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The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located
in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices,
the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to
other predictors. Data regarding very elderly people (≥75 years) who died in inland and coastal cities from 2006 to 2008 (May–
October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational
(UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed.
Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection.
Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of
heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor.
The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best
fitting with all-cause, very-elderly mortality attributable to heat stress.

1. Introduction

The relationship between high environmental temperature
and human mortality has been widely investigated and at the
present time a large amount of scientific studies and detailed
reviews are available for people living in different geographi-
cal areas [1–5]. However, the correct interpretation and com-
parison of results from environmental epidemiological stud-
ies are not immediate because different thermal/temperature
based health-impact indicators have been adopted. For exam-
ple, several authors used air temperature variables (such as
daily average, maximum, and minimum air temperature) as
environmental predictors of human mortality [3, 6, 7], while

others used alternative temperature metrics which condense
all the extra meteorological effects (i.e., air humidity, wind
speed, and solar radiation) into a single number derived
by means of more or less complex thermal indices [8–
11]. Thermal indices are useful tools for summarizing the
interaction of thermal environmental stressors on humans.
Thermal indices can be categorized by direct (based on direct
measurements of environmental variables), empirical (based
on objective and subjective stress), or rational (based on
calculations involving the human heat balance) indices [12].
Most studies examined to evaluate the impact of heat stress on
mortality mainly used direct indices, especially because they
are quick and easy to use and usually take into account the
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combined effect of only twomainmeteorological variables for
thermal comfort evaluations (air temperature and humidity),
normally available from regular measurements of typical
weather stations. Further direct indices also allow for includ-
ing the combined effect of other environmental variables,
such as wind speed and occasionally, depending on data
availability, solar radiation [13], both of which are important
for the outdoor thermal comfort assessment. However, at the
present time, the application of these indices in the field of
heat-related mortality is very rare [14]. While only a small
number of epidemiological studies have ever attempted to use
more complex and complete rational indices [15], the newly
developedUniversalThermal Climate Index (UTCI) [16] that
represents the state-of-the-art in outdoor thermal comfort
assessments has never been employed.

In a recent study [12], several authors reported a detailed
comparison of UTCI with a selected set of thermal indices
and stated that direct indices (i.e., apparent temperature) are
less correlatedwithUTCI than other indices derived from the
human heat budget model. The authors claimed that one of
the possible causes of unconformity is the lack of the radiation
factor in the algorithm equations.

Currently, it is very difficult to compare the results of heat-
related mortality from studies that used different predictors
such as air temperature variables or thermal indices, and
several significant doubts regarding the application of one
or other environmental indicator exist among researchers
involved in environmental epidemiological studies. In par-
ticular, what is the correlation pattern among different tem-
perature and thermal index indicators, especially when the
results in geographical areas are compared with very different
weather conditions (i.e., strong winds, high humidity, etc.)?
Consequently, what is the difference in the predicted heat-
relatedmortality if different temperature variables or thermal
index indicators are considered? Are there significant differ-
ences when different climatic conditions and geographical
locations are taken into account? In short, what is the most
effective thermal indicator of heat-related mortality?

In previous studies [14, 17–19] the authors tried to address
this issue but only simple thermal indices (generally ther-
mohygrometric indices) were considered and the UTCI was
never taken into account.

For this reason, the main aim of this study is to iden-
tify the most effective thermal/air temperature indicators
for predicting heat-related mortality of the very elderly in
two cities with different geographical characteristics based
mainly on their distance from the Tyrrhenian Sea (coastal
and inland plain cities). We put the hypothesis to the
test that the use of the state of the art to assess outdoor
thermal comfort/discomfort (UTCI) might provide an effec-
tive improvement in predicting heat-related mortality with
respect to direct thermal indices or simple air temperature
variables currently used in the literature. Furthermore, the
potentially different impact on mortality due to environ-
mental heat conditions is also investigated by using two
types of meteorological data sources coming from urban and
suburban weather stations. This information could prove to
be very useful in developing preventive measures and for

implementing local public health emergency plans related to
heat-stress conditions.

2. Material and Methods

2.1. Mortality Data and Study Area. The health outcome data
consisted of residents of the two major inland (Florence) and
coastal (Livorno) cities in the Tuscany region (Central Italy)
who died of nonviolent causes during the hottest period of the
year (May 1 toOctober 31) from 2006 to 2008. Non-accidental
mortality data (ICD9 < 800) were provided by the Mortality
Registry of the Tuscany region. Very elderly residents (≥75
years old) who died of nonviolent causes in the two cities
were selected for the analyses (𝑛 = 3, 852 in Florence and
𝑛 = 1, 942 in Livorno).

