
Faculty of Engineering

Department of Information Engineering

Ph.D. in Informatics, Systems and Telecommunications
Cycle XXVII

Curriculum: Telematics and Information Society

Coordinator: Prof. Luigi Chisci

Approaches for the service
composition and description towards

the Web-Telecom convergence

ING-INF/03

Ph.D. Student
Terence Ambra

Tutors
Prof. Alessandro Fantechi

Prof. Dino Giuli
Dr. Federica Paganelli

Coordinator
Prof. Luigi Chisci

Years 2012/2014

Acknowledgements

I wish to thank my tutors Prof. Dino Giuli and Prof. Alessandro Fantechi

for giving me the opportunity to perform this exciting thesis by encouraging

my research and for allowing me to grow professionally and personally. I

would also like to thank Ing. Federica Paganelli, for her advice and contin-

uous help in this long thesis work. An affectionate embrace goes to all the

people of the laboratory ”Radar and Telecommunications” with the which I

have established a beautiful friendship.

Finally, a special thanks to my parents for the countless sacrifices and

efforts made in this long university path.

Firenze, 31 Dicembre 2014

Terence Ambra

Abstract
Several approaches are currently being discussed for the convergence of

Web and Telecommunication services. For instance, research and industry

stakeholders have recently proposed Web-based APIs to control real-time

communication among SIP User Agents. The IETF and W3C standard-

ization bodies are investigating how web browsers should evolve to natively

support communication services. In this perspective, the design of novel

mechanisms for the exchange of signaling messages and possible interwork-

ing between Web-based and SIP-based systems is a hot topic of research.

Indeed, the discussion is still ongoing on how differences between REpresen-

tational State Transfer (REST) and Session Initiation Protocol (SIP) models

should be coped with. This issue is made more difficult by the lack of rigorous

modeling of RESTful systems. In this PhD thesis we discuss how we applied

a REST-oriented methodology to design a set of REST APIs for communica-

tion services (e.g. a voice call and presence service). The contribution of this

work is threefold. Firstly, we formalize the call resource behavior through

a Finite State Machine representation which accounts for the SIP specifica-

tions and for REST constraints. Secondly, we simulate the service expected

behavior and its interworking with SIP User Agents through a tool for the

analysis of communicating state machines. Thirdly, we present the imple-

mentation details of a web application prototype and evaluate its functional

correctness and performance. This prototype supports three mechanisms

for handling asynchronous notifications (i.e., WebSocket, Long Polling and

HTTP Streaming).

ii

Contents
Introduction xii

I State of the Art 1

1 Context of the work 2

1.1 REST . 4

1.1.1 Principles . 4

1.1.2 REST-oriented methodology 7

1.1.3 Asynchronicity Management 8

1.2 SIP . 8

1.2.1 SIP URI . 10

1.2.2 SIP Network Elements 10

1.2.3 Messages . 12

1.2.4 Transactions . 14

1.2.5 Dialog . 14

1.2.6 Typical SIP Scenarios 16

1.2.7 INVITE Client Transaction 20

1.2.8 INVITE Server Transaction 20

1.3 WebRTC . 23

1.3.1 IETF Protocol Specification 23

1.3.2 W3C API JavaScript Specification 24

1.4 Related Work . 26

1.4.1 Web APIs for Telecom services 27

1.4.2 Web applications for real-time Communication 29

iii

Contents

II Discussion of the work 31

2 RESTful Service Design 32

2.1 Motivation of our work . 32

2.2 Reference scenarios . 34

2.2.1 Registration and Deregistration of a REST client . . . 35

2.2.2 Registration and Deregistration of a SIP User Agent . 35

2.2.3 Call between two REST clients 36

2.2.4 REST user to SIP User Agent Call service 37

2.2.5 SIP User Agent to REST user Call service 37

2.3 Resource-oriented Design . 38

2.4 Presence resourse . 39

2.4.1 Assigning names to resources 39

2.4.2 Uniform interface . 40

2.4.3 Resource representation 41

2.5 Call resource . 42

2.5.1 Assigning names to resources 43

2.5.2 Uniform interface . 43

2.5.3 Resource representation 45

2.5.4 Finite-state machine Model 46

2.5.5 Actions for the resource navigation 52

2.5.6 UML on the fly Model Checker 53

2.5.7 Interworking with SIP 53

2.6 Solutions for asynchronicity in HTTP 57

2.6.1 Periodic GET (polling) 58

2.6.2 Long polling . 59

2.6.3 HTTP Streaming . 60

2.6.4 Asynchronous Processing in Servlets 63

2.6.5 WebSocket . 63

3 RESTful Service Implementation 66

3.1 Choice of Technologies . 67

3.1.1 Java . 67

3.1.2 Jersey . 68

3.1.3 AsyncContext e WebSocket 68

3.1.4 SIP servlet API . 69

3.1.5 HTML 5 . 71

iv

Contents

3.1.6 WebRTC . 73

3.2 Prototype Architecture . 73

3.2.1 Call Service Interface and Logic details 74

3.2.2 Notification Manager 75

3.2.3 REST-SIP Gateway 75

3.2.4 Client-side logic . 76

3.3 Prototype Scenarios . 77

3.3.1 Registration and Deregistration 77

3.3.2 Successful Call setup 79

3.3.3 Unsuccessful Call setup 83

3.3.4 Call termination . 84

3.4 Package and Class . 85

3.4.1 Package resources . 86

3.4.2 Package bean . 89

3.4.3 Package servlet . 90

3.4.4 Package sip . 91

3.4.5 Package storage . 91

3.4.6 Package util . 93

3.4.7 Package async . 94

3.5 Client-side Script . 98

3.5.1 interfaceOperationAll.js 98

3.5.2 presenceAPI.js . 100

3.5.3 callAPI.js e Call.js . 100

3.5.4 registrationAll.js . 101

3.5.5 WebRTC.js . 103

4 Web application Functioning 104

4.1 Web application Interface . 104

4.2 Functional Test . 107

5 Performance Evaluation 109

5.1 Testbed Environment . 109

5.2 Performance Test . 110

v

Contents

Conclusions 115

Bibliography 118

vi

List of Figures
1.1 Ip Multimedia Subsystem Architecture. 3

1.2 A functioning example of SIP protocol [Rosenberg et al., 2002a]. 10

1.3 SIP Transactions . 15

1.4 SIP Dialog . 16

1.5 Example of SIP registration. 17

1.6 SIP REGISTER Message. 17

1.7 Example of SIP session invitation. 18

1.8 SIP INVITE Message. 18

1.9 SIP 180 RINGING Message. 19

1.10 SIP ACK Message. 19

1.11 SIP 200 OK Message. 19

1.12 INVITE Client Transaction [Rosenberg et al., 2002a]. 21

1.13 INVITE Server Transaction [Rosenberg et al., 2002a]. 22

1.14 Communication establishment between two browsers. 24

1.15 MediaStream and MediaStreamTrack. 25

2.1 Call setup between two REST clients (web browsers). 34

2.2 Call setup between a REST client and SIP User Agent. 34

2.3 Registration to the service of a REST client 35

2.4 Deregistration to the service of a REST client 36

2.5 Registration to the presence service of a SIP client 36

2.6 Deregistration to the presence service of a SIP client 36

2.7 Call service between two REST users 37

2.8 Call service from a REST user towards a SIP User Agent . . . 37

2.9 Call service from a SIP User Agent towards a REST user . . . 38

vii

List of Figures

2.10 Finite-state machine of the call resource. 47

2.11 An example of the actions listed in a response along with the

call resource at PROCEEDING status. 52

2.12 Finite-state machine of the SIPMessageSender component. . . 54

2.13 Finite-state machine of the SIPMessageReceiver component. . 55

2.14 Finite-state machines of the REST Client component for a

scenario of successful call: a) REST Client acting as the caller,

and b) REST Client acting as the callee. 56

2.15 Finite-state machines of the SIP UA Client and Server compo-

nent for a scenario of successful call: a) SIP UA Client acting

as the caller, and b) SIP UA Server acting as the callee. 56

2.16 Component diagram for the communicating state machines

model for a call between a REST client acting as the caller

and a SIP User Agent acting as the callee, and vice versa. . . 57

2.17 Polling from a REST client and a server that provides a REST

service. 59

2.18 Long polling from a REST client and a server that provides a

REST service. 61

2.19 A full thread pool that can not receive other requests 61

2.20 HTTP Streaming between a REST client and a server that

provides a REST service. 62

2.21 Request to the server for a Websocket connection. 64

2.22 Response to the client for a Websocket connection 64

2.23 Establishment of a WebSocket channel between a REST client

and a server that provides a REST service. 65

3.1 Functional architecture of the prototype. 74

3.2 Presence registration of a REST client. 77

3.3 Presence registration of a SIP client. 78

3.4 Presence deregistration of a REST client. 78

3.5 Presence deregistration of a SIP client. 79

3.6 Call setup between two web browsers. 80

3.7 Call setup between a web browser (caller) and a SIP User

Agent (callee). 81

3.8 Call setup between a SIP User Agent (caller) and a web browser

(callee). 81

viii

List of Figures

3.9 Excerpt of the FSM evolution chart generated by the UMC

tool for a call setup between two web browsers. 82

3.10 Excerpt of the FSM evolution chart generated by the UMC

tool for a call setup between a web browser (caller) and SIP

User Agent (callee). 82

3.11 Excerpt of the FSM evolution chart generated by the UMC

tool for a call setup between a SIP User Agent (caller) and a

web browser (callee). 83

3.12 Call failure between REST clients due to the callee. 83

3.13 Call failure between REST clients due to the caller. 84

3.14 Call failure between REST clients due to the timeout. 84

3.15 Call termination between REST clients. 85

3.16 Package Structure of the project. 85

3.17 Package Resources contains the classes that implement the

REST interface. 86

3.18 Package Bean. 90

3.19 Package Servlet. 91

3.20 Package Sip. 92

3.21 Subscription of a BrowserSipCallHandler instance to a call

with SIP UA. 92

3.22 Notification of a BrowserSipCallHandler instance to a call with

SIP UA. 92

3.23 Package Storage. 93

3.24 Package Util. 94

3.25 Package Async. 95

3.26 Subscription of a CallACResponder object. 96

3.27 Notification of a CallACResponder object. 96

3.28 Subscription of a CallACWriter object. 97

3.29 Notification of a CallACWriter object. 97

3.30 Subscription of a CallWSWriter object. 98

3.31 Notification of a CallWSWriter object. 98

4.1 Web application Interface. 105

4.2 Call service web application functioning. 105

4.3 Flow of HTTP requests sent by the Web application. 106

5.1 CPU usage with the Long Polling notification approach. . . . 112

5.2 CPU usage with the HTTP Streaming notification approach. . 113

ix

List of Figures

5.3 CPU usage with the WebSocket notification approach. 113

x

List of Tables
2.1 REST APIS for presence resource management 41

2.2 REST APIS for call resource management 45

3.1 Main methods of the CallsResource class. 87

3.2 Main methods of the CallResource class. 88

3.3 Main methods of the PresencesResource class. 88

3.4 Main methods of the PresenceResource class. 89

5.1 Call Setup delays . 111

5.2 Subscription and Notification delays 111

xi

Introduction
The Web is shifting from a document-centric paradigm to an increasingly

interactive and collaborative form providing information sharing and real-

time communication. Indeed, the Internet Engineering Task Force (IETF)

and the World Wide Web Consortium (W3C) standardization bodies are

defining recently WebRTC API and protocol specifications [Bergkvist et al.,

2014] to allow the native support of voice and video communications by web

browsers.

In the telecommunication domain, the research and industry communi-

ties have defined several web-based APIs to expose on the Web multiparty

or peer-to-peer communication services provided by legacy telecommunica-

tions platforms, such as systems based on the Session Initiation Protocol

(SIP) [Rosenberg et al., 2002a]. In this context, the REpresentational State

Transfer (REST) design style [Fielding, 2000] is considered a best practice for

building distributed hypermedia systems and APIs oriented to web. REST

principles have been applied to design communication services in standard-

ization efforts, such as in the RESTful bindings for Parlay X Web Services

[OMA, 2012] and the OneAPI REST interfaces [GSMA, 2009], as well as in

several research works, such as those discussed in the survey by Belqasmi

et al. [2011].

Among telecommunications legacy frameworks, the architectures based

on SIP protocol definitely play a major role, as argued by Amirante et al.

[2013]. The interworking between the emerging browser-enabled systems

and SIP-based ones is thus a hot issue of research [Amirante et al., 2013].

Actually, the convergence of HTTP and SIP domains is not straightforward

since these protocols rely on different principles. In fact, SIP is a stateful and

xii

Introduction

peer-oriented protocol, while HTTP is stateless and based on the client-server

model [Bond et al., 2009, Islam and Gregoire, 2013]. Several authors have

worked on this topic and have discussed the design of APIs based on REST

principles for the convergence of Web-centric and Telecom-centric services [Li

and Chou, 2010, Davids et al., 2011, Griffin and Flanagan, 2011a]. However,

the potential impact of these related works is weakened by the general lack

of rigorous modeling of REST principles and related RESTful systems. As

argued by Zuzak et al. [2011] this is causing a widespread misunderstanding

of REST concepts and a resulting difficulty in fully taking advantage of REST

benefits (e.g., scalability, interoperability and simplicity).

To address these limitations, in this work we present a set of REST APIs

purposely conceived for communication services (e.g., call and presence ser-

vice) that interworks with SIP-based systems. By leveraging a resource-

oriented service design methodology, our original contribution is threefold.

Firstly, we model the resource behavior through a Finite State Machine rep-

resentation which accounts for the SIP specifications of a call session setup

and possible error conditions and for REST constraints. Secondly, we simu-

late the behavior of the RESTful call service and its interworking with SIP

User Agents by adopting a tool for the analysis of communicating state ma-

chines. Thirdly, we present a web application prototype that implements the

REST APIs according to the proposed specifications. The prototype offers

a RESTful real-time communication service accessible to web browsers that

supports the interworking with SIP User Agents. We also discuss three alter-

native implementations for handling asynchronous notification to web clients:

the first based on the WebSocket protocol [Fette and Melnikov, 2011], the sec-

ond on Long Polling technique and the third on HTTP Streaming technique

[Huang and Zhu, 2012], compared upon experimental results.

In Chapter 1 we present the main technologies that we used in this thesis

work (REST architectural style, SIP protocol and WebRTC standard) and

discuss related works for the convergence of web and communication services.

In chapter 2 we describe our approach to design RESTful call service

based on the adoption of a state machine formalism and a tool for the sim-

ulation of the service expected behavior and interworking with SIP-based

systems.

In Chapter 3 we describe the implementation of our RESTful call ser-

vice: in particular we show the technologies chose for this project, and we

describe the packages, classes and client-side scripts developed to implement

xiii

Introduction

this service.

In Chapter 4 we describes the call service web application functioning

and related functional test.

Finally, in Chapter 5 we describe the tests carried out to analyze the

performance of the RESTful service and obtained results.

xiv

Part I

State of the Art

Chapter

1
Context of the work

The evolution towards the Next Generation Network (NGN) based on

All-IP architecture aims to achieve the convergence of fixed and mobile com-

munications networks, voice and video services, Web services and Internet.

IP Multimedia Subsystem (IMS) is an architectural model for telecommuni-

cations networks (Figure 1.1) designed with the intent to bring together all

fixed and mobile telecommunication devices on IP-based network infrastruc-

ture that is capable of providing voice and multimedia services.

Within the NGN, the convergence term can be used to have different

meanings (e.g., access networks, terminal and service convergence). In this

thesis we focus on the service convergence, as a set of features that allows

mash-up, service composition and brokerage, and constituent service compo-

nents between heterogeneous domains (Telecom and Web service providers).

At present the most existing solutions for the Telco and Web service composi-

tion use inflexible instruments which do not allow the creation of convergent

services in easy and fast way. The presence of APIs that allow easy integra-

tion between the Web and Telecom services lead to the rapid creation of new

service types that offer to users an experience of major use. In a web page

we can communicate with other users that surf it. The exposure of services

through Web API is therefore considered a key factor to allow cooperation

between network operators, service and content providers. This chapter in-

2

Context of the work

Figure 1.1: Ip Multimedia Subsystem Architecture.

troduces some technologies that can provide a simple and immediate way to

create convergent services. In particular we focus on the design and develop-

ment of Web-based APIs based on REST principles to expose communication

services on the web and make them accessible via web browser. [Mazzi, 2013]

In section 1.1 we present REST architectural style to model and expose

Web API, since it provides guidelines for developing applications coherent

with the principles on the web. One of the most popular protocols for han-

dling calls in the VoIP world is the Session Initiation Protocol (SIP), which

allows the management of multimedia sessions at application level. This pro-

tocol is widely used in VoIP for the spread of broadband connections, so can

count on an increasing number of users. For this reason, in section 1.2 we

present it in more detail, describing the functioning and main characteris-

tics. About real-time and web communications, in section 1.3 we describe

the latest technology WebRTC whose objective is precisely to enable the

connection and direct communication between two users through the use of

browser. Finally, in section 1.4 we taken into account some research works

that have proposed approach models for the Web and Telecom service conver-

gence, such as exposure of telephony services via web API. For this purpose,

the analyzed models use technologies seen in the development of convergent

3

Context of the work REST

services. So doing, we can contextualize the work done within the landscape

seeing to converge the internet and telecommunication world.

1.1 REST

The Representational State Transfer (REST) is an architectural style that

provides a set of principles to create a web service-oriented client/server ar-

chitecture. Fielding in his doctoral thesis writes: ”REST ignores the details of

component implementation and protocol syntax in order to focus on the roles

of components, the constraints upon their interaction with other components,

and their interpretation of significant data elements.” [Fielding, 2000]. The

motivation behind the development of REST was to create a design pattern

for how the Web should work, so that it could act as a guiding framework

for the Web standards and designing Web services. On the REST vision,

data sets and objects handled by client-server application logic are modeled

as resources. Although REST is not bound to any specific protocol, in prac-

tice HTTP is widely adopted for its implementation. REST itself is not a

standard but it prescribes the use of standards such as HTTP, URL, and

XML/HTML/JPEG.

REST-style architectures consist of clients and servers. Clients initiate

requests to servers who process these requests and return responses based on

these requests. These requests and responses are built around the transfer of

representations of these resources. A resource can be any coherent and mean-

ingful concept that can be addressed, while a representation of a resource is

a document that captures the intended state of a resource. Fundamentally in

REST, each resource is first identified by using an URL and a new resource

for every required service is created. The data returned by the service must

be linked to the other data, hence making it in to a network of informa-

tion unlike the Object Oriented design which encourages the encapsulation

of information.

1.1.1 Principles

REST architectural style describes six constraints applied to architecture

[Fielding, 2000]:

• Client–server, a uniform interface separates clients from servers. This

4

Context of the work REST

separation of concerns means that, for example, clients are not con-

cerned with data storage, which remains internal to each server, so that

the portability of client code is improved. Servers are not concerned

with the user interface or user state, so that servers can be simpler and

more scalable. Servers and clients may also be replaced and developed

independently, as long as the interface between them is not altered.

• Stateless, the client–server communication is further constrained by no

client context being stored on the server between requests. Each request

from any client contains all the information necessary to service the

request, and session state is held in the client. The session state can

be transferred by the server to another service such as a database to

maintain a persistent state for a period and allow authentication. The

client begins sending requests when it is ready to make the transition

to a new state. While one or more requests are outstanding, the client

is considered to be in transition. The representation of each application

state contains links that may be used the next time the client chooses

to initiate a new state-transition [Davids et al., 2011].

• Cacheable as on the World Wide Web, clients can cache responses.

Responses must therefore, implicitly or explicitly, define themselves as

cacheable, or not, to prevent clients from reusing stale or inappropriate

data in response to further requests. Well-managed caching partially or

completely eliminates some client–server interactions, further improv-

ing scalability and performance.

• Layered system, a client cannot ordinarily tell whether it is connected

directly to the end server, or to an intermediary along the way. Inter-

mediary servers may improve system scalability by enabling load bal-

ancing and by providing shared caches. They may also enforce security

policies.

• Code on demand (optional), servers can temporarily extend or cus-

tomize the functionality of a client by the transfer of executable code.

Examples of this may include compiled components such as Java ap-

plets and client-side scripts such as JavaScript. ”Code on demand” is

the only optional constraint of the REST architecture.

• Uniform interface, the uniform interface constraint is fundamental to

5

Context of the work REST

the design of any REST service [Islam and Gregoire, 2013]. The uniform

interface simplifies and decouples the architecture, which enables each

part to evolve independently. The four constraints for this uniform

interface are:

– Identification of resources (Addressability). Individual resources

are identified in requests, for example using URIs in web-based

REST systems. The resources themselves are conceptually sepa-

rate from the representations that are returned to the client. For

example, the server may send data from its database as HTML,

XML or JSON, none of which are the server’s internal representa-

tion, and it is the same one resource regardless. Resources are ex-

posed by servers through URIs. Since URIs belong to a global ad-

dressing space, resources identified with URIs have a global scope.

– Manipulation of resources through these representations. When a

client holds a representation of a resource, including any meta-

data attached, it has enough information to modify or delete the

resource. The interaction with the resource is fully expressed

with four primitives, i.e., create, read, update and delete. The

constraint of uniform interface means that resources are handled

through a fixed set of operations: create, read, update, delete.

These operations can be mapped onto HTTP methods: GET gets

the resource state; PUT sets the resource state; DELETE deletes

a resource; POST extends a resource by creating a child resource.

– Self-descriptive messages. Each message includes enough informa-

tion to describe how to process the message. For example, which

parser to invoke may be specified by an Internet media type (previ-

ously known as a MIME type). Responses also explicitly indicate

their cacheability [Fielding, 2000].

– Hypermedia as the engine of application state (HATEOAS). Clients

make state transitions only through actions that are dynamically

identified within hypermedia by the server (e.g., by hyperlinks

within hypertext). Except for simple fixed entry points to the

application, a client does not assume that any particular action

is available for any particular resources beyond those described in

representations previously received from the server.

