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Abstract

In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells.
Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding
neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as
an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the
modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2) and by means of a matrix of
individually addressable super-bright microLEDs (mLEDs) with an excitation peak at 470 nm. We combined Ca2+ imaging
techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the
mLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and
was linearly increased and prolonged by increasing mLED irradiance in terms of intensity and surface illumination.
Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both
glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able
to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the mLEDs array to selectively light
stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In
conclusion, ChR2-transfected astrocytes and mLEDs system were shown to be an amplifier of synaptic activity in mixed
corticalneuronal and glial cells culture.
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Introduction

The traditional view of astrocytes is that their primary purpose

is to provide biochemical support of the nerve cells, including

trophic support, metabolic regulation, and regulating neurotrans-

mitter concentrations in the synaptic cleft [1]. However, astrocytes

also actively participate in synaptic transmission through glio-

transmitter release [2,3]. The understanding and the modulation

of these processes could have particular translational impact to the

pharmacology and neuroprosthesis communities as well as for

neuro-computational studies. Fundamentally, indirect stimulation

of astrocytes may lower operational power requirements of brain

machine interfaces. Optogenetics is now a decade old genetic

manipulation technique which can render nerve cells light

sensitive [4]. The great advantages of the technique has been to

provide genetically targeted excitatory [5] and inhibitory [6]

control of neural circuitry with millisecond precision. The key

issue for the neuroprosthesis community has been an intense light

requirement of typically 1015–1019 photons/cm2 at 480 nm

(instantaneous pulsed irradiance) [7,8] which is close to the

photochemical damage threshold of nerve cells [9], but also makes

it challenging to create stimulation optoelectronics. High radiance

optoelectronic arrays for specific use in retinal prosthesis have

been previously developed [10]. However, inimplantable systems,

local thermal dissipation becomes an increasing issue [11].

Therefore, we aimed to study ChR2-transfected astrocytes as a

potential amplifier of neuronal signalling by means of increasing

gliotransmission. For this reason, we wanted to explore the

potential for optogenetically transfected astrocytes to influence the

excitatory state of nerve cells, and thus bring down the threshold

requirements for optoelectronic stimuli.
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Materials and Methods

Ethical Statement
All animal manipulations were carried out according to the

European Community guidelines for animal care (DL 116/92,

application of the European Communities Council Directive 86/

609/EEC). Formal approval to conduct the experiments described

has been obtained from Italian Ministry of Health, according to

DL 116/92. All efforts were made to minimize animal sufferings

and to use only the number of animals necessary to produce

reliable scientific data. No alternatives to animal experimentation

are available for this type of experiments.

mLED optoelectronic illuminator
Electronically drivenmLEDs were fabricated as part of the

OptoNeuro FP7 project (www.optoneuro.eu) and transferred to

the researchers on this project. These are fundamentally a micro-

LED chip bonded to a CMOS (Complementary Metal Oxide

Semiconductor) control chip. The array comprises of a 16616

array of 20 mm diameter micro-emitters with a centre-to-centre

pitch of 150 mm. The LEDs chip was fabricated from Gallium

Nitride and the CMOS was fabricated from a standard 0.35 mm

foundry process [12]. Bonding was achieved via flip-chip process,

and the resulting die was packaged in ceramic pin grid array which

was then placed on a PCB board and controlled by a PC via a

MBED microcontroller.

mLEDs controlling software
The CMOS driven optoelectronic array does not have a USB

interface, so we have used a MBED microcontroller to act as an

interface between a PC and the chip. This was programmed using

the online software development kit from mbed.org. On the PC

side, a software interface has been developed to provide intuitive

functionality for the electrophysiology experiments. The software/

hardware control can independently tune pulse widths of each of

the micro-emitters down to 1 ms and is stable for many hours of

recording. A hardware/software interface with standard patch-

clamp electrophysiology software has also been developed via an

in-house-designed trigger box for sending and receiving monitor-

ing signals.

Optical characterization
The emission spectrum of the optoelectronic array was

measured by placing a USB2000 spectrometer (Ocean Optics)

directly above the emitters. In order to measure radiance and

efficiency, we used a Newport UV-818 calibrated photodiode and

a Keithley Source Measure Unit 2612 (Keithley Instruments Inc.),

with the diode placed just above the LED array. Variability in the

emission power was tested by driving the mLEDs both individually

and as part of a group. The on-sample emission powers were

measured by placing the calibrated photodiode on the sample

plane.

