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Chapter I – Introduction 

 

 
1.1 The primary afferent nociceptors 

 

According to the International Association for the Study of Pain (IASP), pain is 

defined as “an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage”. The sensory experience 

begins in the periphery, where the peripheral terminals of primary afferent fibers 

respond to a myriad of stimuli and translate this information into the dorsal horn of the 

spinal cord, where the central ends of these fibers terminate. Nearly a century ago, 

Sherrington proposed the existence of the nociceptor, a primary sensory neuron that is 

activated by stimuli capable of causing tissue damage [1]. According to this model, 

nociceptors have characteristic thresholds or sensitivities that distinguish them from 

other sensory nerve fibers. Electrophysiological studies have, in fact, shown the 

existence of primary sensory neurons that can be excited by noxious heat, intense 

pressure or irritant chemicals, but not by innocuous stimuli such as warming or light 

touch [2]. Primary afferent fibers have a unique morphology, called pseudo-unipolar, 

wherein both central and peripheral terminals emanate from a common axonal stalk. 

Primary sensory neurons have the cell somata in sensory ganglia, dorsal root and 

trigeminal ganglia (DRG and TG, respectively). The peripheral axon of these neurons 

innervates tissue, such as skin and whose terminals react to sensory stimuli, and the 

central axon enters the spinal cord, where it forms synapse with second order neurons to 

transfer information to the central nervous system (CNS). Many neurons innervating the 

viscera are located in the nodose ganglia and their peripheral fibers travel with the vagus 

nerve whereas their central axons project to the area postrema. All sensory system form 

an anatomic connection between the potentially harmful external and internal milieu 

and the CNS and convert all the stimuli into electro-chemical signals. The 

heterogeneous population of sensory fibers originated from the ganglia can be 

distinguished into three main groups based on anatomical and functional criteria (Fig. I-
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1). Cell bodies with the largest diameters give rise to myelinated, rapidly conducting Aβ 

primary sensory fibers. Most, but not all, Aβ fibers detect innocuous stimuli applied to 

skin, muscle and joints and thus do not contribute to pain. By contrast, small- and 

medium-diameter cell bodies give rise to most of the nociceptors, including 

unmyelinated, slowly conducting C-fibers and thinly myelinated, more rapidly 

conducting Aδ fibers (Fig. I-1a). It has long been assumed that Aδ and C nociceptors 

mediate “first” and “second” pain, respectively, namely the rapid, acute, sharp pain and 

the delayed, more diffuse, dull pain evoked by noxious stimuli (Fig. I-1b). There are 

two main classes of Aδ nociceptor and both respond to intense mechanical stimuli, but 

can be distinguished by their differential responsiveness to intense heat or how they are 

affected by tissue injury. The Aδ and C nociceptive fibers either respond to one type of 

physical stimulus (unimodal nociceptors), or more commonly integrate and generate a 

response to potentially damaging thermal, mechanical and/or chemical stimuli 

(polymodal nociceptors) [2].  

 

Figure I-1. Different nociceptors detect different types of pain. a Peripheral nerves include small-
diameter (Aδ) and medium- to large-diameter (Aα,β) myelinated afferent fibres, as well as small-diameter 
unmyelinated afferent fibres (C). b Conductive velocity is related to fiber diameter. Aδ and C nociceptors 
mediate “first” and “second” pain. From [1]. 

 

As described, primary sensory neurons are the interface of the nervous system 

with the external and internal environment of our body. A major function of the sensory 

apparatus is to detect potentially damaging stimuli and warn of the risk of injury. All 

primary sensory nociceptors make synaptic connections with neurons in the grey matter 

(dorsal horn) of the spinal cord. Subsets of dorsal horn neurons, in turn, project axons 

and transmit pain messages to higher brain centers, including the reticular formation, 
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thalamus and ultimately the cerebral cortex (Fig. I-2). Primary afferent nerve fibers 

project to the dorsal horn of the spinal cord, which is organized into anatomically and 

electrophysiological distinct laminae. For example, the spinal cord neurons within 

lamina I and II are generally responsive to noxious stimulation (via Aδ and C fibers), 

neurons in laminae III and IV are primarily responsive to innocuous stimulation (via 

Aβ), and neurons in lamina V receive a convergent non-noxious and noxious input via 

direct (monosynaptic) Aδ and Aβ inputs and indirect (polysynaptic) C fiber inputs [3] 

(Fig. I-2). In animal model, the expression of c-Fos protein is a useful marker for 

monitoring neural activities in the central pathways of the sensory system, particularly 

in the pain pathway including thermal, mechanical and chemical stimuli [4]. Spinal 

neurons that express c-Fos after noxious stimulation are located in laminae I and II, and 

laminae V and VI of the dorsal horn.  

 

 

Figure I-2. Spinal Cord Neuroanatomy: inputs and projections. Different populations of primary 
afferent fibers target different regions of the dorsal horn of the spinal cord, with the input from C 
nociceptors concentrated in the superficial dorsal horn (laminae I and II). The small myelinated Aδ 
nociceptors target both laminae I and V. The low-threshold C mechanoreceptors, in contrast, target 
neurons in the ventral part of inner lamina II, which contains many PKCγ-expressing populations of 
interneurons. The right side of the Fig. illustrates the major ascending pathways that derive from the 
spinal cord dorsal horn. From [292]. 

 

Most C-fibers nociceptors respond to noxious chemical stimuli such as 

capsaicin, the pungent ingredient in hot chili peppers, and for this reason they are 

defined as capsaicin-sensitive sensory neurons. Histochemical studies of adult DRG 

reveal two broad classes of unmyelinated C-fiber. The so-called peptidergic population 

contains the peptide neurotransmitter substance P (SP), and expresses TrkA, the high-

affinity tyrosine kinase receptor for nerve growth factor (NGF) [5]. The second 
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population does not express SP or TrkA, but can be labelled selectively with the α-D-

galactosyl-binding lectin IB4, and expresses P2X3 receptors, a specific subtype of ATP-

gated ion channel. This categorization is a first approximation at best, as additional 

molecular markers become available, new subsets are likely to be recognized. The 

ability of sensing and transmitting noxious stimuli and nociceptive information is 

intrinsically associated to the release of neuropeptides from their peripheral terminals. 

The ionic event, gating by noxious stimuli, results in an excitatory effect with the 

subsequent depolarization of the nerve fibers and the initiation of an action potential 

propagation. Ca2+ influx into the peptidergic nerve endings causes the local release of 

neuropeptides, including calcitonin gene-related peptide (CGRP) and the tachykinins, 

SP and neurokinin A (NKA). Activation of CGRP and tachykinin receptors (NK1, NK2 

and NK3) on effector cells, particularly at the vascular levels, causes a series of 

inflammatory responses, collectively referred to as neurogenic inflammation [6]. Sir 

Thomas Lewis in his pioneering studies [7] precisely defined the dual “nocifensor” role 

of these neurons as characterized by the capacity of one portion of the widely branching 

sensory fiber to respond to the injury, and to generate action potentials, which are 

carried, antidromically, to other branches of the fiber, where they release a chemical 

substance that causes the flare and increases the sensitivity of other sensory axons 

responsible for pain. There is now a bulk of information suggesting that this 

phenomenon, firstly described at the somatic (skin) level, occurs in a variety of visceral 

organs. In addition, sensory neuropeptide release may occur not only from collateral 

fibers invaded antidromically by action potentials, through a tetrodotoxin-sensitive axon 

reflex, but also, as in the case of capsaicin, by the stimulated terminal itself via a 

tetrodotoxin-insensitive mechanism [8]. 

 

1.1.1 Neurogenic inflammation  

 

The term neurogenic inflammation refers to a series of responses that occur at 

peripheral level following the activation of capsaicin-sensitive sensory neurons, mainly 

present at the vascular level. These events also occur in other tissues and organs with a 

large variability according to the mammal species under investigation. At the vascular 

level, the release of CGRP, SP and NKA induces vasodilatation, mediated by CGRP, 

plasma protein extravasation and leukocyte adhesion to the vascular endothelium of 

postcapillary venules, mediated by SP/NKA and the NK1 receptor [6]. In non-vascular 
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tissues, neurogenic inflammatory responses include cardiac positive chronotropic 

effects (CGRP-mediated), contraction of the smooth muscle of the iris sphincter 

(SP/NKA, NK2 receptor), ureter, bladder neck and urethra (SP/NKA, NK2/NK1 

receptors), relaxation of bladder dome (CGRP), exocrine gland secretion (SP/NKA, 

NK1 receptor). Species-related variations in neurogenic inflammatory responses are 

clearly illustrated by the motor effect produced by sensory nerve activation and 

tachykinins in the airways. The release of SP/NKA from capsaicin-sensitive nerve 

terminals causes direct bronchoconstriction in the guinea-pig, indirect and nitric 

oxide/prostanoid-mediated bronchodilatation in the rat and mouse. In humans, as in 

guinea-pigs, activation of both NK2 and, in part, NK1 receptors mediates a robust 

bronchoconstriction in human isolated bronchi [9]. Of particular interest is the ability of 

tachykinins (NK1) to stimulate seromucous secretion [10] from bronchial glands, and to 

excite (NK3) postganglionic cholinergic nerve terminals in the human bronchus [11]. 

Neurogenic inflammation markedly contributes to inflammatory responses both at the 

somatic and visceral levels in different mammal species. In the human skin there is 

strong evidence that capsaicin or histamine cause a flare response that is blocked by 

local anesthetics or by repeated application of topical capsaicin (capsaicin 

desensitization), is mediated by stimulation of terminals of capsaicin-sensitive neurons 

and the subsequent release of neuropeptides. Less clear is, however, whether in man, 

neurogenic inflammation plays a pathophysiological role at the visceral level. There is 

evidence that CGRP is released by capsaicin from human tissues in vitro [12] and 

during migraine attacks [13]. A major role of CGRP released from trigeminal 

perivascular nerve fibers derived from the observation that BIBN 4096BS, a peptoid 

with high affinity for the CGRP receptor [14] that does not cross the blood brain barrier, 

reduces the pain and other symptoms associated with migraine attacks [15]. This finding 

supports the hypothesis that sensory CGRP is released from terminals of primary 

sensory neurons and exerts a pathophysiological role in human disease. 

 

1.2 Pain classification 

 

Pain is a multidimensional sensory experience that is intrinsically unpleasant and 

associated with hurting and soreness. It may vary in intensity (mild, moderate, or 

severe), quality (sharp, burning, or dull), duration (transient, intermittent, or persistent), 

and referral (superficial or deep, localized or diffuse). Although it is essentially a 
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sensation, pain has strong cognitive and emotional components; it is linked to, or 

described in terms of, suffering. It is also associated with avoidance motor reflexes and 

alterations in autonomic output. All of these traits are inextricably linked to the 

experience of pain. Pain can be essentially divided into two broad categories: adaptive 

and maladaptive. Adaptive pain contributes to survival by protecting the organism from 

injury or promoting healing when injury has occurred. Maladaptive pain, in contrast, is 

an expression of the pathologic operation of the nervous system; it is pain as disease. 

The sensory experience of acute pain caused by a noxious stimulus is mediated by the 

nociceptive system. To prevent damage to tissue, we have learnt to associate certain 

categories of stimuli with danger that must be avoided if at all possible. This association 

is formed by linking noxious stimuli with a sensation that is intense and unpleasant: that 

is, pain. The sensation of pain must be strong enough that it demands immediate 

attention. This nociceptive pain system is a key early warning device, an alarm system 

that announces the presence of a potentially damaging stimulus. Nociceptive pain must 

be controlled only under specific clinical situations, such as during surgery or medical 

procedures that damage tissue and after trauma. It is important that this system not be 

chronically disabled, because loss of its protective function inevitably leads to tissue 

damage, including self-induced mutilation of the tongue and lips, destruction of joints, 

loss of the tips of fingers, and pressure ulcers. Nociceptive pain is therefore a vital 

physiologic sensation. Lack of it in patients with congenital insensitivity to pain due to a 

mutation of the NGF tyrosine kinase A receptor, which results in a loss of high-

threshold sensory neurons, reduces life expectancy [16]. If tissue damage occurs despite 

the nociceptive defensive system (for example, through trauma, surgery, or 

inflammatory diseases), the body shifts from protecting against noxious, potentially 

damaging stimuli to promoting healing of the injured tissue. The term inflammatory 

pain is used to accomplish this goal. In this state, sensitivity is increased such that 

stimuli to the affected part that would normally not cause pain now do so. Peripheral 

sensitization is produced when nociceptor terminals become exposed to products of 

tissue damage and inflammation, referred to collectively as the “inflammatory soup” 

[2]. Some of the main components of the “inflammatory soup” include peptides 

(bradykinin, BK), lipids (prostaglandins), neurotransmitters (serotonin and ATP) and 

neurotrophins (NGF). The acidic nature of the “inflammatory soup” is also an important 

factor. Each of these factors sensitize or excite the terminals of the nociceptor by 

interacting with cell-surface receptors expressed by nociceptor neurons [2]. As a result, 
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we prevent contact with or movement of the injured part until repair is complete, 

minimizing further damage. Inflammatory pain typically decreases as the damage and 

inflammatory response resolve.  

Maladaptive pain is uncoupled from a noxious stimulus or healing tissue. Such 

pain may occur in response to damage to the nervous system (neuropathic pain) or 

result from abnormal operation of the nervous system (functional pain). Maladaptive 

pain is the expression of abnormal sensory processing and usually is persistent or 

recurrent. This is an area of enormous unmet clinical need because treatment options are 

limited and our understanding incomplete. Essentially, in maladaptive pain, the fire 

alarm system is constantly switched on even though there is no emergency, or repeated 

false alarms occur. Neuropathic pain may result from lesions to the peripheral nervous 

system, as in patients with diabetic or AIDS polyneuropathy, post-herpetic neuralgia, or 

lumbar radiculopathy, or to the central nervous system, such as in patients with spinal 

cord injury, multiple sclerosis, or stroke [17]. Functional pain is an evolving concept. In 

this form of pain sensitivity, no neurologic deficit or peripheral abnormality can be 

detected. The pain is due to an abnormal responsiveness or function of the nervous 

system, in which heightened gain or sensitivity of the sensory apparatus amplifies 

symptoms. Several common conditions have features that may place them this category: 

for example, fibromyalgia, irritable bowel syndrome, some forms of noncardiac chest 

pain, and tension-type headache [18-20]. It is not known why the central nervous 

system of patients with functional pain displays abnormal sensitivity or 

hyperresponsiveness. Although inflammatory, neuropathic, and functional pain each 

have different causes, they share some characteristics. The pain in these syndromes may 

arise spontaneously in the apparent absence of any peripheral stimulus, or it may be 

evoked by stimuli. Evoked pain may arise from a low-intensity, normally innocuous 

stimulus, such as a light touch to the skin in a patient with post-herpetic neuralgia or 

vibration during an acute attack of gout, or it may be an exaggerated and prolonged 

response to a noxious stimulus. The former condition is called allodynia and the latter 

hyperalgesia. Spontaneous pain and changes in sensitivity to stimuli are fundamental 

features of clinical pain, distinguishing it from nociceptive pain, in which pain occurs 

only in the presence of an intense or noxious stimulus.  

Classic migraine is in a category of its own. It is an episodic neurologic 

condition that has been related to abnormal cortical activity that alters sensory input 

from dural and cerebrovascular sensory fibers and is associated with an abnormal 
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sensory processing in the brainstem. It possesses features of inflammatory and 

functional pain, as well as of objective neurologic dysfunction [287, 21].  

Pain caused by cancer varies greatly in character and source; it depends on the 

tumor, its location, and its proximity to other tissues. In some cases, tumor cells produce 

chemical signals that contribute directly to the pain, as in osteosarcomas. In other 

tumors, the pain may be due to mechanical compression or invasion of a nerve, 

distention of an organ, ischemia, or an inflammatory reaction to tissue necrosis. It may 

also represent a neurotoxic side effect of chemotherapy [22]. 

 

1.2.1 Chemotherapy-induced peripheral neuropathy 

 

Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially dose 

limiting side effect of commonly used chemotherapeutic agents like taxanes, vinca-

alkaloids, platinum compounds, bortezomib and thalidomide. Symptoms are 

predominantly sensory, ranging from a mild tingling sensation to spontaneous burning 

pain and hypersensitivity to stimuli. These symptoms often affect both hands and feet 

and may spread into a “glove and stocking” distribution. Sometimes there are motor 

symptoms like weakness, autonomic neuropathy and incidentally cranial nerve 

involvement. CIPN leads to a lower quality of life and often causes patients to 

discontinue chemotherapy [23]. The incidence of CIPN depends on the dose, mainly 

cumulative, the type of agent, and concomitant use of other neurotoxic agents. 

Moreover, the development of chemotherapy side effects may be influenced by the age 

of the patients and preexisting conditions that potentially cause nerve damages, such as 

diabetes and use of alcohol [23]. CIPN can begin weeks to months after initial treatment 

and reach a peak at, or after, the end of treatment and it is most frequently associated 

with axonal degeneration. Usually, this axonopathy occurs weeks to months after 

exposure to the medication, may continue despite withdrawal of the drug, and may be 

irreversible. If the degree of axonal degeneration is mild, then complete regeneration 

may occur. However, if there is injury to the dorsal root ganglion resulting in neuronal 

apoptosis, then the sensory neuropathy is severe and usually irreversible [24]. The toxic 

effects of chemotherapy target the structures and functions of the peripheral nervous 

system, including neuronal cell bodies, axons, myelin sheath, and supporting glial cells. 

Most toxic neuropathies affect axons, resulting in an axonopathy and causing distal, 

symmetric, sensory-predominant neuropathy that exhibits a “dying-back” pattern. The 
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most distal portions of axons are usually the first that undergo degeneration, and axonal 

atrophy advances slowly towards the cell body. These effects lead to sensory 

disturbances with a symmetrical “glove and stocking” distribution. In its most severe 

form, it will lead to wallerian (or secondary) degeneration of the surrounding nerve 

sheath (i.e., demyelination) distal to the injury. Neuronal cell body damage results in 

neuronopathies and manifests as global nerve cell failure. Patients will first notice 

paresthesias, pain, or both, in the toes and feet that with time and continued insult will 

advance proximally. By the time the fingertips are affected, a tear-drop pattern of 

sensory loss and dysesthesias appears the abdominal wall, and sensory distortion will 

have migrated proximally up the leg, approaching or passing the knee. Myalgias are 

another presentation of neuropathic pain, and patients complain of muscle cramps and 

aching that are frequently exacerbated by activity. 

 

1.2.1.1 Paclitaxel-induced neuropathic pain 

 

Paclitaxel (Taxol) belongs to the taxane family and it is active against a broad 

range of solid neoplasms that are generally considered to be refractory to conventional 

chemotherapy. Paclitaxel is a microtubule targeting agent. Microtubules are composed 

of polymers of tubulin in dynamic equilibrium with tubulin heterodimers composed of 

alpha and beta protein subunits. Although their principal function is the formation of the 

mitotic spindle during cell division, microtubules are also involved in many vital 

interphase functions, including the maintenance of shape, motility, signal transmission, 

and intracellular transport. Unlike other antimicrotubule drugs, such as vinca-alkaloids, 

which induce the disassembly of microtubules, paclitaxel promotes the polymerization 

of tubulin. At subnanomolar concentrations, paclitaxel inhibits the disassembly of 

microtubules, whereas it increases their mass and numbers at higher, albeit clinically 

achievable, concentrations. The microtubules formed in the presence of paclitaxel are 

extraordinarily stable and dysfunctional, thereby causing the death of the cell by 

disrupting the normal microtubule dynamics required for cell division and vital 

interphase processes. Paclitaxel binds to the N-terminal 31 aminoacids of the beta-

tubulin subunit in the microtubule, rather than to tubulin dimers. 

Paclitaxel-induced neurotoxicity typically presents a sensory neuropathy with 

the most common complaints being numbness, tingling and burning pain. More 

pronounced symptoms are tingling and allodynia that typically occur in a “glove and  
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stocking” distribution. Sensory symptoms usually start symmetrically in the feet, but 

also appear simultaneously in both hands and feet [25]. Many cases resolve briefly after 

paclitaxel discontinuation, but the sensory abnormalities and pain can be long-lasting 

[26]. Symptoms may begin as soon as 24 to 72 hours after treatment with higher doses 

(> 250 mg per square meter) but usually occur only after multiple courses at 

conventional doses (135 to 250 mg per square meter). Severe neurotoxicity precludes 

the administration of paclitaxel doses above 250 mg per square meter over a period of 3 

or 24 hours, but severe neurotoxicity is rare at conventional doses (< 200 mg per square 

meter), even in patients who have previously received other neurotoxic agents, such as 

cisplatin. Motor and autonomic dysfunction may also occur, especially at high doses 

and in patients with preexisting neuropathies caused by diabetes mellitus and 

alcoholism. Transient myalgia, usually noted two to five days after therapy, is also 

common at doses above 170 mg per square meter, and myopathy has been noted with 

high doses of paclitaxel (> 250 mg per square meter) in combination with cisplatin. 

 

1.2.1.2  Bortezomib-induced neuropathic pain 

 

Bortezomib (BTZ) is a modified dipeptidyl boronic acid authorized for the 

treatment of multiple myeloma and mantle cell lymphoma [27-29]. Bortezomib is a 20S 

proteasome complex inhibitor that acts by disrupting various cell signaling pathways, 

thereby leading to cell cycle arrest, apoptosis, and inhibition of angiogenesis. The 

hallmark of bortezomib action is the inhibition of NF-κB, thereby interfering with NF-

κB-mediated cell survival, tumor growth, and angiogenesis [30]. Peripheral neuropathy 

is a significant dose-limiting toxicity of bortezomib that typically occurs within the first 

courses of bortezomib, reaches a plateau at cycle 5, and thereafter does not appear to 

increase [31, 32] (Fig. I-3).  
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Figure I-3. Representative pain diagram completed by a patient with bortezomib-induced 

neuropathic pain. Darkly shaded areas show where the patient complained of ongoing pain. This area 
was described as “burning” and “numb.” Lightly shaded area shows the border area of altered sensibility. 
This area was described as “tingling.” A typically sharp boundary between the areas affected and 
“normal” skin was indicated by the lack of drawing above the wrists. From [293]. 

 

 

According to the results of major phase 2/3 clinical trials, the incidence of 

bortezomib-induced peripheral neuropathy (BIPN) ranges from 31 to 45%. Pre-

treatment with other neurotoxic antineoplastic drugs, such as vincristine and 

thalidomide, is associated with even higher percentages (18-37%) of clinically 

significant BIPN. Dose reduction or treatment discontinuation occurs in up to 12% of 

BTZ-treated patients, mostly occurring in those with pre-existing neuropathy due to 

exposure to other neurotoxic chemotherapies [32, 33]. BTZ therapy can also evoke 

autonomic dysfunction in 12-50% of patients, with constipation (12%) and orthostatic 

hypotension (50%) being the most frequent symptoms [33, 34]. The improvement or 

resolution of BIPN is normally observed in up to 85% of patients between 2 and 3.5 

months after discontinuation of BTZ treatment [31-33]. To date, several agents, 

including various opioids, tricyclic antidepressants, anticonvulsants, serotonin-

norepinephrine reuptake inhibitors, non-steroidal anti-inflammatory agents, vitamins 

and nutritional supplements, have been tested for their efficacy to symptomatically treat 

the neuropathic pain component in the context of BIPN [35]. However, based on results 
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from randomized controlled trials, only duloxetine, a serotonin-norepinephrine reuptake 

inhibitor, appears effective and well tolerated enough to alleviate BTZ-associated 

neuropathic pain. 

 

1.2.2 Third-generation aromatase inhibitors-induced painful states 

 

Third-generation aromatase inhibitors (AIs) are currently recommended for 

adjuvant endocrine treatment as primary, sequential, or extended therapy with 

tamoxifen, for postmenopausal women diagnosed with estrogen receptor-positive breast 

cancer [36-38]. Estrogen is the main hormone involved in the development and growth 

of breast tumors; oophorectomy was first shown to cause regression of advanced breast 

cancer, and estrogen deprivation remains a key therapeutic approach. Tamoxifen 

inhibits the growth of breast tumors by competitive antagonism of estrogen at its 

receptor site. Its actions are complex and it also has partial estrogen-agonist effects. 

These partial agonist effects can be beneficial, since they may help prevent bone 

demineralization in postmenopausal women, but also detrimental, since they are 

associated with increased risks of uterine cancer and thromboembolism. In addition, 

they may play a part in the development of tamoxifen resistance. In contrast, AIs 

markedly suppress plasma estrogen levels in post-menopausal women by inhibiting or 

inactivating aromatase, the enzyme responsible for the synthesis of estrogens from 

androgenic substrates (specifically, the synthesis of estrone from the preferred substrate 

androstenedione and estradiol from testosterone). Unlike tamoxifen, AIs have no partial 

agonist activity.  

AIs are described as first-, second-, and third-generation inhibitors according to 

the chronologic order of their clinical development, and they are further classified as 

type 1 or type 2 inhibitors according to their mechanism of action. Type 1 inhibitors are 

steroidal analogue of androstenedione and bind to the same site on the aromatase 

molecule, but unlike androstenedione they bind irreversibly. Therefore, they are 

commonly known as enzyme inactivators. Type 2 inhibitors are non-steroidal and bind 

reversibly to the heme group of the enzyme by way of a basic nitrogen atom; 

anastrozole and letrozole, both third-generation inhibitors, bind at their triazole groups. 

The third-generation AIs, developed in the early 1990s, include the triazoles anastrozole 

(Arimidex) and letrozole (Femara) and the steroidal agent exemestane (Aromasin). 

They are administered orally; anastrozole and letrozole have similar pharmacokinetic 
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properties, with half-lives approximating 48 hours, allowing a once-daily dosing 

schedule. The half-life of exemestane is 27 hours. Pharmacokinetic interactions between 

some inhibitors and tamoxifen have been described. The levels of anastrozole and 

letrozole are reduced (by a mean of 27 percent and 37 percent, respectively) when they 

are coadministered with tamoxifen, but these reductions are not associated with 

impaired suppression of plasma estradiol levels. 

The use of AIs is associated with a series of relevant side effects which are 

reported in 30-60% of treated patients [39, 40]. Among these, the AI-associated 

musculoskeletal symptoms (AIMSS) are characterized by morning stiffness and pain of 

the hands, knees, hips, lower back, and shoulders [41, 42]. In addition to 

musculoskeletal pain, pain symptoms associated with AIs have recently been more 

accurately described with the inclusion of neuropathic, diffused, and mixed pain [43]. 

The whole spectrum of painful conditions has been reported to affect up to 40% of 

patients, and to lead 10-20% of patients to non-adherence or discontinuation of 

treatment [41-46]. Although it has been proposed that estrogen deprivation and several 

other factors, including a higher level of anxiety, may contribute to the development of 

AIMSS and related pain symptoms, none of these hypotheses has been confirmed [43, 

47]. 

 

1.2.3 Chemotherapy-induced peripheral neuropathy mechanisms 

 

Although the underlying mechanisms involved in the induction of chemotherapy side 

effects are still under debate, various mechanisms possibly involved in development of 

CIPN have been explored and suggested. Several mitochondrial pathways, including 

regulation of intracellular calcium [48], generation of reactive oxygen species (ROS) 

[49] and apoptotic signaling [50], have been proposed to play a critical role in the 

development of CIPN. Indeed, paclitaxel-evoked painful peripheral neuropathy is 

associated with increased swollen and vacuolated axonal mitochondria [51]). Moreover, 

paclitaxel appears to gate the multi-molecular complex containing the voltage-

dependent anion channel, defined as mitochondrial permeability transition pore (mPTP), 

[51] causing a toxic calcium release from the mitochondria. Indeed, calcium chelating 

agents are able to reverse paclitaxel-evoked pain [52] and acetyl-l-carnitine, which 

prevents mPTP opening [53], reduces the development of paclitaxel-induced 

neuropathic pain [54]. Administration of BTZ leads to the intracytoplasmic vacuolation 
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in DRG satellite cells, probably due to mitochondrial and endoplasmic reticulum 

enlargement [55]. All these intracellular modifications are probably related to the ability 

of BTZ to induce the mitochondrial-based apoptotic pathway including activation of 

caspases [56] and dysregulation of calcium homeostasis [57]. Disregulation of 

neurotrophins has also been proposed as another important mechanism of BTZ-induced 

peripheral neuropathy genesis, since the main action of BTZ is the inhibition of NF-κB 

activation, thereby blocking the transcription of nerve growth factor-mediated neuron 

survival. The inhibitors of mitochondrial electron transport chain (mETC) produce 

CIPN antinociception and attenuate TNF-α-induced mechanical hyperalgesia [50]. The 

critical role of mETC in peripheral pain mechanisms is further corroborated by the 

effect of inhibitors of ATP synthesis to attenuate neuropathic pain [50]. Moreover, it has 

been demonstrated that α-lipoic acid, by regulating essential mitochondrial proteins with 

antioxidant and chaperone properties [58], exerts neuroprotective effects against 

chemotherapy-induced neurotoxicity in sensory neurons. Finally, significant changes in 

the expression of various genes, including those controlling the mitochondrial 

dysfunction due to vincristine- and BTZ-associated peripheral neuropathy, have been 

demonstrated in a clinical study [56].  

Impaired mitochondrial calcium uptake or increased leakage of mitochondrial 

calcium could exaggerate calcium signals and, eventually, calcium-dependent processes 

which participate to neuropathy mechanism. It has been proposed that administration of 

vincristine and paclitaxel, by raising neuronal calcium levels in the nerves, induces 

mitochondrial changes, associated with neuronal hyperexcitability. Accordingly, drugs 

which reduce intracellular calcium levels are able to reverse the negative effects of 

altered mitochondrial calcium regulation and neuropathic pain [52, 59]. Furthermore, 

paclitaxel- and vincristine-evoked neuropathic pain is reduced by both the T-type 

channel calcium blocker, ethosuximide, and the α2δ-1 calcium channel subunit 

antagonist, gabapentin [60, 61]. In addition, paclitaxel has been reported to increase the 

expression level of α2δ-1 mRNA in the dorsal spinal cord [60, 62]. Accordingly, it is 

proposed that of α2δ-1 subunit in the spinal dorsal horn and DRG is a main site of 

inhibitory action of gabapentin on paclitaxel-induced allodynia [63]. Thus, different 

lines of evidence indicate that dysregulation of intracellular calcium levels represents an 

additional factor contributing to the pathogenesis of CIPN. 

A number of studies suggest a role of sodium channels in CIPN. Exposure of 

DRG neurons to oxaliplatin increases sodium currents which are antagonized by the 
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sodium channel blocker, carbamazepine [64]. The oxaliplatin metabolite oxalate 

probably alters the functional properties of voltage-gated sodium channels, resulting in 

a prolonged open state of the channels and, finally, in the hyperexcitability of sensory 

neurons [65]. Further, oxaliplatin administration has been described to slow sodium 

channel inactivation kinetics [64, 66]. A change in sodium channel properties may 

predispose to ectopic activity leading to paresthesia and fasciculations [67]. Cold 

exposure affects sodium channel kinetics [68] and, accordingly, sodium channel 

dysfunction is aggravated by cold temperatures [69]. Cold hypersensitivity is a typical 

feature observed in acute oxaliplatin-induced neurotoxicity. It has been shown that acute 

modulation of sodium channel influences the severity of oxaliplatin-induced 

neurotoxicity [70, 71]. The involvement of sodium channels is also reported in 

paclitaxel-induced neuropathic pain where low doses of tetrodotoxin result able to 

prevent pain induced by taxane [72]. However, the role of the sodium channels in the 

neuropathy induced by different chemotherapeutic agents is challenged by the finding 

that administration of antisense oligodeoxynucleotides targeting the NaV1.8 channel 

does not interfere with vincristine-induced neuropathic pain [73]. 

An important role of inflammatory mediators has been described in models of 

CIPN [74, 75]. A recent study demonstrated a correlation between the increase in IL-6 

and the appearance of BTZ-induced neuropathic pain [76]. Further, the administration 

of the prostaglandin E1 (PGE1) analog, limaprost, attenuated mechanical allodynia 

induced by paclitaxel and oxaliplatin (but not by vincristine) [62]. The increase in skin 

Langerhans cells (LC) has been associated with the development of pain in vincristine- 

and paclitaxel-evoked neuropathy [52]. LC cells may contribute to pain development by 

different mechanisms including release of nitric oxide (NO) [77], pro-inflammatory 

cytokines and neurotrophic factors [78], that in turn cause spontaneous neuronal 

discharge, nociceptor sensitization and mechano-hypersensitivity. It has also been 

demonstrated that paclitaxel-induced neuropathic pain is associated with the induction 

of TNF-α and IL-1β in lumbar DRGs [79]. Glial cell inhibitors attenuate paclitaxel- and 

vincristine-induced neuropathic pain [80, 81], supporting a role for activated glial cells 

in this condition.  

In vincristine- and paclitaxel-evoked neuropathy [52], and more recently in 

oxaliplatin-induced neuropathy [82], a loss of intraepidermal nerve fibers in plantar hind 

paw skin region of the sensory neuron peripheral terminal arbors, similar to that 

documented in other neuropathic pain syndromes, has been shown. Neuropathy seems 
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also to be characterized by a loss of the cutaneous Aδ and C fibers (cool- and warm-

specific) [83] and of Aδ cool-specific fibers which seem to contribute to cold allodynia 

[84].  

Oxidative stress has been repeatedly proposed to play a central role in the 

mechanism of CIPN. The effect of antioxidants, including acetyl-l-carnitine, α-lipoic 

acid and vitamin C, which seem to partially reverse the hyperalgesia, represents an 

indirect proof of oxidative stress role in oxaliplatin-induced neuropathy [85, 86]. 

Recently, administration of the free radicals scavenger phenyl N-tert-butylnitrone has 

been shown to reduce mechanical allodynia in paclitaxel-induced neuropathic pain in 

rats [290]. Moreover, it has been demonstrated that BTZ increases ROS in DRG 

neurons [87] and that vitamin C or N-acetyl-l-cysteine administration alleviates the 

cytotoxicity in Schwann cells, but not in myeloma cells treated with BTZ [88]. This 

observation suggests that treatment with antioxidant agents could afford neuroprotection 

without modifications of the antineoplastic activity [88]. Recent evidence also supports 

the role for other biological effectors in CIPN. For instance, paclitaxel-induced 

peripheral neuropathy is characterized by the activation of calcium-activated proteases, 

such as calpains and caspases or MAPK [50]. Furthermore, the prolonged exposure to 

oxaliplatin induces early activation of p38 and ERK1/2 in DRG neurons, eventually 

provoking neuronal apoptosis. Contrasting data have been reported on the role of 

neuropeptides, such as CGRP or SP [287, 288]. The role of NO has been also evaluated, 

and there is indication that NO contributes to vincristine- and oxaliplatin-induced 

neuropathy. Finally, a number of other mediators or effector mechanisms have been 

implicated in the genesis of CIPN, including NMDA and 5HT receptors, potassium 

channels, protein kinase C (PKC) or l-serine [89]. 

Although the mechanism underlying the acute neuronal hyperexcitability and the 

subsequent peripheral neuropathy and pain induced by chemotherapeutic agents remains 

still to be established, in the recent years remarkable interest has been paid to the 

different ion channels located to neuronal membrane. In particular, due to their specific 

and abundant expression on peripheral sensory neurons, research on Transient Receptor 

Potential (TRP) channels represents a promising area of investigation. Emerging and 

compelling data have shown the contribution of several members of this channel family 

to the mechanism of CIPN. 
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1.3 Transient Receptor Potential (TRP) channels 

 

The TRP ion channels are a large class of channel subunits united by a common 

primary structure and permeability to monovalent cations and Ca2+ ions. The first gene 

encoding a TRP channel was discovered in the fruit-fly Drosophila melanogaster where 

mutants for that gene exhibited impaired vision due to the lack of a specific Ca2+ influx 

pathway into photoreceptors [90]. Phototransduction in the fruit-fly involves activation 

of membrane cation channels leading to a depolarizing current. Drosophila 

photoreceptors contain the light-sensitive G protein-coupled receptor rhodopsin, whose 

activation results in stimulation of phospholipase C-β (PLC-β). Resolving components 

of the light-induced current (LIC) led to the identification of a Drosophila mutant 

displaying a transient LIC in response to light, in contrast to the sustained LIC in wild-

type flies. This mutant strain was termed trp, for transient receptor potential. Mutations 

in this gene led to a disruption of a Ca2+ entry channel in the photoreceptors, indicating 

that TRP, the protein encoded by the trp gene, forms all, or part, of a Ca2+ influx 

channel [91].   

More than 50 members of the TRP family have been characterized in many 

tissues and cell types in both vertebrates and invertebrates making them one of the 

largest groups of ion channels [92]. A unifying theme in this group is that TRP proteins 

play critical roles in sensory physiology, which include contributions to vision, taste, 

olfaction, hearing, touch, and thermo- and osmosensation. TRP cation channels are 

unique cellular sensors characterized by a promiscuous activation mechanism [93]. For 

example, yeasts use a TRP channel to perceive and respond to hypertonicity [94], 

nematodes use TRP channels at the tips of neuronal dendrites in their “noses” to detect 

and avoid noxious chemicals [95], and male mice use a pheromone-sensing TRP 

channel to tell males from females [96]. Humans use TRP channels to appreciate sweet, 

bitter and umami (amino acid) [97] and to discriminate warmth, heat and cold. In each 

of these cases, TRPs mediate sensory transduction, not only in a classical sense, for the 

entire multicellular organism, but also at the level of single cells. 
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1.3.1 Classification and structural features   

 

TRPs are classified essentially according to their primary amino acid sequence 

rather than selectivity or ligand affinity, because their properties are heterogenous and 

their regulation is complex. The 28 mammalian TRPs channel superfamily can be 

divided into six families [98, 99] (Fig. I-4). The TRPC (Canonical) and TRPM 

(Melastatin) subfamilies consist of seven and eight different channels, respectively (i.e. 

TRPC1-TRPC7 and TRPM1-TRPM8). The TRPV (Vanilloid) subfamily presently 

comprises six members (TRPV1-TRPV6). The most recently identified subfamily, 

TRPA (Ankyrin), has only one mammalian member (TRPA1). The TRPP (Polycystin) 

and TRPML (mucolipin) families, each containing three mammalian members, are not 

sufficiently characterized, but gain increasing interest because of their involvement in 

several human diseases.  

 

 

 

 

 

 

 

Figure I-4. Mammalian TRP family tree. The evolutionary distance is shown by the total branch 
lengths in point accepted mutations (PAM) units, which is the mean number of substitutions per 100 
residues. Adapted from [98]. 

 

All TRP channels comprise six transmembrane domains (S1-S6) and a pore 

region formed by a short, hydrophobic stretch between S5 and S6 to form cation-

permeable pores. Both the N- and C-termini are located intracellularly (Fig. I-5). 

Despite the topographic similarities between the TRPs and the voltage-gated potassium 

channels, the TRPs are actually only distantly related to these channels. Voltage-gating 

refers to channel opening results from movement of the charged S4 segment in 

KV/NaV/CaV channels upon a change in transmembrane voltage. In TRPs channels, S4 
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lacks the complete set of positively charged residues necessary for the voltage sensor in 

many voltage-gated ion channels [100]. In general, TRP channel gating is not 

dominated by voltage but rather is effected by the energy differences accompanying 

changes in temperature, binding, and voltage. Functional TRP channels consist of either 

homo- or heteromultimers of four TRP subunits (Fig. I-5). Whereas the C-terminus is a 

highly conserved residue, most TRP channels contain N-terminus ankyrin repeats, 

which are 33-residue motifs with a conserved backbone and variable residues that 

mediate specific protein-protein interactions [101]. It is notable that ankyrin repeats are 

prominent in the assembly of macromolecular complexes between the plasma 

membrane and the cytoskeleton. It is also possible that the ankyrin repeats play a 

functional role in transmitting mechanical forces to the gate of the channels.  

 

 

 

 

 

 

 

 

 

 

Figure I-5. Transmembrane topology of TRP channels. Transmembrane topology (left) and the 
quaternary structure of TRP channels (right). The TRP protein has six putative transmembrane domains, a 
pore region between the fifth and sixth transmembrane domains and a TRP domain in the C-terminal 
region. The TRP protein assembles into homotetramers or heterotetramers to form channels. From [294]. 

 

Although a single defining characteristic of TRP channels function has not yet 

emerged, TRPs may be generally described as calcium-permeable cation channels with 

polymodal activation properties. By integrating multiple concomitant stimuli and 

coupling their activity to downstream cellular signal amplification via Ca2+ permeation 

and membrane depolarization, TRP channels appear well adapted to function in cellular 

sensation. Indeed, their localization in the plasma membranes of neurons or other cells 

and a large body of evidence collected using a plethora of stimuli, indicates that they are 

sensors of chemical, mechanical and thermal stimuli. All functionally characterized 

TRP channels mediate the transmembrane flux of cations down their electrochemical 

gradients, thereby raising intracellular Ca2+ and Na+ concentrations and depolarizing the 
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cell. As they are widely expressed in mammalian tissues, TRPs are well positioned to 

regulate intracellular Ca2+ and Na+, and transmembrane voltage in both excitable and 

non-excitable cells. Most Ca2+-permeable TRP channels are only poorly selective for 

Ca2+, with permeability ratio relative to Na+ (PCa/PNa) in the range between 0.3 and 10. 

Exceptions are TRPV5 and TRPV6, two highly Ca2+-selective TRP channels with 

PCa/PNa >100. TRP channels are gated by different stimuli that include the binding of 

intracellular and extracellular messengers, changes in temperature, and chemical and/or 

mechanical (osmotic) stress. Sensitivity to polymodal activation suggests that the 

physiologically relevant stimulus for any given TRP will be governed by the specifics 

of cellular context (i.e., phosphorylation status, lipid environment, interacting proteins, 

and concentrations of relevant ligands). Ligands that activate TRP channels may be 

classified as (a) exogenous small organic molecules, including synthetic compounds and 

natural products; (b) endogenous lipids or products of lipid metabolism; (c) purine 

nucleotides and their metabolites; (d) inorganic ions, with Ca2+ and Mg2+ being the most 

likely to have physiological relevance [296]. In addition, from their first identification, 

several members of other TRP subfamilies have been described as store operated 

channels (SOCs). Store-operated Ca2+ entry channels are considered channels that are 

activated whenever intracellular Ca2+ stores become depleted. In many cases, the 

classification of TRP channels as SOCs is mainly based on the results of Ca2+ imaging 

protocols, in which store-dependent Ca2+ influx is estimated from the rise in 

intracellular Ca2+ concentration that occurs in cells to which extracellular Ca2+ is 

readded after artificial store depletion. However, most TRP are not gated by the usual 

mechanism defined as activating store-operated Ca2+ entry. Thus it is not accurate to 

refer to TRP channels as store-operated channels, although it may turn out that one or 

more of these channels participate to this process [102]. 

 

1.3.2 The TRPC subfamily   

 

The mammalian TRP channels most closely related to Drosophila TRP are 

classified in the TRPC subfamily. TRPC channels are nonselective, Ca2+-permeable 

cation channels, but the permeability ratio (PCa/PNa) varies significantly between 

different members of the family. In general, TRPC members can be considered as 

channels activated subsequent to stimulation of receptors that activate different isoforms 
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of PLC. A recent study reported that TRPC1 is directly activated by membrane stretch, 

independent of PLC activity [103]. 

 

1.3.3 The TRPV subfamily   

    

The TRPV family includes six mammalian members divided into two group: 

TRPV1-TRPV4 and TRPV5-TRPV6. The vanilloid receptor TRPV1 is the best 

characterized ion channel in this class. Members of the TRPV family contain three to 

five ankyrin repeats in their cytosolic NH2-termini. TRPV1-TRPV4 are all heat-

activated channels that are non-selective for cations and modestly permeable to Ca2+. In 

addition, they also function as chemosensors for a broad array of endogenous and 

synthetic ligands. Recently, it has been described that TRPV4 is also activated upon cell 

swelling [104]. Interestingly, these different chemical and physical activator stimuli 

mostly have an additive, or even supra-additive, effect on the gating of TRPV channels, 

which endows these channels with the ability to act as signal integrators. This form of 

signal integration is of great importance to several pathological states. The properties of 

the two other members of this subfamily, TRPV5 and TRPV6, are quite different from 

those of TRPV1-TRPV4. They are the only highly Ca2+-selective channels in the TRP 

family, and both are tightly regulated by intracellular Ca2+ [105]. These properties allow 

TRPV5 and TRPV6 to play a crucial role as gatekeepers in epithelial Ca2+ transport, and 

as selective Ca2+ influx pathways in non-excitable cells [106]. In addition, in contrast to 

the other TRPVs, the temperature sensitivity of TRPV5 and TRPV6 is relatively low.  

