analogously, if ã = 1 the

corresponding net encouragement e�ect for compliers (m1 = 1) or defiers (m1 = 0),

depending on the value of m, is equal to the dissociative causal e�ect of always-takers

or never-takers, respectively.

Proof. The proof is accomplished by using the definition of NEE

ã(m0,m1,c) in (1.4.5):

NEE

ã(m0,m1,c) = E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| M

i j

(0) = m0, M

i j

(1) = m1,C
i j

= c
§

Let us rewrite the potential values of the treatment receipt using ã and 1° ã so that

this proof can apply to any value of ã

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| M

i j

(ã) = m

ã

, M

i j

(1° ã) = m1°ã

,C
i j

= c
§
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Now the proof simply proceeds by applying assumption (7b) twice

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| M

i j

(ã) = m

ã

,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| M

i j

(ã) = M

i j

(1° ã) = m

ã

,C
i j

= c
§

= E
£
Y

i j

°
1, M

i j

(ã)
¢
°Y

i j

°
0, M

i j

(ã)
¢
| S

i j

= S

m

ã

m

ã ,C
i j

= c
§
= DCE(m

ã

,c)

Remark

Assumption (7b) di�ers from the assumption of conditonal ignorability of the treat-

ment receipt in (5) on three main provisions. First, the latter states a stochastic

independence whereas the former is an assumption about independence in terms of

the expected value. Second, conditonal ignorability of the treatment receipt con-

cerns separately each counterfactual, whereas (7b) concerns a di�erence between

pairs of counterfactuals. Third, A way to interpret (5) is saying that the counter-

factual Y

i j

(a,m) does not depend neither on M

i j

(ã) nor on M

i j

(1° ã), conditioning

on levels of covariates and the observed encouragement, so that information on

Y

i j

(a,m), for for all units, can be extrapolated from Y

i

0
j

0(a) for all those units with

M

i

0
j

0(a) = m, regardless of the values of M

i j

(a), M

i j

(1° a) and M

i

0
j

0(1° a). Con-

versely, partial homogeneity assumption (7b) is solely based on the independence of

the mean di�erence between potential outcomes Y

i j

(1,m) and Y

i j

(0,m) from M

i j

(1°ã),

conditioning on covariates but more important on M

i j

(ã) = m, with specific values

of a, ã and m. This means that extrapolation across strata is only carried out for

the a priori counterfactual Y

i j

(a,m) for those whose compliance behavior is given

by M

i j

(ã) = m and M

i j

(1° ã) 6= m from DC E(m,c) for the principal stratum with

the same value m of treatment receipt under both encouragement conditions, i.e.

M

i j

(ã) = M

i j

(1° ã) = m. For these three reason we can conclude that assumption

(7b) of partial homogeneity is a much weaker assumption that the second of the se-

quential ignorability assumptions. Mixing information across strata with the same

behavior under a specific encouragement assignment seems more reasonable that
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mixing across all the principal strata, especially when these strata are most likely

very di�erent because of the presence of latent characteristics.

Furthermore, note that the first two di�erences between assumptions (7b) and

(5) also apply to a comparison between assumptions (7b) and (6b). Intuitively in

general it is more plausible to assume homogeneity in terms of a mean di�erence

rather that a stochastic homogeneity of each specific counterfactual.

Theorems (1b) and (2b) give rise to an identification result for the net encourage-

ment e�ect in the whole population:

Corollary 4. If either assumption (6b) holds for a value of ã = 0 and both a = 0

and a = 1 and 8m 2 0,1, or assumption (7b) holds for a value of ã = 0 and 8m 2 0,1,

the population net encouragement e�ect NEE

0(c), within levels of covariates, is given

by:

NEE

0(c) =
X

(m0,m1)
NEE

0(m0,m1,c)º
m0m1 (c) =

1X

m=0

√

DCE(m,c)
1°mX

m1=m

º
mm1 (c)

!

(A 1.4)

If either assumption 6b holds for a value of ã = 1 and both a = 0 and a = 1 and

8m 2 0,1, or assumption 7b holds for a value of ã = 1 and 8m 2 0,1, the population

net encouragement e�ect NEE

1(c), within levels of covariates, is given by:

NEE

1(c) =
X

(m0,m1)
NEE

1(m0,m1,c)º
m0m1 (c) =

1X

m=0

√

DCE(m,c)
1°mX

m0=m

º
m0m

(c)

!

(A 1.5)

Proof. The proof of the corollary simply follows from equation (A 1.1) applied for

the specified values of a, ã and m and from theorem 2b, by performing a weighted

average over all four principal strata.