Rat cortical cell cultures
Cultures of mixed cortical cells containing both neuronal and

glial elements were prepared as previously described in detail [13]

and used at 5–25 days in vitro (DIV). Pure neuronal cultures were

prepared as previously described in detail [14] by seeding cortical

cells (re-suspended in Neurobasal medium with B-27 supplement,

GIBCO) onto poly-l-lysine-coated wells, used at 5–25 DIV. Either

male and female animals were used.

Plasmid amplification and cell transfection
Plasmid DNA encoding adeno-associated viral vector with light

sensitive channelrhodopsin-2 under GFAP promoter (pAAV-

GFP- hChR2 (H134R)-EYFP) or CatCh plasmid (pcDNA3.1(-)-

chop2(1-309)[L132C]-EYFP) were purified using Plasmid Midi

Kit (Qiagen) in according to the manufacturer’s instruction. After

48 hours in culture at 70% confluence, astrocytes were transfected

with 1 mg vector using Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s manual. CatCh or ChR-2 expression in

cortical neurons was achieved by electroporation (Lonza Biosci-

ences Nucleofactor) using 2 mg of the construct.

Electrophysiology
The recording chamber was mounted on an upright microscope

(Nikon Eclipse E600FN) equipped with IR-DIC optics, 206 and

606water-immersion objectives (NA = 1.00 and 0.8 respectively)

and an IR-camera (Hamamatsu) for visually guided experiments.

Flow rate was 1 ml/min and driven by gravity. Whole-cell

recordings were performed at room temperature between 5 and 28

DIV. The intracellular solution contained (in mM) K+-gluconate

(120), KCl (15), HEPES (10), EGTA (5), MgCl2, (2), Na2Pho-

sphoCreatine (5), Na2GTP (0.3), MgATP (2), resulting in a

resistance of 3–4 MV in the bath. The external medium contained

NaCl (150), KCl (3), CaCl2 (2), MgCl2 (1), glucose (10) and

HEPES (10); the pH was adjusted to 7.30. Clampfit v10.1 was

used for offline analysis. No whole cell compensation was used.

Signals were sampled at 10 kHz, low-pass filtered at 10 kHz,

acquired with an Axon Multiclamp 700B and digitized with a

Digidata 1440 A and Clampex 10 (Axon).

Imaging of Fluo-3/Fura-2 fluorescence
Cultured cells were incubated in a solution containing (in mM):

(150) NaCl, (10) Hepes, (3) KCl, (2) CaCl2, (1) MgCl2, (10) glucose

(pH adjusted to 7.3) at 37uC for 30 min with the acetoxymethyl

(AM) ester of fluo-3 and or fura-2 AM (5 mM, Molecular Probes).

To aid solubilisation of fluo-3/fura-2 in aqueous medium, we

added pluronic F-127 (1 mM, Molecular Probes). The dye was

allowed to de-esterify for 30 min at room temperature. Coverslips

containing fluo-3/fura-2-loaded cells were subsequently trans-

ferred to a continuously perfused microscope stage for imaging.

Images were visualized with a 206 or 606 Fluor objectiveand

acquired every 2 seconds. Exposure time was set to 200 ms and

excitation was provided by a PE-1system (CoolLED) fitted with a

380620 nm LED and a 470630 nm LED. Fura-2 and fluo-3

fluorescence was recorded through (respectively) along pass filter

(420 nm cut on) and aband pass filter (535625 nm) with a

Photometrics Coolsnap HP Camera set at 220uC. Fluorescence

intensity was measured in cell bodies using Imaging Workbench 6

software (IndecBioSystem) and expressed as the ratio of (F2F0)/

F0, where F0 is the baseline fluorescence intensity in cell bodies

before any treatment. All measurements were corrected for the

background fluorescence. Increases in fluorescence ratio greater

than 0.1 were considered to be significant changes; baseline

fluorescence values possessed a peak (F2F0)/F0 ratio of

0.0160.01 on average. Experiments were performed at room

temperature.

Statistics
Pooled data throughout the paper are presented as mean 6

standard error (SEM) of n independent experiments. Unless

otherwise specified, statistical difference between means is assessed

with a Student t-Test for paired samples (GraphPad Prism 5.0).

