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Abstract

We present here a general method for modelling the dynamics of battles among social animals. The proposed method
exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied
this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius
neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as
well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed
to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty
rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which
considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of
the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the
corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic
trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main
result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary
number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models
(e.g., Lanchester’s ones), our chemical model considers all phases of the battle and not only casualties. This allows a more
detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated
models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones.
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Introduction

Many social animals fight in groups in the context of intra- or

inter-specific competition [1,2]. Fighting in a group differs

considerably from fighting individually, since the outcome of a

combat is not simply dictated by the ability of each individual

(usually known as individual fighting ability or resource holding
potential). We can distinguish between collective effects (due to the

number of participants) and strategic ones (changes of behavior for

obtaining a specific goal).

Both the size of fighting groups and the ability to coordinate

within-group agonistic behaviors may play a role (see e.g. Refs.

[3–5]). Broadly speaking, two main type of battles may be

recognized. At one extreme, a battle is formed by a series of

individual duels and members of the larger group remain

disengaged at the side of the battle until an opponent become

available. At the other extreme, members of the larger group may

cooperate in attacking isolated members of the smaller one. In the

latter case, the group size may have a disproportionate importance

on the final outcome of the battles whereas in the former the

ability of each individual to fight may be the key factor [2]. A

strategic approach would imply for instance the choice of the more

advantageous situations giving the available resources.

An interesting mathematical framework for the analysis of the

attrition rates during group battles is represented by the so-called

Lanchester laws. Lanchester [6,7] formulated two models, known

as the "linear" and the "square" laws, to describe aerial combats

during the first world war. Since their early formulation, these

models (and their further developments) have been extensively

used to model battle outcomes in the sphere of human conflict (see

e.g. Refs. [8–11]). Lanchester theory has been applied to animal

contests too, with varying degrees of success (see e.g. Refs. [4,5,12–

16]). The great appeal of these models lies in their simplicity, since

they allow to estimate the attrition rates of two opposing armies

solely as a function of their number and fighting ability of

individuals within each group. One critical point when willing to

apply these laws to animal warfare is that they rely on a number of

restrictive assumption, which may not apply in animal combats

(reviewed in Ref [2]), such as use of long-range weapons which are

common in human warfare but rare in animal combats, where a

close contact between the opponents is required. As a consequence

of their limited biological realism, predictions obtained from these

models have to be considered carefully, although they may provide

interesting mean-field approximations to the dynamics of aggres-

sive encounters. The possibility to have a sound and coherent

conceptual framework to investigate animal fights may have
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important consequences. On one hand, given a detailed model of

an animal war, one can investigate the discrepancies between the

model and the observed behaviour, hoping to be able to

distinguish between the collective effects of the interacting

elements (included in the model) from other effects due, for

instance, to cognitive strategies not included into the model. On

the other hand, predicting the outcome of combat may prove to be

a fundamental tool in applied control science when willing to

predict the spread of invasive species or the expansion range of

some species following climate changes, both of which are well

recognized among the most serious threats to world biodiversity

[17].

A promising approach to the dynamical modelling of ecological

systems is represented by the "chemical’ approach’, where all the

interactions among members of the system are described following

the formalism used to represent chemical reactions [18],

disregarding complex cognitive strategies. Despite their wide-

spread use to model chemical reactions and their recent

introduction into ecology (see e.g. [19]), no attempt have been

made, to our knowledge, to applied these approach in behavioural

studies. In the specific case of aggressive encounters, all the

possible combinations of combatants (isolated individuals of the

two bands, groups of gripping fighters which form during the

course of the battle) may be equated to the molecules ("chemical

species") involved in a chemical reaction. For instance, one

individual belonging to species A (chemical species A) can stick to

an enemy of species B (chemical species B) to form a group,

considered as an instance of a chemical species called AB,

according to the formula:

AzBK{{{{{{{{I
k1

k2

AB,

where k1 and k2 are the rate constants, which express the

probability that this reversible reaction may occur per unit time.