The cities considered in this study are located in different
geographical contexts in terms ofmorphological and climatic
conditions. (a) Florence is an inland plain city located 80 km
from the Tyrrhenian Sea at an average altitude of 50m
a.s.l. (lat. 43∘4617N; long. 11∘1515E). The average urban
population density for the 3-year period studied was 3,570
inhabitants per km2 (the highest population density in the
Tuscany region). The percentage of the very elderly (age ≥ 75
years) populationwas 13.6%. (b) Livorno is a coastal plain city
at about 10m a.s.l. with its port on the Tyrrhenian Sea (lat.
43∘330N; long. 10∘190E). The average urban population
densitywas 1,540 inhabitants per km2 (the highest population
density in coastal Tuscan cities). The percentage of the very
elderly population was 12.1%.

In regard to the climatic features of the areas studied,
July and August are the warmest months in both cities
investigated, while the coldest months are December and
January.The inlandplain city is characterized by higher/lower
temperatures than the coastal plain city. Furthermore, there is
a wide daily temperature range in the inland city and during
the warmest months. Conversely, the coastal plain city is
generally characterized by a milder climate due to its close
vicinity to the Tyrrhenian Sea, and it also has the shortest
daily temperature range with rare extreme temperatures.

2.2. Meteorological and Environmental Pollution Data.
Hourly meteorological data regarding air temperature (𝑇air,
∘C), relative humidity (RH, %), 10m high horizontal wind
speed (𝑉

10
, m s−1), and global radiation (GR, Wm−2) were

provided by four meteorological stations managed by the
Regional Weather Service of Tuscany. Meteorological data
covered the warmest period of the year (May–October) from
2006 to 2008.

Two of these meteorological stations were located in
urban districts, and in particular, in two green areas of the
city centers of Florence and Livorno. The other two stations
were located in residential districts in the flat north-west area
of Florence and on the coast (about 100m from the sea) of
Livorno.

For the same period, air pollution data, including daily
average values of ambient particulate concentrations with
aerodynamic diameter ≤10 𝜇m (PM

10
, 𝜇gm−3), nitrogen

dioxide (NO
2
, 𝜇gm−3), sulfur dioxide (SO

2
, 𝜇gm−3), carbon
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monoxide (CO, mgm−3), and ozone (O
3
, 𝜇g m−3), were

obtained from the Environmental Protection Agency of
Tuscany. Daily pollutant concentrations were averaged from
available monitoring stations located in each urban and
suburban area of Florence and Livorno. The number of
monitoring sites generally varied from two to five pollution
stations depending on the pollutant monitored.

During the study period, the methods and instruments
of the monitoring sites, classified as “urban background”
(based on European and Italian air quality legislation), were
homogeneous and compliant with the quality assurance
criteria. Furthermore, based on previous studies in the
same geographical areas [20, 21], the selected environmental
monitoring sites showed homogeneous air-quality levels and
offered good representation of the background exposure of
the general population in urban areas.

2.3. Biometeorological Indices Assessment. Three direct
biometeorological indices (apparent temperature indices
derived from Steadman’s studies) and one rational index
(Universal Thermal Climate Index) were assessed.

The apparent temperature (AT) is represented by a set of
simple computational formulas which describe the combined
effect of temperature and humidity, also taking into account
the extra effects of wind speed and solar radiation, by
measuring the thermal comfort of a typical human walking
at 1.4m s−1 and generating 177Wm−2 of total body surface
[13, 22–24]. AT is always expressed in ∘C and for this reason
it is easily interpreted by general users.

The three versions of apparent temperature (AT) indices
used in this study are the following.

(i) The indoor AT (ATind) only takes the combined effect
of air temperature and humidity into consideration;
this index is assessed by the following formula:

ATind = 0.89𝑇air + 0.382𝑒 − 2.56. (1)

(ii) The shade AT (ATsha) also takes the assessed wind
effect into account; this index is assessed by the
following formula:

ATsha = 𝑇air + 0.33𝑒 − 0.70𝑉10 − 4.00. (2)

(iii) The outdoor AT (ATsun) expresses the sensation of
a walking, clothed person fully exposed to all mete-
orological effects considered: air temperature and
humidity, wind speed, and solar radiation; this index
is assessed by the following formula:

ATsun = 𝑇air + 0.348𝑒 − 0.70𝑉10 + 0.70
𝑄
𝑔

(𝑉
10
+ 10)
− 4.25,

(3)

where “𝑒” is the water vapor pressure (hPa) and “𝑄
𝑔
”

is the heat-flow rate per unit area of body surface
due to net extra radiation (𝑄