When single recordings are shown they are intended to represent
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typical observations. Graphs, histograms and fittings were

generated in GraphPad Prism 5.0. In Fig. S2 each response was

normalised to a moving average of firing frequencies: average (all

recordings) – average (preceding 4 readings and successive 4

readings).

Results

First, we tested the efficacy of the mLEDs array to elicit precise

spatiotemporal current transients in ChR2-transfected glial cells.

The mLEDs array was mounted on the microscope’s camera port

using a beam splitter allowing the mLEDs to be imagined onto the

sample while observing it (Fig. 1A, S1). Whole cell patch clamp

recordings were used to functionally verify the transfection and the

capacity of mLEDs array to generate astrocytic ChR2-induced

inward current. In each of the ChR2positive glial cells tested

(n = 50), the mLEDs illumination produced inward currents using

either the whole or partial array (Fig. 1A, whole array in white box

and different number of mLEDs tested in coloured boxes). We

could finely modulate ChR2-induced astrocytic inward currents

by either modulating mLEDs power density (Fig. 1B and inset),

pulse width of the illumination (Fig. 1C) and the number of

illuminating mLEDs (Fig. 1D and 1A). We were also able to

produce inward currents using pulses as short as 1 ms (Fig. 1C,

red trace; power density = 34.66 nW/mm2@5V on cell, which

equates to 34.66 pJ6pulse). In our previous paper we showed that

the mLEDs irradiance is stable over time [15]. Here, we confirmed

the array performance on a biological sample with long term light

stimulation (200 ms pulse at 0.5 Hz, Fig. 1E, blue arrow) on ChR-

2 positive astrocytes.The mLEDs produced stable current tran-

sients (Fig. 1E, black arrow) peaking at 275620 pA (Fig. 1E

bottom trace).

Then, we studied the optogenetic control of a glial network in

culture via light stimulation of single ChR2 positive astrocytes in

order to modulate surrounding ChR2 negative glial cells in pure

astrocytic cultures by using calcium imaging as readout technique.

Figure 1. mLEDs finely modulate in time and space inward current in ChR2-transfected astrocytes. A,The ChR2+ astrocyte was stimulated
with the whole matrix (blue box) or variable number of mLEDs (black and red boxes, 9 and 2 mLEDs, respectively) while recording the elicited inward
currents in voltage clamp mode. Fine targeting and pulsing of the mLEDs on the cell was achieved overlaying in real time the fluorescent image to the
mLEDs using a specific designed software. B, ChR-2 inward currents of different amplitude were recorded pulsing the whole matrix (blue box in A,
pulse duration 20 ms) at different voltages (grey traces represent mLED stimulation pattern). Inset, mean inward current vs power density from
different cells. C, mLEDs (blue box in A) can be finely modulated in time with submillisecond precision producing proportionally longer and larger
ChR-2 currents (grey traces represent mLED stimulation pattern). D, Inward currents produced when 2 mLEDs (A, red box) or 9 mLEDs (A, black box)
were pulsed 5 times at 33 Hz at different time on different locations (grey traces represent mLED stimulation pattern). E, The mLEDs irradiance is stable
over time. When long term optogenetic light stimulation (central trace indicated by the black arrow, 200 ms pulse at 0.5 Hz, full led) is performed
onChR-2 positive astrocyte the mLEDs produced stable current transients (Top trace) and peak inward currents (filled circles).
doi:10.1371/journal.pone.0108689.g001
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For this experiment, we used a CoolLED PE system (see methods)

to stimulate all the transfected cells in the area imaged by the

objective. Since ChR2 is only partially stimulated at 380620 nm

(UV) [16], we used this wavelength as not-ratiometric Fura-2

exciting wavelength to assess the baseline activity of the culture

(Fig. 2A and C, left panel).

We then compared this to the results obtained using Fluo-3/

ChR2 peak exciting wavelength (blue light) (470620 nm) to

activate ChR2 positive astrocytes(Fig. 2B and C right panel) while

recording the calcium activity of the surrounding ChR2-negative

astrocytes (Fig. 2A and B, blue circles). Figure 2C shows a typical

time course of a single ChR2 negative astrocyte excited at 380 and

470 nm, respectively. Stimulation at 470 nm increased calcium

oscillation frequency in ChR2 negative astrocytes to

566.76124.2% (p = 0.0002) over baseline activity (Fig. 2C, D

and E) and this effect was reverted by switching back to 380 nm

light (Fig. 2D) (208.1%675.5% over the basal level; p = 0.0048).