One of the great advantages of this approach is that all possible

interactions can be outlined using a simple but biologically

meaningful formalism, which provides a "microscopic", individual-

level description of the system, to be contrasted to the

"macroscopic", population-level description provided for instance

by the classical Lanchester models. Once all the relevant reactions

are identified, these can be converted into a system of differential

equations to get a mean field description of the system, or used to

perform stochastic simulations (e.g., using the Gillespie algorithm

[20]), to explore and quantify the effect of variability on the

behaviour of the system under investigation.

Our approach was developed taking as reference the interac-

tions between two ant species Lasius neglectus (an invasive species)

and Lasius paralienus (an autochthonous species), for which multi-

party combats were staged. Once all the possible reactions were

identified, a system of differential non-linear equations that allows

a mean-field description of the system was deduced and fitted to

observed data. Stochastic simulations were also obtained solving

the model using the Gillespie algorithm and these were compared

to the mean-field description in order to estimate the errors of the

experimental rate coefficients.

The main goal of this approach is that of obtaining reliable rate

coefficients that can be further interpreted in terms of a smaller

number of parameters like aggressiveness, yieldingness, strength,

etc. and that could give insights into the strategies used by

opponents.

Materials and Methods

Experimental setup: ant sampling and types of
experiments

Ants of the two studied species (Lasius paralienus and Lasius
neglectus) were collected during July/August 2013 in Prato

(Northern Tuscany, Italy, 43 052’46’’N, 11 005’50’’E). According

to Italian laws no specific permissions were required for collecting

ants and performing the experiments. The study did not involve

endangered or protected species and sampling was not carried out

in a protected area. L. paralienus [21] is an endemic species,

widespread in central Europe and part of the Mediterranean,

forming medium to small colonies and generally showing little

competitive ability. Lasius neglectus is an invasive species, which

recently spread its range throughout Europe, causing serious

concerns for its impact on native species [22]. This species is highly

dominant, aggressive and form large supercolonies which extend

over wide areas. Both species are monomorphic with reduced

intraspecific differences in the size of ants. Congeneric species were

chosen to reduce confounding due to the adoption of different

combat modes. Ants were captured during the morning and stored

in 50 ml test tubes, with water available, to acclimate to laboratory

conditions for one hour (temperature T^270C) before being used

in an experiment. Two different types of experiment were carried

out. The aim of the first type, hereafter referred to as interaction
experiments, was to obtain information on combat dynamics. In

particular we monitored how ants interacted and formed fighting

groups, i.e. group composed by two or more specimens, which

remain in close contact for at least 20 seconds, biting or spraying

venom. To avoid confounding effects due to fatigue or changes in

individual motivation to fight, the duration of these experiments

was maintained short (1 hour). After acclimation, 10 specimens of

the two species were simultaneously dropped within a neutral

arena, consisting in a 10 cm Petri dish with Fluon coated walls and

their behaviour continuously recorded for the following hour using

a digital camera.

We choose this number as a compromise between the

observability of the individual insects and a numerosity sufficiently

high not to affect the formation of fighting groups. Preliminary

observations showed that the largest groups are formed by four

insects, so that with 10 opponents of each species there is room for

several groups also in the presence of casualties. This choice is

confirmed a posteriori by the fact that the non-linear effects are

much more pronounced for numerosity of each species less than

10 (see Fig. 1).

A total of 20 replicate experiments were performed. The videos

were then analysed, detecting and recording the appearance and

variation of all the fighting groups of interacting ants. The

sampling is done per event, i.e., we recorded the time when an

event (for instance the formation of a group) occurred. An example

of the resulting data is shown in Table 1 while Fig. 2 shows three

examples of experimental time series. All data and videos are

available from the corresponding authors upon request.