6

Context of the work REST

One can characterize applications conforming to the REST constraints de-

scribed in this section as ”RESTful” [Alvestrand, 2013]. If a service violates

any of the required constraints, it cannot be considered RESTful.

Complying with these constraints, and thus conforming to the REST

architectural style, enables any kind of distributed hypermedia system to have

desirable emergent properties, such as performance, scalability, simplicity,

modifiability, visibility, portability, and reliability.

1.1.2 REST-oriented methodology

In this section we discuss how we applied a REST-oriented methodology

to design a web API for communication services (e.g., a call service). We

adopted the methodology for resource-oriented design proposed by Richard-

son and Ruby [2007]. According to this methodology, designers have to first

figure out the dataset on which the service will operate, and split it into

resources. After that, they should proceed for each resource as follows:

1. name the resource using a URI;

2. identify a subset of the uniform interface that is exposed by the re-

source;

3. design the representation(s) of the resource as received in a request

from the client or returned in a reply;

4. analyze the typical course of events by exploring and defining how the

new resource behaves during a successful execution and analyze possible

error conditions.

This resource-oriented methodology uses the HTTP protocol and obviously

GET, POST, PUT and DELETE methods like uniform interface. The re-

quest PUT is used to update the resource status. The PUT method, as

well as DELETE, should be idempotent. The DELETE method tells the

server that the resource should no longer exist. The client does not send a

representation along with the request as unnecessary. The POST method is

the attempt to create a new resource by an existing one. As for the PUT

method, also in this case a representation of the resource is sent together

with the request. The GET method allows to request a resource, so any

representation is sent along with the request. This request type must not

7

Context of the work SIP

change the resource state. This resource-oriented methodology suggests an

intelligent use about the response (positive and negative) appealing to the

response states already defined by HTTP. For instance, a POST request for

the resource creation causes a 201 ”Created” response in positive case, while

a PUT or DELETE request causes a 204 ”No Content” response.

1.1.3 Asynchronicity Management

The REST style, in its conception, was heavily influenced by the HTTP

protocol with which it is often implemented. The HTTP client/server nature

has so conditioned the REST style that is designed with the idea of two

entities: one that requires the service and that it provides. This can create

problems in delivering services such NOTIFY/SUBSCRIBTION in which the

change of a resource must be notified by the provider to the user. Fielding

is not talking about this possibility and there is not generally a well-defined

approach on how to address the problem. However some solutions exist,

based on HTTP and other protocols closely linked, and are reported below:

1. GET or Periodic polling;

2. Long polling;

3. HTTP streaming;

4. WebSocket.

These solutions are treated in details in the next chapter.

1.2 SIP

The Session Initiation Protocol (SIP) is an application layer protocol used

to create, modify and terminate multimedia sessions between two or more

users. The first Request for Comments (RFC) was released in 1999 [Handley

and Rosenberg, 1999], while the second version in 2002, RFC 3261 [Rosenberg

et al., 2002a]. At the moment it is the most important because it contains

the main specifications of this protocol. Standardization is done by IETF.

SIP is not the only protocol that the communicating devices will need.

It is not meant to be a general purpose protocol. Purpose of SIP is just to

make the communication possible, the communication itself must be achieved

8

Context of the work SIP

by another means (and possibly another protocols). Two protocols that are

most often used along with SIP are RTP [Schulzrinne and Jacobson, 2003]

and SDP [Handley and Jacobson, 1998]. RTP protocol is used to carry the

real-time multimedia data (including audio, video, and text), the protocol

makes it possible to encode and split the data into packets and transport

such packets over the Internet. An another important protocol is SDP, which

is used to describe and encode capabilities of the session participants. Such

a description is then used to negotiate the characteristics of the session so

that all the devices can participate (that includes, for example, negotiation

of codecs used to encode media so all the participants will be able to decode

it, negotiation of transport protocol used and so on).

SIP is independent from the underlying transport protocol: TCP, UDP,

or otherwise. It is basically peer-to-peer and has intelligent endpoint and a

network core which deals simple tasks. SIP presents an architectural model

similar to HTTP:

• client/server architecture;

• request/response model;

• BNF textual encoding;

• codes associated with response messages.

SIP can be used to manage different service types:

• Short messaging (sms);

• IP Multimedia Messaging (MMS);

• Instant Messaging (IM);

• Terminal location;

• Presence;

• Audio call;

• Multimedia (e.g., video and audio) Conference;

• Streaming media;

• Third part call.

9

Context of the work SIP

1.2.1 SIP URI

SIP entities are identified using SIP URI (Uniform Resource Identifier). A

SIP URI has form of sip:username@domain, for instance, sip:joe@company.com.

As we can see, SIP URI consists of username part and domain name part

delimited by @ (at) character. SIP URIs are similar to e-mail addresses, it is,

for instance, possible to use the same URI for e-mail and SIP communication,

such URIs are easy to remember. [Janak, 2003]

1.2.2 SIP Network Elements

Basic SIP elements are user agents, proxies, registrars, and redirect servers.

We will briefly describe them in this section. Note that the elements, as pre-

sented in this section, are often only logical entities. It is often profitable

to co-locate them together, for instance, to increase the speed of processing,

but that depends on a particular implementation and configuration. Figura

1.2 shows a functioning example of SIP protocol.

Figure 1.2: A functioning example of SIP protocol [Rosenberg et al., 2002a].

User Agent

Internet end points that use SIP to find each other and to negotiate a

session characteristics are called user agents. User agents usually, but not

necessarily, reside on a user’s computer in form of an application; This is

currently the most widely used approach, but user agents can be also cellular

phones, PSTN gateways, PDAs, automated IVR systems and so on. User

10

Context of the work SIP

agents are often reffered to as User Agent Server (UAS) and User Agent Client

(UAC). UAS and UAC are logical entities only, each user agent contains a

UAC and UAS. UAC is the part of the user agent that sends requests and

receives responses. UAS is the part of the user agent that receives requests

and sends responses. Because a user agent contains both UAC and UAS, we

often say that a user agent behaves like a UAC or UAS. For instance, caller’s

user agent behaves like UAC when it sends an INVITE requests and receives

responses to the request. Callee’s user agent behaves like a UAS when it

receives the INVITE and sends responses. But this situation changes when

the callee decides to send a BYE and terminate the session. In this case

the callee’s user agent (sending BYE) behaves like UAC and the caller’s user

agent behaves like UAS. [Janak, 2003]

Proxy server

User agents can send messages to a proxy server. Proxy servers are very

important entities in the SIP infrastructure. They perform routing of a ses-

sion invitations according to invitee’s current location, authentication, ac-

counting and many other important functions. The most important task of

a proxy server is to route session invitations “closer” to callee. The session

invitation will usually traverse a set of proxies until it finds one which knows

the actual location of the callee. Such a proxy will forward the session in-

vitation directly to the callee and the callee will then accept or decline the

session invitation. There are two basic types of SIP proxy servers: stateless

and stateful.

Stateless server are simple message forwarders. They forward messages

independently of each other. Stateless proxies are simple, but faster than

stateful proxy servers. They can be used as simple load balancers, message

translators and routers.

Stateful proxies are more complex. Upon reception of a request, stateful

proxies create a state and keep the state until the transaction finishes. Some

transactions, especially those created by INVITE, can last quite long (until

callee picks up or declines the call). Because stateful proxies must maintain

the state for the duration of the transactions, their performance is limited.

[Janak, 2003]

11

Context of the work SIP

Registrar

A SIP entity that receives requests for registering and places information

in the location database: IP address, port number, username and more. It

is a logic element that is often placed in the same machine on which a proxy

resides. Sometimes it find in dedicated machines in order to promote the

network scalability.

Location Service

The Location Service typically resides on the same machine of a Registrar

Server and contains a constantly updated database about the user records.

It can directly locate the researched user or return the addresses of Proxy

Server or other entities that may know the location. Sometimes an interme-

diate entity, called Redirect Server, between the Location Service and Proxy

can be present, which is contacted by users as alternative to a Proxy. The

Redirect Server obtains location information from the Location Database of

a Registrar Server and communicates it to the user who can then re-route the

request. In particular it is a UAS that generates responses 3xx (Redirection)

to the requests it receives, directing the client to contact a set of alternative

URI. These servers allow the proxy to direct calls to the SIP sessions on

external domains.

1.2.3 Messages

Communication using SIP (often called signaling) comprises of series of

messages. Messages can be transported independently by the network. Usu-

ally they are transported in a separate UDP datagram each. The model

used by SIP is similar to HTTP that uses request and response. A funda-

mental difference is the ability to receive multiple SIP responses to a single

request. In particular, a request may be associated with zero or more provi-

sional responses (1xx) and one or more final answers [Janak, 2003]. SIP is a

text-based request/response protocol. The messages have this format:

• Start-line (Request-line/Status-line), the first line identifies message

type. There are two types of messages: requests and responses. If the

first line of the message contains a request type, then it is a message

request, otherwise if contains a response status, it is a response message.

Both message types have this format:

12

Context of the work SIP

• Message-header contains the headers of the message.

• CRLF, empty line.

• Message-body, optional field that can contain other informations.

In case of a request the first line expresses the type of request that the UA

client wants to do. The SIP request messages are listed and briefly explained

below:

• REGISTER, registration request to a Registrar.

• INVITE request for establishment of a session.

• ACK, confirmation of message exchange.

• CANCEL, termination request of a pending request.

• BYE, closing of a session between two users.

• OPTIONS, information request about the capabilities of the caller.

The message responses are sent by the UAS. In this case the Start-line con-

tains a code representing the response. These codes are divided into six

categories:

• Provisional (1xx), the request was received.

• Success (2xx), the request was received, accepted and processed.

• Redirection (3xx), the request needs other actions because it is satisfied.

• Client Error (4xx), the request can not be satisfied.

• Server Error (5xx), the server has failed request processing, even if

valid.

• Global Failure (6xx), any server can meet the request.

The most important header fields are:

• From, URI of the sender.

• To, URI of the receiver.

13

Context of the work SIP

• Call-ID, identifies a call between two or more participants.

• CSeq, identifies a transaction within the dialogue between two users.

• Via, identifies the protocol used for the transaction and the entities to

which the response should be sent.

• Content-type, describes the content type in the message body.

• Content-length, indicates the content size in the message body.

1.2.4 Transactions

Although we have said that SIP messages are sent independently over

the network, they are usually arranged into transactions by user agents and

certain types of proxy servers. Therefore SIP is said to be a transactional

protocol. A transaction is a sequence of SIP messages exchanged between

SIP network elements. A transaction consists of one request and all responses

to that request. That includes zero or more provisional responses and one

or more final responses (remember that an INVITE might be answered by

more than one final response when a proxy server forks the request). Figure

1.3 shows what messages belong to what transactions during a conversation

of two user agents. [Janak, 2003]

1.2.5 Dialog

We have shown what transactions are, that one transaction includes IN-

VITE and it’s responses and another transaction includes BYE and it re-

sponses when a session is being torn down. But we feel that those two

transactions should be somehow related—both of them belong to the same

dialog. A dialog represents a peer-to-peer SIP relationship between two user

agents. A dialog persists for some time and it is very important concept for

user agents. Dialogs facilitate proper sequencing and routing of messages

between user agents. Dialogs are identified using Call-ID, From tag, and To

tag. Messages that have these three identifiers same belong to the same dia-

log. We have shown that CSeq header field is used to order messages, in fact

it is used to order messages within a dialog. The number must be monoton-

ically increased for each message sent within a dialog otherwise the peer will

handle it as out of order request or retransmission. In fact, the CSeq number

14

Context of the work SIP

Figure 1.3: SIP Transactions

identifies a transaction within a dialog because we have said that requests

and associated responses are called transaction. This means that only one

transaction in each direction can be active within a dialog. One could also

say that a dialog is a sequence of transactions. Figure 1.4 extends figure 1.3

to show which messages belong to the same dialog.

Some messages establish a dialog and some do not. For instance, INVITE

message establishes a dialog, because it will be later followed by BYE request

which will tear down the session established by the INVITE. This BYE is

sent within the dialog established by the INVITE. But if a user agent sends a

MESSAGE request, such a request doesn’t establish any dialog. Any subse-

quent messages (even MESSAGE) will be sent independently of the previous

one.

Call-ID is call identifier. It must be a unique string that identifies a call.

A call consists of one or more dialogs. Multiple user agents may respond to a

request when a proxy along the path forks the request. Each user agent that

sends a 2xx establishes a separate dialog with the caller. All such dialogs

are part of the same call and have the same Call-ID. From tag is generated

by the caller and it uniquely identifies the dialog in the caller’s user agent.

15

Context of the work SIP

Figure 1.4: SIP Dialog

To tag is generated by a callee and it uniquely identifies, just like From tag,

the dialog in the callee’s user agent. This hierarchical dialog identifier is

necessary because a single call invitation can create several dialogs and caller

must be able to distinguish them. [Janak, 2003]

1.2.6 Typical SIP Scenarios

This section gives a brief overview of typical SIP scenarios that usually

make up the SIP traffic.

Registration

Users must register themselves with a registrar to be reachable by other

users. A registration comprises a REGISTER message followed by a 200 OK

sent by registrar if the registration was successful. Registrations are usually

authorized so a 407 reply can appear if the user didn’t provide valid creden-

tials. Figure 1.5 shows an example of registration and 1.6 its corresponding

SIP REGISTER message.

16

Context of the work SIP

Figure 1.5: Example of SIP registration.

Figure 1.6: SIP REGISTER Message.

Session Invitation

A session invitation consists of one INVITE request which is usually sent

to a proxy. The proxy sends immediately a ”100 Trying”message reply to stop

retransmissions and forwards the request further. All provisional responses

generated by callee are sent back to the caller. The response is generated

when callee’s phone starts ringing. Figure 1.9 shows a ”180 RINGING” mes-

sage. A ”200 OK” message is generated once the callee picks up the phone

and it is retransmitted by the callee’s user agent until it receives an ”ACK”

message from the caller, as shown in Figure 1.10. The session is established

at this point. Figure 1.7 shows an example of session invitation.

In order to establish a call two users have to exchange data about the

protocols and encodings supported. Usually this is done through the use

of Session Description Protocol (SDP) [Handley and Jacobson, 1998], which

provides a standard representation for the description of the above informa-

tion. A first description, called ”offer”, is typically sent in the body of the

INVITE message and is generated by the AUC, as shown in Figure 1.8. This

allows the called to create a response with a description of its ability, called

”answer”, which is typically sent in the body of the ”200 OK” message, as

17

Context of the work SIP

Figure 1.7: Example of SIP session invitation.

shown in Figure 1.11. In case of negative response, the sending of ”answer” is

completely superfluous. Once both participants have ”offer” and ”answer”, a

media channel can be established between the two UA for the communication

between their.

Figure 1.8: SIP INVITE Message.

18

Context of the work SIP

Figure 1.9: SIP 180 RINGING Message.

Figure 1.10: SIP ACK Message.

Figure 1.11: SIP 200 OK Message.

19

Context of the work SIP

Session Termination

Session termination is accomplished by sending a BYE request within

dialog established bye INVITE. Party wishing to tear down a session sends

a BYE request to the other party involved in the session. The other party

sends a 200 OK response to confirm the BYE and the session is terminated.

The transaction 2 of Figure 1.4 shows an example of session termination.

1.2.7 INVITE Client Transaction

The INVITE transaction consists of a three-way handshake, as shown in

Figure 1.12. The client transaction sends an INVITE, the server transaction

sends responses, and the client transaction sends an ACK. The server trans-

action can send additional 1xx responses, which are not transmitted reliably

by the server transaction. Eventually, the server transaction decides to send

a final response. For each final response that is received at the client transac-

tion, the client transaction sends an ACK, the purpose of which is to quench

retransmissions of the response. [Rosenberg et al., 2002a]

1.2.8 INVITE Server Transaction

The state diagram for the INVITE server transaction is shown in Fig-

ure 1.13. When a server transaction is constructed for a request, it enters

the ”Proceeding” state. The server transaction must generate a 100 (Try-

ing) response unless it knows that the TU will generate a provisional or final

response within 200 ms, in which case it MAY generate a 100 (Trying) re-

sponse. If, while in the ”Proceeding” state, the TU passes a 2xx response to

the server transaction, the server transaction must pass this response to the

transport layer for transmission. While in the ”Proceeding” state, if the TU

passes a response with status code from 300 to 699 to the server transac-

tion, the response MUST be passed to the transport layer for transmission,

and the state machine must enter the ”Completed” state. [Rosenberg et al.,

2002a]

We described only the INVITE Client and Server Transactions because

these scenarios are very important in this thesis, while the Non-INVITE

Client and Server Transactions are in RFC 3261, [Rosenberg et al., 2002a].

20

Context of the work SIP

Figure 1.12: INVITE Client Transaction [Rosenberg et al., 2002a].

21

Context of the work SIP

Figure 1.13: INVITE Server Transaction [Rosenberg et al., 2002a].

22

Context of the work WebRTC

1.3 WebRTC

The last years have seen an increasing use of web applications to provide

various service types with the ability to implement more complete interfaces.

In some cases these solutions needed plugin that have to be downloaded

and installed separately. HTML5 has as objective for the programmer the

increase of available tools, which correspond to an increase of services that

can be offered to the end user without the use of external plugins.

WebRTC is a free open source project born in 2011 and currently sup-

ported by Google, Mozilla and Opera. The objective of WebRTC is to enable

the browser to realize audio/video conference and sharing files, using HTML5

and Javascript API, without the user has to install external plugins or make

use of dedicated applications. APIs are currently still very young and not

fully functional. The browsers that implement these features and can actually

make audio/video browser-to-browser calls are Google Chrome and Mozilla

Firefox [Bergkvist et al., 2014]. In order to achieve this objective, WebRTC

uses multiple technologies defined by several standardization groups:

• A suite of protocols developed by the group RTCWEB of IETF for

real-time communication between applications that can be run by a

browser [Richardson and Ruby, 2007].

• API for JavaScript language defined by W3C [Fielding, 2000], making

it possible to send and receive media data between two browsers or

devices that implement the appropriate set of real-time protocols.

• API for accessing to local media devices developed by Media Capture

Task Force.

The RTC capabilities located within the browser allow the communication

through the suite of protocols defined by IETF and are exposed through the

API defined by W3C.

1.3.1 IETF Protocol Specification

The process of communication establishment between two browsers can be

explained by observing Figure 1.14. The two browsers communicate via two

paths. The first path is used for the signaling phase and uses a web server

to convey messages, whose content allows the creation of the second path

23

Context of the work WebRTC

dedicated to the direct communication between the browsers. The second

path must comply with the specifications of the RTCWEB protocol suite.

The process is similar to that seen in the SIP world: SIP User Agents in place

of browsers, Proxy in place of Web Server, and the signaling occurs through

the use of the SIP protocol and not HTTP or WebSocket. The specification

[Richardson and Ruby, 2007] highlights as the media negotiation should use

descriptions that follow the SDP syntax so that it is possible to build a

gateway for the signaling between SIP and RTCWEB. This makes possible

to communicate with future SIP devices that support ICE, RTP and SDP.

Figure 1.14: Communication establishment between two browsers.

1.3.2 W3C API JavaScript Specification

WebRTC is a recent technology and, for this reason, the JavaScript APIs

are subject to continuous updates accompanied by related documentation.

In this work we consider the last Working Draft of 4 July 2014 [Bergkvist

et al., 2014] although different browsers can implement slightly different API.

These differences do not affect the main concepts. APIs are divided into two

parts:

• Network Stream APIs.

• Peer-to-peer connections.

24

Context of the work WebRTC

The Network Stream APIs (called also getUserMedia) allow to access to

multimedia resources of the computer. Within these APIS the MediaStream

concept is defined, namely an interface that represents a data audio/video

stream type. This interface can be extended to represent a stream from

or sent to a remote node. Each MediaStream can be composed of more

MediaStreamTrack as shown in Figure 1.15. A MediaStreamTrack represents

the data flow coming from a device (e.g., webcam, microphone).

Figure 1.15: MediaStream and MediaStreamTrack.

The peer-to-peer connections concern the communication between two

browsers. In particular, the RTCPeerConnection class allows two users to

communicate directly from browser to browser. This communication is co-

ordinated via a not-specified signaling method although one usually used

is illustrated in Figure 1.14, which uses HTTP messages and a WebSocket

chanel between Browser and Web Server. The creation of a RTCPeerCon-

nection object provide to pass any parameters for crossing NAT via Session

Traversal Utilities for NAT”(STUN) or Traversal Using Relays around server

NAT (TURN) server. The most important fields of the RTCPeerConnection

class are:

• iceState, indicates the status of ICE agent,

25

Context of the work Related Work

• readyState, indicates the RTC connection status,

• localDescription, contains the SDP of local media,

• remoteDescription, contains the SDP of remote media,

• localStreams, contains an array of local streams,

• remoteStreams, contains an array of remote stream.

Moreover, methods for object the management are defined. The create-

Offer and createAnswer methods permit the creation of SDP to be sent to

the caller or callee. For a discussion we refer to [Bergkvist et al., 2014].

1.4 Related Work

The increasing need of making capabilities of an operator’s network ac-

cessible and invokable by applications of external consumers has driven the

recent technological evolution in the telecommunication domain. To this

purpose, the service-oriented principles [Erl, 2007] have inspired the Service

Delivery Platforms specifications exposing the telecom capabilities via open

APIs in order to enable enhanced and flexible service provision and compo-

sition.

In this context, several standard specifications regarding the exposure of

telecom services have been recently specified. The ITU-T has defined the

NGN Open Service Environment (OSE) that offers standard APIs to access

and orchestrate heterogeneous Next Generation Network services to the ap-

plication providers [ITU, 2008]. The Open Mobile Alliance has published

specifications about an Open Service Environment and related Service En-

ablers [OMA, 2009]. These open specifications define how the functional

capabilities have to designed, deployed, composed, and executed over con-

vergent networks [Brenner and Unmehopa, 2008].

More recently, the IEEE Standard Association has approved the specifi-

cations regarding the Next Generation Service Overlay Network (NGSON)

functional architecture [NGSON Working Group, 2011, Lee and Kang, 2012].