TRPV1, originally named vanilloid receptor 1 (VR1) and commonly referred as 

the capsaicin receptor, was first described as a polymodal receptor activated by 

vanilloid compounds (capsaicin, resiniferatoxin), moderate heat (≥43 °C) and low pH 

(<5.9) [107, 108]. Since then, TRPV1 has been reported to be also activated by camphor 

[109], allicin [110, 111], nitric oxide [112], spider toxins [113], potentiated by ethanol 

[114] and modulated by extracellular cations [115]. TRPV1 was initially described in a 

subpopulation of small- to medium-diameter neurons in dorsal root, trigeminal and 

nodose ganglia [107, 108]. While TRPV1 has been described in many other neuronal 

and non-neuronal cells [116], its highest expression level is in sensory neurons. Several 

studies have demonstrated that inflammatory mediators, such as BK, prostaglandin E2, 

extracellular ATP, glutamate and NGF indirectly sensitize TRPV1 [291, 117]; following 

exposure of sensory neurons to inflammatory mediators, responses to capsaicin or heat 
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are dramatically enhanced to the extent that body temperature can be sufficient to 

activate nociceptors [108]. Inflammatory mediators sensitize TRPV1 function by 

various mechanisms; they may increase TRPV1 expression levels in the membrane 

[118, 119], induce TRPV1 phosphorylation by protein kinases [120] or release the 

inhibition of TRPV1 by phosphatidylinositol 4,5-bisphosphate, which render the 

channel more responsive to agonist stimulation [121]. In addition, these inflammatory 

mediators act on receptors that are coupled to G proteins or tyrosine kinase pathways 

thus activating PLC and/or PLA2 which, in turn, induce the release of arachidonic acid 

metabolites. Several amide derivatives of arachidonic acid (anandamide) and 

lipoxygenase products of arachidonic acid, such as 12-(S)-HPETE, are agonists of 

TRPV1 and therefore are candidates for endogenous capsaicin like substances [122]. In 

addition to inflammatory mediators, proteases released during inflammation or nerve 

injury, such as trypsins and mast cell tryptase, can also sensitize TRPV1; these 

proteases cleave the protease activated receptor 2 (PAR2) to sensitize TRPV1 to induce 

thermal hyperalgesia through PKA and PKCε second messenger pathways [123, 124]. 

These findings demonstrate that TRPV1 not only participates in pain evoked by 

chemical and moderate heat but that TRPV1 contributes to peripheral sensitization, 

acting as the final substrate for multiple inflammatory mediators that operate via distinct 

intracellular signaling pathways. 

TRPV4 channel is a polymodal receptor with a wide expression pattern and a 

corresponding variety of physiological roles [125]. TRPV4 is widely expressed on 

nervous and non-nervous organs, tissues and cells, including urinary bladder, kidney, 

vascular endothelium, keratinocytes, cochlear hair cells, and Merkel cells [126-128]. 

TRPV4 activation on sensory neurons, TG and DRG neurons [125, 129] causes SP and 

CGRP release, thus evoking neurogenic inflammation in peripheral tissues [130]. 

TRPV4 was firstly identified as an osmo-transducer activated by decrease in osmolarity, 

suggesting a role in the regulation of cell swelling [125, 131]. Later studies 

demonstrated that TRPV4 is activated by shear stress [132], innocuous warmth (27-35 

°C) [129, 133], low pH, citrate [128], endocannabinoids and arachidonic acid (AA) 

metabolites [92, 134], NO [112] and synthetic selective agonists, such as the phorbol 

ester 4α-phorbol 12,13-didecanoate (4α-PDD) [133]. The mechanosensitive nature of 

TRPV4 and its implication in sensing shear stress suggest a role in flow-sensitive cells, 

such as vascular endothelial and renal tubular epithelial cells. The mechanism through 

which TRPV4 is activated by mechanical stress is still under debate. Two transduction 
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pathways have been proposed to regulate TRPV4 activation: the PLC/diacylglycerol 

(DAG) pathway and the PLA2/AA pathway [135, 136]. Some evidence suggests that 

activation of TRPV4 by hypotonicity involves its phosphorylation by Src family of 

tyrosine kinase [137]. Although the molecular mechanism of hypotonicity-induced 

TRPV4 activation should be further investigated, studies addressing the gating 

mechanism of the channel by cell swelling exclude that it is directly gated by 

mechanotransduction since it does not respond to membrane stretch [131]. It was shown 

that hypotonicity becomes painful to the animals when nociceptive fibers are sensitized 

by the PGE2, whose levels increase during inflammation or in response to mechanical, 

chemical and thermal injury. TRPV4 also plays a crucial role in mechanical 

hyperalgesia elicited by exposure to inflammatory mediators. Indeed, PGE2 and 

serotonin, can act synergistically through cAMP/PKA and PKCε to engage TRPV4 in 

hyperalgesia to mechanical and osmotic stimuli [138]. In addition, PAR2 agonists may 

sensitize TRPV4 through the activation of multiple second messenger pathways, such as 

PKA, PKC, PKD, PLCβ [130]. Proteases generated during inflammation activate PAR2 

thus leading to TRPV4-mediated release of SP and CGRP in the spinal cord and 

TRPV4-induced mechanical hyperalgesia [139]. 

 

1.3.4 The TRPM subfamily   

    

Members of the TRPM family fall into three subgroups on the basis of sequence 

homology: TRPM1/3, TRPM4/5, and TRPM6/7, with TRPM2 and TRPM8 representing 

structurally distinct channels. In contrast to TRPCs and TRPVs, TRPMs do not contain 

ankyrin repeats within their NH2-terminal domain. TRPM channels exhibit highly 

variable permeability to Ca2+ and Mg2+, ranging from Ca2+ impermeable (TRPM4 and 

TRPM5) to highly Ca2+ and Mg2+ permeable (TRPM6, TRPM7 and specific splice 

variants of TRPM3). 

 

1.3.5 The TRPML subfamily   

 

The TRPML family consists of three mammalian members (TRPML1–3) that 

are relatively small proteins consisting of ~600 amino acid residues. TRPML1 is widely 

expressed and appears to reside in late endosomes/lysosomes. Recently, TRPML1 has 
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been described as a H+ channel that may act as a H+ leak in lysosomes preventing 

overacidification in these organelles [140].   

 

1.3.6 The TRPP subfamily   

 

The TRPP family is very heterogeneous and can be divided, on structurally 

criteria, into PKD1-like (TRPP1-like) and PKD2-like (TRPP2-like) proteins. PKD1-like 

members comprise TRPP1 (previously termed PKD1), PKDREJ, PKD1L1, PKD1L2, 

and PKD1L3. TRPP1 consists of 11 transmembrane domains, a very longand complex 

~3,000 amino acid extracellular domain, and an intracellular COOH-terminal domain 

that interacts with the COOH-terminal of TRPP2 through a coiled-coil domain. The 

PKD2-like members structurally resemble other TRP channels. There is considerable 

evidence that TRPP1 and TRPP2 physically couple to act as a signaling complex at the 

plasma membrane to which TRPP2 is recruited by TRPP1 [141].   

 

1.3.7 The TRPA subfamily   

   

The TRPA family currently comprises one mammalian member, TRPA1, which 

is expressed in DRG and TG neurons and in hair cells [142, 143]. TRPA1 consists of at 

least 14 N-terminal ankyrin repeat domains (ARDs), an unusual structural feature that 

may be relevant to the proposed role of the channel as a mechanosensor. TRPA1 

receptor is activated by various stimuli including exogenous (natural compound) but 

also endogenous compound. TRPN is a channel that is closely homologous to TRPA1. 

It is characterized by 29 ankyrin repeats within the N-terminus. To date, this subfamily 

comprises only one member in C. elegans, Drosophila, and zebrafish. TRPN1 probably 

acts as a mechanotransduction channel that is involved in hearing. Currently available 

genome information indicates that mammals have no TRPN orthologs.   
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1.4 The TRPA1 channel 

 

TRPA1 is the only member of the ankyrin subfamily found in mammals. This 

receptor was originally cloned from human pulmonary fibroblasts [144], and was found 

selectively expressed in a subpopulation of unmyelinated nociceptors that also express 

the capsaicin receptor TRPV1, suggesting an important role in nociception [93, 143, 

145]. The TRPA1 is a non-selective cation channel permeable to both monovalent and 

divalent ions, including Ca2+, Na+, K+. TRPA1 has a high Ca2+ permeability compared 

to most other TRP channels and a unitary conductance  ~70 pS to ~110 pS in the inward 

and outward directions, respectively, under physiological conditions when the channel 

is constitutively open [146, 147]. In presence of TRPA1 activators the pore of the 

channel, with a size of 11.0 Å, can undergo dilation increasing Ca2+ permeability and 

allowing larger charged molecules to pass through the channel [148, 149].  

Like all other TRP proteins, TRPA1 has six predicted transmembrane domains 

(S1-S6), a pore loop between S5 and S6 and the N- and C-termini located intracellulary. 

Although there is no apparent voltage sensor in S4, as shown for voltage-gated K+ 

channels, TRPA1 displays some voltage dependency although less pronounced 

compared to TRPM8 and TRPV1 [150, 151]. A distinguish features of TRPA1 receptor 

is its long N-terminus with 14 to 18 ankyrin repeats which are important for protein-

protein interactions and insertion of the channel into the plasma membrane [152] (Fig. 

I-6 a,b). The N-terminus contains a large numbers of cysteine residues, some of which 

can form a network of protein disulfide bridges within or between monomers [153] 

(Fig. I-6 c). N-terminal cysteine and lysine residues are key targets for electrophilic 

TRPA1 activators, but cysteines outside the N-terminus region may also contribute to 

channel gating [153]. Furthermore, the potent TRPA1 activator Zn2+ may bind to 

cysteine and histidine residues in the C-terminus [154, 155]. The N- and C-termini have 

been suggested to contain binding sites for Ca2+ that can both sensitize or desensitize 

TRPA1 [145, 156, 157]. Ca2+ strikingly modulates TRPA1 activity. Indeed micromolar 

intracellular Ca2+ concentrations ([Ca2+]i) activate TRPA1, and also elevation of 

extracellular Ca2+ concentration can transiently increase the channel activity. It has been 

suggested that activation may depend on Ca2+ binding to an N-terminal EF-hand motif 

[158, 159]. The putative EF-hand motif involved in [Ca2+]i-dependent activation of 

TRPA1 is located between ARD11 and ARD12 [158, 159] (Fig. I-6 a,b). The 

importance of this EF-hand site is questionable, since point mutations in this region 
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have only modest effects on [Ca2+]i-dependent activation mechanism, while deletions 

impair trafficking of the truncated channel to the plasma membrane [146]. Another 

putative Ca2+-binding domain is composed of a cluster of acidic residues in the distal C-

terminus of TRPA1 [157]. Four conserved residues in human TRPA1, Glu1077, 

Asp1080, Asp1081 and Asp1082, have strong effects on the Ca2+- and voltage-

dependent potentiation and/or inactivation of agonist-induced responses. Truncation of 

the C-terminus by only 20 residues selectively slowed down the Ca2+-dependent 

inactivation without affecting other functional parameters. The only direct structural 

insights on TRPA1 channel are those available from a 16 Å resolution structure of 

purified, amphipol-stabilized, TRPA1 proteins analyzed by single-particle electron 

microscopy (EM) [160]. This structural model suggests that the critical N-terminal 

cysteine residues involved in electrophilic activation are located at the interface between 

neighboring subunits and form a ligand-binding pocket, allowing disulfide bonding 

between the cysteine residues [153]. Covalent modifications by thiol-reactive 

compounds within such pockets may alter interactions between subunits and promote 

conformational changes that translate to modification of the gating mechanism [153, 

160].  
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Figure I-6. Predicted structural topology of human TRPA1 channel. a Positions of major domains 
and motifs are annotated. b Schematic representation of a TRPA1 dimer with annotations of all 31 
cysteine residues (blue circles). The position of ankyrin repeat domains is represented by a gray box. c 
Reconstruction of electron microscopy density and N-terminal model of TRPA1 (blue ribbon). The 
cysteines involved in disulfide bonding are displayed in orange (adapted from [160, 146]). 

 
1.4.1 Localization of TRPA1 channel 

  

Shortly after the identification of TRPA1 receptor in human pulmonary 

fibroblast (Jaquemar, 1999) and in hairy cells of the auditory system [142], abundant 

expression of TRPA1 have been localized in a subpopulation of peptidergic primary 

sensory neurons (with C and Aδ fibers) where it signals nociceptive/painful responses. 

TRPA1-expressing neurons contain and release the neuropeptides, SP, NKA and CGRP. 

TRPA1 is mostly found in a subpopulation of TRPV1-positive neurons, but non-

TRPV1-containig neurons expressing TRPA1 also exist, including a small population of 

myelinated Aβ-fibers, which are activated by innocuous mechanical force [161]. By 

using radial stretch in combination with live-cell calcium imaging different mechano-
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sensitive or -insensitive sensory neuronal categories were identified [163]. A group of 

small-diameter stretch-sensitive cells could be further subdivided in a cluster of small-

diameter cells, sensitive to hydroxy-α-sanshool (a two pore K+ channel antagonist) and 

the TRPV1 agonist, capsaicin, and a second one which comprises large-diameter cells 

that respond to hydroxy-α-sanshool, but not capsaicin. The former neuron type likely 

corresponds to high threshold nociceptors and the latter to low threshold proprioceptors. 

Moreover, stretch insensitive neurons fall into two groups of small-diameter cells. A 

first group is composed by petidergic neurons sensitive to capsaicin and to the TRPA1 

selective agonist, mustard oil, and a second group by a small cohort of menthol-

sensitive cells [163]. Thus, TRPA1 expressing neurons which obligatory co-express 

TRPV1, are those apparently insensitive to mechanical stimulation and that, because 

they contain neuropeptides, bring about neurogenic inflammation.  

More recently extraneuronal localization of TRPA1 has been identified. TRPA1 

activation inhibited the repair of the epithelial wound in the stomach, probably by the 

suppression of cell migration, and suggested the involvement of TRPA1 in the 

mechanism of gastric epithelial restitution [164]. TRPA1, highly expressed in the 

bladder epithelium, might be involved in the bladder sensory transduction and the 

induction process of overactive bladder by bladder outlet obstruction [165]. The 

localization of TRPA1 to nerves that also express TRPV1 and CGRP, and in urothelial 

cells and interstitial cells, as well as the findings that TRPA1 agonists can modify tone 

of human urethral preparations, propose a role for TRPA1 in afferent and efferent 

sensory signaling of the human outflow region [166]. TRPA1 is highly expressed in rat 

enterochromaffin cells (EC), and TRPA1 agonists, including allyl isothiocyanate and 

cinnamaldehyde, stimulate EC cell functions, such as increasing intracellular Ca2+ levels 

and 5-HT release. By this mechanism TRPA1 regulates intestinal motility [167]. 

Finally, and more importantly for the present research proposal there is evidence that 

TRPA1 expressed in endothelial cells of rat cerebral vessels regulates vascular tone by 

nitric oxide and cyclooxigenase-independent pathways [168]. The relaxing mechanism 

activated by TRPA1 agonists is mediated by endothelial cell Ca2+-activated K+ channels 

and inwardly rectifying K+ channels in arterial myocytes [168]. TRPA1 is found in 

melanocytes, mast cells, fibroblasts, odontoblasts [169-172].  
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1.4.2 TRPA1: more than just a spice receptor 

  

Many different stimuli have been reported to either directly or indirectly activate 

the TRPA1 receptor channels, including cold, mechanical displacement and exogenous 

pungent compound and irritants, BK and other endogenous proalgesic agents.   

 

TRPA1 and thermosensation. The molecular basis of thermosensation has made 

great strides with the discovery that several members belonging to the TRP cation 

channel family exhibit highly temperature-sensitive gating and are expressed in cells of 

the sensory system. Among the TRP channels expressed in sensory neurons, TRPM8, 

activated by cold temperatures and cooling compounds, such as menthol, plays a major 

role in cold sensing [173]. TRPA1 was originally reported to be a potential candidate to 

mediate detection of noxious cold, based on its expression in nociceptive neurons, and 

on the finding that heterologously expressed TRPA1 in CHO cells is activated by cold 

temperatures with a lower temperature threshold for activation than TRPM8 [143]. 

Whether or not TRPA1 is a noxious cold sensor, via either direct or indirect mechanism, 

is not well explained. On one hand, some studies have shown that when TRPA1 is 

expressed in heterologous systems, human embryonic kidney (HEK) cells or chinese 

hamster ovary (CHO) cells, it is activated by cold temperatures, ~17 °C and below that 

are in the noxious range [143, 174, 175]. Alternatively, other studies have shown that 

exogenously expressed TRPA1 is not activated by noxious cold [142, 145, 176]. A 

more recently report suggests that cold-induced activation of TRPA1 in overexpression 

systems is an indirect effect caused by Ca2+ release from intracellular stores by a direct 

activation of the receptor, mediated by intracellular Ca2+, via an EF-hand domain in its 

N-terminus domain [159]. These contradictory findings appear to have been resolved by 

subsequent work, where TRPA1 null mice were still able to sense cold, but that also 

indicated that the behavioral response to noxious cold was significantly reduced in the 

absence of TRPA1 [177]. Furthermore, mice in which NaV1.8-expressing sensory 

neurons were eliminated by diphtheria toxin A exhibit a strongly reduced expression of 

TRPA1 in DRG neurons and lack TRPA1-mediated nociceptive responses to formalin 

and cold [178]. Thus, noxious cold sensing in vivo requires somatosensory neurons that 

express both NaV1.8 and TRPA1. 

TRPA1 and mechanotransduction. TRPA1 receptor has also been proposed to 

be involved in mechanotransduction adding further diversity to its potential 



Chapter I – Introduction 
 

32 
 

physiological roles. Mice with a deletion of the pore domain of TRPA1 exhibit 

decreased behavioral responses to intense mechanical force in the noxious range [179], 

although behavioral deficits to mechanical stimuli were not observed in a similar 

TRPA1 mutant mouse [180]. A small molecule inhibitor of TRPA1 reverses mechanical 

hyperalgesia induced by inflammation in mice [181]. No cellular studies have provided 

clear evidence that TRPA1 is directly gated by mechanical force, although a recent 

study shows that heterologously-expressed TRPA1 is activated by hypertonic saline, 

suggesting that TRPA1 is sensitive to osmotic stimuli [182]. However, it should be 

noted that the nature of osmotic stimuli and how it activates channels in a cell 

membrane may differ substantially from that of punctuate mechanical force applied to a 

localized region of the neuronal membrane.  

TRPA1 and chemical irritants. The TRPA1 channel is best characterized as a 

chemosensor activated in response to many chemical agents, a large number produced 

by plants or some others synthetic that cause neurogenic inflammation and pain. It has 

been established that TRPA1 acts as a detector of thiol-reactive electrophiles and 

oxidants in addition to non-electrophiles compounds as well as being indirectly 

regulated by G-protein coupled receptor signaling.  

Electrophilic activators. Electrophilic TRPA1 ligands of environmental-, 

dietary- or endogenous origin modify nucleophilic cysteine and lysine residue(s) in the 

N-terminus of the channel [183]. Allyl isothiocyanate (AITC) from mustard oil is one of 

the most efficient electrophilic activators of TRPA1 (Fig. I-7a). In human TRPA1, 

electrophilic agonists modify cysteines Cys619, Cys639 and Cys663 (and to a lesser 

extent K708) [184]. In the mouse TRPA1 homologue the most reactive cysteine 

residues are Cys415 and Cys422 and Cys622 [185]. Other electrophiles, such as methyl,  

isopropyl-, benzyl-, phenylethyl-isothiocyanate, cinnamaldehyde (in cinnamon), 

iodoacetamide, and 2-(trimethylammonium)ethyl methane-thiosulfonate bromide 

(MTSEA; used for cysteine scanning), are capable of reacting with cysteine residues 

and act as TRPA1 activators [93, 145] (Fig. I-7a).   

TRPA1 has been also recognized as the target of a series of endogenous α,β-

unsaturated aldehydes, which are produced by lipid peroxidation in response to 

oxydative stress at sites of inflammation and tissue injury [111, 180, 186] (Fig. I-7a). 

These aldehydes include 4-hydroxy-2-nonenal (HNE) which is produced by 

peroxidation of omega 6-polyunsaturated fatty acids, such as linoleic acid and 

arachidonic acid [187, 188] or 4-oxononenal [189] that has been reported to cause 
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nociceptive behavior via a selective action at TRPA1. 4-HNE is an α,β-unsaturated 

hydroxyalkenal which is produced in inflammed tissues during peroxidation of 

membrane phospholipids by ROS. It evokes release of SP and CGRP from nerve 

endings, causing extravasations of plasma proteins into the surrounding tissue. 4-HNE 

acts via covalent modification of the cysteine/lysine residues in the TRPA1 N-terminus 

[186].  

More recently, mediators of oxidative and nitrative stress have been identified as 

activators of the TRPA1 channel. These include the ROS hydrogen peroxide (H2O2) 

[175, 190, 191], superoxide (O2-), hypochlorite (ClO-) [191] and the reactive nitrative 

species (RNS) peroxynitrite (ONOO-) [175]. Also nitrooleic acid, a byproduct nitrative 

stress, is a TRPA1 activator [192]. It has been reported that ROS cause cysteine 

oxidation or disulfide formation, RNS, like nitric oxide (NO), mediate S-nitrosylation, 

and reactive carbonyl species (RCS), like electrophilic prostaglandins (PG) and α,β-

unsaturated aldehyde, alkylatively modify cysteine activating TRPA1. Cyclopentenone 

PGs have been reported to produce pain and neurogenic inflammation by TRPA1 

stimulation [193, 194]. Also the cyclopentenone isoprostane (IP), 8-iso-PGA2, which 

forms from E-isoprostane that does not require for its synthesis activation of 

cyclooxygenases, stimulates sensory nerve terminals by targeting TRPA1 [193]. 

Altogether these findings suggest that TRPA1 is an unspecific sensor for a plethora of 

stimuli (exogenous and metabolites generated by both oxidative and nitrative stress), 

that use the TRPA1 channel to alert of inflammation and tissue injury.  

Hydrogen sulfide (H2S) is a malodorous gas that functions as an endogenous 

gasotransmitter in humans and is involved in a wide variety of processes including 

nociceptive processes [195]. H2S evokes CGRP release from sensory neurons of 

isolated rat tracheae through TRPA1 activation. 

It has been reported that high concentrations of carbon dioxide (CO2) evoke a 

stinging sensation that depends on the activation TG nociceptors that express TRPA1 

and innervate the respiratory, nasal, and oral epithelia. CO2 diffuses into cells and 

produce intracellular acidification thereby gating TRPA1 [196]. Alkaline pH also causes 

pain via activation of TRPA1. Two N-terminal residues, Cys422 and Cys622, are 

responsible for high pH perception. Pain behaviors evoked by intraplantar injection of 

ammonium chloride are completely reduced in Trpa1-/- mice [197]. 

N-acetyl-p-benzoquinoneimine (NAPQI), the metabolite of N-Acetyl-p-

aminophenol (paracetamol, acetaminophen, APAP), is another example of TRPA1 
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electophilic agonist. NAPQI, like other TRPA1 activators, stimulates TRPA1 causing 

airway neurogenic inflammation. This inflammatory responses evoked by NAPQI can 

be abolished by TRPA1 antagonists [198].  

The monoterpene ketone umbellulone, the major volatile constituent of the 

leaves of Umbellularia californica, known as the “headache tree” because the inhalation 

of its vapours can cause severe headache crises, has been shown to activate TRPA1 

channel [199]. It has been demonstrated that umbellulone acts on TRPA1 as a partial 

electrophilic agonist [200]. 

Although it is now generally accepted that TRPA1 is activated through covalent 

modification of specific cysteines, the precise mechanism and the chemistry of this 

covalent modification with unsaturated carbonyl-containing compounds is unclear. 

Channel activation occurs with chemicals that react with cysteine residues via alkylative 

conjugate addition [201], but unravelling of the molecular details underlying activation 

and deactivation of TRPA1 via covalent modifications still remains an exciting 

challenge. TRPA1 electrophilic agonists, that are structurally diverse, are unified in 

their ability to form covalent adduct with thiol group, a moiety that confers them the 

ability to activate TRPA1 receptor. A variety of known TRPA1 agonists, including 

acrolein and other α,β-unsaturated aldehydes, possess an electrophilic carbon or sulphur 

atom that is subject to nucleophilic attack (Michael addition) [202] by cysteine, lysine 

or histidine of TRPA1. Indeed, mutagenesis studies have clarified that such reactivity 

promotes channel gating through covalent modification of residues within the 

cytoplasmic N-terminal domain of the channel [184-186]. In human TRPA1 crucial 

residues for channel activation by AITC include a cluster of cysteines (Cys619, Cys639 

and Cys663) and Lys708 [184]. The ability to form Michael adducts with cysteine is 

virtually shared by all α,β-unsaturated aldehydes, including the highly electrophilic 

compound, 4-oxononenal [189]. 

Non-electrophilic activators. Beside the huge number of electrophilic activators, 

TRPA1 can also be modulated by other compounds that are unlikely to induce covalent 

modifications of the channel proteins. Anesthetic agents can induce an activation and 

sensitization of TRPA1. Propofol (2,6-diisopropylphenol), a commonly used 

intravenous anesthetic, elicits intense pain upon injection via TRPA1 activation [203]. 

Lidocaine, inhibits cellular excitability by blocking voltage-gated Na+ channels, but can 

activate TRPA1 in a concentration-dependent manner. Lidocaine can also act as an 

inhibitor of TRPA1, an effect more evident with rodent than human TRPA1. This 
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species-specific difference is probably linked to the pore region (S5 and S6) [204]. 

Fenamate nonsteroidal anti-inflammatory drugs (NSAIDs) can also activate and 

sensitize TRPA1. Several non-electrophilic NSAIDs, including flufenamic, niflumic, 

and mefenamic acid, as well as flurbiprofen, ketoprofen, diclofenac, and indomethacin, 

reversibly activate TRPA1. 

TRPA1 is a non-covalent sensor of polyunsaturated fatty acids (PUFAs), which 

contain at least 18 carbon atoms and three unsaturated bonds. Those PUFAs activate 

TRPA1 to excite primary sensory neurons and enteroendocrine cells. They act non-

covalently binding domains located in the N-terminus [205]. 

Many non-covalent modulators of TRPA1 function in a bimodal fashion, i.e. 

they activate the channel at low concentration, and inhibit it at higher concentrations. 

Menthol from Mentha piperita, a known TRPM8 activator, is also a bimodal modulator 

of TRPA1. Low-micromolar concentrations of menthol cause channel activation, 

whereas higher concentrations lead to a reversible channel inactivation [206]. This is 

only true for human TRPA1, indeed mouse TRPA1 is blocked by menthol. Similarly to 

menthol, the super-cooling synthetic compound icilin activates not only TRPM8 as but 

also TRPA1 [207, 208]. Another non-electophilic TRPA1 agonist is caffeine from 

Coffea Arabica. This compound activates mouse TRPA1 but suppresses its human 

version. Similarly, nicotine from Nicotinia tabacum or its analogue, anabasin from 

Nicotiana glauca, are bimodal TRPA1 modulators. Topical application of nicotine 

causes irritation of the mucosa and skin due to TRPA1 activation. In contrast, higher 

concentrations inhibit the channel. 

Zinc, an essential biological trace element, is required for the structure or 

function of over 300 proteins. High concentrations of zinc have cytotoxic effects and 

can cause pain and inflammation. Surprisingly, zinc activates TRPA1 through a unique 

mechanism that requires zinc influx through TRPA1 channels and subsequent activation 

via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to 

intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its 

sensitivity [209]. 

TRPA1 is also activated by ∆9THC, the psychoactive compound in marijuana. 

Also two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene 

(CBC), are known to modulate TRPA1. 

In addition to being directly gated by physical or chemical stimuli, many TRP 

channels are activated or modulated downstream of neurotransmitter or growth-factor 
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receptors that stimulate phospholipase C (PLC) (Fig. I-7b). In vitro studies have shown 

that TRPA1 can be activated in this manner, raising the possibility that it functions as a 

‘‘receptor-operated’’ channel that depolarizes nociceptors in response to proalgesic or 

proinflammatory agents that activate PLC [174]. One such agent is BK, a proalgesic and 

proinflammatory nonapeptide produced endogenously in response to tissue injury, 

inflammation, or ischemia, which binds to PLC coupled BK receptors (BK2) on sensory 

neurons [210]. BK elicits acute pain through immediate excitation of nociceptors, 

followed by a longer lasting sensitization to thermal and mechanical stimuli [211]. 

Indeed, mice with a mutation in TRPA1 did not develop hyperalgesia after exposure to 

BK [180]. More interestingly, there are many other proalgesic and proinflammatory 

agents that activate the PLC pathway, suggesting that may exert they action via TRPA1 

receptor [145]. Finally, TRPA1 appears to be sensitized by NGF and PAR2 [212, 213], 

both of which are known to play a role in infiammatory pain. 
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Figure I-7. TRPA1, is a detector of chemical irritants. a A variety of compounds activate TRPA1, 
including exogenous irritants and endogenous products of tissue injury and inflammation. The agents 
shown here include isothiocyanates and α,β-unsaturated aldehydes, both of which exhibit strong 
electrophilic reactivity as the functional attribute underlying their ability to activate TRPA1 channels. b In 
addition to direct activation by electrophilic irritants, TRPA1 functions as a receptor-operated channel 
that can be activated or sensitized by G protein-coupled signaling pathways. Two such mechanisms have 
been proposed: (i) A GPCR, such as the B2R bradykinin receptor, activates phospholipase C (PLC) to 
mobilize release of intracellular calcium. Increased cytoplasmic calcium then activates TRPA1. (ii) 
Activation of a GPCR, such as the MrgprA3 puritogen receptor, promotes the release of free Gβγ, which 
serves as the downstream cytoplasmic activator of TRPA1. In addition to these proposed mechanisms, 
TRPA1 can be activated or sensitized by other events that enhance cytoplasmic calcium levels, such as 
activation of TRPV1 or other calcium-permeable channels. (Adapted from [295]). 

 

 

 

 

 



Chapter I – Introduction 
 

38 
 

 

1.4.3 Pharmacology of TRPA1 receptor 

 

In addition to various pain-producing chemicals described as TRPA1 agonists, some 

molecules have been studied as TRPA1 receptor antagonist: ruthenium red, gentamicin, 

gadolinium and amiloride. Ruthenium red and gentamicin are very similar, both of them 

are pore blockers that plug into the channel pore, and differ from amiloride and 

gadolinium, that block by interacting with an extracellular site of the channel that is 

outside of the electric field of the pore [142]. However, each of these antagonists also 

blocks other type of TRP channels, as well as other ion channels.  More recently has 

been identified a TRPA1 selective antagonist, HC-030031 [214]. The first 

pharmacological evidence implicating the TRPA1 receptor in mediating pain under 

inflammatory conditions came from the discovery of this new molecule. Indeed, HC-

030031 has been an instrumental to determine the role of the channel in the first and 

second phase of the nociceptive and inflammatory response to formaldehyde [214]. 

Further studies showed that HC-030031 reduced somatic and visceral nociceptive 

response [215] or BK-induced mechanical hyperalgesia [181]. Along with TRPA1-

decficient mice, this antagonist is currently being used to identify novel roles of TRPA1 

in health and disease. Additional TRPA1 antagonists have been more recently 

identified, including AP18 [181] and Chembridge5861528 [216]. AP18 is a small 

molecule that blocks TRPA1 through a competitive mechanism displacing the receptor 

agonists from the binding site. The in vivo analgesic activity of AP18 was tested in 

well-established animal models of inflammation, such as the complete Freund adjuvant 

(CFA) and the BK-induced mechanical hyperalgesia [181]. Moreover, AP18 is a 

selective TRPA1 antagonist that inhibits both the mouse and human receptor. 

Chembridge5861528 is an analogue of HC-030031 and has been shown to display 

mechanical anti-hyperalgesic activity in vivo in diabetic mice [216].   
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1.5 Role of TRP channels in chemotherapy-induced peripheral 

neuropathy 

  

Pharmacological and genetic studies using animal models of CIPN induced by 

different chemotherapeutic agents indicate that the mechanisms underlying mechanical 

and thermal hyperalgesia behaviours are multiple. Notwithstanding, recent evidence has 

emphasized a primary role for several members of the TRP family, in particular 

TRPV1, TRPV4, TRPA1 and TRPM8 [217-219]. 

 

1.5.1 TRPV1 in chemotherapy-induced peripheral neuropathy 

 

The invertebrate relatives of TRPV1 are essential to sensory transduction 

(phototransduction, thermosensation, mechanosensation, osmosensation) [92], while in 

mammals TRPV1 seems to contribute to hypersensitivity to thermal, chemical and 

mechanical stimuli associated with peripheral inflammation and neuronal damage. 

Among various adverse reactions, heat hypersensitivity has been often reported by 

patients treated with platinum-based anticancer drugs [220]. Thus, the hypothesis that 

TRPV1 may play a role in such reactions has been advanced. Treatment with cisplatin 

has been found to produce up-regulation of TRPV1 mRNA in cultured DRG neurons 

[221]. A similar up-regulation occurs also after in vivo treatment with cisplatin, 

although cisplatin-treated mice showed no change in the proportion of TRPV1-

immunopositive trigeminal ganglia neurons [222]. TRPV1 up-regulation was associated 

with increased nociceptors responsiveness and contributed to cisplatin-evoked thermal, 

but not mechanical hyperalgesia in mice [222]. In addition, acute exposure to oxaliplatin 

induces TRPV1 sensitization, which may cause neuronal damage [221]. The mechanism 

through which oxaliplatin/cisplatin-induced neuropathy results in TRPV1 sensitization 

is unclear. However, enhanced TRPV1 protein trafficking, consequent of mRNA 

overexpression, to peripheral nerve processes, or channel phosphorylation by different 

kinases, leading to enhanced TRPV1 sensitivity, have been proposed as a general 

mechanism contributing to pathological pain states [223]. 
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1.5.2 TRPV4 in chemotherapy-induced peripheral neuropathy 

 

Recent evidence has proposed a role for TRPV4 in mechanical allodynia in 

rodent models of CIPN [224]. In models of painful peripheral neuropathy induced by 

chemotherapy, alcoholism, diabetes, and human virus/acquired immunodeficiency 

syndrome therapy, mechanical hyperalgesia was markedly reduced by spinal intrathecal 

administration of oligodeoxynucleotides antisense to TRPV4 [218]. TRPV4-decificient 

mice showed reduced mechanical hyperalgesia induced by anticancer drugs, paclitaxel 

and vincristine, or in a diabetic model [218]. TRPV4 plays a major role in mechanical 

hyperalgesia and it also contributes to enhanced nociception to hypo-osmotic stimuli in 

paclitaxel-treated rats. TRPV4-mediated hypersensitivity by paclitaxel is not 

attributable to increased mRNA levels, but rather it may be related to a specific 

interaction with second messenger pathways [224]. Similarly to paclitaxel, treatment 

with vincristine has been reported to produce mechanical allodynia in rodents through a 

TRPV4-dependent mechanism [218]. Authors suggest that TRPV4 is not directly 

activated by these agents, but plays a role in mechanotransduction, as a component of a 

molecular complex that functions only in presence of inflammation or nerve injury 

phenomena. This complex pathway results in the activation of a signaling cascade 

initiated by integrins that, via Src tyrosine kinase, induces membrane insertion and/or 

activation of the TRPV4 channel in sensory neurons. Tyrosine kinases are known to 

regulate trafficking of ion channels and receptors. Recent reports demonstrate that Src 

tyrosine kinases participate in the modulation of TRP channel function [137, 225, 226], 

and this mechanism could be responsible for TRPV4 sensitization. In paclitaxel-induced 

peripheral neuropathy TRPV4-mediated mechanical hyperalgesia results essentially 

dependent on integrin/Src tyrosine kinase signaling [224]. Another recent paper 

demonstrates that paclitaxel may release mast cell tryptase, which activate PAR2 

receptor expressed in primary sensory neurons [227]. PAR2 activation and the 

downstream enzymes, PKA, PKCε and PLC, cause sensitization of TRPV1, TRPV4, 

and TRPA1, thereby leading to mechanical allodynia and thermal hyperalgesia. 

Targeting the signaling pathways of PAR2 seems to effectively attenuate paclitaxel-

induced mechanical, heat, or cold hypersensitivity [227]. The contribution of TRPV4 to 

CIPN, as more in general to models of inflammatory pain, corroborates the hypothesis 

that TRPV4 plays a role in sensitization of nociceptors and makes it a novel target for 

the development of an innovative class of analgesics. 
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1.5.3 TRPM8 in chemotherapy-induced peripheral neuropathy 

 

TRPM8 is expressed by a non-peptidergic subpopulation of nociceptors and 

responds to mild and noxious cold (<25°C) temperatures. TRPM8, together with 

TRPA1, is involved in the induction of hypersensitivity to cold stimuli [207]. An 

increase in TRPM8 receptor expression occurs in some sensory neurons after nerve 

injury [228], possibly contributing to enhanced cooling sensation. Similarly, oxaliplatin 

increased the expression of TRPM8 mRNA in mouse DRG when cold hypersensitivity 

peaked, suggesting that cold hypersensitivity is at least partly due to the increased 

expression of TRPM8 in primary sensory neurons [62]. In addition, wet-dog shake and 

jumping behaviors elicited by icilin, a non-selective TRPM8 activator, were 

significantly increased in mice treated with oxaliplatin [62]. Furthermore, oxaliplatin 

seems to affect TRPA1 rather than TRPM8, because oxaliplatin-treatment induces a 

sensitization to icilin, which activates TRPA1 expressing neurons, but not the response 

to a TRPM8 specific ligand, WS12 [221]. A recent paper has reported a possible 

contribution of TRPM8 expressing fibres to cold hypersensitivity induced by oxaliplatin 

[229]. 

Paradoxically, a case report indicates that topical menthol application has an 

analgesic effect in CIPN induced by bortezomib [230]. In addition, topical application 

of menthol was able to significantly reverse CIPN induced by carboplatin and its 

prolonged application during chemotherapy appears to prevent neuropathy worsening 

[231]. Thus, more basic and clinical investigations are required to identify and clarify 

the role of TRPM8 in CIPN. 

 

1.5.4 TRPA1 in chemotherapy-induced peripheral neuropathy 

 

Recently, our research group demonstrated that TRPA1 acts as a major player in 

models of CIPN [232]. By both genetic and pharmacological approaches, we showed 

that TRPA1 entirely mediates mechanical and cold hypersensitivity induced by 

oxaliplatin and cisplatin [232] in mice and rats. Our recent work (Nassini, 2011), 

however, indicates that oxaliplatin does not directly gate TRPA1, as it does not cause 

any calcium response in primary culture of mouse or rat DRG neurons. However, CHO 

cells transfected with the cDNA codifying for the mouse TRPA1 channel respond, with 

a glutathione-sensitive intracellular calcium mobilization, upon challenge with 
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oxaliplatin, whereas untransfected CHO cells do not respond. Thus, we have proposed 

that calcium response by oxaliplatin requires that the cell expresses TRPA1 and 

generates sufficient oxidative stress. 

 

1.6 Aim of the study 

 

Peripheral neuropathy represents a common side effect of different 

chemotherapeutic treatments. Recent evidence advocates a primary role for members of 

the TRP channels family, expressed on nociceptive primary sensory neurons, in 

particular TRPV1 and TRPV4, TRPA1 and TRPM8 in painful side effects induced by 

different chemotherapeutic drugs [221, 222, 224, 218, 62, 232]. In particular, the 

TRPA1 member, originally cloned from human fetal lung fibroblasts [144], is a 

nonspecific calcium-permeable cationic channel expressed in primary sensory neurons 

of the dorsal root, trigeminal and vagal ganglia, where it co-localizes with the TRPV1 

channel. Whereas the role of TRPA1 in mechano- and cold-transduction remains to be 

better clarified, it has been extensively demonstrated that TRPA1 plays a key role in the 

detection of chemical irritants. In fact, TRPA1 is activated by a wide range of pungent 

and irritant compounds [174]. Compelling evidence indicates that TRPA1 can be 

activated by endogenous products generated at sites of inflammation and tissue injury 

from metabolism and oxidative stress-derived substances. More importantly for the 

main aim of this thesis, recently it has been demonstrated that TRPA1 acts as a major 

player in mechanical and cold hypersensitivity induced by the platinum-based 

chemotherapeutic drugs, oxaliplatin and cisplatin [232].  

CIPN is a common major dose-limiting side effect of many chemotherapeutic 

treatments, including the taxane derivative PXL [25], and the first-in-class proteasome 

inhibitor BTZ [31, 32]. Among CIPN sensory symptoms, neuropathic pain is prominent 

and important for many patients, and its severity is often dose-limiting. Inflammation 

[74, 75], oxidative stress [49], loss of intraepidermal nerve fibers, modifications of both 

mitochondria and various ion channels function [51, 52, 64] are only some of the 

several mechanisms mentioned as possibly participating in CIPN development and 

progression. Following the evidence that TRPA1 acts as a major oxidant sensor [191] 

and that the chemotherapeutic treatment is associated with the generation of oxidative 

stress and its by-products, we hypothesized that chemotherapeutic drugs could directly 
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or indirectly target the TRPA1 channels through the generation of oxidative stress 

inducing painful states.  

Pain symptoms are also associated with the treatment with the third-generation 

AIs, that include the triazoles anastrozole (Arimidex) and letrozole (Femara), and the 

steroidal agent exemestane (Aromasin), currently recommended for adjuvant endocrine 

treatment as primary, sequential, or extended therapy with tamoxifen, for 

postmenopausal women diagnosed with estrogen receptor-positive breast cancer [36, 

37, 38]. Among these, the AI-associated musculoskeletal symptoms (AIMSS) are 

characterized by morning stiffness and pain of the hands, knees, hips, lower back, and 

shoulders [41, 42]. In addition to musculoskeletal pain, pain symptoms associated with 

AIs have recently been more accurately described with the inclusion of neuropathic, 

diffused, and mixed pain [43]. The chemical structure of exemestane includes a system 

of highly electrophilic conjugated Michael acceptor groups, which might react with the 

thiol groups of reactive cysteine residues [277]. Michael addition reaction with specific 

cysteine residues is a major mechanism that results in TRPA1 activation by a large 

variety of electrophilic compounds [186, 184, 185]. In addition, aliphatic and aromatic 

nitriles can react with cysteine to form thiazoline derivatives and accordingly the tear 

gas 2-chlorobenzylidene malononitrile (CS) has been identified as a TRPA1 agonist 

[280]. We noticed that both letrozole and anastrozole possess nitrile moieties. Thus, we 

hypothesized that exemestane, letrozole and anastrozole may produce neurogenic 

inflammation, nociception and hyperalgesia by targeting TRPA1. 

The work described in this thesis is aimed at defining the role of TRPA1 in 

several painful states induced by the chemotherapeutic agents PXL, BTZ and third-

generation AIs. To this purpose both in vitro and in vivo assays have been used. 