𝑔
is related to the mean

radiant temperature). A detailed description of the
assessment of 𝑄

𝑔
is reported in Steadman (1994). In

this study the variable “𝑒” was calculated from the
air temperature and the relative humidity using the
following equation:

𝑒 =
RH
100
6.105exp(17.27(𝑇air/(237.7+𝑇air))). (4)

The Universal Thermal Climate Index (UTCI) is a com-
prehensive model fitted to assess human thermal comfort
in outdoor environments and represents the state-of-the-
art of outdoor thermal comfort indices [16]. UTCI is an
equivalent temperature (∘C) based on the most recent scien-
tific progress in human thermo-physiology, biophysics, and
the heat exchange theory [25]. The UTCI represents the
efforts of a group of over 45 scientists from 23 countries
collaborating together within the COST action 730 [16].
The advanced multinode dynamic UTCI-Fiala mathematical
model of human temperature regulation forms the basis of
the UTCI. Furthermore, the UTCI also includes a sophis-
ticated clothing model that defines in detail the effective
clothing insulation and vapor resistance values for each of
the thermophysiological model’s body segments over a wide
range of climatic conditions. A detailed description of the
UTCI is reported in Jendritzky et al. [16]. In this study, the
UTCI was assessed by using the UTCI software code “ver-
sion a 0.002”, freely available online (http://www.utci.org/).
Currently, UTCI software uses fixed value for metabolic
rate (activity level) and, depending on air temperature, also
clothing insulation. The input parameters for the assessment
of the UTCI that refers to a person walking at 4 kmh−1 and
generating 135Wm−2, are 𝑇air (

∘C), 𝑒 (hPa), 𝑉
10
(m s−1), and

the mean radiant temperature (𝑇mrt,
∘C). The estimation of

the 𝑇mrt was carried out separately by using the RayMan
software version 2.0 [26]. One of the aims of the RayMan
model is to calculate short- and long-wave radiation flux
densities absorbed by people that can be transferred into
a synthetic parameter, that is 𝑇mrt, defined as the uniform
temperature of a hypothetical spherical surface surrounding
a human (emissivity 𝜀 = 1) which would result in the same
net radiation energy exchange with the subject as the actual,
complex radiative environment [26].

2.4. Statistical Analyses. A preliminary descriptive analysis
was carried out of the characteristics of the daily mortality,
air pollution, and main meteorological variables recorded
in the two cities by urban and suburban weather stations
during the warmest period of the year (May–October). In the
following, a detailed description of daily summaries (daily
average,maximum, andminimum) of thermal indices and air
temperature indicators (defined as thermal indicators) was
provided for both urban and suburban areas of the inland and
coastal cities.

The analyses were organized in two main sections: (1)
correlation analyses between the UTCI (rational index)
versus direct indices and air temperature variables, assessed
and measured by using urban and suburban meteorological
stations; (2) investigation of relationships between daily
mortality and the set of independent predictors represented
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by biometeorological (rational and direct indices) and mete-
orological (air temperature) indicators.

The first section of the study included linear regression
analyses of daily average, maximum, and minimum UTCI
in order to select direct daily biometeorological indices and
air temperature variables. Statistical characteristics of the
relationships were shown as slope coefficients of regressions
and their relative 𝑅-squared (%).

The second sectionwas investigated through a time-series
approach by using generalized additive models (GAMs) [27].
The GAM approach is useful for detecting the temporal
modification of heat-related mortality based on different
thermal indicators. GAMs are very flexible tools that allow
for applying a wide variety of link functions on the depen-
dent variable for taking any non-linear (smooth) effects of
predictor variables into account. A Poisson link assumption
was used in this study.

The GAM procedure was performed using 𝑅 software
version 2.15.3 [28] and specifically the “mgcv” package [29].
GAM procedures were systematically used throughout the
entire warmest period of the year to estimate the smoothed
shape of exposure-response curves between total mortal-
ity and short-term changes of the set of daily average,
maximum, and minimum independent biometeorological
indices (UTCI, ATsun, ATsha, and ATind) and air temperature
(𝑇air) variables, measured by using urban and suburban
meteorological data. On the whole, 30 thermal indicators
were identified for each city. The short-term change was
calculated by averaging the daily biometeorological value
or air temperature on a specific day together with the one
calculated on the previous day (lag

0-1).
GAM models were controlled for typical air pollution

concentrations and calendar factor confounders such as
daylight hours (that represent a proxy parameter of the
season), year (to check for annual variation in mortality),
day of the week, public holidays, and summer population
decrement.