Both assumptions (6b) and (7b) provide the possibility of a generalization of

the information on one potential outcome or the net encouragement e�ect from a

stratum S

mm to the stratum S

m0m1 with M

i j

(ã) = m and M

i j

(1° ã) 6= m, as stated
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by theorems (1b) and (2b). As a fair consequence of this generalization, the esti-

mation of the individual treatment mediated e�ect for strata with M

i j

(0) 6= M

i j

(1)

in this stratum is straightforward and given by the di�erence between the esti-

mated principal causal e�ect and net encouragement e�ect: iTME

1°ã(m0,m1,c) =

PCE(m

0

,m

1

,c)°NEE

ã(m0,m1,c).

Corollary 5. If either assumption (6b) holds for a specific value of ã, 8m 2 0,1

and both a = 0 and a = 1 or assumption (7b) holds for a specific value of ã and

8m 2 0,1, the individual treatment mediated e�ect in the whole population is given

by the weighted sum over the compliers and the defiers, as reported in (1.4.10).

iTME

1°ã(c) =
X

m0 6=m1

≥
PCE(m

0

,m

1

,c)°DCE(m

ã

,c)
¥
º

m0m1 (c) (A 1.6)

Note that when the defiers are not present the iTME

1°ã(m0,m1,c) will just be scaled

by the conditional probability of compliers.

A 2 Imputation Approach For Net Encouragement Effects and Individual

Mediated Treatment Effects

Here we generalize the Bayesian imputation approach, described in section 1.7.2,

for the estimation of net encouragement e�ects and individual mediated treatment

e�ects. The first two steps for the estimation of principal causal e�ects remain

unchanged, whereas at each iteration draws from the posterior distribution of causal

mechanisms for compliers and defiers, under assumptions (6b) or (7b) with ã 2 {0,1},

are obtained with four di�erent steps:
3. For each unit with M

i j

(0) = m0 6= M

i j

(1) = m1, i.e compliers and defiers, at

iteration k, the potential outcome Y

i j

k

°
ã, M

i j

(ã)
¢
= Y

i j

k (ã) is derived as follows:

if assumption (6b) holds, Y

i j

k (ã) is simply taken from Y

i j

obs or Y

i j

mi s , depending

on A

obs

j

; if assumption (7b) holds, in order to follow the identification result

in theorem 2b, Y

i j

k (ã) is imputed from the likelihood distribution of Y

i j

(ã) for
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principal strata S

m

ã

m

ã with M

i j

(0) = M

i j

(1) = m

ã

, i.e. never-takers or alway-

takers, given his values of covariates C
i j

:

Y

i j

k (0) :

8
>><

>>:

3a. if assumption 6b: Y

i j

k (ã) = Y

i j

obs · (1° A

obs

j

)+Y

i j

k,mi s · A

obs

j

3b. if assumption 7b: Y

i j

k (ã) ª f

m

ã

m

ã

(ã | C
i j

,µk )

8i , j : S

k

i j

= S

m0m1

4. For each unit with M

i j

(0) = m0 6= M

i j

(1) = m1, i.e compliers and defiers, at

iteration k , Y

i j

k

°
1° ã, M

i j

(ã)
¢

is imputed from the likelihood distribution of

Y

i j

(1° ã) for principal strata S

m

ã

m

ã , with M

i j

(0) = M

i j

(1) = m

ã

, i.e. never-takers

or alway-takers, given his values of covariates C
i j

:

Y

i j

k

°
1° ã, M

i j

(ã)
¢
ª f

m

ã

m

ã

(1 | C
i j

,µk ) 8i , j : S

k

i j

= S

m0m1

5. N EE

k,ã for compliers and defiers is computed by taking the average, within

levels of covariates, of the di�erence between the two imputed potential out-

comes:

Å
N EE

k,ã
(m0,m1,c)= 1

|S m0m1
c

|
X

i , j :Sk

i j

=S
m0m1

c

°
Y

i j

k

°
1, M

i j

(ã)
¢
°Y

i j

k

°
0, , M

i j

(ã)
¢¢

Again subgroup analysis based on covariates might require some restrictions.

Estimation of individual treatment e�ects requires a last step, that is subtract-

ing the estimated net encouragement e�ects from the principal causal e�ects for

compliers and defiers:

6. i

É
T ME

k,1
(m0,m1,c) = Å

PC E

k

(m0m1,c)° Å
N EE

k,0
(m0,m1,c)

These steps, for either assumption, are carried out repeatedly to account for the

uncertainty in the imputation, resulting in the posterior distribution of the causal

estimands. Finally, a summary statistics of these distributions, such as the mean or
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the median, can provide us with point estimates.