The two species exhibit a slightly different behaviour: in most

cases L. neglectus is the first aggressor and cooperation among

nestmates against opponent was observed but also suffered the

greater mortality. L. paralienus, on the contrary, is slightly greater

in size, stronger in individual duels but less aggressive than L.
neglectus. Due to the behaviour of the two species and denoting L.
paralienus as A and L. neglectus as B, the following groups may

form: AB, ABB and ABBB. No observation of more than one L.
paralienus (A) attaching a single L. neglectus (B) was done and

hence other groups (es. AAB) were not considered in subsequent
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analysis. The combination A, B, AB, ABB and ABBB are

referred to as "chemical species" or "molecules", following the

terminology used in chemical modeling [18].

The second type of experiments, hereafter referred to as

mortality experiments aimed to estimate the attrition rates of the

two species for a different initial size of the two groups. Seven

different sets of starting numbers were used, as shown in Table 2.

The two groups of ants were simultaneously dropped within a

10 cm Petri dish with Fluon coated walls and the number of dead

ants was counted each at intervals of one hour there were

individuals able to fight (alive and not injured) or up to a

maximum of 5 hours.

Chemical model
The model consists in a collection of chemical equations, which

encode for the interactions among individual entities. The first

reaction happens when an individual of L. neglectus (chemical

species B) establishes a strong tie in fight with an individual of L.
paralienus (chemical species A) to form a new group or chemical

species AB,

AzB K{{{{{{{{I
k1

k2

AB, ð1Þ

where k1 and k2 are the reaction constants of the direct and

reverse reactions, respectively.

The outcome of a duel can lead to the death of A,

AB {{?
k3

B, ð2Þ

or to the death of B,

AB {{?
k4

A: ð3Þ

Figure 1. Supremacy phase diagram. Evolution of the trajectories
of the deterministic model starting from different initial conditions,
projected on the plane determined by the total number of A individuals
(a) and the total number of B individuals (b). Initial conditions indicated
by diamonds lead to the supremacy of B’s (a~0), while the x-marks
lead to the supremacy of the species A (b~0). The red dashed line is
the separatix between the two phases, where both species die; the
green square marks the region where fitting has been performed and
where non-linear effects are most effective. The magenta and the blue
lines indicate experimental trajectories, each one given by an average
over 5 experiments.
doi:10.1371/journal.pone.0111310.g001

Figure 2. Experimental data. Abundance of A (subfigure (a)) and B (subfigure (b)) species from three different experiments.
doi:10.1371/journal.pone.0111310.g002
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Once a group AB is formed, a second B can participate in the

fight. We describe the appearance of a group ABB by means of

the reversible reaction

ABzB K{{{{{{{{I
k5

k6

ABB, ð4Þ

since in the experiments we also observed cases in which a B
detaches from the group.

In a fighting group ABB, an B can die, giving the irreversible

reaction

ABB {{?
k7

AB: ð5Þ

Then we add the possibility, as observed in the experiments,

that also an A ant dies as consequence of a fighting with two B
ants. In this case the group ABB dissolves,

ABB {{?
k8

2B: ð6Þ

Another recurring possibility is that a group ABB dissolves

without any death but also the reverse reaction may occur, i.e. that

two B attack an A:

ABB K{{{{{{{{I
k9

k10

Az2B ð7Þ

Attack by two B can be considered as simultaneous since it

occur in a very short interval with respect to the observation time.

Observations also show the sticking of three B’s with an A, as

described in the following reversible reaction, in which it there is

also the possibility that a B abandons the group,

ABBzB K{{{{{{{{I
k11

k12

ABBB: ð8Þ

An individual A can die as a consequence of the fighting with

three B’s and the group dissolves, i.e.,

ABBB {{?
k13

3B: ð9Þ

Finally another possibility is the detachment of two B’s from the

group. Considering also the opposite reaction, we have

ABBB K{{{{{{{{I
k14

k15

ABz2B, ð10Þ

where it is assumed that the two B’s attach to the group AB

separately, but in a very short interval compared to the sampling

time.

Mean-field approximation
As usual in chemical studies, we may exploit the hypothesis of

decorrelation and random movement of particles (ants), in order to

obtain the average behaviour of the model, that using the physics

terminology can be denoted the mean-field approximation.