The final model specification is based on the following
equation:

ln (𝐸 (𝑌)) = 𝛽
0
+ 𝛽
1
⋅ 𝑋
𝑡
+ Σ𝑆
𝑖
(𝑋
𝑖
) , (5)

where 𝐸(𝑌) is the estimated daily death count; 𝛽
0
is the

intercept of the regression; 𝛽
1
is the coefficient (slope) for the

thermal indicator (𝑋
𝑡
); 𝑆
𝑖
(𝑋
𝑖
) denotes the smooth functions

for the covariates (continuous: daylight hours and air pollu-
tants; categorical: year, day of the week, public holidays, and
summer population decrement).

Finally, in order to focus on the relationship between
heat and mortality, the expected % change of death due
to a 1∘C increase in air temperature (or thermal index
temperature) was assessed by selecting the upper 25% (75th
percentile) of data based on each thermal indicator. The
selection of the 75th percentile was based on an empirical
assessment inmodel fittings, where overall daily death counts
generally showed a monotonic increase as thermal indicators
increased.

2.5. Model Selection. Akaike Information Criterion (AIC)
[30] was applied to the entire warmest period for the

model-fitting criteria. AIC represents one of the most reli-
able methods for comparing different models, taking both
descriptive accuracy and parsimony into account [31]. AIC
has been widely applied in many statistical fields or research
including time series model selection [32].

The AIC is defined as [33]

AIC
𝑖
= −2 log 𝐿

𝑖
+ 2𝑉
𝑖
, (6)

where 𝐿
𝑖
represents the maximum likelihood for a candidate

model 𝑖 and is determined by adjusting the𝑉
𝑖
free parameters

in such a way as to maximize the probability of the candidate
model generating the observed data [31].

Given a set of candidate models for the data, it is well
known that the preferredmodel is the one with theminimum
AIC value, which is the model with the lowest expected
information loss.

However, because from a statistical point of view it is
difficult to understand the importance of the AIC difference,
Δ
𝑖
(AIC), between the best model (that is the model with

the lowest AIC value), for example, and the next-best model
(the second lowest AIC value), the AIC values obtained for
each candidate model in this study have been transformed to
the so-called Akaike weights, 𝑤

𝑖
(AIC) [33]. For this reason,

all the AIC differences with respect to the AIC of the best
candidate model were calculated as follows:

Δ
𝑖
(AIC) = AIC

𝑖
−min (AIC) . (7)

In the following, the Akaike weights were assessed by
dividing the relative likelihood of a model 𝑖 by the sum of the
likelihoods of all models 𝑘 as per the following equation:

𝑤
𝑖
(AIC) =

exp {− (1/2) Δ
𝑖
(AIC)}

∑
𝐾

𝑘=1

exp {− (1/2) Δ
𝑘
(AIC)}
. (8)

In this way, the𝑤
𝑖
(AIC) can be interpreted as the probability

that a hypothetical model is the best predictive model among
the set of candidate models. The best model is the one
that minimizes the Kullback-Leibler discrepancy, which is
a measure of the distance between the probability density
generated by the model and reality [31].

Akaike weights quantify conclusions based on AIC anal-
yses and provide a straightforward interpretation of the AIC
model comparison analysis.

3. Results

3.1. Descriptive Statistics of Mortality, Air Pollution, and
Meteorological/Biometeorological Data. The characteristics
of daily all-cause mortality of people aged ≥75 years, mean
air pollution concentrations, and meteorological variables
recorded during the warmest period of the year (from May
to October) are illustrated in Table 1.

Nonaccidental mortality data of the very elderly in the
inland city was about twice as high as in the coastal city. Aver-
age NO

2
, PM
10
, and CO concentrations were significantly

higher in the inland plain city than in the coastal one. On the
other hand, the average O

3
and especially SO

2
showed the

highest values in Livorno (Table 1).



The Scientific World Journal 5

Table 1: Descriptive statistics for daily all-cause mortality of the very elderly (subjects ≥75 years of age), air pollution, and meteorological
parameters measured in urban and suburban areas of Florence and Livorno during the warmest period of the year (May–October) from 2006
to 2008. Mean, standard deviation (SD), and 10th, 75th, and 90th percentiles are shown.

