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Metabolomic does not predict response to cardiac
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Aims Metabolomic, a systematic study of metabolites, may

be a useful tool in understanding the pathological

processes that underlie the occurrence and progression of

a disease. We hypothesized that metabolomic would be

helpful in assessing a specific pattern in heart failure

patients, also according to the underlining causes and in

defining, prior to device implantation, the responder and

nonresponder patient to cardiac resynchronization therapy

(CRT).

Methods In this prospective study, blood and urine samples

were collected from 32 heart failure patients who underwent

CRT. Clinical, electrocardiography and echocardiographic

evaluation was performed in each patient before CRT and

after 6 months of follow-up. Thirty-nine age and sex-

matched healthy individuals were chosen as control group.

For each sample, 1H-NMR spectra, Nuclear Overhauser

Enhancement Spectroscopy, Carr-Purcell-Meiboom-Gill

and diffusion edited spectra were measured.

Results A different metabolomic fingerprint was

demonstrated in heart failure patients compared to healthy

controls with high accuracy level. Metabolomics fingerprint

was similar between patients with ischemic and

nonischemic dilated cardiomyopathy. At 6-month follow-up,

metabolomic fingerprint was different from baseline. At
opyright © Italian Federation of Cardiology. Una
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follow-up, heart failure patients’ metabolomic fingerprint

remained significantly different from that of healthy

controls, and accuracy of cause discrimination remained

low. Responders and nonresponders had a similar

metabolic fingerprint at baseline and after 6 months

of CRT.

Conclusion It is possible to identify a metabolomic

fingerprint characterizing heart failure patients

candidate to CRT, it is independent of the different causes

of the disease and it is not predictive of the response to

CRT.
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Introduction
Metabolomic is the systematic study of small-molecule

metabolites that are by-products of cellular metabolism.

The metabolomic fingerprint, derived from specific

protein enzymatic processes, directly correlates with

the clinical phenotype of the diseases.1–3 Cardiac resyn-

chronization therapy (CRT) has shown a clear clinical

benefit in heart failure patients by improving symptoms,

quality of life, exercise capacity and cardiac function,

significantly reducing morbidity and mortality,4–9 but up

to 40% of heart failure patients are nonresponder to

CRT.10,11 As an emerging discipline for molecular profil-

ing, metabolomic may increase understanding of human

diseases and clinical risk because changes in metabolite

levels provide a real-time estimate of disease state and

reflect the integrated effects of genomic, transcriptomic

and proteomic variation.3 The purpose of this prospective
study was to assess if there is a specific metabolic profile

in heart failure patients compared to healthy individuals;

to investigate whether there is a difference in metabolic

profile between patients with ischemic and nonischemic

dilated cardiomyopathy; and, finally, to assess if there is a

different metabolic pattern at baseline and at follow-up in

responders and nonresponders to CRT.

Methods
Study population
Patients with ischemic and nonischemic dilated cardio-

myopathy who underwent implantation of CRT at our

institute were enrolled in the study. Dilated cardiomyo-

pathy was diagnosed based on clinical history, echocar-

diographic examination, cardiac catheterization, and

coronary angiography. Inclusion criteria were 6 months

of optimal medical therapy, New York Heart Association
uthorized reproduction of this article is prohibited.
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(NYHA) II–IV functional class with left-ventricular ejec-

tion fraction (LVEF) 35% or less. Exclusion criteria

were end-stage renal disease, clinical and hemodynamic

instability, and tumor with a life expectancy of less than

1 year. Thirty-nine healthy blood donors were used as

control. The study conforms to the principles outlined in

the Declaration of Helsinki. The institutional review

board approved the protocol and all patients gave written

informed consent.

Study protocol
All patients underwent clinical and physical examination:

NYHA functional class, ECG, echocardiogram with tis-

sue Doppler imaging (TDI), Short Form-36 question-

naire of quality of life were assessed.12 Peripheral blood

and urine sample were collected at baseline, before pace-

maker implantation, and after 6 months of CRT. Thirty-

one patients had biventricular defibrillator (CRT-D

device); only one patient had a biventricular pacemaker

(CRT-P device). All patients were implanted through

cephalic or subclavian left vein into right atrium, apex of

right ventricle and into the coronary sinus to pace left

ventricle lateral wall. Biventricular pacing parameters

were optimized 1 week after implantation on the basis

of the myocardial performance index (MPI), calculated as

the sum of isovolumic contraction and relaxation times

divided by ejection time. Optimum atrioventricular delay

and interventricular delay were identified by the mini-

mum MPI in each patient.13 Echocardiographic measure-

ments were repeated at 6-month follow-up. CRT

responders at the 6-month follow-up were defined as

those with a reduction of left-ventricular end-systolic

volume (LVESV) more than 15%; patients were defined

as nonresponders if LVESV at follow-up remained

unchanged or was reduced by less than 15% compared

with baseline.13–16

Blood and urine samples management
Venous blood samples from heart failure patients and

