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function of adiponectin in addition to its well-recognized 
metabolic action.
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Abbreviations
AMPK	� AMP kinase
fAd	� Full-length adiponectin
gAd	� Globular adiponectin
HMW	� High molecular weight
LMW	� Low molecular weight
MAPK	� Mitogen-activated protein kinase
MMW	� Middle molecular weight

Introduction

The metabolic action of adiponectin

Adiponectin is one of the most concentrated hormones in 
the blood (between 0.5 and 30 μg/ml), thus accounting for 
0.01 % of total plasma proteins [1]. Significantly decreased 
plasma levels of adiponectin have been observed in obese/
diabetic mice and humans [1–3] as well as in patients with 
cardiovascular diseases [4], hypertension [5], and meta-
bolic syndrome [6].

Initially considered as a hormone produced exclusively 
by adipose tissue [7], it is currently known that adiponec-
tin is locally secreted by various cell types. Primary human 
osteoblasts [8] and murine osteoblastic and osteoclastic 
cells express adiponectin and adiponectin receptors [9], 
thus suggesting that adiponectin can affect bone homeosta-
sis through both endocrine and autocrine/paracrine mecha-
nisms. Adiponectin is also produced by both human and rat 

Abstract  The great interest that scientists have for adi-
ponectin is primarily due to its central metabolic role. 
Indeed, the major function of this adipokine is the control 
of glucose homeostasis that it exerts regulating liver and 
muscle metabolism. Adiponectin has insulin-sensitizing 
action and leads to down-regulation of hepatic gluconeo-
genesis and an increase of fatty acid oxidation. In addi-
tion, adiponectin is reported to play an important role in 
the inhibition of inflammation. The hormone is secreted in 
full-length form, which can either assemble into complexes 
or be converted into globular form by proteolytic cleavage. 
Over the past few years, emerging publications reveal a 
more varied and pleiotropic action of this hormone. Many 
studies emphasize a key role of adiponectin during tissue 
regeneration and show that adiponectin deficiency greatly 
inhibits the mechanisms underlying tissue renewal. This 
review deals with the role of adiponectin in tissue regen-
eration, mainly referring to skeletal muscle regeneration, 
a process in which adiponectin is deeply involved. In this 
tissue, globular adiponectin increases proliferation, migra-
tion and myogenic properties of both resident stem cells 
(namely satellite cells) and non-resident muscle precur-
sors (namely mesoangioblasts). Furthermore, skeletal mus-
cle could be a site for the local production of the globu-
lar form that occurs in an inflamed environment. Overall, 
these recent findings contribute to highlight an intriguing 
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placentas [10]. In this tissue, the genomic expression and 
secretion of adiponectin is modulated by cytokines such 
as tumor necrosis factor-α, interferon-γ, interleukin-6, and 
leptin [11]. Moreover, isolated murine and human cardio-
myocytes produce adiponectin [12]. In murine heart, as 
well as in microvascular endothelium and white adipose 
tissue, adiponectin expression occurs through a particular 
regulation. In fact, adiponectin expression is regulated by 
the hypoxia inducible factor-1 (HIF-1) [13]. HIF-1-induced 
adiponectin is associated with improved myocardial viabil-
ity in obese/diabetic mice and with increased preservation 
of left ventricular function, thus suggesting that local pro-
duction of adiponectin by cardiomyocytes and microvas-
cular endothelial cells may control cardiac function [13]. 
Expression of adiponectin is also observed in the pituitary 
gland where this adipokine regulates its own production. 
[14]. Another important site of adiponectin production is 
skeletal muscle, which is discussed in paragraph “Role of 
adiponectin in skeletal muscle regeneration”.