The IEEE NGSON architecture defines functions related to the service and

transport in order to support context-aware, dynamically adaptive, and self-

organizing networks. NGSON is expected to operate on the top of different

26

Context of the work Related Work

underlying networks such as the IP Multimedia Subsystem (IMS), Next Gen-

eration Networks (NGN), peer-to-peer (P2P) overlays, and the Web.

Menkens and Wuertinger [2011] discuss the move in the Telecommuni-

cation industry towards the service-oriented infrastructures and the actions

made by telecom service providers to make their capabilities accessible by

third party developers. They also highlight major obstacles towards the de-

velopment of Web/Telecom convergent applications:

1. available specifications for telecom service environments define how

telecommunication features can be exposed to third party developers,

but they do not provide any concept or paradigm for supporting the

developers in the composition of telecommunication services with web

services;

2. telecommunications specifications, such as IP Multimedia Subsystem

(IMS) [Camarillo and Garćıa-Mart́ın, 2006] and Session Initiation Pro-

tocol (SIP) [Rosenberg et al., 2002a], are not supported by default by

widely adopted platforms for mobile devices;

3. application developers typically adopt Internet, web protocols and data

formats (e.g., HTTP, XML [Bray et al., 2004] and the JavaScript Object

Notation (JSON) [Crockford, 2002]).

More specifically, the convergence of Web and SIP-based services is consid-

ered difficult to achieve, since HTTP and SIP protocols rely on different

principles [Bond et al., 2009, Islam and Gregoire, 2013]:

• typical use of SIP is stateful, while HTTP is stateless;

• SIP is peer-oriented, while HTTP is based on the client-server paradigm.

1.4.1 Web APIs for Telecom services

In order to effectively support third party application developers, some

standard specifications for the telecom service exposure based on Web have

been defined [Mulligan, 2009, Belqasmi et al., 2011]. Web-based interfaces

may be distinguished into those that comply with Web Service (WS) speci-

fications and those that comply with REST guidelines.

The Open Mobile Alliance has defined a web service framework called

OMA Web Services Enabler [OMA, 2006]. The Parlay group, which is a

27

Context of the work Related Work

standardization body that works in collaboration with OMA, Third Genera-

tion Partnership Program (3GPP) and European Telecommunications Stan-

dards Institute (ETSI), has defined the Parlay X specifications [3GPP, 2009].

Parlay X is a set of Web Service APIs for accessing a wide range of telecom

network capabilities (e.g., third party call control, call notification, short

messaging, and payment). Nonetheless, Mulligan [2009] argued that these

APIs present some limitations as they do not allow the developer to handle

the service data model, although handle reasonably well the session estab-

lishment.

More recently, several standardization efforts have been focused on REST-

ful APIs specifications for making the telecommunication services more easily

accessible by third-party web-application developers [Belqasmi et al., 2011].

The Open Mobile Alliance (OMA) has released the specifications regarding

the RESTful bindings for Parlay X Web Services in 2012 [OMA, 2012]. The

currently available version (version 2.0) includes simple no-session services

such as short and multimedia messaging, payment and location services, and

accessory features for call services.

Group Special Mobile Association (GSMA) has published OneAPI [GSMA,

2009]. It provides REST APIs enabling applications to exploit mobile net-

work capabilities, i.e. call control, messaging, authentication, payments and

location-finding across multi-operator domains.

The IETF Centralized Conferencing Manipulation Protocol (CCMP) spec-

ification [Barnes et al., 2012] includes a possible mapping between CCMP and

REST architectural style. These REST APIs can be used for manipulating

XML documents that contain the information characterizing a specified con-

ference instance.

Several research works have investigated the web service adoption for

exposing telecom capabilities [Chou et al., 2008, Griffin and Pesch, 2007].

Recently, researchers have increasingly focused their efforts on RESTful ser-

vices, rather than on WS ones, since RESTful services are deemed more

lightweight and close to web-application programming models. Belqasmi

et al. [2012] made a comparison between WS and RESTful multimedia con-

ference services and concluded that RESTful services showed better perfor-

mance. Similar results have been found by AlShahwan and Moessner [2010].

Fu et al. [2010] presented an early feasibility prototype for a REST-based

service architecture in order to bridge the presence service across heteroge-

neous domains. Moriya and Akahani [2010] conducted an experiment with

28

Context of the work Related Work

human participants for investigating the productivity of web-telecom appli-

cations with Parlay X and with a software development kit (SDK) that they

developed in order to easy the use of Parlay APIs. They found two major

problems:

1. the programmers may not know the call session state since the SOAP/HTTP

interface makes the stateless and synchronous interaction;

2. in analogous way, the programmers may apply a procedural style, while

they disregard the event-driven (i.e., asynchronous) nature of telecom-

munication services.

The handling of session-based capabilities (e.g., a call between two end

users) is discussed in several works. Lozano et al. [2008] proposed a set

of REST APIs for exposing session-based IMS capabilities where the asyn-

chronous notification is handled through HTTP polling technique. Davids

et al. [2011] discussed different options in order to allow voice and video com-

munications on the Web. They proposed a RESTful API over HTTP, where

the asynchronous notification is realized through long-lived HTTP technique.

Nicolas et al. [2011] proposed an approach for the convergence of telecom and

web services that exploited the WebSocket protocol. However, the design of

REST APIs was not discussed in detail and the message flow was described

only for presence and location services. Griffin and Flanagan [2011a] applied

a resource-oriented design methodology for defining a call control interface

that can be consumed by browser-based applications. They toke as reference

a simple call model adapted from the Computer Supported Telecommunica-

tions (CSTA) industry standard. The authors also addressed the problem of

asynchronous events delivery to web browsers in another work [Griffin and

Flanagan, 2010].

1.4.2 Web applications for real-time Communication

Finally, we mention the ongoing standardization efforts by the IETF and

the W3C in order to enable direct and interactive communication between

browsers. The IETF and W3C are defining respectively the RTCWeb proto-

col [Alvestrand, 2013] and WebRTC APIs [Bergkvist et al., 2014] to set up a

media channel between web browsers, while the choice of a signaling mecha-

nism is left to the application developers. An open issue is the interworking

29

Context of the work Related Work

between legacy systems, especially SIP-based architectures, and the new up-

coming solutions compliant with the new standards [Amirante et al., 2013].

Li and Zhang [2012] discussed the need of integrating a WebRTC-based solu-

tion with IP Multimedia Subsystem for providing a preliminary description of

an integration solution, while Amirante et al. [2013] discussed the main tech-

nical issues entailed by the integration of SIP-based solutions with WebRTC

applications for proposing a working solution for a conferencing system.

30

Part II

Discussion of the work

Chapter

2
RESTful Service Design

This chapter describes the steps taken to design the RESTful service. In

paragraph 2.1 we motivate our contribution. In paragraph 2.2 we describe

the main reference scenarios for the user who wants to use this service. In

paragraph 2.3 we describe our approach to the design of web-based API for

real time communications service. In paragraphs 2.4 and 2.5 we describe

REST resources constituting the service, in particular in paragraph 2.4 we

present the presence resource and in paragraph 2.5 the call resource. In

order to design REST APIs for the call resource we adopt a state machine

formalism for modeling the call service behavior and introduce a tool for

simulating the service expected behavior and interworking with SIP-based

systems. In paragraph 2.6 we describe some solutions for the asynchronicity

problem using various technologies.

2.1 Motivation of our work

As argued by Belqasmi et al. [2011], the adoption of a stateless architec-

tural style for the exposure of session-based services requires special attention.

Our work basically accounts for the results achieved by Li and Chou [2010],

Davids et al. [2011] and Griffin and Flanagan [2011a] who discussed benefits

and issues of applying REST principles to the design of web-based real time

32

RESTful Service Design Motivation of our work

communication services.

Similarly to the above mentioned works, but with a novel approach, in

this thesis we propose a set of REST APIs for communication services (e.g.,

a voice call service) designed by the adoption of a resource-oriented service

design methodology.

The main limitation of the above-mentioned works, as well as of most

works in the REST-oriented service design, is the lack of rigorous modeling

of REST principles and related RESTful systems. As argued by Zuzak et al.

[2011] this fact is causing ”negative effects, such as confusion in understanding

REST concepts, misuse of terminology and ignorance of benefits of the REST

style”. In order to overcome this limitation, the original contribution of this

work is threefold:

1. we model the call resource behavior through a Finite State Machine

representation which accounts for the SIP specifications of a call session

setup and for REST constraints;

2. we adopt a tool for the analysis of communicating state machines in

order to simulate the behavior of the service and its interworking with

SIP User Agents;

3. we discuss the implementation of a web application prototype that

exposes these REST APIs and we evaluate its compliance with the

specifications with the help of the communicating state machines anal-

ysis tool in some significant sample scenarios. The prototype supports

three mechanisms for the delivery of asynchronous notifications to web

browsers (the first based on WebSocket, the second on Long Polling

and the third on HTTP Streaming).

Our REST-based design and implementation approach is also compliant with

the Hypermedia as The Engine Of Application State (HATEOAS) constraint.

Although this is one of the main REST constraints, it is often disregarded

[Liskin et al., 2011].

The conceptual model of the proposed call service is depicted in Fig. 2.1

and Fig. 2.2.

Fig. 2.1 shows a call setup between two REST clients (e.g., web browsers).

This model presents two REST clients and an intermediary component, called

REST call service, that exposes Web APIs for the exchange of the signaling

33

RESTful Service Design Reference scenarios

messages required for the call session setup. The media path does not nec-

essarily require an intermediary component, unless additional processing is

required (e.g., transcoding).

Figure 2.1: Call setup between two REST clients (web browsers).

Fig. 2.2 shows a call setup between a REST client and a SIP User Agent.

This model presents a REST client, a SIP User Agent and an intermediary

component that is required for the management of the signaling flow and the

translation between the REST call service and a SIP Proxy. Similarly to the

case mentioned above, the media path does necessarily require an intermedi-

ary component. However, current implementations of WebRTC specifications

may require a media gateway to interwork with SIP User Agents [Amirante

et al., 2013].

Figure 2.2: Call setup between a REST client and SIP User Agent.

2.2 Reference scenarios

Before moving on to the service design we define the use cases that the

service has to manage and some simplifying assumptions:

1. all the users are registered to the same domain,

2. the system provides the SIP Proxy and Register functions for that

domain.

34

RESTful Service Design Reference scenarios

Below, we took into account the following reference scenarios:

1. registration and deregistration service of a REST client,

2. registration and deregistration service of a SIP client,

3. call service between two REST clients,

4. call service from a REST client towards a SIP User Agent.

5. call service from a SIP User Agent towards a REST client.

2.2.1 Registration and Deregistration of a REST client

The registration of a user to the server allows to create an presence ser-

vice. With this service, the users can know the users online connected via

REST client and optionally also SIP client. This information permits to check

whether the called user is currently online and so accessible. This action is

always accompanied by a subscription to a incoming call (Figure 2.3). By

subscription, a user registers to a service that will send call requests notifica-

tions. In symmetrical way, a user can deregister, be offline and unsubscribe

by the notification service for incoming calls (Figure 2.4).

Figure 2.3: Registration to the service of a REST client

2.2.2 Registration and Deregistration of a SIP User

Agent

Similarly to the previous case, also the users connected via SIP User Agent

can register to the presence service. Obviously in this case the registration

and deregistration are made by using the SIP protocol, in particular through

the REGISTER message (Figure 2.5 and Figure 2.6). Once SIP users are

35

RESTful Service Design Reference scenarios

Figure 2.4: Deregistration to the service of a REST client

registered, they can be displayed in the list of users online. In contrast to the

users connected via REST client, the registration to the notification service is

not necessary. In fact, a SIP User Agent can operate both as client (requires

the establishment of a call) and as server (receives an invitation for a call),

once it knowns IP address and the port on which it listens.

Figure 2.5: Registration to the presence service of a SIP client

Figure 2.6: Deregistration to the presence service of a SIP client

2.2.3 Call between two REST clients

This is the first of three cases related to the service call. First, we analyze

the case where a user accessing to the service via REST client (e.g., web

browser) requires the establishment of a call with another user connected via

REST client. In this case, the service doesn’t handle the interoperability with

systems based on the SIP protocol. Both users must have already signed to

36

RESTful Service Design Reference scenarios

the presence and notification service. As shown in Figure 2.7, the presence

of the called user is also occurred at the creation of the call. Moreover, the

caller user must record to the call just made (Register to Call). In this way

the REST client will be notified of any update on the call and will eventually

perform actions on the occurrence of a new state.

Figure 2.7: Call service between two REST users

2.2.4 REST user to SIP User Agent Call service

In this scenario an user using a REST client wants to establish a call

with an user using a SIP client. As mentioned above, it is necessary that the

REST client is registered while it is optional for the SIP user. The creation

of the SIP interface that sends the INVITE message follows the SIP protocol

specifications, as shown in Figure 2.8.

Figure 2.8: Call service from a REST user towards a SIP User Agent

2.2.5 SIP User Agent to REST user Call service

In this last scenario an user using a SIP User Agent wants to establish

a call with an user connected via a REST client. In this case the SIP User

Agent sends messages to the SIP interface of the call service. At this point

37

RESTful Service Design Resource-oriented Design

the service checks if the callee user is a REST user recorded and available

to the call (i.e., online status) and then continues by sending to the REST

client a notification message about the incoming call (Figure 2.9).

Figure 2.9: Call service from a SIP User Agent towards a REST user

2.3 Resource-oriented Design

As mentioned in Section 2.1, the aim of this thesis is the specification

of a APIs set for a communication service based on REST principles. In

previous chapter we described the REST principles, and after the service

design that follows the Resource Oriented Architecture (ROA) specification.

The advantages already described are also reflected in this service: REST

constraints (unique and addressable resources, uniform interface, absence of

state in the communication between client and server) give the possibility to

choose freely architecture to use and to scale to system level. We adopted

the methodology for resource-oriented design proposed by Richardson and

Ruby [2007]. According to this methodology, designers have to first figure

out the dataset on which the service will operate, and split it into resources.

After that, they should proceed for each resource as follows:

1. naming the resource using a URI;

2. identifying a subset of the uniform interface that is exposed by the

resource;

3. designing the representation(s) of the resource as received in a request

from the client or returned in a reply;

38

RESTful Service Design Presence resourse

4. analyzing the typical course of events by exploring and defining how

the new resource behaves during a successful execution and analyze

possible error conditions.

The service domain consists of a list of capabilities that are made available

to the web browser through RESTful web services. To represent the service

domain of the above-mentioned reference scenarios, we then identified the

main resources of the REST-based service communication:

1. Presence, represents a user’s availability status and contact informa-

tion. This resource permits to know the registered users that access to

the offered services.

2. Call, represents a video or audio call between two peers. This resource

contains all the information that describes the call in terms of signaling

and media traffic and call state.

In the following sections we describe in detail the design of two resources by

ROA style.

2.4 Presence resourse

The presence resource is responsible for storing and distributing presence

information of the connected users. For the SIP protocol extensions exist,

such as SIMPLE [Rosenberg et al., 2002b], which allow to implement this

service type. In this thesis we consider a simplifying configuration assump-

tions where the main purpose of the Presence service is to determine if a user

can be reached by call service or not. In the next sub-paragraphs the service

is defined through the steps outlined in the architecture ROA.

2.4.1 Assigning names to resources

Each resource is identified through a URI. According to the REST guide-

lines, URI fragments should contain nouns (e.g., presence), rather than verbs

(e.g., registerpresence). In this work the presences resource is identified

through the http://{servername}/presences URI; analogously, the identi-

fier of a presence resource is http://{servername}/presences/{presence_

id}.

39

http://{servername}/presences
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}

RESTful Service Design Presence resourse

2.4.2 Uniform interface

The constraint of uniform interface means that resources are handled

through a fixed set of operations: create, read, update, delete (CRUD). These

operations can be mapped onto HTTP methods: GET gets the resource state;

PUT sets the resource state; DELETE deletes a resource; POST extends a

resource by creating a child resource. This section describes the operations

associated to the presence resource. These operations are summarized in

Table 2.1. The first column shows the resource URIs, the second defines

the HTTP methods that must be invoked to perform the specific operation.

These actions are identified by an URI and a HTTP method. The third and

fourth column indicate if the message body of HTTP request and response

is empty, respectively. The fifth column provides a description of the HTTP

method. The Table 2.1 shows the XML representation of the resource because

it is the format that is actually used. The resource can be expose in other

formats (e.g., HTML, JSON). Moreover, not all operations require to the

client to send data to the server or vice versa. In particular in read operations

the server sends data as response to the client while in creation and updating

operations the client sends data to the server. Now we describe the individual

operations on the presences and presence resources:

1. Creation of a presence resource, an user register to the registration ser-

vice by creating a resource Presence. This operation is done by sending

a POST request on the URI: http://{servername}/presences. The

server receives in the client request all the information regarding the

new resource and responds with a 201 ”Created” status code. In the

response header there is a Location field that contains the URI of the

new resource created.

2. Reading of all the presence resources, the first read operation is per-

formed by using the GET method on the URI: http://{servername}/

presences. This operation allows to get all the existing presence re-

sources and then to know which users are currently online. If the op-

eration is successful, the server sends 200 status code as response.

3. Reading of a specific presence resource, the second read operation re-

quires the URI of a specific resource: http://{servername}/presences/

{presence_id}. As in the previous case the positive response has 200

code.

40

http://{servername}/presences
http://{servername}/presences
http://{servername}/presences
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}

RESTful Service Design Presence resourse

4. Updating of a presence resource, the update operation is done by invok-

ing the PUT method on the URI: http://{servername}/presences/

{presence_id}. This operation permits to change the status of the

presence resource. This request contains the new values about Pres-

ence in the message body. If the operation is successful, the server

returns 204 ”No Content” code status in order to specify that the the

resource has been overwritten with the new values, but the response

doesn’t return any data.

5. Cancellation of a presence resource, the deletion operation of a sin-

gle resource is done by the DELETE method on the URI: http://

{servername}/presences/{presence_id}. This method doesn’t re-

quire the information sending by the client and doesn’t return any data.

For this reason If the operation is successful, the server returns 204 ”No

Content” code status as for the PUT method. We presented cases of

correct behavior. The errors in the request message, or server-side

processing, are also handled using HTTP status codes. For instance,

when an user want to perform operations on the not-existing presence

resource by using a URI is not assigned, the server returns 404 ”Not

found” status code.

Table 2.1: REST APIS for presence resource management

Resource URIs HTTP Request Response Description
Method Message Message

Body Body

/presences GET No Yes Retrieve a list of presences
/presences POST Yes Yes Create a new presence resource
/presences/{presence_id} PUT Yes Yes Modify the presence resource state
/presences/{presence_id} DELETE No No Delete the presence resource
/presences/{presence_id} GET No Yes Retrieve the presence resource

2.4.3 Resource representation

According to Fielding [2000] ”REST components perform actions on a

resource by using a representation to capture the current or intended state of

that resource and transferring that representation between components”. At

each interaction step, a representation may indicate the current state of the

41

http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}
/presences
/presences
/presences/{presence_id}
/presences/{presence_id}
/presences/{presence_id}

RESTful Service Design Call resource

requested resource, the desired state for the requested resource, or the value

of some other resources (e.g. a representation of some error conditions).

The presence resource representation contains the following data fields:

• uri, indicates the user SIP URI (e,g., sip:alice@server.it). There are not

two presence resources with the same URI and therefore a check must

be inspected at the time of registration.

• status, user status (i.e., online, busy, away), indicates the availability

of the user.

• SipUA, boolean value explicits if the user is connected via SIP client

(true) or via REST Client (false). This information is important be-

cause the presence of a SIP client in a call requires that the service

sends SIP messages. To this end, the establishment of the call matches

the instantiation of an object (SIP message sender, as we shall see in the

following paragraphs) in order to manage the sending of SIP messages

to the SIP client.

2.5 Call resource

The call resource is the main resource of our work and the design is more

complex than the presence resource. Important insights for the definition of

the call resource were taken from [Griffin and Flanagan, 2011b]. In detail we

describe two resources:

• The calls resource represents the list of calls handled by the system,

including the calls that have been disconnected but whose details are

available in the call history. Maintaining the call details after discon-

nection may serve for providing end users with the history of calls and

details for service billing or statistics. The policy for the maintenance

of the call details has to be properly configured in the system in order

to minimize the overhead due to the storage of call details. Most inter-

estingly, the calls resource also offers a factory method to instantiate

new calls and retrieve existing calls, as explained in subsection 2.5.2.

• The call resource represents a video or audio call between two peers.

This resource contains all the information that describes the call in

terms of signaling and media traffic and call state.

42

RESTful Service Design Call resource

2.5.1 Assigning names to resources

Each resource is identified through a URI. According to the REST guide-

lines, URI fragments should contain nouns (e.g. call), rather than verbs

(e.g., makecall). In this work the calls resource is identified through the

http://{servername}/calls URI; analogously, the identifier of a call re-

source is http://{servername}/calls/{call_id}.

2.5.2 Uniform interface

This section describes the operations associated to the call resource.

These operations are summarized in Table 5.2. The first column shows the

resource URIs, the second defines the HTTP methods that must be invoked

to perform the specific operation. These actions are identified by an URI

and a HTTP method. The third and fourth column indicate if the message

body of HTTP request and response is empty, respectively. The fifth column

provides a description of the HTTP method. As already seen for the pres-

ence resource, we used the XML representation of the resource because it is

the format that is actually used. The resource can also be expose in other

formats (e.g., HTML, JSON).

The following operations are taken in part from a more complex model

performed in [Griffin and Flanagan, 2011b]. This article considers other

scenarios such as call forwarding, the retention (i.e., during a call, a user

receives a second call and puts the call on hold to answer to the new call)

and the conference service, but it doesn’t specify the notification management

in detail as instead we do.

• Creating of a call resource, a POST request on the http://{servername}/

calls URI requests the creation of a new call resource and triggers the

establishment of the call between the requesting peer and a destination

peer specified in the body of the request. The returned response con-

tains the identifier of the newly created resource (i.e. /calls/{call_

id}). The server receives in the client request all the information re-

garding the new resource and responds with a 201 ”Created” status

code.