controls were collected into plastic tubes (BD Vacutainer,

Franklin Lakes, New Jersey, USA). Serum samples were

then centrifuged at 48C at 5000 r.p.m. for 15 min. Aliquots

of 400 ml were finally transferred in cryovial (Bruker

BioSpin, Milan, Italy), frozen and stored at �808C until

used. Freshly voided urine samples from heart failure

patients were centrifuged at 48C at 5000 r.p.m. for 15 min.

Aliquots of 800 ml were transferred in cryovial, immedi-

ately frozen and stored at �808C until used.

NMR samples preparation
Frozen serum and urine samples were thawed at room

temperature and shaken. Three-hundred microliter of

sodium phosphate buffer was added to equal quantity of

serum sample, and 450 ml of this mixture was pipetted

into a 4.25-mm NMR tube (Bruker BioSpin) for analysis.

Seventy microliter of sodium phosphate buffer was added

to 630 ml of urine. Samples were centrifuged at 1.4� 104g
pyright © Italian Federation of Cardiology. Unau
for 5 min and 600 ml supernatant was transferred into

4.25-mm NMR tubes (Bruker BioSpin).

NMR analysis and spectral processing
One-dimensional 1H-NMR spectra were measured on a

Bruker 600 MHz spectrometer using standardized proto-

cols. Nuclear Overhauser Enhancement Spectroscopy

(1D-NOESY)17 spectra were acquired for serum and urine

samples; Carr-Purcell-Meiboom-Gill (1D-CPMG)18 and

diffusion edited (DIFF)19 spectra were acquired for serum

samples only. 1D-CPMG spectra contain signals arising

mostly from low-molecular-mass metabolites, DIFF

spectra contain signals arising mostly from macro-

molecules, whereas 1D-NOESY spectra contain both

kinds of signals. Each spectrum in the region 10.00–

0.02 ppm (excluding the water region) was segmented into

416 0.02-ppm chemical shift bins (buckets) prior to any

statistical analysis. Bucketing is a means to reduce the

number of total variables and to compensate for small shifts

in the signals. Serum spectra were not normalized,20

whereas urine spectra were normalized to the total

area intensity.

Statistical analysis
Continuous variables were expressed as mean � SD.

Continue variables were analyzed with the Student’s

t-test and one-way analysis of variance (ANOVA), when

appropriate.

The statistical procedure employed for classification is

the orthogonal partial least squares discriminant analysis

(OPLS-DA).21 OPLS is a newly developed variant of

partial least squares (PLS) analysis. Briefly, it is a pro-

jection technique aimed at building a discrimination

space (obtained by linear combinations of the original

predictors) where the groups of interest are maximally

divided. Predictive and uncorrelated information is kept

separated in the model. After the training model is build,

new samples can be predicted by projecting it in the

discriminant space. This was done in Fig. 2 to assess

whether follow-up samples are more similar to baseline

samples or to controls. The accuracy for classification

was assessed by means of a double cross-validation

scheme.22,23 The original data set was split into a training

set (80%) and a test set (20%) randomly before any step of

statistical analysis. The number of OPLS components

(3–40 components) was chosen on the basis of a five-fold

cross-validation performed on the training set only, and

the best model was used to predict the samples in the test

set. The whole procedure was repeated 200 times with a

Monte Carlo cross-validation scheme, and the results

averaged. To assess the significant differences of metab-

olites (i.e. NMR peaks) from different groups, a univari-

ate Wilcoxon test was used. A total of 41 NMR peaks for

serum and 29 for urine spectra were tested. A P-value of

0.05 or less (not corrected for multiple test) was con-

sidered statistically significant. Two kinds of comparisons
thorized reproduction of this article is prohibited.
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Fig. 1
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were performed: the comparison between patients and

healthy controls (32 vs. 39 samples) and the comparison

between baseline patients and 6-month follow-up

patients (32 vs. 32 samples). Following the Cohen for-

mulation of power calculation, and using a t-test as

model, these numbers were sufficient, in the first case,

to detect moderate effects (d¼ 0.7) at a significance level

of 0.05 with a statistical power higher than 0.8. For the

second analysis, because the patients were the same

before and after follow-up, and so the test was paired,

the statistical power was higher than 0.95, at the same

significance level and assuming the same moderate

effect. Alternatively, this means that we can detect even

smaller effects (d¼ 0.5) still with a sufficient power

(0.82).