Calcium imaging experiments were performed in order to explore whether PXL, BTZ 

and third-generation AIs were able to directly gate the TRPA1 channel evoking painful 

states. Furthermore, several animal models of chemotherapy-evoked painful side effects 

were developed and the involvement of TRPA1 was investigated through the use of 

Trpa1+/+ and Trpa1-/- mice or via the administration of TRPA1 selective antagonist. 
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Chapter II - TRPA1 and TRPV4 mediate 

paclitaxel-induced peripheral neuropathy in 

mice via a glutathione-sensitive mechanism 

 

 

2.1 Materials and methods  

 

Animals. Animal experiments were carried out according to Italian legislation 

(DL 116/92) and European Communities Council Directive (86/609/EEC). Studies were 

conducted under the permit (number 143/2008-B and 204/2012-B, University of 

Florence, Florence, Italy) approved by the Italian National Committee for Animal 

Research. C57BL/6 mice (male, 25-30 g; Harlan Laboratories), wild-type (Trpa1+/+), or 

TRPA1-deficient mice (Trpa1-/-; 25-30 g; Jackson Laboratories) were used. Animals 

were housed in a temperature- and humidity-controlled vivarium (12-hour dark/light 

cycle, free access to food and water). Behavioral experiments were done in a quiet, 

temperature controlled room (20-22°C) between 10 a.m. and 4 p.m., and were 

conducted by an operator blinded to the genotype and the status of drug treatment. 

Animals were sacrificed with a high dose of intraperitoneal (i.p.) sodium pentobarbital 

(200 mg/kg). 

 

Paclitaxel-induced painful neuropathy models and drugs administration. 

After habituation and baseline measurements of pain sensitivity, animals were 

randomized into treatment groups. C57BL/6, Trpa1+/+, or Trpa1-/- mice were treated 

with a single i.p. administration of paclitaxel (6 mg/kg) or its vehicle (ethanol and 

Cremophore EL, 50:50, v/v) [218]. No weight loss was observed in mice throughout the 

duration of the experiments after paclitaxel treatment. Paclitaxel was formulated at a 

concentration of 1 mg/ml and was first dissolved in a vehicle containing absolute 

ethanol and Cremophore EL (50:50, v/v) because of its poor aqueous solubility. Final 

solution (10% of this stock solution) was made in sterile saline (NaCl 0.9%) at the time 
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of injection, and the volume was adjusted to 10 ml/kg for the i.p. administration [224]. 

Intragastric (i.g.) HC-030031 (300 mg/kg) or its vehicle (0.5% carboxymethyl cellulose, 

CMC), and HC-067047 (10 mg/kg, i.p.) or its vehicle (2.5% DMSO), were administered 

at day 8 after the administration of paclitaxel or its vehicle. In another experimental 

setting, HC-030031 (300 mg/kg, i.g.) or its vehicle (0.5% CMC), and HC-067047 (10 

mg/kg, i.p.) or its vehicle (2.5% DMSO), were coadministered at day 8 after the 

administration of paclitaxel or its vehicle. 

 

Tactile allodynia (Von Frey hair test). Paclitaxel-induced mechanical 

allodynia was measured in C57BL/6, Trpa1+/+, or Trpa1-/- mice by using the up-and- 

down paradigm [233]. Mechanical nociceptive threshold was determined before (basal 

level threshold) and after drug administration. The effect of paclitaxel was tested for 20 

days after treatment. Data are expressed as the mean threshold values (in grams). 

 

Cold stimulation. Cold allodynia was assessed in C57BL/6, Trpa1+/+, or      

Trpa1-/- by measuring the acute nocifensive responses to the acetone-evoked evaporative 

cooling as previously described [62]. Briefly, the animal was held in the hand and a 

droplet (50 µl) of acetone, formed on the flat-tip needle of a syringe, was gently touched 

to the plantar surface of the hind paw. The mouse was immediately put in a cage with a 

transparent floor, and the time spent in elevation and licking of the plantar region over a 

60-s period was measured. Acetone was applied three times at a 10-15-min interval, and 

the average of elevation/licking time was calculated. Cold allodynia was measured in 

mice before (baseline) and for 20 days after drug treatment. 

 

Isolation of primary sensory neurons. Primary dorsal root ganglia (DRG) from 

Trpa1+/+ or Trpa1-/- adult mice were cultured as previously described [193]. Briefly, 

lumbosacral (L5–S2) ganglia were bilaterally excised under a dissection microscope. 

Ganglia were digested using 2 mg/ml of collagenase type 1A and 1 mg/ml of papain in 

HBSS (25 min, 37°C). Neurons were pelleted and resuspended in Ham’s-F12 

containing 10% FBS, 100 U/ml of penicillin, 0.1 mg/ml of streptomycin, and 2 mM 

glutamine, dissociated by gentle trituration, and plated on glass coverslips coated with 

poly-L-lysine (8.3 µM) and laminin (5 µM). Neurons were cultured for 3-4 days.  
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Calcium imaging experiments. Cells were incubated with 5 µM Fura-2 AM 

ester for 30 min at 37°C. Intracellular calcium mobilization was measured on Nikon 

Eclipse TE2000U microscope. Fluorescence was measured during excitation at 340 and 

380 nm for 5 min before and 10 min after stimulus administration, and after correction 

for the individual background fluorescence signals, the ratio of the fluorescence at both 

excitation wavelengths (F340/F380) was monitored. Experiments were performed using a 

buffer solution containing (in millimolars): 150 NaCl, 6 KCl, 1 MgCl2, 1.5 CaCl2, 10 

glucose, and 10 HEPES and titrated to pH 7.4 with 1 N NaOH. Cells were exposed to 

paclitaxel (10 and 50 µM), allyl isothiocyanate (AITC, 30 µM), or their respective 

vehicles (0.1%, 0.5%, and 0.03% DMSO). DRGs were challenged with capsaicin (0.1 

µM) and by KCl (50 mM) to identify nociceptive neurons and at the end of each 

experiment with ionomycin (5 µM). 

 

Calcitonin gene-related peptide release. Slices (0.4 mm) of esophagus taken 

from C57/BL6, Trpa1+/+, or Trpa1-/- were superfused with paclitaxel (10-30-50 µM), or 

the vehicle (2.5% DMSO), dissolved in a modified Krebs solution at 37°C, and 

oxygenated with 95% O2 and 5% CO2, containing (in millimolars): 119 NaCl, 25 

NaHCO3, 1.2 KH2PO4, 1.5 MgSO4, 2.5 CaCl2, 4.7 KCl, 11D-glucose, 0.1% BSA, 

phosphoramidon (1 µM), and captopril (1 µM). Some tissues were preexposed to 

capsaicin (10 µM) for 20 min to desensitize TRPV1-expressing sensory nerve terminals. 

Some experiments were performed in a calcium-free medium, containing EDTA (1 

mM). Other experiments were performed in the presence of HC-030031 (30 µM) and 

HC-067047 (3 µM) or in the presence of the unsaturated aldehyde and ROS scavenger, 

glutathione monoethylester (GSH, 1 mM). Calcitonin gene-related peptide (CGRP) 

immunoreactivity (CGRP-IR) was assayed in 10-min fractions (two before, one during, 

and one after exposure to the stimulus) according to the methods previously reported 

[186]. The detection limit was 5 pg/ml. CGRP-IR release was calculated by subtracting 

the mean pre-stimulus value from those obtained during or after stimulation. Stimuli did 

not cross react with CGRP antiserum. 

 

Reagents. If not otherwise indicated, all reagents were from Sigma-Aldrich 

(Milan, Italy). HC-030031 was synthesized as previously described [234]. HC-067047 

was from Tocris Bioscience (Bristol, United Kingdom), and paclitaxel was from Ascent 

Scientific Ltd (Bristol, UK). 
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Statistical analysis. Data are presented as mean ± SEM. Statistical analyses 

were performed by the unpaired two-tailed Student’s t test for comparisons between two 

groups, the one-way analysis of variance, followed by the post-hoc Bonferroni’s test for 

comparisons of multiple groups. p<0.05 was considered statistically significant.
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2.2 Results  

 

2.2.1 TRPA1 and TRPV4 receptors activation contributes to the mechanical 

allodynia evoked by paclitaxel in mice 

 

We first investigated the involvement of TRPA1 in the mechanical allodynia 

induced by paclitaxel in mice. As previously reported [218], administration of a single 

dose of paclitaxel (6 mg/kg, i.p.) produced a delayed reduction in mechanical 

nociceptive threshold as assayed by the Von Frey hair test in C57BL/6 mice. Reduction 

from baseline value was significant at day 2, peaked at day 8, and returned to baseline 

about 20 days after paclitaxel administration (Fig. II-1a). A role for the TRPV4 channel 

in paclitaxel induced sensory hypersensitivity has been previously reported by using 

TRPV4 knockout mice and antisense mediated TRPV4 knockdown [139, 218]. Here we 

confirm that administration of the selective TRPV4 antagonist, HC-067047 (10 mg/kg, 

i.p.) [235], 8 days after paclitaxel injection partially reverted paclitaxel-evoked 

mechanical allodynia. In agreement with previous reports in a different pain model 

[235], maximum inhibition by HC-067047 was evident 30 min post dosing. HC-067047 

did not affect the baseline threshold for mechanical stimulation in naïve animals (Fig. 

II-1c). In the present study, we also investigated TRPA1 contribution to mechanical 

allodynia induced by paclitaxel. Eight days after paclitaxel administration, systemic 

administration of the TRPA1 selective antagonist, HC-030031 (300 mg/kg, i.g.) [214], 

reverted partially mechanical allodynia. In keeping with previous data obtained in 

different models of hyperalgesia [236], the effect of HC-030031 was evident 60 min 

post dosing. HC-030031 did not affect the threshold in mechanical allodynia in naïve 

animals (Fig. II-1b). Finally, we found that treatment with a combination of the TRPA1 

antagonist, HC-030031 (300 mg/kg, i.g.), and the TRPV4 antagonist, HC-067047 (10 

mg/kg, i.p.), 8 days after paclitaxel injection completely reverted paclitaxel-evoked 

mechanical allodynia (Fig. II-1d).  

In another series of experiments, we treated Trpa1+/+ and Trpa1−/− mice 

following the same protocol used in C57BL/6 mice (one single dose of paclitaxel, 6 

mg/kg, i.p.). In Trpa1+/+ mice, the reduction in mechanical nociceptive threshold from 

baseline value was already significant at day 2, peaked at day 8, and returned to baseline 

about 20 days after paclitaxel administration. Trpa1−/− mice treated with paclitaxel 

developed a similar, although less pronounced, mechanical allodynia than that observed 
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in Trpa1+/+ mice. In particular, at days 7, 8, and 9 after paclitaxel administration, the 

threshold in the mechanical nociceptive response was significantly reduced in Trpa1+/+ 

compared to Trpa1−/− mice (Fig. II-1e). To further investigate the relative contribution 

of TRPV4 and TRPA1 in mechanical allodynia induced by paclitaxel, the effect of HC-

067047 was studied in Trpa1−/− mice at day 8 after drug injection. Thirty minutes after 

treatment with HC-067047 (10 mg/kg, i.p.), mechanical allodynia induced by paclitaxel 

was completely reverted (Fig. II-1f). Thus, present pharmacological and genetics data 

indicate that, in addition to TRPV4 [218], TRPA1 contributes to paclitaxel-evoked 

mechanical allodynia. 
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Figure II-1 Paclitaxel induces mechanical allodynia via TRPA1 and TRPV4 activation in mice. (a) 
The administration of a single dose of paclitaxel (PXL; 6 mg/kg, i.p.) in C57BL/6 mice induces a time-
dependent reduction in mechanical nociceptive threshold (Von Frey test), with a maximum effect at day 
(d) 8 after PXL administration. At day 8 after PXL administration, treatment with TRPA1 receptor 
antagonist, HC-030031 (TRPA1RA; 300 mg/kg i.g), significantly reduces mechanical allodynia 60 min 
post dosing (b). A similar significant reduction in mechanical allodynia is visible after treatment with the 
TRPV4 receptor antagonist, HC-067047 (TRPV4RA; 10 mg/kg, i.p.), 30 min post dosing (c). At day 8 
after PXL, treatment with a combination of TRPA1 and TRPV4 receptor antagonists HC-030031 and HC-
067047 (TRPA1RA+TRPV4RA) completely reverses the mechanical allodynia at the time of the 
maximum effect of inhibition for each antagonist (post-treatment; 60 and 30 min post HC-030031 and 
HC-067047 administration, respectively) (d). The administration of the same dose of PXL (6 mg/kg, i.p.) 
induces a time-dependent reduction in mechanical nociceptive threshold Trpa1+/+ mice (e). The 
development of mechanical allodynia observed in Trpa1+/+ mice after PXL treatment is not completely 
absent in Trpa1−/− mice. A significant difference in the reduction of mechanical nociceptive threshold 
between Trpa1+/+ and Trpa1−/ −mice is visible at days 7, 8, and 9 after PXL treatment. At day 8 after PXL 
administration, treatment with the TRPV4 antagonist HC-067047 (TRPV4RA; 10 mg/kg, i.p.) 
significantly reduces mechanical allodynia developed by Trpa1−/− mice after PXL treatment (f). Values 
are mean ± SEM of n=8-10mice. #p<0.05 vs. VehPXL in a; Student’st test; *p<0.05 vs. VehPXL-
VehTRPA1RA and VehPXL-TRPA1RA in b, or VehPXL-VehTRPV4RA and VehPXLTRPV4RA in c or 
VehPXL-VehTRPA1 + TRPV4RA and VehPXLTRPA1RA + TRPV4RA in d or VehPXL-Trpa1+/+ and 
Veh PXLTrpa1−/− in e or VehPXL-Veh TRPV4RA and VehPXL-TRPV4RA in f; §p<0.05 vs. PXL-Veh 
TRPA1RA in b, or PXL-VehTRPV4RA in c and f, or PXL-Veh TRPA1RA + TRPV4RA in d or PXL 
Trpa1−/− in e; oneway ANOVA and Bonferroni’s test. BL baseline withdrawal threshold. 
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2.2.2 TRPA1 activation mediates the paclitaxel-induced cold hypersensitivity in 

mice 

 

Next, by using the same treatment protocol, we addressed whether paclitaxel 

produced cold hypersensitivity by assaying the time spent licking the hind paw 

following acetone application for cooling stimulation, and the relative contribution of 

TRPA1 and TRPV4 activation in this response. A single dose of paclitaxel (6 mg/kg, 

i.p.) significantly increased the behavioral responses evoked following acetone 

application for cooling stimulation in C57BL/6 mice from day 4 to day 12 after 

paclitaxel administration (Fig. II-2a). Peak increase was seen at day 8 (Fig. II-2a). This 

effect of paclitaxel was completely reverted by treatment with HC-030031 (300 mg/kg, 

i.g.), 60 min post dosing. It should be underlined that time course of inhibition by HC-

030031 of either mechanical or cold hypersensitivity was similar. HC-030031 did not 

affect cold sensitivity in naïve animals (Fig. II-2b). Treatment with HC-067047 (10 

mg/kg, i.p.) 8 days after paclitaxel injection did not affect the cold allodynia induced by 

the drug (Fig. II-2c). Like C57BL/6 mice, Trpa1+/+ mice treated with paclitaxel 

developed a cold hypersensitivity that started at day 2, peaked at day 8, and returned to 

baseline 18 days after paclitaxel administration (Fig. II-2d). The increased response to 

the cold stimulus observed in Trpa1+/+mice was completely absent in Trpa1−/− mice, 

which responded to the stimulus in a manner superimposable to vehicle-treated animals. 

Pharmacological and genetic findings indicate that TRPA1, but not TRPV4, contributes 

to paclitaxel-evoked cold allodynia.  
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Figure II-2 Paclitaxel-induced cold hypersensitivity is mediated by TRPA1 activation in mice. (a) 
The administration of paclitaxel (PXL; 6 mg/kg, i.p.) induces in C57BL/6 mice a time-dependent increase 
in cold hypersensitivity (acetone test) with maximum effect at day (d) 8 after PXL administration. At day 
8 after PXL treatment, TRPA1 receptor antagonist HC-030031 (TRPA1 RA; 300 mg/kg, i.g.) completely 
reverses the cold allodynia 60 min post dosing (b). Treatment with the TRPV4 receptor antagonist HC-
067047 (TRPV4 RA; 10 mg/kg, i.p.) does not affect the cold allodynia induced by PXL (c). The 
development of cold allodynia observed in Trpa1+/+ mice after PXL (6 mg/kg, i.p.) treatment is 
completely absent in Trpa1−/− mice (d). Values are mean ± SEM of n=8–10 mice. #p<0.05 vs. Veh PXL 
in a; Student’st test; *p<0.05 vs. VehPXLVehTRPA1RA and VehPXL-RPA1RA in b, or VehPXL-
VehTRPV4RA and VehPXL-TRPV4RA in c or VehPXL- Trpa1+/+ in d; §p<0.05 vs. PXL-
VehTRPA1RA in b or PXL- Trpa1−/− in e; one-way ANOVA and Bonferroni’s test. BL baseline 
withdrawal threshold. 

 

2.2.3 Paclitaxel does not directly activate TRPA1 or TRPV4 in dorsal root 

ganglion neurons but releases CGRP from peripheral nerve endings via 

glutathione-sensitive mechanism  

 

Exposure to AITC (30 µM) of mouse DRG evoked a calcium response in 

neurons obtained from Trpa1+/+ mice (24 cells of the 48 capsaicin (0.1 µM) sensitive 

neurons responded to AITC), an effect that was completely absent in DRG neurons 

taken from Trpa1−/− mice (0 cells of the 52 responding to capsaicin). Exposure to 

paclitaxel (50 µM) failed to evoke any significant calcium response in the 68 neurons 

tested, taken from Trpa1+/+.  
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TRPA1 activation of peripheral terminals of capsaicin-sensitive primary sensory 

neurons is associated with the release of sensory neuropeptides, including CGRP [6]. 

Several peripheral tissues, including the esophagus [114], have been previously used to 

study the release of sensory neuropeptides. Paclitaxel increased the basal outflow of 

CGRP from slices of C57BL/6 mouse esophagus in a concentration-dependent manner 

(Fig. II-3a), a response that was markedly reduced (>80% inhibition) by preexposure of 

the tissue to a high capsaicin concentration (a procedure known to cause desensitization 

of sensory nerve terminals) or by removal of extracellular calcium ions from the bath 

solution (Fig. II-3a). Thus, paclitaxel evokes a calcium-dependent neurosecretory 

process of CGRP from capsaicin-sensitive sensory neurons. Paclitaxel-evoked CGRP-

IR release was reduced, but not abolished, in the presence of each individual antagonist 

of TRPA1 (HC-030031) or TRPV4 (HC-067047) channel (Fig. II-3b). However, 

pretreatment of the tissue with GSH (1 mM) abated completely the paclitaxel-evoked 

increase in CGRP-IR outflow (Fig. II-3b).  

Exposure to paclitaxel increased the CGRP-IR outflow from slices of esophagus 

obtained from Trpa1+/+ mice. This response was significantly, but not completely, 

reduced in preparations obtained from Trpa1−/− mice (Fig. II-3c). To further investigate 

the contribution of the oxidative stress byproducts that eventually target TRPV4 

receptor, esophageal slices from Trpa1−/− mice were exposed to paclitaxel in the 

presence of GSH. Under these circumstances, GSH further decreased paclitaxel-evoked 

CGRP-IR release (Fig. II-3c). Thus, paclitaxel evokes a calcium-dependent 

neurosecretory process from capsaicin-sensitive neurons by a dual TRPA1 and TRPV4 

dependent mechanism and in a manner entirely sensitive to GSH. 
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Figure II-3. Paclitaxel releases calcitonin gene-related peptide (CGRP) from mouse esophagus 

peripheral nerve endings. a Paclitaxel (PXL) increases the outflow of CGRP immunoreactivity (CGRP-
IR) from slices of C57BL/6 mice esophagus in a concentration-dependent manner. CGRPIR release 
evoked by PXL is abolished by capsaicin desensitization (CPSdes) or calcium removal (Ca2+-free). b 
CGRP-IR evoked by PXL in peripheral tissues is significantly reduced by pretreatment with TRPA1, HC-
030031 (TRPA1 RA, 30 µM), or TRPV4, HC-067047 (TRPV4 RA, 3 µM) selective antagonists and by 
glutathione (GSH, 1 mM). c Paclitaxel increases the release of CGRP-IR from esophageal slices obtained 
from Trpa1+/+ mice, an effect significantly reduced in preparations taken from Trpa1−/− mice. 
Pretreatment of the esophageal slices taken from Trpa1−/− mice with GSH (1 mM) abated the CGRP-IR 
release induced by paclitaxel. Veh1 is the vehicle of PXL and Veh2 is a combination of vehicles of the 
various treatments. Values are mean ± SEM of n05 experiments. §p<0.05 vs. Veh1; *p<0.05 vs. Veh2 or 
PXL-Trpa1+/+, #p<0.05 vs. TRPA1 RA and TRPV4 RA or PXL-Trpa1−/− . 
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2.3 Discussion 

 

Sensory peripheral neuropathy (PN) affects a proportion of patients treated with 

the anticancer drug, paclitaxel, and this adverse reaction is often the cause for drug 

discontinuation [25]. The experimental counterpart of this clinical condition has been 

described in a large series of studies in rodents showing that paclitaxel causes 

mechanical and cold allodynia. Among the various mechanisms proposed as causing the 

paclitaxel sensory neuropathy, recent evidence proposed a role for the TRPV4 channel 

in mechanical allodynia in mouse and rat models [218, 224]. Here, we confirm in a 

mouse model that TRPV4 contributes to mechanical allodynia induced by paclitaxel. 

We also show that TRPA1 accounts for the remaining TRPV4-resistant component of 

the mechanical hypersensitivity produced by the anticancer drug. This conclusion is 

derived from either pharmacological study, using selective TRPA1 and TRPV4 

antagonists, or genetic study, using TRPA1-deficient mice. The TRPV4 antagonist, HC-

067047, abated completely the component of the paclitaxel-evoked mechanical 

allodynia that was resistant to TRPA1 pharmacological blockade or genetic deletion. 

 Paclitaxel administration to rodents evokes a typical cold hypersensitivity, 

reminiscent of the clinical condition caused by the drug in treated patients [61]. In 

contrast, with mechanical allodynia, either pharmacological or genetic studies indicate a 

primary and unique role of TRPA1 in the present mouse model of cold hypersensitivity 

evoked by paclitaxel. This conclusion is derived from the observation that, either after 

treatment with HC-030031, or in TRPA1-deficient mice, paclitaxel-induced cold 

allodynia was completely abated, and that HC-067047 failed to affect the increased 

response to acetone after paclitaxel treatment. Thus, under the present circumstances, 

cold hypersensitivity is completely mediated by TRPA1, whereas both TRPA1 and 

TRPV4 contribute to mechanical allodynia. 

 There is compelling evidence obtained both in vitro or in vivo, both in 

experimental animals and in humans, that paclitaxel treatment is associated with 

production of oxidative stress [237, 238]. Indeed, accumulation of hydrogen peroxide is 

an early and crucial step for paclitaxel-induced cancer cell death [237]. In general, 

induction of oxidative stress as a mechanism that may contribute to the antineoplastic 

effect of several chemotherapeutic agents has been gaining acceptance [239]. 

Antioxidants, such as N-acetylcysteine, have been shown to inhibit both paclitaxel-

evoked decreases in cell viability and increases in intracellular levels of ROS and 
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apoptosis, [240]. N-acetylcysteine has been reported to prevent completely paclitaxel-

evoked mechanical hypersensitivity [51]. Thus, the proapototic effects on one side, and 

the establishment of the sensory PN on the other side, seem to be dependent on one 

single mechanism, e.g., the ability of paclitaxel to generate oxidative stress. We have 

recently identified the primary role of TRPA1 in mediating mechanical and cold 

hypersensitivity to oxaliplatin and its ability to target TRPA1, not directly, but rather via 

oxidative stress generation [232]. In fact, we showed that, in contrast with the selective 

TRPA1 agonist, AITC, oxaliplatin per se does not activate TRPA1 in cultured DRG 

neurons, as measured by the ability to evoke an early calcium response [232]. However, 

in a more complex preparation, such as the isolated guinea pig pulmonary artery, 

oxaliplatin caused a TRPA1- and CGRP-dependent relaxation that mechanistically was 

indistinguishable from the relaxation evoked by AITC [232]. This finding suggested 

that oxaliplatin, like AITC, targets TRPA1 on sensory nerve endings, thereby releasing 

the sensory neuropeptide CGRP, which eventually relaxes the artery [232]. Of interest 

for the present discussion is the finding that oxaliplatin-evoked, but not AITC-evoked, 

arterial relaxation was completely abated by GSH. These findings imply that oxaliplatin 

does not directly gate TRPA1, but rather probably exerts this action indirectly via the 

generation by neighboring cells of oxidative stress byproducts that eventually target the 

channel in sensory nerve terminals, through direct formation of disulfide bridges. 

 Following this hypothesis, we tested whether paclitaxel could target sensory 

nerve terminals in a manner similar to that of oxaliplatin by measuring the release of the 

sensory neuropeptide, CGRP. Previous papers [217, 241] reported that paclitaxel 

releases substance P (SP) from airway sensory nerves, another neuropeptide co-

expressed with CGRP in a subset of primary sensory neurons [242]. The mechanism of 

action of paclitaxel on sensory neurons remained unknown, although inhibition of 

paclitaxel-evoked SP release from DRG neurons by ruthenium red [219], a nonspecific 

TRP channels inhibitor [93], suggests the involvement of this type of channels. Here, 

we confirm that paclitaxel releases neuropeptides from terminals of capsaicin-sensitive 

primary sensory neurons, and for the first time we show, by using both pharmacological 

and genetic data, that the action of paclitaxel is mediated in part by TRPA1 activation 

and in part by TRPV4 activation. In addition, the ROS and reactive aldehydes, 

scavenger, GSH, completely abolished paclitaxel-evoked CGRP release from 

esophageal slices of either wild type or TRPA1-deficient mice. These findings indicate 
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that GSH-sensitive compounds are generated by paclitaxel and finally target TRPA1 

and TRPV4. 

 Additional issues remain to be determined. Although release experiments 

indicate that paclitaxel is apparently able to acutely stimulate both TRPA1 and TRPV4, 

it is only after a significant time delays (days) that mechanical allodynia (mediated by 

both TRPA1 and TRPV4) and cold hypersensitivity (mediated by TRPA1) develop. The 

time dependent mechanism(s), which from early stimulation leads to the delayed and 

enduring hypersensitivity, is unknown. Pathophysiological functions of TRPV4 and 

TRPA1 are not completely understood; although TRPV4 is considered to mediate 

osmomechanical stimuli [125], TRPA1 has been proposed as a sensor of chemical 

irritants [243], and both may play a role in hyperalgesia [236]. Our present data are in 

agreement with recent findings reporting a contribution of TRPA1 and TRPV4 in 

paclitaxel-evoked hypersensitivity [227]. However, in our study, pharmacological 

inhibition and, more importantly, TRPA1 genetic deletion, reduced mechanical 

allodynia only partially, and it was only after TRPV4 inhibition that paclitaxel-evoked 

response was completely abated. The difference may be due to the diverse protocols of 

paclitaxel administration used in the present study (one single administration) as 

compared to the other study (repeated administrations) [227]. In the latter paper, 

antagonism in the central nervous system of the proteinase-activated receptor 2 (PAR2) 

completely inhibited heat, cold, and mechanical hypersensitivity, three sensory 

modalities that, at different degrees, were mediated by TRPV1, TRPV4, and TRPA1, 

respectively. TRPV4 has been reported to induce thermal and mechanical hyperalgesia 

[244]. There is evidence that TRPA1 and TRPV4 can be sensitized by PAR2 [130, 212]. 

Thus, it is possible that PAR2 orchestrates the mechanism that eventually results in TRP 

channel-mediated hypersensitivity. However, the mechanism of the interaction between 

PAR2 and TRP channels, and the anatomo-functional site where the interaction occurs, 

remain to be determined.  

A number of studies reported that antioxidants protect against the sensory 

neuropathy induced by paclitaxel [238, 245]. Present evidence shows that GSH inhibits 

TRPA1 and TRPV4 targeting on sensory nerves induced by paclitaxel. However, 

whereas endogenous oxidative stress byproducts capable of activating TRPA1 are well 

identified, little information [246] is available regarding activation of TRPV4 by 

oxidative stress byproducts, and no evidence exists that oxidative stress may activate 

PAR2. Thus, further studies are required to define upstream (oxidative stress) or 
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downstream (PAR2) mechanisms apparently associated to paclitaxel-induced and 

TRPA1/TRPV4-mediated hypersensitivity. Irrespective of the underlying mechanism, 

previous [139, 218, 224, 232] and present findings support the hypothesis of using 

TRPA1 and TRPV4 antagonists to treat patients with PN evoked by anticancer 

medicines, such as paclitaxel or oxaliplatin. 

 

This work has been published in Pflügers Archiv - European Journal of Physiology  
 
Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon 
C, Geppetti P, Nassini R (2012). "TRPA1 and TRPV4 mediate paclitaxel-induced 
peripheral neuropathy in mice via a glutathione-sensitive mechanism." Pflugers Arch 
463(4):561-9. 
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Chapter III - Novel therapeutic strategy to 

prevent chemotherapy-induced persistent 

sensory neuropathy by TRPA1 blockade 

 

 

3.1 Materials and methods 

 

Animals. Animal experiments were carried out according to Italian legislation 

(DL116/92) and European Communities Council Directive (86/609/EEC). Studies were 

conducted under the permit (number143/2008-Band204/2012-B, University of Florence, 

Florence, Italy) approved by the Italian National Committee for Animal Research. 

C57BL/6 mice (male, 25-30 g; Harlan Laboratories), wild-type (Trpa1+/+), or TRPA1-

deficient mice (Trpa1-/-; 25-30 g; Jackson Laboratories) were used. Animals were 

housed in a temperature- and humidity-controlled vivarium (12 hour dark/light cycle, 

free access to food and water). Behavioral experiments were done in a quiet, 

temperature-controlled room (20-22°C) between 9 a.m. and 5 p.m., and were conducted 

by an operator blinded to the genotype and the status of drug treatment. Animals were 

sacrificed with a high dose of intraperitoneal (i.p.) sodium pentobarbital (200 mg/kg). 

 

Reagents. If not otherwise indicated, all reagents were from Sigma-Aldrich.  

HC-030031 [2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahy-dro-7H-purin-7-yl)-N-(4-

isopropylphenyl) acetamide] was synthesized as previously described (15). HC-067047 

(2-Methyl-1-[3-(4-morpholinyl) propyl]-5-phe-nyl-N-[3-(trifluoromethyl) phenyl]-1H-

pyrrole-3-carboxamide) was obtained from Tocris Bioscience, and bortezomib was 

purchased from LC Laboratories. 

 

Chemotherapy-induced painful neuropathy models. Previous studies have 

described rat and mouse models of peripheral neuropathy induced by repeated and 

prolonged administration of bortezomib [55, 247-249]. On the basis of these findings, in 
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the first series of experiments, we explored whether a single administration of 

bortezomib produced mechanical and cold hypersensitivity in mice, as observed for 

different chemotherapeutic agents including oxaliplatin, paclitaxel, and vincristine [62, 

232, 250]. After habituation and baseline measurements of pain sensitivity, animals 

were randomized into treatment groups. C57BL/6, Trpa1+/+, or Trpa1-/- mice were 

treated with a single intraperitoneal administration of different doses of bortezomib (0.2, 

0.5, and 1 mg/kg), or vehicle (dimethylsulfoxide, DMSO1%; ref. [248]). Bortezomib, 

formulated at a concentration of 1 mg/mL, was first dissolved in a vehicle containing 

DMSO, and the volume was adjusted to 10 mL/kg to a final concentration of 1% 

DMSO, then diluted in isotonic saline (NaCl 0.9%) to obtain lower doses. A different 

group of C57BL/6 mice was treated with a single administration of oxaliplatin (3 

mg/kg, i.p.) or its vehicle (isotonic saline, NaCl 0.9%; ref. [232]). No weight loss was 

observed in mice after bortezomib or oxaliplatin treatment throughout the duration of 

the experiments. Effects induced by bortezomib and oxaliplatin were tested for 14 and 

30 days (starting 6 hours after drug administration), respectively. Baseline values for 

nociceptive tests were observed before chemotherapy treatment. 

 

Nociceptive tests.  

Von frey hair test. Mechanical threshold was measured in C57/BL6, Trpa1+/+, 

or Trpa1-/- mice after a single administration of bortezomib or oxaliplatin by using the 

up-and-down paradigm [233]. Mechanical nociceptive threshold was determined before 

(basal level threshold) and after different treatments. The 50% mechanical paw 

withdrawal threshold (ing) response was then calculated from these scores, as 

previously described [233, 251].  

Hot plate test. The paw thermal hyperalgesia was assessed in C57/BL6, 

Trpa1+/+, or Trpa1-/- by placing animals on a hot plate (Ugo Basile) with the 

temperature adjusted to 50 ± 0.1°C [252]. The latency to the first hindpaw licking or 

withdrawal was taken as an index of nociceptive threshold. The cut-off time was set at 

30 seconds, to avoid damage to the paw. The paw withdrawal latency to the first 

response was reported as mean of 2 different trials.  

Cold stimulation. Cold allodynia was assessed in C57/BL6, Trpa1+/+, or Trpa1-/- 

by measuring the acute nocifensive response to the acetone-evoked evaporative cooling 

as previously described [250]. Briefly, a droplet (50 µL) of acetone, formed on the flat-

tip needle of a syringe, was gently touched to the plantar surface of the mouse hindpaw, 
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and the time spent in elevation and licking of the plantar region over a 60-second period 

was measured. Acetone was applied 3 times at a 10- to 15-minute intervals, and the 

average of elevation/licking time was calculated.  

Chemical hyperalgesia. Nociceptive behavior was assessed by measuring 

spontaneous nociceptive response induced by intraplantar (i.pl.) injection (20 µL) of 

subthreshold doses of allyl isothiocyanate (AITC; 1 nmol/paw), capsaicin (0.01 

nmol/paw), hypotonic saline (NaCl, 0.45%), or prostaglandin E2 (PGE2, 0.3 nmol/paw) 

at day 7 after the administration of bortezomib or its vehicle. Immediately after the 

injection, mice were placed inside a Plexiglas chamber and the total time spent licking 

and lifting the injected hindpaw was recorded for 5 minutes (AITC, capsaicin, and 

hypotonic saline), or 20 minutes (PGE2). Previous experiments conducted in our 

laboratory and previous findings [253, 254] suggested subthreshold doses that do not 

cause nociception in naïve mice. 

 

Rotarod test. Locomotor function, coordination, and sedation of animals were 

tested by using a rotarod apparatus (Ugo Basile). The test was done as previously 

described [255]. Briefly, 24 hours before the experiments, the animals were trained on 

the rotarod apparatus, programmed at 8 rpm, until they remained without falling for 60 

seconds. The day of the experiment, the latency (seconds) to the first fall and the 

number of falls were recorded. Cut-off time was 240 seconds. 

Treatment protocols. In a first set of experiments, intragastric (i.g.) HC-030031 

(300 mg/kg) or its vehicle (0.5% carboxymethylcellulose, CMC), HC-067047 (10 

mg/kg, i.p.) or its vehicle (2.5% DMSO), or α-lipoic acid (100 mg/kg, i.g.) or its vehicle 

(0.5% CMC), were administered at day 7 after the administration of bortezomib (1 

mg/kg, i.p.) or its vehicle. In a second set of experiments, i.pl. HC-030031 (100 

mg/paw, 20 µL; ref. [256]), α-lipoic acid (10 mg/paw, 20µL; ref. [257]), or vehicle (20 

µL/paw, 1% DMSO in isotonic saline, NaCl 0.9%) were injected at day 3 or day 7 after 

the administration of oxaliplatin or bortezomib (see earlier section for dosing), 

respectively. In a third set of experiments, HC-030031 (300 mg/kg, i.g.), α-lipoic acid 

(100 mg/kg, i.g.), or their respective vehicles, were administered 15 minutes before the 

administration of bortezomib, oxaliplatin, or their vehicles and treatment was repeated 3 

times at approximately 90-minute intervals each after the administration of bortezomib 

or oxaliplatin. In a fourth and final set of experiments, a group of mice was treated with 

HC-030031 or its vehicle 15 minutes before and shortly (3 times at approximately 90-
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minute intervals each) after a first bortezomib (1 mg/kg, i.p.) or vehicle administration. 

At day 6, each group of mice received a second treatment identical to that administered 

at day 1, except for mice treated at day 1 with both HC-030031 and bortezomib, which 

were subdivided into 2 additional groups. One group was treated a second time with 

either HC-030031 (300 mg/kg, i.g.) and the second with its vehicle 15 minutes before 

and shortly after (3 times at approximately 90-minute intervals each) bortezomib 

administration (Fig. III-6A). 

Isolation of primary sensory neurons and calcium imaging experiments. 

Primary dorsal root ganglia (DRG) from C57/BL6 adult mice were cultured as 

previously described [250]. Briefly, lumbosacral (L5-S2) ganglia were bilaterally 

excised under a dissection microscope. Ganglia were digested using 1 mg/mL of 

collagenase type 1A and 1 mg/mL of papain in Hank's Balanced Salt Solution (25 

minutes, 37°C). Neurons were pelleted and resuspended in Ham's-F12 containing 10% 

FBS, 100 U/mL of penicillin, 0.1 mg/mL of streptomycin, and 2 mmol/L glutamine, 

dissociated by gentle trituration, and plated on glass coverslips coated with poly-L-

lysine (8.3 µmol/L) and laminin (5 µmol/L). Neurons were cultured for 3 to 4 days. 

Cells were incubated with 5 µmol/L Fura-2AM ester for 30 minutes at 37°C. 

Intracellular calcium concentration ([Ca2+]i) was measured on a Nikon Eclipse 

TE2000U microscope. Fluorescence was measured during excitation at 340 and 380 

nm, and after correction for the individual background fluorescence signals, the ratio of 

the fluorescence at both excitation wavelengths (Ratio340/380) was monitored. 

Experiments were conducted using a buffer solution containing (in mmol/L): 150 NaCl, 

6 KCl, 1 MgCl2, 1.5 CaCl2, 10 glucose, 10 HEPES and titrated to pH 7.4 with 1 N 

NaOH. Cells were challenged with bortezomib (10, 50, and 100 µmol/L) or their 

respective vehicles (0.01 0.5, and 1% DMSO). AITC (30 µmol/L), and capsaicin (0.1 

µmol/L) to identify nociceptive neurons. In another series of experiments, DRG neurons 

were incubated with bortezomib (10 or 100 µmol/L) or its vehicle (0.01 and 0.1% 

DMSO) for 2 hours and then challenged with AITC (10 or 30 µmol/L). Results are 

expressed as the increase of Ratio340/380 over the baseline normalized to the maximum 

effect induced by ionomycin (5 µmol/L) added at the end of the experiment. 

Protein extraction and Western immunoblot assay. Spinal cord, DRGs, and 

hindpaw skin were obtained from mice treated with bortezomib or its vehicle at day 7 

post treatment. Tissue samples were homogenized in lysis buffer containing (in 
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mmol/L): 50 Tris, 150 NaCl, 2 EGTA, 100 NaF, 1 Na3VO4, 1% NonidetP40, pH7.5, 

and complete protease inhibitor cocktail (Roche). Lysates were centrifuged at 14,000 g 

at 4° C for 45 minutes. Protein concentration in supernatants was determined using DC 

protein assay (BioRad). Samples with equal amounts of proteins (30 µg) were then 

separated by 10% SDS-PAGE electrophoresis, and there solved proteins were 

transferred to a polyvinylidenedifluoride membrane (Merck Millipore Billerica). 

Membranes were incubated with 5% dry milk in Tris buffer containing 0.1% Tween20 

(TBST; 20 mmol/L Tris, pH 7.5, 150 mmol/L NaCl) for 1 hour at room temperature, 

and incubated with rat polyclonal primary antibody for TRPA1 detection (1:200; Novus 

Biologicals), or mouse monoclonal primary antibody for β-actin (1:6,000; Thermo 

Scientific), at 4°C overnight. Membranes were then probed with goat anti-mouse or 

donkey anti-rabbit IgG conjugated with horseradish peroxidase (Bethyl Laboratories 

Inc.) for 50 minutes at room temperature. Finally, membranes were washed 3 times with 

TBST, and bound antibodies were detected using chemiluminescence reagents (ECL; 

Pierce, Thermo Scientific). The density of specific bands was measured using an image 

processing program (ImageJ 1.32J, Wayne Rasband) and normalized against a loading 

control (β-actin). 

 

Carboxy-methyl-lysine adducts measurement in plasma. Briefly, blood 

samples from C57/BL6 mice, taken 1, 3, 6, and 24 hours after the administration of 

bortezomib (1 mg/kg, i.p.), oxaliplatin (3 mg/kg, i.p.), or their vehicles (1% DMSO and 

isotonic saline, NaCl 0.9%, respectively), were centrifuged at 3,500 g for 10 minutes, 

and plasma was used for the carboxy-methyl-lysine (CML) protein adduct ELISA 

assay. CML protein adducts content in plasma was measured using an ELISA kit 

(OxiSelect ELISAKit, Cell Biolabs Inc. Valter Occhiena S.R.L.) according to the 

manufacturer’s instructions. 

Statistical analysis. Data are presented as mean ± SEM. Statistical analysis was 

carried out by the unpaired 2-tailed Student t test for comparisons between 2 groups, the 

ANOVA, followed by the post hoc Bonferroni test for comparisons of multiple groups. 

P value less than 0.05 was considered statistically significant (GraphPadPrism version 

5.00). To meet ANOVA assumptions, mechanical allodynia data were subjected to log 

transformation before statistical analysis.
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3.2 Results 

 

3.2.1 Bortezomib administration produces persistent mechanical cold and 

chemical hypersensitivity mediated by TRPA1  

 

Administration of a single dose (0.2, 0.5, and 1 mg/kg, i.p.) of bortezomib 

induced a dose-dependent mechanical and cold hypersensitivity in C57BL/6 mice (Fig. 

III-1A and B). Reduced mechanical threshold was observed after bortezomib (1 mg/kg, 

i.p.) injection as early as 6 hours and lasted until 11 days after treatment (Fig. III-1A). 

Similar results were obtained for cold allodynia, which was evident at day 1 and 

persisted until day 11 after bortezomib injection (Fig. III-1B). Bortezomib 

administration (1 mg/kg, i.p.) did not affect the heat threshold of mice at any time point, 

from 6 hours to 14 days after treatment. Nociception time to heat stimulus was 19.7 ± 

0.8 seconds and 17.2 ± 1.0 seconds at baseline and 7 days after bortezomib treatment, 

respectively (n=8-10 mice, P > 0.05, Student t test).  

Next, we investigated whether TRPA1 activation is involved in mechanical and 

cold hypersensitivity induced by bortezomib. Systemic treatment with the TRPA1 

selective antagonist HC-030031 (300 mg/kg, i.g.; ref. [214]) at day 7 after bortezomib 

treatment completely, but transiently, reverted both mechanical hyperalgesia and cold 

allodynia. Significant inhibition was observed from 30 to 120 minutes after HC-030031 

treatment, with maximum reduction (98 ± 12% and 90 ± 6% for mechanical 

hyperalgesia and cold allodynia, respectively) 60 minutes post dosing (Fig. III-1C and 

D). Systemic treatment with HC-030031 (300 mg/kg, i.g.) at day 7 after treatment with 

bortezomib (0.2 or 0.5 mg/kg, i.p.) completely but transiently reverted both mechanical 

hyperalgesia and cold allodynia (data not shown).  

Given that we, as well as others [224, 250], have found that mechanical and cold 

hypersensitivity evoked by paclitaxel was mediated by both TRPA1- and TRPV4-

dependent mechanisms, we tested whether the TRPV4 channel contributes to 

bortezomib-induced sensory hypersensitivity by using a selective TRPV4 antagonist, 

HC-067047 (10 mg/kg, i.p.; ref. [235]). HC-067047, at a dose able to reduce mechanical 

hyperalgesia evoked by paclitaxel [250], failed to affect bortezomib-evoked 

hypersensitivities (data not shown). Therefore, present pharmacologic evidence 

indicates an exclusive role for TRPA1 in bortezomib-induced mechanical allodynia and 

cold hypersensitivity in mice, whereas it rules out a contribution by TRPV4. More 
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importantly, we found that bortezomib treatment (1 mg/kg, i.p.) produced mechanical 

hyperalgesia and cold allodynia in Trpa1+/+ mice with an identical time course to that 

observed in C57BL/6 mice, an effect that was completely absent in Trpa1-/- mice (Fig. 