• Reading of all the call resources, the first read operation is performed

by using the GET method on the URI: http://{servername}/calls.

This operation allows to get all the existing call resources and then to

43

http://{servername}/calls
http://{servername}/calls/{call_id}
http://{servername}/calls
http://{servername}/calls
/calls/{call_id}
/calls/{call_id}
http://{servername}/calls

RESTful Service Design Call resource

know the list of calls handled by the system, included the disconnected

calls. If the operation is successful, the server sends 200 status code as

response.

• Reading of a specific call resource, the second read operation requires

the URI of a specific resource: http://{servername}/calls/{call_

id}. As in the previous case the positive response has 200 code.

• Subscription to the events of interest, the first subscription opera-

tion allows to receive notifications for each call where the subscriber

is involved. It is particularly useful to alert a user on an incoming

call. This operation is done by sending a GET request on the URI:

http://{servername}/calls/live.

• Subscription to the notifications for a specific call, the second subscrip-

tion operation allows the user to subscribe to a specific call and then

receiving notifications to each call updating. This operation is done

by sending a GET request on the URI: http://{servername}/calls/

{call_id}/live. In the following paragraphs we will go into detail

with regard to this operation because it requires a more comprehensive

and it has a key role in the service behavior.

• Updating of a call resource, the update operation is done by invoking

the PUT method on the URI: http://{servername}/calls/{call_

id}. This request contains the new values about Call in the message

body. If the operation is successful, the server returns 204 ”No Con-

tent” code status in order to specify that the the resource has been

overwritten with the new values.

• Cancellation of a call resource, the deletion operation of a single re-

source is done by the DELETE method on the URI: http://{servername}/

calls/{call_id}. If the cancellation operation is successful, the re-

sponse returns the 204 ”No Content” status code.

We presented only the cases of corrected behavior. Possible error conditions

in the request message, or server-side processing, are handled using the HTTP

status codes. For instance, if an user attempts to update the call to an

incorrect state, the response to the PUT method has a 406 ”Not Acceptable”

44

http://{servername}/calls/{call_id}
http://{servername}/calls/{call_id}
http://{servername}/calls/live
http://{servername}/calls/{call_id}/live
http://{servername}/calls/{call_id}/live
http://{servername}/calls/{call_id}
http://{servername}/calls/{call_id}
http://{servername}/calls/{call_id}
http://{servername}/calls/{call_id}

RESTful Service Design Call resource

status code. Moreover, when an user want to perform operations on the not-

existing call resource by using a URI is not assigned, the server returns 404

”Not found” status code.

Table 5.2 shows the operations that can be invoked on the calls and call

resources. GET and POST methods can be invoked on the calls resource,

while the call resource exposes the PUT, GET and DELETE methods.

Table 2.2: REST APIS for call resource management

Resource URIs HTTP Request Response Description
Method Message Message

Body Body

/calls GET No Yes Retrieve a list of calls
/calls POST Yes Yes Create a new call resource
/calls/{call_id} PUT Yes Yes Modify the call resource state
/calls/{call_id} DELETE No No Delete the call resource
/calls/{call_id} PUT Yes Yes Modify the call resource state
/calls/live GET No Yes Subscribe to the events of interest
/calls/{call_id}/live GET No Yes Subscribe to the notifications for a specific Call

2.5.3 Resource representation

The call resource representation contains the following data fields:

• to, indicates the caller, identified by a URI;

• from, indicates the callee, identified by a URI;

• state, indicates the call state;

• offer, contains the session description, specified according to the Ses-

sion Description Protocol (SDP) [Handley and Jacobson, 1998], that

the caller sends to the callee to request the establishment of a call

[Rosenberg and Schulzrinne, 2002].

• answer, contains the session description that the callee sends to caller

in response to an offer for negotiating the media session establishment.

More specifically, SDP is the protocol used to describe the parameters

of media streams used in multimedia sessions and thus it can be used to

negotiate the establishment of a media session between two or more peers.

SDP messages usually include the following information:

45

/calls
/calls
/calls/{call_id}
/calls/{call_id}
/calls/{call_id}
/calls/live
/calls/{call_id}/live

RESTful Service Design Call resource

• Session information: indicates the session name and purpose, and time

in which the session is active.

• Media information: indicates the type of media (e.g., video and audio),

the transport protocol (e.g. RTP), the media format (e.g. H.261 video

and MPEG video), and other transport information (e.g., ports and IP

addresses).

For instance, when a caller invokes a POST request on the /calls URI

to create a new call resource, it passes in the request payload a resource

representation containing the to, from, and offer data fields. The answer

data field is provided by the callee when it accepts the call in the call resource

representation conveyed through the appropriate PUT request, as explained

below.

2.5.4 Finite-state machine Model

We modeled the behavior of the call resource through a finite-state ma-

chine (FSM) representation, as shown in Fig. 2.10.

In order to adapt the implementation of REST-oriented design principles

to the main requirements of the real-time communication service to be provi-

sioned, we took as reference the call setup model defined in the SIP standard

and specified in terms of INVITE client and server transactions [Rosenberg

et al., 2002a]. For the sake of conciseness, hereafter we limit the description

of the call resource behavior to the case of a successful call and we only

analyze some possible error conditions.

In our proposed call resource state machine, transitions are fired by REST

invocations sent by user agents (i.e. the caller and the callee). When a

transition is fired, a corresponding notification action (notify) is performed

to inform the other peer that the resource is now in a new state and new

transitions are permitted, according to the REST HATEOAS constraint. The

handling of asynchronous notifications is a main requirement for real-time

communication service design (for instance to notify a peer of an incoming

call), but it is a challenge for HTTP-based implementation of REST services

[Griffin and Flanagan, 2011a]. For this reason, the next chapter provides

details on how we implemented the asynchronous notification delivery to

web browsers.

46

/calls

RESTful Service Design Call resource

NEW

CALLING

CANCEL

PROCEEDING

CLOSED

TIMEOUT

BUSY

ERROR

ANSWERED

ACKED

PUT CANCEL /

NOTIFY CALLEE

{Caller}

PUT TIMEOUT /

NOTIFY CALLER

{Server}

PUT PROCEEDING /

NOTIFY CALLER

{Callee}

PUT BUSY /

NOTIFY CALLER

{Callee}

PUT ERROR /

NOTIFY CALLER

{Callee, Server}
PUT ERROR /

NOTIFY CALLER

{Callee, Server}

PUT CANCEL /

NOTIFY CALLEE

{Caller}

POST CALL

{Caller}

PUT BUSY /

NOTIFY CALLER

{Callee}

DELETE CALL

{Server}

DELETE CALL

{Server}

DELETE CALL

{Server}

DELETE CALL

{Server}

DELETE CALL

{Server}

PUT CALLING /

NOTIFY CALLEE

{Caller}

PUT ANSWERED /

NOTIFY CALLER

{Callee}

PUT ACKED /

NOTIFY CALLEE

{Caller}

PUT CLOSED /

NOTIFY CALLEE or CALLER

{Caller, Callee}

PUT ERROR /

NOTIFY CALLEE

{Caller, Server}

Figure 2.10: Finite-state machine of the call resource.

47

RESTful Service Design Call resource

In detail, the FSM model shown in Fig. 2.10 represents the state evolution

of the call resource for the call session setup between two user agents (i.e.

the caller and the callee). The subjects that can trigger a transition by a

HTTP request are reported in the diagram between brackets.

The call resource states are enumerated hereafter:

1. New, indicates a newly instantiated call resource. When a call resource

is created the value of the status field is set to NEW. In this state, the

call is not actually started. In order to start the call, the caller does

the only possible transition leading the call resource to the CALLING

state and updates the offer field with the SDP value of the caller. This

transition causes:

(a) The Recording of caller to the call, REGISTER CALL.

(b) The Sending of a SIP INVITE message containing the offer, if the

callee user is a SIP client.

If the SIP client starts the call, it sends an INVITE message to the

REST-based service. The service creates the call resource and imme-

diately put it in CALLING state by updating the offer field with the

SDP received from the SIP client in the INVITE message. The creation

of the call and updating to the state CALLING is then notified to the

REST client. The non-symmetric behavior is related to the desire to

integrate SIP specification in the service. This leads to cases where a

SIP message triggers a status change, and other times when a status

change emerges the sending a SIP message.

2. Calling, indicates an initiated call. In this state, the callee receives

the notification of an incoming call. If this does not happen, after a

specified period of time, the service switches to the TIMEOUT status.

In a other case, the caller wants to close the call and updates the call

resource status to CANCEL. Both these behaviors are also provided

in the SIP specifications. The caller, once sent the INVITE message,

waits for a specified period of time, usually 180 seconds, after which

it closes the call. These cases depend by the caller. However, there

are other cases which depend by the callee. For instance, the call is

put into BUSY state; this corresponds in the SIP specifications to send

a SIP 480 response message, or more generically into ERROR state,

48

RESTful Service Design Call resource

which corresponds to all the other messages of negative response that

can be sent by the UAS. Finally, there is the possibility that the call

updates the call to the PROCEEDING state, corresponding to sending

a SIP 100 ”Trying” or 180 ”Ringing” response message.

3. Timeout, indicates that the call failed due to out of time. If the call

resource remains in the CALLING or PROCEEDING state for a longer

time of a specified time interval, the service updates the call status to

TIMEOUT. Once in this state, the caller must cancel the registration to

the call, UNREGISTER CALL, and ends the media channel, HANG-

UP. If the call is made by a REST client towards a SIP User Agent

the transition to this state is dictated by RESTtoSIP Gateway which,

not receiving answers to the INVITE message for a specified period,

establishes the TIMEOUT state. Alternatively a REST client may

provide a timeout that performs this transition in a time defined by

the programmer or by the user in case of greater customization.

4. Cancel, indicates that the call failed due to the caller-side call cancel-

lation. This status indicates that the caller want to close a previously

open session. As for TIMEOUT state, also in this case the actions

UNREGISTER CALL and HANG-UP are performed by the caller.

5. Busy, indicates that the call failed due to busy callee. The callee sets

the state to BUSY if it does not want to establish the call. Of course,

the caller has to de-register and close any process of establishing a

connection at media level. To notify the other peer, the playback of a

tone is also provided for expliciting the event withe a sound.

6. Error, indicate that the call failed due to callee-side request errors

events. This status is present for the management of all the error re-

sponses that can be generated by the SIP protocol to an SIP INVITE

request. The caller has to unregister and close any process of establish-

ing a connection at media level.

7. Proceeding, indicates a call in progress. In this state we have two no-

tification actions of the call: PLAY proceedingTone and PLAY ring-

ingTone. The execution of one of the two actions is usually associated

with the emission of an acoustic signal, accompanied if necessary by one

visual, that notifies this state to the caller and callee. For the caller

49

RESTful Service Design Call resource

called this state means that the callee received the call and is deciding

how responding. For the callee, instead, this state indicates that the

caller is waiting for the response. At this point the transitions can ver-

ified that lead to states CANCEL, by the caller, or BUSY, ERROR,

ANSWERED by the callee.

8. Answered, indicates that the callee accepted the call. Moreover other

implicit actions are planned by the callee:

(a) Recording to the call to receive notifications.

(b) Recovery of the offer.

(c) Upgrading of the answer field, after the creation of its SDP.

If the caller is a UAC which sent previously a INVITE message, when

the service updates the resource status to ANSWERED, it sends also

a SIP 200 message of positive response in which the body contains the

SDP answer. Once the caller is notified of this status change, can get

the SDP of the callee. At this point, both are able to establish a media

channel taking advantage of the exchanged session information.

9. Acked, indicates that the caller confirmed the call. Once the connection

was established, the caller updates the resource status to ACKED. If

the caller is a REST Client, it sends a PUT request for overwriting the

status of the call resource to ACKED. Instead, if the caller is a SIP

client sends an ACK message which will be after translated in a PUT

request to update the call resource status to Acked.

10. Closed, indicates that the call is terminated. Once the call is estab-

lished, then it can also end. In the SIP specifications this is done by

sending a BYE message, while in the case of a REST Client is done

by a PUT request. This end action can be done either by the caller

and callee. As for all the states that precede the call closure, even in

this case we have the deregistration and the call closure at media level

extended to both users. Moreover the call closure is always followed

by the deletion of the resource through the DELETE method. This

transaction was never made by the client, but is done automatically by

the service.

50

RESTful Service Design Call resource

Starting from the initial pseudo-state the caller performs a POST request

to trigger the creation of a call resource (NEW state). The next interme-

diate transitions are all triggered by a PUT request which is sent by the

caller/callee for updating the resource state; this event is always followed by

a notification action to inform the other peer about the state change. For

instance, when the callee accepts a call session, it updates the call resource

state to ANSWERED through a PUT request containing the answer session

description. This state change is notified to the caller. At this point the

caller updates the call resource state to ACKED through a PUT request and

this change is notified to the callee. The final transitions that occur in case of

failed or closed call, are triggered by the server by means of DELETE oper-

ation which deletes the call resource. Note that the states Timeout, Cancel,

Busy, Error and Closed can be considered as equivalent, since they all lead

to termination after a DELETE operation, and therefore could be merged in

a single final state. We have maintained them separate for clarity.

While in SIP User Agent implementations, notification messages contain

information strictly related to the call session evolution and next permit-

ted transitions are encoded in the SIP UA implementation logic, in our ap-

proach notification messages also contain the reference to the next permitted

transitions. We made this choice to fulfill the REST HATEOAS constraint.

According to this constraint, an application evolves through subsequent tran-

sitions of resources from one state to another. Through resource represen-

tations delivered to clients, the system can model and advertise permitted

transitions [Parastatidis et al., 2010]. Client applications can thus decide

which possible forward steps can be activated based on their specific applica-

tion goals and/or through end users’ actions. The state of the call resource

thus evolves according to the actions of the two peers. Although HATEOAS

is considered one of the main constraints of the REST architectural style, it is

often disregarded and the discussion is ongoing for clarifying and translating

it into pragmatic guidelines [Liskin et al., 2011]. As discussed also in the next

chapter, it is worth observing that the joint adoption of the REST uniform

interface and HATEOAS constraints helps in simplifying the development of

the client-side application logic, since the semantics of the REST uniform

interface operations is defined and permitted invocations are advertised at

each step by including hypermedia links in the responses.

51

RESTful Service Design Call resource

2.5.5 Actions for the resource navigation

Previous paragraphs shown the importance of the concept ”hypermedia

as the engine of application state”. In service that we designed, we decided

to add to the resource a systematic description of the actions that can be

taken by the client, depending on the value of the status field. In this way

the service user has available a guide to use the call resource in order to au-

tomate the behavior of the clients by associating to each action a instruction

sequence. The actions are listed inside the ”actions” element (for the XML

format). For every action there is an ”action” element. Figure 2.11 shows an

example of the actions listed in a response along with the call resource at

PROCEEDING status.

Figure 2.11: An example of the actions listed in a response along with the
call resource at PROCEEDING status.

As shown in Figure 2.11, every action has three attributes:

1. Subject, identifies who must make that action. Possible values are ”to”,

”from” and ”both”, to indicate the callee, caller or both, respectively.

2. Object, indicates the object of the action. It can be a field of the call,

the call itself or another.

3. Method, indicates the type of action that should be performed. Among

the types of actions there are also HTTP methods. For instance, if

the action object is a resource field, then the actions might be GET or

PUT methods.

An important case is that of an action that changes the resource status field.

The actions of this type guide the call evolution. For instance, if we observe

52

RESTful Service Design Call resource

the action that has as method PUT ANSWERED, shown in Figure 2.11,we

see that the PUT method is composed by PUT method and a value that

indicates the state in which the call can go. In this way, several options in

the which the call state can evolve, are given to the client. An action can

enclose inside other actions.

2.5.6 UML on the fly Model Checker

In order to simulate the behavior of the RESTful service and its inter-

working with legacy SIP User Agents, we used the UML on the fly Model

Checker (UMC), which is an integrated tool for the construction, the explo-

ration, the analysis and the verification of the dynamic behavior of UML

models described as a set of communicating state machines [Mazzanti, 2009,

ter Beek et al., 2009]. UMC allows to model a system as a collection of inter-

acting UML state machines, and offers also simulation and model-checking

capabilities for verifying the satisfaction of a given set of requirements.

2.5.7 Interworking with SIP

The FSM representation shown in Fig. 2.10 can also model a call be-

tween a REST client and a SIP User Agent. The interworking is realized by

introducing a proxy component that implements the notification action into

SIP messages delivered to the SIP UA and translates the SIP messages sent

back by the SIP UA into corresponding REST invocations. This proxy is

composed of two modules:

1. SIPMessageSender, implements the notification action according to the

SIP specifications.

2. SIPMessageReceiver, translates the SIP messages sent by the SIP UA

into REST invocations.

We used the modeling and simulation capabilities of the UMC tool to

represent our system as a set of communicating state machines and, then,

simulate their behavior. To this purpose, we defined the following state ma-

chines: the call resource (shown in Fig. 2.10), the SIPMessageReceiver, the

SIPMessageSender, the REST client and the SIP User Agent state machines

(described hereafter and shown in Figs. 2.12, 2.13, 2.14 and 2.15, respec-

tively).

53

RESTful Service Design Call resource

Fig. 2.12 shows the SIPMessageSender FSM representation. This com-

ponent is in the Standby state, under resting conditions. From this state, if

one of the depicted transitions is activated the machine enters the Executed

state. After that, the action related to this transition is performed, the ma-

chine returns back to the standby state by a default trigger (timeout). All

the transitions to the Executed state are triggered by a NOTIFY request

event produced by the call resource state machine. The transition is enabled

upon the satisfaction of a guard condition. As shown in Fig. 2.12 the guard

conditions refer to the type of event to be notified (e.g., the newly entered

call resource state). Each event is followed by a notification action to the

SIP User Agent (caller/callee) via a proper SIP message. For instance, if

the newly entered call resource state is Calling (i.e. PUT CALLING guard

condition), the notification message is translated into a SIP INVITE message

delivered to the SIP UA.

Figure 2.12: Finite-state machine of the SIPMessageSender component.

Fig. 2.13 models the behavior of the SIPMessageReceiver component

through a FSM representation. This state machine is similar to the previous

one, since it includes only the Standby and Executed states. The event

that activates all the transitions to the Executed state is the reception of

a SIP Message (SIP MESSAGE IN), except a case of reception of a HTTP

Message (HTTP MESSAGE IN), as shown in Fig. 2.13. The transition is

enabled upon the satisfaction of a guard condition. According to the type

54

RESTful Service Design Call resource

of SIP message received, the proper REST invocation on the call resource

is performed. For instance, if the transition is activated by the reception of

a provisional response sent by the SIP callee (e.g., 180 Proceeding), a PUT

Proceeding operation is invoked on the call resource. It is worth noticing

that when the SIP UA acts as the caller, the SIPMessageReceiver handles

the call resource creation triggered by the reception of the SIP INVITE

message from the SIP UA by sending a POST request. According to the

FSM in Fig. 2.10, upon the reception of a HTTP 201 message sent by the

call resource component, a PUT Calling request is invoked.

Figure 2.13: Finite-state machine of the SIPMessageReceiver component.

For the sake of conciseness, hereafter we limit the description of the REST

client and SIP User Agent behavior to the case they act as the caller and

the callee, respectively, and vice versa, in a scenario of a successful call.

Fig. 2.14a shows the REST Client FSM when it acts as the caller, and Fig.

2.14b the REST Client FSM when it acts as the callee. These FSM models

have been designed taking into account the transitions and actions of the

call resource state machine (described in Fig. 2.10), with which the REST

Clients must interact. Fig. 2.15a and Fig. 2.15b show the SIP UA Client

and Server FSMs, which are based on the SIP INVITE client and server

transaction, respectively [Rosenberg et al., 2002a]. As mentioned above, the

models shown in Figs. 2.14 and 2.15 are a simplified version of the actual

behavior, since they focus on the case of a successful call.

The model of the overall system is shown in Fig. 2.16 by using a UML

Component Diagram representation, which describes how a system is split

55

RESTful Service Design Call resource

a) b)

Figure 2.14: Finite-state machines of the REST Client component for a sce-
nario of successful call: a) REST Client acting as the caller, and b) REST
Client acting as the callee.

a) b)

Figure 2.15: Finite-state machines of the SIP UA Client and Server compo-
nent for a scenario of successful call: a) SIP UA Client acting as the caller,
and b) SIP UA Server acting as the callee.

56

RESTful Service Design Solutions for asynchronicity in HTTP

up into components and the dependencies among these components.

A UMC model is specified by providing a set of class declarations, a set of

objects instantiations, and a set of abstraction rules. The classes define the

structure and dynamic behavior of the objects which compose the system.

Thus, each component shown in Fig. 2.16 is an object instance, which is

exposed as a state machine.

According to the UML Component Diagram notation, Fig. 2.16 shows the

event-based operations exposed by each FSM class interface and the depen-

dency of other classes on these interfaces. For instance, the call resource class

requires the NOTIFY operation exposed by the SIPMessageSender class.

SIPMessageSender

Call Resource SIP User Agent (Server / Client)

SIPMessageReceiver

SIP MESSAGE

(e.g., INVITE, ACK)

NOTIFY

CALL_RESOURCE_UPDATE

(e.g., PUT PROCEEDING)

SIP_MESSAGE_IN /

HTTP_MESSAGE_IN

REST Client (Caller / Callee)

NOTIFICATION

(e.g., proceeding)

CALL_RESOURCE_UPDATE

(e.g., PUT CALLING)

Figure 2.16: Component diagram for the communicating state machines
model for a call between a REST client acting as the caller and a SIP User
Agent acting as the callee, and vice versa.

2.6 Solutions for asynchronicity in HTTP

The HTTP protocol is a request/response model. For this reason, the

server does not initiate a connection with a client or send a response that is

not explicitly requested. The server can not send asynchronous events to the

client [Loreto et al., 2011]. However, this possibility has become increasingly

important for least two purposes, [Java.net, 2011]:

1. Decoupling the processing of a request from the request reception ser-

vice, so as to free threads in order used them in new requests.