A 3 Controlled net encouragement effects

within principal strata

We define the Controlled Net Encouragement E�ect (CNEE) within principal stra-

tum S

m0m1 and level of covariates C
i j

= c, as follows:

CNEE

m(m0,m1c) := E
£
Y

i j

(1,m) | S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

(0,m) | S

i j

= S

m0m1 ,C
i j

= c
§

(A 3.1)

From the definition of net encouragement e�ects within principal strata it follows

that net encouragement e�ects NEE

a(m0,m1) for the stratum where M(0) = m0 is

equal to the controlled net encouragement e�ects for that strata with treatment

receipt fixed at m0:

NEE

0(m0,m1,c) ¥ CNEE

m0 (m0,m1,c)

and, analogously, the net encouragement e�ect NEE

1(m0,m1) for the strata where

M(1) = m1 is equal to the controlled net encouragement e�ects with treatment receipt

fixed at m1:

NEE

1(m0,m1,c) ¥ CNEE

m1 (m0,m1,c)

Proof. The proof is straightforward and follows from the definition of NEE by notic-

ing that within strata potential intermediate variables are constant and their value

can be replaced in potential outcomes:

NEE

a(m0,m1,c) = E
£
Y

i j

°
1, M

i j

(a)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

°
0, M

i j

(a)
¢
| S

i j

= S

m0m1 ,C
i j

= c
§

= E
£
Y

i j

(1,m

a

) | S

i j

= S

m0m1 ,C
i j

= c
§
°E

£
Y

i j

(0,m

a

) | S

i j

= S

m0m1 ,C
i j

= c
§

= CNEE

m

a (m0,m1,c)
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By virtue of this equivalence, theorem (2b) can also be expressed in terms of

CNEE.

Corollary 6. If either assumption (6b) hold for a specific value of ã 2 {0,1}, both

a = 0 and a = 1 and a specific value of m 2 {0,1}, or assumption (7b) holds for

specific values of ã 2 {0,1} and m 2 {0,1}, then the controlled net encouragement e�ect,

within level of covariates, for the stratum S

m0m1 where M

i j

(ã) = m

ã

= m and M

i j

(1°

ã) = m1°ã

6= m, setting the treatment receipt to m

ã

, is equal to the corresponding

controlled net encouragement e�ect for the stratum S

m

ã

m

ã where both Mi j (ã) =

M

i j

(1° ã) = m

ã

= m.

CNEE

m

ã (m0,m1,c) ¥ CNEE

m

ã (m

ã

,m

ã

,c)

As a final result we can claim that, if assumptions (6b) or (7b) are satisfied for both

encouragement conditions, ã = 0 and ã = 1, the controlled net encouragement e�ect

CNEE

m(m0,m1c) is the same for all the strata with at least one of the potential

values M

i j

(0) or M

i j

(1) equal to m.

A 4 Computation of the Posterior Distribution:

Gibbs-Sampling and Data Augmentation

As stated earlier, the Bayesian inference in a Principal Stratification framework

is based on the joint posterior distribution of
°
µ,S

¢
, since the vector of individual

principal strata S is not observed. Moreover, according to the proposed multinomial

probit model for the strata membership, the two latent variables S

n

i j

and S

c

i j

have

to be included as unknown variables. An approximation of this joint posterior

distribution can be performed with a Gibbs-sampling approach. At every iteration

of the Markov chain each set of parameters, the strata indicators S

i j

and the latent

variables S

n

i j

and S

c

i j

are drawn in turns from their full conditional distributions. At

the end of the chain, given the sequence of samples drawn at each iteration, we can
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obtain the histogram of the marginal posterior distributions of each parameter.

In the following we will describe each step of the Gibbs sampler used in both

chapters. Let µ(0), S(0), Sn(0) and Sc(0) be the vectors of starting values of the param-

eters, the strata indicators and the strata latent variables. At each iteration of the

Monte Carlo Markov chain the sampling procedure is as follows.