III-1E and F).  

In addition, we wondered whether bortezomib could cause selective chemical 

hypersensitivity to TRPA1 agonists. The study of the effects produced by sub-threshold 

doses of AITC (TRPA1 agonist), capsaicin (TRPV1 agonist), PGE2 (EP1-4 receptor 

agonist), or hypotonic saline (which can stimulate TRPV4) showed that bortezomib 

treatment selectively increased the nociceptive behavior evoked by AITC (Fig. III-2A). 

In fact, responses to capsaicin, PGE2, and hypotonic saline were similar in both vehicle- 

and bortezomib-treated animals (Fig. III-2B-D). As expected, in TRPA1-deficient mice 

treated with bortezomib or its vehicle, AITC failed to evoke any nociceptive response 

(data not shown).  

 

Figure III-1. Bortezomib induces mechanical allodynia and cold hypersensitivity via TRPA1 

activation in mice. A single dose of bortezomib (BTZ; 0.2, 0.5, and 1 mg/kg i.p.) induces in C57BL/6 
mice a dose- and time-dependent mechanical (A) and cold (B) allodynia, which starts at 6 hours or day 1, 
respectively, and persists until day 11 after BTZ (1 mg/kg) administration. At day 7 after BTZ 
administration, the selective TRPA1 receptor antagonist, HC-030031 (HC; 300 mg/kg, i.g.), completely 
reverses the mechanical (C) and cold (D) allodynia with a maximum effect, 60 minutes after dosing. BTZ 
treatment produces in Trpa1+/+ mice mechanical (E) and cold (F) allodynia similar to those observed in 
C57BL/6. These effects are completely absent in Trpa-/- mice (E and F). Veh, vehicle of BTZ or HC. 
Values are mean ± SEM of 8 to 10 mice. #, P<0.05 versus Veh BTZ, Student t test in A and B; *, P < 
0.05 versus VehBTZ-VehHC in C and D and VehBTZ- Trpa1+/+ in E and F; §, P < 0.05 versus BTZ-
VehHC in C and D and BTZ- Trpa-/- in E and F;one-way ANOVA and Bonferroni test. BL, baseline 
withdrawal threshold. 
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3.2.2 Bortezomib does not affect TRPA1 receptor expression and does not 

directly activate TRPA1. 

TRPA1 expression has been found to vary in different painful conditions, 

including models of CIPN [258, 259]. Therefore, we evaluated, by Western blotting, the 

expression of TRPA1receptor in different tissues. At day 7 after administration, when 

hypersensitivity was at its maximum, TRPA1 immunoreactivity in the spinal cord, 

DRG, and hind paw skin of mice treated with bortezomib or its vehicle, were similar 

(Fig. III-2E). To test the hypothesis that bortezomib directly activates the TRPA1 

receptor, we studied the ability of bortezomib to evoke calcium responses in cultured 

mouse DRG neurons. Bortezomib (10, 50, or 100 µmol/L) failed to evoke any calcium 

response in capsaicin-sensitive DRG neurons (Fig. III-2F and G), which otherwise 

responded to the TRPA1 agonist AITC (30 µmol/L). In vitro pre-exposure to 

bortezomib (100 µmol/L for 2 hours) did not affect the magnitude or the number of 

neurons responding to AITC (10 and 30 µmol/L; Fig. III-2H).  
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Figure III-2. Bortezomib enhances allyl isothiocyanate-evoked nocifensive behavior but does not 

increase TRPA1 expression or directly activate TRPA1. Nociceptive behavior produced by a sub-
threshold dose of intraplantar (i.pl.; 20 µL) injection of allyl isothiocyanate (AITC; 1 nmol/paw; A) in 
mice is increased 7 days after BTZ (1 mg/kg i.p.). Responses to subthreshold doses of capsaicin (CPS; 
0.01 nmol/paw; B), hypotonic saline (NaCl, 0.45%; C), and PGE2 (0.3 nmol/paw; D) are not affected by 
BTZ. Values are mean ± SEM of 8 to 10 mice. *, P < 0.05 versus VehBTZ-AITC in A; Student t test. E, 
TRPA1 protein content analyzed by Western blotting is not different in tissue homogenates of spinal 
cord, DRGs, and hindpaw skin obtained from mice on day 7 after treatment with BTZ or its vehicle 
(Veh). Values are mean ± SEM of 3 samples, Student t test. Equally loaded protein was checked by 
expression of β-actin. A representative blot is shown. BTZ (10, 50, or 100 µmol/L) fails to evoke any 
visible intracellular calcium (Ca2+)I response in CPS (0.1 µmol/L)-sensitive DRG neurons, which 
otherwise responded to AITC (F, G). Trace represents an average of 10 neurons. H, in vitro preexposure 
to BTZ (100 µmol/L for 2 hours) does not affect the magnitude of the response, and the number of 
neurons responding to AITC (10 and 30 µmol/L). Veh is the vehicle of BTZ. Values are mean ± SEM of 
n > 30 neurons. Numbers indicate AITC-responding cells/CPS-responding cells. *, P < 0.05 versus Veh; 
one-way ANOVA and Bonferroni test. 
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3.2.3 α-Lipoic acid transiently reverts bortezomib-evoked hypersensitivity 

As reported for other anticancer drugs, such as oxaliplatin, paclitaxel, and others, 

there is evidence that bortezomib also produces oxidative stress [55-57, 260]. Therefore, 

we hypothesized that reactive molecules generated by the oxidative stress burst 

produced by bortezomib administration could be the underlying mechanism by which 

the anticancer drug induces TRPA1-dependent mechanical and cold hypersensitivity.  

We observed that administration of α-lipoic acid (100 mg/kg, i.g.) completely 

abated mechanical hyperalgesia and cold allodynia evoked at day 7 after bortezomib 

treatment. Significant effect of α-lipoic acid was observed from 30 to 120 minutes after 

treatment, with maximum inhibition (73 ± 9% and 77 ± 6% for mechanical hyperalgesia 

and cold allodynia, respectively) 60 minutes post dosing (Fig. III-3A and B). 

 

3.2.4 Local treatment with HC-030031 or α-lipoic acid transiently reverts 

bortezomib- or oxaliplatin-induced hypersensitivity 

 

It has been reported that i.pl. injection of α-lipoic acid reduces oxaliplatin-

elicited nociception [257]. In the present study, we observed that i.pl. injection of HC-

030031 (100 µg/paw) or α-lipoic acid (10 µg/paw) completely reduced bortezomib-

induced mechanical and cold allodynia (Fig. III-3C and D). In addition, we found that 

mechanical and cold allodynia elicited by oxaliplatin were markedly decreased by i.pl. 

injection of HC-030031 and α-lipoic acid (Fig. III-3E and F). Contralateral paw 

thresholds to mechanical or cold stimuli were not affected by the i.pl. injection of HC-

030031 or α-lipoic acid (Fig. III-3C-F). Administration of HC-030031 or α-lipoic acid 

(i.pl.) did not produce any appreciable effect in animals treated with the vehicle of 

bortezomib or oxaliplatin (data not shown). 
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Figure III-3. Systemic or local administration of α-lipoic acid (α-LA) and local administration of 

HC-030031 (HC) transiently reverse BTZ-evoked mechanical and cold hypersensitivity in mice. At 
day 7 after BTZ (1 mg/kg i.p.), α-LA (100 mg/kg i.g.) completely reverses the mechanical (A) and cold 
(B) allodynia with a maximum effect at 60 minutes post dosing. Veh, vehicle of BTZ or α-LA acid. C and 
E, HC (100 µg/paw, i.pl. 20 µL) or α-LA (10 µg/paw) reduce the mechanical allodynia induced by BTZ 
or oxaliplatin (OXA; 3 mg/kg, i.p.) in the paw ipsilateral (ipsi) to the injection. D and F, in the 
contralateral (contra) side, the paw threshold to mechanical stimuli is not affected by local HC or α-LA. 
Local HC or α-LA acid treatment produces similar findings when cold allodynia is measured. Values are 
mean ± SEM of 8 to 10 mice. *, P < 0.05 versus Vehα-LA acid or VehBTZ or BL values; §, P < 0.05 

versus BTZ-Vehα-LA or Vehipsi; one-way ANOVA and Bonferroni test. BL, baseline withdrawal 
threshold. 
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3.2.5 Bortezomib and oxaliplatin increase plasma level of carboxy-methyl-lysine 

Systemic oxidative stress was evaluated by measuring the serum content of Nɛ-

carboxy-methyl-lysine (CML) protein adducts. CML is the reaction product between 

lysine and glyoxal, an α-ketoaldehyde intermediate formed by ascorbate autoxidation, 

lipid peroxidation, and oxidative degradation of glucose and degradation of glycated 

proteins. Due to the fact that CML is formed from either carbohydrates or lipids 

oxidation, it has been termed as an either advanced glycation or lipoxidation 

endproducts (EAGLE) modification. CML may be considered as a general marker of 

oxidative stress and, so far, it is widely used to measure oxidative stress in different 

pathophysiologic conditions [261]. Bortezomib administration produced a transient 

increase in plasma CML levels. One hour after bortezomib injection, CML increased by 

64% over baseline value, and returned to basal values at 3 hours after treatment (Fig. 

III-4A). Similar to bortezomib, oxaliplatin administration produced a transient increase 

in plasma CML levels, which was observed at 1 hour (55% over the baseline) and 3 

hours (63% over the baseline), and returned to basal levels 6 hours after treatment (Fig. 

III-5A). 

3.2.6 Early and short-term treatment with HC-030031 or α-lipoic acid 

completely prevents bortezomib- and oxaliplatin-evoked hypersensitivity 

We investigated whether treatment with a TRPA1 antagonist or a ROS 

scavenger given shortly before and after anticancer drug administration could prevent 

the development of persistent mechanical, cold, and chemical hypersensitivity. To test 

this hypothesis HC-030031 (300 mg/kg, i.g.) or α-lipoic acid (100 mg/kg, i.g.), were 

given respectively, 15 minutes before and 3 times every 90 minutes after bortezomib or 

oxaliplatin administration. HC-030031 totally prevented the development of chemical 

hypersensitivity and mechanical and cold allodynia evoked by bortezomib (Fig. III-4B, 

D, and E) and oxaliplatin (Fig. III-5B, D, and E). Similarly, α-lipoic acid prevented 

chemical hypersensitivity and mechanical and cold allodynia evoked by bortezomib 

(Fig. III-4C, F, and G) and oxaliplatin (Fig. III-5C, F, and G). Repeated i.g. 

administration of TRPA1 antagonist (HC-030031, 300 mg/kg, i.g.) did not affect forced 

locomotion of animals, as observed by the rotarod test. HC-030031- and vehicle-treated 

animals did not show any fall during the test (data not shown). Mice, protected by early 

and short-term treatment with HC-030031, were rechallenged 6 days after a first 

treatment with bortezomib with a second bortezomib administration (1 mg/kg, i.p.). In 
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these mice, a second early and short-term treatment with HC-030031 again totally 

prevented the development of mechanical and cold hypersensitivity (Fig. III-6B and C). 

In contrast, mice treated with HC-030031 vehicle did not show protection against the 

hypersensitivity evoked by the second administration of bortezomib. Mice treated with 

bortezomib and HC-030031 vehicle developed mechanical and cold hypersensitivity, a 

response that further increased at the second treatment with bortezomib and HC-030031 

vehicle (Fig. III-6B and C). 

 

Figure III-4. BTZ increases transiently oxidative stress in plasma and early and short-term 

treatment with HC and α-LA permanently prevents the development of mechanical, cold, and 

chemical hypersensitivity evoked by BTZ in mice. A, BTZ (1 mg/kg i.p.) transiently increases carboxy-
methyl-lysine (CML) plasma levels in mice. Both HC (300 mg/kg i.g.) and α-LA (100 mg/kg i.g. 15 
minutes before and 3 times at 90-minute intervals each after BTZ treatment) prevent the development and 
maintenance of chemical hyperalgesia (B and C) as well as mechanical (D and F) and cold (E and G) 
allodynia evoked by BTZ (1 mg/kg i.p.). Veh, of BTZ, HC, or α-LA. Values are mean ± SEM of 8 to 10 
mice. *, P < 0.05 versus BL in A, VehHC-VehBTZ in B, D, and E, or Veh α-LA-VehBTZ in C, F, and G; 
§, P < 0.05 versus VehHC-BTZ in B, D, and E or Vehα-LA-BTZ in C, F, and G; one-way ANOVA and 
Bonferroni test. BL, basal level of CML in A and baseline withdrawal threshold in D-G. 
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Figure III-5. Oxaliplatin transiently increases oxidative stress in plasma, and early and short-term 

treatment with HC and α-LA permanently prevents the development of mechanical, cold, and 

chemical hypersensitivity evoked by BTZ in mice. A, oxaliplatin (OXA; 3 mg/kg i.p.) transiently 
increases CML plasma levels in mice. Both HC (300 mg/kg i.g.) and α-LA (100 mg/kg i.g. 15 minutes 
before and 3 times at 90-minute intervals each after BTZ treatment) prevent the development and 
maintenance of chemical hyperalgesia (B and C) as well as mechanical (D and F) and cold (E and G) 
allodynia evoked by OXA (3 mg/kg i.p.). Veh, vehicle of OXA, HC, or α-LA. Values are mean ± SEM of 
8 to 10 mice. *, P < 0.05 versus BL in A, VehHC-VehOXA in B, D, and E or Vehα-LA-VehOXA in C, F, 
and G; §, P < 0.05 versus VehHC-OXA in B, D, and E or Vehα-LA-OXA in C, F, and G; one-way 
ANOVA and Bonferroni test. BL, basal level of CML in A and baseline withdrawal threshold in D-G. 
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Figure III-6. A repeated early and short-term treatment with HC prevents the development of 

mechanical and cold hypersensitivity evoked by a second BTZ treatment in mice. A, schematic 
representation of HC (300 mg/kg, i.g.) and BTZ (1 mg/kg, i.p.) treatment. A group of mice are treated 
with HC or its vehicle 15 minutes before and shortly after (3 times at 90-minute intervals each) a first 
BTZ or vehicle administration. At day 6 after the first BTZ administration, all mice receive a second BTZ 
(1 mg/kg, i.p.) or vehicle administration. Mice pretreated with HC after the first BTZ dose are subdivided 
into 2 groups. One group is treated a second time with HC (300 mg/kg, i.g.) and a second group with its 
vehicle 15 minutes before and shortly after (3 times at 90-minute intervals each) BTZ administration. The 
second early and short-term treatment with HC totally prevents the development of mechanical and cold 
hypersensitivity (B, C). B and C, mice treated with BTZ and HC vehicle develop mechanical and cold 
hypersensitivity, a response that is further increased by the second treatment with BTZ and HC vehicle. 
Values are mean ± SEM of 8 to 10 mice. *, P < 0.05 versus VehHC-VehBTZ in B and C; §, P < 0.05 
versus VehHC-BTZ in B and C; #, P < 0.05 versus VehHC-BTZ or HC/BTZ-VehHC/BTZ; †, P < 0.05 
versus HC/BTZ-VehHC/BTZ one-way ANOVA and Bonferroni test. BL, baseline withdrawal threshold. 
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3.3 Discussion 

 

In the present study in mice, we found that 1 single administration of bortezomib 

produced an early and prolonged mechanical and cold hypersensitivity that started 6 

hours after and lasted for 11 days after bortezomib administration. With a slight 

difference in duration, the effect of bortezomib was practically identical to that 

previously reported for oxaliplatin [60]. A number of preclinical studies and clinical 

investigations have shown that bortezomib, like oxaliplatin and paclitaxel, increases 

ROS and their by-products in plasma, cells, and tissues of treated animals or patients, 

and that ROS scavengers show some degree of protection against CIPN or its rodent 

counterpart [60, 75, 89, 257, 258, 262]. Two observations suggest that oxidative stress 

mediates bortezomib-evoked sensory neuropathy. First, the ROS scavenger, α-lipoic 

acid, completely reversed the established (at day 7 after drug administration) 

mechanical and cold hypersensitivity evoked by bortezomib. Second, bortezomib and 

oxaliplatin produced an early and transient (1-3 hours after drug administration) 

increase in the plasma levels of 1 major by-product of oxidative stress, CML. The 

finding that oxaliplatin administration also increased plasma oxidative stress by-

products is consistent with the previously reported role of oxidative stress in 

oxaliplatinevoked sensory neuropathy [232].  

TRPA1 has been identified as a sensor of oxidative stress, in as much as it is 

activated by an unprecedented series of ROS, RNS, or RCS [175, 191, 263]. Thus, we 

hypothesized that oxidative stress by-products, generated by bortezomib, may target the 

TRPA1 channel in sensory nerve terminals. Indeed, both pharmacologic and genetic 

findings indicate that TRPA1 plays a key role in bortezomib-evoked mechanical and 

chemical hyperalgesia and cold allodynia, as these phenomena were completely 

reverted when they were at their maximum, for example, at day 7 after treatment, by a 

TRPA1 antagonist and were completely absent in TRPA1-deleted mice. The key 

contribution of TRPA1 in mechanical, chemical, and cold allodynia does not seem 

confined to bortezomib model as earlier studies [229, 232, 264] showed a similar role of 

TRPA1 in oxaliplatin-evoked sensory neuropathy in mice. In addition, the TRPV4-

resistant component [224] of the mechanical hyperalgesia evoked by paclitaxel in mice 

has also been ascribed to the contribution of TRPA1, whereas TRPA1 appears to be the 

sole channel responsible for paclitaxel-evoked cold allodynia [250]. In addition, we 

found that an oxidative stress scavenger or a TRPA1 antagonist reversed bortezomib- or 
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oxaliplatin evoked hypersensitivity selectively on the treated paw, when they were 

given locally by i.pl. administration. This finding indicates that TRPA1 

sensitization/activation occurs at the very terminal region of nociceptive primary 

afferents, and that channel inhibition at this peripheral level is sufficient to revert the 

sensory neuropathy.  

The protective effect of HC-030031 or α-lipoic acid when administered (either 

systemically or locally) at day 7 after bortezomib administration, although complete, 

was transient, lasting no longer than 120 minutes. This is probably due to the 

pharmacokinetic properties of the 2 drugs, as indicated by previous studies in different 

models of nociception or hyperalgesia/allodynia [236, 265]. In contrast to the transient 

reversal produced by pharmacologic treatments when the hypersensitivity is already 

established, in TRPA1-deficient mice hypersensitivity to bortezomib or oxaliplatin 

[232] does not develop. These genetic findings and biochemical evidence of the 

transient increase in plasma CML suggest that early phenotypic changes of TRPA1, 

presumably associated with the oxidative burst, which are responsible for the 

development and maintenance of the hypersensitivity, occur a few hours after 

chemotherapeutic drug administration. To identify the critical role of these early events 

for the manifestation of the enduring hypersensitivity condition by anticancer drug, we 

designed an experiment in which HC-030031 or α-lipoic acid were given shortly before 

and for approximately 6 hours after bortezomib or oxaliplatin treatment. These 

treatments not only blocked the onset of the hypersensitivity, but, rather surprisingly, 

completely and stably prevented its development and maintenance. Of interest for 

translating the present observation to the clinical perspective, the permanent protective 

effect by early and short-term treatment with the TRPA1 antagonist was also observed 

when it was repeated after a second bortezomib administration. Although it is not 

possible to replicate in mice the exact condition experienced by patients, these 

additional findings suggest a possible treatment schedule to prevent the sensory 

neuropathy in patients when TRPA1 antagonists are clinically available.  

Taken together, these findings indicate that TRPA1, via its activation by 

oxidative stress by-products, is necessary and sufficient to produce a sensory 

neuropathy paradigm in mice following a single administration of different 

chemotherapeutics. Oxaliplatin [232], paclitaxel [250], and bortezomib failed to evoke 

any calcium response in cultured TRPA1-expressing neurons, thus excluding that these 

drugs may directly target the channel. However, in vitro findings support the alternative 
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explanation, as indicated by in vivo results, that chemotherapeutic agents act indirectly 

by generating oxidative stress by-products [88, 257, 258, 262], which in turn 

sensitize/activate TRPA1 in sensory neurons.  

TRPA1 is apparently required for those early (within 6-8 hours) phenotypic 

changes that eventually result in the long term hypersensitivity to specific (AITC) and 

nonspecific (pressure or cold) stimuli caused by exposure to different chemotherapeutic 

agents in mice. Although some reports have shown changes in TRP expression in 

different rodent models of CIPN, under the present experimental circumstances, no 

change in TRPA1 protein expression in nociceptive neurons was found. The molecular 

mechanism responsible for the TRPA1-mediated hypersensitivity phenotype, produced 

by chemotherapeutic agents remains unknown. Nevertheless, present experiments with 

bortezomib and oxaliplatin identify the early phase (a few hours) that follows 

chemotherapeutic drug administration as the key step when, most likely through 

oxidative stress by-products, TRPA1 is activated/sensitized. These early events result in 

a prolonged (several days) condition of hypersensitivity that markedly mimics the long-

lasting duration of CIPN in patients treated with bortezomib or oxaliplatin. If ROS 

scavengers, most likely because of poor pharmacokinetics, could not represent a 

suitable and effective treatment for CIPN, the present findings suggest a novel 

therapeutic schedule to prevent CIPN in patients, based on TRPA1 antagonists given 

before and shortly after each administration of anticancer medicines. 

 

This work has been published in Cancer Research  

Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, 
Geppetti P, Nassini R. (2013). "Novel therapeutic strategy to prevent chemotherapy-
induced persistent sensory neuropathy by TRPA1 blockade." Cancer Res 73(10): 3120-
31. 
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Chapter IV - Steroidal and non-steroidal 

third-generation aromatase inhibitors induce 

pain-like symptoms via TRPA1 

 

 

4.1 Methods  

 

Animals. Animal experiments were carried out in conformity to the European 

Communities Council (ECC) guidelines for animal care procedures and the Italian 

legislation (DL 116/92) application of the ECC directive 86/609/EEC. Studies were 

conducted under the University of Florence research permit number 204/2012-B. Male 

C57BL/6 (25-30 g) (Harlan Laboratories, Milan, Italy), wild type, Trpa1+/+, or 

TRPA1-deficient, Trpa1-/-, (25-30 g) mice generated by heterozygous on a C57BL/6 

background (B6;129P-Trpa1tm1Kykw/J; Jackson Laboratories, Italy) [179], or 

Sprague-Dawley rats (75-100 g, male, Harlan Laboratories, Milan, Italy) were used. 

Animals were housed in a temperature- and humidity-controlled vivarium (12 hours 

dark/light cycle, free access to food and water). Behavioral experiments were done in a 

quiet, temperature-controlled (20 to 22 °C) room between 9 a.m. and 5 p.m., and were 

performed by an operator blinded to the genotype and the drug treatment. Animals 

were sacrificed with a high dose of sodium pentobarbital (200 mg/kg, i.p.).  

 

Reagents. Exemestane, letrozole and anastrozole were purchased from Tocris 

Bioscience (Bristol, UK). The activating peptide (PAR2-AP, SLIGRL-NH2) and its 

reverse peptide (PAR2-RP, LRGILS-NH2) of the murine PAR2 receptor were 

synthesized from G. Cirino (University of Naples, Naples, Italy) and dissolved in 

distilled water. If not otherwise indicated, all other reagents were from Sigma-Aldrich 

(Milan, Italy). HC-030031 was synthesized as previously described [234]. 
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Cell culture and isolation of primary sensory neurons. Human embryonic 

kidney (HEK293) cells stably transfected with the cDNA for human TRPA1 

(hTRPA1-HEK293), kindly donated by A.H. Morice (University of Hull, Hull, UK) or 

with the cDNA for human TRPV1 (hTRPV1-HEK293), kindly donated by Martin J. 

Gunthorpe (GlaxoSmithKline, Harlow, UK), and naive untransfected HEK293 cells 

(American Type Culture Collection, Manassas, VA, USA) were cultured as previously 

described [199]. HEK293 cells were transiently transfected with the cDNAs (1 µg) 

codifying for wild-type or mutant 3C/K-Q (C619S, C639S, C663S, K708Q) [184, 186] 

human TRPA1 using the jetPRIME transfection reagent (Euroclone, Milan, Italy) 

according to the manufacturer’s protocol. 

 Primary dorsal root ganglion (DRG) neurons were isolated from Sprague-

Dawley rats and C57BL/6 or Trpa1+/+ and Trpa1-/- adult mice, and cultured as 

previously described [250]. Briefly, ganglia were bilaterally excised under a dissection 

microscope and enzymatically digested using 2 mg/ml of collagenase type 1A and 1 

mg/ml of trypsin, for rat DRG neurons, or 1 mg/ml of papain, for mouse DRG 

neurons, in Hank's Balanced Salt Solution (HBSS) for 25-35 minutes at 37 °C. Rat and 

mouse DRG neurons were pelleted and resuspended in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% heat inactivated horse serum or Ham’s-

F12, respectively, containing 10% heat-inactivated fetal bovine serum (FBS), 100 

U/ml of penicillin, 0.1 mg/ml of streptomycin, and 2 mM L-glutamine for mechanical 

digestion. In this step, ganglia were disrupted by several passages through a series of 

syringe needles (23-25G). Neurons were then pelleted by centrifugation at 1200 g for 5 

minutes, suspended in medium enriched with 100 ng/ml mouse-NGF and 2.5 mM 

cytosine-b-D-arabino-furanoside free base, and then plated on 25 mm glass coverslips 

coated with poly-L-lysine (8.3 µM) and laminin (5 µM). DRG neurons were cultured 

for 3-4 days before being used for calcium imaging experiments. 

 

Calcium Imaging Assay. Intracellular calcium was measured in transfected and 

untransfected HEK293 cells or in DRG neurons, as previously reported [266]. Plated 

cells were loaded with 5 µM Fura-2AM-ester (Alexis Biochemicals, Lausen, 

Switzerland) added to the buffer solution (37 °C) containing the following (in mM): 2 

CaCl2; 5.4 KCl; 0.4 MgSO4; 135 NaCl; 10 D-glucose; 10 HEPES and 0.1% bovine 

serum albumin at pH 7.4. After 40 minutes, cells were washed and transferred to a 

chamber on the stage of a Nikon Eclipse TE-2000U microscope for recording. Cells 



Chapter IV – Matherial and methods 
 

79 
 

were excited alternatively at 340 nm and 380 nm to indicate relative intracellular 

calcium changes by the Ratio340/380 recorded with a dynamic image analysis system 

(Laboratory Automation 2.0, RCSoftware, Florence, Italy). Cells and neurons were 

exposed to exemestane, letrozole and anastrozole (1-300 µM), AITC (10-30 µM), 

menthol (100 µM), icilin (30 µM), or their vehicles (1.5-3 % dimetyl sulfoxide, 

DMSO). The calcium response to capsaicin (0.1 µM) was used to identify nociceptive 

neurons. The selective TRPA1 antagonist, HC-030031 (30 µM), and TRPV1 

antagonist, capsazepine (10 µM) or their vehicles (3% and 0.1% DMSO, respectively), 

were applied ten minutes before the stimuli. Results are expressed as or the percentage 

of increase of Ratio340/380 over the baseline normalized to the maximum effect induced 

by ionomycin (5 µM) added at the end of each experiment (% Change in R340/380) or 

Ratio340/380 . 

 

Electrophysiology. Whole-cell patch-clamp recordings were performed on 

hTRPA1-HEK293, vector-HEK293 cells or rat DRG neurons grown on a poly-L-

lysine-coated 13 mm-diameter glass coverslips. Each coverslip was transferred to a 

recording chamber (1 ml volume) mounted on the platform of an inverted microscope 

(Olympus CKX41, Milan, Italy) and superfused at a flow rate of 2 ml/min with a 

standard extracellular solution containing (in mM): 10 HEPES, 10 D-glucose, 147 

NaCl, 4 KCl, 1 MgCl2, and 2 CaCl2 (pH adjusted to 7.4 with NaOH). Borosilicate glass 

electrodes (Harvard Apparatus, Holliston, MA, USA) were pulled with a Sutter 

Instruments puller (model P-87) to a final tip resistance of 4-7 MΩ. Pipette solution 

used for HEK293 cells contained (in mM): 134 K-gluconate, 10 KCl, 11 EGTA, 10 

HEPES (pH adjusted to 7.4 with KOH). When recordings were performed on rat DRG 

neurons, 5 mM CaCl2 was present in the extracellular solution and pipette solution 

contained (in mM): CsCl 120, Mg2ATP 3, BAPTA 10, HEPES-Na 10 (pH adjusted to 

7.4 with CsOH). Data were acquired with an Axopatch 200B amplifier (Axon 

Instruments, CA, USA), stored and analyzed with a pClamp 9.2 software (Axon 

Instruments, CA, USA). All the experiments were carried out at 20-22°C. Cells were 

voltage-clamped at –60 mV. Cell membrane capacitance was calculated in each cell 

throughout the experiment by integrating the capacitive currents elicited by a ± 10 mV 

voltage pulse. In hTRPA1-HEK293 currents were detected as inward currents activated 

on cell superfusion with AITC (100 µM), exemestane (50-200 µM), letrozole (50-200 

µM) or anastrozole (50-200 µM) in the presence of HC-030031 (50 µM) or its vehicle 
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(0.5% DMSO). TRPV1 currents in rat DRG neurons were detected as inward currents 

activated by capsaicin (1 µM) in the presence of capsazepine (10 µM) or its vehicle 

(0.1% DMSO). To evaluate the potentiating effect of H2O2 or PAR2-AP on AIs-

activated currents, rat DRG neurons were superfused with H2O2 or PAR2-AP (both 100 

µM) 1 minute before and during the application of exemestane or letrozole (both, 20 

µM). Some experiments were performed in the presence of HC-030031 (50 µM) or its 

vehicle (0.5% DMSO). Peak currents activated by each compound were normalized to 

cell membrane capacitance and expressed as mean of the current density (pA/pF) in 

averaged results. Currents were evoked in the voltage-clamp mode at a holding 

potential of -60 mV; signals were sampled at 1 kHz and low-pass filtered at 10 kHz.  

 

Behavioral experiments. For behavioral experiments, after habituation and 

baseline of pain sensitivity measurements, mice were randomized into treatment 

groups. In a first series of experiments, we explored whether the injection (20 µl/paw) 

of exemestane (1, 5, 10 nmol) or letrozole (10, 20 nmol), or their vehicle (5% DMSO) 

induced, in C57BL/6 or Trpa1+/+ and Trpa1-/- mice, an acute nociceptive behavior and 

a delayed mechanical allodynia. In this set of experiments mechanical allodynia was 

measured just before (30 minutes) and 0.25, 0.5, 1, 2, 4, and 6 hours post injection. 

Some C57BL/6 mice were pretreated with HC-030031 (100 mg/kg, i.p.) or capsazepine 

(10 mg/kg, i.p.) or their respective vehicles (4% DMSO and 4% Tween20 in isotonic 

solution), 60 minutes and 30 minutes, respectively, before exemestane (10 nmol) or 

letrozole (20 nmol) i.pl. injection. Mechanical allodynia was measured 60 minutes after 

AIs i.pl. injection. 

In a second set of experiments, nociceptive behavior and mechanical allodynia 

were assayed before and after systemic administration of exemestane (5 mg/kg, i.p. or 

10 mg/kg, i.g.) and letrozole (0.5 mg/kg, i.p. or i.g.), or their vehicles (5% DMSO for 

i.p. or 0.5% carboxymethylcellulose, CMC, for i.g. administration), in C57BL/6 mice 

or Trpa1+/+ and Trpa1-/- mice. Mechanical allodynia was measured just before (30 

minutes) and 1, 3, 6, 24, 48 hours after injection. Some animals 2 hours after AI 

administration received HC-030031 (100 mg/kg, i.p.) or its vehicle (4% DMSO and 

4% Tween80 in isotonic solution), and mechanical allodynia and the forelimb grip 

strength were measured 1 and 3 hours after vehicle or HC-030031. In a third series of 

experiments, Trpa1+/+ and Trpa1-/- mice were treated i.p. once a day for 15 

consecutive days with exemestane or letrozole at the dose of 5 mg/kg or 0.5 mg/kg, 
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respectively, or with their vehicle (5% DMSO) and with i.g. exemestane or letrozole at 

the dose of 10 mg/kg or 0.5 mg/kg, respectively, or with their vehicle (0.5% CMC). 

Mechanical allodynia and the forelimb grip strength were measured 10 min before and 

1, 3, 6 and 24 hours post administration at day 1, 5, 10 and 15.  

To test whether PAR2 activation enhances the nocifensor behavior evoked by 

exemestane and letrozole, in another experimental setting, the PAR2 activating peptide 

(PAR2-AP), SLIGRL-NH2, (10 µg/10 µl i.pl.) or its reversed inactive form (PAR2-

RP), LRGILS-NH2, (10 µg/10 µl i.pl.), were injected in the right hind paw. Ten 

minutes after i.pl. PAR2-AP or PAR2-RP injection, mice received exemestane (10 

nmol/10 µl i.pl.) or letrozole (20 nmol/10 µl, i.pl.), or their vehicle (5% DMSO), in the 

plantar surface in the same paw injected with PAR2-AP or PAR2-RP, and the acute 

nociceptive behavior was recorded. In another series of experiments H2O2 (0.5 

µmol/10 µl, i.pl.) or its vehicle were injected and the acute nocifensor behavior to 

H2O2, which did not last longer than 5 min, was recorded for 10 min. Ten min after 

vehicle/H2O2, exemestane (10 nmol/10 µl i.pl.) or letrozole (20 nmol/10 µl, i.pl.) were 

injected in the same paw injected with H2O2 or vehicle and the acute nociceptive 

behavior in response to AIs was recorded. Three hours after systemic administration of 

exemestane (5 mg/kg, i.p.) or letrozole (0.5 mg/kg, i.p.) mice were locally injected 

with H2O2 (0.5 µmol/20 µl, i.pl.) or its vehicle and both acute nocifensor behavior and 

mechanical allodynia were recorded.  

Acute Nocifensive Response. AITC (10 nmol/paw), exemestane (10 nmol/paw), 

letrozole (20 nmol/paw) or their vehicles (5% DMSO), H2O2 (0.5 µmol/paw) or its 

vehicle (isotonic solution) and PAR2-AP or PAR2-RP (10 µg/paw)  (10 or 20 µl) were 

injected into the paw of C57BL/6, Trpa1+/+ and Trpa1-/- mice, and immediately after 

injection animals were placed in a plexiglas chamber. The total time spent licking and 

lifting the injected hind paw was recorded for 5 minutes as previously described [193]. 

Mechanical Stimulation (Von Frey Hair Test). Mechanical threshold was 

measured in C57BL/6, Trpa1+/+ and Trpa1-/- mice after both local (i.pl.) administration 

of AITC (10 nmol/paw), exemestane (10 nmol/paw), letrozole (20 nmol/paw) or their 

vehicles (5% DMSO), H2O2 (0.5 µmol/paw) or its vehicle (isotonic solution), and 

systemic (i.p.) administration of exemestane (5 mg/kg, i.p.) or letrozole (0.5 mg/kg, 

i.p.) at different time points by using the up-and-down paradigm [233]. Mechanical 

nociceptive threshold was determined before (basal level threshold) and after different 
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treatments. The 50% mechanical paw withdrawal threshold response (in g) was then 

calculated from these scores, as previously described [233, 251]. 

Forelimb Grip Strength Test. The grip strength test was performed with a grip 

strength meter (Ugo Basile, Varese, Italy), as previously reported [267]. Mice were 

allowed to grasp a triangular ring attached to a force transducer and gently pulled away 

by the base of the tail until the grip was broken. The test was repeated 4 times and the 

mean peak force values (g) were calculated for each animal. The grip strength was 

measured in C57BL/6, Trpa1+/+ and Trpa1-/- mice 10 min before and 1, 3, 6 and 24 

hours post AI administration.  

 

Paw Oedema. AITC (10 nmol/paw), exemestane (10 nmol/paw), letrozole (20 

nmol/paw) or their vehicles (5% DMSO) (all 20 µl) were injected into the paw of 

C57BL/6, Trpa1+/+ and Trpa1-/- mice and paw thickness was measured to determine the 

development and severity of oedema in the hind paws. Some animals received HC-

030031 (100 mg/kg, i.p.), a combination of L-733,060 and CGRP8-37 (both, 2 

µmol/kg, i.v.), or their vehicles (4% DMSO and 4% Tween20 in isotonic solution for 

HC-030031, and isotonic solution for L-733,060 and CGRP8-37) prior to stimuli. An 

engineer’s micrometer, with 0.01 mm accuracy (Harvard Apparatus, Kent, UK) was 

used to measure the paw thickness in millimeters (mm), before and after (60 and 120 

minutes) the i.pl. injection with tested agents by an investigator blinded to treatments. 

Data were expressed as the increase in mm in paw thickness. 

 

CGRP-Like Immunoreactivity (LI) assay. For neuropeptide release 

experiments, 0.4 mm slices of rat and Trpa1+/+ or Trpa1-/- mouse spinal cords were 

superfused with an aerated (95% O2 and 5% CO2) Krebs solution containing (in mM): 

119 NaCl, 25 NaHCO3, 1.2 KH2PO4, 1.5 MgSO4, 2.5 CaCl2, 4.7 KCl, 11 D-glucose; the 

solution was maintained at 37°C, and was added with 0.1% bovine serum albumin, and, 

to minimize peptide degradation, with the angiotensin converting enzyme inhibitor, 

captopril (1 µM), and the neutral endopeptidase inhibitor, phosphoramidon (1 µM). 

Tissues were stimulated with exemestane, letrozole or anastrozole (all 100 µM) or their 

vehicles (0.05% DMSO) dissolved in the Krebs solution. Some tissues were pre-

exposed to capsaicin (10 µM, 20 minutes) or pretreated with HC-030031 (50 µM). 

Fractions (4 ml) of superfusate were collected at 10-minute intervals before, during, and 

after administration of the stimulus and then freeze-dried, reconstituted with assay 
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buffer, and analyzed for CGRP-like immunoreactivity (LI) by an ELISA assay kit 

(Bertin Pharma, Montigny le Bretonneux, France). CGRP-LI was calculated by 

subtracting the mean pre-stimulus value from those obtained during or after stimulation. 

Detection limits of the assays were 5 pg/ml. Results are expressed as femtomoles of 

peptide per g of tissue per 10 minutes.  

In another set of experiments, exemestane (5 nmol/50 µl) and letrozole (10 

nmol/50 µl) or their vehicle (1% DMSO) were i.a. injected in anesthetized (sodium 

pentobarbital, 50 mg/kg i.p.) rats. Ten minutes after injection, rats were sacrificed and 

the knee joint was dissected [268]. CGRP-LI was measured in the synovial fluid lavage 

added with captopril (1 µM) and phosphoramidon (1 µM) by using the ELISA assay kit 

as previously described [268]. Detection limits of the assays were 5 pg/ml. Results are 

expressed as femtomoles of peptide per g of tissue per 20 minutes in the spinal cord 

experiments or pg/ml in the rat synovial fluid. 

 

Assay of Exemestane and Letrozole by Liquid Chromatography-Mass 

Spectrometry. Blood samples (100 µl) were obtained by venepuncture of the tail vein 

from each mouse at different time points (0.25, 0.5, 1, 3, 6 and 24 hours) after i.g. 

administration of exemestane (10 mg/kg) or letrozole (0.5 mg/kg). Blood samples were 

dropped on a filter paper (903® Whatman GmbH, Dassel, Germany) to obtain dried 

blood spots (DBS) [269] which were punched, obtaining a 6.0 mm diameter disk, 

containing approximately 6 µl of blood. DBS, transferred into a 2 ml Eppendorf vial 

were extracted with 200 µl of methanol:water (95:5, v/v) containing 0.1% acetic acid 

and the appropriate internal standard (for letrozole and exemestane quantification, 

extracting solutions contained 5 µg/l of anastrozole or 2 µg/l of letrozole, respectively) 

and after shaking with an orbital shaker for 25 min at 37°C, solutions were dried under 

a gentle nitrogen stream. Residues were reconstituted with 40 µl water containing 0.1% 

of acetic acid. 

Samples were measured using a 1290 Infinity liquid chromatograph (LC, 

Agilent Technologies, Waldbronn, Germany) coupled to a QTRAP 5500 (AB SCIEX, 

Toronto, Canada) equipped with the Turbo Ion Spray source operating in positive ion 

mode. The capillary voltage was set to 5 kV. Heated turbo gas (400°C, air) at a flow 

rate of 10.0 l/min was used. The transitions (quantifier and qualifier) recorded in 

Multiple Reaction Monitoring (MRM) mode were: 286.1>217.1 and 286.1>190.1 for 

letrozole, 294.1>225.1 and 294.1>210.1 for anastrozole and 297.1>121.0 and 
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297.1>93.1 for exemestane. The LC column was a Gemini C6-Phenyl (100 x 2 mm, 3 

µm) with the corresponding 4x2 mm SecurityGuardTM cartridge (Phenomenex, 

Torrance, CA), operated at 0.3 ml/min. Eluent A (water + 0.1% acetic acid) and B 

(acetonitrile) were used. The gradient elution program was as follows: 20% B 

maintained for 2 min, then to 90% B in 7 min, back to 20% B in 1 min and re-

equilibrated for a 20 min total run time. Anastrozole, exemestane and letrozole 

retention times were 6.12, 6.31 and 7.45 min, respectively. Four µl of the extracted 

sample were injected for LC-MS/MS assays. System control and data acquisition were 

done by Analyst 1.5.1 software and calibration curves were calculated using the non-

weighted linear least-square regression of Analyst Quantitation program (AB SCIEX, 

Toronto, Canada). 

Calibration curves were constructed for both exemestane and letrozole, using 

the appropriate internal standard. Whole blood from control mouse was spiked with 

different concentrations of exemestane (from 2 to 100 µg/l) or letrozole (from 10 to 200 

µg/l). A 20 µl volume for each fortified blood sample was spotted on filter paper (DBS) 

and then treated as described in sample preparation. Each calibration curve was 

prepared in duplicate. Satisfying linearity was obtained for the two analytes (letrozole, 

r=0.996; exemestane, r=0.998). Each analytical batch included a double blank sample 

(without internal standard), a blank sample (with internal standard), five or six standard 

concentrations for calibration curve, and a set of treated mouse samples (each prepared 

in duplicate). LC-MS grade acetic acid, methanol, water and acetonitrile were supplied 

by Sigma Aldrich (Milan, Italy). 

 

Statistical Analysis Data represent mean ± SEM or confidence interval (CI). 

Statistical analysis was performed by the unpaired two-tailed Student’s t-test for 

comparisons between two groups, the ANOVA, followed by the Bonferroni post-hoc 

test for comparisons between multiple groups. Agonist potency was expressed as half 

maximal effective concentration (EC50), that is, the molar concentration of agonist 

producing 50% of the maximum measured effect, and 95% confidence interval (CI). 

P<0.05 was considered statistically significant (GraphPadPrism version 5.00, San 

Diego, CA). 
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4.2 Results  

 

4.2.1 Aromatase inhibitors selectively activate TRPA1 channels 

 

 To explore whether AIs gate the human TRPA1 channel, we first used cells 

stably transfected with human TRPA1 cDNA (hTRPA1-HEK293). In hTRPA1-

HEK293 cells, which respond to the selective TRPA1 agonist AITC (30 µM), but not 

in untransfected HEK293 cells, the three AIs, exemestane, letrozole, and anastrozole 

evoked concentration-dependent calcium responses that were inhibited by the selective 

TRPA1 antagonist, HC-030031 (30 µM) [214] (Fig. IV-1a,b,c). EC50 of AIs ranged 

between 58 and 134 µM (Fig. IV-1b). The calcium response was abated in a calcium-

free medium, thus supporting the hypothesis that the increase in intracellular calcium 

originates from extracellular sources (Supplementary Fig. 1a). In HEK293 cells stably 

transfected with human TRPV1 cDNA (hTRPV1-HEK293) all AIs (100 µM) were 

ineffective (Supplementary Fig. 1b). Key aminoacid residues are required for channel 

activation by electrophilic TRPA1 agonists [184-186]. Notably, HEK293 cells 

expressing a mutated TRPA1 channel (3C/K-Q), which presents substitutions of three 

cysteine with serine (C619S, C639S, C663S) and one lysine with glutamine (K708Q) 

residues, were insensitive to both AITC [184, 186] and all three AIs, while maintaining 

sensitivity to the non-electrophilic agonists, menthol [263] or icilin [185] (Fig. IV-1d 

and Supplementary Fig 1c). This finding supports the hypothesis that the ability of AIs 

to target TRPA1 derives from their electrophilic nature. Electrophysiology 

experiments recapitulated findings obtained by means of the calcium assay. 