2. Supporting non-blocking requests for the client.

57

RESTful Service Design Solutions for asynchronicity in HTTP

Taking as reference point this latter aim, in this section we analyze the

various ways in which you can handle this type of request. We analyzes the

tools and technologies provided by HTTP or other protocols that can be ap-

plied in contexts such as REST. The final objective of this discussion is the

implementation of the registration service, as seen in the previous sections, to

allow a client to receive notifications about updating one or more resources.

In his thesis [Fielding, 2000] Fielding does not indicate any specific method

to be followed for the management of such occurrence. However, after some

methods have been proposed for the management of asynchronous requests

and more generally of the sending of asynchronous messages from the server

to the clients. As seen in the state of the art, many articles [Li and Chou,

2010], [Islam and Gregoire, 2013], [Belqasmi et al., 2012], [Griffin and Flana-

gan, 2011a] and [Davids et al., 2011] explain how to implement a service call,

even with SIP protocol, through the use of REST architecture. Some, how-

ever, use REST only for the call creation but continue to use the SIP client

for the effective communication, as in [Belqasmi et al., 2012]. Others move

the communication on the web using browser plugin, [Davids et al., 2011].

Others give suggestions on how to approach the creation of communication

services via the web, but do not show an actual implementation, [Griffin and

Flanagan, 2011a] [Li and Chou, 2010]. In general, however, there is not a

strong stance on how the asynchronous notifications to the clients should be

handle in REST. For this reason, in the following paragraph we propose the

solutions widely used, for some of these we will offer an implementation in

Chapter 3 and in the following chapters we will test their actual behavior

and usability.

2.6.1 Periodic GET (polling)

Polling is one of the methods used to observe the resource state. It con-

sists substantially in the resource query at regular intervals to verify the

change presence (Figure 2.17). It is often used with the purpose of decou-

pling the resource processing from the processing request. Often, to conserve

bandwidth, the resource is associated with an auxiliary resource indicating

the progress of the processing procedure, as suggested in [Thijssen, 2011] and

[Fielding, 2008]. The use of periodic queries has as main problem the iden-

tification of the time interval between a query and the other, which must be

set so as to satisfy the needs of the project.

58

RESTful Service Design Solutions for asynchronicity in HTTP

Figure 2.17: Polling from a REST client and a server that provides a REST
service.

In the present case the notification times should be short, basically smaller

than a second, so even using resources with only a data to explicit the suc-

cessful update, we would have problems due to:

1. Bandwidth consumption;

2. Service employment;

3. Overhead of the new TCP/IP connection established for each request.

The polling is rather well suited for services where the updates may be

notified even after times longer one minute. For this reason this method will

not be taken into account in the implementation phase.

2.6.2 Long polling

The traditional technique of polling sends regular requests to the server

to get the data. However, if there are not new data, the server needs to send

a response. Unlike this, which can be considered ”short polling”, the ”long

polling” minimizes the latency for sending a message from the server to the

client and decreases the resource use for processing the response and for their

sending on the network. To do this we see the life cycle of an application

59

RESTful Service Design Solutions for asynchronicity in HTTP

which makes use of long polling with HTTP, as described in [Loreto et al.,

2011]:

1. The client makes an initial request and waits for response.

2. The server waits to send a response until an update is available or there

is a particular state or a particular time interval expires.

3. When the update is available, the server sends a full response to the

client.

4. At this point the client after receiving the response, it sends a new

request of long polling type. This can occur immediately or after a

certain period of time.

The server then waits to send the response to the client, thus avoiding the

continuous exchange of request and response in which there are not effective

notifications, as shown in Figure 2.18. This avoids to wast resources in the

creation of all TCP connections and HTTP request and response processing.

However, the long polling still leaves the connection open between client and

server. If this does not necessarily present a problem for the client, it can

instead be for the server that with too many clients may congest and not be

able to receive other request, Figure 2.19. In our designed service a client

should always receive notifications about incoming calls; this would bring

each client to have at least one type ”long polling” type connection with the

server that could then handle a limited number of users. Moreover for each

active call other two connections are needed for the notifications to the callee

and caller. This led us to avoid using this method for managing notifications.

2.6.3 HTTP Streaming

This mechanism is a further evolution of the long polling technique. In

this case, once the initial request is been made, the server never closes the

connection. This is possible because a channel is created to communicate

the response to the client and is not never closed, Figure 2.20. This method

prevents the client to re-send the request to the server. Below we show the

life cycle of an application using this method [Loreto et al., 2011]:

1. The client makes an initial request and waits for response.

60

RESTful Service Design Solutions for asynchronicity in HTTP

Figure 2.18: Long polling from a REST client and a server that provides a
REST service.

Figure 2.19: A full thread pool that can not receive other requests

61

RESTful Service Design Solutions for asynchronicity in HTTP

2. The server waits to send a response until an update is available or there

is a particular state or a particular time interval expires.

3. When the update is available, the server sends to the client as part of

the response.

4. The data sent from the server does not end the connection and the

server returns to step 2.

Figure 2.20: HTTP Streaming between a REST client and a server that
provides a REST service.

This mechanism is therefore based on the server ability to send parts of

information in the same response, without ending the request or connection.

To do this we put the value of the ”Transfer-Encoding” header field to ”chun-

ked”. This method, as the name suggests, is used by the streaming server.

However, in this way we have the following problems:

1. The intermediaries in the connection between the client and server

could buffer the parts with which the response is made. In this way

the client does not receive quickly the updates.

2. The management library of the request and response used to implement

the client may buffer the response before sending it to the concerned

entity. This happens in some browsers.

62

RESTful Service Design Solutions for asynchronicity in HTTP

3. Same problem already descripted for the long polling technique: each

client keeps always busy one of the pool threads, as shown in Figure

2.19.

2.6.4 Asynchronous Processing in Servlets

The long polling and HTTP streaming methods have the same problem:

the employment of a pool thread that manages the request arrival, while

waiting for an event. To this end, in the Servlet 3.0 [Specification, 2011] the

asynchronous processing support was introduced. The life cycle is then:

1. The request is received and passed to the servlet.

2. The servlet processes the request parameters and its contents to deter-

mine the nature of this.

3. The servlet queues the request in waiting to be freed up resources

needed for their processing.

4. The servlet returns to be free to deal with any incoming request without

generating a response to the client.

5. After a certain time, the required resources become available and so

the response can be processed by an another thread and after sent.

The crucial point is 4. The servlet remains committed while waits for a

response to the request, but it leaves the execution to another thread which

will care then sending it to the client. In this way the two methods, long

polling and HTTP streaming, become more efficient. In the next chapter we

will see the their implementation.

2.6.5 WebSocket

The WebSocket protocol enables two-way communication between a client

and a remote host. The protocol consists of a handshake phase followed by

messages sent on TCP protocol. The objective of our service is to provide

a mechanism for browser applications that need a two-way communication

without opening multiple HTTP connections such as polling [Fette and Mel-

nikov, 2011]. To establish a connection, the client sends a WebSocket hand-

shake request to the server (Figure 2.21) which sends it a response (Figure

63

RESTful Service Design Solutions for asynchronicity in HTTP

2.22). Once the answer came back, the connection has been established and

both entities are able to send and receive messages from each other, Figure

2.23.

Figure 2.21: Request to the server for a Websocket connection.

Figure 2.22: Response to the client for a Websocket connection

The use of HTTP protocol is limited to the server ability to interpret the

request, and then move on WebSocket. Two URI schemes are defined: ”ws:”

and ”wss:”, for not-encrypted and encrypted connections, respectively. This

communication mode allows to have a full-time connection between the client

and server that provides a service similar to the streaming case without all

the disadvantages of the case. Although the specification is relatively recent

(2011), it can be used as recent versions of popular browsers (e.g., Chrome,

Explorer, Firefox) implement it.

64

RESTful Service Design Solutions for asynchronicity in HTTP

Figure 2.23: Establishment of a WebSocket channel between a REST client
and a server that provides a REST service.

65

Chapter

3
RESTful Service Implementation

This chapter describes the steps taken to implement the RESTful service

by taking into account the REST APIS and the state machine specifications

described in chapter 2. This prototype offers a real-time communication ser-

vice (voice and video call) between web browsers as well as web browsers

and SIP user agents. The prototype also offers additional services, in partic-

ular a presence management service which is needed in order to track users

availability status and contact details. In paragraph 3.1 we discuss the most

important technologies that we used: Java, Jersey, AsyncContext and Web-

Socket, SIP servlet API, HTML 5, JavaScript and WebRTC. In paragraph

3.2 we introduce the prototype architecture and describe its components. In

paragraph 3.3 we describe the main reference scenarios that we implemented

for our prototype. In paragraph 3.4 we describe the server-side packages in

which the project has been divided. For each package we describes the most

important classes and the role they play. In Section 3.5 we describe the main

client-side scripts implemented for our prototype.

66

RESTful Service Implementation Choice of Technologies

3.1 Choice of Technologies

3.1.1 Java

Java is an object-oriented programming language created by Sun Mi-

crosystems. Although it was born with the aim of being used for the planning

of small electronic devices, after the explosion of Internet has been success-

ful primarily as a planning tool for developing Web applications. The latest

version is Java SE 7 Edition [Lindholm et al., 2014]. The main features are:

• Object-oriented;

• Platform-independent;

• Tools and libraries for networking;

• Safe execution of code from remote sources.

Once the application has been created, the code is compiled to get the ”byte-

code”; it runs on the Java platform after interpretation by the Java Virtual

Machine. The most common implementation of the JVM is the Java Run-

time Environment, also included in the Java Development Kit used for de-

velopment. The Platform-independent feature is given by the possibility to

implement the JVM for different environments.

JavaEE, Eclipse e Tomcat

The Java language defines only a part of libraries, the other part is defined

by the software platform on which the program is run. For this project we

used the Java 2 Enterprise Edition that provides additional features to those

found in the Standard Edition. The functionalities of greater interest, in this

case, are those relating to the network and to the web, such as servlets. We

used as development environment ”Eclipse Java EE for Web Developers” in

”Juno Service Release 1” version. To use the servlets we need a server that

implements the functionality of the servlet container, which can run web

applications. We decided to use Apache Tomcat, version 7.0.29, which also

includes ”Mobicents Sip Servlets 2.0.0 FINAL”.

67

RESTful Service Implementation Choice of Technologies

3.1.2 Jersey

We used the Jersey library, an implementation of JAX-RS (JSR 311)

[Potociar, 2009] , to build RESTful type web services [Java.net, 2011]. Its use

simplifies the service development as it allows to go to explain the behaviors

related to the invocation of HTTP methods on different URLs. To do this,

Jersey uses a standard servlet that makes use of specially created classes for

each REST resource that it wants to provide. This is supported by the use

of annotations (@Path,@Produces,@Consumes,@<http method>, ...) that

make services easy to implement and the code easy to manage for reading

a third person who is not familiar with the servlets. Jersey supports JSON

and XML, through an implementation of JAXB (Java Architecture for XML

Binding). In this way the Jersey library can manage the resource sending

and receiving in these formats by facilitating the binding operation to the

programmer. In addition to providing classes and methods for the REST

service creation, Jersey also provides classes for creating REST clients with

which it is possible to consult the services created in easy and intuitive way.

3.1.3 AsyncContext e WebSocket

In chapter 2 we introduced several methods for the asynchronicity man-

agement. In our implementation we considered three options:

• Long polling via HTTP protocol;

• HTTP streaming via HTTP protocol;

• WebSocket, which uses the HTTP protocol only for the establishment

of two-way channel between client and server.

As we already saw in chapter 2, to improve the performance of the first

two methods we used the asynchronous mode provided by the Servlet 3.0

API implemented in Tomcat servlet container, version 7.0. Once the request

has been received and verified the possibility to operate asynchronously, an

AsyncContext object is created. This object allows:

• To start a thread through the Runnable interface use, which can use

the methods provided by AsyncContext.

• To pair a AsyncListener where we can specify the actions to take when

certain events occur:

68

RESTful Service Implementation Choice of Technologies

– starting of the asynchronous context;

– complete processing, event originated by its method invoked on

the AsyncContext object;

– error, in case of incorrect processing;

– timeout, if the maximum time for the request processing termi-

nates, for instance due to the same thread blockage processing

the request. The initial value can be set as desired: if is negative

disables its use, as we do in our case.

• To use a stream to send the response to the client in one or more parts;

this is essential for the HTTP streaming method implementation.

In our case, the asynchronicity use is not due to the long request processing

time, but to the need to be able to notify a client an event. For this rea-

son, any thread is instantiated to the AsyncContext creation. Instead, we

are interested to the ability to manage the AsyncContext stream so that it

can be associated with a subscription request and then retrieve it to send

notifications when the resource changes. The use of WebSocket technology

involves the creation of a dedicated servlet to the which a GET request is

sent for making a upgrade operation to its protocol. At this point, an Out-

StreamInbound object is created, which is used to send information to the

client that requested the connection. This object will be used to notify the

client updates about the subscribed resource.

3.1.4 SIP servlet API

The most interesting properties of these APIs are [Kulkarni and Cos-

madopoulos, 2008]:

• The ability to send SIP messages, allowing to make signaling. This is

possible because SIP servlet API can act as UAC, UAS and proxies.

• Simplicity: containers handle “non-essential” complexity such as man-

aging network listen points, retransmissions, CSeq, Call-ID and Via

headers, routes, etc.

• Converged Applications: containers support converged applications that

use multiple protocols and interfaces. In our case we managed HTTP

69

RESTful Service Implementation Choice of Technologies

protocol, for REST services and SIP protocol, for the communication

with its clients.

• Applications composition, a request arriving at the container can be

processed by multiple applications invoked according to a established

order.

• SIP servlets enable the request reception by SIP clients, their processing

and response sending via the servlet container, which:

– provides network services on which request and response are re-

ceived and sent;

– manages the network listen points (IP, Transport protocol, port)

on which it waits for SIP traffic;

– decides which applications to invoke and in what order;

– contains and manages servlets for their life cycle.

In previous chapter we talked about SIP and HTTP protocol and their

similarities. These affinity are also reflected with regard to the relative servlet

which derive from the same class GenericServlet [Kulkarni and Cosmadopou-

los, 2008]. The main differences between the two technologies [SunMicrosys-

tems, Inc., 2008] are reported below:

• HTTP servlets have a particular context in which they are performed

(called context-root), while SIP servlets have not.

• HTTP servlet usually return HTML pages to the clients while SIP

servlets are used to connect SIP hardware and to enable communication

between client and server.

• SIP is a peer-to-peer protocol, as opposed to HTTP. SIP servlet can

originate requests, while HTTP servlet can only send HTTP responses

to requests created by the client.

• SIP servlets often act as proxies to other SIP endpoints, while HTTP

servlets are typically the final endpoint for the incoming HTTP request.

• SIP servlets can generate multiple response to a particular request.

• SIP servlets can communicate asynchronously and are not obliged to

respond to the incoming request.

70

RESTful Service Implementation Choice of Technologies

• SIP servlets often work in collaboration with other SIP servlets to re-

spond to specific SIP requests, while HTTP servlets typically are only

responsible for the response to the HTTP request.

In this work the role of the SIP Servlet is very important because allows to

interact with SIP clients receiving the request and the response from those

submitted. Regarding the sending of messages to the SIP client, we used

BrowserSipCallHandler class (as we will see further) that by observing the

state variations of the Call resource, sends its message to the SIP client.

3.1.5 HTML 5

HTML5 is the new standard for HTML [Hickson and Hyatt, 2011] ob-

tained from the cooperation, established in 2006, including the World Wide

Web Consortium (W3C) and the Web Hypertext Application Technology

Working Group (WHATWG). In this section we give a brief introduction

to this technology, paying attention to the most important features for the

web-application creation. The web evolution has led to need a new version

for going meet the developers needs, since the previous 4.01 version of HTML

dates from 1999. The HTML5 version defined in December 17, 2012 will be

supported over time by all browsers. The base rules of this standard are:

• New features based on HTML, CSS, DOM, and JavaScript.

• Reduction of external plugins.

• Better management of errors.

• More markup designed to replace the scripting need.

• Independence from the used device type.

• The developing process plans to be visible to the public.

Some interesting features introduced by HTML 5:

• Element <canvas> for 2D drafting.

• Elements <audio> and <video> for playback of multimedia resources.

• Local storage support.

71

RESTful Service Implementation Choice of Technologies

• New items for the contents: <article>, <footer>, <header>, <nav>

and <section>.

• New control types for the form: calendar, date, time, email, url, search.

For more details reading [Hickson and Hyatt, 2011].

WebSocket

The WebSocket protocol was already described in the previous chapter.

Here we go quickly to illustrate the ease with which HTML5 and JavaScript

technologies allow to use this technique [Hickson, 2011]. The connection

creation is through the WebSocket object instantiation to whose constructor

the service URL is passed. To handle events related to the created connection,

we can assign some callback, as outlined below:

• OnOpen, is invoked at the connection opening;

• Onerror, is invoked at the error occurrence, it returns an error object;

• OnMessage, is invoked when a message arrives, it returns a message

object;

• OnClose, is invoked at connection closure.

To send the data we use the send method. This method requires that at the

invocation the information to be sent is passed as field.

JavaScript

JavaScript is a scripting language [Danesh and Tatters, 1996], object-

oriented and has a simple syntax and lightweight that allows to get dynamic

and interactive web pages. IT is the world’s most popular scripting language

and widely used for creating websites. The first standardization was in 1999,

the last in 2011. The main language features are reported below:

• The code is not compiled but interpreted. The interpreter is included

within the browser.

• The client-side scripts allow interaction with the user with the ability

to handle events such as clicking a button or entering text.

72

RESTful Service Implementation Prototype Architecture

• The script can communicate asynchronously with the server. The tech-

nique called AJAX allows to send and receive data from the server

asynchronously in background. In this way it is possible to reload page

individual parts with a gain, both at the performance level that use

experience by the user.

• Ability to manipulate the HTML page contents (both for reading and

writing).

• Syntax similar to that Java with the possibility of using the most com-

mon constructs: if, while, switch, etc.

3.1.6 WebRTC

This technology has been discussed in the state of the art; here we do

an overview of the W3C APIs use and their implementation in browsers

[Bergkvist et al., 2014]. Regarding the implementation, browsers currently

support mostly WebRTC are Mozilla Firefox and Google Chrome. Mozilla

divides the development phases of its Firefox browser in Beta, Aurora and

Nightly. At present, the version 23 is stable and the WebRTC API are

enabled by default. Google Chrome supports APIs getUserMedia from ver-

sion 21 in regular way and without the need to enable any flag. Regarding

the API RTCPeerConnection, which allow the connection of two browsers

directly, these are enabled by default from the version 23. Then, starting

from this Google Chrome version the WebRTC API (i.e, getUserMedia and

RTCPeerConnection) use is permitted, without the need to enable any flags.

At present, we use the version 38. The functionalities of these APIs have

been submitted by the work teams of Chrome and Firefox browsers through

the video-call establishment in February 2013. The communication has been

established between a user who was using Firefox, version 21, and another

who was using Chrome, version 23.

3.2 Prototype Architecture

The prototype is a web application made of the following main modules,

as shown in Fig. 3.1:

73

RESTful Service Implementation Prototype Architecture

• CallService Interface, handles the RESTful exposure of the call service

to web browsers. It also offers further services, namely registration and

presence update subscription services.

• CallService Logic, contains the application and persistence logic that

implements the call and presence management services.

• Notification Manager, is responsible to notify web browsers of events

they subscribed to (e.g., incoming calls, state changes in a call setup).

• REST-SIP Gateway, handles the interworking with SIP User Agents

(i.e., it allows to establish a call between a web browser and a SIP User

Agent).

• Client-side Logic, consists in a set of JavaScript codes which are exe-

cuted by the web browser for handling the signaling message exchange

and the media channel establishment.

SIP User
AgentSIP User

Agent

CallService
Interface

REST-SIP
Gateway

Notification
Manager

WebSocket/
HTTP Streaming

HTTP

CallService Logic

Web Browser

Client-side
Logic

JavaScript

WebRTC

WebSocket

SIP User
Agent

SIP

Figure 3.1: Functional architecture of the prototype.

3.2.1 Call Service Interface and Logic details

This Java-based web application has been deployed on an Apache Tom-

cat 7.0 servlet container. The implementation of the CallService Interface is

based on Jersey, a Java-based framework for developing RESTful Web Ser-

vices serving as Reference Implementation of JAX-RS specifications. The

CallService Logic includes the Call and Presence classes, which represent the

call and presence resources, and the classes that handle the connection with

the database for the data persistence.

Event notifications towards the REST Client and SIP UA are handled by

the Notification Manager and REST-SIP Gateway, respectively.

74

RESTful Service Implementation Prototype Architecture

3.2.2 Notification Manager

The Notification Manager implements the observer design pattern. It

listens for the updates of call and presence resources and notifies registered

clients.

We chose to implement three alternative solutions for handling asyn-

chronous notifications:

• the first solution uses the WebSocket Protocol, which provides web

browsers with a basic bidirectional channel for message exchange over

TCP [Fette and Melnikov, 2011],

• the second solution is based on the Long Polling mechanism and the

asynchronous processing of HTTP requests provided by application

containers implementing the Servlet 3.0 specifications [Juneau, 2013].

• the third solution is based on the HTTP Streaming mechanism and the

asynchronous processing of HTTP requests (as in the previous case).

Implementation details for these mechanisms are reported in Section 3.4.7,

while their comparative evaluation is discussed in Chapter 5.

3.2.3 REST-SIP Gateway

The REST-SIP Gateway is made of two main components, called SIPMes-

sageSender and SIPMessageReceiver, which implement the FSMs in Fig. 2.12

and Fig. 2.13, respectively. The SIPMessageSender handles the delivery of

notification messages directed to SIP User Agents. More specifically, it listens

for notification messages directed to SIP UAs and translates them in the ap-

propriate format and transport protocol, according to the SIP specifications.