The first part of the algorithm concerns the imputation of potential outcomes and

hence of causal estimands from their posterior predictive distributions. Imputation

of missing potential outcomes and principal causal e�ects within each individual

principal stratum is described in the first two steps of the algorithm in both sec-

tions 1.7.2 and 2.7.2. Estimation of net encouragement e�ects and individual treat-

ment e�ects follows the procedure outlined in section A 2 under assumption (6b)

(7b). Similarly, spillover mediated e�ects, pure encouragement e�ects and individ-

ual mediated e�ects of chapter 2, are imputed as described in section 2.7.2, under

assumptions (9) and (10).

1. The missing outcome Y

i j

mi s = Y

i j

1° A

j

for each unit is drawn from the condi-

tional distribution f

m0m1 (1° A

j

| C
i j

,µk ), as defined by the models (1.6.1) and

(2.6.2). In addition, for the estimation of causal mechanisms of chapter 1, for

each complier, i.e. with strata indicator S

i j

= S

01, we draw two random samples,

Y

i j

k (ã) and Y

i j

k (1° ã, M

i j

(ã)), as described in section 1.7.2. Finally, PC E(m0,m1,c)

and N EE

ã(m0,m1,c) for all three individual principal strata and i T ME

1°ã(0,1,c)

for compliers are derived. Similarly, causal mechanisms of chapter 2, for MN-

invariant and M-invariant superstata, are derived as described in section 2.7.2.

2. Chapter 1: The vector of parameters Ø of the outcome model is drawn from

its full conditional distribution p

°
Ø | Y,S,ZY f ,ZY r ,b

¢
. In the application of bed

nets used in chapter 1, since the outcomes follows a binomial distribution, this

is accomplished by a random walk Metropolis-Hastings algorithm with a normal

proposal distribution, whose covariance matrix is a scaled version of an initial

estimate.
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Chapter 2: Given the conjugacy property of the normal prior with the normal

outcome model used in the simulation study of chapter 2, the full conditional

distribution has a closed form. The vector of parameters here is Ø f r , where the

coe�cient of the random part is included, and it is drawn from a di�erent full

conditional distribution p

≥
Ø f r | Y,S,ZY f r ,æ2

≤

¥
.

3. Chapter 1: Cluster-specific b
j

are drawn independently for each cluster from

their posterior distribution p

°
b

j

| Ø,Y
j

,ZY r

j

,ZY f

j

¢
. Another step of random walk

Metropolis-Hastings is used for the purpose, with a normal proposal distribution,

a likelihood derived from the binomial regression model in (1.6.1) and (1.6.2) and

a normal prior distribution given in (1.7.7), where the prior covariance matrix

ß
b

is drawn at the previous iteration from its own posterior distribution.

Chapter 2: This step is not included in the computation.

4. Chapter 1: This step is not included in the computation.

Chapter 2: Each variance æ2 S

m0m1
≤ is independently drawn from its full conditional

distribution p(æ2 S

m0m1
≤ |Ø f r ,

©
Y

i j

,ZY f r

i j

: S

i j

= S

m0m1
™¢

.

5. Chapter 1: The drawing of the covariance matrix ß
b

of the random e�ects is from

the Inverse-Wishart posterior distribution, derived as the posterior distribution

of a covariance matrix of multivariate normal random variable, b
j

in this case,

with Inverse-Wishart prior as defined in (1.7.8).

Chapter 2: This step is not included in the computation.

This second part of the algorithm concerns the principal strata model.

6. Chapter 1: The vectors of parameters Æ
n

and Æ
c

of the individual strata mem-

bership model are drawn independently from their normal full conditional distri-

butions

p

°
Æ

n

| Sn ,ZS f ,ZSr ,a
n

¢
and p

°
Æ

c

| Sc ,ZS f ,ZSr ,a
c

¢
computed from their likelihood

resulting from the linear models of the latent variables S

n

i j

and S

c

i j

in (1.6.5), and

their prior distributions in (1.7.9). This time bayesian regression are run with
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o�sets aT

n j

Z

Sr

i j

and aT

c j

Z

Sr

i j

respectively.

Chapter 2: The vectors of parameters here are Æ f r

n

and Æ
f r

c

, where the coe�-

cients of the random part are included, and they are drawn from di�erent full

conditional distributions p

≥
Æ

f r

n

| Sn ,ZS f r

¥
and p

≥
Æ

f r

c

| Sc ,ZS f r

¥
.

7. Chapter 1: According to distributional assumptions presented above, cluster-

specific random e�ects a
n j

and a
c j

are drawn independently for each cluster from

their normal posterior distributions p

°
a

n j

| Sn

j

,ZSr

j

,ZS f

j

,Æ
n

¢
and p

°
a

c j

| Sc

j

,ZSr

j

,ZS f

j

,Æ
c

¢

derived from the linear regression model in (1.6.5), this time with o�sets ÆT

n

ZS f

i j

and ÆT

c

ZS f

i j

, and normal prior distribution given in (1.7.10), where the prior co-

variance matrices ß
a

n

and ß
a

c

come from the previous iteration.