Adiponectin is secreted in “full-length” (fAd) form, 
which can be cleaved into smaller “globular” (gAd) form 
by the elastase secreted by activated monocytes and/or neu-
trophils [15, 16]. Monomers of fAd can assemble forming 
three different multimers: low molecular weight (LMW) 
trimers, middle molecular weight (MMW) hexamers, and 
high molecular weight (HMW) 12–18 multimers [17, 18]. 
The different forms of adiponectin exert their biological 
action through the binding with specific receptors. Two 
G-protein-independent, seven–transmembrane spanning 
receptors, called AdipoR1 and AdipoR2 were isolated [19]. 
AdipoR1 is ubiquitously expressed, whereas AdipoR2 is 
predominantly expressed in the liver. Furthermore, T-cad-
herin has been identified as a potential receptor for HMW 
adiponectin [20].

fAd (which has higher affinity for AdipoR2) and gAd 
(which has higher affinity for AdipoR1) have different 
target tissues in which they activate different signaling 
pathways [21–24]. In skeletal muscle, both gAd and fAd 
activate AMP kinase (AMPK), thereby stimulating phos-
phorylation of acetyl-coenzymeA-carboxylase (ACC), fatty 
acid oxidation, and glucose uptake. In the liver, only fAd 
activates AMPK thereby reducing molecules involved in 
gluconeogenesis and increasing phosphorylation of ACC 
and fatty acid oxidation. Both in liver and in skeletal mus-
cle, activation of peroxisome proliferator-activated recep-
tor α (PPARα) is important to decrease triglyceride content 
[23, 25, 26]. These metabolic actions of adiponectin are 
associated with the increase of insulin sensitivity in vivo 
[27–29].

Hepatic insulin sensitivity in humans is associated 
with circulating adiponectin concentration [30–32]. The 
amount of adiponectin in the plasma negatively corre-
lates with endogenous glucose production in healthy [2], 

severely obese [3, 33] and type 2 diabetic individuals [1, 
30, 32]. Furthermore, the increase in plasma adiponec-
tin after weight loss are associated with improvements in 
hepatic insulin sensitivity in severely obese females [34]. 
The enhancement of hepatic insulin sensitivity by fAd 
leads to the down-regulation of the expression of key glu-
coneogenic genes, including glucose 6-phosphatase and 
phosphoenolpyruvate carboxykinase [35]. AMPK plays an 
essential role in the decrease of glucose production since 
AMPK activation by adiponectin in both isolated hepato-
cytes and in murine liver in vivo was associated with a 
reduction of circulating glucose levels [24]. In addition, 
adiponectin-mediated regulation of hepatic glucose pro-
duction is abolished in a liver-specific AMPK knockout 
mouse model [36]. Although the true mechanism underly-
ing the insulin-sensitization of adiponectin in liver has not 
been yet defined, it is reported that fAd enhances hepatic 
insulin sensitivity through the up-regulation of insulin 
receptor substrate-2 (IRS-2) via the macrophage-secreted 
interleukin-6 [37]. In addition, a redox-based molecu-
lar mechanism for the insulin-sensitizing effect of gAd in 
hepatic cells has been suggested. Indeed, gAd provokes a 
ligand-independent trans-phosphorylation of insulin recep-
tor that occurs through the production of reactive oxygen 
species. The oxidants generated following gAd stimula-
tion are important second messengers for glucose oxidation 
and glycogen production in hepatic cells [38]. Recent data 
report the involvement of a cross-talk between adiponectin 
and fibroblast growth factor 21 (FGF21) in the insulin-sen-
sitizing effect of adiponectin. FGF21, a metabolic hormone 
that regulates glucose and lipid homeostasis and insulin 
sensitivity [39], enhances adiponectin secretion by adipo-
cytes and increases circulating adiponectin in mice [40, 
41]. Interestingly, FGF21 decreases accumulation of cera-
mides in obese animals in an adiponectin-dependent fash-
ion. Indeed, adiponectin-knockout (KO) mice are refractory 
to changes in energy expenditure and ceramide-lowering 
effects due to FGF21 administration [40], thus suggesting 
that FGF21-adiponectin cross-talk can have a key role in 
reducing the aberrant accumulation of lipids associated 
with insulin resistance.