Let us denote by x the number of A individuals, y is the amount

of B’s, z that of groups AB, u corresponds to groups ABB and

finally u represent the number of groups ABBB. The above

Table 1. An example of experimental data.

Event time tn A (x) B (y) AB (z) ABB (u) ABBB (u)

714 6 5 3 1 0

741 5 3 3 2 0

751 5 2 3 1 1

778 4 1 4 1 1

781 4 2 5 0 1

783 4 3 5 1 0

797 5 4 4 1 0

801 5 2 2 3 0

803 5 3 3 2 0

805 5 4 4 1 0

821 5 3 3 2 0

824 5 3 4 1 0

830 6 5 3 1 0

832 5 4 4 1 0

846 5 3 3 2 0

850 6 5 3 1 0

858 5 3 3 2 0

The first column shows the occurrence time (in seconds) of a given reaction (event). The other columns (2–6) report the total number of each chemical species (A, B,
AB, ABB and ABBB.
doi:10.1371/journal.pone.0111310.t001
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chemical reactions can be translated into a set of non-linear

ordinary differential equations, describing the change in the

numerosity of the different chemical species with respect to time:

_xx~ {k1xy{k10xy2z(k2zk4)zzk9u,

_yy~ {k1xy{2k10xy2z(k2zk3)z{k5yz{2k15y2z

z(k6z2k8z2k9)u{k11yuz(k12z3k13z2k14)u,

_zz~ k1xy{k5yz{(k2zk3zk4)zz(k6zk7)u{k15y2zzk14u,

_uu~ k10xy2zk5yz{k11yu{(k6zk7zk8zk9)uzk12u,

_uu~ k11yu{(k12zk13zk14)uzk15y2z,

0
BBBBBBBB@

where the dot denotes the derivative of each variable with respect

to time.

It is possible to derive the trajectories of this system using

standard ODE solvers (see File S1 for details).

The mean-field approximation does not exhibit fixed points,

i.e., the stationary solution ( _xxi~0) always depends on the initial

conditions and parameter values. The stationary condition is

either x=0 and y~z~u~u~0 or y=0 and x~z~u~u~0,

which can be denoted as absorbing states for the dynamics. In

practice, this means that one of the two groups of opponents

(biological species) goes extinct, while the other survives. Examples

of predictions obtained from this model are shown in Figs. S1–S5.

A fuller analysis of the behaviour of the deterministic model and

an illustration of non-existence of fixed points is reported in the

File S1.

Stochastic approximation
To incorporate the consequences of finite-size fluctuations, due

to the small size of the studied system (10 ants vs. 10 ants), we

implemented a stochastic version of the model using the Gillespie’s

direct method [20], that again neglects spatial correlations. Given

the limited spatial extension of the battlefield (Petri dish) and the

limited time resolution (20s) we may in fact still assume that

encounters between opponents occur randomly and use an event-

driven approach, such as that used in chemistry to model "well-

stirred" chemical reactions. Details of the implementation of the

Gillespie method are given in File S1.

The methodology we adopted to compare the deterministic and

the stochastic version of the model is the following. Firstly, we fit

the deterministic model to the average experimental time-series to

obtain an estimate of the ki reaction constants. Secondly, we run

100 times the stochastic model using the above parameter values,

and re-analysed the simulated time series as done with the

experimental one obtaining a distribution of parameter values,

that can be used to estimate the variance (and thus the presumed

error) of the experimental parameters. A schematic representation

of this procedure is shown in Fig. S6.