Chapter 2: This step is not included in the computation.

8. Chapter 2: As with outcome random e�ects, the drawing of the covariance matri-

ces of the strata model random e�ects, ß
a

n

and ß
a

c

, is from the Inverse-Wishart

posterior distributions p(ß
a

n

| a
n

) and p(ß
a

c

| a
c

), derived as the posterior distri-

bution of a covariance matrix of multivariate normal random variable, in this

case a
n j

and a
c j

, with Inverse-Wishart prior as defined in (1.7.11).

Chapter 2: This step is not included in the computation.

9. Chapter 1: This step is not included in the computation.

Chapter 2: Cluster-specific u
j

are drawn independently for each cluster from their

normal posterior distribution p

°
u

j

| Y

i j

,Ø f r ,ZY r

i j

,ZY f

i j

,æ2
≤,Sn ,Æ f r

n

,Sc ,Æ f r

c

,ZS f ,ZSr ,
¢
,

which depends on the observed data, the coe�cients of all three models, the error

variances, and the latent variables representing the principal strata membership.

10. Given the fixed e�ects, the random e�ects and the observed data, the vector of

latent individual strata membership S has to be generated from its full conditional

distribution p (S | Y,M,A,C,µ), which this time depends as well on the vector of

individual treatment receipt M being the principal stratum defined based on the

potential mediators. This is the typical data augmentation step of the principal
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strata framework. As far as the average e�ects for each individual principal

stratum are concerned, within each cluster the strata memberships of the unit

are independent and hence strata indicators can be drawn independently from

the conditional distribution factorized as:

p(S

i j

= S

m0m1 | Y

i j

, M

i j

, A

j

,C
i j

,µ)

=
p

≥
Y

i j

| S

i j

= S

m0m1 , A

j

,C
i j

,ØS

m0m1 ,bS

m0m1

j

¥
p(S

i j

= S

m0m1 | M

i j

, A

j

,C
i j

,Æ,a)

P
S

m

0
0m

0
1

p(Y

i j

| S

i j

= S

m

0
0m

0
1 , A

j

,C
i j

,ØS

m

0
0m

0
1 ,bS

m

0
0m

0
1

j

)p(S

i j

= S

m

0
0m

0
1 | M

i j

, A

j

,C
i j

,Æ,a)

=
p

≥
Y

i j

| S

i j

= S

m0m1 , A

j

,C
i j

,ØS

m0m1 ,bS

m0m1

j

¥
p(S

i j

= S

m0m1 | C
i j

,Æ,a)I

°
M

i j

(A

j

) = M

i j

¢

P
S

m

0
0m

0
1

p(Y

i j

| S

i j

= S

m

0
0m

0
1 , A

j

,C
i j

,ØS

m

0
0m

0
1 ,bS

m

0
0m

0
1

j

)p(S

i j

= S

m

0
0m

0
1 | C

i j

,Æ,a)I

°
M

i j

(A

j

) = M

i j

¢

(A 4.1)

When monotonicity assumption holds, individuals with A

j

= 0 and M

i j

= 1 or

A

j

= 1 and M

i j

= 0 are necessarily always-takers and never-takers respectively.

Instead in the other situations two strata are possible fit, never takers or compliers

when A

j

= 0 and M

i j

= 0 and always-takers or compliers when A

j

= 1 and M

i j

= 1

. The drawing of one or the other possibility is made according to a bernoulli

distribution with probability resulting from the conditional probabilities reported

above.

11. For the estimation of causal mechanisms of chapter 2, the neighborhood principal

strata have to be considered. The tow variables nS

01
i j

and nS

1°ã1°ã

i j

are derived

as a function of the vector of individual strata membership, as in eqation (2.3.3)

in section 2.3

12. Each iteration ends with another data augmentation step resulting from the

specific choice of the two linked probit models for S

i j

. Precisely the latent variable

S

c

i j

and S

c

i j

are drawn from their posterior distribution conditional on the strata

indicators S

i j

as they are updated at the previous step. These are normal linear

models but truncated to the left or to the right depending on S

i j

. In particular
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lower and upper limits of the truncated normal distribution are:

S

n

i j

ª

8
>><

>>:

N°(Æ
n

Z

S f

i j

+aT

n j

Z

Sr

i j

,1)I (S

n

i j

∑ 0) if S

i j

= S

00
i j

N+(Æ
n

Z

S f

i j

+aT

n j

Z

Sr

i j

,1)I (S

n

i j

> 0) if S

i j

= S

01
i j

or S

i j

= S

11
i j

S

c

i j

ª

8
>>>>>><

>>>>>>:

N (Æ
c

Z

S f

i j

+aT

c j

Z

Sr

i j

,1) if S

i j

= S

00
i j

N°(Æ
c

Z

S f

i j

+aT

c j

Z

Sr

i j

,1)I (S

c

i j

∑ 0) if S

i j

= S

01
i j

N+(Æ
c

Z

S f

i j

+aT

c j

Z

Sr

i j

,1)I (S

c

i j

> 0) if S

i j

= S

11
i j

(A 4.2)

A 5 Probability of Neighborhood Principal Strata membership

Let M
i j

= [M

i j

(0), M

i j

(1)] be the vector of potential values of the treatment uptake

under the two encouragement conditions of unit ij, so that M°i j

is the corresponding

2(N

j

°1)-dimensional vector of the unit’s neighbors, i.e. M°i j

= [M1 j

, . . . ,M
i°1 j

, . . . ,M
i+1 j

,

. . . ,M
N

j

j

]. Let also N
i j

be the vector representing the neighborhood principal stra-

tum, i.e. N
i j

= [N

i j

(0), N

i j

(1)] and n = [n0,n1] its realization. Let finally N?
i j

be

a N

j

° 1-dimensional variable, with realization denoted by , n?, obtained by ap-

pending to N
i j

N

j

° 3 fictitious random variables. To compute the probability of

a neighborhood principal stratum, given an individual principal stratum and base-

line covariates, we will use method of transformation of multidimensional random

variables with transformation G

i j

(·) which is not injective.

P

°
nS

i j

= nS

n0n1 | S

i j

= S

m0m1 ,C
i j

= c
¢
=

L(n)X

l=1
P

°
M°i j

= ml | S

i j

= S

m0m1 ,C
i j

= c
¢
£ 1

|J (ml )|
(A 5.1)

where ml = G

?°1
i j

(n?) real root since, with G

?
i j

being a vector function such that

N?
i j

=G

?
i j

(M°i j

), and |J (ml )| is the jacobian determinant of the transformation. We

will now refer to the hierarchical model (1.6.4) where individual principals strata of

di�erent units in the same cluster are assumed to be independent given a
j

, resulting
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in the following factorization:

=
L(n)X

l=1

X

a
j

P

°
M°i j

= ml | S

i j

= S

m0m1 ,a
j

,C
i j

= c
¢
p(a

j

| S

i j

= S

m0m1 ,C
i j

= c)

=
L(n)X

l=1

X

a
j

Y

k2N
i

P

°
M

k j

= [mkl

0 ,m

kl

1 ] | C
i j

= c,a
j

¢
p(a

j

| S

i j

= S

m0m1 ,C
i j

= c)

=
L(n)X

l=1

X

a
j

Y

k2N
i

P

°
S

k j

= S

m

kl

0 m

kl

1 | a
j

,C
i j

,
¢
p(a

j

| S

i j

= S

m0m1 ,C
i j

= c)

(A 5.2)

where [mkl

0 ,m

kl

1 ] elements of the vector ml corresponding to unit k j .
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A 6 Results of Simulation Study

Scenario 1: Absence of Random E�ects in the Outcome Model

Table 1: Posterior Means and Confidence Intervals of Model Coe�cients
(Average of 500 simulations)

mean median sd 95% Interval
Ø00: constant
Never-takers 2.0984 2.0983 0.0331 [ 2.0336, 2.1632]

Always-takers 0.5955 0.5955 0.0413 [ 0.5145, 0.6765]
Compliers 2.0954 2.0954 0.0427 [ 2.0117, 2.1790]

Ø01: education (X1) -0.9989 -0.9989 0.0387 [-1.0747,-0.9231]
Ø01: distance form health facility (W ) 2.0054 2.0053 0.0398 [ 1.9276, 2.0832]

Ø10: encouragement
Never-takers -1.9326 -1.9309 0.2072 [-2.3738, -1.5626]

Always-takers -0.8908 -0.2672 0.2489 [-1.4541,-0.479]
Compliers -5.8340 -3.8894 0.3000 [-6.4824,-5.3077]