Variables Unit Inland plain city: Florence Coastal plain city: Livorno
Mean (±SD) 10th 75th 90th Mean (±SD) 10th 75th 90th

Mortality age ≥75 years N 7.0 (±2.7) 4 9 11 3.5 (±2.0) 1 5 6
Air pollution

SO2 𝜇gm−3 1.6 (±0.8) 0.8 1.9 2.6 4.3 (±3.9) 0.7 6.0 9.5
NO2 𝜇gm−3 38.1 (±11.9) 23.5 45.4 52.8 31.5 (±7.2) 23.4 35.2 40.1
CO 𝜇gm−3 0.6 (±0.2) 0.4 0.7 0.8 0.5 (±0.1) 0.4 0.6 0.7
O3 𝜇gm−3 70.1 (±20.4) 42.9 83.3 95.7 76.0 (±18.0) 52.1 87.9 99.4
PM10 𝜇gm−3 30.6 (±11.3) 18.6 35.3 43.4 27.7 (±7.9) 19.4 31.2 37.4

Meteorology
Urban
𝑇air

∘C 20.6 (±3.8) 15.6 23.9 25.7 20.4 (±3.3) 16.1 23.2 24.7
RH % 40.1 (±13.3) 24.6 48.2 57.2 50.0 (±12.6) 31.9 58.4 64.5
𝑉
10

ms−1 1.7 (±0.7) 0.9 1.9 2.2 2.0 (±0.6) 1.1 2.3 2.9
𝑇mrt

∘C 21.1 (±5.9) 12.7 25.7 28.1 21.2 (±5.1) 13.8 25.1 26.9
Suburban
𝑇air

∘C 21.9 (±4.2) 16.4 25.5 27.8 22.6 (±3.6) 17.9 25.4 27.3
RH % 42.4 (±13.2) 25.8 50.0 59.6 61.1 (±16.6) 39.4 72.4 84.1
𝑉
10

ms−1 3.1 (±0.7) 2.2 3.5 3.9 5.5 (±2.5) 3.5 5.8 8.3
𝑇mrt

∘C 22.5 (±6.3) 13.6 27.3 30.0 23.2 (±5.2) 16.0 26.9 29.1
𝑇air: environmental temperature; RH: relative humidity; 𝑉

10
: 10m high horizontal wind speed; 𝑇mrt: mean radiant temperature.

Both the inland and coastal cities showed higher daily
mean 𝑇air in the suburbs than in the urban areas. Moreover,
the 𝑇air in the urban area of the inland plain city was
slightly higher than the 𝑇air in the coastal city. Conversely,
the opposite situation was observed when the suburbs were
considered. The 𝑇air range over the warmest period of the
year (differences between 90th and 10th percentiles of 𝑇air
data) was not as wide in urban areas and coastal city as in the
suburbs and inland city. As expected, mean RH and 𝑉

10
were

always higher in the coastal city than in the inland one, with
the highest values in the suburbs.Themean𝑇mrt was lower in
the urban than suburban areas, with the highest mean values
on the coast. Moreover, both inland and coastal cities showed
wider 𝑇mrt ranges than 𝑇air ranges (Table 1).

Thermal indices and air temperature indicators in the
coastal city generally showed higher mean values than in
the inland city, with several exceptions, especially when
daily maximum values in both urban and suburban areas
(Table 2) were taken into account. More specifically, when
the maximum 𝑇air was considered, the lowest values were
observed in the coastal city.

The daily mean average, minimum, and maximum ther-
mal indicators measured in urban areas generally showed
lower values than in the suburbs, with the only exception for
the daily maximum UTCI in both cities and the maximum
ATsun in the coastal city, which recorded the opposite situa-
tion. Furthermore, thermal indicators in the suburbs of both
Florence and Livorno always showed wider thermal ranges
(differences between 90th and 10th percentiles of data) than
those observed in urban areas (Table 2).

The ATsun always disclosed the highest daily average,
minimum, andmaximumvalues among all indicators.On the

other hand, UTCI and 𝑇air often evidenced the lowest daily
mean average and minimum values. The ATsha, which also
takes into consideration the cooling effect of wind, always
showed the lowest values among the direct indices. When
daily maximum values were considered, both ATsun and
UTCI revealed the highest values when compared with the
other indicators, thanks to the solar radiation contribution
(Table 2).

3.2. Rational Index (UTCI) versus Direct Indices and Air
Temperature Variables. The comparison between daily aver-
age, minimum, and maximum UTCI and direct bivari-
ate/multivariate indices or air temperatures (Table 3) revealed
that both ATsun and ATsha showed the highest correlation
coefficients in both urban and suburban areas of the inland
and coastal cities. On the other hand, both ATind and 𝑇air
showed the lowest 𝑅2 coefficients.

Generally, ATsun and ATsha revealed that were the highest
mean correlations when daily minimum values were consid-
ered, slightly higher than the correlations when daily average
values were used. An opposite situation was observed when
ATind and 𝑇air were considered, whereas daily maximum
values always showed the lowest correlation coefficients.