Insulin sensitivity in skeletal muscle is greatly improved 
by the administration of gAd to lipoatrophic mice [23] 
and by gAd overexpression in ob/ob mice [26]. The final 
effect is the improvement of peripheral insulin sensitivity 
partly due to an increase in fatty acid oxidation. Fatty acid 
oxidation in skeletal muscle occurs through the inhibitory 
phosphorylation of acetyl-CoA carboxylase leading to a 
decrease of malonyl CoA and thus promoting fatty acid 
entry into the mitochondria [19, 24]. In addition, Zhao 
et al. [42] have recently reported that gAd increases muscle 
insulin uptake by recruiting muscle microvasculature thus 
contributing to its insulin-sensitizing action.
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Adiponectin as a tissue‑regenerating hormone

Role of adiponectin in skeletal muscle regeneration

Alongside the metabolic and insulin-sensitizing role in 
skeletal muscle, several observations suggest that gAd is 
involved in another important muscle process, i.e., muscle 
regeneration. For the first time, it has been reported that 
gAd drives myoblasts into myogenic program. Indeed, 
gAd blocks myoblast cell cycle entry and then induces 
the expression of specific skeletal muscle markers such as 
myosin heavy chain and caveolin-3, as well as provoking 
the fusion of cells into multinucleated syncytia [43].

Satellite cells, a population of stem cells resident 
beneath the basal lamina, are involved in the regeneration 
of adult skeletal muscles. When muscle damage occurs, 
satellite cells are immediately activated; they begin to 
proliferate and induce the expression of myogenic regula-
tory factors [44]. Activation of satellite cells requires the 
phosphorylation of p38 mitogen-activated protein kinase 
(MAPK) [45]. Conversely, p38 MAPK inhibition prevents 
MyoD induction, thus blocking satellite cell activation and 
proliferation [45]. gAd is involved in satellite cell activa-
tion, since it induces a strong activation of p38 MAPK, 
both in intact fibers and in isolated satellite cells [15]. 
Whether gAd induces satellite cell proliferation is unproven 
at present and this topic needs to be studied more deeply. 
Another key step during regeneration of adult skeletal mus-
cle is the migration of satellite cells towards the injured site 
[46]. gAd elicits a specific motile program in satellite cells 
through both the activation of the small GTPase Rac1 and 
the expression of Snail and Twist transcription factors [15]. 
gAd-induced motile program enhances metalloprotein-
ase-2 secretion, thus permitting the degradation of extracel-
lular matrix and facilitating satellite cell arrival to the site 
of damage. In addition, gAd also takes part to attract both 
satellite cells and macrophages towards the myotubes and 
participates in muscle fiber formation thus inducing myo-
genesis in satellite cells [15].

Muscle regeneration involves both resident (i.e., satellite 
cells) and non-resident cells with myogenic properties that 
are recruited into the muscle following damage. Among 
non-resident precursors, a variety of different cells with 
intrinsic myogenic properties have been isolated. These 
include adipose-tissue derived stem cells [47], mesoangio-
blasts [48], pericytes [49], muscle-derived stem cells [50], 
side-population cells [51–53], Ac133  +  cells [54], stem 
and/or precursor cells from muscle endothelium [55], and 
synovium [56]. Mesoangioblasts, multipotent progeni-
tors of mesodermal tissues, particularly attracted scientific 
attention for their possible use in stem cell therapy since 
they ameliorated some myopathies in animal models. For 
example, intra-arterial delivery of mesoangioblasts corrects 

morphology and function of muscles in sarcoglycan-null 
mice (Sgca-null) and dystrophic dogs, where it induces 
extensive recovery of normal dystrophin expression [48, 
57–59]. In addition to the successful role on satellite cells, 
recent results highlight that gAd positively affects mesoan-
gioblast features. In particular, gAd counteracts some of the 
main disadvantages met using non-resident stem cells for 
gene therapy such as their limited survival upon systemic 
injection and their effective differentiation into myofibers 
[60–62]. gAd increases survival of mesoangioblasts and 
protects them by both growth factor- and anchorage-with-
drawal by repressing the apoptotic and anoikis pathways. 
Furthermore, gAd increases myogenic properties of mes-
oangioblasts both in vitro and in vivo. Indeed, the positive 
effect of gAd on mesoangioblasts is evident in Sgca-null 
dystrophic muscles. Ex vivo treatment of mesoangioblasts 
with gAd and their subsequent injection in dystrophic 
muscles ameliorates in vivo mesoangioblast survival and 
greatly improves their engraftment in diseased muscles 
[63].