In another set of cells we aimed to pharmacologically block the

ChR2-induced calcium wave frequency increase. Addition of

NMDA selective antagonist D-2-Amino-5-phosphonopentanoic

acid (APV 50 mM) during 470 nm light stimulation (but after the

calcium wave frequency increase was established reaching

8626128.6% of the baseline level) reduced the induced increase

to 469%623.2%(p = 0.0019) of the baseline level (Fig. 2E). This

partial block was reversible and calcium wave frequency re-

increased to the pre-drug treatment level following APV wash out

(Fig. 2E).

After achieving optical modulation of glial cells network we then

explored the interaction of optically modulated astrocytes and

neurons. Initially, we stimulated ChR2 positive astrocytes by

means of a CoolLED PE system while recording surrounding

neuronal activity with calcium imaging technique (Fig. 3A).

Figure 3B shows the time course of the mean calcium activity in

9 neurons during 380 and 470 nm stimulation (purple and blue),

Figure 2. Stimulation ofChR2 positive astrocytesincreases glial cells calcium transients frequency. Cortical glial culture were co-
incubated in fura-2-AM (A) and fluo-3-AM (B) and Ca2+ transients were monitored during UV [excitation (ex)380620 nm] and blue light [excitation
(ex) 470620 nm] stimulation (200 ms light pulse @ 0.5 Hz; 10 min UVR10 min blueR10 min UV). The star (*) indicates the ChR-2 positive astrocyte.
C, Time course of ChR-2 negative astrocyte during UV (left panel) and blue (right panel) illumination. Fura-2 downward peak indicates [Ca2+]i increase,
fluo-3 upward peak indicates [Ca2+]i increase. D, Stimulation of the ChR-2 positive astrocyte with 470 nm light (blue column)increased calcium waves
frequency to 566.7%6124.2% (UV vs Blue, paired t test p = 0.0002 – Blue vs UV, paired t test p = 0.0048). E,The increased Ca2+ waves frequency
mediated by stimulation of ChR2 positive astrocyte was significantly reduced by APV 50 mM (UV vs Blue, paired t test p,0.0001 – Blue vs Blue+APV,
paired t test p = 0.0019). Values are means 6SEM.
doi:10.1371/journal.pone.0108689.g002

Optogenetical Modulation of Astrocytes by MicroLED Arrays

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e108689



respectively.The modulatory effect on neuronal calcium wave

frequency is shown in the inset and on a single cell in Fig. 3A

(top).Moreover, in experiments where calcium imaging was

coupled to concurrent patch clamp recordings (Fig. 3C), the

increase in astrocytic intracellular Ca2+ concentration (blue and

red arrows) was synchronized with spontaneous excitatory post

synaptic currents (sEPSCs) burst of the colocalized neuron.

To further characterize the optical gliotransmission, we used the

mLEDs array to selectively light stimulate ChR2 positive astrocytes

while recordings synaptic activity of a single neuron surrounding it

(Fig. 4A). mLEDs light stimulated ChR2 positive astrocyte for

5 min using 200 ms long light pulses at 0.5 Hz (Fig. 4B blue

trace). Simultaneously, we recorded the neuronal activity before,

during and after the mLEDs induced stimulus. Figure 4B upper

panel shows a typical sEPSCs timecourse following mLEDs

stimulation of ChR2 positive astrocyte.

The average sEPSCs frequency activity increased to

295.5653.4% following mLEDs stimulus selectively directed on

ChR2 positive astrocyte (Fig. 4C,D and S2). Interestingly, sEPSCs

amplitude did not change significantly (103.364% versus

109.1615.2%, in control and during mLEDs induced stimulation

of ChR2 positive astrocyte, respectively; n = 13).

The addition of the glutamate (NMDA and AMPA) antagonists,

APV (50 mM) and NBQX (20 mM)to the bath solution during light

stimulation and after the excitation was successfully triggered,

significantly reduced the increased sEPSCs frequency to

78.2064.0% and 23.2%65.5% of the pre-light stimulation level

(100%), respectively. APV and NBQX co-application almost

abolished mLEDs ChR2-induced increase ofsEPSCs frequency

(3.8%61.0% of the baseline level) (Fig. 4D).