We avoided the use of Bonferroni correction because of

the rise of the risk of false-negatives; anyway metabolites

still statistically significant (P� 0.001 for serum and

P� 0.002 for urines) after this correction were also

reported.

All resonances of interest were then manually checked,

and signals were assigned on template one-dimensional

NMR profiles by using matching routines of AMIX 3.8.4

(Bruker BioSpin) in combination with the BBIOREF-

CODE (Version 2-0-0; Bruker BioSpin) reference data-

base24 and published literature when available. All

calculations for metabolomic purpose analysis were made

using home-made scripts written in our lab using the

R language.25
opyright © Italian Federation of Cardiology. Unauthorized reproduction of this article is prohibited.

Table 1 Demographic and clinical characteristics of the studied
population values are reported as number, percentage or median W
SD

Controls HF patients (baseline)

Sex (W/M) 11/28 9/23
Age (years) 68.7�1.9 70.7�12.5
Weight (kg) 78.1�11.7 78.8�17.7
HF cause, ischemic (n) – 12
NYHA class (II/III/IV) (n) – 11/16/5
LVEF (%) > 55 29�6
QRS duration (ms) < 120 142�36
SBP (mmHg) 133�16 124�18
Laboratory:
Hemoglobin (g/dl) 14.8�0.9 12.6�1.8
Leucocytes (�103/ml) 6.0�1.2 7.4�2.7
Cholesterol, total (mg/dl) 210�29 154�39
Cholesterol, LDL (mg/dl) 138�19 90.7�31.2
Triglycerides (mg/dl) 108�40 118�53
Glucose (g/dl) 0.87�0.2 0.95�0.18
Creatinine (mg/dl) 0.85�0.17 1.14�0.58
sMDRD (ml/min) 96�19 74�27
Medications
ACE-I (n) – 17
ARB (n) – 11
b-blockers (n) – 27
Aldosterone antagonists (n) – 11
Diuretics (n) – 28
Allopurinol (n) – 5
Statins (n) – 19

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor
blocker; HF, heart failure; LDL, low-density lipoprotein; LVEF, left-ventricular
ejection fraction; M, men; NYHA, New York Heart Association; sMDRD, simplified
modification of diet in renal disease; W, women.
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Descriptive clustering of heart failure patients at baseline (black
dots) and controls (red dots) obtained by use of OPLS method on
serum NOESY (a), CPMG (b) and DIFF spectra. CPMG, Carr-
Purcell-Meiboom-Gill; DIFF, diffusion edited; NOESY, Nuclear
Overhauser Enhancement Spectroscopy; OPLS, orthogonal partial
least squares.
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Results
Study population
Between October 2010 and October 2012, 32 patients

(23 men, nine women) who underwent implantation of

CRT were enrolled. During follow-up, two patients died

because of heart failure complications. Baseline demo-

graphic and clinical characteristics are listed in Table 1.

No significant difference was found between controls and

patients in terms of age and sex.

Molecular signatures at baseline
A different metabolomic fingerprint was demonstrated in

serum of heart failure patients compared to healthy

controls with high accuracy level (NOESY: 93.3%;

CPMG: 99.1%; DIFF: 95.7%), as shown in Fig. 1. Heart

failure patients were characterized by significantly lower

levels of lactate, methionine and higher levels of formate,

phenylalanine, glucose, serine, acetate, dimethylsulfone,

hypoxanthine, creatinine þ creatine, and trimethyla-

mine-N-oxide compared to healthy controls (Table 2).

No significant difference was demonstrated between

ischemic and nonischemic patients before CRT. The

accuracy of cause discrimination at baseline was only

63.4% for NOESY, 59.2% for CPMG, and 59.4% for

DIFF serum spectra. Cause discrimination remained

low when considering urine spectra (58.2% for NOESY).