The SIPMessageReceiver handles the communication in the opposite direc-

tion. It receives messages originating from SIP User Agents and parses and

translates them into proper actions (e.g. the corresponding REST invocation

on the call resource). Both components have been developed according to

the Sip Servlet programming model and have been deployed in the Mobicents

Sip Servlets platform [Ivanov, 2008].

75

RESTful Service Implementation Prototype Architecture

3.2.4 Client-side logic

This component is made of JavaScript files that are processed by web

clients for handling the exchange of signaling messages with the server and

establish the media channel with the other peer. This prototype works with

web browsers that support the WebRTC API and the WebSocket protocol

[Bergkvist et al., 2014].

These scripts handle the interaction with the user, the invocation of REST

methods and the handling of notifications sent by the server. The estab-

lishment of the media channel relies on the WebRTC API, namely the ge-

tUserMedia function, which allows a web browser to access the camera and

microphone resources, and PeerConnection, which sets up a direct channel

with another browser for the transport of media data.

The call setup is handled by a set of JavaScript functions, which exe-

cute basic actions, such as playing the ringing tone, interpreting the media

channel description received by the callee (offer) and preparing the answer

message in order to negotiate the peer connection setup. The execution flow

of these actions is triggered by two type of events: user-generated events and

notifications pushed by the server. As mentioned above, the server notifies

the client when the resources of interest change their state. The notification

messages contains the representation of the resource and the list of permitted

transitions. This information is translated into a set of actions that can be

executed automatically by the web browser or upon a user-generated event.

For instance, when a server notifies an incoming call, it sends a message

to the callee that indicates the current state of the resource (Calling) and

the list of permitted next transitions (i.e., the transitions to the Proceeding,

Busy or Error states). The Proceeding state is associated to a set of locally

executable actions, such as playing the ringing tone to alert the end user.

Through this mechanism our call service implementation aims at satisfy-

ing the REST HATEOAS constraint. The adoption of this constraint has the

advantage of promoting the decoupling of the client and server logic, thus eas-

ing the maintenance of the client logic if the server-side logic changes, while

guaranteeing that the client behaves coherently with the application state

machine.

76

RESTful Service Implementation Prototype Scenarios

3.3 Prototype Scenarios

We chose to implement this prototype in Java, using the Eclipse IDE.

This section gives a description of the scenarios that we implemented for our

prototype.

3.3.1 Registration and Deregistration

Before accessing the call service, REST clients and SIP User Agents have

to register their presence information.

Fig. 3.2 shows the presence registration of a REST client. It directly

sends a POST request on the /presences URI to trigger the creation or

update (if already existing) of the presence resource for that user. Then,

it subscribes to the events of interest and creates a notification channel, as

explained in section 3.2.2. The notification is assigned to an *Observer object

dedicated to a specific REST client in order to notify it the incoming calls.

Implementation details for subscription and notification actions are reported

in Section 3.4.7.

Figure 3.2: Presence registration of a REST client.

Fig. 3.3 shows the presence registration of a SIP client. A SIP UA sends

a SIP REGISTER message to the REST-SIP Gateway to provide the server

with the contact details needed for the delivery of the events of interest,

such as incoming calls. The SIP REGISTER message is translated into a

POST request on the /presences URI to create the corresponding resource

instance. There are two differences compared to the previous case: i) the

REST communication service is not directly involved in the presence reg-

istration and, ii) absence of registration to incoming calls because it is not

77

/presences
/presences

RESTful Service Implementation Prototype Scenarios

necessary.

Figure 3.3: Presence registration of a SIP client.

Fig. 3.4 shows the presence deregistration of a REST client. It directly

sends a DELETE request on the /{presence_id} URI to trigger the can-

cellation of the presence resource for that user. In addition to the resource

cancellation, all objects used to send notifications related to the Client are

also deleted.

Figure 3.4: Presence deregistration of a REST client.

Fig. 3.5 shows the presence deregistration of a SIP client. A SIP UA

sends a SIP REGISTER message to the REST-SIP Gateway to trigger the

cancellation of the presence resource for that user. The SIP REGISTER

message is translated into a DELETE request on the /{presence_id} URI

to cancel the corresponding resource instance.

78

/{presence_id}
/{presence_id}

RESTful Service Implementation Prototype Scenarios

Figure 3.5: Presence deregistration of a SIP client.

3.3.2 Successful Call setup

In this section we show three examples of the test scenarios that we per-

formed to verify that the implemented prototype behavior is coherent with

the specifications formalized through the communicating state machines seen

in the previous chapter.

Fig. 3.6 shows the message flow for a successful call session setup between

two web browsers mediated by our web application prototype. First, the

caller sends a call session setup request through a POST request on the

/calls URI and subsequently subscribes to this resource so as to receive

the state updates. This is done by creating an Observer object which has

the task of monitoring the resource and notify changes to the client. Once

the caller has requested the call establishment by updating the call status to

CALLING, this change will be notified to the *Observer instance of the callee.

The task of this observer is to monitor the changes of all calls in order notify

to the callee the changes about its incoming calls. The notification message

contains also the offer session description, i.e. the set of media streams and

codecs the caller wishes to use, along with the IP addresses and ports the

caller would like to use to receive the media [Rosenberg and Schulzrinne,

2002]. For the sake of conciseness, we don’t show the use of the ICE protocol

[Rosenberg, 2010] for NAT traversal, which is recommended in the WebRTC

specifications [Bergkvist et al., 2014]. The callee updates the call status to

PROCEEDING through a PUT request and, locally, plays the ringing tone

to alert the end user. This status can persist for some seconds and is notified

to the user at the caller side by playing a default beep. When the end user

accepts the call, the callee performs the following actions:

• subscription to the call by the creation of its observer;

79

/calls

RESTful Service Implementation Prototype Scenarios

• it parses the session offer and generates the answer;

• it requests a transition of the call resource to the ANSWERED status

through a PUT request carrying the answer.

When the caller receives the notification message, it parses the answer to

establish the media session according to the negotiated parameters and, fi-

nally, updates the call resource to the ACKED status. Now the call has been

established and the end users can talk to each other.

Figure 3.6: Call setup between two web browsers.

Fig. 3.7 and Fig. 3.8 show an analogous message flow for a success-

ful call setup between a web browser acting as the caller and a SIP User

Agent acting as the callee and vice versa. The web browser interacts with

the server components as in the previous scenario. The interaction with the

SIP User Agent is handled by the REST-SIP Gateway (i.e. the SIPMessage-

Sender and SIPMessageReceiver components) in compliance with the design

specifications described in the chapter 2.

It is worth observing that the interactions shown in the previous sequence

diagram are coherent with the evolution chart of the communicating state

machines generated by the UMC tool for a successful call setup. Fig. 3.9, Fig.

3.10 and Fig. 3.11 show an excerpt of the chart representing the evolution of

the state machines from the first POST request to a PUT PROCEEDING

invocation for the three reference scenarios (for the sake of conciseness, we

have omitted the subscription messages).

80

RESTful Service Implementation Prototype Scenarios

Figure 3.7: Call setup between a web browser (caller) and a SIP User Agent
(callee).

Figure 3.8: Call setup between a SIP User Agent (caller) and a web browser
(callee).

81

RESTful Service Implementation Prototype Scenarios

Figure 3.9: Excerpt of the FSM evolution chart generated by the UMC tool
for a call setup between two web browsers.

Figure 3.10: Excerpt of the FSM evolution chart generated by the UMC tool
for a call setup between a web browser (caller) and SIP User Agent (callee).

82

RESTful Service Implementation Prototype Scenarios

Figure 3.11: Excerpt of the FSM evolution chart generated by the UMC tool
for a call setup between a SIP User Agent (caller) and a web browser (callee).

3.3.3 Unsuccessful Call setup

The call failure scenario is very similar to the successful case. The only

difference is the final answer from the callee. Figure 3.12 shows an example of

generic error or busy callee. The callee claims being busy or having encoun-

tered an error and then rejects the call. The answer is BUSY/ERROR. The

caller must now deregister to the call and close any process of establishing a

connection to media level. The service will delete the call resource.

Figure 3.12: Call failure between REST clients due to the callee.

83

RESTful Service Implementation Prototype Scenarios

Figure 3.13 shows an example where the caller cancels the call. The

process is similar to the previous ones until the PROCEEDING state. The

only difference is the caller makes the decision to close the call before the

callee answers.

Figure 3.13: Call failure between REST clients due to the caller.

Figure 3.14 shows an example where the callee doesn’t respond within

the limit waiting time (timeout). In this case the state change of the call

resource is made directly by the RESTful call service.

Figure 3.14: Call failure between REST clients due to the timeout.

3.3.4 Call termination

The last scenario is the call termination in which the users had correctly

established a call session (Figure 3.15). When a user wants to close the session

84

RESTful Service Implementation Package and Class

invokes the PUT operation by updating the call resource status to CLOSED.

Subsequently the other user receives the update notification. Finally both

users provide to close media-level peer-to-peer connection and cancelling the

subscription to the call notifications. Subsequently, the service will eliminate

the call resource.

Figure 3.15: Call termination between REST clients.

3.4 Package and Class

The project was divided into several packages in order to organize better

the code and to group classes according to the role they play. In Figure 3.16

we can see the main packege structure. In the next paragraphs we explain

the functionality that each package has in the project.

Figure 3.16: Package Structure of the project.

85

RESTful Service Implementation Package and Class

3.4.1 Package resources

The classes included in this package carry out the task to create REST in-

terface of the call service (i.e., CallsResources and CallResource) and presence

service (i.e., PresencesResource and PresenceResource) defined in Chapter 2,

as shown in Figure 3.18. We describe in detail some functions of these classes

so as to highlight the Jersey role in the REST resource design.

Figure 3.17: Package Resources contains the classes that implement the
REST interface.

CallsResource

The CallsResource class manages the resource identified by the URI:

http://{servername}/calls. The most significant methods are presented

in Table 3.1, which shows the annotations used by Jersey for the call resource

management when HTTP requests arrive.

• The first two methods return to the client a list of existing calls. The

first in XML or JSON, the second in HTML format. These formats are

specified in the header ”Accept”.

• The third method is used to handle requests for subscription to incom-

ing calls by the requesting client through the AsyncContext use.

86

http://{servername}/calls

RESTful Service Implementation Package and Class

• The fourth method creates a new call: in fact the REST corresponding

method is a POST request. The client provides the new resource in

XML format in the request body.

• The last method allows to require a specific resource when the URI

is followed by the call identifier. Therefore, an CallResource object is

created to process the request.

Table 3.1: Main methods of the CallsResource class.

Java Method REST Method Returned or Expected Formats

getCallsXML() @GET @Produces({MediaType.APPLICATION_XML}

MediaType.APPLICATION_JSON

getCallsHTML() @GET @Produces({MediaType.TEXT_HTML})

getCallsLive() @GET

postCallXML() @POST @Consumes(MediaType.APPLICATION_XML)

getCall

CallResource

This class handles the requests specifically made to a single call identified

by its Id. The URI that identifies a resource of this type has a syntax

like this: http://{servername}/calls/{call_id}. The most significant

methods are presented in Table 3.2:

• The first three methods are the corrsponding version for single resource

of those seen in the previous subsection.

• The fourth method updates the resource state and notifies any sub-

scriptions.

• The last method is used to delete this resource.

PresencesResource

This class manages the resource identified by the URI: http://{servername}/

presences. The most significant methods are presented in Table 3.3:

• The first method allows to get all the Presence resources created in

XML format.

87

getCallsXML()
@GET
@Produces({MediaType.APPLICATION_XML}
MediaType.APPLICATION_JSON
getCallsHTML()
@GET
@Produces({MediaType.TEXT_HTML})
getCallsLive()
@GET
postCallXML()
@POST
@Consumes(MediaType.APPLICATION_XML)
getCall
http://{servername}/calls/{call_id}
http://{servername}/presences
http://{servername}/presences

RESTful Service Implementation Package and Class

Table 3.2: Main methods of the CallResource class.

Java Method REST Method Returned or Expected Formats

getCallXML() @GET @Produces({MediaType.APPLICATION_XML}

MediaType.APPLICATION_JSON

getCallHTML() @GET @Produces({MediaType.TEXT_HTML})

getCallLive() @GET

putCallXML() @PUT @Consumes(MediaType.APPLICATION_XML)

deleteCall @DELETE

• The second method allows to get all the Presence resources created in

HTML format, so that presenting the web page to the user by integrat-

ing the code returned by the GET request.

• The third method allows the creation of a resource Presence.

• The last method allows to require a specific resource when the URI

is followed by the identifier of a presence. Then, a PresenceResource

object is created to process the request.

Table 3.3: Main methods of the PresencesResource class.

Java Method REST Method Returned or Expected Formats

getPresencesXML() @GET @Produces({MediaType.APPLICATION_XML}

MediaType.APPLICATION_JSON

getPresencesHTML() @GET @Produces({MediaType.TEXT_HTML})

postPresenceXML() @POST @Consumes(MediaType.APPLICATION_XML)

getPresence

PresenceResource

This class handles the requests specifically made to a single presence iden-

tified by a URI like this: http://{servername}/presences/{presence_

id}. The most significant methods are presented in Table 3.4:

• The first method allows to obtain a specific presence resource in XML

format.

• The second method allows to get a specific presence resource in HTML

format.

88

getCallXML()
@GET
@Produces({MediaType.APPLICATION_XML}
MediaType.APPLICATION_JSON
getCallHTML()
@GET
@Produces({MediaType.TEXT_HTML})
getCallLive()
@GET
putCallXML()
@PUT
@Consumes(MediaType.APPLICATION_XML)
deleteCall
@DELETE
getPresencesXML()
@GET
@Produces({MediaType.APPLICATION_XML}
MediaType.APPLICATION_JSON
getPresencesHTML()
@GET
@Produces({MediaType.TEXT_HTML})
postPresenceXML()
@POST
@Consumes(MediaType.APPLICATION_XML)
getPresence
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}

RESTful Service Implementation Package and Class

• The third method allows to update a presence resource.

• The fourth method is used to delete a specific presence resource.

Table 3.4: Main methods of the PresenceResource class.

Java Method REST Method Returned or Expected Formats

getPresenceXML() @GET @Produces({MediaType.APPLICATION_XML}

MediaType.APPLICATION_JSON

getPresenceHTML() @GET @Produces({MediaType.TEXT_HTML})

putPresenceXML() @PUT @Consumes(MediaType.APPLICATION_XML)

deletePresence @DELETE

3.4.2 Package bean

In this package we implemented the Call and Presence classes, together

with Observable interface which both implement, as shown in Figure ??.

The two classes are very important because they represent the structure of

the two main project resources. The attributes of these classes represent the

call and presence resource fields already seen in Chapter 2. The only new

attribute within the Call class is actions. This does not describe a resource

property but is used to send to the client the actions that can be taken on

the same resource. The set and get methods are essential. The first allow

the creation of a Call class instance starting from its encoding in XML. The

second is used to create the XML representation from a Call object. These

two actions are performed automatically through the use of the Jersey and

JAXB libraries. In the Call class there are some methods used to compile

the actions attribute: checkNextStatus and hasNextStatus, they are used

to check if the new value of the status field to give is correct. In particular,

these two methods are used to verify that in the state machine representation

(Figure 2.10) there is a transition that leads from the current state to the

new one. Observable interface indicates the only characteristic required for

a resource so that it is observable and therefore subscriptions associated to

it can exist.

89

getPresenceXML()
@GET
@Produces({MediaType.APPLICATION_XML}
MediaType.APPLICATION_JSON
getPresenceHTML()
@GET
@Produces({MediaType.TEXT_HTML})
putPresenceXML()
@PUT
@Consumes(MediaType.APPLICATION_XML)
deletePresence
@DELETE

RESTful Service Implementation Package and Class

Figure 3.18: Package Bean.

3.4.3 Package servlet

This package contains the servlets used in our project and other two

supporting classes. The wsServlet class is used to accept communications

via WebSocket protocol to handle notifications to the client. The purpose

is to establish a channel between client and server and provide the used

stream to send data to the client via a OutStreamInboud instance. This

class extends StreamInbound class and therefore implements the methods

shown in Figure 3.19. These methods are used to handle any data sent from

the client to the server via WebSocket. In our case we use only the connection

created for communication from server to client, so we don’t create code for

this purpose. The REST2SIPServlet has a more complex role because is

responsible for receiving all request and response from the SIP client. This

servlet defines the methods invoked depending on the received message type.

For instance, the doRegister method is called for the REGISTER message

management, doInvite for INVITE message management. A REST client is

implemented within some methods, through classes provided by Jersey, which

makes use of methods proposed by the service to translate SIP messages in

90

RESTful Service Implementation Package and Class

HTTP requests. For instance, the sending of a SIP REGISTER message,

depending on the header values, corresponds to the creation, modification or

deletion of a resource Presence via POST, PUT or DELETE HTTP method,

respectively.

Figure 3.19: Package Servlet.

3.4.4 Package sip

This package presents only the BrowserSipCallHandler class that imple-

ments the Observer interface presented in section 3.4.7 and plays the im-

portant role of sending messages to the SIP client, as shown in Figure 3.20.

The creation of an instance is closely linked to a call involving a SIP client

and can be considered a subscription, as can be verified by observing Figure

3.21. Whenever a change is made to the resource Call, whose Id matches

the CallID value, the sendNotification method is called. This checks if there

are messages to be sent by considering the state in which the call is and the

role played by the SIP client, caller or callee. The sequence diagram of the

notification istance is shown in Figure 3.22.

3.4.5 Package storage

This package contains classes that instantiate objects responsible for re-

source storing, PresenceStore and CallStore, and also Call resource observers

(Figure 3.23). All three elements implement the Singleton pattern which as-

91

RESTful Service Implementation Package and Class

Figure 3.20: Package Sip.

Figure 3.21: Subscription of a BrowserSipCallHandler instance to a call with
SIP UA.

Figure 3.22: Notification of a BrowserSipCallHandler instance to a call with
SIP UA.

92

RESTful Service Implementation Package and Class

sures for each storage the existence of one instance that can be recovered eas-

ily. The store attribute is in PresenceStore and CallStore and is a Map that

connects its resource to each Id. Among the methods we have getFreeId(),

used to find an available Id by which to identify a possible resource to create.

In addition, in PresenceStore there is a getPresenceBy method, which per-

mits to recover the resource Id starting from the uri field value. This avoids

to create a new Presence resource if it already exists for the received URI.

The class CallObserverStore presents methods for the subscription managing

to the various resources. Among the methods there are the ones to recover

the Observer depending on the observed object, getObserversByObservedId

and getObserversByObserverId, in addition to those to record and delete one

or more Observer. We define the sendNotificationBy method, which is called

for the resource updating and, in turn, calls the sendNotification method on

Observer instances registered to a particular call.

Figure 3.23: Package Storage.

3.4.6 Package util

The classes in this package are for ”utility”, namely they perform auxiliary

functions for other classes. The RESTapi class presents methods that allow

the SIP Servlet REST2SIPservlet to execute request to the REST service.

93

RESTful Service Implementation Package and Class

The other two TypeProduceCall and TypeProducePresence classes provide

methods for creating XML content or other format that is used by RESTapi

class methods (Figure 3.24).

Figure 3.24: Package Util.

3.4.7 Package async

This package contains the classes used to manage individual subscrip-

tions: CallACResponder, CallACWriter and CallWSWriter. All three classes

implement the same Observer interface, as shown in Figure 3.25. The Ob-

server interface presents four important methods that must be implemented

(toString is used for debugging reason):

• sendNotification, is used to send the change notification to the regis-

tered client;

• getObservedId, returns the identifier of the observed resource;

• getObserverId, returns the client identifier observing the resource, typ-

ically the Id of its presence;

• close, is called before the subscription cancellation and allows to close

the stream with the client.

94

RESTful Service Implementation Package and Class

Figure 3.25: Package Async.

The Observer interface is also implemented by the BrowserSipCallHandler

class, already previously described. All three the classes have the same set

of attributes:

• AsyncContext or StreamInbound, is used to convey messages to the

client;

• observerId, indicates the string that identifies the Presence resource of

its subscriber;

• observedId, indicatesthe string that identifies the subscribed resource;

• ProduceType, indicates the format type with which we want to receive

the notification.

CallACResponder

This class allows to make a subscription following the ”long polling” prin-

ciples, already defined in the chapter 2. In order to make this subscription

we used a GET method with suffix ”/live”, where a parameter specifies the

subscription type (Figure 3.26). At this point, a AsyncContext is created

and its stream is used to send the response to the client. When a notifi-

cation must be sent, the sendNotification method is called to send its data

to the client, closing the asynchronous context and response. At this point

the CallACResponder object, and therefore the subscription representing, is

95

RESTful Service Implementation Package and Class

canceled and the client has to again send a subscription request to continue

receiving notifications (Figure 3.27).

Figure 3.26: Subscription of a CallACResponder object.

Figure 3.27: Notification of a CallACResponder object.

CallACWriter

This class implements the HTTP streaming technique, already defined

in the chapter 2, with the aid of the asynchronous context that improves

its performance. This solution, applied to the call context between a web

client and a SIP client, is also presented in [Dureulle, 2008]. Similar to the

CallACResponder case, in order to subscribe a REST client must send a GET

request with suffix ”/live” with a parameter that specifies the type, Figure

3.28. Unlike the previous case, for each notification the subscription should

not be made, Figure 3.29. The sent notifications queue one after the other

in partial response that the client receives. The AsyncContext is closed once

the subscription is canceled.

96

RESTful Service Implementation Package and Class

Figure 3.28: Subscription of a CallACWriter object.

Figure 3.29: Notification of a CallACWriter object.

CallWSWriter

This class uses the WebSocket protocol to obtain a channel between client

and server with which the first can notify the updates to the subscribed

resource. Its behavior is very similar to that CallACWriter but differs in

some essential points:

• subscription modality, involves a specific servlet and not the servlet

that deals with the REST service;

• response entity absence, as WebSocket is not a request/response pro-

tocol;

• the sent notifications don’t queue but are retrieved from the stream.