The parameter estimation was achieved using an heuristic

optimization procedure, called the Simplex Flexible Algorithm

(SFA) [23], based on the algorithm of Nelder and Mead [24]. Let

us denote with k~k1, . . . ,k15 the set of reaction parameters, with

o1(n),o2(n), . . . ,o5(n), the observed experimental quantities sam-

pled at times tn, n~1, . . . ,N (see Table 1) and with

xi(n; k)~xi(tn; k), i~1, . . . ,5 the corresponding variables ob-

tained by integrating the differential system Eq.(11). The error

function "(k) to be minimized is

T
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"(k)~
X5

i~1

1

N

XN

n~1

vi(n) xi(n; k){oi(n)ð Þ2, ð12Þ

where vi(n) is a weight. Three different types of weight were

tested: i) no weight, ii) the observed values oi(n) and iii) the

absolute value of the derivative of the observed values

Doi(nz1){oi(n)D. The lowest error "(k) was obtained using the

observed values as weight. The same approach was used for both

the interaction and the mortality experiments. In the first case,

observed and predicted values were represented by the abun-

dances of the different chemical species, while in the second by the

number of dead ants. In the latter case, only the 10 vs 10 ants

experiments were used to fit the model while all other data were

used to test the model predictions.

Results

Interaction experiments
The estimated values of the coefficients ki of the 15 reaction

constants of the deterministic model are reported in Table 3. In

the column labelled ExpT we list the value of parameters

computed fitting the model with a time-average of all experimental

data.

We then run 100 Gillespie simulations using the previous values

of the ki, and we re-derived the effective value of the parameters

by fitting the simulated data for each run with the deterministic

model, as described in the previous Section. In this way we got a

probability distribution of each parameter ki.

Some examples of the frequency distributions of parameter

values ki estimated from the stochastic model are shown in Fig. 3.

The best fit of their distribution is given by a Log-normal

distribution (we test also Exponential and Weibull), using the

likelihood method. We proceeded in this way: we divided the 100

Gillespie simulations in two sets of 50. We then evaluated the

parameters of the Log-normal distribution (average and variance)

for the first set and used them in the likelihood test for the

following 50 samples. The same was done dividing the 20

experimental samples in two sets of 10. The results are reported in

Table 4

The average values of the parameters obtained by means of the

100 Gillespie simulations are reported in Table 3, in the column

labelled Gill. For comparisons, in the same table, column

labelled Exp, we also report the same average for the 20

experiments. It can be noticed that the values obtained in these

different ways are different, although being of the same order of

magnitude.

The average value of the observed chemical species A and B,

together with predicted values obtained from the deterministic

model and the average of 100 stochastic simulations are reported

in Fig. 4 and 5. Three examples of stochastic time series are shown

in Fig. 6. Predictions from models well agree with experimental

data and these are contained within the confidence bounds of the

stochastic predictions. The corresponding time series for species

AB, ABB and ABBB, are shown in Figs. S7–S9.

In Table 4 we also show the likelihood achieved with our

procedure and the results of Wilcoxon statistical test applied to the

comparison of experimental and simulated reaction rates. For

each reaction i we get 50 values of the corresponding reaction rate

ki from the Gillespie simulations and compare it with 10

experimental values, in order to verify that they belong to the

same distribution. The Wilcoxon statistical test is performed

assigning the value 0 to the acceptance of the zero hypothesis (the

two sets belong to the same distribution with a significance level of

0.05) and the value 1 to rejection of the zero hypothesis (see

Table 4).

Mortality experiments
The interaction experiments did not lasted long enough to allow

an reliable estimation of the parameters related to casualties, Eqs.

(2), (3), (5), (6), (9).

We therefore performed longer experiments, denoted mor-

tality, reported in Table 2. The estimated values of the

parameters obtained when the deterministic model was fitted

to mortality data (mean of 5 experiments with 10 A vs. 10 B) are

reported in Table 5, column ExpM, while Fig. 7 shows the

fitting curves for both species. In this calibration, only the

mortality reaction coefficients were varied, while the others were

kept constant, since the 5-hours experiments were recorded at a

lower temporal resolution and it was not possible to keep track

of all interactions.

Supremacy phase diagram
We are now in the position of performing simulations of

arbitrarily long battles with any number of opponents. Although

the effective phase space of the autonomous system describing our

model, Eq. 11 is five-dimensional, we have found that the

projection of the trajectories on the plane (a, b) of the total number

of A and B individuals (a~xzzzuzu, b~yzzz2uz3u) never

intersect.