Exemestane, letrozole, and anastrozole selectively activated a concentration-dependent 

inward current in hTRPA1-HEK293 cells, a response that was abated by HC-030031 

(Supplementary Fig. 1d). AIs did not evoke any current in untransfected HEK293 cells 

(Supplementary Fig. 1d). 
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Figure IV-1. Exemestane (EXE), letrozole (LTZ) and anastrozole (ANA) selectively activate the 

human TRPA1 channel. (a) Representative traces of intracellular calcium response evoked by the 
aromatase inhibitors (AIs), EXE (100 µM), LTZ (100 µM) and ANA (100 µM), in HEK293 cells 
transfected with the cDNA for human TRPA1 (hTRPA1-HEK293) which respond to the selective TRPA1 
agonist, allyl isothiocyanate (AITC; 30 µM). AITC (30 µM), EXE, LTZ, and ANA (all 100 µM) fail to 
produce any calcium response in untransfected-HEK293 cells (HEK293). (b) Concentration-response 
curves to EXE, LTZ and ANA, yielded EC50 (95% confidence interval) of 58 (46-72) µM, 69 (43-109) 
µM, and 134 (96-186) µM, respectively. (c) AI-evoked calcium response in hTRPA1-HEK293 is 
abolished by the selective TRPA1 antagonist, HC-030031 (HC; 30 µM). (d). Representative traces of 
cells transfected with the cDNA codifying for the mutant hTRPA1 channel (3C/K-Q), which are 
insensitive to AITC (30 µM) or AIs (100 µM), but respond to the non-electrophilic agonist, menthol (100 
µM), whereas HEK293 cells transfected with the cDNA codifying for wild type hTRPA1 (WT) respond 
to all the drugs. Veh is the vehicle of AIs; dash (-) indicates the vehicle of HC. Each point or column 
represents the mean ± s.e.m. of at least 25 cells from 3-6 independent experiments. §P<0.05 vs. Veh, 
*P<0.05 vs. EXE, LTZ or ANA group; ANOVA and Bonferroni post hoc test. 
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Next, to verify whether exemestane, letrozole and anastrozole stimulate 

nociceptive sensory neurons via TRPA1 activation, we used primary culture of both rat 

and mouse dorsal root ganglion (DRG) neurons. Similar to AITC [186], all AIs 

produced a concentration-dependent calcium response (Fig. IV-2a,b) in a proportion 

(about 30%) of cells that responded to the selective TRPV1 agonist, capsaicin (0.1 

µM). All cells responding to AIs, but none of the non-responding cells, invariably 

responded to a subsequent high concentration of AITC (30 µM) (Fig. IV-2a), further 

documenting TRPA1 as the target of AIs. In rat DRG neurons, EC50 ranged between 

78 and 135 µM (Fig. IV-2b). Calcium responses evoked by the three AIs were abated 

by HC-030031 (30 µM), but were unaffected by the selective TRPV1 antagonist, 

capsazepine (10 µM) (Fig. IV-2c). Notably, AITC and all AIs produced a calcium 

response in capsaicin-sensitive DRG neurons isolated from wild type (Trpa1+/+) mice, 

an effect that was absent in neurons obtained from TRPA1-deficient (Trpa1-/-) mice 

(Typical traces Fig. IV-2d and pooled data Fig IV-2e). 
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Figure IV-2. Exemestane (EXE), letrozole (LTZ) and anastrozole (ANA) selectively activate the 

native TRPA1 channel expressed in rodent dorsal root ganglion (DRG) neurons. (a) Representative 
traces of calcium response evoked by EXE (100 µM), LTZ (100 µM), ANA (300 µM) in cultured rat 
DRG neurons which also respond to allyl isothiocyanate (AITC; 30 µM) and capsaicin (CPS; 0.1 µM). 
Calcium responses evoked by AIs and AITC are abolished by the selective TRPA1 antagonist, HC-
030031 (HC; 30 µM), which does not affect response to CPS. (b) Concentration-response curves of EXE, 
LTZ, and ANA, yielded EC50 (95% confidence interval) of 82 (61-108) µM, 78 (39-152) µM, and 135 
(78-231) µM, respectively. (c) Calcium responses induced by AIs are inhibited by HC and unaffected by 
the TRPV1 antagonist, capsazepine (CPZ; 10 µM). §P<0.05 vs. Veh, *P<0.05 vs. EXE, LTZ or ANA; 
ANOVA and Bonferroni post hoc test. (d) Representative traces and (e) pooled data of the calcium 
response evoked by EXE, LTZ, ANA (all 100 µM) or AITC (30 µM), in neurons isolated from Trpa1+/+ 
mice. Neurons isolated from   Trpa1-/- mice do not respond to AITC, EXE, LTZ and ANA, whereas they 
do respond normally to CPS (0.1 µM). In DRG neurons isolated from both Trpa1+/+ and Trpa1-/- mice, 
calcium response is evaluated only in capsaicin responding neurons.  §P<0.05 vs. Veh, *P<0.05 vs. EXE, 
LTZ, ANA or AITC-Trpa1+/+, ANOVA and Bonferroni post hoc test. Veh is the vehicle of AIs; dash (-) 
indicates the combination of the vehicles of HC and CPZ. Each point or column represents the mean ± 
s.e.m. of at least 25 neurons obtained from 3-7 independent experiments.  
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4.2.2 AIs activate nociceptive and hyperalgesic TRPA1-dependent pathways 

 

 It has been well documented that local exposure to TRPA1 agonists in 

experimental animals is associated with an immediate nociceptive response, lasting for 

a few minutes, and a delayed more prolonged mechanical allodynia [180, 186]. To 

investigate whether AIs activate such a nociceptive and hyperalgesic TRPA1-

dependent pathway, we used one steroidal (exemestane) and one non-steroidal 

(letrozole) AI. Given the chemical similarity and the hypothesized analogous 

mechanism of the two non-steroidal AIs, to minimize the number of animals used, 

anastrozole was not investigated in the following in vivo experiments. Intraplantar 

(i.pl.) injection (20 µl/paw) of exemestane (1, 5, and 10 nmol) (Supplementary Fig. 

S2a) or letrozole (10, 20 nmol) (Supplementary Fig. 2e) evoked an acute (0-5 min) 

nociceptive response and a delayed (15-120 min for exemestane and 15-240 min for 

letrozole) mechanical allodynia in C57BL/6 mice (Supplementary Fig. 2c,g). Both the 

nociceptive response and mechanical allodynia evoked by AIs were confined to the 

treated paw (Supplementary Fig. 2c,g) and were almost completely prevented by 

intraperitoneal (i.p.) pretreatment with HC-030031 (100 mg/kg), but not with 

capsazepine (4 mg/kg) (Supplementary Fig. 2b,d,f,h). Furthermore, similar to results 

obtained in C57BL/6 mice, local injection (i.pl.) of exemestane or letrozole in Trpa1+/+ 

mice evoked an early nociceptive response and a delayed mechanical allodynia 

(Supplementary Fig. 2i,j). Trpa1-/- mice did not develop such responses 

(Supplementary Fig. 2i,j). Thus, by using both pharmacological and genetic tools, we 

demonstrated that local administration of both steroidal and non-steroidal AIs produces 

a typical TRPA1-dependent behavior, characterized by acute nociception and delayed 

mechanical allodynia. 

 

4.2.3 AIs produce neurogenic oedema by releasing sensory neuropeptides. 

 TRPA1 is expressed by peptidergic nociceptors, and its stimulation is associated 

with proinflammatory neuropeptide release and the ensuing neurogenic inflammatory 

responses [186, 234]. First, we explored whether AIs are able to directly promote the 

release of CGRP (one of the proinflammatory neuropeptides, which are usually co-

released upon stimulation of peptidergic nociceptors) [6, 270] via a TRPA1-dependent 

pathway. AIs increased CGRP outflow from slices of rat dorsal spinal cord (an 

anatomical area enriched with central terminals of nociceptors). This effect was 
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substantially attenuated in rat slices pretreated with a desensitizing concentration of 

capsaicin (10 µM, 20 min) or in the presence of HC-030031 (Fig. IV-3a). The increase 

in CGRP outflow observed in slices obtained from Trpa1+/+ mice was markedly 

reduced in slices obtained from Trpa1-/- mice (Fig. IV-3b).  

These neurochemical data were corroborated by functional experiments. 

Injection (i.pl.) of the TRPA1 agonist, AITC (10 nmol/paw), induced paw edema that 

peaked at 60 min after injection. The response was abated by treatment with HC-

030031 (100 mg/kg, i.p.) or a combination of the SP neurokinin-1 (NK-1) receptor 

antagonist, L-733,060, and the CGRP receptor antagonist, CGRP8-37 (both, 2 

µmol/kg, intravenous, i.v.) (Fig. IV-3c). Similarly, we found that i.pl. administration of 

exemestane (10 nmol/paw) and letrozole (20 nmol/paw) caused paw edema that 

peaked at 60 minutes and faded 120 minutes after injection (Fig. IV-3c, insets). 

Treatment with HC-030031 (100 mg/kg, i.p.) or a combination of L-733,060 and 

CGRP8-37 (both, 2 µmol/kg, i.v.), markedly reduced the AI-evoked edema (Fig. IV-

3c). No edema was found in the paw contralateral to that injected with AIs 

(Supplementary Fig. 2k). Importantly, the edema produced in Trpa1+/+ mice by 

exemestane and letrozole was markedly attenuated in Trpa1-/- mice (Fig. IV-3d). Next, 

to directly evaluate the ability of AIs to release CGRP from peripheral terminals of 

peptidergic nociceptors, AIs were administered to the rat knee joint. Intraarticular (i.a., 

50 µl) injection of exemestane (5 nmol) or letrozole (10 nmol) increased CGRP levels 

in the synovial fluid, an effect that was markedly attenuated by pretreatment with HC-

030031 (100 mg/kg, i.p.) (Fig. IV-3e). Neurochemical and functional data indicate that 

AIs by TRPA1 activation release sensory neuropeptides from sensory nerve endings, 

and by this mechanism promote neurogenic inflammatory responses in the innervated 

peripheral tissue.  
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Figure IV-3. Aromatase inhibitors release calcitonin gene-related peptide (CGRP) and produce 

neurogenic edema. (a) Exemestane (EXE), letrozole (LTZ) and anastrozole (ANA) (all 100 µM) 
increase the CGRP-like immunoreactivity (CGRP-LI) outflow from slices of rat dorsal spinal cord. This 
effect is prevented by HC-030031 (HC; 30 µM) or after exposure to capsaicin (10 µM, 20 minutes; CPS-
des). (b) EXE, LTZ and ANA (all 100 µM) increase the CGRP-LI outflow from spinal cord slices 
obtained from Trpa1+/+, but not from Trpa1-/- mice. Results are mean ± s.e.m. of at least 4 independent 
experiments. Veh is the vehicle of EXE, LTZ and ANA, dash (-) indicates the vehicle of HC and CPS. 
§P<0.05 vs. Veh, *P<0.05 vs. EXE, LTZ or ANA; ANOVA followed by Bonferroni post hoc test. 
#P<0.05 vs. EXE-, LTZ-, ANA-Trpa1+/+, Student’s T test. (c) In C57BL/6 mice intraplantar (i.pl.) 
injection (20 µl) of EXE (10 nmol), LTZ (20 nmol) or allyl isothiocyanate (AITC; 10 nmol) induces paw 
edema, which peaks at 60 minutes and fades 120 minutes after injection (c, upper insets), and is 
attenuated by pretreatment with HC (100 mg/kg intraperitoneal, i.p.) or the combination of the selective 
antagonists of the neurokinin-1 receptor, (NK1-RA), L-733,060, and of the CGRP receptor (CGRP-RA), 
CGRP8-37, (both, 2 µmol/kg, intravenous). (d) Paw edema induced by EXE, LTZ and AITC (i.pl.) in 
Trpa1+/+ mice is markedly reduced in Trpa1-/- mice. BL, baseline level. Results are mean ± s.e.m. of at 
least 5 mice for each group. Veh is the vehicle of EXE, LTZ and AITC. #P<0.05 vs. Veh, Student’s T 
test; §P<0.05 vs. BL values, *P<0.05 vs. EXE, LTZ, AITC or EXE-, LTZ-, AITC-Trpa1+/+; ANOVA 
followed by Bonferroni post hoc test. (e) Injection (50 µl) of EXE (5 nmol) or LTZ (10 nmol) in the rat 
knee increases CGRP-LI levels in the synovial fluid, an effect that is markedly attenuated by 
pretreatment with HC (100 mg/kg, i.p.). Results are mean ± s.e.m. of at least 5 mice for each group. Veh 
is the vehicle of EXE and LTZ, dash (-) indicates the vehicle of HC. §P<0.05 vs. Veh, *P<0.05 vs. EXE, 
LTZ; ANOVA followed by Bonferroni post hoc test.  
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4.2.4 Systemic AIs induce prolonged pain-like effects by targeting TRPA1 

   

 AIs are given to patients by a systemic route of administration. Therefore, we 

explored in mice whether intraperitoneal (i.p.) or intragastric (i.g.) administration of 

exemestane and letrozole could produce pain-like effects via TRPA1 activation. For i.p. 

administration experiments, doses, corresponding to those used in humans, were 

selected according to the mouse to human conversion factor indicated by the National 

Institute of Health [271]. Exemestane (5 mg/kg, i.p.) or letrozole (0.5 mg/kg, i.p) 

injection did not produce any visible nociceptive behavior (Supplementary Fig. 3a, and 

Supplementary Fig. 4a, insets) in mice. However, 3 hours after exemestane or letrozole 

administration, mice developed a prolonged (3 hours) mechanical allodynia 

(Supplementary Fig. 3a and Supplementary Fig. 4a) and a reduction in forelimb grip 

strength (Supplementary Fig. 3c and Supplementary Fig. 4c), a test used in its clinical 

version for the study of musculoskeletal pain in patients [272]. When mechanical 

allodynia by exemestane or letrozole was at its maximum, systemic HC-030031 

administration (100 mg/kg, i.p.) transiently reverted both responses (Supplementary 

Fig. 3b,d and Supplementary Fig. 4b,d). Furthermore, mechanical allodynia and the 

reduction in forelimb grip strength produced by exemestane and letrozole in Trpa1+/+ 

mice were markedly reduced in Trpa1-/- mice (Supplementary Fig. 3e,f and 

Supplementary Fig. 4e,f). In experiments where AIs were given by intragastric (i.g.) 

gavage, doses were adjusted considering the oral bioavailability in humans, which is 

99% for letrozole [273], and 40% (with food) for exemestane [274]. First, we found 

that after i.g. administration of exemestane (10 mg/kg) or letrozole (0.5 mg/kg) their 

peak plasma levels (13.2 ± 1.7 ng/ml, n=5; and 60.5 ± 12.1 ng/ml, n=5, respectively) 

(Supplementary Fig. 5) approximated the maximum plasma concentrations found in 

humans [273, 275]. Second, results similar to those obtained after i.p. administration 

were reported when AIs were given by i.g. gavage. First, exemestane (10 mg/kg, i.g.) 

or letrozole (0.5 mg/kg, i.g.) ingestion was not associated with any spontaneous 

nocifensor behavior (Fig. IV-4a and IV-5a, insets). Second, exemestane or letrozole 

produced, with a similar time-course, mechanical allodynia and a marked reduction in 

forelimb grip strength (Fig. IV-4a,c and Fig. IV-5a,c). Pretreatment with HC-030031 or 

deletion of TRPA1 (Trpa1-/- mice) significantly attenuated both responses (Fig. IV-

4b,d,e,f  and Fig. IV-5b,d,e,f).  
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 Furthermore, since in clinical practice patients are treated with AIs on a daily 

basis over very long periods of time (up to 5 years), we asked whether exemestane or 

letrozole maintain the ability to evoke a TRPA1-dependent mechanical 

hypersensitivity and decreased grip strength upon repeated administration. In Trpa1+/+ 

mice, treatment with systemic exemestane (5 mg/kg, i.p.) or letrozole (0.5 mg/kg i.p) 

(both once a day for 15 consecutive days) produced at day 1, 5, 10 and 15 a transient 

(from 1 to 6 hours) and reproducible mechanical allodynia (Supplementary Fig. 3e and 

Supplementary Fig. 4e). Importantly, in Trpa1-/- the proalgesic action of AIs was 

markedly attenuated (Supplementary Fig. S3e and Supplementary Fig. S4e). In 

addition, the decrease in the grip strength was maintained, without undergoing 

desensitization, over the entire time period of daily i.p. administration of exemestane 

or letrozole (Supplementary Fig. 3f and Supplementary Fig. 4f). Both these effects of 

AIs were significantly reduced in Trpa1-/- mice (Supplementary Fig. 3f and 

Supplementary Fig. 4f). Similar results were obtained after i.g. administration of 

exemestane or letrozole (once a day for 15 consecutive days at the dose of 10 mg/kg 

i.g. or 0.5 mg/kg i.g., respectively). Both mechanical allodynia and decreased grip 

strength were observed, without signs of desensitization, over the 15 days of 

observation in Trpa1+/+ mice, but were markedly reduced in Trpa1-/- mice (Fig. IV-4e,f  

and Fig. IV-5e,f). Altogether, the present data demonstrate that both steroidal and non-

steroidal third-generation AIs induce a series of pain-like effects predominantly via a 

TRPA1-dependent mechanism, effects that over time do not undergo desensitization, 

thus mimicking the chronic clinical condition. 
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Figure IV-4. Intragastric exemestane (EXE) induces TRPA1-dependent prolonged mechanical 

allodynia and reduction in forelimb grip strength in mice. In C57BL/6 mice intragastric (i.g.) 
administration of EXE (10 mg/kg) induces (a) mechanical allodynia and (c) a reduction in forelimb grip 
strength that last 3-6 hours after administration. EXE does not produce any acute nocifensor behavior as 
measured by the indicated test (a, inset). (b,d) Three hours after EXE administration, HC-030031 (HC; 
100 mg/kg i.p.) reverts both mechanical allodynia and the reduction in forelimb grip strength. HC 
inhibition is no longer visible 3 hours after its administration. Veh is the vehicle of EXE. #P<0.05 vs. Veh; 
Student’s T test (a,c) and §P<0.05 vs. Veh and *P<0.05 vs. Veh HC-EXE; ANOVA followed by 
Bonferroni post hoc test (b,d). (e,f) EXE (once a day for 15 consecutive days, 10 mg/kg i.g.) induces 
reproducible mechanical allodynia and decrease in forelimb grip strength at day 1, 5, 10 and 15 in 
Trpa1+/+ mice. Arrows indicate Veh or EXE administration. Both these effects are markedly reduced in 
Trpa1-/- mice. §P<0.05 vs. Veh-Trpa1+/+, *P<0.05 vs. EXE-Trpa1+/+; ANOVA followed by Bonferroni 
post hoc test. Results are mean ± s.e.m. of at least 5 mice for each group. In all conditions, baseline (BL) 
levels were recorded 30 minutes before EXE administration.  
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Figure IV-5. Intragastric letrozole (LTZ) induces TRPA1-dependent prolonged mechanical 

allodynia and reduction in forelimb grip strength in mice. In C57BL/6 mice intragastric (i.g.) 
administration of LTZ (0.5 mg/kg) induces (a) mechanical allodynia and (c) reduction in forelimb grip 
strength that last 3-6 hours after administration. LTZ does not produce any acute nocifensor behavior as 
measured by the indicated test (a, inset). (b,d) Three hours after LTZ administration, HC-030031 (HC; 
100 mg/kg i.p.) reverts both mechanical allodynia and the reduction in forelimb grip strength. HC 
inhibition is no longer visible 3 hours after its administration. Veh is the vehicle of LTZ. #P<0.05 vs. 
Veh; Student’s T test (a,c) and §P<0.05 vs. Veh and *P<0.05 vs. Veh HC-LTZ; ANOVA followed by 
Bonferroni post hoc test (b,d). (e,f) LTZ (once a day for 15 consecutive days, 0.5 mg/kg i.g.) induces 
reproducible mechanical allodynia and decrease in forelimb grip strength at day 1, 5, 10 and 15 in 
Trpa1+/+ mice. Arrows indicate Veh or LTZ administration. Both effects are markedly reduced in Trpa1-/- 

mice. §P<0.05 vs. Veh-Trpa1+/+, *P<0.05 vs. LTZ-Trpa1+/+; ANOVA followed by Bonferroni post hoc 
test. Results are mean ± s.e.m. of at least 5 mice for each group. In all conditions baseline (BL) levels 
were recorded 30 minutes before LTZ administration. 
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4.2.5 AI-evoked TRPA1 activation is enhanced by proinflammatory stimuli 

Although it affects a large proportion of subjects, not all patients treated with 

AIs develop AIMSS. One possible explanation for the peculiar susceptibility to AIMSS 

of some patients is that, if TRPA1 activation is a necessary prerequisite, per se it is not 

sufficient, and additional proalgesic factors must contribute to the development of pain 

symptoms. It has been reported that stimulation of proalgesic pathways exaggerates 

TRPA1-dependent responses in vitro and in vivo [156, 212]. One example of such 

potentiating action has been reported for the proteinase-activated receptor-2 (PAR2), 

whose subthreshold activation results in an exaggerated response to the TRPA1 agonist, 

AITC [212]. PAR2 undergoes activation upon a unique proteolytic mechanism by 

cleavage of its tethered ligand domain by trypsin and other proteases, thus mediating 

inflammation and hyperalgesia [276]. On this basis, and following a previously reported 

protocol [212], we explored, by in vivo functional experiments in C57BL/6 mice, 

whether PAR2 activation exaggerates TRPA1-dependent hypersensitivity induced by 

AIs. Prior (10 minutes) injection (i.pl.) of the PAR2 activating peptide (AP) (PAR2-AP, 

1 µg/paw), but not the reverse peptide (RP) (PAR2-RP, 1 µg/paw, inactive on PAR2), 

markedly enhanced the duration of licks and flinches of the hind paw produced by local 

injection (i.pl.) of exemestane (1 nmol/paw) and letrozole (10 nmol/paw) (Fig. IV-6a). 

The injected dose of PAR2-AP, as well as PAR2-RP, did not cause per se any visible 

acute nocifensor response (Fig. IV-6a). The exaggerated responses to the combination 

of PAR2-AP and exemestane or letrozole were inhibited by HC-030031 (100 mg/kg, 

i.p.) (Fig. IV-6a). 

We also tested the ability of a recognized endogenous TRPA1 agonist, H2O2 

[175, 190] to increase the nocifensor response of exemestane or letrozole. In addition, 

we explored the ability of AIs to increase either nociception or mechanical allodynia to 

H2O2. H2O2 (0.5 µmol/paw) injection produced a transient nocifensor behavior that 

terminated within 5 min (Fig. IV-6b, inset). We found that 10 min after H2O2 injection 

(when baseline levels of nociception were restored) administration of exemestane (1 

nmol/paw) and letrozole (10 nmol/paw) evoked nociceptive responses markedly 

increased as compared to vehicle-pretreated mice (Fig. IV-6b). The exaggerated 

responses to AIs were inhibited by HC-030031 (Fig. IV-6b). Thus, both homologous 

activation of the channel by the TRPA1 agonist H2O2, or heterologous stimulation of a 

classical proinflammatory pathway, such as PAR2, converge in a final common 

pathway, which results in the potentiation of the AI-evoked and TRPA1-dependent 
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proalgesic mechanism. In the attempt to understand the mechanism underlying the in 

vivo potentiation between PAR2 or H2O2 and AIs, cultured DRG neurons were 

challenged with combinations of these same agents. First, in in vitro 

electrophysiological experiments, we found that AITC, exemestane and letrozole (all 

100 µM) produced inward currents in cultured DRG neurons, effects that were abated in 

the presence of HC-030031 (50 µM). However, HC-030031 did not affect the inward 

current produced by capsaicin (Fig. IV-6c). Second, we showed that pre-exposure to 

subthreshold concentrations of PAR2-AP or H2O2 enhanced currents evoked by 

subthreshold concentrations of either exemestane or letrozole (both 20 µM) (Typical 

traces Fig. IV-6d and pooled data Fig IV-6e).  Third, HC-030031 inhibited the 

exaggerated responses (Fig IV-6e). 
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 Figure IV-6. TRPA1-activation by exemestane (EXE) and letrozole (LTZ) is enhanced by 

proinflammatory stimuli. (a) Intraplantar (i.pl.; 10 µl) pretreatment (10 minutes) with the proteinase-
activated receptor 2 (PAR2) activating peptide (AP; 1 µg), but not with the inactive PAR2 reverse peptide 
(RP; 1 µg), enhances nocifensor behavior produced by EXE (1 nmol/10 µl, i.pl.) or LTZ (10 nmol/10 µl, 
i.pl.). AP and RP alone cause negligible nociception. The potentiated responses to EXE or LTZ are 
markedly attenuated by HC-030031 (HC; 100 mg/kg, i.p.). (b) H2O2 (0.5 µmol/10 µl, i.pl.) injection 
produces a transient nocifensor behavior, lasting only 5 minutes (b, inset). Pretreatment (10 minutes 
before AI administration) with H2O2 (0.5 µmol/10 µl, i.pl.) increases nocifensor behavior produced by 
EXE (1 nmol/10 µl, i.pl.) or LTZ (10 nmol/10 µl, i.pl.). HC (100 mg/kg, i.p.) inhibits the exaggerated 
responses to both EXE and LTZ. Dash (-) indicates the vehicle of HC. Points or columns are mean ± 
s.e.m. of at least 5 mice for each group. §P<0.05 vs. RP or AP or Veh H2O2; †P<0.05 vs. Veh AP/EXE or 
Veh AP/LTZ or Veh H2O2/EXE or Veh H2O2/LTZ; *P<0.05 vs. AP/EXE or AP/LTZ or H2O2/EXE or 
H2O2/LTZ; ANOVA followed by Bonferroni post hoc test.  #P<0.05 vs. Veh H2O2, Student’s T test. (c) 
An active concentration of EXE or LTZ (both 100 µM) evokes inward currents in rat dorsal root ganglion 
(DRG) neurons, which also respond to allyl isothiocyanate (AITC; 100 µM) and capsaicin (CPS; 1 µM). 
Inward currents evoked by EXE, LTZ or AITC are inhibited in the presence of HC (50 µM), which does 
not affect CPS-evoked currents. Typical traces (d) and pooled data (e) showing that pre-exposure to AP 
(100 µM) or H2O2 (100 µM) exaggerates currents evoked by a subthreshold concentration of EXE and 
LTZ (both 20 µM). The inactive RP does not affect responses to EXE or LTZ (both 20 µM). The 
potentiated responses to EXE or LTZ are markedly attenuated by HC (50 µM). Veh is the vehicle of 
EXE, LTZ and AITC. Results are mean ± s.e.m. of at least 5 independent experiments. §P<0.05 vs. Veh, 
*P<0.05 vs. EXE, LTZ or AITC and †P<0.05 vs. EXE- or LTZ-AP and EXE- or LTZ-H2O2; ANOVA 
followed by Bonferroni post hoc test.  
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4.3 Discussion 

 

In the present study, we provide for the first time evidence that third-generation 

steroidal and non-steroidal AIs, proven to be very effective drugs in the treatment of 

hormone receptor-positive breast cancer [36, 37], selectively target the TRPA1 

channel. This conclusion derives from a series of experiments in cells expressing the 

recombinant human TRPA1 or in rodent DRG neurons expressing the native channel. 

Indeed, calcium responses and currents evoked by AIs are confined to TRPA1-

expressing cells, and are selectively abolished by HC-030031, or absent in neurons 

obtained from TRPA1-deficient mice. Exemestane exhibits a chemical structure with a 

system of highly electrophilic conjugated Michael acceptor groups [277]. A variety of 

known TRPA1 agonists, including acrolein and other α,β-unsaturated aldehydes, 

possess an electrophilic carbon or sulfur atom that is subject to nucleophilic attack 

(Michael addition) by cysteine and lysine residues [278]. Nitriles also exhibit 

electrophilic properties [279], which may result in TRPA1 gating [280]. Non-steroidal 

letrozole and anastrozole possess nitrile moieties that underscore their potential ability 

to activate TRPA1. We show that key cysteine and lysine residues, required for 

channel activation by electrophilic agonists [111, 184, 186] are also required for 

TRPA1 activation by AIs. Thus, the three AIs, most likely because of their 

electrophilic nature, selectively target TRPA1, whereas TRPV1, TRPV2, TRPV3 and 

TRPV4, all co-expressed with TRPA1 [143, 163], and other channels or receptors in 

DRG neurons, do not seem to play a relevant role in the direct excitation of 

nociceptors by AIs.  

TRPA1-expressing neurons activated by AIs also responded to capsaicin, a 

selective TRPV1 agonist. As TRPV1 is considered a specific marker of nociceptors 

[281], AIs may be assumed to activate pain-like responses. In vivo stimulation of the 

irritant TRPA1 receptor in rodents produces an early nociceptive behavior, followed 

by a delayed and prolonged mechanical allodynia [180, 186, 214]. Subcutaneous 

exemestane and letrozole recapitulated the two effects produced by TRPA1 agonists, 

and produced such responses in a TRPA1-dependent way.  

Magnetic resonance imaging of painful wrists in patients treated with AIs has 

shown signs of inflammatory tenosynovitis poorly reverted by common anti-

inflammatory treatments [46]. Systemic increases in plasma cytokines have not been 

found in patients with AIMSS and, therefore, do not appear to represent the underlying 
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mechanism for such inflammatory conditions [43, 282]. This implies that pathways 

different from cytokine-dependent inflammation operate in joints of patients treated 

with AIs. As TRPA1 is expressed by a subpopulation of peptidergic nociceptors, 

which mediate neurogenic inflammation [6, 143, 163], we anticipated that AIs, by 

targeting TRPA1, release proinflammatory neuropeptides, thereby causing neurogenic 

plasma extravasation. Pharmacological and genetic findings indicate that AIs produce 

a specific type of edema, which is neurogenic in nature. The conclusion is 

corroborated by the direct neurochemical observation that exemestane and letrozole 

evoke TRPA1-dependent CGRP release from peripheral endings of primary sensory 

neurons. The neurogenic component, mediated by TRPA1-activation and sensory 

neuropeptide release, may thus represent an important mechanism contributing to the 

cytokine-independent inflammation observed in AI users.  

When AIs were given to mice by systemic (intraperitoneal or intragastric) 

administration, no acute nocifensive response was observed, but, after ~1 hour delay 

they produced a prolonged condition (up to 6 hours) of mechanical allodynia and a 

decrease in forelimb grip strength. Also, in this case, pharmacological and genetic 

results indicate that AI-evoked pain-like responses are principally TRPA1-dependent. 

In clinical practice, AIs are used for a 3- or 5-year period, and the pain condition 

associated to their use is often persistent [283]. Although the present experimental 

conditions cannot fully mimic the clinical setting in cancer patients, our findings 

suggest that the TRPA1-dependent ability of AIs to produce mechanical allodynia and 

to decrease forelimb grip strength is maintained and does not undergo desensitization 

in mice over a time period of 15 days, which broadly corresponds to a 1-year time in 

humans. Despite a general good tolerability [45], AIs produce some types of pain, 

including AIMSS and neuropathic, diffuse and mixed pain in 10-20% of the treated 

patients [43]. The reason why only some of the patients exposed to AIs develop these 

severe pain conditions, which may lead to non-adherence or therapy discontinuation, is 

unknown.  

Here, we reveal the key role of TRPA1 as the main mediator of exemestane- 

and letrozole-evoked nociceptor stimulation. However, it is likely that additional 

factors contribute to determine the development of AIMSS and related pain symptoms, 

particularly in those susceptible patients who suffer from the more severe form of this 

adverse reaction. In vitro and in vivo experiments with the co-administration of AIs 

and pro-algesic stimuli, such as PAR2-AP, an agonist of the pro-inflammatory 
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receptor, PAR2, and the TRPA1 agonist, H2O2 [175], indicate that additional factors 

may cooperate to increase the sensitivity to AIs of TRPA1 expressing nociceptors. 

Enhancement by PAR2 activation of the proalgesic activity of exemestane and 

letrozole is fully consistent and closely mimic previous observations that PAR2 

activation increases the pro-algesic response evoked by TRPA1 agonists [212]. 

Findings that a combination of AIs and H2O2 exaggerates TRPA1-mediated in vitro 

and in vivo responses suggest that increased levels of oxidative stress byproducts, 

known to be generated under inflammatory conditions [284] may facilitate the 

development of AIMSS and related pain symptoms. Our present investigation on the 

cooperation between AIs and proinflammatory mediators has been limited to PAR2 

and H2O2. However, it is possible that additional pro-inflammatory and pro-algesic 

mediators can activate similar cooperating pathways. AI concentrations required for 

TRPA1 activation are higher than those found in the plasma of treated subjects [285, 

286]. However, it should be noted that all three AIs have a large volume of 

distribution, indicating a high tissue distribution [273, 275]. The present findings that 

in mice plasma levels of both AIs were comparable to those found in humans [273, 

275] strengthen the hypothesis that compartmentalization of AIs in mice is similar to 

that reported in humans [273, 275]. Thus, under standard drug regimens, 

concentrations sufficient to activate TRPA1 or to potentiate TRPA1-mediated 

responses evoked in cooperation with inflammatory mediators may be reached in 

tissues neighboring sensory nerve terminals.  

Altogether, the present results indicate that AIs per se or, most likely, in 

cooperation with other proinflammatory mediators, promote TRPA1-dependent 

neurogenic inflammation, mechanical hypersensitivity, and decreased forelimb grip 

force in rodents. This novel pathway may represent the main underlying mechanism 

responsible for pain and inflammatory symptoms associated with AI treatment. The 

other important proposal deriving from the present findings is that antagonists of the 

TRPA1 channel may be beneficial in the prevention and treatment of such painful 

conditions.  

 
This work has been published in Nature Communications 
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Nassini R (2014). "Steroidal and non-steroidal third-generation aromatase inhibitors 
induce pain-like symptoms via TRPA1." Nat Commun 5(5736): 5736.
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Chapter V – Conclusions 

 

 

CIPN is a common disabling side effect of different cancer treatments 

characterized by sensory symptoms, including paresthesias and dysesthesias to the 

extremities, spontaneous pain, and mechanical and thermal hypersensitivity. CIPN leads 

to a lower quality of life and often causes chemotherapy discontinuation [23]. The 

mechanisms underlying the acute neuronal hyperexcitability and the onset of the 

peripheral neuropathy and painful states induced by chemotherapeutic agents remain 

still to be established. In the recent years remarkable interest has been paid to the 

different ion channels located to neuronal membrane. In particular, due to their specific 

and abundant expression on peripheral sensory neurons involved in pain transduction, 

research on TRP channels represents a promising area of investigation. In this regard, 

recent evidence has proposed a role for TRPV4 in PXL-evoked mechanical 

hyperalgesia [218]. Similarly to PXL, treatment with vincristine has been reported to 

produce mechanical allodynia in rodents through a TRPV4-dependent mechanism 

[218]. Moreover, treatment with cisplatin has been found to produce up-regulation of 

TRPV1 mRNA in cultured DRG neurons [221]. In addition, acute exposure to 

oxaliplatin induces TRPV1 sensitization, which may cause neuronal damage [221]. A 

recent paper reported a possible contribution of TRPM8 expressing fibers to cold 

hypersensitivity induced by oxaliplatin [229]. Other recent evidence obtained from our 

research group demonstrate that TRPA1 acts as a major player in rodent models of 

CIPN induced by oxaliplatin and cisplatin that target TRPA1mainly via oxidative stress 

generation [232].  

Although the mechanism underlying the development of CIPN are still not well 

understood, oxidative stress seems to contribute to the onset of a prolonged peripheral 

neuropathy. In fact, it has been well established the ability of chemotherapeutic drugs to 

produce oxidative stress and its by-products, which strongly contribute to the anticancer 

action. On the other hand this property seems to be responsible for major adverse 

reactions, including CIPN. In line with this assumption, it has been reported that 



Chapter V – Conclusions 
 

104 
 

oxaliplatin-induced mechanical hyperalgesia and heat- and cold-evoked allodynia in rats 

are attenuated by antioxidants, including acetyl-L-carnitine, α-LA, or vitamin C, 

suggesting the contribution of oxidative stress to these painful conditions [257].  

Among the TRP superfamily, the TRPA1 subtype, activated by numerous 

oxidative stress by-products such as H2O2 [190, 175, 191], hypochlorite, and superoxide 

[191], has been referred to as a major oxidant sensor [191]. Based on this evidence, we 

supposed that various chemotherapeutic drugs could directly or indirectly target the 

TRPA1 channels through the generation of oxidative stress inducing painful states.  

The results presented in this thesis have been obtained from the study of the 

painful side effects associated with three chemotherapeutic treatments different in terms 

of chemical structure and/or mechanism of action, such as PXL, BTZ and AIs. 

In the first work we showed that TRPA1 accounts for the remaining TRPV4-

resistant component of the mechanical hypersensitivity produced by PXL. This 

conclusion is derived from both pharmacological study, using selective TRPA1 and 

TRPV4 antagonists, and genetic study, using TRPA1-deficient mice. In fact, the TRPV4 

antagonist, HC-067047, abated completely the component of the PXL-evoked 

mechanical allodynia that was resistant to TRPA1 pharmacological blockade or genetic 

deletion. Of interest for the present discussion is the finding that in contrast with the 

selective TRPA1 agonist, AITC, PXL per se does not activate TRPA1 in cultured DRG 

neurons, as measured by the ability to evoke an early calcium response.  

Previous papers [217, 241] reported that PXL releases SP from airway sensory 

nerves, a neuropeptide co-expressed with CGRP in a subset of primary sensory neurons 

[242]. Based on this evidence, we tested whether PXL could target sensory nerve 

terminals by measuring the release of the sensory neuropeptide, CGRP. Here, we 

confirmed that PXL increases the release of neuropeptides from capsaicin-sensitive 

peripheral nerve terminals, and for the first time we showed, by using both 

pharmacological and genetic approach, that the action of PXL is mediated by both 

TRPA1 and TRPV4 activation. Moreover, the ROS and reactive aldehydes scavenger, 

GSH, completely abolished the PXL-evoked CGRP release from peripheral tissues of 

either wild type or TRPA1-deficient mice. These findings indicate that PXL evokes a 

delayed and prolonged mechanical and thermal hypersensitivity targeting both TRPA1 

and TRPV4 channels expressed on nociceptive sensory neurons, through a mechanism 

which is GSH-sensitive, suggesting the involvement of oxidative stress and/or its by-
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products in this phenomenon. This hypothesis is supported by several studies reporting 

that antioxidants protect against the sensory neuropathy induced by PXL [245, 238]. 

Similarly to the results obtained with PXL, we found that TRPA1 plays a key 

role in BTZ-evoked mechanical, chemical and cold prolonged hypersensitivity, as these 

phenomena were completely, but transiently, reverted by a TRPA1 antagonist and 

completely absent in TRPA1-deficient mice. As observed with PXL, BTZ failed to 

evoke any calcium response in cultured TRPA1-expressing neurons, thus excluding that 

this drug may directly target the channel and suggesting an indirect action. In fact, we 

found that BTZ increases oxidative stress and its by-products in mice. Behavioural 

studies demonstrated that the treatment with an oxidative stress scavenger transiently 

reverted BTZ-evoked mechanical, cold, and chemical hypersensitivity. More 

importantly, in this paper we demonstrated that an early and short-term treatment with 

the selective TRPA1 antagonist or an antioxidant permanently prevents the onset of the 

mechanical, cold, and chemical hypersensitivity evoked by BTZ in mice. This important 

result suggests a possible treatment schedule to prevent the onset of sensory neuropathy 

in patients during chemotherapy when TRPA1 antagonists will be clinically available. 

Altogether present evidence implies that PXL and BTZ do not directly gate 

TRPA1, but rather exert this action indirectly via the generation of oxidative stress by-

products that eventually target the channel in sensory nerve terminals. Whereas 

endogenous oxidative stress by-products capable of activating TRPA1 are well 

identified, little information [246] is available regarding activation of TRPV4 by 

oxidative stress species. Thus, further studies are required to define mechanisms 

apparently associated to PXL-induced and TRPA1/TRPV4-mediated hypersensitivity. 

In the last part, our research focused on uncovering the mechanisms underlying 

painful states induced by third-generation AIs, the steroidal exemestane and non-

steroidal azole derivatives, letrozole and anastrozole. The use of AIs is associated with a 

series of relevant side effects which are reported in 30-60% of treated patients [39, 40]. 

Among these, the AI-associated musculoskeletal symptoms (AIMSS) characterized by 

morning stiffness and pain of the hands, knees, hips, lower back, and shoulders [41, 42]. 

In addition to musculoskeletal pain, pain symptoms associated with AIs have recently 

been more accurately described with the inclusion of neuropathic, diffused, and mixed 

pain [43]. 

The chemical structure of exemestane includes a system of highly electrophilic 

conjugated Michael acceptor groups, which might react with the thiol groups of reactive 



Chapter V – Conclusions 
 

106 
 

cysteine residues [277]. Michael addition reaction with specific cysteine residues is a 

major mechanism that results in TRPA1 activation by a large variety of electrophilic 

compounds [186, 184, 185]. Aliphatic and aromatic nitriles can react with cysteine to 

form thiazoline derivatives and accordingly the tear gas 2-chlorobenzylidene 

malononitrile (CS) has been identified as a TRPA1 agonist [280]. We noticed that both 

letrozole and anastrozole possess nitrile moieties. Thus, we hypothesized that AIs may 

produce neurogenic inflammation, nociception and hyperalgesia by targeting TRPA1. In 

this study, we provide for the first time evidence that AIs, unlike PXL and BTZ, 

selectively target the TRPA1 channel leading to the onset of painful conditions. 

However, it is likely that additional factors contribute to determine the development of 

AIMSS and related pain symptoms, particularly in those susceptible patients who suffer 

from the more severe form of this adverse reaction. In vitro and in vivo experiments 

with the co-administration of AIs and pro-inflammatory stimuli, such as PAR2-AP, and 

the TRPA1 agonist, H2O2 [175], indicate that additional factors may cooperate to 

increase the sensitivity to AIs of TRPA1 expressing nociceptors. Enhancement by 

PAR2 activation of the pro-algesic activity of exemestane and letrozole is fully 

consistent and closely mimic previous observations that PAR2 activation increases the 

pro-algesic response evoked by TRPA1 agonists [212]. Findings that a combination of 

AIs and H2O2 exaggerates TRPA1-mediated in vitro and in vivo responses suggest that 

increased levels of oxidative stress by-products, known to be generated under 

inflammatory conditions [284] may facilitate the development of AIMSS and related 

pain symptoms. Our present investigation on the cooperation between AIs and 

proinflammatory mediators has been limited to PAR2 and H2O2 however, it is possible 

that additional pro-inflammatory and pro-algesic mediators can activate similar 

cooperating pathways. AI concentrations required for TRPA1 activation are higher than 

those found in the plasma of treated subjects [285, 286] however, it should be noted that 

all three AIs have a large volume of distribution, indicating a high tissue distribution 

[273, 275]. The present findings that in mice plasma levels of both AIs were 

comparable to those found in humans [273, 275] strengthen the hypothesis that 

compartmentalization of AIs in mice is similar to that reported in humans [273, 275]. 

Thus, under standard drug regimens, concentrations sufficient to activate TRPA1 or to 

potentiate TRPA1-mediated responses evoked in cooperation with inflammatory 

mediators may be reached in tissues neighboring sensory nerve terminals.  