Figure 3.30 shows the sequence diagram of the subscription. The GET mes-

sage is used to make the upgrade to the WebSocket protocol. During its pro-

cessing the CallWSWriter instance is created and added to the store. Figure

3.31 shows the notification process that is similar to the CallACWriter case.

The subscription cancellation requires the connection deletion and deleting

the CallWSWriter object.

97

RESTful Service Implementation Client-side Script

Figure 3.30: Subscription of a CallWSWriter object.

Figure 3.31: Notification of a CallWSWriter object.

3.5 Client-side Script

The web application consists of several JavaScript files. In addition to

those specially designed for the application XMLWriter.js and jquery.js have

been used. The first allows to create easily XML files through the use of

special functions [Hickson, 2011]. The second, jQuery, is a popular JavaScript

library that simplifies the use of HTML pages, event handling, animation and

interaction between Ajax and Web applications. With jQuery, we can change

the approach for writing JavaScript code [AA.VV., 2005]. In the following

sub-paragraphs we describe scripts created for this Web application.

3.5.1 interfaceOperationAll.js

This script contains the main functions concerning the management of

the graphical interface and events. Some functions related to the arrival of

asynchronous events and callbacks are reported below:

• onSDPReady, is invoked by the caller or callee when these know the

parameters to be exchanged to establish a media session (SDP). The

98

RESTful Service Implementation Client-side Script

method returns the description within a variable. If the caller invokes

this callback, then this event corresponds to the sending of a PUT

request that changes the resource state to CALLING Call and inserts a

value for the ”offer” field. If instead the callee invokes this callback, this

event corresponds to send a PUT request that changes the call status

to ANSWERED and enter a value for the ”‘answer” field.

• onPeerConnection, is invoked when the connection is established be-

tween the two peers. Upon the occurrence of this event the remote

stream is started within a video tag.

Functions related to user input are:

• setPresence, method invoked when the user logs in. It creates a pres-

ence resource by sending a POST request. When resource creation is

confirmed, the user makes the recording to incoming calls as already

described in chapter 2.

• startCall, method invoked when the user wants to initiate a call. After

retrieving the called party the call resource is created by sending a

POST request. Upon the creation confirmation the user subscribes to

the call, to receive future update notifications, and initiated the creation

of the ”offer” SDP.

• cancelCall, method invoked by the caller when it decides to stop call es-

tablishment request. This method sets the resource status to CANCEL

by sending a PUT request.

• answerCall, method invoked by the callee to answer to the call. Once

the user has subscribed to the incoming call, the creation of the ”answer”

SDP is initiated and is followed by the invocation of the onSDPReady

callback.

• busyCall, method invoked by the callee if the user decides to report the

caller that does not want to establish the session. The call is put on

BUSY state through a PUT request.

• closeCall, method invoked by one of the two parties to end the call.

The Web application sends a PUT request that sets the resource to

CLOSED state and ends the connection previously established between

the peers.

99

RESTful Service Implementation Client-side Script

• execActions, this method allows to parse the ”actions” field returned

together to the call resource (as already described in chapter 2). In

this way we can identify actions that can be performed either by the

caller that callee.

3.5.2 presenceAPI.js

The presenceAPI script allows sending request to the Presence service.

The methods are:

• getAllPresence, allows to recover all the Presence sending a GET re-

quest to the URI: http://{servername}/presences.

• getPresence, allows to retrieve a specific presence by sending a GET re-

quest to the URI: http://{servername}/presences/{presence_id}.

• postPresence, allows to create a Presence resource by sending a POST

request to the URI: http://{servername}/presences.

• putPresence, allows to update a specific presence by sending a PUT re-

quest to the URI: http://{servername}/presences/{presence_id}.

• deletePresence, allows to delete a specific presence by sending a DELETE

request to the URI: http://{servername}/presences/{presence_

id}.

3.5.3 callAPI.js e Call.js

The callAPI script allows sending request to the call service. The methods

are:

• getCall, allows to retrieve a specific call by sending a GET request to

the URI: http://{servername}/calls/{call_id}.

• postCall, allows to create a call resource by sending a POST request to

the URI: http://{servername}/calls.

• putCall, allows to update a specific call by sending a PUT request to

the URI: http://{servername}/calls/{call_id}.

100

http://{servername}/presences
http://{servername}/presences/{presence_id}
http://{servername}/presences
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}
http://{servername}/presences/{presence_id}
http://{servername}/calls/{call_id}
http://{servername}/calls
http://{servername}/calls/{call_id}

RESTful Service Implementation Client-side Script

The Call script makes easy to access the information in the resource returned

by the server. Once the resource is returned in XML format, this description

is used to create an Call object instance to retrieve the field values of the

resource by the get methods.

3.5.4 registrationAll.js

This script collects all functions relating to the subscription both of a call

is incoming calls. The functions are:

• registerToCall, is used to subscribe to a call, or more generally to in-

coming call. This function takes as input:

– asyncType, indicates the method used to get the notification: Web-

Socket, AsyncContextWriter or AsyncContextResponder;

– CallID, indicates the call Id to which to subscribe or the ’*’ char-

acter to subscribe to all incoming calls;

– produceType, indicates the format in which we want to receive the

resource upon receipt of a notice (e.g., XML, HTML, etc.);

– presenceId, indicates the presence Id of the subscriber;

– onRegistered, indicates the callback function that must be called

at the time of registration;

– onNotification, indicates the callback function that is invoked upon

receipt of a notification. Each time this is called, receives the lat-

est version of the resource in the format specified by produceType

parameter.

• onIncomingCallRegistered, the callback function invoked for each sub-

scription to incoming calls.

• onIncomingCallNotification, the callback function used with the notifi-

cation of an incoming call. In the specific case where the user is already

engaged in another call, this callback report it to the caller by sending

a PUT request that sets the value of the status field to BUSY.

• onCallRegistered, the callback function used when the subscription reg-

istration to a specific call is happened.

101

RESTful Service Implementation Client-side Script

• onCallNotification, the callback function used to notify the call state

change to which the subscription was made. This function invokes an

another function which analyzes the back resource to take lately the

appropriate actions, as already described in chapter 2.

Subscription methodologies

There are three ways to subscribe to calls. In 3.4.7 we described server-

side implementation differences, in this section client-side implementation

differences. As first case we analyzed the ”WebSocketWriter” method for

which we create the connection passing to the WebSocket class constructor

the URL: "Ws://{servername}:<port>/wsServlet?<parameters>" where:

• servername, indicates the URL or IP address of the server providing

the service;

• port, indicates the port to which the server provides the service;

• parameters, indicates the parameters to be passed to the server already

described above: asyncType, CallID, produceType and presenceId.

Once the WebSocket instance is created, we define the functions relating to

certain events:

• OnOpen, the onCallRegistered or onIncomingCallRegistered function

is assigned;

• onMessage, the onCallNotification or onIncomingCallNotification func-

tion is assigned.

In the ”AsyncContextWriter”case, we must build an HTTP request through a

XMLHttpRequest instance. The URL will be sent to the interest resource to

which the ”/live?<parameters>”suffix is added. The parameters to be passed

to the server are always those already described in the ”WebSocketWriter”

case. We define then the onreadystatechange event that identifies every time

the behavior of state change in the request. For every change we evaluate

the readyState attribute value which can be:

• 0 = uninitialized;

• 1 = open;

102

"Ws://{servername}:<port>/wsServlet?<parameters>"

RESTful Service Implementation Client-side Script

• 2 = request sent;

• 3 = response reception;

• 4 = response received.

The state 3 indicates the presence of a new information sent by the server,

therefore, we assign the onCallNotification or onIncomingCallNotification

function at this case. At this point we can send the request. Lastly we

described the ”AsyncContextResponder” case. This method is similar to the

above. Only difference is the state in which the onCallNotification or on-

IncomingCallNotification function is called is 4. This method expects at

each notification the request is terminated. This behavior leads the Web-

application having to subscribe to every notification.

3.5.5 WebRTC.js

This script deals with the acquisition of audio and video streams and the

creation of peer-to-peer connection between caller and callee. The acquisition

of audio and video streams is possible by the use of the API getUserMedia

included in WebRTC standard [Bergkvist et al., 2014]. After the user has

given consent on the web page, the application will be able to access audio

and video capture devices of the machine on which the browser is running.

The peer-to-peer connection allows the channel creation between two clients

through the use of RTCPeerConnection objects. Once the RTCPeerConnec-

tion instance got the audio and video stream, the SDP ”offer” is created with

the which the ”offer” field of the call resource will be updated. The callee

reads the ”offer”value and creates, as for the caller, the SDP ”answer”, namely

the descriptor related to its audio and video streams. This is used to update

the ”answer” field of the call resource. When the two RTCPeerConnection

instances have set the descriptor value of the remote client, then can finally

establish the communication.

103

Chapter

4
Web application Functioning

This chapter describes the call service web application functioning and

related functional test. In paragraph 4.1 we describe the web application

interface and its functioning. In paragraph 4.2 we describe the functional

test related to main reference scenarios defined in the previous chapter.

4.1 Web application Interface

When an user inserts the call service URL, the web application interface

is returned (Figure 4.1) that requires to the user the authorization to use the

camera and microphone. This is due to the using of the API getUserMedia.

Once the user gave its consent, he can login. To do this, the user must enter

a valid SIP URI, choose a method for managing subscriptions and then press

the Login button that invokes the setPresence function. At this point, the

web application enables the ability to initiate a call specifying the callee SIP

URI.

The interface presents other fields, as shown in Figure 4.2:

• Call Status, indicates the status value of the call resource. Moreover

informs the user if the offer and answer fields have been set and the

last user who updated the call resource.

104

Web application Functioning Web application Interface

Figure 4.1: Web application Interface.

• PeerConnection Status, indicates the peer-to-peer connection status.

• Presence Update List, indicates all the Presence resources created and

then all users currently connected to the service.

Below the interface contains the buttons which recall the functions already

seen in chapter 3 for interacting with the web application.

• Call, allows a user to initiate the call by invoking the startCall function;

• Answer, allows the callee to answer an incoming call by invoking the

answerCall function;

• Cancel, allows the caller to cancel the call request by invoking the

cancelCall function;

• Busy, allows the callee to not answer to the call by invoking the busy-

Call function;

• Close, allows the caller and callee to close properly an established call

by invoking the closeCall function.

Figure 4.2: Call service web application functioning.

105

Web application Functioning Web application Interface

Once the call is initiated, the buttons described above and the camera

activate. Subsequently, when the callee accepts the call, appears also the

video stream from the callee user. Symmetrically, when the callee accepts

the call, two videos will be shown to him: one relating to its camera and one

to the stream coming from the caller user. Figure 4.2 shows in chronological

order the flow of HTTP requests sent by the Web-application and monitored

by Google Chrome:

• the creation of the presence resource and the response 201 that contains

the Id of the newly created resource;

• the recovery of the presence resource due to the Id knowledge;

• the subscription to incoming calls through the use of WebSocket and

then the protocol switching evidenced by the response 101;

• the creation of the call resource and the response 201 that contains the

Id of the newly created resource;

• the recovery of the call resource based on the knowledge of the Id;

• the subscription to the created call through the use of WebSocket and

then protocol switching evidenced by the response 101;

• the updating of the call resource to the state CALLING via a PUT

request.

Figure 4.3: Flow of HTTP requests sent by the Web application.

106

Web application Functioning Functional Test

4.2 Functional Test

This section describes the functional test related to main reference sce-

narios defined in the previous chapter. In order to test these scenarios we

chose the following testbed environment:

• Apache Tomcat version 7.0.29, the servlet container used to make avail-

able the call service.

• Google Chrome version 25.0.1364.172 m, the browser for accessing to

the Web-application that implements the REST client. We chose this

browser because it implements the WebRTC specifications without spe-

cial settings.

• Talk Express version 4.28, used as a SIP client. This choice was made

for the simplicity of software setting and implementation absence of SIP

protocol extensions such as SIMPLE or other, usually very common in

other clients (X-lite, Blink, Jitsi, ...). Such extensions would lead to

the continuous re-sending of SIP messages to the call service due to the

lack of response.

The results are the same regardless of the method used to subscribe to

asynchronous notifications sent from the server to the client. The test verified

successfully the following scenarios:

• the registration and deregistration to the Presence service by a REST

client;

• the registration and deregistration to the Presence service by a SIP

client;

• Successful call setup and closure between two REST clients;

• Unsuccessful call due to busy callee or cancel request by the caller.

The call establishment between a REST client and a SIP User Agent is not

possible. As regards the signaling phase we don’t encountered problems. The

busy-answer by the callee and the call cancellation by the caller are managed

correctly. The problem occurs in the case the callee decides to accept the

call. In this case, we found an incompatibility between the codes used to

audio/video level between the WebRTC standard and the SIP clients, for

107

Web application Functioning Functional Test

which the two users can not communicate. This same situation was found by

other developers who have attempted to establish a call using the WebRTC

API and a SIP client. In a near future probably the WebRTC API capabilities

will be increased and will therefore allow the channel media establishment

necessary to the communication.

108

Chapter

5
Performance Evaluation

Once we verified the RESTful service functioning, we performed a set of

test iterations to evaluate the performance of our prototype when is used by

multiple users. This chapter describes the performed tests and the obtained

results to identify the differences between the three subscription methods to

the asynchronous notifications. In Section 5.1 we describe the environment in

which the tests were performed and the way used to simulate a larger number

of clients accessing simultaneously. In section 5.2 we show the test and the

obtained results related to the time measurement between the various events

and the use of computer resources by our service.

5.1 Testbed Environment

We considered as test scenario the canceled-call case by the caller between

a REST client and a SIP User Agent , as already seen in Figure 3.13. In order

to simulate a configurable number of REST clients that request a call setup,

we developed a web application allowing to configure the number of calls to

be initiated and the time delay between two consecutive calls. The following

test results have been obtained configuring the web application for simulating

the initiation of 100 consecutive calls with 5 seconds of delay between two

consecutive calls. The testbed environment included a single machine with

109

Performance Evaluation Performance Test

a CPU Processor Intel Core i3 3217U 1.80 GHz, RAM 4 GB DDR3, hosting

the web application prototype, a Google Chrome browser and a SIP client

Express Talk (the software configuration is the same already seen in chapter

4). We chose to perform this experiment on a single machine to gather the

results on delays due to processing tasks minimizing the network delays.

5.2 Performance Test

We performed a set of test iterations in order to evaluate the performance

of the implemented prototype. A first experiment was aimed for evaluating

the performance in terms of time delay in REST-to-REST and REST-to-SIP

call scenarios.

We used the following metrics:

• the call setup delay, it defines the time elapsing between the call setup

request (POST HTTP message) and the reception of the final response

(ANSWERED call notification);

• the subscription delay, it defines the time between the delivery of the

subscription request and the establishment of the notification channel;

• the notification delay, it defines the time between the occurrence of an

event (e.g., the reception of a PUT request in order of change the re-

source state) and the reception of the corresponding notification action

by the subscribed client.

The obtained results are presented hereafter. Table 5.1 compares the

call setup delay delays in REST-to-REST and REST-to-SIP call scenarios.

The call setup between two web browsers required approximately 50 ms,

where approximately 30 ms were due to the initial phase (i.e., PUT and

POST invocation). A call setup between a web browser and a SIP User

Agent required about 110 ms, where approximately 60 ms were required for

processing an incoming SIP message and translating it into the corresponding

REST invocation. Thus, the difference between the REST-to-REST and the

REST-to-SIP scenarios is essentially due to the time needed for processing the

incoming SIP messages and performing the corresponding REST invocation.

These results show how the average call setup delay in our prototype

is comparable with analogous measures for call setup delay in SIP environ-

110

Performance Evaluation Performance Test

Table 5.1: Call Setup delays

REST Invocation REST-to-REST SIP Message REST-to-SIP
delay (ms) Call Setup delay (ms) Processing (ms) Call Setup delay (ms)

30 50 60 110

ments. For instance, the study by Kellokoski et al. [2010] reports an aver-

age call setup delay about 40 ms between two SIP User Agents. Moreover,

the maximum call setup delay measured in our prototype is well below the

acceptable limit about 8 seconds for the call setup delay in Web/Telecom

convergent environments defined by the TS 186 008-2 standard [Vingarzan

et al., 2007].

Table 5.2 compares the subscription and notification delays obtained by

adopting the WebSocket, Long Polling and HTTP Streaming notification

approaches. The subscription delay in the three cases has been measured in

the following way:

• WebSocket case, the delay is the client-side measured time between the

delivery of the request for activating the WebSocket channel and the

reception of the HTTP 101 response message.

• HTTP Streaming case, the delay is the time interval between the sub-

scription request and the reception of the first HTTP response chunk.

• Long Polling case, the delay is the time interval between the subscrip-

tion request and the reception of the HTTP response.

As shown in Table 5.2 the subscription delay with WebSocket is 7 ms on

average, while the delay with HTTP Streaming and Long Polling is around

13 ms. The notification delay is around 12 ms for all three approaches.

Table 5.2: Subscription and Notification delays

Subscription delay (ms) Notification delay (ms)

Web Socket 7 11
HTTP Streaming 13 12
Long Polling 14 13

A second experiment was aimed at measuring the consumption of re-

sources in terms of CPU usage. In order to obtain more reliable measure-

111

Performance Evaluation Performance Test

ments, the browser Google Chrome and the SIP client Express Talk were

located on a second machine. The two machines were connected via a 100

Mbps Ethernet/LAN. In the machine which hosts the Tomcat Application

Container and the web application we used JProfiler, which is a JVM profiler

that offers CPU profiling capabilities.

As in the previous experiment, we ran this experiment with a load scenario

provided by the test web application configured with 100 users. First, all

users send a presence registration request to the server, as we already seen in

Figure 3.2, and then they initiate a call to a SIP User Agent, one after the

other with a time interval of 5 seconds between two consecutive calls.

The Figures 5.1, 5.2 and 5.3 show the CPU load for the WebSocket, Long

Polling and HTTP Streaming approaches, respectively. In all three cases, the

CPU load has some peaks in the first time instants. This is due to the creation

of presence resources which occur in the initial phase of our experiment.

Then, the following peaks are due to the POST and PUT requests processing

for the call setup, recurring at intervals of approximately 5 seconds.

Figure 5.1: CPU usage with the Long Polling notification approach.

In the case of Long Polling (Fig. 5.1) and HTTP Streaming (Fig. 5.2),

these peaks increase up to a CPU usage of 20% and then decrease to a level

close to zero, while in the case of WebSocket (Fig. 5.3), the application shows

a CPU usage with peaks up to 10% with a minimum CPU usage that never

drops below 5%.

At actual state, the available studies on WebSocket focused on the net-

work latency and throughput in reference scenarios characterized by contin-

uously streamed data, as in the study proposed by Pimentel and Nickerson

112

Performance Evaluation Performance Test

Figure 5.2: CPU usage with the HTTP Streaming notification approach.

Figure 5.3: CPU usage with the WebSocket notification approach.

113

Performance Evaluation Performance Test

[2012]. Thus, it is not straightforward to compare our results with these

studies.

More accurate performance analysis would be worthwhile for evaluating

delays and consumption of resources in more complex workload scenarios,

which we are planning to make in future works.

114

Conclusions
In this thesis work, we have proposed an approach for the design and

implementation of a set of Web APIs based on REST principles for provid-

ing real-time communication services towards the convergence of web and

Telecommunications domains.

By leveraging a resource-oriented design methodology, we defined a set

of REST APIs and subsequently modeled the call resource behavior through

a Finite State Machine (FSM) representation. We specified FSM states,

transitions and actions with the requirement of REST/SIP interworking in

mind. We adopted a FSM representation (as UML State Diagrams) in order

to use the analysis and exploration capabilities offered by the UMC tool

to model the RESTful service as a set of communicating state machines

and simulate their behavior and interworking with client components (i.e., a

REST client and a SIP User Agent).

Finally, by leveraging these design specifications, we implemented a REST-

based communication service that can be invoked by any recent browser with-

out requiring any additional code download. We took into account a scenario

for a call session setup between two REST clients and a REST client and a

SIP User Agent, respectively, by implementing three mechanism for han-

dling asynchronous notifications. The WebRTC standard is been used to

create peer-to-peer video and audio communication. Finally, we evaluated

the functional correctness as well as the performance of this prototype imple-

mentation in terms of time delay (i.e., call setup, subscription and notification

delay) and resource usage (i.e., CPU load). The functional test showed that

implemented REST APIs allow to use the WebRTC standard to create au-

dio and video communications between two users equipped with a browser.

115

Conclusions

However we verified the impossibility, with the current implementation of the

WebRTC specification, to establish a call between a web browser and a SIP

user agent due to an incompatibility between the codes used to audio/video

level between the WebRTC standard and the SIP clients.This problem has

been reported by other developers and is probably due to the youth of the

WebRTC technology.

According to REST principles adopted in this thesis, the implemented

REST APIs support stateless interaction constraint, namely every request

from the client to the server contains all the information required for serving

the request. The set of resources exposed through a uniform interface based

on HTTP methods can be extended for offering other similar services (e.g.,

instant messaging and video conference service).

Moreover the implemented prototype adheres to the HATEOAS con-

straint, namely at each interaction step the client is provided with the options

that are permitted at that point. In particular, at each transition the server

provides to the client the instructions on the possible next steps. There-

fore, the dynamic behavior of the caller and callee users is embedded in the

client-side application logic, but the possible next transitions are provided

by the server. This causes loose coupling between client-side and server-side

implementations, while guarantees that the client behaves coherently with

the state machine of the call resource. This advantage is accentuated if we

compare this approach with legacy SIP User Agents, which implement SIP

client and server state machines defined in the SIP specifications.

Real-time communication services require the delivery of asynchronous

notifications. To fulfill this issue, that is not clearly handled in the REST

architectural style, we implemented and compared through performance test-

ing three alternative solutions: the first solution is based on the WebSocket

protocol, the second and third one on Long Polling and HTTP Streaming

technique, respectively.

Future work includes to extend the proposed approach and related imple-

mentation to expose more complex services (e.g., a video conference service).