When daily average indicator values were considered,
there was a progressive decrease of the mean 𝑅2 coefficients
(averaged from all stations), with the highest values observed
for ATsun (96.50%) followed by ATsha (96.46%), ATind
(93.34%), and 𝑇air (93.19%) (Table 3). When daily minimum
values were considered, the highest mean 𝑅2 coefficient was
observed for ATsha (96.67%), slightly higher than the ATsun
(96.56%) value. When daily maximums were considered, 𝑇air
often showed a better fit than ATind and ATsha. However,
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Table 2: Descriptive statistics of daily thermal indices and air temperature indicators assessed and measured in urban and suburban areas of
Florence and Livorno during the warmest period of the year (May–October) from 2006 to 2008. Mean, standard deviation (SD), and 10th,
75th, and 90th percentiles are shown.

Daily thermal indices and air
temperature indicators (∘C)

Inland plain city: Florence Coastal plain city: Livorno
Mean (±SD) 10th 75th 90th Mean (±SD) 10th 75th 90th

Urban
Average

UTCI 20.6 (±4.3) 15.0 24.0 26.0 20.8 (±3.9) 15.7 24.0 25.5
ATsun 24.6 (±5.3) 17.6 28.7 31.5 25.2 (±5.1) 18.6 29.2 31.6
ATsha 20.7 (±4.5) 14.8 24.3 26.6 21.1 (±4.2) 15.6 24.6 26.4
ATind 21.3 (±4.2) 15.8 24.4 26.7 21.7 (±4.0) 16.5 25.0 26.7
𝑇air 20.6 (±3.8) 15.6 23.9 25.7 20.4 (±3.3) 16.1 23.3 24.7

Minimum
UTCI 13.7 (±3.7) 9.0 16.5 18.1 14.6 (±3.6) 10.1 17.3 18.8
ATsun 18.2 (±4.8) 11.7 21.8 23.9 19.3 (±4.8) 13.1 23.0 25.1
ATsha 16.0 (±4.1) 10.5 19.1 21.1 17.1 (±4.1) 11.8 20.2 22.0
ATind 16.8 (±3.9) 11.5 19.8 21.6 17.9 (±3.9) 12.9 20.8 22.5
𝑇air 15.8 (±3.3) 11.3 18.3 20.0 16.7 (±3.2) 12.5 19.1 20.7

Maximum
UTCI 30.9 (±5.1) 23.7 34.9 37.4 30.8 (±4.2) 25.3 33.9 35.9
ATsun 33.1 (±6.2) 24.7 38.0 41.0 34.4 (±5.9) 26.8 39.2 41.6
ATsha 25.7 (±5.2) 18.9 29.9 32.7 25.6 (±4.5) 20.0 29.1 31.6
ATind 25.9 (±4.7) 19.7 29.7 32.1 25.9 (±4.3) 20.7 29.4 31.5
𝑇air 26.0 (±4.7) 20.1 29.9 32.4 24.9 (±3.7) 20.7 28.1 29.9

Suburban
Average

UTCI 21.2 (±5.1) 14.6 25.3 28.0 21.1 (±5.8) 13.8 25.2 28.0
ATsun 25.9 (±6.0) 18.1 30.5 33.7 27.7 (±6.8) 19.2 32.5 36.0
ATsha 22.0 (±5.1) 15.4 26.0 28.9 23.4 (±5.6) 16.4 27.6 30.3
ATind 23.0 (±4.7) 16.9 26.7 29.3 25.6 (±5.2) 18.9 29.3 32.1
𝑇air 21.9 (±4.2) 16.4 25.5 27.8 22.6 (±3.6) 17.9 25.4 27.3

Minimum
UTCI 13.8 (±4.5) 8.2 17.2 19.4 14.8 (±6.6) 6.6 19.6 22.6
ATsun 19.2 (±5.3) 12.1 23.2 26.0 22.3 (±6.8) 13.8 27.0 30.1
ATsha 16.8 (±4.7) 10.7 20.3 22.8 19.6 (±5.8) 12.3 23.7 26.8
ATind 18.1 (±4.4) 12.4 21.3 23.9 22.4 (±5.2) 15.6 25.9 29.0
𝑇air 16.6 (±3.7) 11.7 19.3 21.4 19.8 (±3.8) 14.7 22.8 24.8

Maximum
UTCI 30.7 (±6.0) 22.4 35.3 37.9 28.5 (±5.4) 21.6 32.4 34.7
ATsun 33.5 (±6.8) 24.1 38.7 41.9 34.3 (±7.2) 24.8 39.8 43.2
ATsha 26.8 (±5.7) 19.3 31.5 34.3 27.0 (±5.4) 20.0 30.9 33.7
ATind 27.6 (±5.3) 20.7 31.9 34.6 28.4 (±5.2) 21.6 32.4 34.9
𝑇air 27.4 (±5.1) 20.6 31.5 34.0 25.1 (±3.5) 20.6 27.7 29.9

UTCI: UniversalThermal Climate Index; ATsun: apparent temperature assessed outdoors also taking into consideration the solar radiation contribution; ATsha:
apparent temperature assessed outdoors in the shade; ATind: apparent temperature assessed in indoor conditions; 𝑇air: environmental temperature.