Ø20: encouragement*complier neighbors
Never-takers -5.4047 -5.4188 0.6689 [-6.4561,-3.8352]

Always-takers -2.5523 -2.5407 0.8237 [-3.7601, -0.5341]
Compliers -5.6521 -5.6911 0.8545 [-6.0588, -2.7117]

Ø30: encouragement*always-taker neighbors
Never-takers 1.0471 1.0480 0.4730 [-0.0151, 1.8369]

Always-takers 0.5354 0.5354 0.5451 [-0.6376, 1.4968
Compliers 2.0914 2.0928 0.6885 [ 0.4325, 3.1287]

Ø40: encouragement*complier neighbors
*always-taker neighbors

Never-takers 1.9319 1.9300 0.3480 [ 1.4125, 2.7754]
Always-takers 0.9687 0.9693 0.4172 [ 0.2495, 1.8830]

Compliers 1.8597 1.8563 0.4217 [ 1.3707, 3.0220]
variance æ2

≤ 1.0032 1.0030 0.0145 [ 0.9751, 1.0321]
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Table 3: Estimated Parameters for Individual Principal Strata Model
S

n

Model S

c

Model

Mean 95% Interval Mean 95% Interval

Constant 2.3119 [ 2.0660, 2.5608] 1.5085 [-1.7123,-1.3081]
Education X1 3.5274 [ 3.2965, 3.7623] 5.1298 [ 4.8573, 5.4112]
Sex X2 -3.0175 [-3.2025,-2.8372] -0.3059 [-0.4205,-0.1913]
Religion X3 -3.5237 [-3.7184,-3.3335] -1.0077 [-1.1717,-0.8436]
Family Presence X4 -2.0146 [-2.1568,-1.8750] 1.0122 [ 0.8787, 1.1487]
Distance from Health facility W 0.5021 [ 0.2016, 0.8039] -2.5066 [-2.8152,-2.2044]
Random Intercept Variance, æ2

a

0.2719 [ 0.1934, 0.3702] 0.2667 [ 0.1922, 0.3587]

Table 4: Frequentist Performance of Bayesian Estimation Procedure for Model Coe�cients (500
simulations)

S

n

Model

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias %
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

Constant 93.7250 93.9220 0.0120 0.0120 0.5180 0.5000 0.0170 0.0170
Education X1 92.7450 92.3530 0.0270 0.0270 0.7820 0.7630 0.0160 0.0160

Sex X2 93.9220 93.7250 -0.0170 -0.0170 0.5830 0.5610 0.0090 0.0090
Religion X3 93.5290 93.5290 -0.0240 -0.0230 0.6770 0.6590 0.0110 0.0110

Family Presence X4 93.9220 94.1180 -0.0150 -0.0140 0.7280 0.6990 0.0060 0.0060
Distance from Health facility W 92.5490 93.1370 0.0020 0.0020 0.4110 0.3020 0.0260 0.0260
Random Intercept Variance, æ2

a

97.4510 94.7060 0.0220 0.0180 8.7420 7.3410 0.0020 0.0020

S

c

Model

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias %
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

Constant 94.9020 94.9020 -0.0080 -0.0080 0.5630 0.5130 0.0110 0.0110
Education X1 93.9220 93.7250 0.0300 0.0280 0.5840 0.5530 0.0210 0.0210

Sex X2 92.9410 93.1370 -0.0060 -0.0060 1.9620 1.9810 0.0040 0.0040
Religion X3 94.9020 94.7060 -0.0080 -0.0080 0.7660 0.7570 0.0070 0.0070

Family Presence X4 94.1180 94.1180 0.0120 0.0120 1.2200 1.1690 0.0050 0.0050
Distance from Health facility W 95.2940 95.4900 -0.0070 -0.0060 0.2650 0.2200 0.0230 0.0230
Random Intercept Variance, æ2

a

97.2550 96.4710 0.0170 0.0140 6.6670 5.4280 0.0020 0.0020
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Scenario 2: Presence of Random E�ects in the Outcome Model

Table 5: Posterior Means and Confidence Intervals of Model Coe�cients
(Average of 500 simulations)

mean median sd 95% Interval
Ø00: constant
Never-takers 2.1508 2.1507 0.0967 [1.9624,2.3404]

Always-takers 0.6366 0.6365 0.0970 [0.4472,0.8265]
Compliers 2.1615 2.1614 0.1016 [1.9637,2.3608]

Ø01: education (X1) -1.0057 -1.0057 0.0353 [-1.0748,-0.9367]
Ø01: distance form health facility (W ) 1.8910 1.8913 0.1572 [1.5840,2.1966]