It is important to underline that skeletal muscle is 
an important site of adiponectin production [64–66]. 
Myotubes produce and secrete functional fAd through 
a PPARγ-dependent mechanism [67] and the amount 
of myotube-produced fAd increases in the pro-oxidant/
inflammatory microenvironment related to damage [43, 
64, 65]. A much-debated point is how and in what condi-
tions gAd is produced, since the modalities of its produc-
tion are still unclear. Waki et al. [16] reported that fAd can 
be cleaved by leukocyte elastase secreted from activated 
monocytes and/or neutrophils. This mechanism could be 
a possible source of the generation of gAd in the plasma. 
The inflamed microenvironment generated following 
damage could be involved in gAd production in skeletal 
muscle. The injured muscle favors the recruitment of mac-
rophages, which exert a beneficial role in skeletal muscle 
regeneration. Macrophages participate in the transplan-
tation of myogenic cells [68], in the increase of in vitro 
myoblast proliferation [69] and in the inhibition of apop-
tosis in satellite cells [70], thus indicating that the recruit-
ment of macrophages into the site of muscle damage is a 
key step during regeneration. In this regard, gAd is more 
able to attract macrophages than fAd [15]. Furthermore, 
gAd proves to be more efficient than fAd in activating a 
motile program and in inducing the degradation of the 
extracellular matrix in satellite cells [15], thus demonstrat-
ing the key role of gAd during this process.  fAd, secreted 
both by myotubes and satellite cells, can be cleaved in 
gAd by activated macrophages [15, 43, 64] thus likely cre-
ating an area with a high amount of gAd useful for muscle 
regeneration. Hence, an inflamed microenvironment could 
be a crucial step for gAd generation, thus suggesting that 
the skeletal muscle could be an autocrine source of gAd 
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production. To this day, only one paper managed to dem-
onstrate the presence of gAd in the bloodstream [71]. This 
is probably due to the very low amount of gAd circulating. 
So, it is likely that most gAd is locally produced. Hence, 
gAd production would be restricted to specific sites and to 
particular physiological conditions that allow the proteo-
lytic cleavage of fAd into gAd. This can happen in skeletal 
muscle in response to an injury when an inflamed microen-
vironment is established. Thus, skeletal muscle may rep-
resent an autocrine system for gAd production that leads 
to increased hormone concentration in neighboring muscle 
fibers.

This evidence shows a scenario in which the effect 
of gAd on skeletal muscle is deeply pleiotropic and var-
iegated. Beyond its involvement in the metabolic routes 
of skeletal muscle cells, gAd also plays an important 
function in muscle regeneration. Primarily, gAd acts 
on different cell muscle populations and muscle pre-
cursors. Indeed, gAd regulates proliferation, survival, 
and myogenic properties of satellite cells and acts as a 
chemo-attractant factor for non-resident stem cells that 
are recruited to the site of damage. Furthermore, gAd 
improves and maximizes muscle regeneration by acti-
vating myogenesis both in satellite cells and in recruited 
non-resident muscle progenitors (Fig.  1). In agreement 
with these findings, an impaired muscle regeneration is 
observed in obese and diabetic mice, pathologies corre-
lated to adiponectinemia [72].

Role of adiponectin in the regeneration of non‑muscle 
tissues

Regeneration of damaged tissue begins with the activation 
of stem cells in the stem niche. Many factors in the micro-
environment surrounding the stem niche induce stem cell 
activation [73]. In addition to the effect on satellite cells, 
as described in the previous paragraph, some evidence 
reports gAd as a hormone inducing the proliferation of both 
hemopoietic and adult hippocampal neural stem/progeni-
tor cells [74, 75]. Hemopoietic stem niche produces fAd 
and hemopoietic stem cells express adiponectin receptors 
AdipoR1 and AdipoR2. In these cells, gAd increases pro-
liferation both in vitro and in vivo [74]. In the latter, the 
hormone is more efficient in reconstituting lethally irra-
diated hosts in long-term transplantation assays [74]. In 
agreement, Zhang et al. [75] report a novel function of gAd 
in the regulation of adult hippocampal neural stem/progeni-
tor cells. gAd enhances the proliferation of progenitor cells 
in a dose- and time-dependent manner, without affecting 
apoptosis and differentiation towards neuronal or glial line-
age. The increased proliferation of adult stem cells by gAd 
occurs through the activation of AMPK and p38 MAPK 
signaling pathways. In turn, p38 MAPK leads to the inhibi-
tory phosphorylation on Ser-389 of glycogen synthase 
kinase 3β. The final effect is the nuclear accumulation of β 
catenin, a well-reported glycogen synthase kinase 3β sub-
strate [75, 76].