Molecular signatures at 6 months follow-up
After 6 months of CRT, OPLS analysis showed that none

of the patients had a metabolomic fingerprint in the area

of healthy controls (Fig. 2). Likewise, the accuracy of

discrimination between heart failure causes remained low

both for serum (64.6% for NOESY, 61.1% for CPMG and

62.5% for DIFF) and urine spectra (65.3%for NOESY).

Pair-wise multivariate statistics indicated that metabo-

lomic fingerprint at this time could be discriminated from

those at baseline with suboptimal accuracy both for serum

(71.8% for NOESY, 81.4% for CPMG and 72.6% for

DIFF) and urine spectra (70.1% for NOESY). Serum

spectra revealed a significant increase of tyrosine, lactate,

proline, alanine and lipid (–CH¼CH–) (Table 3). In

urine spectra, the levels of hippurate and trigonelline
pyright © Italian Federation of Cardiology. Unau

Table 2 Metabolites found to be statistically different in serum of HF

Serum metabolites

CHF

Mean 95% CI

Formate 10.11 3.81–15.25
Phenylalanine 156.91 97.49–239.16
Glucose 2419.9 1768.1–3634.5
Lactate 1609.3 662.24–3476.95
Serine 622.16 460.05–813.67
Acetate 309.69 214.89–492.73
Methionine 12.97 0.01–75.55
Dimethylsulfone 71.37 31.88–151.89
Hypoxanthine 15.91 4.33–38.08
Trimethylamine-N-oxide 83.97 5.62–288.74
Creatinine þ creatine 418.88 249.98–669.61

CI, confidence interval; HF, heart failure. a Values are given in arbitrary units togethe
(P�0.001).
were reduced, whereas threonine levels were increased

when compared to baseline (Table 3). Echocardiographic

criteria allowed identifying 19 responder and 11 non-

responder patients. No significant difference was observed

in responders’ metabolomic fingerprint with respect to

nonresponders at baseline (accuracy levels: 45.2% for

NOESY spectra, 46.7% for CPMG spectra, 50.8% for

DIFF spectra; 43.7% for urine NOESY spectra) and after

6 months follow-up (accuracy levels: 35.3% for NOESY

spectra, 32.1% for CPMG spectra, 35.7% for DIFF spectra;

44.5% for urine NOESY spectra).

Discussion
In this study, we demonstrated the existence of a specific

metabolomic fingerprint that characterizes patients with

dilated cardiomyopathy candidate to CRT compared with

healthy individuals. Metabolomic fingerprint of heart

failure patients resulted to be characterized by lower levels

of lactate, methionine and by higher levels of formate,

phenylalanine, glucose, serine, acetate, dimethylsulfone,

hypoxantine, creatine þ creatinine, and trimethylamine-

N-oxide (Table 2). Other authors have shown a specific

metabolomic fingerprint in heart failure patients. In the

study by Lin et al.,26 who used the same techniques as our

study, the metabolomic fingerprint was characterized by

higher levels of acetoacetate and urea and by lower levels

of threonine, glycine, ethanol, histidine, alanine and tyro-

sine, results which were significantly different from our

heart failure patient population. In the study by Dunn

et al.,27 who employed gas chromatography and mass

spectrometry, pseudopurine and 2-oxoglutarate were

identified as two good indicators of heart failure. These

metabolites were different from those reported by Lin et al.
and in our studies. These results could be due to the

different characteristics of patients investigated (Lin

et al.26 analyzed end-stage heart failure patients just before

transplantation) or to the different samples analysis tech-

nique performed (Dunn et al.27 used gas chromatography).

It is possible to affirm that metabolomic approach is able to

identify a fingerprint characterizing heart failure patients,

but a univocal and reproducible pattern is still not emerged

in the literature.
thorized reproduction of this article is prohibited.

patients at baseline with respect to the control groupa

Healthy control

P-valueMean 95% CI

8.99 4.64–19.12 0.014
132.69 112.42–164.35 0.005

2142.5 1759.1–2984.2 0.022
1893.65 1055.9–2857.3 0.019

510.54 421.79–627.49 7.7e-7
�

252.76 198.82–318.37 0.02
52.42 0.02–264.96 4.4e-6

�

54.74 16.78–150.04 0.002
8.58 0.02–16.51 8.4e-5

�

31.09 2.85–66.94 2.9e-4
�

309.77 242.26–422.88 3.37e-5
�

r with confidence intervals at 95%.
�

Still significant after Bonferroni correction
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Fig. 2
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Predictive analysis of serum CPMG spectra of patients after 6 months of CRT. Follow-up spectra are projected on the discriminant model built on the
39 controls’ and 32 baseline patients’ spectra. CPMG, Carr-Purcell-Meiboom-Gill; CRT, cardiac resynchronization therapy; OPLS, orthogonal partial
least squares.
This poor reproducibility of the result impairs the validity