Chapter V – Conclusions 
 

107 
 

Taken together, these findings indicate that TRPA1, via its activation by 

oxidative stress by-products, is necessary and sufficient to produce a sensory 

neuropathy paradigm in mice following a single administration of different 

chemotherapeutics. In addition, the findings obtained in these works suggest a novel 

therapeutic approach to prevent CIPN and to treat other painful states associated with 

the chemotherapy, based on the future use of TRPA1 antagonists which may protect 

patients from neurotoxic effects without affecting the anticancer potential of 

chemotherapeutic drugs. 
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Abstract Paclitaxel produces a sensory neuropathy, char-
acterized by mechanical and cold hypersensitivity, which
are abated by antioxidants. The transient receptor potential
vanilloid 4 (TRPV4) channel has been reported to contribute
to paclitaxel-evoked allodynia in rodents. We recently
showed that TRP ankyrin 1 (TRPA1) channel mediates
oxaliplatin-evoked cold and mechanical allodynia, and the
drug targets TRPA1 via generation of oxidative stress. Here,
we have explored whether TRPA1 activation contributes to
paclitaxel-induced mechanical and cold hypersensitivity and
whether this activation is mediated by oxidative stress
generation. Paclitaxel-evoked mechanical allodynia was
reduced partially by the TRPA1 antagonist, HC-030031,
and the TRPV4 antagonist, HC-067047, and was completely
abated by the combination of the two antagonists. The reduced
paclitaxel-evoked mechanical allodynia, observed in TRPA1-
deficient mice, was completely abolished when mice were

treated with HC-067047. Cold allodynia was abated com-
pletely by HC-030031 and in TRPA1-deficient mice. Ex-
posure to paclitaxel of slices of mouse esophagus released the
sensory neuropeptide, calcitonin gene-related peptide
(CGRP). This effect was abolished by capsaicin desensitiza-
tion and in calcium-free medium (indicating neurosecretion
from sensory nerve terminals), partially reduced by either HC-
030031 or HC-067047, and completely abated in the presence
of glutathione (GSH). Finally, the reduced CGRP release,
observed in esophageal slices of TRPA1-deficient mice, was
further inhibited by GSH. Paclitaxel via oxygen radical for-
mation targets TRPA1 and TRPV4, and both channels are key
for the delayed development of mechanical allodynia. Cold
allodynia is, however, entirely dependent on TRPA1.

Keywords Paclitaxel . TRPA1 . Cold and mechanical
hyperalgesia . Primary sensory neurons . Oxidative stress

Introduction

Paclitaxel (Taxol) is a microtubule-targeting agent labeled for
the treatment of a wide variety of solid neoplasms, including
ovarian, breast and prostate cancer, currently under investiga-
tion to assess its efficacy to treat additional malignant tumors.
Peripheral neuropathy (PN) represents a dose-limiting adverse
reaction, which negatively affects the quality of life of a
relevant portion of patients and, importantly, results in
therapy interruption or discontinuation [16]. As described
by treated patients, PN by paclitaxel is characterized by
various sensory symptoms including mechanical allody-
nia, spontaneous pain, cold allodynia, ongoing burning
pain, tingling, and numbness in a “stocking and glove” distri-
bution [16]. Not infrequently, these symptoms do not resolve
with the cessation of paclitaxel therapy and become chronic
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for months or years [12, 43]. The mechanism underlying
paclitaxel-evoked PN is poorly understood, although a series
of studies have focused on a subpopulation of peptidergic
primary sensory neurons expressing specific ion channels as
the primary target [1, 2, 33, 40].

A subset of primary sensory neurons expresses several
members of the transient receptor potential (TRP) family of
ion channels, which convey different sensory modalities,
including thermo-, mechano-/osmo-, and chemical sensa-
tions [8]. These include the vanilloid 1 (TRPV1, the so
called “capsaicin receptor”), 2 (TRPV2), 3 (TRPV3), and
4 (TRPV4) channels, the TRPM8 (the “menthol receptor”),
and TRPA1 (the ankyrin 1) channels. There is evidence that
TRPV4, which has been implicated in the process of osmo-
mechanical transduction, mediates part of the mechanical
hyperalgesia produced by treatment of rats or mice with
paclitaxel [1, 2]. We have recently reported that, in mice
and rats, platinum-derived drugs produce a long-lasting
mechanical and cold hypersensitivity, by a mechanism that
is entirely mediated by TRPA1 [34]. We also showed that
both cisplatin and oxaliplatin cause acute TRPA1 activa-
tion, an effect that is not mediated by direct channel
targeting, but rather is due to the generation of reactive
oxygen species (ROS) that eventually gate TRPA1 [34].
Indeed, TRPA1 is activated not only by exogenous irri-
tants, such as allyl isothiocyanate (mustard oil) or cinna-
maldehyde (cinnamon) [28, 36], but also by a structurally
diverse series of oxidative stress byproducts, including
hydrogen peroxide, nitrooleic acid [5, 11], and the unsat-
urated aldehydes, 4-hydroxy-trans-2-nonenal (4-HNE)
[41], 4-oxononenal [5], and acrolein [9].

In vitro studies have shown that paclitaxel-evoked oxi-
dative stress, and the resultant production of hydrogen per-
oxide and formation of DNA oxidative adducts [38], are
associated with the drug cytotoxicity in breast cancer cells
[4, 25]. In agreement with this observation, susceptibility to
paclitaxel by breast cancer cells was found to be reduced by
antioxidant treatments [21], and resistance to paclitaxel has
been associated with the total antioxidant cell capacity in a
large series of different cancer cell lines [38], suggesting that
oxidative stress contributes to the antineoplastic mechanism
of action of this drug. Patients subjected to chemotherapy
with paclitaxel present immediate systemic oxidative stress
and red blood cell oxidative injury associated with the
development of anemia [37]. Thus, we have hypothesized
that, in addition to TRPV4, TRPA1 also contributes to
paclitaxel-induced mechanical and thermal (cold) hypersen-
sitivity and targets these TRP channels via generation of
oxidative stress byproducts. Data show that in mice both
TRPV4 and TRPA1 contribute to the delayed mechanical
allodynia, whereas only TRPA1 mediates the delayed cold
hypersensitivity evoked by paclitaxel. In addition, paclitaxel
acutely induces neuropeptide release from sensory nerve

terminals by activation of TRPA1 and TRPV4, apparently
via ROS generation.

Materials and methods

Animals

All animal experiments were carried out in accordance with
the European Union Community Council guidelines and
approved by the local ethics committee. C57BL/6 mice
(male, 25 g) (Harlan Laboratories, Milan, Italy) wild-type
(Trpa1+/+), or TRPA1-deficient mice (Trpa1−/−), generated
by heterozygous mice on a C57BL/6 background [9] were
used. Animals were housed in a temperature- and humidity-
controlled vivarium (12-h dark/light cycle, free access to
food and water). Behavioral experiments were done in a
quiet, temperature-controlled room (20°C to 22°C) between
10 a.m. and 4 p.m. and were performed by an operator
blinded to the genotype and the status of drug treatment.
Animals were sacrificed with a high dose of intraperitoneal
(i.p.) sodium pentobarbital (200 mg/kg).

Paclitaxel-induced painful neuropathy models and drugs
administration

After habituation and baseline measurements of pain sensi-
tivity, animals were randomized into treatment groups.
C57BL/6, Trpa1+/+, or Trpa1−/− mice were treated with a
single i.p. administration of paclitaxel (6 mg/kg) or its
vehicle (ethanol and Cremophore EL, 50:50, v/v) [1]. No
weight loss was observed in mice throughout the duration of
the experiments after paclitaxel treatment. Paclitaxel was
formulated at a concentration of 1 mg/ml and was first
dissolved in a vehicle containing absolute ethanol and Cre-
mophore EL (50:50, v/v) because of its poor aqueous solu-
bility. Final solution (10% of this stock solution) was made
in sterile saline (NaCl 0.9%) at the time of injection, and the
volume was adjusted to 10 ml/kg for the i.p. administration
[2]. Intragastric (i.g.) HC-030031 (300 mg/kg) or its vehicle
(0.5% carboxymethyl cellulose, CMC), and HC-067047
(10 mg/kg, i.p.) or its vehicle (2.5% DMSO), were admin-
istered at day 8 after the administration of paclitaxel or its
vehicle. In another experimental setting, HC-030031
(300 mg/kg, i.g.) or its vehicle (0.5% CMC), and HC-
067047 (10 mg/kg, i.p.) or its vehicle (2.5% DMSO), were
coadministered at day 8 after the administration of paclitaxel
or its vehicle.

Tactile allodynia (Von Frey hair test)

Paclitaxel-induced mechanical allodynia was measured in
C57BL/6, Trpa1+/+, or Trpa1−/− mice by using the up-and-
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down paradigm [13]. Mechanical nociceptive threshold was
determined before (basal level threshold) and after drug
administration. The effect of paclitaxel was tested for
20 days after treatment. Data are expressed as the mean
threshold values (in grams).

Cold stimulation

Cold allodynia was assessed in C57BL/6, Trpa1+/+, or
Trpa1−/− by measuring the acute nocifensive responses to
the acetone-evoked evaporative cooling as previously
described [22]. Briefly, the animal was held in the hand and
a droplet (50 μl) of acetone, formed on the flat-tip needle of a
syringe, was gently touched to the plantar surface of the hind
paw. The mouse was immediately put in a cage with a trans-
parent floor, and the time spent in elevation and licking of the
plantar region over a 60-s period was measured. Acetone was
applied three times at a 10–15-min interval, and the average of
elevation/licking time was calculated. Cold allodynia was
measured in mice before (baseline) and for 20 days after drug
treatment.

Isolation of primary sensory neurons

Primary dorsal root ganglia (DRG) from Trpa1+/+ or
Trpa1−/− adult mice were cultured as previously described
[31]. Briefly, lumbosacral (L5–S2) ganglia were bilaterally
excised under a dissection microscope. Ganglia were
digested using 2 mg/ml of collagenase type 1A and 1 mg/
ml of papain in HBSS (25 min, 37°C). Neurons were pel-
leted and resuspended in Ham’s-F12 containing 10% FBS,
100 U/ml of penicillin, 0.1 mg/ml of streptomycin, and
2 mM glutamine, dissociated by gentle trituration, and plated
on glass coverslips coated with poly-L-lysine (8.3 μM) and
laminin (5 μM). Neurons were cultured for 3–4 days.

Calcium imaging experiments

Cells were incubated with 5 μM Fura-2 AM ester for 30 min
at 37°C. Intracellular calcium concentration ([Ca2+]i) was
measured on Nikon Eclipse TE2000U microscope. Fluores-
cence was measured during excitation at 340 and 380 nm for
5 min before and 10 min after stimulus administration, and
after correction for the individual background fluorescence
signals, the ratio of the fluorescence at both excitation wave-
lengths (F340/F380) was monitored. Experiments were per-
formed using a buffer solution containing (in millimolars):
150 NaCl, 6 KCl, 1 MgCl2, 1.5 CaCl2, 10 glucose, and 10
HEPES and titrated to pH 7.4 with 1 N NaOH. Cells were
exposed to paclitaxel (10 and 50 μM), allyl isothiocyanate
(AITC, 30 μM), or their respective vehicles (0.1%, 0.5%,
and 0.03% DMSO). DRGs were challenged with capsaicin
(0.1 μM) and by KCl (50 mM) to identify nociceptive

neurons and at the end of each experiment with ionomycin
(5 μM).

Calcitonin gene-related peptide release

Slices (0.4 mm) of esophagus taken from C57/BL6, Trpa1+/+,
or Trpa1−/− were superfused with paclitaxel (10-30-50 μM),
or the vehicle (2.5% DMSO), dissolved in a modified Krebs
solution at 37°C, and oxygenated with 95% O2 and 5% CO2,
containing (in millimolars): 119 NaCl, 25 NaHCO3, 1.2
KH2PO4, 1.5 MgSO4, 2.5 CaCl2, 4.7 KCl, 11D-glucose,
0.1% BSA, phosphoramidon (1 μM), and captopril (1 μM).
Some tissues were preexposed to capsaicin (10 μM) for
20 min to desensitize TRPV1-expressing sensory nerve ter-
minals. Some experiments were performed in a calcium-free
medium, containing EDTA (1 mM). Other experiments were
performed in the presence of HC-030031 (30 μM) and HC-
067047 (3 μM) or in the presence of the unsaturated aldehyde
and ROS scavenger, glutathione monoethylester (GSH,
1 mM). Calcitonin gene-related peptide (CGRP) immunore-
activity (CGRP-IR) was assayed in 10-min fractions (two
before, one during, and one after exposure to the stimulus)
according to the methods previously reported [41]. The detec-
tion limit was 5 pg/ml. CGRP-IR release was calculated by
subtracting the mean pre-stimulus value from those obtained
during or after stimulation. Stimuli did not cross react with
CGRP antiserum.

Reagents

If not otherwise indicated, all reagents were from Sigma-
Aldrich (Milan, Italy). HC-030031 was synthesized as pre-
viously described [6]. HC-067047 was from Tocris Biosci-
ence (Bristol, United Kingdom), and paclitaxel was from
Ascent Scientific Ltd (Bristol, UK).

Statistical analysis

Data are presented as mean±SEM. Statistical analyses were
performed by the unpaired two-tailed Student’s t test for
comparisons between two groups, the one-way analysis of
variance, followed by the post-hoc Bonferroni’s test for
comparisons of multiple groups. p<0.05 was considered
statistically significant.

Results

TRPA1 and TRPV4 receptors activation contributes
to the mechanical allodynia evoked by paclitaxel in mice

We first investigated the involvement of TRPA1 in the
mechanical allodynia induced by paclitaxel in mice. As
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previously reported [1], administration of a single dose of
paclitaxel (6 mg/kg, i.p.) produced a delayed reduction in
mechanical nociceptive threshold as assayed by the Von
Frey hair test in C57BL/6 mice. Reduction from baseline
value was significant at day 2, peaked at day 8, and returned
to baseline about 20 days after paclitaxel administration
(Fig. 1a). A role for the TRPV4 channel in paclitaxel-
induced sensory hypersensitivity has been previously
reported by using TRPV4 knockout mice and antisense-
mediated TRPV4 knockdown [1, 14]. Here we confirm that
administration of the selective TRPV4 antagonist, HC-
067047 (10 mg/kg, i.p.) [18], 8 days after paclitaxel injec-
tion partially reverted paclitaxel-evoked mechanical allody-
nia. In agreement with previous reports in a different pain
model [18], maximum inhibition by HC-067047 was evi-
dent 30 min post dosing. HC-067047 did not affect the
baseline threshold for mechanical stimulation in naïve ani-
mals (Fig. 1c). In the present study, we also investigated
TRPA1 contribution to mechanical allodynia induced by
paclitaxel. Eight days after paclitaxel administration, sys-
temic administration of the TRPA1 selective antagonist,
HC-030031 (300 mg/kg, i.g.) [32], reverted partially me-
chanical allodynia. In keeping with previous data obtained
in different models of hyperalgesia [17], the effect of HC-
030031 was evident 60 min post dosing. HC-030031 did not
affect the threshold in mechanical allodynia in naïve animals
(Fig. 1b). Finally, we found that treatment with a combina-
tion of the TRPA1 antagonist, HC-030031 (300 mg/kg, i.g.)
and the TRPV4 antagonist, HC-067047 (10 mg/kg, i.p.),
8 days after paclitaxel injection completely reverted
paclitaxel-evoked mechanical allodynia (Fig. 1d).

In another series of experiments, we treated Trpa1+/+ and
Trpa1−/− mice following the same protocol used in C57BL/
6 mice (one single dose of paclitaxel, 6 mg/kg, i.p.). In
Trpa1+/+ mice, the reduction in mechanical nociceptive
threshold from baseline value was already significant at
day 2, peaked at day 8, and returned to baseline about
20 days after paclitaxel administration. Trpa1−/− mice trea-
ted with paclitaxel developed a similar, although less pro-
nounced, mechanical allodynia than that observed in
Trpa1+/+ mice. In particular, at days 7, 8, and 9 after
paclitaxel administration, the threshold in the mechanical
nociceptive response was significantly reduced in Trpa1+/+

compared to Trpa1−/− mice (Fig. 1e). To further investigate
the relative contribution of TRPV4 and TRPA1 in mechan-
ical allodynia induced by paclitaxel, the effect of HC-
067047 was studied in Trpa1−/− mice at day 8 after drug
injection. Thirty minutes after treatment with HC-067047
(10 mg/kg, i.p.), mechanical allodynia induced by paclitaxel
was completely reverted (Fig. 1f). Thus, present pharmaco-
logical and genetics data indicate that, in addition to TRPV4
[1], TRPA1 contributes to paclitaxel-evoked mechanical
allodynia.

TRPA1 activation mediates the paclitaxel-induced cold
hypersensitivity in mice

Next, by using the same treatment protocol, we addressed
whether paclitaxel produced cold hypersensitivity by assay-
ing the time spent licking the hind paw following acetone
application for cooling stimulation, and the relative contri-
bution of TRPA1 and TRPV4 activation in this response. A
single dose of paclitaxel (6 mg/kg, i.p.) significantly in-
creased the behavioral responses evoked following acetone
application for cooling stimulation in C57BL/6 mice from
day 4 to day 12 after paclitaxel administration (Fig. 2a).
Peak increase was seen at day 8 (Fig. 2a). This effect of
paclitaxel was completely reverted by treatment with HC-
030031 (300 mg/kg, i.g.), 60 min post dosing. It should be
underlined that time course of inhibition by HC-030031 of
either mechanical or cold hypersensitivity was similar. HC-
030031 did not affect cold sensitivity in naïve animals
(Fig. 2b). Treatment with HC-067047 (10 mg/kg, i.p.) 8 days
after paclitaxel injection did not affect the cold allodynia
induced by the drug (Fig. 2c). Like C57BL/6 mice, Trpa1+/+

mice treated with paclitaxel developed a cold hypersensitiv-
ity that started at day 2, peaked at day 8, and returned to
baseline 18 days after paclitaxel administration (Fig. 2d).
The increased response to the cold stimulus observed in
Trpa1+/+ mice was completely absent in Trpa1−/− mice,
which responded to the stimulus in a manner superimpos-
able to vehicle-treated animals. Pharmacological and genetic
findings indicate that TRPA1, but not TRPV4, contributes to
paclitaxel-evoked cold allodynia.

Paclitaxel does not directly activate TRPA1 or TRPV4
in dorsal root ganglion neurons but releases CGRP
from peripheral nerve endings via glutathione-sensitive
mechanism

Exposure to AITC (30 μM) of mouse DRG evoked a calci-
um response in neurons obtained from Trpa1+/+ mice (24
cells of the 48 capsaicin (0.1 μM) sensitive neurons
responded to AITC), an effect that was completely absent
in DRG neurons taken from Trpa1−/− mice (0 cells of the 52
responding to capsaicin). Exposure to paclitaxel (50 μM)
failed to evoke any significant calcium response in the 68
neurons tested, taken from Trpa1+/+.

TRPA1 activation of peripheral terminals of capsaicin-
sensitive primary sensory neurons is associated with the
release of sensory neuropeptides, including CGRP [23].
Several peripheral tissues, including the esophagus [42],
have been previously used to study the release of sensory
neuropeptides. Paclitaxel increased the basal outflow of
CGRP from slices of C57BL/6 mouse esophagus in a
concentration-dependent manner (Fig. 3a), a response that
was markedly reduced (>80% inhibition) by preexposure of
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the tissue to a high capsaicin concentration (a procedure
known to cause desensitization of sensory nerve terminals)
or by removal of extracellular calcium ions from the bath
solution (Fig. 3a). Thus, paclitaxel evokes a calcium-
dependent neurosecretory process of CGRP from
capsaicin-sensitive sensory neurons. Paclitaxel-evoked
CGRP-IR release was reduced, but not abolished, in the
presence of each individual antagonist of TRPA1 (HC-
030031) or TRPV4 (HC-067047) channel (Fig. 3b). However,
pretreatment of the tissue with GSH (1 mM) abated completely
the paclitaxel-evoked increase in CGRP-IR outflow (Fig. 3b).

Exposure to paclitaxel increased the CGRP-IR outflow
from slices of esophagus obtained from Trpa1+/+ mice. This
response was significantly, but not completely, reduced in
preparations obtained from Trpa1−/− mice (Fig. 3c). To
further investigate the contribution of the oxidative stress
byproducts that eventually target TRPV4 receptor,

esophageal slices from Trpa1−/− mice were exposed to
paclitaxel in the presence of GSH. Under these circumstan-
ces, GSH further decreased paclitaxel-evoked CGRP-IR
release (Fig. 3c). Thus, paclitaxel evokes a calcium-
dependent neurosecretory process from capsaicin-sensitive
neurons by a dual TRPA1 and TRPV4 dependent mecha-
nism and in a manner entirely sensitive to GSH.

Discussion

Sensory PN affects a proportion of patients treated with the
anticancer drug, paclitaxel, and this adverse reaction is often
the cause for drug discontinuation [16]. The experimental
counterpart of this clinical condition has been described in a
large series of studies in rodents showing that paclitaxel
causes mechanical and cold allodynia. Among the various

Fig. 1 Paclitaxel induces mechanical allodynia via TRPA1 and TRPV4
activation in mice. a The administration of a single dose of paclitaxel
(PXL; 6 mg/kg, i.p.) in C57BL/6 mice induces a time-dependent reduc-
tion in mechanical nociceptive threshold (Von Frey test), with a maxi-
mum effect at day (d) 8 after PXL administration. At day 8 after PXL
administration, treatment with TRPA1 receptor antagonist, HC-030031
(TRPA1RA; 300 mg/kg i.g), significantly reduces mechanical allodynia
60 min post dosing (b). A similar significant reduction in mechanical
allodynia is visible after treatment with the TRPV4 receptor antagonist,
HC-067047 (TRPV4RA; 10 mg/kg, i.p.), 30 min post dosing (c). At day
8 after PXL, treatment with a combination of TRPA1 and TRPV4
receptor antagonists HC-030031 and HC-067047 (TRPA1RA+
TRPV4RA) completely reverses the mechanical allodynia at the time of
the maximum effect of inhibition for each antagonist (post-treatment; 60
and 30 min post HC-030031 and HC-067047 administration, respective-
ly) (d). The administration of the same dose of PXL (6 mg/kg, i.p.)
induces a time-dependent reduction in mechanical nociceptive threshold

Trpa1+/+ mice (e). The development of mechanical allodynia observed in
Trpa1+/+ mice after PXL treatment is not completely absent in Trpa1−/−

mice. A significant difference in the reduction of mechanical nociceptive
threshold between Trpa1+/+ and Trpa1−/− mice is visible at days 7, 8, and
9 after PXL treatment. At day 8 after PXL administration, treatment with
the TRPV4 antagonist HC-067047 (TRPV4RA; 10 mg/kg, i.p.) signifi-
cantly reduces mechanical allodynia developed by Trpa1−/− mice after
PXL treatment (f). Values are mean ± SEM of n08–10 mice. #p<0.05 vs.
VehPXL in a; Student’st test; *p<0.05 vs. VehPXL-VehTRPA1RA and
VehPXL-TRPA1RA in b, or VehPXL-VehTRPV4RA and VehPXL-
TRPV4RA in c or VehPXL-VehTRPA1 + TRPV4RA and VehPXL-
TRPA1RA + TRPV4RA in d or VehPXL-Trpa1+/+ and Veh PXL-
Trpa1−/− in e or VehPXL-Veh TRPV4RA and VehPXL-TRPV4RA in
f; §p<0.05 vs. PXL-Veh TRPA1RA in b, or PXL-VehTRPV4RA in c and
f, or PXL-Veh TRPA1RA + TRPV4RA in d or PXL Trpa1−/− in e; one-
way ANOVA and Bonferroni’s test. BL baseline withdrawal threshold
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mechanisms proposed as causing the paclitaxel sensory
neuropathy, recent evidence proposed a role for the TRPV4
channel in mechanical allodynia in mouse and rat models [1,

2]. Here, we confirm in a mouse model that TRPV4 con-
tributes to mechanical allodynia induced by paclitaxel. We
also show that TRPA1 accounts for the remaining TRPV4-

Fig. 3 Paclitaxel releases calcitonin gene-related peptide (CGRP) from
mouse esophagus peripheral nerve endings. a Paclitaxel (PXL) increases
the outflow of CGRP immunoreactivity (CGRP-IR) from slices of
C57BL/6 mice esophagus in a concentration-dependent manner. CGRP-
IR release evoked by PXL is abolished by capsaicin desensitization (CPS-
des) or calcium removal (Ca2+-free). b CGRP-IR evoked by PXL in
peripheral tissues is significantly reduced by pretreatment with TRPA1,
HC-030031 (TRPA1 RA, 30 μM), or TRPV4, HC-067047 (TRPV4 RA,
3 μM) selective antagonists and by glutathione (GSH, 1 mM). c Paclitaxel

increases the release of CGRP-IR from esophageal slices obtained from
Trpa1+/+ mice, an effect significantly reduced in preparations taken from
Trpa1−/− mice. Pretreatment of the esophageal slices taken from Trpa1−/−

mice with GSH (1 mM) abated the CGRP-IR release induced by
paclitaxel. Veh1 is the vehicle of PXL and Veh2 is a combination
of vehicles of the various treatments. Values are mean ± SEM of
n05 experiments. §p<0.05 vs. Veh1; *p<0.05 vs. Veh2 or PXL-Trpa1+/+,
#p<0.05 vs. TRPA1 RA and TRPV4 RA or PXL-Trpa1−/−

Fig. 2 Paclitaxel-induced cold hypersensitivity is mediated by TRPA1
activation in mice. a The administration of paclitaxel (PXL; 6 mg/kg, i.p.)
induces in C57BL/6 mice a time-dependent increase in cold hypersensi-
tivity (acetone test) with maximum effect at day (d) 8 after PXL admin-
istration. At day 8 after PXL treatment, TRPA1 receptor antagonist HC-
030031 (TRPA1 RA; 300 mg/kg, i.g.) completely reverses the cold
allodynia 60 min post dosing (b). Treatment with the TRPV4 receptor
antagonist HC-067047 (TRPV4 RA; 10 mg/kg, i.p.) does not affect the

cold allodynia induced by PXL (c). The development of cold allodynia
observed in Trpa1+/+ mice after PXL (6 mg/kg, i.p.) treatment is com-
pletely absent in Trpa1−/− mice (d). Values are mean ± SEM of n08–10
mice. #p<0.05 vs. Veh PXL in a; Student’st test; *p<0.05 vs. VehPXL-
VehTRPA1RA and VehPXL-TRPA1RA in b, or VehPXL-Veh
TRPV4RA and VehPXL-TRPV4RA in c or VehPXL-Trpa1+/+ in
d; §p<0.05 vs. PXL-VehTRPA1RA in b or PXL-Trpa1−/− in e; one-way
ANOVA and Bonferroni’s test. BL baseline withdrawal threshold
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resistant component of the mechanical hypersensitivity pro-
duced by the anticancer drug. This conclusion is derived
from either pharmacological study, using selective TRPA1
and TRPV4 antagonists, or genetic study, using TRPA1-
deficient mice. The TRPV4 antagonist, HC-067047, abated
completely the component of the paclitaxel-evoked mechan-
ical allodynia that was resistant to TRPA1 pharmacological
blockade or genetic deletion.

Paclitaxel administration to rodents evokes a typical cold
hypersensitivity, reminiscent of the clinical condition caused
by the drug in treated patients [19]. In contrast, with
mechanical allodynia, either pharmacological or genetic stud-
ies indicate a primary and unique role of TRPA1 in the present
mouse model of cold hypersensitivity evoked by paclitaxel.
This conclusion is derived from the observation that, either
after treatment with HC-030031, or in TRPA1-deficient mice,
paclitaxel-induced cold allodynia was completely abated, and
that HC-067047 failed to affect the increased response to
acetone after paclitaxel treatment. Thus, under the present
circumstances, cold hypersensitivity is completely mediated
by TRPA1, whereas both TRPA1 and TRPV4 contribute to
mechanical allodynia.

There is compelling evidence obtained both in vitro or in
vivo, both in experimental animals and in humans, that
paclitaxel treatment is associated with production of oxida-
tive stress [3, 38]. Indeed, accumulation of hydrogen perox-
ide is an early and crucial step for paclitaxel-induced cancer
cell death [3]. In general, induction of oxidative stress as a
mechanism that may contribute to the antineoplastic effect
of several chemotherapeutic agents has been gaining accep-
tance [39]. Antioxidants, such as N-acetylcysteine, have
been shown to inhibit both paclitaxel-evoked decreases in
cell viability and increases in intracellular levels of ROS and
apoptosis, [30]. N-acetylcysteine has been reported to pre-
vent completely paclitaxel-evoked mechanical hypersensi-
tivity [20]. Thus, the proapototic effects on one side, and the
establishment of the sensory PN on the other side, seem to
be dependent on one single mechanism, e.g., the ability of
paclitaxel to generate oxidative stress. We have recently
identified the primary role of TRPA1 in mediating mechan-
ical and cold hypersensitivity to oxaliplatin and its ability to
target TRPA1, not directly, but rather via oxidative stress
generation [34]. In fact, we showed that, in contrast with the
selective TRPA1 agonist, AITC, oxaliplatin per se does not
activate TRPA1 in cultured DRG neurons, as measured by
the ability to evoke an early calcium response [34]. How-
ever, in a more complex preparation, such as the isolated
guinea pig pulmonary artery, oxaliplatin caused a TRPA1-
and CGRP-dependent relaxation that mechanistically was
indistinguishable from the relaxation evoked by AITC [34].
This finding suggested that oxaliplatin, like AITC, targets
TRPA1 on sensory nerve endings, thereby releasing the
sensory neuropeptide CGRP, which eventually relaxes the

artery [34]. Of interest for the present discussion is the
finding that oxaliplatin-evoked, but not AITC-evoked, arte-
rial relaxation was completely abated by GSH. These find-
ings imply that oxaliplatin does not directly gate TRPA1,
but rather probably exerts this action indirectly via the
generation by neighboring cells of oxidative stress byprod-
ucts that eventually target the channel in sensory nerve
terminals, through direct formation of disulfide bridges.

Following this hypothesis, we tested whether paclitaxel
could target sensory nerve terminals in a manner similar to
that of oxaliplatin by measuring the release of the sensory
neuropeptide, CGRP. Previous papers [27, 40] reported that
paclitaxel releases substance P (SP) from airway sensory
nerves, another neuropeptide co-expressed with CGRP in a
subset of primary sensory neurons [26]. The mechanism of
action of paclitaxel on sensory neurons remained unknown,
although inhibition of paclitaxel-evoked SP release fromDRG
neurons by ruthenium red [33], a nonspecific TRP channels
inhibitor [35], suggests the involvement of this type of chan-
nels. Here, we confirm that paclitaxel releases neuropeptides
from terminals of capsaicin-sensitive primary sensory neu-
rons, and for the first time we show, by using both pharma-
cological and genetic data, that the action of paclitaxel is
mediated in part by TRPA1 activation and in part by TRPV4
activation. In addition, the ROS and reactive aldehydes, scav-
enger, GSH, completely abolished paclitaxel-evoked CGRP
release from esophageal slices of either wild type or TRPA1-
deficient mice. These findings indicate that GSH-sensitive
compounds are generated by paclitaxel and finally target
TRPA1 and TRPV4.

Additional issues remain to be determined. Although
release experiments indicate that paclitaxel is apparently
able to acutely stimulate both TRPA1 and TRPV4, it is only
after a significant time delays (days) that mechanical allo-
dynia (mediated by both TRPA1 and TRPV4) and cold
hypersensitivity (mediated by TRPA1) develop. The time-
dependent mechanism(s), which from early stimulation
leads to the delayed and enduring hypersensitivity, is un-
known. Pathophysiological functions of TRPV4 and TRPA1
are not completely understood; although TRPV4 is consid-
ered to mediate osmomechanical stimuli [29], TRPA1 has
been proposed as a sensor of chemical irritants [10], and
both may play a role in hyperalgesia [17]. Our present data
are in agreement with recent findings reporting a contribu-
tion of TRPA1 and TRPV4 in paclitaxel-evoked hypersen-
sitivity [14]. However, in our study, pharmacological
inhibition and, more importantly, TRPA1 genetic deletion,
reduced mechanical allodynia only partially, and it was only
after TRPV4 inhibition that paclitaxel-evoked response was
completely abated. The difference may be due to the diverse
protocols of paclitaxel administration used in the present
study (one single administration) as compared to the other
study (repeated administrations) [14]. In the latter paper,
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antagonism in the central nervous system of the proteinase-
activated receptor 2 (PAR2) completely inhibited heat, cold,
and mechanical hypersensitivity, three sensory modalities
that, at different degrees, were mediated by TRPV1,
TRPV4, and TRPA1, respectively. TRPV4 has been
reported to induce thermal and mechanical hyperalgesia
[44]. There is evidence that TRPA1 and TRPV4 can be
sensitized by PAR2 [15, 24]. Thus, it is possible that
PAR2 orchestrates the mechanism that eventually results in
TRP channel-mediated hypersensitivity. However, the
mechanism of the interaction between PAR2 and TRP chan-
nels, and the anatomo-functional site where the interaction
occurs, remain to be determined.

A number of studies reported that antioxidants protect
against the sensory neuropathy induced by paclitaxel [21,
38]. Present evidence shows that GSH inhibits TRPA1 and
TRPV4 targeting on sensory nerves induced by paclitaxel.
However, whereas endogenous oxidative stress byproducts
capable of activating TRPA1 are well identified, little infor-
mation [7] is available regarding activation of TRPV4 by
oxidative stress byproducts, and no evidence exists that
oxidative stress may activate PAR2. Thus, further studies
are required to define upstream (oxidative stress) or down-
stream (PAR2) mechanisms apparently associated to
paclitaxel-induced and TRPA1/TRPV4-mediated hypersensi-
tivity. Irrespective of the underlying mechanism, previous [1,
2, 14, 34] and present findings support the hypothesis of
using TRPA1 and TRPV4 antagonists to treat patients with
PN evoked by anticancer medicines, such as paclitaxel or
oxaliplatin.
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Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and painful adverse reaction of cancer

treatment in patients that is little understood or treated. Cytotoxic drugs that cause CIPN exert their
effects by increasing oxidative stress, which activates the ion channel TRPA1 expressed by nociceptors. In
this study, we evaluated whether TRPA1 acted as a critical mediator of CIPN by bortezomib or oxaliplatin
in a mouse model system. Bortezomib evoked a prolonged mechanical, cold, and selective chemical
hypersensitivity (the latter against the TRPA1 agonist allyl isothiocyanate). This CIPN hypersensitivity
phenotype that was stably established by bortezomib could be transiently reverted by systemic or local
treatment with the TRPA1 antagonist HC-030031. A similar effect was produced by the oxidative stress
scavenger a-lipoic acid. Notably, the CIPN phenotype was abolished completely in mice that were
genetically deficient in TRPA1, highlighting its essential role. Administration of bortezomib or oxaliplatin,
which also elicits TRPA1-dependent hypersensitivity, produced a rapid, transient increase in plasma of
carboxy-methyl-lysine, a by-product of oxidative stress. Short-term systemic treatment with either HC-
030031 or a-lipoic acid could completely prevent hypersensitivity if administered before the cytotoxic
drug. Our findings highlight a key role for early activation/sensitization of TRPA1 by oxidative stress by-
products in producing CIPN. Furthermore, they suggest prevention strategies for CIPN in patients
through the use of early, short-term treatments with TRPA1 antagonists. Cancer Res; 73(10); 3120–31.
�2013 AACR.

Introduction
Several anticancer medicines evoke sensory adverse events,

collectively referred to as chemotherapy-induced peripheral
neuropathy (CIPN), which are represented by sensory symp-
toms (from paresthesias, allodynia, and hyperalgesia to severe
pain). In addition to impairing patient quality of life, CIPNmay
lead to dose-limitation or even discontinuation of anticancer
treatment (1). No effective therapy is currently available to
treat or prevent CIPN, most likely because the underlying
mechanisms are poorly understood. A host of hypotheses has

been proposed to explain CIPN, including mitochondrial dys-
function, increased content of oxidative substances, and
altered function of different ion channels (2–7). Nonetheless,
no unified mechanism that may reconcile results of clinical
investigation and findings obtained in experimental animals
has been advanced so far.

Chemotherapeutic drugs, which produce CIPN, are known
to increase oxidative stress and reactive oxygen, nitrogen, or
carbonyl species (ROS, RNS, and RCS, respectively) and treat-
ment with antioxidant substances has been shown to reduce
sensory hypersensitivity in experimental animals and to exhib-
it some degree of protection in patients with CIPN (3, 7–10).
The transient potential receptor ankyrin 1 (TRPA1) is a non-
selective cation channel, coexpressed with TRP vanilloid 1
(TRPV1) in a subset of C-fiber nociceptors, where it functions
as a multimodal sensor to noxious stimuli (11, 12). TRPA1
shows a unique sensitivity for an unprecedented number of
endogenous reactive molecules produced at sites of tissue
injury or inflammation, which include ROS, RNS, and RCS
(13–16).

Bortezomib is a proteasome inhibitor used in different types
of cancer (17). CIPN has emerged as a major complication of
bortezomib therapy, which usually appears in the first courses
of therapy with a number of sensory and painful symptoms,
including reduced threshold to mechanical and cold stimuli
(18, 19). No satisfactory explanation or effective treatment
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exists for bortezomib-evoked CIPN (20, 21). As described for
other chemotherapeutics, bortezomib has been reported to
increase oxidative stress (22, 23).
In the present study, first, we investigated the role of

oxidative stress and TRPA1 in a mouse model of CIPN evoked
by bortezomib. Biochemical, pharmacologic, and genetic find-
ings show that TRPA1 is necessary and sufficient to develop
andmaintain bortezomib-evokedmechanical, cold, and chem-
ical hypersensitivity in mice. Second, we showed that early and
short-term pharmacologic TRPA1 blockade totally prevented
the sensory neuropathy evoked by bortezomib and oxaliplatin
(previously shown to produce a TRPA1-dependent hypersen-
sitivity inmice; refs. 5, 6, 24), thus opening new perspectives for
CIPN prevention and treatment.

Materials and Methods
Animals
Animal experiments were carried out according to Italian

legislation (DL 116/92) and European Communities Council
Directive (86/609/EEC). Studies were conducted under the
permit (number 143/2008-B and 204/2012-B, University of Flor-
ence, Florence, Italy) approved by the Italian National Commit-
tee for Animal Research. C57BL/6 mice (male, 25–30 g; Harlan
Laboratories), wild-type (Trpa1þ/þ), or TRPA1-deficient mice
(Trpa1�/�; 25–30 g; Jackson Laboratories) were used. Animals
were housed in a temperature- and humidity-controlled vivar-
ium (12-hour dark/light cycle, free access to food and water).
Behavioral experiments were done in a quiet, temperature-
controlled room (20–22�C) between 9 a.m. and 5 p.m., and were
conducted by an operator blinded to the genotype and the
status of drug treatment. Animals were sacrificed with a high
dose of intraperitoneal (i.p.) sodium pentobarbital (200 mg/kg).

Reagents
If not otherwise indicated, all reagents were from Sigma-

Aldrich. HC-030031 [2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahy-
dro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide; Supple-
mentary Fig. S1A] was synthesized as previously described
(15). HC-067047 (2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phe-
nyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide;
Supplementary Fig. S1B) was obtained from Tocris Bioscience,
and bortezomib was purchased from LC Laboratories.

Chemotherapy-induced painful neuropathy models
Previous studies have described rat and mouse models of

peripheral neuropathy induced by repeated and prolonged
administration of bortezomib (25–28). On the basis of these
findings, in the first series of experiments, we exploredwhether
a single administration of bortezomib produced mechanical
and cold hypersensitivity in mice, as observed for different
chemotherapeutic agents including oxaliplatin, paclitaxel, and
vincristine (4, 6, 29). After habituation and baseline measure-
ments of pain sensitivity, animals were randomized into
treatment groups. C57BL/6, Trpa1þ/þ, or Trpa1�/�mice were
treatedwith a single intraperitoneal administration of different
doses of bortezomib (0.2, 0.5, and 1mg/kg), or vehicle (dimethyl
sulfoxide, DMSO 1%; ref. 27). Bortezomib, formulated at a
concentration of 1 mg/mL, was first dissolved in a vehicle

containing DMSO, and the volume was adjusted to 10 mL/kg
to a final concentration of 1% DMSO, then diluted in isotonic
saline (NaCl 0.9%) to obtain lower doses. A different group of
C57BL/6 mice was treated with a single administration of
oxaliplatin (3 mg/kg, i.p.) or its vehicle (isotonic saline, NaCl
0.9%; ref. 6). No weight loss was observed in mice after
bortezomib or oxaliplatin treatment throughout the dura-
tion of the experiments. Effects induced by bortezomib and
oxaliplatin were tested for 14 and 30 days (starting 6 hours
after drug administration), respectively. Baseline values
for nociceptive tests were observed before chemotherapy
treatment.

Nociceptive tests
Von frey hair test. Mechanical threshold wasmeasured in

C57/BL6, Trpa1þ/þ, or Trpa1�/� mice after a single adminis-
tration of bortezomib or oxaliplatin by using the up-and-down
paradigm (30). Mechanical nociceptive threshold was deter-
mined before (basal level threshold) and after different treat-
ments. The 50% mechanical paw withdrawal threshold (in g)
response was then calculated from these scores, as previously
described (30, 31).

Hot plate test. Thepaw thermal hyperalgesiawas assessed
in C57/BL6, Trpa1þ/þ, or Trpa1�/� by placing animals on a hot
plate (UgoBasile) with the temperature adjusted to 50� 0.1�C
(32). The latency to thefirst hind paw licking orwithdrawalwas
taken as an index of nociceptive threshold. The cut-off time
was set at 30 seconds, to avoid damage to the paw. The paw-
withdrawal latency to the first response was reported as mean
of 2 different trials.

Cold stimulation. Cold allodynia was assessed in C57/
BL6,Trpa1þ/þ, orTrpa1�/� bymeasuring the acute nocifensive
response to the acetone-evoked evaporative cooling as previ-
ously described (29). Briefly, a droplet (50 mL) of acetone,
formed on the flat-tip needle of a syringe, was gently touched
to the plantar surface of the mouse hind paw, and the time
spent in elevation and licking of the plantar region over a 60-
second period wasmeasured. Acetone was applied 3 times at a
10- to 15-minute intervals, and the average of elevation/licking
time was calculated.

Chemical hyperalgesia. Nociceptive behavior was
assessed by measuring spontaneous nociceptive response
induced by intraplantar (i.pl.) injection (20 mL) of sub-thresh-
old doses of allyl isothiocyanate (AITC; 1 nmol/paw), capsaicin
(0.01 nmol/paw), hypotonic saline (NaCl, 0.45%), or prosta-
glandin E2 (PGE2, 0.3 nmol/paw) at day 7 after the adminis-
tration of bortezomib or its vehicle. Immediately after the
injection, mice were placed inside a Plexiglas chamber and the
total time spent licking and lifting the injected hind paw was
recorded for 5minutes (AITC, capsaicin, and hypotonic saline),
or 20 minutes (PGE2). Previous experiments conducted in our
laboratory and previous findings (33, 34) suggested subthresh-
old doses that do not cause nociception in na€�ve mice.

Rotarod test
Locomotor function, coordination, and sedation of animals

were tested by using a rotarod apparatus (UgoBasile). The test
was done as previously described (35). Briefly, 24 hours before
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the experiments, the animals were trained on the rotarod
apparatus, programmed at 8 rpm, until they remained without
falling for 60 seconds. The day of the experiment, the latency
(seconds) to the first fall and the number of falls were recorded.
Cut-off time was 240 seconds.