Moreover, we will investigate solutions for REST service publication and dis-

covery in order to ease the dynamic specification and realization of Web and

Telecommunication composite services. The use of the state machine for-

malism allowed us to exploit the analysis and exploration capabilities offered

by the UMC tool to evaluate the compliance of the implemented prototype

behavior with the communicating state machine model. By relying on these

116

Conclusions

results, an another future work could be to extend this study towards formal

specification of RESTful services:

1. We will define a set of formal properties that express desirable at-

tributes of our model, i.e. general properties (e.g., deadlock absence),

and specific properties of RESTful systems (e.g., resource connected-

ness) [Chakrabarti and Rodriquez, 2010].

2. We will use the model-checking capabilities offered by the UMC tool

for automated property verification.

UMC is not currently equipped with other typical capabilities of model-

based design tools, such as the generation of automatic code and automatic

test from the model. Regarding to UML tool, these two capabilities can

be found in the commercial IBM Rhapsody tool, which on the other hand

does not provide model checking capabilities) [IBM Rhapsody, 2013]. The

combined use of UMC and Rhapsody tools could be used to further explore

the possibilities offered by both towards the rigorous design of web-based

communication signaling and interworking.

117

Bibliography
3GPP. Open Service Access (OSA); Parlay X web services; Part 1: Common. 3GPP TS

29.199-01, 2009.

AA.VV. Writing XML using JavaScript, 2005. URL http://www.codeproject.com/

Articles/12504/Writing-XML-using-JavaScript.

F. AlShahwan and K. Moessner. Providing SOAP Web Services and RESTful Web Services

from Mobile Hosts. In Internet and Web Applications and Services (ICIW), 2010 Fifth

International Conference on, pages 174–179, 2010.

H. Alvestrand. Real Time Protocols for Browser-based Applications. Internet-

Draft, IETF, September 2013. URL http://tools.ietf.org/html/

draft-ietf-rtcweb-overview-08.

Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, and Simon Pietro Romano. On the

seamless interaction between webRTC browsers and SIP-based conferencing systems.

Communications Magazine, IEEE, 51(4):42–47, 2013.

M. Barnes, C. Boulton, S. Romano, and H. Schulzrinne. Centralized Conferencing Manip-

ulation Protocol. RFC 6503, 2012. URL http://tools.ietf.org/html/rfc6503.

F. Belqasmi, R. Glitho, and Chunyan Fu. Restful web services for service provisioning in

next-generation networks: a survey. Communications Magazine, IEEE, 49(12):66–73,

2011.

F. Belqasmi, J. Singh, S.Y. Bani Melhem, and R.H. Glitho. SOAP-Based vs. RESTful

Web Services: A Case Study for Multimedia Conferencing. Internet Computing, IEEE,

16(4):54–63, 2012. ISSN 1089-7801. doi: 10.1109/MIC.2012.62.

A. Bergkvist, C. Jennings D. C. Burnett, and A. Narayanan. WebRTC 1.0: Real-time

Communication Between Browsers. W3C Working Draft, W3C, July 2014. URL http:

//www.w3.org/TR/webrtc/.

118

http://www.codeproject.com/Articles/12504/Writing-XML-using-JavaScript
http://www.codeproject.com/Articles/12504/Writing-XML-using-JavaScript
http://tools.ietf.org/html/draft-ietf-rtcweb-overview-08
http://tools.ietf.org/html/draft-ietf-rtcweb-overview-08
http://tools.ietf.org/html/rfc6503
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/

BIBLIOGRAPHY BIBLIOGRAPHY

Gregory Bond, Eric Cheung, Ioannis Fikouras, and Roman Levenshteyn. Unified telecom

and web services composition: problem definition and future directions. In Proceed-

ings of the 3rd International Conference on Principles, Systems and Applications of

IP Telecommunications, IPTComm ’09, pages 13:1–13:12, New York, NY, USA, 2009.

ACM. doi: 10.1145/1595637.1595654. URL http://doi.acm.org/10.1145/1595637.

1595654.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Exten-

sible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation. Technical

report, W3C, 2004. URL http://www.w3.org/TR/2004/REC-xml-20040204.

Michael Brenner and Musa Unmehopa. The Open Mobile Alliance: Delivering Service

Enablers for Next-Generation Applications. John Wiley & Sons, Ltd, 2008. ISBN

9780470519905.

G. Camarillo and M.A. Garćıa-Mart́ın. The 3G IP Multimedia Subsystem: Merging the

Internet and the Cellular Worlds. John Wiley & Sons, May 2006.

Sujit Kumar Chakrabarti and Reswin Rodriquez. Connectedness Testing of RESTful

Web-services. In Proceedings of the 3rd India Software Engineering Conference, ISEC

’10, pages 143–152, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-922-0. doi:

10.1145/1730874.1730902. URL http://doi.acm.org/10.1145/1730874.1730902.

Wu Chou, Li Li, and Feng Liu. Web services for communication over IP. Communications

Magazine, IEEE, 46(3):136–143, 2008. ISSN 0163-6804. doi: 10.1109/MCOM.2008.

4463784.

Douglas Crockford. Introducing JSON, 2002. URL http://www.json.org.

Arman Danesh and Wes Tatters. JavaScript 1.1 developer’s guide. Sams. net, 1996.

Carol Davids, Alan Johnston, Kundan Singh, Henry Sinnreich, and Wilhelm Wimmreuter.

SIP APIs for voice and video communications on the web. In Proceedings of the 5th

International Conference on Principles, Systems and Applications of IP Telecommuni-

cations, IPTcomm ’11, pages 2:1–2:7, New York, NY, USA, 2011. ACM. ISBN 978-

1-4503-0975-2. doi: 10.1145/2124436.2124439. URL http://doi.acm.org/10.1145/

2124436.2124439.

J Dureulle. Mobicents communications platform. JavaOne presentations, 2008.

Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-

puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ, USA,

2007. ISBN 0132344823.

I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455, December 2011. URL

http://tools.ietf.org/rfc/rfc6455.txt.

119

http://doi.acm.org/10.1145/1595637.1595654
http://doi.acm.org/10.1145/1595637.1595654
http://www.w3.org/TR/2004/REC-xml-20040204
http://doi.acm.org/10.1145/1730874.1730902
http://www.json.org
http://doi.acm.org/10.1145/2124436.2124439
http://doi.acm.org/10.1145/2124436.2124439
http://tools.ietf.org/rfc/rfc6455.txt

BIBLIOGRAPHY BIBLIOGRAPHY

Fielding. Paper tigers and hidden dragons, 2008. URL http://roy.gbiv.com/untangled/

2008/paper-tigers-and-hidden-dragons.

R.T. Fielding. Architectural Styles and the Design of Network-Based Software Architec-

tures. PhD thesis, Architectural Styles and the Design of Network-Based Software

Architecture, 2000.

Chunyan Fu, F. Belqasmi, and R. Glitho. RESTful web services for bridging presence

service across technologies and domains: an early feasibility prototype. Communications

Magazine, IEEE, 48(12):92–100, 2010. ISSN 0163-6804. doi: 10.1109/MCOM.2010.

5673078.

D. Griffin and D. Pesch. A Survey on Web Services in Telecommunications. Communica-

tions Magazine, IEEE, 45(7):28–35, 2007. ISSN 0163-6804. doi: 10.1109/MCOM.2007.

382657.

Keith Griffin and Colin Flanagan. Evaluation of Asynchronous Event Mechanisms for

Browser-based Real-time Communication Integration. In Khaled Elleithy, Tarek Sobh,

Magued Iskander, Vikram Kapila, Mohammad A. Karim, and Ausif Mahmood, editors,

Technological Developments in Networking, Education and Automation, pages 461–466.

Springer Netherlands, 2010. doi: 10.1007/978-90-481-9151-2 80. URL http://dx.doi.

org/10.1007/978-90-481-9151-2_80.

Keith Griffin and Colin Flanagan. Defining a Call Control Interface for Browser-based

Integrations Using Representational State Transfer. Comput. Commun., 34(2):140–

149, February 2011a. ISSN 0140-3664. doi: 10.1016/j.comcom.2010.03.029. URL http:

//dx.doi.org/10.1016/j.comcom.2010.03.029.

Keith Griffin and Colin Flanagan. Defining a call control interface for browser-based

integrations using representational state transfer. Computer Communications, pages

140–149, 2011b.

GSMA. OneAPI. 3GPP TS 29.199-01, 2009.

M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, April 1998.

URL http://www.ietf.org/rfc/rfc2327.txt.

Schooler Handley, Schulzrinne and Rosenberg. SIP: Session Initiation Protocol. RFC 2543,

March 1999. URL http://www.ietf.org/rfc/rfc2543.txt.

Ian Hickson. The websocket api. W3C Working Draft WD-websockets-20110929, Septem-

ber, 2011.

Ian Hickson and David Hyatt. Html5: A vocabulary and associated apis for html and

xhtml. W3C Working Draft edition, 2011.

120

http://roy.gbiv.com/untangled/2008/paper-tigers-and-hidden-dragons
http://roy.gbiv.com/untangled/2008/paper-tigers-and-hidden-dragons
http://dx.doi.org/10.1007/978-90-481-9151-2_80
http://dx.doi.org/10.1007/978-90-481-9151-2_80
http://dx.doi.org/10.1016/j.comcom.2010.03.029
http://dx.doi.org/10.1016/j.comcom.2010.03.029
http://www.ietf.org/rfc/rfc2327.txt
http://www.ietf.org/rfc/rfc2543.txt

BIBLIOGRAPHY BIBLIOGRAPHY

Min Huang and Lizhe Zhu. Research for Network Fault Real-time Alarm System Based

on Pushlet. In Industrial Control and Electronics Engineering (ICICEE), 2012 Inter-

national Conference on, pages 212–215, 2012. doi: 10.1109/ICICEE.2012.63.

IBM Rhapsody, 2013. URL http://www-03.ibm.com/software/products/en/

ratirhapfami.

S. Islam and J. Gregoire. Converged access of IMS and web services: A virtual client

model. Network, IEEE, 27(1):37–44, 2013.

ITU. Y.2234 : Open service environment capabilities for NGN. Recommendation Y.2234,

International Telecommunication Unit, 09 2008. URL http://www.itu.int/rec/

T-REC-Y.2234-200809-I.

Ivelin Ivanov. Mobicents Communication Platform, 2008. URL http://www.mobicents.

org/index.html.

Jan Janak. Sip proxy server effectiveness. Master’s Thesis, Department of Computer

Science, Czech Technical University, Prague, Czech, 2003.

Java.net, 2011. URL https://java.net/projects/jax-rs-spec/pages/

AsyncServerProcessingModel/revisions/32.

Josh Juneau. New Servlet Features. In Introducing Java EE 7, pages 1–14. Apress, 2013.

ISBN 978-1-4302-5848-3. doi: 10.1007/978-1-4302-5849-0 1. URL http://dx.doi.

org/10.1007/978-1-4302-5849-0_1.

J. Kellokoski, E. Tukia, E. Wallenius, T. Hamalainen, and J. Naarmala. Call and messag-

ing performance comparison between IMS and SIP networks. In Internet Multimedia

Services Architecture and Application(IMSAA), 2010 IEEE 4th International Confer-

ence on, pages 1–5, 2010. doi: 10.1109/IMSAA.2010.5729396.

M Kulkarni and Y Cosmadopoulos. Sip servlet specification, version 1.1. JSR, 289, 2008.

Seung-Ik Lee and Shin-Gak Kang. NGSON: features, state of the art, and realization.

Communications Magazine, IEEE, 50(1):54–61, 2012. ISSN 0163-6804. doi: 10.1109/

MCOM.2012.6122533.

Li Li and Wu Chou. Design Patterns for RESTful Communication Web Services. In Web

Services (ICWS), 2010 IEEE International Conference on, pages 512–519, 2010.

Lin Li and Xiping Zhang. Research on the integration of RTCWeb technology with IP

multimedia subsystem. In Image and Signal Processing (CISP), 2012 5th International

Congress on, pages 1158–1161. IEEE, 2012.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual machine

specification. Pearson Education, 2014.

121

http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www.itu.int/rec/T-REC-Y.2234-200809-I
http://www.itu.int/rec/T-REC-Y.2234-200809-I
http://www.mobicents.org/index.html
http://www.mobicents.org/index.html
https://java.net/projects/jax-rs-spec/pages/AsyncServerProcessingModel/revisions/32
https://java.net/projects/jax-rs-spec/pages/AsyncServerProcessingModel/revisions/32
http://dx.doi.org/10.1007/978-1-4302-5849-0_1
http://dx.doi.org/10.1007/978-1-4302-5849-0_1

BIBLIOGRAPHY BIBLIOGRAPHY

Olga Liskin, Leif Singer, and Kurt Schneider. Teaching Old Services New Tricks: Adding

HATEOAS Support As an Afterthought. In Proceedings of the Second International

Workshop on RESTful Design, WS-REST ’11, pages 3–10, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0623-2. doi: 10.1145/1967428.1967432. URL http://doi.

acm.org/10.1145/1967428.1967432.

Salvatore Loreto, P Saint-Andre, S Salsano, and G Wilkins. Known issues and best prac-

tices for the use of long polling and streaming in bidirectional http. Internet Engineering

Task Force, Request for Comments, 6202(2070-1721):32, 2011.

David Lozano, Luis A. Galindo, and Luis Garćıa. WIMS 2.0: Converging IMS and Web

2.0. Designing REST APIs for the Exposure of Session-Based IMS Capabilities. In

Proceedings of the 2008 The Second International Conference on Next Generation Mo-

bile Applications, Services, and Technologies, NGMAST ’08, pages 18–24, Washing-

ton, DC, USA, 2008. IEEE Computer Society. doi: 10.1109/NGMAST.2008.97. URL

http://dx.doi.org/10.1109/NGMAST.2008.97.

Franco Mazzanti. Welcome to UMC v4.1a, 2009. URL http://fmt.isti.cnr.it/umc/

V4.1/umc.html.

L. Mazzi. API REST per la telefonia su web e interoperabilità con il protocollo SIP, 2013.

Christian Menkens and Michael Wuertinger. From service delivery to integrated SOA

based application delivery in the telecommunication industry. J. Internet Services and

Applications, 2(2):95–111, 2011.

Takaaki Moriya and Junichi Akahani. Application programming gap between telecommu-

nication and internet. Comm. Mag., 48(8):96–102, August 2010. ISSN 0163-6804.

C.E.A. Mulligan. Open API standardization for the NGN platform. Communications

Magazine, IEEE, 47(5):108–113, 2009. doi: 10.1109/MCOM.2009.4939285.

NGSON Working Group. IEEE Standard for the Functional Architecture of Next Gener-

ation Service Overlay Networks. IEEE Standard 1903-2011, 2011.

Gerard Nicolas, Karim Sbata, and Elie Najm. Architecting end-to-end convergence of web

and Telco services. In Proceedings of the 13th International Conference on Information

Integration and Web-based Applications and Services, iiWAS ’11, pages 98–105, New

York, NY, USA, 2011. ACM. ISBN 978-1-4503-0784-0. doi: 10.1145/2095536.2095555.

URL http://doi.acm.org/10.1145/2095536.2095555.

OMA. OMA Web Services Enabler OWSER Core Specification. Approved Version 1.1,

Open Mobile Alliance, Mar 2006.

OMA. OMA service environment (OSE). Approved Version 1.0.5, Open Mobile Alliance,

October 2009.

122

http://doi.acm.org/10.1145/1967428.1967432
http://doi.acm.org/10.1145/1967428.1967432
http://dx.doi.org/10.1109/NGMAST.2008.97
http://fmt.isti.cnr.it/umc/V4.1/umc.html
http://fmt.isti.cnr.it/umc/V4.1/umc.html
http://doi.acm.org/10.1145/2095536.2095555

BIBLIOGRAPHY BIBLIOGRAPHY

OMA. Enabler Release Definition for RESTful bindings for Parlay X Web Services.

Technical Report V2, Open Mobile Alliance, July 2012. URL http://technical.

openmobilealliance.org/Technical/release_program/docs/CopyrightClick.

aspx?pck=ParlayREST&file=V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_

0-20120724-A.pdf.

Savas Parastatidis, Jim Webber, Guilherme Silveira, and Ian S. Robinson. The role of

hypermedia in distributed system development. In Proceedings of the First International

Workshop on RESTful Design, WS-REST ’10, pages 16–22, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-959-6. doi: 10.1145/1798354.1798379. URL http://doi.acm.

org/10.1145/1798354.1798379.

V. Pimentel and B.G. Nickerson. Communicating and Displaying Real-Time Data with

WebSocket. Internet Computing, IEEE, 16(4):45–53, 2012. ISSN 1089-7801. doi: 10.

1109/MIC.2012.64.

Marek Potociar. Jsr 311: Jax-rs: the java api for restful web services. Technical report,

2009.

L. Richardson and S. Ruby. RESTful Web Services. O’Reilly & Associates, May 2007.

J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocol. RFC 5245, April 2010.

URL http://www.ietf.org/rfc/rfc5245.txt.

J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Description Proto-

col (SDP). RFC 3264 (Proposed Standard), June 2002. URL http://www.ietf.org/

rfc/rfc3264.txt.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-

dley, and E. Schooler. SIP: session initiation protocol. RFC 3261, June 2002a. URL

http://www.ietf.org/rfc/rfc3261.txt.

J. Rosenberg, H. Schulzrinne, B. Campbell, C. Huitema, and D. Gurle. Session Initiation

Protocol (SIP) Extension for Instant Messaging. RFC 3428, December 2002b. URL

http://www.ietf.org/rfc/rfc3428.txt.

Frederick Schulzrinne, Casner and Jacobson. RTP: A Transport Protocol for Real-Time

Applications. RFC 3550, July 2003. URL http://www.ietf.org/rfc/rfc3550.txt.

Java Servlet Specification. Version 3.0, oracle america. Inc., Maintenance Release, 2011.

SunMicrosystems, Inc. The SIP Servlet Tutorial, 2008. URL http://docs.oracle.com/

cd/E19355-01/820-3007/.

Maurice H. ter Beek, Franco Mazzanti, and Stefania Gnesi. CMC-UMC: A Framework

for the Verification of Abstract Service-oriented Properties. In Proceedings of the 2009

ACM Symposium on Applied Computing, SAC ’09, pages 2111–2117, New York, NY,

123

http://technical.openmobilealliance.org/Technical/release_program/docs/CopyrightClick.aspx?pck=ParlayREST&file=V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_0-20120724-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/CopyrightClick.aspx?pck=ParlayREST&file=V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_0-20120724-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/CopyrightClick.aspx?pck=ParlayREST&file=V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_0-20120724-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/CopyrightClick.aspx?pck=ParlayREST&file=V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_0-20120724-A.pdf
http://doi.acm.org/10.1145/1798354.1798379
http://doi.acm.org/10.1145/1798354.1798379
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc3264.txt
http://www.ietf.org/rfc/rfc3264.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3550.txt
http://docs.oracle.com/cd/E19355-01/820-3007/
http://docs.oracle.com/cd/E19355-01/820-3007/

BIBLIOGRAPHY BIBLIOGRAPHY

USA, 2009. ACM. ISBN 978-1-60558-166-8. doi: 10.1145/1529282.1529751. URL

http://doi.acm.org/10.1145/1529282.1529751.

Thijssen. Asynchronous operations in REST, 2011. URL http://www.adayinthelifeof.

nl/2011/06/02/asynchronous-operations-in-rest/.

Dragos Vingarzan et al. IMS/NGN Performance Benchmark Part 2: Subsystem Configura-

tions and Benchmarks, 2007. URL http://webapp.etsi.org/workprogram/Report_

WorkItem.asp?WKI_ID=25501. ETSI/TISPAN 6 Workitem 06024-2.

Ivan Zuzak, Ivan Budiselic, and Goran Delac. A Finite-State Machine Approach for Mod-

eling and Analyzing RESTful Systems. J. Web Eng., 10(4):353–390, 2011.

124

http://doi.acm.org/10.1145/1529282.1529751
http://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/
http://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25501
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25501

	Introduction
	I State of the Art
	Context of the work
	REST
	Principles
	REST-oriented methodology
	Asynchronicity Management

	SIP
	SIP URI
	SIP Network Elements
	Messages
	Transactions
	Dialog
	Typical SIP Scenarios
	INVITE Client Transaction
	INVITE Server Transaction

	WebRTC
	IETF Protocol Specification
	W3C API JavaScript Specification

	Related Work
	Web APIs for Telecom services
	Web applications for real-time Communication

	II Discussion of the work
	RESTful Service Design
	Motivation of our work
	Reference scenarios
	Registration and Deregistration of a REST client
	Registration and Deregistration of a SIP User Agent
	Call between two REST clients
	REST user to SIP User Agent Call service
	SIP User Agent to REST user Call service

	Resource-oriented Design
	Presence resourse
	Assigning names to resources
	Uniform interface
	Resource representation

	Call resource
	Assigning names to resources
	Uniform interface
	Resource representation
	Finite-state machine Model
	Actions for the resource navigation
	UML on the fly Model Checker
	Interworking with SIP

	Solutions for asynchronicity in HTTP
	Periodic GET (polling)
	Long polling
	HTTP Streaming
	Asynchronous Processing in Servlets
	WebSocket

	RESTful Service Implementation
	Choice of Technologies
	Java
	Jersey
	AsyncContext e WebSocket
	SIP servlet API
	HTML 5
	WebRTC

	Prototype Architecture
	Call Service Interface and Logic details
	Notification Manager
	REST-SIP Gateway
	Client-side logic

	Prototype Scenarios
	Registration and Deregistration
	Successful Call setup
	Unsuccessful Call setup
	Call termination

	Package and Class
	Package resources
	Package bean
	Package servlet
	Package sip
	Package storage
	Package util
	Package async

	Client-side Script
	interfaceOperationAll.js
	presenceAPI.js
	callAPI.js e Call.js
	registrationAll.js
	WebRTC.js

	Web application Functioning
	Web application Interface
	Functional Test

	Performance Evaluation
	Testbed Environment
	Performance Test

	Conclusions
	Bibliography