𝑇air always showed the worst mean slope coefficients of
regression lines, with the lowest values (from 0.50 to 0.56)
observed in the suburb of the coastal city (Table 3). This
indicates that UTCI and 𝑇air change at different rates within

various ranges of ambient conditions, especially in suburban
areas.

Conversely, the best mean slope coefficients were always
observed when ATsun was considered: mean slope 1.00,
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Table 3: Correlation analyses between daily average, minimum, and maximum UTCI versus direct thermal indices and air temperature
indicators in urban and suburban areas of Florence and Livorno during the warmest period of the year (May–October) from 2006 to 2008.

Daily thermal indices
and air temperature
indicators

Inland plain city: Florence Coastal plain city: Livorno Mean values from
all stations

Urban
(missing data = 0%)

Suburban
(missing data = 0.4%)

Urban
(missing data = 0%)

Suburban
(missing data = 0%) Slope; 𝑅2 (%)

Slope; 𝑅2 (%) Slope; 𝑅2 (%) Slope; 𝑅2 (%) Slope; 𝑅2 (%)
Average

ATsun 1.193; 96.22 1.121; 96.85 1.284; 96.41 1.114; 96.51 1.178; 96.50
ATsha 1.029; 96.27 0.971; 96.76 1.073; 96.10 0.926; 96.71 1.000; 96.46
ATind 0.949; 95.00 0.891; 94.61 1.008; 94.80 0.821; 88.95 0.917; 93.34
𝑇air 0.865; 96.07 0.796; 94.82 0.827; 94.62 0.562; 87.24 0.763; 93.19

Minimum
ATsun 1.280; 97.32 1.160; 95.26 1.293; 97.43 0.992; 96.21 1.192; 96.56
ATsha 1.113; 97.41 1.014; 94.82 1.138; 97.99 0.848; 96.46 1.028; 96.67
ATind 1.038; 96.07 0.935; 90.50 1.070; 96.11 0.711; 83.53 0.939; 91.55
𝑇air 0.866; 93.50 0.764; 87.95 0.854; 92.60 0.502; 79.27 0.747; 88.33

Maximum
ATsun 1.110; 93.61 1.050; 94.03 1.263; 91.80 1.176; 89.51 1.150; 92.24
ATsha 0.951; 91.06 0.909; 92.49 0.960; 85.96 0.869; 83.11 0.922; 88.16
ATind 0.863; 89.77 0.830; 90.59 0.891; 84.15 0.792; 76.15 0.844; 85.17
𝑇air 0.881; 93.58 0.824; 93.59 0.801; 87.70 0.549; 76.63 0.764; 87.88

UTCI: UniversalThermal Climate Index; ATsun: apparent temperature assessed outdoors also taking into consideration the solar radiation contribution; ATsha:
apparent temperature assessed outdoors in the shade; ATind: apparent temperature assessed in indoor conditions; 𝑇air: environmental temperature.

1.03, and 0.92 for average, minimum, and maximum values,
respectively.

3.3. Relationships betweenMortality and the Set of Biometeoro-
logical Indices and Air Temperature Indicators. The smooth-
ing plots of short-term exposure-response curves during the
warmest period of the year (May–October) clearly illustrate
the relationships between mortality and the set of inde-
pendent biometeorological (rational and direct indices) and
meteorological (𝑇air) indicators. The results are reported in
Figures 1, 2, and 3 for the average, maximum, and minimum
values, respectively. The “U-shaped” relationships between
short-term effects (lag

0-1) of each daily average (Figure 1),
maximum (Figure 2), and minimum (Figure 3) thermal
indicator and mortality were identified in both urban and
suburban areas of the inland plain city. Conversely, prevalent
“J-shaped” relationships were identified in the coastal city. In
this case, steeper right-hand slope curves (heat effects) were
observed which also reached higher relative risks than the
inland city.