Treatment protocols
In a first set of experiments, intragastric (i.g.) HC-030031

(300mg/kg) or its vehicle (0.5% carboxymethyl cellulose, CMC),
HC-067047 (10 mg/kg, i.p.) or its vehicle (2.5% DMSO), or
a-lipoic acid (100 mg/kg, i.g.) or its vehicle (0.5% CMC), were
administered at day 7 after the administration of bortezomib
(1 mg/kg, i.p.) or its vehicle. In a second set of experiments,
i.pl. HC-030031 (100 mg/paw, 20 mL; ref. 36), a-lipoic acid
(10 mg/paw, 20 mL; ref. 3), or vehicle (20 mL/paw, 1% DMSO
in isotonic saline, NaCl 0.9%) were injected at day 3 or day 7
after the administration of oxaliplatin or bortezomib (see
earlier section for dosing), respectively. In a third set of
experiments, HC-030031 (300 mg/kg, i.g.), a-lipoic acid (100
mg/kg, i.g.), or their respective vehicles, were administered 15
minutes before the administration of bortezomib, oxaliplatin,
or their vehicles and treatment was repeated 3 times at
approximately 90-minute intervals each after the administra-
tion of bortezomib or oxaliplatin. In a fourth and final set of
experiments, a group ofmicewas treatedwithHC-030031 or its
vehicle 15minutes before and shortly (3 times at approximately
90-minute intervals each) after a first bortezomib (1 mg/kg,
i.p.) or vehicle administration. At day 6, each group of mice
received a second treatment identical to that administered at
day 1, except formice treated at day 1with bothHC-030031 and
bortezomib, which were subdivided into 2 additional groups.
One group was treated a second time with either HC-030031
(300 mg/kg, i.g.) and the second with its vehicle 15 minutes
before and shortly after (3 times at approximately 90-minute
intervals each) bortezomib administration (Fig. 6A).

Isolation of primary sensory neurons and calcium
imaging experiments

Primary dorsal root ganglia (DRG) from C57/BL6 adult mice
were cultured as previously described (29). Briefly, lumbosacral
(L5–S2) ganglia were bilaterally excised under a dissection
microscope. Ganglia were digested using 1 mg/mL of collage-
nase type 1A and 1 mg/mL of papain in Hank's Balanced Salt
Solution (25 minutes, 37�C). Neurons were pelleted and resus-
pended in Ham's-F12 containing 10% FBS, 100 U/mL of pen-
icillin, 0.1 mg/mL of streptomycin, and 2 mmol/L glutamine,
dissociated by gentle trituration, and plated on glass coverslips
coated with poly-L-lysine (8.3 mmol/L) and laminin (5 mmol/L).
Neurons were cultured for 3 to 4 days.

Cells were incubated with 5 mmol/L Fura-2AM ester for 30
minutes at 37�C. Intracellular calcium concentration ([Ca2þ]i)
was measured on a Nikon Eclipse TE2000U microscope. Fluo-
rescence was measured during excitation at 340 and 380 nm,
and after correction for the individual background fluores-
cence signals, the ratio of the fluorescence at both excitation
wavelengths (Ratio340/380) was monitored. Experiments were
conducted using a buffer solution containing (in mmol/L): 150
NaCl, 6 KCl, 1 MgCl2, 1.5 CaCl2, 10 glucose, 10 HEPES and

titrated to pH 7.4 with 1N NaOH. Cells were challenged with
bortezomib (10, 50, and 100 mmol/L) or their respective vehi-
cles (0.01, 0.5, and 1%DMSO), AITC (30 mmol/L), and capsaicin
(0.1 mmol/L) to identify nociceptive neurons. In another series
of experiments, DRG neurons were incubated with bortezomib
(10 or 100 mmol/L) or its vehicle (0.01 and 0.1% DMSO) for 2
hours and then challenged with AITC (10 or 30 mmol/L).
Results are expressed as the increase of Ratio340/380 over the
baseline normalized to the maximum effect induced by iono-
mycin (5 mmol/L) added at the end of the experiment.

Protein extraction and Western immunoblotassay
Spinal cord, DRGs, and hind paw skin were obtained from

mice treated with bortezomib or its vehicle at day 7 post
treatment. Tissue samples were homogenized in lysis buffer
containing (in mmol/L): 50 Tris, 150 NaCl, 2 EGTA, 100 NaF, 1
Na3VO4, 1% Nonidet P40, pH 7.5, and complete protease
inhibitor cocktail (Roche). Lysates were centrifuged at
14,000g at 4�C for 45 minutes. Protein concentration in super-
natants was determined using DC protein assay (Bio-Rad).
Samples with equal amounts of proteins (30 mg) were then
separated by 10% SDS-PAGE electrophoresis, and the resolved
proteins were transferred to a polyvinylidenedifluoride mem-
brane (Merck Millipore Billerica). Membranes were incubated
with 5% dry milk in Tris buffer containing 0.1% Tween 20
(TBST; 20mmol/L Tris, pH 7.5, 150mmol/L NaCl) for 1 hour at
room temperature, and incubated with rat polyclonal primary
antibody for TRPA1 detection (1:200; Novus Biologicals), or
mouse monoclonal primary antibody for b-actin (1:6,000;
Thermo Scientific), at 4�C overnight. Membranes were then
probed with goat anti-mouse or donkey anti-rabbit IgG con-
jugated with horseradish peroxidase (Bethyl Laboratories Inc.)
for 50 minutes at room temperature. Finally, membranes were
washed 3 times with TBST, and bound antibodies were
detected using chemiluminescence reagents (ECL; Pierce,
Thermo Scientific). The density of specific bands was mea-
sured using an image-processing program (ImageJ 1.32J,
Wayne Rasband) and normalized against a loading control
(b-actin).

Carboxy-methyl-lysine adducts measurement in plasma
Briefly, blood samples from C57/BL6 mice, taken 1, 3, 6, and

24 hours after the administration of bortezomib (1mg/kg, i.p.),
oxaliplatin (3 mg/kg, i.p.), or their vehicles (1% DMSO and
isotonic saline, NaCl 0.9%, respectively), were centrifuged at
3,500g for 10 minutes, and plasma was used for the carboxy-
methyl-lysine (CML) protein adduct ELISA assay. CML protein
adducts content in plasma was measured using as ELISA kit
(OxiSelect ELISA Kit, Cell Biolabs Inc. Valter Occhiena S.R.L.)
according to the manufacturer's instructions.

Statistical analysis
Data are presented as mean � SEM. Statistical analysis was

carried out by the unpaired 2-tailed Student t test for compar-
isons between 2 groups, the ANOVA, followed by the post hoc
Bonferroni test for comparisons ofmultiple groups. P value less
than 0.05 was considered statistically significant (GraphPadPr-
ism version 5.00). To meet ANOVA assumptions, mechanical
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allodynia data were subjected to log transformation before
statistical analysis.

Results
Bortezomib administration produces persistent
mechanical cold and chemical hypersensitivitymediated
by TRPA1
Administration of a single dose (0.2, 0.5, and 1 mg/kg, i.p.) of

bortezomib induced a dose-dependent mechanical and cold
hypersensitivity in C57BL/6 mice (Fig. 1A and B). Reduced
mechanical thresholdwas observed after bortezomib (1mg/kg,
i.p.) injection as early as 6 hours and lasted until 11 days after
treatment (Fig. 1A). Similar results were obtained for cold
allodynia, which was evident at day 1 and persisted until day 11
after bortezomib injection (Fig. 1B). Bortezomib administra-
tion (1 mg/kg, i.p.) did not affect the heat threshold of mice at
any time point, from 6 hours to 14 days after treatment.
Nociception time to heat stimulus was 19.7� 0.8 seconds and
17.2 � 1.0 seconds at baseline and 7 days after bortezomib
treatment, respectively (n¼ 8–10mice, P > 0.05, Student t test).
Next, we investigated whether TRPA1 activation is involved

in mechanical and cold hypersensitivity induced by bortezo-
mib. Systemic treatment with the TRPA1 selective antagonist

HC-030031 (300 mg/kg, i.g.; ref. 37) at day 7 after bortezomib
treatment completely, but transiently, reverted both mechan-
ical hyperalgesia and cold allodynia. Significant inhibition was
observed from 30 to 120 minutes after HC-030031 treatment,
with maximum reduction (98� 12% and 90� 6% for mechan-
ical hyperalgesia and cold allodynia, respectively) 60 minutes
post dosing (Fig. 1C and D). Systemic treatment with HC-
030031 (300 mg/kg, i.g.) at day 7 after treatment with borte-
zomib (0.2 or 0.5 mg/kg, i.p.) completely but transiently
reverted both mechanical hyperalgesia and cold allodynia
(data not shown).

Given that we, as well as others (29, 38), have found that
mechanical and cold hypersensitivity evoked by paclitaxel was
mediated by both TRPA1- andTRPV4-dependentmechanisms,
we tested whether the TRPV4 channel contributes to borte-
zomib-induced sensory hypersensitivity by using a selective
TRPV4 antagonist, HC-067047 (10 mg/kg, i.p.; ref. 39). HC-
067047, at a dose able to reduce mechanical hyperalgesia
evoked by paclitaxel (29), failed to affect bortezomib-evoked
hypersensitivities (data not shown). Therefore, present phar-
macologic evidence indicates an exclusive role for TRPA1 in
bortezomib-induced mechanical allodynia and cold hypersen-
sitivity in mice, whereas it rules out a contribution by TRPV4.

Figure 1. Bortezomib induces mechanical allodynia and cold hypersensitivity via TRPA1 activation in mice. A single dose of bortezomib (BTZ; 0.2, 0.5,
and 1 mg/kg i.p.) induces in C57BL/6 mice a dose- and time-dependent mechanical (A) and cold (B) allodynia, which starts at 6 hours or day 1,
respectively, and persists until day 11 after BTZ (1 mg/kg) administration. At day 7 after BTZ administration, the selective TRPA1 receptor antagonist,
HC-030031 (HC; 300 mg/kg i.g.), completely reverses the mechanical (C) and cold (D) allodynia with a maximum effect, 60 minutes after dosing. BTZ
treatment produces in Trpa1þ/þmice mechanical (E) and cold (F) allodynia similar to those observed in C57BL/6. These effects are completely absent in
Trpa1�/�mice (E and F). Veh, vehicle of BTZ or HC. Values are mean � SEM of 8 to 10 mice. #, P < 0.05 versus VehBTZ, Student t test in A
and B; �, P < 0.05 versus VehBTZ-VehHC in C and D and VehBTZ-Trpa1þ/þ in E and F; x, P < 0.05 versus BTZ-VehHC in C and D and BTZ-Trpa1�/�in E and F;
one-way ANOVA and Bonferroni test. BL, baseline withdrawal threshold.
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More importantly, we found that bortezomib treatment
(1 mg/kg, i.p.) produced mechanical hyperalgesia and cold
allodynia in Trpa1þ/þ mice with an identical time course to
that observed in C57BL/6 mice, an effect that was completely
absent in Trpa1�/� mice (Fig. 1E and F).

In addition, we wondered whether bortezomib could
cause selective chemical hypersensitivity to TRPA1 agonists.
The study of the effects produced by sub-threshold doses of
AITC (TRPA1 agonist), capsaicin (TRPV1 agonist), PGE2
(EP1-4 receptor agonist), or hypotonic saline (which can
stimulate TRPV4) showed that bortezomib treatment selec-

tively increased the nociceptive behavior evoked by AITC
(Fig. 2A). In fact, responses to capsaicin, PGE2, and hypo-
tonic saline were similar in both vehicle- and bortezomib-
treated animals (Fig. 2B–D). As expected, in TRPA1-deficient
mice treated with bortezomib or its vehicle, AITC failed to
evoke any nociceptive response (data not shown).

Bortezomib does not affect TRPA1 receptor expression
and does not directly activate TRPA1

TRPA1 expression has been found to vary in different painful
conditions, including models of CIPN (9, 40). Therefore, we

Figure 2. Bortezomib enhances allyl isothiocyanate-evoked nocifensive behavior but does not increase TRPA1 expression or directly activate TRPA1.
Nociceptive behavior produced by a sub-threshold dose of intraplantar (i.pl.; 20 mL) injection of allyl isothiocyanate (AITC; 1 nmol/paw; A) in mice is increased
7 days after BTZ (1 mg/kg i.p.). Responses to subthreshold doses of capsaicin (CPS; 0.01 nmol/paw; B), hypotonic saline (NaCl, 0.45%; C), and
PGE2 (0.3 nmol/paw; D) are not affected by BTZ. Values are mean � SEM of 8 to 10 mice. �, P < 0.05 versus VehBTZ-AITC in A; Student t test. E, TRPA1
protein content analyzed by Western blotting is not different in tissue homogenates of spinal cord, DRGs, and hind paw skin obtained from mice on
day 7 after treatment with BTZ or its vehicle (Veh). Values are mean� SEM of 3 samples, Student t test. Equally loaded protein was checked by expression of
b-actin. A representativeblot is shown.BTZ (10, 50, or 100mmol/L) fails to evoke any visible intracellular calcium (Ca2þ)I response inCPS (0.1mmol/L)-sensitive
DRG neurons, which otherwise responded to AITC (F, G). Trace represents an average of 10 neurons. H, in vitro preexposure to BTZ (100 mmol/L for
2 hours) does not affect themagnitudeof the response, and thenumber of neurons responding toAITC (10 and30mmol/L). Veh is the vehicle of BTZ. Values are
mean�SEMof n > 30 neurons. Numbers indicate AITC-responding cells/CPS-responding cells. �,P < 0.05 versus Veh; one-way ANOVA andBonferroni test.
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evaluated, by Western blotting, the expression of TRPA1
receptor in different tissues. At day 7 after administration,
when hypersensitivity was at its maximum, TRPA1 immuno-
reactivity in the spinal cord, DRG, and hind paw skin of mice
treated with bortezomib or its vehicle, were similar (Fig. 2E).
To test the hypothesis that bortezomib directly activates the

TRPA1 receptor, we studied the ability of bortezomib to evoke
calcium responses in cultured mouse DRG neurons. Bortezo-
mib (10, 50, or 100 mmol/L) failed to evoke any calcium
response in capsaicin-sensitive DRG neurons (Fig. 2F and
G), which otherwise responded to the TRPA1 agonist AITC
(30 mmol/L). In vitro pre-exposure to bortezomib (100 mmol/L
for 2 hours) did not affect the magnitude or the number of
neurons responding to AITC (10 and 30 mmol/L; Fig. 2H).

a-Lipoic acid transiently reverts bortezomib-evoked
hypersensitivity
As reported for other anticancer drugs, such as oxalipla-

tin, paclitaxel, and others, there is evidence that bortezomib
also produces oxidative stress (20, 21, 25, 41, 42). Therefore,
we hypothesized that reactive molecules generated by the
oxidative stress burst produced by bortezomib administra-
tion could be the underlying mechanism by which the
anticancer drug induces TRPA1-dependent mechanical and
cold hypersensitivity.
We observed that administration ofa-lipoic acid (100mg/kg,

i.g.) completely abated mechanical hyperalgesia and cold
allodynia evoked at day 7 after bortezomib treatment.
Significant effect of a-lipoic acid was observed from 30 to
120 minutes after treatment, with maximum inhibition (73 �
9% and 77� 6% formechanical hyperalgesia and cold allodynia,
respectively) 60 minutes post dosing (Fig. 3A and B).

Local treatment with HC-030031 or a-lipoic acid
transiently reverts bortezomib- or oxaliplatin-induced
hypersensitivity
It has been reported that i.pl. injection of a-lipoic acid

reduces oxaliplatin-elicited nociception (3). In the present
study, we observed that i.pl. injection of HC-030031 (100 mg/
paw) or a-lipoic acid (10 mg/paw) completely reduced borte-
zomib-induced mechanical and cold allodynia (Fig. 3C and D).
In addition, we found that mechanical and cold allodynia
elicited by oxaliplatin were markedly decreased by i.pl. injec-
tion of HC-030031 and a-lipoic acid (Fig. 3E and F). Contra-
lateral paw thresholds to mechanical or cold stimuli were not
affected by the i.pl. injection of HC-030031 ora-lipoic acid (Fig.
3C–F). Administration of HC-030031 or a-lipoic acid (i.pl.) did
not produce any appreciable effect in animals treated with the
vehicle of bortezomib or oxaliplatin (data not shown).

Bortezomib and oxaliplatin increase plasma level of
carboxy-methyl-lysine
Systemic oxidative stress was evaluated by measuring the

serum content of Ne-carboxy-methyl-lysine (CML) protein
adducts. CML is the reaction product between lysine and
glyoxal, an a-ketoaldehyde intermediate formed by ascorbate
autoxidation, lipid peroxidation, and oxidative degradation of
glucose and degradation of glycated proteins. Due to the fact

that CML is formed from either carbohydrates or lipids oxi-
dation, it has been termed as an either advanced glycation or
lipoxidation endproducts (EAGLE) modification. CML may be
considered as a general marker of oxidative stress and, so far, it
is widely used to measure oxidative stress in different path-
ophysiologic conditions (43). Bortezomib administration pro-
duced a transient increase in plasma CML levels. One hour
after bortezomib injection, CML increased by 64% over base-
line value, and returned to basal values at 3 hours after
treatment (Fig. 4A). Similar to bortezomib, oxaliplatin admin-
istration produced a transient increase in plasma CML levels,
which was observed at 1 hour (55% over the baseline) and 3
hours (63% over the baseline), and returned to basal levels 6
hours after treatment (Fig. 5A).

Early and short-term treatment with HC-030031 or
a-lipoic acid completely prevents bortezomib- and
oxaliplatin-evoked hypersensitivity

We investigated whether treatment with a TRPA1 antago-
nist or a ROS scavenger given shortly before and after anti-
cancer drug administration could prevent the development of
persistent mechanical, cold, and chemical hypersensitivity. To
test this hypothesis HC-030031 (300mg/kg, i.g.) ora-lipoic acid
(100mg/kg, i.g.), were given respectively, 15minutes before and
3 times every 90 minutes after bortezomib or oxaliplatin
administration. HC-030031 totally prevented the development
of chemical hypersensitivity and mechanical and cold allody-
nia evoked by bortezomib (Fig. 4B, D, and E) and oxaliplatin
(Fig. 5B, D, and E). Similarly, a-lipoic acid prevented chemical
hypersensitivity and mechanical and cold allodynia evoked by
bortezomib (Fig. 4C, F, and G) and oxaliplatin (Fig. 5C, F, and
G). Repeated i.g. administration of TRPA1 antagonist (HC-
030031, 300 mg/kg, i.g.) did not affect forced locomotion of
animals, as observed by the rotarod test. HC-030031- and
vehicle-treated animals did not show any fall during the test
(data not shown).

Mice, protected by early and short-term treatment with
HC-030031, were rechallenged 6 days after a first treatment
with bortezomib with a second bortezomib administration
(1 mg/kg, i.p.). In these mice, a second early and short-term
treatment with HC-030031 again totally prevented the devel-
opment of mechanical and cold hypersensitivity (Fig. 6B and
C). In contrast, mice treated with HC-030031 vehicle did not
show protection against the hypersensitivity evoked by the
second administration of bortezomib. Mice treated with bor-
tezomib and HC-030031 vehicle developed mechanical and
cold hypersensitivity, a response that further increased at the
second treatment with bortezomib and HC-030031 vehicle
(Fig. 6B and C).

Discussion
In the present study in mice, we found that 1 single admin-

istration of bortezomib produced an early and prolonged
mechanical and cold hypersensitivity that started 6 hours after
and lasted for 11 days after bortezomib administration. With a
slight difference in duration, the effect of bortezomib was
practically identical to that previously reported for oxaliplatin
(6). A number of preclinical studies and clinical investigations
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have shown that bortezomib, like oxaliplatin and paclitaxel,
increases ROS and their by-products in plasma, cells, and
tissues of treated animals or patients, and that ROS scavengers
show some degree of protection against CIPN or its rodent
counterpart (3, 7–10, 44). Two observations suggest that
oxidative stress mediates bortezomib-evoked sensory neurop-
athy. First, the ROS scavenger, a-lipoic acid, completely
reversed the established (at day 7 after drug administration)
mechanical and cold hypersensitivity evoked by bortezomib.
Second, bortezomib and oxaliplatin produced an early and
transient (1–3 hours after drug administration) increase in the
plasma levels of 1 major by-product of oxidative stress, CML.
The finding that oxaliplatin administration also increased
plasma oxidative stress by-products is consistent with the

previously reported role of oxidative stress in oxaliplatin-
evoked sensory neuropathy (6).

TRPA1 has been identified as a sensor of oxidative stress, in
as much as it is activated by an unprecedented series of ROS,
RNS, or RCS (16, 45, 46). Thus, we hypothesized that oxidative
stress by-products, generated by bortezomib, may target the
TRPA1 channel in sensory nerve terminals. Indeed, both
pharmacologic and genetic findings indicate that TRPA1 plays
a key role in bortezomib-evoked mechanical and chemical
hyperalgesia and cold allodynia, as these phenomena were
completely reverted when they were at their maximum, for
example, at day 7 after treatment, by a TRPA1 antagonist and
were completely absent in TRPA1-deleted mice. The key
contribution of TRPA1 in mechanical, chemical, and cold

Figure 3. Systemic or local
administration of a-lipoic acid
(a-LA) and local administration of
HC-030031 (HC) transiently
reverse BTZ-evoked mechanical
and cold hypersensitivity in mice.
At day 7 after BTZ (1 mg/kg i.p.),
a-LA (100 mg/kg i.g.) completely
reverses the mechanical (A) and
cold (B) allodynia with a maximum
effect at 60 minutes post dosing.
Veh, vehicle of BTZ or a-LA acid.
C and E, HC (100 mg/paw, i.pl.
20 mL) or a-LA (10 mg/paw) reduce
the mechanical allodynia induced
by BTZ or oxaliplatin (OXA;
3 mg/kg, i.p.) in the paw ipsilateral
(ipsi) to the injection. D and F, in the
contralateral (contra) side, the paw
threshold to mechanical stimuli is
not affected by local HC or a-LA.
Local HC or a-LA acid treatment
produces similar findings when
cold allodynia is measured. Values
are mean � SEM of 8 to 10 mice.
�, P < 0.05 versus Veha-LA acid or
VehBTZ or BL values; x, P < 0.05
versus BTZ-Veha-LA or Vehipsi;
one-way ANOVA and Bonferroni
test. BL, baseline withdrawal
threshold.
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allodynia does not seem confined to bortezomib model as
earlier studies (5, 6, 24) showed a similar role of TRPA1 in
oxaliplatin-evoked sensory neuropathy in mice. In addition,
the TRPV4-resistant component (38) of the mechanical hyper-
algesia evoked by paclitaxel in mice has also been ascribed to
the contribution of TRPA1, whereas TRPA1 appears to be the
sole channel responsible for paclitaxel-evoked cold allodynia
(29). In addition, we found that an oxidative stress scavenger or
a TRPA1 antagonist reversed bortezomib- or oxaliplatin-
evoked hypersensitivity selectively on the treated paw, when
they were given locally by i.pl. administration. This finding
indicates that TRPA1 sensitization/activation occurs at the

very terminal region of nociceptive primary afferents, and that
channel inhibition at this peripheral level is sufficient to revert
the sensory neuropathy.

The protective effect of HC-030031 or a-lipoic acid when
administered (either systemically or locally) at day 7 after
bortezomib administration, although complete, was transient,
lasting no longer than 120 minutes. This is probably due to the
pharmacokinetic properties of the 2 drugs, as indicated by
previous studies in different models of nociception or
hyperalgesia/allodynia (47, 48). In contrast to the transient
reversal produced by pharmacologic treatments when the
hypersensitivity is already established, in TRPA1-deficient

Figure 4. BTZ increases transiently oxidative stress in plasma and early and short-term treatment with HC and a-LA permanently prevents the development
of mechanical, cold, and chemical hypersensitivity evoked by BTZ in mice. A, BTZ (1 mg/kg i.p.) transiently increases carboxy-methyl-lysine (CML)
plasma levels in mice. Both HC (300 mg/kg i.g.) and a-LA (100 mg/kg i.g. 15 minutes before and 3 times at 90-minute intervals each after BTZ treatment)
prevent the development and maintenance of chemical hyperalgesia (B and C) as well as mechanical (D and F) and cold (E and G) allodynia evoked
byBTZ (1mg/kg i.p.). Veh, of BTZ, HC, ora-LA. Values aremean�SEMof 8 to 10mice. �,P < 0.05 versus BL in A, VehHC-VehBTZ in B, D, and E, or Veha-LA-
VehBTZ in C, F, and G; x, P < 0.05 versus VehHC-BTZ in B, D, and E or Veha-LA-BTZ- in C, F, and G; one-way ANOVA and Bonferroni test. BL, basal level of
CML in A and baseline withdrawal threshold in D–G.
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mice hypersensitivity to bortezomib or oxaliplatin (6) does
not develop. These genetic findings and biochemical evi-
dence of the transient increase in plasma CML suggest that
early phenotypic changes of TRPA1, presumably associated
with the oxidative burst, which are responsible for the
development and maintenance of the hypersensitivity, occur
a few hours after chemotherapeutic drug administration. To
identify the critical role of these early events for the man-
ifestation of the enduring hypersensitivity condition by
anticancer drug, we designed an experiment in which HC-
030031 or a-lipoic acid were given shortly before and for
approximately 6 hours after bortezomib or oxaliplatin treat-

ment. These treatments not only blocked the onset of the
hypersensitivity, but, rather surprisingly, completely and
stably prevented its development and maintenance. Of
interest for translating the present observation to the clin-
ical perspective, the permanent protective effect by early and
short-term treatment with the TRPA1 antagonist was also
observed when it was repeated after a second bortezomib
administration. Although it is not possible to replicate in
mice the exact condition experienced by patients, these
additional findings suggest a possible treatment schedule
to prevent the sensory neuropathy in patients when TRPA1
antagonists are clinically available.

Figure 5. Oxaliplatin transiently increases oxidative stress in plasma, and early and short-term treatment with HC and a-LA permanently prevents the
development of mechanical, cold, and chemical hypersensitivity evoked by BTZ in mice. A, oxaliplatin (OXA; 3 mg/kg i.p.) transiently increases CML plasma
levels in mice. Both HC (300 mg/kg i.g.) and a-LA (100 mg/kg i.g. 15 minutes before and 3 times at 90-minute intervals each after BTZ treatment)
prevent the development and maintenance of chemical hyperalgesia (B and C) as well as mechanical (D and F) and cold (E and G) allodynia evoked by
OXA (3 mg/kg i.p.). Veh, vehicle of OXA, HC, or a-LA. Values are mean � SEM of 8 to 10 mice. �, P < 0.05 versus BL in A, VehHC-VehOXA in B, D, and E or
Veha-LA-VehOXA in C, F, andG; x,P < 0.05 versus VehHC-OXA in B, D, and E or Veha-LA-OXA in C, F, andG; one-way ANOVA andBonferroni test. BL, basal
level of CML in A and baseline withdrawal threshold in D–G.
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Taken together, these findings indicate that TRPA1, via its
activation by oxidative stress by-products, is necessary and
sufficient to produce a sensory neuropathy paradigm in mice
following a single administration of different chemotherapeu-
tics. Oxaliplatin (6), paclitaxel (29), and bortezomib failed to
evoke any calcium response in cultured TRPA1-expressing
neurons, thus excluding that these drugs may directly target
the channel. However, in vitro findings support the alternative
explanation, as indicated by in vivo results, that chemothera-
peutic agents act indirectly by generating oxidative stress
by-products (3, 8, 9, 23), which in turn sensitize/activate TRPA1
in sensory neurons.
TRPA1 is apparently required for those early (within 6–8

hours) phenotypic changes that eventually result in the long-
term hypersensitivity to specific (AITC) and nonspecific
(pressure or cold) stimuli caused by exposure to different
chemotherapeutic agents in mice. Although some reports
have shown changes in TRP expression in different rodent
models of CIPN, under the present experimental circum-
stances, no change in TRPA1 protein expression in nocicep-

tive neurons was found. The molecular mechanism respon-
sible for the TRPA1-mediated hypersensitivity phenotype,
produced by chemotherapeutic agents remains unknown.
Nevertheless, present experiments with bortezomib and
oxaliplatin identify the early phase (a few hours) that
follows chemotherapeutic drug administration as the key
step when, most likely through oxidative stress by-products,
TRPA1 is activated/sensitized. These early events result in a
prolonged (several days) condition of hypersensitivity that
markedly mimics the long-lasting duration of CIPN in
patients treated with bortezomib or oxaliplatin. If ROS
scavengers, most likely because of poor pharmacokinetics,
could not represent a suitable and effective treatment for
CIPN, the present findings suggest a novel therapeutic
schedule to prevent CIPN in patients, based on TRPA1
antagonists given before and shortly after each administra-
tion of anticancer medicines.
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Figure 6. A repeated early and short-term treatment with HC prevents the development of mechanical and cold hypersensitivity evoked by a second BTZ
treatment in mice. A, schematic representation of HC (300 mg/kg, i.g.) and BTZ (1 mg/kg, i.p.) treatment. A group of mice are treated with HC or its
vehicle 15 minutes before and shortly after (3 times at �90-minute intervals each) a first BTZ or vehicle administration. At day 6 after the first BTZ
administration, all mice receive a second BTZ (1 mg/kg, i.p.) or vehicle administration. Mice pretreated with HC after the first BTZ dose are subdivided into
2 groups. One group is treated a second time with HC (300 mg/kg, i.g.) and a second group with its vehicle 15 minutes before and shortly after (3 times
at �90-minute intervals each) BTZ administration. The second early and short-term treatment with HC totally prevents the development of mechanical
and cold hypersensitivity (B, C). B and C, mice treated with BTZ and HC vehicle develop mechanical and cold hypersensitivity, a response that is further
increased by the second treatment with BTZ andHC vehicle. Values aremean�SEMof 8 to 10mice. �,P < 0.05 versus VehHC-VehBTZ in B andC; x,P < 0.05
versus VehHC-BTZ in B and C; #, P < 0.05 versus VehHC-BTZ or HC/BTZ-VehHC/BTZ; †, P < 0.05 versus HC/BTZ-VehHC/BTZ one-way ANOVA and
Bonferroni test. BL, baseline withdrawal threshold.
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Use of aromatase inhibitors (AIs), exemestane, letrozole and anastrozole, for breast cancer

therapy is associated with severe pain symptoms, the underlying mechanism of which is

unknown. The electrophilic nature of AIs suggests that they may target the transient receptor

potential ankyrin 1 (TRPA1) channel, a major pathway in pain transmission and neurogenic

inflammation. AIs evoke TRPA1-mediated calcium response and current in rodent nociceptors

and human cells expressing the recombinant channel. In mice, AIs produce acute nociception,

which is exaggerated by pre-exposure to proalgesic stimuli, and, by releasing sensory

neuropeptides, neurogenic inflammation in peripheral tissues. AIs also evoke mechanical

allodynia and decreased grip strength, which do not undergo desensitization on prolonged AI

administration. These effects are markedly attenuated by TRPA1 pharmacological blockade or

in TRPA1-deficient mice. TRPA1 is a major mediator of the proinflammatory/proalgesic

actions of AIs, thus suggesting TRPA1 antagonists for the treatment of pain symptoms

associated with AI use.
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T
hird-generation aromatase inhibitors (AIs) are currently
recommended for adjuvant endocrine treatment as pri-
mary, sequential or extended therapy with tamoxifen, for

postmenopausal women diagnosed with oestrogen receptor-
positive breast cancer1–3. AIs include the steroidal exemestane
and non-steroidal azole derivatives, letrozole and anastrozole,
which, via a covalent (exemestane) and non-covalent (azoles)
binding, inactivate aromatase, the enzyme that catalyzes the
conversion of androgens to oestrogens in peripheral tissue4. The
use of AIs is, however, associated with a series of relevant side
effects that are reported in 30–60% of treated patients5,6. Among
these, the AI-associated musculoskeletal symptoms (AIMSS) are
characterized by morning stiffness and pain of the hands, knees,
hips, lower back and shoulders7,8. In addition to musculoskeletal
pain, pain symptoms associated with AIs have recently been more
accurately described with the inclusion of neuropathic, diffused
and mixed pain9. The whole spectrum of painful conditions has
been reported to affect up to 40% of patients, and to lead 10–20%
of patients to non-adherence or discontinuation of treatment7–14.
Although it has been proposed that oestrogen deprivation and
several other factors, including a higher level of anxiety, may
contribute to the development of AIMSS and related pain
symptoms, none of these hypotheses has been confirmed9,15.
Thus, the exact mechanism of such conditions is still unclear and,
consequently, patients are undertreated.

The transient receptor potential ankyrin 1 (TRPA1) channel,
belonging to the larger family of the TRP channels16,17, is a
polymodal sensor activated by chemical, mechanical and thermal
stimuli18–23. TRPA1 is principally expressed by a subpopulation
of primary sensory neurons24,25, which express additional TRPs,
including the TRP vanilloid 1 (TRPV1) channel, which is
selectively targeted by capsaicin, the hot ingredient of red
peppers16. TRPA1 and TRPV1 expressing pseudounipolar
nociceptors produce and release from central and peripheral
terminals the sensory neuropeptides, substance P (SP),
neurokinin A (NKA) and calcitonin gene-related peptide
(CGRP), which mediate neurogenic inflammation26. In
particular, TRPA1 is the main target of many different irritant
stimuli, such as allyl isothiocyanate (AITC, contained in mustard
or wasabi) or cinnamaldehyde (contained in cinnamon), and of
an unprecedented series of endogenous reactive molecules
produced at sites of inflammation and tissue injury, including
reactive oxygen (ROS), nitrative (RNS) or carbonyl (RCS)
species19,27–30. TRPA1 is emerging as a major nociceptive and
hyperalgesic mechanism in a variety of inflammatory pain models
such as those induced by formalin, carrageenan and complete
Freund adjuvant31–34. Also, in models of neuropathic pain, such
as those evoked by spinal nerve ligation35, streptozotocin36 and
chemotherapeutic-induced peripheral neuropathy37–39, a key role
of TRPA1 has been identified.

The chemical structure of exemestane includes a system of
highly electrophilic conjugated Michael acceptor groups, which
might react with the thiol groups of reactive cysteine residues40.
Michael addition reaction with specific cysteine residues is a
major mechanism that results in TRPA1 activation by a large
variety of electrophilic compounds19,41,42. Aliphatic and aromatic
nitriles can react with cysteine to form thiazoline derivatives and
accordingly the tear gas 2-chlorobenzylidene malononitrile (CS)
has been identified as a TRPA1 agonist43. We noticed that both
letrozole and anastrozole possess nitrile moieties. Thus, we
hypothesized that exemestane, letrozole and anastrozole may
produce neurogenic inflammation, nociception and hyperalgesia
by targeting TRPA1. Our present findings show that AIs directly
stimulate TRPA1, and via this pathway provoke neurogenic
inflammatory oedema, acute nociception, mechanical allodynia
and reduced grip strength, indicating a new mechanism through

which AIs induce cytokine-independent inflammation and pain,
and suggesting TRPA1 antagonists as possible innovative
therapies for pain-like symptoms associated with the use of AIs.

Results
Aromatase inhibitors selectively activate TRPA1 channels. To
explore whether AIs gate the human TRPA1 channel, we first
used cells stably transfected with human TRPA1 cDNA
(hTRPA1-HEK293). In hTRPA1-HEK293 cells, which respond to
the selective TRPA1 agonist AITC (30 mM), but not in untrans-
fected HEK293 cells, the three AIs, exemestane, letrozole and
anastrozole, evoked concentration-dependent calcium responses
that were inhibited by the selective TRPA1 antagonist, HC-
030031 (30 mM)44 (Fig. 1a–c). EC50 of AIs ranged between 58 and
134 mM (Fig. 1b). The calcium response was abated in a calcium-
free medium, thus supporting the hypothesis that the increase in
intracellular calcium originates from extracellular sources
(Supplementary Fig. 1a). In HEK293 cells stably transfected
with human TRPV1 cDNA (hTRPV1-HEK293) all AIs (100 mM)
were ineffective (Supplementary Fig. 1b). Key amino-acid
residues are required for channel activation by electrophilic
TRPA1 agonists19,41,42. Notably, HEK293 cells expressing a
mutated TRPA1 channel (3C/K-Q), which presents
substitutions of three cysteine with serine (C619S, C639S,
C663S) and one lysine with glutamine (K708Q) residues, were
insensitive to both AITC19,41 and all three AIs, while maintaining
sensitivity to the non-electrophilic agonists, menthol29 or icilin42

(Fig. 1d and Supplementary Fig. 1c). This finding supports the
hypothesis that the ability of AIs to target TRPA1 derives from
their electrophilic nature. Electrophysiology experiments
recapitulated findings obtained by means of the calcium assay.
Exemestane, letrozole and anastrozole selectively activated a
concentration-dependent inward current in hTRPA1-HEK293
cells, a response that was abated by HC-030031 (Supplementary
Fig. 1d). AIs did not evoke any current in untransfected HEK293
cells (Supplementary Fig. 1d).

Next, to verify whether exemestane, letrozole and anastrozole
stimulate nociceptive sensory neurons via TRPA1 activation, we
used primary culture of both rat and mouse dorsal root ganglion
(DRG) neurons. Similar to AITC19, all AIs produced a
concentration-dependent calcium response (Fig. 2a,b) in a
proportion (about 30%) of cells that responded to the selective
TRPV1 agonist, capsaicin (0.1mM). All cells responding to AIs,
but none of the non-responding cells, invariably responded to a
subsequent high concentration of AITC (30 mM) (Fig. 2a), further
documenting TRPA1 as the target of AIs. In rat DRG neurons,
EC50 ranged between 78 and 135 mM (Fig. 2b). Calcium responses
evoked by the three AIs were abated by HC-030031 (30 mM), but
were unaffected by the selective TRPV1 antagonist, capsazepine
(10 mM) (Fig. 2c). Notably, AITC and all AIs produced a calcium
response in capsaicin-sensitive DRG neurons isolated from wild-
type (Trpa1þ /þ ) mice, an effect that was absent in neurons
obtained from TRPA1-deficient (Trpa1� /� ) mice (Typical traces
Fig. 2d and pooled data Fig. 2e).

AIs activate nociceptive and hyperalgesic TRPA1-dependent
pathways. It has been well documented that local exposure to
TRPA1 agonists in experimental animals is associated with an
immediate nociceptive response, lasting for a few minutes, and a
delayed more prolonged mechanical allodynia18,19. To investigate
whether AIs activate such a nociceptive and hyperalgesic TRPA1-
dependent pathway, we used one steroidal (exemestane) and one
non-steroidal (letrozole) AI. Given the chemical similarity and
the hypothesized analogous mechanism of the two non-steroidal
AIs, to minimize the number of animals used, anastrozole was not
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investigated in the following in vivo experiments. Intraplantar
(i.pl.) injection (20 ml per paw) of exemestane (1, 5 and 10 nmol)
(Supplementary Fig. 2a) or letrozole (10, 20 nmol)
(Supplementary Fig. 2e) evoked an acute (0–5 min) nociceptive
response and a delayed (15–120 min for exemestane and 15–
240 min for letrozole) mechanical allodynia in C57BL/6 mice
(Supplementary Fig. 2c,g). Both the nociceptive response and
mechanical allodynia evoked by AIs were confined to the treated
paw (Supplementary Fig. 2c,g) and were almost completely
prevented by intraperitoneal (i.p.) pretreatment with HC-030031
(100 mg kg� 1), but not with capsazepine (4 mg kg� 1)
(Supplementary Fig. 2b,d,f,h). Furthermore, similar to results
obtained in C57BL/6 mice, local injection (i.pl.) of exemestane or
letrozole in Trpa1þ /þ mice evoked an early nociceptive response
and a delayed mechanical allodynia (Supplementary Fig. 2i,j).
Trpa1� /� mice did not develop such responses (Supplementary

Fig. 2i,j). Thus, by using both pharmacological and genetic tools,
we demonstrated that local administration of both steroidal and
non-steroidal AIs produces a typical TRPA1-dependent
behaviour, characterized by acute nociception and delayed
mechanical allodynia.

AIs produce neurogenic oedema by releasing sensory neuro-
peptides. TRPA1 is expressed by peptidergic nociceptors, and its
stimulation is associated with proinflammatory neuropeptide
release and the ensuing neurogenic inflammatory responses19,45.
First, we explored whether AIs are able to directly promote the
release of CGRP (one of the proinflammatory neuropeptides,
which are usually co-released on stimulation of peptidergic
nociceptors)26,46 via a TRPA1-dependent pathway. AIs increased
CGRP outflow from slices of rat dorsal spinal cord (an anatomical
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Figure 1 | Exemestane (EXE), letrozole (LTZ) and anastrozole (ANA) selectively activate the human TRPA1 channel. (a) Representative traces of

intracellular calcium response evoked by the aromatase inhibitors (AIs), EXE (100mM), LTZ (100mM) and ANA (100mM), in HEK293 cells transfected

with the cDNA for human TRPA1 (hTRPA1-HEK293), which respond to the selective TRPA1 agonist, allyl isothiocyanate (AITC; 30 mM). AITC (30mM), EXE,

LTZ and ANA (all 100mM) fail to produce any calcium response in untransfected-HEK293 cells (HEK293). (b) Concentration-response curves to EXE, LTZ

and ANA, yielded EC50 (95% confidence interval) of 58 (46–72) mM, 69 (43–109) mM, and 134 (96–186) mM, respectively. (c) AI-evoked calcium

response in hTRPA1-HEK293 is abolished by the selective TRPA1 antagonist, HC-030031 (HC; 30 mM). (d) Representative traces of cells transfected with

the cDNA codifying for the mutant hTRPA1 channel (3C/K-Q), which are insensitive to AITC (30mM) or AIs (100mM), but respond to the non-electrophilic

agonist, menthol (100mM), whereas HEK293 cells transfected with the cDNA codifying for wild-type hTRPA1 (WT) respond to all the drugs. Veh is the

vehicle of AIs; dash (� ) indicates the vehicle of HC. Each point or column represents the mean±s.e.m. of at least 25 cells from 3–6 independent

experiments. yPo0.05 versus Veh, *Po0.05 versus EXE, LTZ or ANA group; ANOVA and Bonferroni post hoc test.
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AIs are inhibited by HC and unaffected by the TRPV1 antagonist, capsazepine (CPZ; 10mM). yPo0.05 versus Veh, *Po0.05 versus EXE, LTZ or ANA;

ANOVA and Bonferroni post hoc test. (d) Representative traces and (e) pooled data of the calcium response evoked by EXE, LTZ, ANA (all 100 mM) or AITC

(30mM), in neurons isolated from Trpa1þ /þ mice. Neurons isolated from Trpa1� /� mice do not respond to AITC, EXE, LTZ and ANA, whereas they do

respond normally to CPS (0.1 mM). In DRG neurons isolated from both Trpa1þ /þ and Trpa1� /� mice, calcium response is evaluated only in capsaicin

responding neurons. yPo0.05 versus Veh, *Po0.05 versus EXE, LTZ, ANA or AITC-Trpa1þ /þ , ANOVA and Bonferroni post hoc test. Veh is the vehicle of

AIs; dash (-) indicates the combination of the vehicles of HC and CPZ. Each point or column represents the mean±s.e.m. of at least 25 neurons obtained

from 3 to 7 independent experiments.
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area enriched with central terminals of nociceptors). This effect
was substantially attenuated in rat slices pretreated with a
desensitizing concentration of capsaicin (10 mM, 20 min) or in the
presence of HC-030031 (Fig. 3a). The increase in CGRP outflow
observed in slices obtained from Trpa1þ /þ mice was markedly
reduced in slices obtained from Trpa1� /� mice (Fig. 3b).

These neurochemical data were corroborated by functional
experiments. Injection (i.pl.) of the TRPA1 agonist, AITC
(10 nmol per paw), induced paw oedema that peaked at 60 min
after injection. The response was abated by treatment with HC-
030031 (100 mg kg� 1, i.p.) or a combination of the SP
neurokinin-1 (NK-1) receptor antagonist, L-733,060, and the
CGRP receptor antagonist, CGRP8-37 (both, 2 mmol kg� 1,
intravenous, i.v.) (Fig. 3c). Similarly, we found that i.pl.
administration of exemestane (10 nmol per paw) and letrozole
(20 nmol per paw) caused paw oedema that peaked at 60 min and
faded 120 min after injection (Fig. 3c, insets). Treatment with
HC-030031 (100 mg kg� 1, i.p.) or a combination of L-733,060
and CGRP8-37 (both, 2mmol kg� 1, i.v.), markedly reduced the
AI-evoked oedema (Fig. 3c). No oedema was found in the paw
contralateral to that injected with AIs (Supplementary Fig. 2k).
Importantly, the oedema produced in Trpa1þ /þ mice by
exemestane and letrozole was markedly attenuated in Trpa1� /

� mice (Fig. 3d). Next, to directly evaluate the ability of AIs to
release CGRP from peripheral terminals of peptidergic nocicep-
tors, AIs were administered to the rat knee joint. Intra-articular
(i.a., 50 ml) injection of exemestane (5 nmol) or letrozole
(10 nmol) increased CGRP levels in the synovial fluid, an effect
that was markedly attenuated by pretreatment with HC-030031
(100 mg kg� 1, i.p.) (Fig. 3e). Neurochemical and functional data
indicate that AIs by TRPA1 activation release sensory neuropep-
tides from sensory nerve endings, and by this mechanism
promote neurogenic inflammatory responses in the innervated
peripheral tissue.