Discussion

The data presented in this paper show that astrocytes can be

finely tuned by ChR2 optogenetic stimulation and that the

subsequent glutamate release rapidly affects the whole astrocytic

network and the surrounding neurons. Perea and co-workers [17]

have recently shown similar results in astrocytes of the primary

visual cortex both for excitatory and inhibitory neurotransmission.

The mLEDs system we previously tested in different cell lines

[10,18] is able not only to finely modulate ChR2 current in a

single astrocyte but also to increase neuronal sEPSCs frequency in

mixed cortical astrocytic/neuronal primary cultures.Following

neuronal activity, the activation of astrocytes is mediated by

neurotransmitter released from synaptic terminals [19,20,21]. The

subsequent release of gliotransmitters from astrocytes has been

reported to depend upon Gq GPCR activation leading to

astrocytic type-2 IP3 receptor (IP3R2) activation and Ca2+ release

from the endoplasmic reticulum [reviewed in [22]]. While this

pathway has been implicated in gliotransmitter release, the precise

mechanisms of gliotransmission remains debated [21,23,24,2].

This is mainly due to our inability to selectively activate Ca2+

signals in astrocytes. Therefore, the exogenous generation of Ca2+

signals that mimic those evoked by neuronal stimuli should clarify

the interactions between neurons and astrocytes and could finely

modulate gliotransmission and the efficacy of neuroprosthetic

devices.

For these reasons, we stimulated the astrocytes by means of

ChR2-induced current showing that this direct astrocytic stimu-

lation is cascaded onto the whole astrocytic network and increases

neuronal spontaneous excitatory post synaptic current.

Interestingly, we also noticed that even if the currents elicited in

Ca2+ translocating ChR2 (CatCh) positive astrocytes where on

average 15 times larger than ChR2 (measured as area under the

curve (AUC), Fig. S3) the neural network modulation was

successfully achieved with ChR2, although previous reports

suggest a better and stronger Ca2+ elevation by means of Ca2+-

permeable light-gated glutamate receptor (LiGluR) [25] and

CatCh [25,26].

Recently, optogenetics elucidated the function of multiple

neuronal circuits [27,4,28]. One of the most popular photo-

switchable channel to activate neurons is the H314R channelrho-

dopsin 2 [ChR2(H134R)], a variant of the wild type ChR2 with

reduced desensitization [29]. ChR2 is a cationic channel highly

permeable to proton but weakly permeable to Ca2+ [30,31]. In

neurons, its photoactivation triggers Ca2+elevations which depend

mainly on the secondary activation of voltage-gated Ca2+ channels

(VGCC) [32,33].In astrocytes, the photoactivation of ChR2 can

Figure 3. ChR2+ asctrocytic stimulation modulates neuronal
calcium waves frequency. A, Bottom, snapshots from Ca2+

experiments during stimulation with 380 nm (i) and 470 nm (ii) light.
Green circles indicate neurons, one of which (blue circle) was co-
localizated with the ChR-2 positive astrocyte (star). Top, time course of
one of the not colocalized neurons (circled in green). B,Time course of
all circled neurons mean relative fluorescence and (inset)single cell
measurement of calcium wave frequency (paired t test p,0.0001). C,
Concurrent patch clamp and Ca2+imaging time course of the neuron
circled in blue in A(iii). The red arrow shows the first wave (top)
syncronised with the first sEPSCs burst and the red arrows show
following sEPSCs bursts concomitant to internal calcium concentration
increase.
doi:10.1371/journal.pone.0108689.g003
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trigger gliotransmitter release [34,35,36,37,17]. Indeed, in the rat

brain stem retrotrapezoid nucleus, ChR2-expressing astrocytes

reacted to long lasting (20–60 s) illumination by slow Ca2+ rises

that lasted for minutes [35]. In the hippocampal CA1 region, blue

light pulses induce rapid time-locked Ca2+ signals in astrocytes

[37]. On the other end, mouse cortical astrocytes in culture

showed a variable and weak Ca2+ elevations following ChR2

activation [25] while LiGluR and CatCh [7] evoked a reliable and

robust Ca2+ signals in astrocytes [reviewed in [27] and [38]].

However, in our experimental conditions ChR2-transfected

astrocytes showed a good efficacy in increasing [Ca2+]i and in

modulating glia to glia and glia to neurones transmission.