The results of these runs are shown in Fig. 1 as a phase plane

portrait. A phase transition between two absorbing states,

corresponding to zero-A (a~0,bw0) or zero-B (aw0,b~0) is

evident. In other words, there is a critical value for the initial

abundances of species (a0, b0) for which the final state is at the

boundary separating the two absorbing states (i.e., both species

become extinct). The set of these critical values form a separatrix

(red dashed line) which separates the initial states corresponding to

the extinction of one or the other species. It is important to note

that the phase separatrix is not a straight line, particularly when

the size of the starting groups is small. This implies that the system

is not simply represented by a superposition of small groups or,

alternatively, that the large fighting groups have a non-negligible

effect on the fate of the battle.

However, one can observe that the the separatrix becomes

essentially linear when the abundances of the species are larger

than about 10. Also the part of the diagram where the non-

linearity of the trajectories is larger corresponds to the abundance

of species less than 10. This linear behaviour over the 10-ants limit

implies that a real battle, in which one can find many hundreds of

individuals fighting, can be approximated by a superposition of

local sub-battles, each of them composed by a small number of

interacting individuals, of the order of ten individuals per species.

This observation can be considered as a a posteriori justification

for the small size of our experiments and constitutes an important

element for experimental observations.

We also report in Fig. 1 the experimental results obtained by

battles with different initial group sizes (see Table 2 for details).

Each of the seven reported trajectories is the average of five

different trials. The results shows a good agreement between the

experimental data and the model output. The experimental

trajectories essentially follow the flux lines of the deterministic

model. Two of the trajectories cross the separatrix. This fact may

be due to "shielding" of many B attacking a single A, an effect that

is not included in our model and that may have the effect of

favouring the A species, but that is important only for large B/A
ratios near the separatrix, since well above it the final state is
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always the extinction of A, and well below it the final state is the

extinction of B. Indeed, all curves that start near the separatrix

show an initial deviation favouring the A species.

Discussion and Conclusions

In this paper we proposed a model based on a "chemical"

description of aggressive interactions between opposing groups of

cooperating animals. Our approach considers isolated individuals

Table 3. Comparison among estimated reaction constants (ki), from all sets of data, averages from Gillespie simulations and
experimental averages over single experiment.

i Reaction ExpT Gill Exp

1 AzB?AB 1.0063e-003 1.3178e-003 1.5583e-003

2 AB?AzB 1.3130e-002 1.6753e-002 2.7332e-002

3 AB?B 3.5892e-007 4.1913e-007 7.0946e-007

4 AB?A 5.8290e-005 4.3790e-005 1.3909e-005

5 ABzB?ABB 8.8645e-004 1.1091e-006 3.3791e-005

6 ABB?ABzB 2.1387e-002 3.9210e-002 5.8170e-002

7 ABB?AB 6.1787e-005 5.9673e-005 8.0680e-005

8 ABB?2B 1.2312e-005 1.1618e-005 1.1173e-005

9 ABBB?Az2B 1.0528e-003 1.6991e-003 1.6387e-003

10 Az2B?ABB 2.1974e-005 1.1079e-006 3.9706e-006

11 ABBzB?ABBB 5.8482e-004 7.5142e-004 9.7736e-004

12 ABBB?ABBzB 1.0246e-001 5.7494e-002 1.7751e-001

13 ABBB?3B 7.1993e-005 8.3475e-005 1.2110e-004

14 ABBB?ABz2B 4.6617e-002 7.8662e-002 1.0304e-001

15 ABz2B?ABBB 6.6738e-005 4.4724e-006 1.0953e-005

In column ExpT the reaction constants extracted by overlapping all datasets (20 observations). In column Gill we report the estimated reaction constants from M~100

Gillespie simulations, fitting each single experiment and obtaining k
(j)
i , and then computing exp (