Systemic AIs induce prolonged pain-like effects by targeting
TRPA1. AIs are given to patients by a systemic route of
administration. Therefore, we explored in mice whether intra-
peritoneal (i.p.) or intragastric (i.g.) administration of exemestane
and letrozole could produce pain-like effects via TRPA1 activa-
tion. For i.p. administration experiments, doses, corresponding to
those used in humans, were selected according to the mouse to
human conversion factor indicated by the National Institute of
Health47. Exemestane (5 mg kg� 1, i.p.) or letrozole (0.5 mg kg� 1,
i.p) injection did not produce any visible nociceptive behaviour
(Supplementary Figs 3a,4a, insets) in mice. However, 3 h after
exemestane or letrozole administration, mice developed a pro-
longed (3 h) mechanical allodynia (Supplementary Figs 3a,4a)
and a reduction in forelimb grip strength (Supplementary
Figs 3c,4c), a test used in its clinical version for the study of
musculoskeletal pain in patients48. When mechanical allodynia
by exemestane or letrozole was at its maximum, systemic HC-
030031 administration (100 mg kg� 1, i.p.) transiently reverted
both responses (Supplementary Figs 3b,d and 4b,d). Furthermore,
mechanical allodynia and the reduction in forelimb grip strength
produced by exemestane and letrozole in Trpa1þ /þ mice were
markedly reduced in Trpa1� /� mice (Supplementary Figs 3e,f
and 4e,f). In experiments where AIs were given by intragastric
(i.g.) gavage, doses were adjusted considering the oral bio-
availability in humans, which is 99% for letrozole49, and 40%
(with food) for exemestane50. First, we found that after i.g.
administration of exemestane (10 mg kg� 1) or letrozole
(0.5 mg kg� 1) their peak plasma levels (13.2±1.7 ng ml� 1,
n¼ 5; and 60.5±12.1 ng ml� 1, n¼ 5, respectively, Supplemen-
tary Fig. 5) approximated the maximum plasma concentrations

found in humans49,51. Second, results similar to those obtained
after i.p. administration were reported when AIs were given by
i.g. gavage. First, exemestane (10 mg kg� 1, i.g.) or letrozole
(0.5 mg kg� 1, i.g.) ingestion was not associated with any
spontaneous nocifensor behaviour (Figs 4a, 5a, insets). Second,
exemestane or letrozole produced, with a similar time-course,
mechanical allodynia and a marked reduction in forelimb grip
strength (Figs 4a,c and 5a,c). Pretreatment with HC-030031 or
deletion of TRPA1 (Trpa1� /� mice) significantly attenuated
both responses (Figs 4b,d,e,f and 5b,d,e,f).

Furthermore, since in clinical practice patients are treated with
AIs on a daily basis over very long periods of time (up to 5 years),
we asked whether exemestane or letrozole maintains the ability
to evoke a TRPA1-dependent mechanical hypersensitivity
and decreased grip strength on repeated administration. In
Trpa1þ /þ mice, treatment with systemic exemestane (5 mg kg� 1,
i.p.) or letrozole (0.5 mg kg� 1 i.p) (both once a day for 15
consecutive days) produced at day 1, 5, 10 and 15 a transient
(from 1 to 6 h) and reproducible mechanical allodynia
(Supplementary Figs 3e, 4e). Importantly, in Trpa1� /� the
proalgesic action of AIs was markedly attenuated (Supplementary
Figs 3e, 4e). In addition, the decrease in the grip strength was
maintained, without undergoing desensitization, over the entire
time period of daily i.p. administration of exemestane or letrozole
(Supplementary Figs 3f,4f). Both these effects of AIs were
significantly reduced in Trpa1� /� mice (Supplementary
Figs 3f, 4f). Similar results were obtained after i.g. administration
of exemestane or letrozole (once a day for 15 consecutive days at
the dose of 10 mg kg� 1 i.g. or 0.5 mg kg� 1 i.g., respectively). Both
mechanical allodynia and decreased grip strength were observed,
without signs of desensitization, over the 15 days of observation in
Trpa1þ /þ mice, but were markedly reduced in Trpa1� /� mice
(Figs 4e,f and 5e,f). Altogether, the present data demonstrate that
both steroidal and non-steroidal third-generation AIs induce a
series of pain-like effects predominantly via a TRPA1-dependent
mechanism, effects that over time do not undergo desensitization,
thus mimicking the chronic clinical condition.

AI-evoked TRPA1 activation is enhanced by proinflammatory
stimuli. Although it affects a large proportion of subjects, not all
patients treated with AIs develop AIMSS. One possible explana-
tion for the peculiar susceptibility to AIMSS of some patients is
that, if TRPA1 activation is a necessary prerequisite, per se it is
not sufficient, and additional proalgesic factors must contribute to
the development of pain symptoms. It has been reported that
stimulation of proalgesic pathways exaggerates TRPA1-depen-
dent responses in vitro and in vivo52,53. One example of such
potentiating action has been reported for the proteinase-activated
receptor-2 (PAR2), whose subthreshold activation results in an
exaggerated response to the TRPA1 agonist, AITC52. PAR2
undergoes activation on a unique proteolytic mechanism by
cleavage of its tethered ligand domain by trypsin and other
proteases, thus mediating inflammation and hyperalgesia54. On
this basis, and following a previously reported protocol52, we
explored, by in vivo functional experiments in C57BL/6 mice,
whether PAR2 activation exaggerates TRPA1-dependent
hypersensitivity induced by AIs. Before (10 min) injection (i.pl.)
of the PAR2-activating peptide (AP) (PAR2-AP, 1mg per paw),
but not the reverse peptide (RP) (PAR2-RP, 1 mg per paw, inactive
on PAR2), markedly enhanced the duration of licks and flinches
of the hind paw produced by local injection (i.pl.) of exemestane
(1 nmol per paw) and letrozole (10 nmol per paw) (Fig. 6a). The
injected dose of PAR2-AP, as well as PAR2-RP, did not cause
per se any visible acute nocifensor response (Fig. 6a). The
exaggerated responses to the combination of PAR2-AP and
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Figure 3 | Aromatase inhibitors release calcitonin gene-related peptide (CGRP) and produce neurogenic edema. (a) Exemestane (EXE), letrozole (LTZ)

and anastrozole (ANA) (all 100 mM) increase the CGRP-like immunoreactivity (CGRP-LI) outflow from slices of rat dorsal spinal cord. This effect is

prevented by HC-030031 (HC; 30mM) or after exposure to capsaicin (10mM, 20 min; CPS-des). (b) EXE, LTZ and ANA (all 100mM) increase the CGRP-LI

outflow from spinal cord slices obtained from Trpa1þ /þ , but not from Trpa1� /� mice. Results are mean±s.e.m. of at least four independent experiments.

Veh is the vehicle of EXE, LTZ and ANA, dash (-) indicates the vehicle of HC and CPS. yPo0.05 versus Veh, *Po0.05 versus EXE, LTZ or ANA; ANOVA

followed by Bonferroni post hoc test. #Po0.05 versus EXE-, LTZ-, ANA-Trpa1þ /þ , Student’s t-test. (c) In C57BL/6 mice intraplantar (i.pl.) injection (20ml)

of EXE (10 nmol), LTZ (20 nmol) or allyl isothiocyanate (AITC; 10 nmol) induces paw oedema, which peaks at 60 min and fades 120 min after injection

(c, upper insets), and is attenuated by pretreatment with HC (100 mg kg� 1 intraperitoneal, i.p.) or the combination of the selective antagonists of the

neurokinin-1 receptor, (NK1-RA), L-733,060, and of the CGRP receptor (CGRP-RA), CGRP8-37, (both, 2 mmol kg� 1, intravenous). (d) Paw oedema induced

by EXE, LTZ and AITC (i.pl.) in Trpa1þ /þ mice is markedly reduced in Trpa1� /� mice. BL¼ baseline level. Results are mean±s.e.m. of at least five mice for

each group. Veh is the vehicle of EXE, LTZ and AITC. #Po0.05 versus Veh, Student’s t-test; yPo0.05 versus BL values, *Po0.05 versus EXE, LTZ, AITC or

EXE-, LTZ-, AITC-Trpa1þ /þ ; ANOVA followed by Bonferroni post hoc test. (e) Injection (50 ml) of EXE (5 nmol) or LTZ (10 nmol) in the rat knee increases

CGRP-LI levels in the synovial fluid, an effect that is markedly attenuated by pretreatment with HC (100 mg kg� 1, i.p.). Results are mean±s.e.m. of at least

five mice for each group. Veh is the vehicle of EXE and LTZ, dash (-) indicates the vehicle of HC. yPo0.05 versus Veh, *Po0.05 versus EXE, LTZ; ANOVA

followed by Bonferroni post hoc test.
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Figure 4 | Intragastric exemestane (EXE) induces TRPA1-dependent prolonged mechanical allodynia and reduction in forelimb grip strength in mice.

In C57BL/6 mice intragastric (i.g.) administration of EXE (10 mg kg� 1) induces (a) mechanical allodynia and (c) a reduction in forelimb grip strength that last

3–6 h after administration. EXE does not produce any acute nocifensor behaviour as measured by the indicated test (a, inset). (b,d) Three hours after

EXE administration, HC-030031 (HC; 100 mg kg� 1 i.p.) reverts both mechanical allodynia and the reduction in forelimb grip strength. HC inhibition is no

longer visible 3 h after its administration. Veh is the vehicle of EXE. #Po0.05 versus Veh; Student’s t-test (a,c) and yPo0.05 versus Veh and *Po0.05 versus

Veh HC-EXE; ANOVA followed by Bonferroni post hoc test (b,d). (e,f) EXE (once a day for 15 consecutive days, 10 mg kg� 1 i.g.) induces reproducible

mechanical allodynia and decrease in forelimb grip strength at day 1, 5, 10 and 15 in Trpa1þ /þmice. Arrows indicate Veh or EXE administration. Both these

effects are markedly reduced in Trpa1� /� mice. yPo0.05 versus Veh-Trpa1þ /þ , *Po0.05 versus EXE-Trpa1þ /þ ; ANOVA followed by Bonferroni post hoc

test. Results are mean±s.e.m. of at least five mice for each group. In all conditions, baseline (BL) levels were recorded 30 min before EXE administration.
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Figure 5 | Intragastric letrozole (LTZ) induces TRPA1-dependent prolonged mechanical allodynia and reduction in forelimb grip strength in mice. In

C57BL/6 mice intragastric (i.g.) administration of LTZ (0.5 mg kg� 1) induces (a) mechanical allodynia and (c) reduction in forelimb grip strength that last

3–6 h after administration. LTZ does not produce any acute nocifensor behaviour as measured by the indicated test (a, inset). (b,d) Three hours after LTZ

administration, HC-030031 (HC; 100 mg kg� 1 i.p.) reverts both mechanical allodynia and the reduction in forelimb grip strength. HC inhibition is no longer

visible 3 h after its administration. Veh is the vehicle of LTZ. #Po0.05 versus Veh; Student’s t-test (a,c) and yPo0.05 versus Veh and *Po0.05 versus Veh

HC-LTZ; ANOVA followed by Bonferroni post hoc test (b,d). (e,f) LTZ (once a day for 15 consecutive days, 0.5 mg kg� 1 i.g.) induces reproducible

mechanical allodynia and decrease in forelimb grip strength at day 1, 5, 10 and 15 in Trpa1þ /þmice. Arrows indicate Veh or LTZ administration. Both effects

are markedly reduced in Trpa1� /� mice. yPo0.05 versus Veh-Trpa1þ /þ , *Po0.05 versus LTZ-Trpa1þ /þ ; ANOVA followed by Bonferroni post hoc test.

Results are mean±s.e.m. of at least five mice for each group. In all conditions baseline (BL) levels were recorded 30 min before LTZ administration.
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exemestane or letrozole were inhibited by HC-030031
(100 mg kg� 1, i.p.) (Fig. 6a).

We also tested the ability of a recognized endogenous TRPA1
agonist, H2O2 (refs 27,28) to increase the nocifensor response of
exemestane or letrozole. In addition, we explored the ability of
AIs to increase either nociception or mechanical allodynia to
H2O2. H2O2 (0.5 mmol per paw) injection produced a transient
nocifensor behaviour that terminated within 5 min (Fig. 6b,
inset). We found that 10 min after H2O2 injection (when baseline
levels of nociception were restored) administration of exemestane
(1 nmol per paw) and letrozole (10 nmol per paw) evoked
nociceptive responses markedly increased as compared with
vehicle-pretreated mice (Fig. 6b). The exaggerated responses to
AIs were inhibited by HC-030031 (Fig. 6b). Thus, both
homologous activation of the channel by the TRPA1 agonist
H2O2, or heterologous stimulation of a classical proinflammatory
pathway, such as PAR2, converge in a final common pathway,
which results in the potentiation of the AI-evoked and TRPA1-
dependent proalgesic mechanism. In the attempt to understand
the mechanism underlying the in vivo potentiation between PAR2
or H2O2 and AIs, cultured DRG neurons were challenged with
combinations of these same agents. First, in in vitro electro-
physiological experiments, we found that AITC, exemestane and
letrozole (all 100 mM) produced inward currents in cultured DRG
neurons, effects that were abated in the presence of HC-030031
(50 mM). However, HC-030031 did not affect the inward current
produced by capsaicin (Fig. 6c). Second, we showed that pre-
exposure to subthreshold concentrations of PAR2-AP or H2O2

enhanced currents evoked by subthreshold concentrations of
either exemestane or letrozole (both 20 mM) (Typical traces
Fig. 6d and pooled data Fig. 6e). Third, HC-030031 inhibited the
exaggerated responses (Fig. 6e).

Discussion
In the present study, we provide for the first time evidence that
third-generation steroidal and non-steroidal AIs, proven to be
very effective drugs in the treatment of hormone receptor-positive
breast cancer1,2, selectively target the TRPA1 channel.
This conclusion derives from a series of experiments in cells
expressing the recombinant human TRPA1 or in rodent DRG
neurons expressing the native channel. Indeed, calcium responses
and currents evoked by AIs are confined to TRPA1-expressing
cells, and are selectively abolished by HC-030031, or absent in
neurons obtained from TRPA1-deficient mice. Exemestane
exhibits a chemical structure with a system of highly
electrophilic conjugated Michael acceptor groups40. A variety of
known TRPA1 agonists, including acrolein and other a,b-
unsaturated aldehydes, possesses an electrophilic carbon or
sulfur atom that is subject to nucleophilic attack (Michael
addition) by cysteine and lysine residues55. Nitriles also exhibit
electrophilic properties56, which may result in TRPA1 gating43.
Non-steroidal letrozole and anastrozole possess nitrile moieties
that underscore their potential ability to activate TRPA1. We
show that key cysteine and lysine residues, required for channel
activation by electrophilic agonists19,41,42, are also required for
TRPA1 activation by AIs. Thus, the three AIs, most likely because
of their electrophilic nature, selectively target TRPA1, whereas
TRPV1, TRPV2, TRPV3 and TRPV4 all co-expressed with
TRPA1 (refs 24,25), and other channels or receptors in DRG
neurons do not seem to play a relevant role in the direct
excitation of nociceptors by AIs.

TRPA1-expressing neurons activated by AIs also responded to
capsaicin, a selective TRPV1 agonist. As TRPV1 is considered a
specific marker of nociceptors57, AIs may be assumed to activate
pain-like responses. In vivo stimulation of the irritant TRPA1

receptor in rodents produces an early nociceptive behaviour,
followed by a delayed and prolonged mechanical allodynia18,19,44.
Subcutaneous exemestane and letrozole recapitulated the two
effects produced by TRPA1 agonists and produced such
responses in a TRPA1-dependent way.

Magnetic resonance imaging of painful wrists in patients
treated with AIs has shown signs of inflammatory tenosynovitis
poorly reverted by common anti-inflammatory treatments12.
Systemic increases in plasma cytokines have not been found in
patients with AIMSS and, therefore, do not appear to represent
the underlying mechanism for such inflammatory conditions9,13.
This implies that pathways different from cytokine-dependent
inflammation operate in joints of patients treated with AIs. As
TRPA1 is expressed by a subpopulation of peptidergic
nociceptors, which mediate neurogenic inflammation24–26, we
anticipated that AIs, by targeting TRPA1, release proinfla-
mmatory neuropeptides, thereby causing neurogenic plasma
extravasation. Pharmacological and genetic findings indicate
that AIs produce a specific type of edema, which is neurogenic
in nature. The conclusion is corroborated by the direct
neurochemical observation that exemestane and letrozole evoke
TRPA1-dependent CGRP release from peripheral endings of
primary sensory neurons. The neurogenic component, mediated
by TRPA1-activation and sensory neuropeptide release, may thus
represent an important mechanism contributing to the cytokine-
independent inflammation observed in AI users.

When AIs were given to mice by systemic (intraperitoneal or
intragastric) administration, no acute nocifensive response was
observed, but, after B1 h delay they produced a prolonged
condition (up to 6 h) of mechanical allodynia and a decrease in
forelimb grip strength. Also, in this case, pharmacological and
genetic results indicate that AI-evoked pain-like responses are
principally TRPA1-dependent. In clinical practice, AIs are used
for a 3- or 5-year period, and the pain condition associated with
their use is often persistent58. Although the present experimental
conditions can not fully mimic the clinical setting in cancer
patients, our findings suggest that the TRPA1-dependent ability
of AIs to produce mechanical allodynia and to decrease forelimb
grip strength is maintained and does not undergo desensitization
in mice over a time period of 15 days, which broadly corresponds
to a 1-year time in humans. Despite a general good tolerability11,
AIs produce some types of pain, including AIMSS and
neuropathic, diffuse and mixed pain in 10–20% of the treated
patients9. The reason why only some of the patients exposed to
AIs develop these severe pain conditions, which may lead to non-
adherence or therapy discontinuation, is unknown.

Here, we reveal the key role of TRPA1 as the main mediator of
exemestane- and letrozole-evoked nociceptor stimulation. How-
ever, it is likely that additional factors contribute to determine the
development of AIMSS and related pain symptoms, particularly
in those susceptible patients who suffer from the more severe
form of this adverse reaction. In vitro and in vivo experiments
with the co-administration of AIs and pro-algesic stimuli, such as
PAR2-AP, an agonist of the pro-inflammatory receptor, PAR2,
and the TRPA1 agonist, H2O2 (ref. 28), indicate that additional
factors may cooperate to increase the sensitivity to AIs of TRPA1
expressing nociceptors. Enhancement by PAR2 activation of the
proalgesic activity of exemestane and letrozole is fully consistent
and closely mimic previous observations that PAR2 activation
increases the pro-algesic response evoked by TRPA1 agonists52.
Findings that a combination of AIs and H2O2 exaggerates
TRPA1-mediated in vitro and in vivo responses suggest that
increased levels of oxidative stress byproducts, known to be
generated under inflammatory conditions59, may facilitate the
development of AIMSS and related pain symptoms. Our present
investigation on the cooperation between AIs and
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proinflammatory mediators has been limited to PAR2 and H2O2.
However, it is possible that additional pro-inflammatory and pro-
algesic mediators can activate similar cooperating pathways. AI
concentrations required for TRPA1 activation are higher than
those found in the plasma of treated subjects60–62. However, it
should be noted that all three AIs have a large volume of
distribution, indicating a high tissue distribution49,51. The present
findings that in mice plasma levels of both AIs were comparable
to those found in humans49,51 strengthen the hypothesis that
compartmentalization of AIs in mice is similar to that reported in
humans49,51. Thus, under standard drug regimens, concen-
trations sufficient to activate TRPA1 or to potentiate TRPA1-
mediated responses evoked in cooperation with inflammatory
mediators may be reached in tissues neighbouring sensory nerve
terminals.

Altogether, the present results indicate that AIs per se or, most
likely, in cooperation with other proinflammatory mediators
promote TRPA1-dependent neurogenic inflammation, mechan-
ical hypersensitivity and decreased forelimb grip force in rodents.
This novel pathway may represent the main underlying
mechanism responsible for pain and inflammatory symptoms
associated with AI treatment. The other important proposal
deriving from the present findings is that antagonists of the
TRPA1 channel may be beneficial in the prevention and
treatment of such painful conditions.

Methods
Animals. Animal experiments were carried out in conformity to the European
Communities Council (ECC) guidelines for animal care procedures and the Italian
legislation (DL 116/92) application of the ECC directive 86/609/EEC. Studies were
conducted under the University of Florence research permit number 204/2012-B.
Male C57BL/6 (25–30 g) (Harlan Laboratories, Milan, Italy), wild type, Trpa1þ /þ ,
or TRPA1-deficient, Trpa1� /� , (25–30 g) mice generated by heterozygous on a
C57BL/6 background (B6;129P-Trpa1tm1Kykw/J; Jackson Laboratories, Italy)63, or
Sprague–Dawley rats (75–100 g, male, Harlan Laboratories, Milan, Italy) were used.
Animals were housed in a temperature- and humidity-controlled vivarium (12 h
dark/light cycle, free access to food and water). Behavioural experiments were done
in a quiet, temperature-controlled (20 to 22 �C) room between 0900 and 1700
hours and were performed by an operator blinded to the genotype and the drug
treatment. Animals were killed with a high dose of sodium pentobarbital
(200 mg kg� 1, i.p.).

Reagents. Exemestane, letrozole and anastrozole were purchased from Tocris
Bioscience (Bristol, UK). The activating peptide (PAR2-AP, SLIGRL-NH2) and its
reverse peptide (PAR2-RP, LRGILS-NH2) of the murine PAR2 receptor were
synthesized from G. Cirino (University of Naples, Naples, Italy) and dissolved in
distilled water. If not otherwise indicated, all other reagents were from Sigma-
Aldrich (Milan, Italy). HC-030031 was synthesized as previously described45.

Cell culture and isolation of primary sensory neurons. Human embryonic
kidney (HEK293) cells stably transfected with the cDNA for human TRPA1
(hTRPA1-HEK293), kindly donated by A.H. Morice (University of Hull, Hull, UK)
or with the cDNA for human TRPV1 (hTRPV1-HEK293), kindly donated by

Martin J. Gunthorpe (GlaxoSmithKline, Harlow, UK) and naive untransfected
HEK293 cells (American Type Culture Collection, Manassas, VA, USA) were
cultured as previously described64. HEK293 cells were transiently transfected with
the cDNAs (1mg) codifying for wild-type or mutant 3C/K-Q (C619S, C639S,
C663S, K708Q)19,41 human TRPA1 using the jetPRIME transfection reagent
(Euroclone, Milan, Italy) according to the manufacturer’s protocol.

Primary DRG neurons were isolated from Sprague–Dawley rats and C57BL/6 or
Trpa1þ /þ and Trpa1� /� adult mice, and cultured as previously described38.
In brief, ganglia were bilaterally excised under a dissection microscope and
enzymatically digested using 2 mg ml� 1 of collagenase type 1A and 1 mg ml� 1 of
trypsin, for rat DRG neurons, or 1 mg ml� 1 of papain, for mouse DRG neurons, in
Hank’s Balanced Salt Solution (HBSS) for 25–35 min at 37 �C. Rat and mouse DRG
neurons were pelleted and resuspended in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% heat inactivated horse serum or Ham’s-F12,
respectively, containing 10% heat-inactivated fetal bovine serum (FBS),
100 U ml� 1 of penicillin, 0.1 mg ml� 1 of streptomycin and 2 mM L-glutamine for
mechanical digestion. In this step, ganglia were disrupted by several passages
through a series of syringe needles (23–25G). Neurons were then pelleted by
centrifugation at 1,200 g for 5 min, suspended in medium enriched with
100 ng ml� 1 mouse-NGF and 2.5 mM cytosine-b-D-arabino-furanoside free base,
and then plated on 25 mm glass coverslips coated with poly-L-lysine (8.3 mM) and
laminin (5mM). DRG neurons were cultured for 3–4 days before being used for
calcium imaging experiments.

Calcium imaging assay. Intracellular calcium was measured in transfected and
untransfected HEK293 cells or in DRG neurons, as previously reported65. Plated
cells were loaded with 5 mM Fura-2AM-ester (Alexis Biochemicals, Lausen,
Switzerland) added to the buffer solution (37 �C) containing the following (in
mM): 2 CaCl2; 5.4 KCl; 0.4 MgSO4; 135 NaCl; 10 D-glucose; 10 HEPES and 0.1%
bovine serum albumin at pH 7.4. After 40 min, cells were washed and transferred to
a chamber on the stage of a Nikon Eclipse TE-2000U microscope for recording.
Cells were excited alternatively at 340 and 380 nm to indicate relative intracellular
calcium changes by the Ratio340/380 recorded with a dynamic image analysis system
(Laboratory Automation 2.0, RCSoftware, Florence, Italy). Cells and neurons were
exposed to exemestane, letrozole and anastrozole (1–300 mM), AITC (10–30 mM),
menthol (100 mM), icilin (30 mM) or their vehicles (1.5–3% dimethyl sulfoxide,
DMSO). The calcium response to capsaicin (0.1 mM) was used to identify
nociceptive neurons. The selective TRPA1 antagonist, HC-030031 (30 mM), and
TRPV1 antagonist, capsazepine (10 mM) or their vehicles (3% and 0.1% DMSO,
respectively), were applied 10 min before the stimuli. Results are expressed as or the
percentage of increase of Ratio340/380 over the baseline normalized to the maximum
effect induced by ionomycin (5 mM) added at the end of each experiment
(% change in R340/380) or Ratio340/380.

Electrophysiology. Whole-cell patch-clamp recordings were performed on
hTRPA1-HEK293, vector-HEK293 cells or rat DRG neurons grown on a poly-L-
lysine-coated 13 mm-diameter glass coverslips. Each coverslip was transferred to a
recording chamber (1 ml volume) mounted on the platform of an inverted
microscope (Olympus CKX41, Milan, Italy) and superfused at a flow rate of
2 ml min� 1 with a standard extracellular solution containing (in mM): 10 HEPES,
10 D-glucose, 147 NaCl, 4 KCl, 1 MgCl2 and 2 CaCl2 (pH adjusted to 7.4 with
NaOH). Borosilicate glass electrodes (Harvard Apparatus, Holliston, MA, USA)
were pulled with a Sutter Instruments puller (model P-87) to a final tip resistance
of 4–7 MO. Pipette solution used for HEK293 cells contained (in mM): 134
K-gluconate, 10 KCl, 11 EGTA, 10 HEPES (pH adjusted to 7.4 with KOH). When
recordings were performed on rat DRG neurons, 5 mM CaCl2 was present in
the extracellular solution and pipette solution contained (in mM): CsCl 120,
Mg2ATP 3, BAPTA 10, HEPES-Na 10 (pH adjusted to 7.4 with CsOH). Data were
acquired with an Axopatch 200B amplifier (Axon Instruments, CA, USA), stored
and analysed with a pClamp 9.2 software (Axon Instruments, CA, USA). All the

Figure 6 | TRPA1 activation by exemestane (EXE) and letrozole (LTZ) is enhanced by proinflammatory stimuli. (a) Intraplantar (i.pl.; 10ml) pretreatment

(10 min) with the proteinase-activated receptor 2 (PAR2) activating peptide (AP; 1 mg), but not with the inactive PAR2 reverse peptide (RP; 1 mg), enhances

nocifensor behaviour produced by EXE (1 nmol per 10ml, i.pl.) or LTZ (10 nmol per 10ml, i.pl.). AP and RP alone causes negligible nociception. The

potentiated responses to EXE or LTZ are markedly attenuated by HC-030031 (HC; 100 mg kg� 1, i.p.). (b) H2O2 (0.5mmol per 10ml, i.pl.) injection produces

a transient nocifensor behaviour, lasting only 5 min (b, inset). Pretreatment (10 min before AI administration) with H2O2 (0.5mmol per 10ml, i.pl.) increases

nocifensor behaviour produced by EXE (1 nmol per 10ml, i.pl.) or LTZ (10 nmol per 10ml, i.pl.). HC (100 mg kg� 1, i.p.) inhibits the exaggerated responses

to both EXE and LTZ. Dash (-) indicates the vehicle of HC. Points or columns are mean±s.e.m. of at least fiv mice for each group. yPo0.05 versus RP or

AP or Veh H2O2; wPo0.05 versus Veh AP/EXE or Veh AP/LTZ or Veh H2O2/EXE or Veh H2O2/LTZ; *Po0.05 versus AP/EXE or AP/LTZ or H2O2/EXE or

H2O2/LTZ; ANOVA followed by Bonferroni post hoc test. #Po0.05 versus Veh H2O2, Student’s t-test. (c) An active concentration of EXE or LTZ

(both 100mM) evokes inward currents in rat dorsal root ganglion (DRG) neurons, which also respond to allyl isothiocyanate (AITC; 100 mM) and capsaicin

(CPS; 1mM). Inward currents evoked by EXE, LTZ or AITC are inhibited in the presence of HC (50mM), which does not affect CPS-evoked currents. Typical

traces (d) and pooled data (e) showing that pre-exposure to AP (100mM) or H2O2 (100mM) exaggerates currents evoked by a subthreshold concentration

of EXE and LTZ (both 20mM). The inactive RP does not affect responses to EXE or LTZ (both 20mM). The potentiated responses to EXE or LTZ are

markedly attenuated by HC (50 mM). Veh is the vehicle of EXE, LTZ and AITC. Results are mean±s.e.m. of at least five independent experiments. yPo0.05

versus Veh, *Po0.05 versus EXE, LTZ or AITC and wPo0.05 versus EXE- or LTZ-AP and EXE- or LTZ-H2O2; ANOVA followed by Bonferroni post hoc test.
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experiments were carried out at 20–22 �C. Cells were voltage-clamped at –60 mV.
Cell membrane capacitance was calculated in each cell throughout the experiment
by integrating the capacitive currents elicited by a ±10 mV voltage pulse. In
hTRPA1-HEK293 currents were detected as inward currents activated on cell
superfusion with AITC (100 mM), exemestane (50–200 mM), letrozole (50–200 mM)
or anastrozole (50–200 mM) in the presence of HC-030031 (50 mM) or its vehicle

(0.5% DMSO). TRPV1 currents in rat DRG neurons were detected as inward
currents activated by capsaicin (1 mM) in the presence of capsazepine (10 mM) or its
vehicle (0.1% DMSO). To evaluate the potentiating effect of H2O2 or PAR2-AP on
AI-activated currents, rat DRG neurons were superfused with H2O2 or PAR2-AP
(both 100 mM) 1 min before and during the application of exemestane or letrozole
(both, 20 mM). Some experiments were performed in the presence of HC-030031
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(50 mM) or its vehicle (0.5% DMSO). Peak currents activated by each compound
were normalized to cell membrane capacitance and expressed as mean of the
current density (pA/pF) in averaged results. Currents were evoked in the voltage-
clamp mode at a holding potential of � 60 mV; signals were sampled at 1 kHz and
low-pass filtered at 10 kHz.

Behavioural experiments. For behavioural experiments, after habituation and
baseline of pain sensitivity measurements, mice were randomized into treatment
groups. In a first series of experiments, we explored whether the injection (20 ml per
paw) of exemestane (1, 5, 10 nmol) or letrozole (10, 20 nmol), or their vehicle
(5% DMSO) induced, in C57BL/6 or Trpa1þ /þ and Trpa1� /� mice, an acute
nociceptive behaviour and a delayed mechanical allodynia. In this set of experi-
ments mechanical allodynia was measured just before (30 min) and 0.25, 0.5, 1, 2, 4
and 6 h post injection. Some C57BL/6 mice were pretreated with HC-030031
(100 mg kg� 1, i.p.) or capsazepine (10 mg kg� 1, i.p.) or their respective vehicles
(4% DMSO and 4% Tween20 in isotonic solution), 60 min and 30 min, respectively,
before exemestane (10 nmol) or letrozole (20 nmol) i.pl. injection. Mechanical
allodynia was measured 60 min after AIs i.pl. injection.

In a second set of experiments, nociceptive behaviour and mechanical allodynia
were assayed before and after systemic administration of exemestane (5 mg kg� 1, i.p.
or 10 mg kg� 1, i.g.) and letrozole (0.5 mg kg� 1, i.p. or i.g.), or their vehicles (5%
DMSO for i.p. or 0.5% carboxymethylcellulose, CMC, for i.g. administration), in
C57BL/6 mice or Trpa1þ /þ and Trpa1� /� mice. Mechanical allodynia was
measured just before (30 min) and 1, 3, 6, 24, 48 h after injection. Some animals 2 h
after AI administration received HC-030031 (100 mg kg� 1, i.p.) or its vehicle (4%
DMSO and 4% Tween80 in isotonic solution), and mechanical allodynia and the
forelimb grip strength were measured 1 and 3 h after vehicle or HC-030031. In a
third series of experiments, Trpa1þ /þ and Trpa1� /� mice were treated i.p. once a
day for 15 consecutive days with exemestane or letrozole at the dose of 5 or
0.5 mg kg� 1, respectively, or with their vehicle (5% DMSO) and with i.g. exemestane
or letrozole at the dose of 10 or 0.5 mg kg� 1, respectively, or with their vehicle (0.5%
CMC). Mechanical allodynia and the forelimb grip strength were measured 10 min
before and 1, 3, 6 and 24 h post administration at day 1, 5, 10 and 15.

To test whether PAR2 activation enhances the nocifensor behaviour evoked by
exemestane and letrozole, in another experimental setting, the PAR2 activating
peptide (PAR2-AP), SLIGRL-NH2, (10 mg/10 ml i.pl.) or its reversed inactive form
(PAR2-RP), LRGILS-NH2, (10mg per 10 ml i.pl.), were injected in the right hind
paw. Ten minutes after i.pl. PAR2-AP or PAR2-RP injection, mice received
exemestane (10 nmol per 10 ml i.pl.) or letrozole (20 nmol per 10 ml, i.pl.), or their
vehicle (5% DMSO), in the plantar surface in the same paw injected with PAR2-AP
or PAR2-RP, and the acute nociceptive behaviour was recorded. In another series
of experiments H2O2 (0.5 mmol per 10 ml, i.pl.) or its vehicle was injected and the
acute nocifensor behaviour to H2O2, which did not last longer than 5 min, was
recorded for 10 min. Ten minutes after vehicle/H2O2, exemestane (10 nmol per
10ml i.pl.) or letrozole (20 nmol per 10 ml, i.pl.) was injected in the same paw
injected with H2O2 or vehicle and the acute nociceptive behaviour in response to
AIs was recorded. Three hours after systemic administration of exemestane
(5 mg kg� 1, i.p.) or letrozole (0.5 mg kg� 1, i.p.), mice were locally injected with
H2O2 (0.5 mmol per 20ml, i.pl.) or its vehicle and both acute nocifensor behaviour
and mechanical allodynia were recorded.

Acute nocifensive response. AITC (10 nmol per paw), exemestane (10 nmol
per paw), letrozole (20 nmol per paw) or their vehicles (5% DMSO), H2O2

(0.5mmol per paw) or its vehicle (isotonic solution) and PAR2-AP or PAR2-RP
(10 mg per paw) (10 or 20 ml) were injected into the paw of C57BL/6, Trpa1þ /þ
and Trpa1� /� mice, and immediately after injection animals were placed in a
plexiglas chamber. The total time spent licking and lifting the injected hind paw
was recorded for 5 min as previously described30.

Mechanical stimulation (von frey hair test). Mechanical threshold was measured
in C57BL/6, Trpa1þ /þ and Trpa1� /� mice after both local (i.pl.) administration of
AITC (10 nmol per paw), exemestane (10 nmol per paw), letrozole (20 nmol per paw)
or their vehicles (5% DMSO), H2O2 (0.5mmol per paw) or its vehicle (isotonic solution),
and systemic (i.p.) administration of exemestane (5 mg kg� 1, i.p.) or letrozole
(0.5 mg kg� 1, i.p.) at different time points by using the up-and-down paradigm66.
Mechanical nociceptive threshold was determined before (basal level threshold) and
after different treatments. The 50% mechanical paw withdrawal threshold response (in
g) was then calculated from these scores, as previously described66,67.

Forelimb grip strength test. The grip strength test was performed with a grip
strength meter (Ugo Basile, Varese, Italy), as previously reported68. Mice were
allowed to grasp a triangular ring attached to a force transducer and gently pulled
away by the base of the tail until the grip was broken. The test was repeated four
times and the mean peak force values (g) were calculated for each animal. The grip
strength was measured in C57BL/6, Trpa1þ /þ and Trpa1� /� mice 10 min before
and 1, 3, 6 and 24 h post AI administration.

Paw oedema. AITC (10 nmol per paw), exemestane (10 nmol per paw), letrozole
(20 nmol per paw) or their vehicles (5% DMSO) (all 20 ml) were injected into the
paw of C57BL/6, Trpa1þ /þ and Trpa1� /� mice, and paw thickness was mea-
sured to determine the development and severity of oedema in the hind paws.
Some animals received HC-030031 (100 mg kg� 1, i.p.), a combination of
L-733,060 and CGRP8-37 (both, 2 mmol/kg, i.v.), or their vehicles (4% DMSO and

4% Tween20 in isotonic solution for HC-030031, and isotonic solution for
L-733,060 and CGRP8-37) before stimuli. An engineer’s micrometer, with 0.01 mm
accuracy (Harvard Apparatus, Kent, UK), was used to measure the paw thickness
in millimeters (mm), before and after (60 and 120 min) the i.pl. injection with
tested agents by an investigator blinded to treatments. Data were expressed as the
increase in mm in paw thickness.

CGRP-like immunoreactivity (LI) assay. For neuropeptide release experiments,
0.4 mm slices of rat and Trpa1þ /þ or Trpa1� /� mouse spinal cords were
superfused with an aerated (95% O2 and 5% CO2) Krebs solution containing (in
mM): 119 NaCl, 25 NaHCO3, 1.2 KH2PO4, 1.5 MgSO4, 2.5 CaCl2, 4.7 KCl, 11
D-glucose; the solution was maintained at 37 �C, and was added with 0.1% bovine
serum albumin, and, to minimize peptide degradation, with the angiotensin con-
verting enzyme inhibitor, captopril (1mM), and the neutral endopeptidase inhibitor,
phosphoramidon (1mM). Tissues were stimulated with exemestane, letrozole or
anastrozole (all 100mM) or their vehicles (0.05% DMSO) dissolved in the Krebs
solution. Some tissues were pre-exposed to capsaicin (10mM, 20 min) or pretreated
with HC-030031 (50mM). Fractions (4 ml) of superfusate were collected at 10-min
intervals before, during and after administration of the stimulus and then freeze-
dried, reconstituted with assay buffer and analysed for CGRP-like immunoreactivity
(LI) by an ELISA assay kit (Bertin Pharma, Montigny le Bretonneux, France).
CGRP-LI was calculated by subtracting the mean pre-stimulus value from those
obtained during or after stimulation. Detection limits of the assays were 5 pg ml� 1.
Results are expressed as femtomoles of peptide per g of tissue per 10 min.

In another set of experiments, exemestane (5 nmol per 50 ml) and letrozole
(10 nmol per 50 ml) or their vehicle (1% DMSO) were i.a. injected in anaesthetized
(sodium pentobarbital, 50 mg kg� 1 i.p.) rats. Ten minutes after injection, rats were
killed and the knee joint was dissected69. CGRP-LI was measured in the synovial
fluid lavage added with captopril (1 mM) and phosphoramidon (1mM) by using the
ELISA assay kit as previously described69. Detection limits of the assays were
5 pg ml� 1. Results are expressed as femtomoles of peptide per g of tissue per
20 min in the spinal cord experiments or pg ml� 1 in the rat synovial fluid.

Assay of exemestane and letrozole by liquid chromatography-mass spectro-
metry. Blood samples (100 ml) were obtained by venepuncture of the tail vein from
each mouse at different time points (0.25, 0.5, 1, 3, 6 and 24 h) after i.g. admin-
istration of exemestane (10 mg kg� 1) or letrozole (0.5 mg kg� 1). Blood samples
were dropped on a filter paper (903 Whatman GmbH, Dassel, Germany) to obtain
dried blood spots (DBS)70, which were punched, obtaining a 6.0 mm diameter disk,
containing B6 ml of blood. DBS transferred into a 2-ml Eppendorf vial was
extracted with 200 ml of methanol:water (95:5, v/v) containing 0.1% acetic acid and
the appropriate internal standard (for letrozole and exemestane quantification,
extracting solutions contained 5 mg l� 1 of anastrozole or 2 mg l� 1 of letrozole,
respectively) and after shaking with an orbital shaker for 25 min at 37 �C, solutions
were dried under a gentle nitrogen stream. Residues were reconstituted with 40 ml
water containing 0.1% of acetic acid.

Samples were measured using a 1290 Infinity liquid chromatograph (LC, Agilent
Technologies, Waldbronn, Germany) coupled to a QTRAP 5500 (AB SCIEX,
Toronto, Canada) equipped with the Turbo Ion Spray source operating in positive
ion mode. The capillary voltage was set to 5 kV. Heated turbo gas (400 �C, air) at a
flow rate of 10.0 l min� 1 was used. The transitions (quantifier and qualifier)
recorded in Multiple Reaction Monitoring (MRM) mode were 286.14217.1 and
286.14190.1 for letrozole, 294.14225.1 and 294.14210.1 for anastrozole and
297.14121.0 and 297.1493.1 for exemestane. The LC column was a Gemini C6-
Phenyl (100� 2 mm2, 3mm) with the corresponding 4� 2 mm2 SecurityGuardTM
cartridge (Phenomenex, Torrance, CA), operated at 0.3 ml min� 1. Eluent A
(waterþ 0.1% acetic acid) and B (acetonitrile) were used. The gradient elution
programme was as follows: 20% B maintained for 2 min, then to 90% B in 7 min,
back to 20% B in 1 min and re-equilibrated for a 20 min total run time. Anastrozole,
exemestane and letrozole retention times were 6.12, 6.31 and 7.45 min, respectively.
Four microlitres of the extracted sample were injected for LC-MS/MS assays. System
control and data acquisition were done by Analyst 1.5.1 software, and calibration
curves were calculated using the non-weighted linear least-square regression of
Analyst Quantitation programme (AB SCIEX, Toronto, Canada).

Calibration curves were constructed for both exemestane and letrozole, using
the appropriate internal standard. Whole-blood from control mouse was spiked
with different concentrations of exemestane (from 2 to 100mg l� 1) or letrozole
(from 10 to 200 mg l� 1). A 20 ml volume for each fortified blood sample was spotted
on filter paper (DBS) and then treated as described in sample preparation. Each
calibration curve was prepared in duplicate. Satisfying linearity was obtained for
the two analytes (letrozole, r¼ 0.996; exemestane, r¼ 0.998). Each analytical batch
included a double blank sample (without internal standard), a blank sample (with
internal standard), five or six standard concentrations for calibration curve, and a
set of treated mouse samples (each prepared in duplicate). LC-MS grade acetic acid,
methanol, water and acetonitrile were supplied by Sigma Aldrich (Milan, Italy).

Statistical analysis. Data represent mean±s.e.m. or confidence interval (CI).
Statistical analysis was performed by the unpaired two-tailed Student’s t-test for
comparisons between two groups, the ANOVA, followed by the Bonferroni post-
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hoc test for comparisons between multiple groups. Agonist potency was expressed
as half maximal effective concentration (EC50), that is, the molar concentration of
agonist producing 50% of the maximum measured effect and 95% confidence
interval (CI). Po0.05 was considered statistically significant (GraphPadPrism
version 5.00, San Diego, CA).
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