of the method. Similar to the study by Lin et al.26, we could

not assess a different metabolic pattern in patients with

different ischemic and nonischemic cardiomyopathy at

baseline and after 6 months of CRT. This implies the

existence of a common final pathway irrespective of the

cause of the dilated cardiomyopathy. Therefore, metabo-

lomic approach is not helpful in improving the diagnostic

process necessary to define the cause of heart failure.

After 6 months of CRT, we observed a totally different

metabolic pattern from baseline, which resulted to be

further different from the fingerprint of healthy controls.

In none of the patients, metabolomic fingerprint returned

in the area of healthy controls at 6 months of follow up
opyright © Italian Federation of Cardiology. Una

Table 3 Metabolites found to be statistically different in serum and urin

CHF before CRT

Mean 95% CI

Serum metabolites
Tyrosine 138.72 103.63–193.02
Lactate 1640.77 662.24–3476.95
Proline 531.03 268.35–797.93
Alanine 1141.17 722.22–1751.14
Lipid (-CH¼CH-) 8554.31 4924.54–14253.7

Urine metabolites
Hippurate 0.011 0.002–0.026
Trigonelline 0.0023 0.0002–0.0044
Threonine 0.0018 0.001–0.0033

CI, confidence interval; CRT, cardiac resynchronization therapy; HF, heart failure. a Va
significant after Bonferroni correction (P�0.002).
(Fig. 2). Analyzing samples obtained at this time, we

identified another specific pattern, even if with a subopti-

mal level of accuracy (above 70%). The levels of serum

metabolites – tyrosine, lactate, proline, alanine and lipid

(–CH¼CH–) – were significantly higher when compared

to baseline (Table 3); similarly, at 6 months of follow up,

results showed that urine metabolite levels of hippurate

andtrigonelline were significantly lower, whereas levels of

threonine were significantly higher (Table 3). These

differences in metabolomic spectra could be considered

as the expression of complex cellular and molecular modi-

fication induced by CRT. In fact, as Chakir and Kass28

have observed, CRT can get the failing heart to contract

more and perform more work, improving ion channel

function involved with electrical repolarization, enhancing
uthorized reproduction of this article is prohibited.

e of HF patients at the 6-month follow-up with respect to baselinea

CHF 6 months after CRT

P-valueMean 95% CI

161.57 112.46–216.55 0.002
2602.43 1125.55–4871.36 0.002

603.41 374.91–980.81 0.04
1336.38 848.19–1999.55 0.02
9743.96 5575.39–21072.9 0.03

0.019 0.007–0.069 0.01
0.0028 0.0009–0.0053 0.04
0.0013 0.0008–0.0019 0.001

�

lues are given in arbitrary units together with confidence intervals at 95%.
�

Still
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sarcomere function and calcium handling, inducing the

up-regulation of beta-adrenergic responses and improving

mitochondrial energetic efficiency.

According to the present literature, up to 40% of patients

may not experience any improvement in clinical status

and/or reversal of cardiac remodeling after CRT.29 An

increase in LVEF above 7.5% during low-dose dobuta-

mine echocardiography exhibited a sensitivity of 76% and

a specificity of 86% in predicting response to CRT.30 The

burden and the transmural extension of myocardial scar

measured by cardiovascular MRI have been shown to be

associated with a poor response rate to CRT,31 similar to a

high scar burden quantified by single photon emission

computed tomography myocardial perfusion imaging.32

Other clinical, electromechanical and electrophysio-

logical issues before device implantation have been

identified by Mullens et al.29 In the present study, we

demonstrated that metabolomic is unable to predict the

outcome of CRT patients: NOESY, CPMG and DIFF

spectra for both serum and urine samples showed very

low discrimination accuracy (from 43.7 to 50.8%) that

precludes its use in common clinical practice.

Conclusion
Although it is possible to identify a metabolomic finger-

print that characterizes heart failure patients candidate to

CRT, this pattern is quite different in different studies

and is unaffected by the different causes of the disease.

Furthermore, this approach seems unable to identify a

metabolic profile predictive of a favorable response to

CRT. Therefore, at the current state of the art, the use of

this method is not justified in patients undergoing CRT.
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