Fig. 1   Role of adiponectin in skeletal muscle regeneration. Beyond 
its metabolic role, gAd exerts a significant function as a regenerating 
hormone in skeletal muscle. Skeletal muscle represents an autocrine 
circuit of fAd production, the amount of which is further increased 
when an injury occurs. Indeed, damage develops an inflammatory 
environment that leads to adiponectin production via two different 
mechanisms: (1) secretion of IL-6 and IFN-γ, which induces the up-
regulation of adiponectin expression by skeletal muscle; (2) recruit-
ment of activated macrophages secreting fAd that, in turn, is cleaved 

into gAd. gAd plays a major role in skeletal muscle regeneration, 
acting on different cell populations involved in tissue regeneration. 
gAd acts on satellite cells by inducing their activation and migration 
towards the damaged muscle site. gAd also acts as a chemo-attract-
ant factor for mesoangioblasts, non-resident muscle progenitor cells, 
recruited to the injured region. Here, gAd promotes myogenesis of 
both satellite cells and mesoangioblasts, thus concurring to rebuild the 
damaged fibers
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The use of mice genetically modified for adiponectin has 
allowed to demonstrate the involvement of the hormone in 
the regeneration of different tissues. For example, Ezaki 
et  al. [77] demonstrate that adiponectin KO mice show a 
delayed liver regeneration after partial hepatectomy com-
pared to wild-type mice. During liver regeneration in adi-
ponectin KO mice, hepatic cells exhibit delayed DNA 
replication and increased lipid accumulation, suggesting a 
possible involvement of altered fat metabolism during liver 
regeneration [77]. In agreement, Shu et al. [78] show that 
adiponectin KO mice display decreased liver mass growth, 
hindered hepatocyte proliferation, and increased hepatic 
lipid accumulation. The deletion or the overexpression of 
fAd in mouse model reveals a specific role of adiponectin 
in promoting functional renal recovery after podocyte abla-
tion [79]. The specific activation of apoptosis in mouse 
podocytes provokes kidney damage that resembles human 
kidney disease. The renal damage is completely recovered 
in healthy mice whereas mice lacking or overexpressing 
fAd show opposite results. In particular, mice lacking adi-
ponectin develop irreversible albuminuria and renal fail-
ure, while those overexpressing fAd show a more rapid 
recovery and a decreased formation of fibrosis compared 
to control mice [79]. Furthermore, adiponectin KO mice 
show a significantly delayed wound closure compared with 

wild-type mice [80]. In particular, fAd promotes the prolif-
eration and the migration of healthy human keratinocytes 
through AdipoR1/AdipoR2 and the MAPK signaling path-
way. Systemic and topical administration of the hormone in 
adiponectin-deficient and diabetic db/db mice ameliorates 
wound repair, thus indicating fAd as a potent mediator of 
cutaneous wound healing [80].