P
j log (k

(j)
i )=M), according to the lognormal distribution. In column

Exp we report the same calculation for the M~20 experiments.
doi:10.1371/journal.pone.0111310.t003

Figure 3. Distribution of the reaction coefficient. Coefficients k1 (A), k2 (B), k4 (C), k7 (D), k8 (E) and k13 (F), obtained with our stochastic
procedure; the best fit is achieved by means of Log-normal distribution comparing the likelihoods.
doi:10.1371/journal.pone.0111310.g003
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Figure 4. Fitting abundance of species A. Blue curve: average of 100 simulations of the stochastic model with Gillespie algorithm. Green curve:
average of the experimental data. Red dotted and dash-dotted curves indicate the variance. The black line is the solution of the deterministic
chemical model for the species A.
doi:10.1371/journal.pone.0111310.g004

Figure 5. Fitting abundance of species B. Blue curve: average of 100 simulations of the stochastic model with Gillespie algorithm. Green curve:
the average of the experimental data. Red dotted and dash-dotted curves indicated the variance. The black line is the solution of the deterministic
chemical model for the species B.
doi:10.1371/journal.pone.0111310.g005
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Figure 6. Stochastic time series. Temporal variation of the A (A) and B (B) chemical species, obtained from three simulations of the stochastic
model. Predictions of the deterministic model are also shown (black line).
doi:10.1371/journal.pone.0111310.g006

Figure 7. Mortality fitting. Calibration of the model with the 5-hour mortality experiments (black-line). The average of experimental data is
indicated by diamonds: (A) species A (L:neglectus), (B) species B (L:paralienus).
doi:10.1371/journal.pone.0111310.g007
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as atoms and fighting groups as molecules, and exploits the

standard investigation tools of chemical reactions.

The model parameters were estimated using experimental

observations of battles among a limited number (10) of individuals

belonging to two species of ants (L.paralienus and L.neglectus).
We developed both deterministic (mean-field) models and

stochastic (Gillespie) ones.

The chemical approach proved to be simple enough to be

adapted to a number of different cases, and was much more

flexible and biologically meaningful than, for instance, Lanche-

ster’s one. One of its main strengths relies, in fact, in the ease with

which realistic assumptions on the behaviour of the two groups

can be explicitly coded and translated into observable character-

istics. The latter point is of the utmost importance and cannot be

overemphasized.

The main output of our model is the phase diagram shown in

Fig. 1. First of all, although our model is five-dimensional, the

projection of the trajectories in the (a,b) plane given by the total

amount of A and B opponents shows no intersection, implying

that these quantities are quite insensitive on the clusters that form

and disaggregate during the battle. This point is important since it

is much easier to estimate the total number of ants of each species

than their aggregates. The fact that the trajectories and the

separatrix are non-linear implies that there is a cooperative

strategy in action. As illustrated below, it is given by the

coordinated attack of multiple B (L.neglectus) vs one A (L.para-
lienus). The comparison with experimental data is quite good.

The above scenario is confirmed by the analysis of the mortality

rates. First of all L. paralienus (species A), due to its size, has more

possibilities to defeat L. neglectus (species B) in a duel: the

parameter k4~1:8:10{4 of reaction AB?A is ten times

k3~1:8:10{5, that of reaction AB?B (the difference is even

larger in the shorter interaction experiment, see Table 5).

By comparing k3~1:8:10{5 (AB?B), k8~9:0:10{5

(ABB?2B) and k13~2:9:10{3 (ABBB?3B) the cooperative

strategy of L. neglectus becomes evident: by attacking en masse
they can reach a higher killing ability; and k13 (three B killing one

A) is larger than k4 (one A killing one B). Clearly, this strategy

depends on the possibility of having a larger number of opponents.