Ø10: encouragement
Never-takers -1.7675 -1.7682 0.2715 [-2.2967,-1.2336 ]

Always-takers -0.7847 -0.7850 0.3217 [-1.4141,-0.1533]
Compliers -5.7118 -5.7125 0.3434 [-6.3822,-5.0373]

Ø20: encouragement*complier neighbors
Never-takers -4.3341 -4.3316 0.7761 [-5.8598,-2.8207]

Always-takers -1.3123 -1.3096 0.9633 [-3.2086,0.5662]
Compliers -3.4102 -3.4056 0.9604 [-5.3045,-1.5424]

Ø30: encouragement*always-taker neighbors
Never-takers -0.0855 -0.0853 0.6255 [-1.3117,1.1385]

Always-takers -0.5532 -0.5563 0.7133 [-1.9420,0.853]
Compliers 0.6919 0.6886 0.8137 [-0.8926,2.2949]

Ø40: encouragement*complier neighbors
*always-taker neighbors

Never-takers 1.7163 1.7158 0.3921 [0.9489,2.4843]
Always-takers 0.6846 0.6860 0.4753 [-0.2495,1.6124]

Compliers 1.7480 1.7487 0.4912 [0.7866,2.7088]
Ør : random intercept u 0.7795 0.7773 0.0661 [0.6566,0.9160]

variance æ2
≤ 0.9913 0.9912 0.0147 [0.9630,1.0204]
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Table 7: Estimated Parameters for Individual Principal Strata Model
S

n

Model S

c

Model

Mean 95% Interval Mean 95% Interval

Constant 2.3019 [ 2.0031, 2.6154] -1.5119 [-1.8077,-1.2612]
Education X1 3.5131 [ 3.3425, 3.6845] 5.1336 [4.9280,5.2430]
Sex X2 -3.0211 [-3.2912,-2.7681] -0.3002 [-0.1990,-0.4020]
Religion X3 -3.5359 [-4.7123,-2.3714] -1.0187 [-1.1102,0.9278]
Family Presence X4 -2.0301 [-2.3327,-1.7419] 1.0189 [0.9334,1.1667]
Distance from Health facility W 0.5395 [ 0.2378, 0.8442] -2.5066 [-2.8152,-2.2044]

Random Intercept u 0.6479 [ 0.5184, 0.7899] 0.7176 [ 0.5824, 0.8665]

Table 8: Frequentist Performance of Bayesian Estimation Procedure for Model Coe�cients (500
simulations)

S

n

Model

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias %
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

Constant 93.8492 94.0476 0.0019 -0.0010 0.1063 -0.0531 0.0296 0.0297
Education X1 95.2381 95.2381 0.0131 0.0130 1.8766 1.8607 0.0077 0.0077

Sex X2 93.2540 92.0635 -0.0211 -0.0178 0.7033 0.5943 0.0243 0.0241
Religion X3 94.0476 93.4524 -0.0359 -0.0337 1.0257 0.9746 0.0360 0.0361

Family Presence X4 94.0476 93.8492 -0.0301 -0.0275 1.5050 1.3885 0.0293 0.0294
Distance from Health facility W 95.4365 94.8413 0.0395 0.0387 1.975 1.8692 0.0233 0.0232

Random Intercept u 0.1984 0.1984 0.1479 0.1457 29.5710 29.1385 0.2714 0.2691

S

c

Model

Coverage %
(Normal)

Coverage %
(quantiles)

Bias
Mean

Bias %
Median

Bias %
Mean

Bias %
Median

MSE
Mean

MSE
Median

Constant 96.6270 96.2302 -0.0119 -0.0111 0.7933 0.7229 0.0121 0.0120
Education X1 94.6429 94.0476 0.0336 0.0329 0.6720 0.5911 0.0109 0.0109

Sex X2 95.6349 95.6349 -0.0002 -0.0000 0.0666 0.0317 0.0027 0.0027
Religion X3 94.2460 93.6508 -0.0187 -0.0186 1.8705 1.8555 0.0034 0.0034

Family Presence X4 92.6587 92.2619 0.0189 1.896 1.8569 1.1428 0.0083 0.0083
Distance from Health facility W 97.6190 97.0238 -0.0376 -0.0367 2.5052 2.4460 0.0217 0.0216

Random Intercept u 0.0000 0.0000 0.2176 0.2153 43.5233 43.0615 0.3472 0.3446
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