Experiments performed using mesenchymal progenitor 
cells established the involvement of fAd in the differentia-
tion towards osteoblasts [81]. fAd stimulates osteoblast dif-
ferentiation through cyclooxygenase-2-dependent mecha-
nism and mediates osteogenesis through AdipoR1 leading 
to p38 MAPK activation. Activated p38 MAPK promotes 
c-Jun phosphorylation, an essential step for osteoblast dif-
ferentiation via cyclooxygenase-2. Furthermore, fAd acti-
vates the osteogenic transcription factor Runx2, leading 
to osteogenic markers and cyclooxygenase-2 expression 
thus enhancing osteogenesis [81]. fAd is also involved in 
the recruitment of progenitor endothelial cells (EPC) [82]. 
EPC recruitment is significantly reduced in type 2 diabe-
tes mellitus (T2 DM), which is characterized by severe 
vascular disease mainly caused by the imbalance between 
endothelial injury and hampered endothelial repair [83]. 
Several studies report that T2 DM could affect the func-
tion of circulating EPC, by impairing migration [84, 85], 

Fig. 2   Adiponectin participates in tissue regeneration. The figure 
shows the cell lines and/or the animal models used to demonstrate 
the involvement of adiponectin in tissue regeneration. The obtained 
results for each tissue are reported (detailed text in paragraph “Role 
of adiponectin in the regeneration of non-muscle tissues”). Both fAd 
and gAd play a role in tissue regeneration. gAd acts on satellite cells 
in skeletal muscle by inducing cell motility and myogenesis [15]; on 
mesoangioblasts by activating proliferation, cell motility, myogenesis, 
and inhibiting both apoptosis and anoikis [60]; on hemopoietic stem 
cells [71] and hippocampal neural stem cells by inducing cell prolif-
eration [72]. In skeletal muscle, gAd promotes the differentiation of 

myoblasts into myotubes [40]. In the kidney, fAd acts by inhibiting 
apoptosis in podocytes and by supporting renal recovery [76]. Deple-
tion of fAd in murine liver leads to a decrease in mass growth and 
hepatocyte proliferation [74] and an increase in lipid accumulation 
[75]. In the bone, fAd promotes the differentiation of mesenchymal 
progenitors into osteoblasts [77]. In the endothelium, fAd promotes 
the enhancement of proliferation and the migration of keratinocytes 
[88], ameliorates wound repair in adiponectin-deficient and diabetic 
db/db mice [88] and increases the recruitment of endothelial cell pre-
cursors [78]



1922 T. Fiaschi et al.

1 3

differentiation towards a mature endothelium, adhesive 
properties [86], proliferative rate [87, 88], and capacity to 
be incorporated into vascular structures [89]. Recent find-
ings suggest that T2 DM and subsequent oxidative damage 
impede the interaction between the vascular wall and nor-
mal EPC through a mechanism that could be reversed by 
heme-oxygenase-1, fAd, and phospho-AMPK [82].

Finally, the relative failure of pro-angiogenic cell therapy 
through transplantation with bone marrow mononuclear 
(BM-MN) cells has been correlated with adiponectine-
mia [90]. fAd seems to play a critical role in stimulating 
BM-MN cell survival, proliferation, and pro-angiogenic 
function. Hence, if the recipient of cell therapy is adi-
ponectin deficient, the transplanted BM-MN cells entirely 
lose their pro-angiogenic efficacy. Whereas, if the recipient 
has normal adiponectin levels, transplanted BM-MN cells 
remain fully functional even when the adiponectin receptor 
is silenced. These findings suggest that hypo-adiponectine-
mia per se does not significantly impair BM-MN cell func-
tionality. Conversely, adiponectinemia in the recipient 
animal influences the therapeutic activity of transplanted 
BM-MN cells [90]. Figure  2 shows the tissues in which 
adiponectin has a reported role during regeneration.

Conclusions

Overall, these data shed a new light on adiponectin. The 
physiological functions of adiponectin appear more pleio-
tropic and varied and, above all, not restricted to its met-
abolic role. Interestingly, both fAd and gAd appear to be 
involved in tissue regeneration, although in different tis-
sues. These observations give rise to some questions about, 
for example, the physiological relevance of the oligomeric 
forms of adiponectin in tissue regeneration. In addition, it 
would be interesting to know if the anti-diabetic effect of 
adiponectin may also be involved in tissue preservation. 
Some data suggest that adiponectin regulates pancreatic 
cell growth [91]. In regards to this, we could wonder if 
adiponectin is involved in the preservation of integrity and 
functionality of the pancreas. Indeed, these data highlight 
an important role of adiponectin on tissue regeneration, 
thus providing a possible tool for new healing therapies.
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