Unfortunately, due to the complexity of the astrocytic and

neuronal network in cell cultures we could not discriminate the

temporary resolution ofglial and neuronal cells stimulation.

Pharmacological evidence showed that ChR2 non transfected

astrocytes are partly stimulated through functional NMDA

receptors activation which are present in cortical culture [39,40].

However, since the increased Ca2+ waves frequency mediated by

stimulation of ChR2 positive astrocytes was significantly but not

completely reduced by APV 50 mM (figure 2E), we could not rule

out other gliotransmitter release such as ATP through connexin

channels (‘‘hemichannels’’) [41].

This study could have implications to the use of optogenetics for

neuroprosthesis such as retinal prosthesis, visual brain prosthesis,

brain and heart pacemakers. For practical application of

optoelectronic prosthesis two platform technologies need to be

optimized: 1) The biological expression – typically via viral vector

of opsins with optimized biophysics. 2)The light generation and

delivery mechanism to the optogenetically transfected cells [39].

In the case of the former, targeted delivery to specific cell types

can allow for better communication and better sensitivity reducing

the potential for long term photo-ionization damage [42]. In the

case of the latter, a number of technologies are being developed

including micro-light emitting diodes (mLEDs) [43] and optical

delivery systems [44].

The mLEDs presented in this paper have delivered their light via

microscope. If insulated, they could equally be placed against the

tissue for similar effect. However, as neural tissue scatters blue light

strongly, the individual addressability gets lost after a few hundred

microns. Thus, either some form of light delivery system such as an

optrode [43] would need to be incorporated or the chip would

need to be shaped into a penetrating structure [45] to get closer to

the target cells. It is also possible to place such LEDs directly

against the tissue. However light scattering effects would mean

they lose spatial resolution.

In the case of light emissive optoelectronics, there is a direct

inverse correlation between efficiency and intensity. As such,

creating mechanisms which reduce the light requirement will

improve the efficiency and thus battery performance. As batteries

in current neural pacemakers are largely non-rechargeable and

need to last at least 5 years, this is an important consideration.

Furthermore, for implants in the brain, inefficiency leads to

thermal emission, which could cause undesirable heating of the

neural tissue.

Currently the literature indicates that implantable devices

should dissipate no more than ,50 mW of thermal energy [11].

In this perspective, we demonstrated that ChR2transfection of

astrocytes can be used to bring the requirement down in

optogenetic systems, and this could have impact in future

neuroprosthetic system design.

Supporting Information

Figure S1 System schematics.

(DOCX)

Figure S2 A, Normalized moving average fit of the sEPSCs

frequency time course. B, sEPSCs frequency during the relaxed

and excited state and mean time (dA) to reach the excited state.

(DOCX)

Figure S3 Example of current responses from a ChR2
positive astrocyte and a CatCh positive astrocyte elicited
with a single 500 ms long pulse using the mLED array.

(DOCX)

Figure 4. MicroLEDs-inducedChR2 positive astrocytes stimulation increases EPSCs frequency and is glutamate mediated. A, One of
the ChR2 positive astrocyte in the field of view is light stimulated using 18 mLEDs (top left inset) while patch clamping from a nearby ChR2 negative
neuron. Bottom right inset, a close-up of the ChR2-negative neuron showing that it is not illuminated by the mLEDs. B,Representative gap free patch
clamp recording (black trace)performed on one of the 13 neurons that were modulated by the glial stimulationandstimulation pattern(blue trace)of
the ChR2 positive astrocyte showing increase of synapticactivity following ChR2+ astrocytic light stimulation. C, Mean event frequency time course of
the 13 neurons stimulated with the protocol as in B (blue trace) that showed a significant sEPSCs frequency increase over the baseline (black dashed
line). D, The stimulation protocol was performed in 22 neurons, 13 of which showed a nearly 4-fold increase in the sEPSCs frequency. 9 out of the 22
neurons tested showed no significant sEPSCs frequency increase. Application of AMPA and NMDA receptor blockers after a significant increase of the
sEPSCs frequency was established, reduced the latter to levels below the baseline level (all means paired t test vs control. No effect, p = 0.2635;
Excitation, p = 0.0068; APV, p = 0.0371; NBQX, p = 0.0001; NBQX + APV, p = 0.0001.(Values are the means 6 SEM).
doi:10.1371/journal.pone.0108689.g004
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