Therefore, considering the coefficients of reactions that bring to

death, we observe that the strategy of L. neglectus in 10 vs. 10 is

not sufficient to defeat L. paralienus. The same consideration was

also deduced with the stochastic model performing 1000

simulations with the Gillespie algorithm with the optimized

parameters, in which we observe zero successes of the species B,

i.e., all B individuals die, while species A survives with a certain

mortality. This is confirmed by the analysis in the phase plane of

the deterministic model by varying the initial conditions, Fig. 1,

that shows the importance of the initial ratio between the

opponents. It also shows that the separatrix is well above the

bisectrix (representing the advantage of A vs B for low numbers of

opponents).

We think that our approach is quite promising, although this

present paper only represent a starting point. We are currently

carrying out more detailed experiments, involving more ant

species, in order to obtain a more careful quantitative estimation of

the chemical parameters. Another direction is that of including the

effects of fatigue. Our final goal is that of interpreting the chemical

parameter in terms of a smaller number of factors (like

aggressiveness, strength, cooperation, resistance, etc.) characteris-

tic of each species.

Supporting Information

Figure S1 Chemical species A. The chemical species A is

shown as a function of time up to the steady state for three values

of the initial conditions.

(TIFF)

Figure S2 Chemical species B. The chemical species B is

shown as a function of time up to the steady state for three values

of the initial conditions.

(TIFF)

Table 5. Values of estimated reaction constants (ki) obtained using different sets of data.

i Reaction ExpT ExpM

1 AzB?AB 1.0063e-003 //

2 AB?AzB 1.3130e-002 //

3 AB?B 3.5892e-007 1.8305e-005

4 AB?A 5.8290e-005 1.8074e-004

5 ABzB?ABB 8.8645e-004 //

6 ABB?ABzB 2.1387e-002 //

7 ABB?AB 6.1787e-005 9.5488e-005

8 ABB?2B 1.2312e-005 9.0222e-005

9 ABBB?Az2B 1.0528e-003 //

10 Az2B?ABB 2.1974e-005 //

11 ABBzB?ABBB 5.8482e-004 //

12 ABBB?ABBzB 1.0246e-001 //

13 ABBB?3B 7.1993e-005 2.9154e-003

14 ABBB?ABz2B 4.6617e-002 //

15 ABz2B?ABBB 6.6738e-005 //

In column ExpT those from the interaction dataset (20 observations 10 vs. 10 for 1 hours), in column ExpM those from the mortality experimental dataset (5
observations 10 vs. 10 for 5 hours), limited to the reactions implying casualties.
doi:10.1371/journal.pone.0111310.t005

Chemical Modeling of Animal Warfare

PLOS ONE | www.plosone.org 11 November 2014 | Volume 9 | Issue 11 | e111310



Figure S3 Chemical species AB. The abundance of the

chemical species AB is shown as a function of time up to the steady

state for three values of the initial conditions.

(TIFF)

Figure S4 Chemical species ABB. The abundance of the

chemical species ABB is shown as a function of time up to the

steady state for three values of the initial conditions.

(TIFF)

Figure S5 Chemical species ABBB. The chemical species

ABBB is shown as a function of time up to the steady state for

three values of the initial conditions.

(TIFF)

Figure S6 Scheme. Schematic representation of the proposed

methodology followed to compare the deterministic model,

expressed by means of a system of nonlinear differential equations,

and the stochastic one.

(TIF)

Figure S7 Experimental data and deterministic model
for species AB. The mean values of the chemical species AB

obtained from 20 experiments vs. the solution of the deterministic

model by means of Simplex Flexible Algorithm(SFA).

(TIFF)

Figure S8 Experimental data and deterministic model
for species ABB. The mean values of the chemical species ABB
obtained from 20 experiments vs. the solution of the deterministic

model by means of Simplex Flexible Algorithm(SFA).

(TIFF)

Figure S9 Experimental data and deterministic model
for species ABBB. The mean values of the chemical species

ABBB obtained from 20 experiments vs. the solution of the

deterministic model by means of Simplex Flexible Algor-

ithm(SFA).

(TIFF)

File S1 Supplementary material. Integration of the differ-

ential equations. Gillespie implementation. Nonexistence of

attractors.

(PDF)
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