When the same geographical location was considered,
similar exposure-response curves between total mortality
and different thermal indicators were usually observed, even
if the range of indicators varied depending on specific indica-
tor characteristics. No substantial differences were observed
in the curves between urban and suburban areas in the inland
city (Figures 1, 2, and 3). On the other hand, different patterns
were found between the urban and suburban curves in the
coastal city: steeper right-hand slope curves were observed
in the urban area (Figures 1, 2, and 3).

The urban daily average ATsun was selected as the best
predictive model for the inland plain city.This model showed
a high probability (almost 50%) of being the best model
among the set of 30 candidatemodels (Table 4). Furthermore,
a significant expected % change in deaths (5.6%, CI: 0.5–10.7,
𝑃 < 0.05) was evidenced. In addition, other models, such
as the urban daily average ATsha and maximum UTCI and
the urban and suburban minimum ATsun, also showed good
model-fits, displaying𝑤

𝑖
(AIC) superior to 5%. However, only

the urban daily minimum ATsun still confirmed a significant
expected % change of death (6.1%, CI: 1.2–11.0, 𝑃 < 0.05)
(Table 4), whereas less model-fits often included the ATind.

The urban daily minimum ATsha was selected as the
best predictive model for the coastal city (Table 4). In this
case, the probability that this model was the best among all
candidate models was almost 60%. A very high significant
expected % change in deaths was also observed (10.3%, CI:
4.0–16.6, 𝑃 < 0.01). Furthermore, an elevated probability
(21%) of being the second best model among the others
was associated with the suburban daily average ATind, even
confirming a significant % change in deaths (Table 4). In
addition, the urban minimumATsun and the suburban ATind
also revealed good model-fits, showing 𝑤

𝑖
(AIC) of 8%. Less

predictive model-fits prevalently included daily maximum
thermal indicators.

4. Discussion

This research provides a substantial contribution to pre-
vious studies referred to in identifying the most effective
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Table 4: Summary of predictive model fits and expected % change in deaths due to a 1∘C increase in the thermal predictor over the 75th
percentile based on each thermal indicator. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01.

Inland plain city: Florence Coastal plain city: Livorno
Indicators AIC 𝑤

𝑖

(AIC) % change Indicators AIC 𝑤
𝑖

(AIC) % change
Ave urb ATsun 663.3 0.48 5.6 (0.5; 10.7)∗ Min urb ATsha 587.7 0.58 10.3 (4.0; 16.6)∗∗

Ave urb ATsha 665.1 0.19 4.8 (−1.1; 10.7) Ave sub ATind 589.7 0.21 4.7 (0.2; 9.2)∗

Max urb UTCI 666.2 0.11 4.9 (−1.0; 10.8) Min urb ATsun 591.7 0.08 6.8 (1.7; 11.9)∗∗

Min urb ATsun 667.2 0.07 6.1 (1.2; 11.0)∗ Min sub ATind 591.7 0.08 4.8 (0.7; 8.9)∗

Min sub ATsun 667.9 0.05 3.8 (−0.3; 7.9) Max sub ATind 594.7 0.02 4.5 (−0.4; 9.4)
Min urb UTCI 668.2 0.04 9.2 (2.1; 16.3)∗ Ave sub ATsun 596.0 0.01 3.3 (−0.4; 7)
Ave urb 𝑇air 669.2 0.03 3.8 (−3.8; 11.4) Ave sub ATsha 596.5 0.01 4.7 (0.1; 9.4)∗

Max urb ATind 671.0 0.01 2.7 (−2.8; 8.2) Min sub ATsun 597.5 0.00 4.1 (0.8; 7.4)∗

Max sub UTCI 671.5 0.01 4.3 (−0.6; 9.2) Max sub UTCI 599.0 0.00 6.5 (1.4; 11.6)∗

Min urb ATind 672.7 0.00 8.0 (1.9; 14.1)∗ Min urb ATind 600.2 0.00 9.6 (3.3; 15.9)∗∗

Max urb 𝑇air 673.2 0.00 1.3 (−4.8; 7.4) Min sub UTCI 602.4 0.00 4.9 (0.8; 9.0)∗

Max sub 𝑇air 673.5 0.00 2.3 (−3.2; 7.8) Max sub ATsun 603.4 0.00 2.6 (−1.1; 6.3)
Ave sub 𝑇air 674.0 0.00 1.5 (−5.4; 8.4) Ave urb ATind 604.4 0.00 8.5 (1.4; 15.6)∗

Max urb ATsha 674.8 0.00 3.2 (−2.1; 8.5) Min sub ATsha 604.9 0.00 4.7 (0.6; 8.8)∗

Ave sub ATind 675.7 0.00 4.0 (−1.1; 9.1) Max sub ATsha 605.6 0.00 3.6 (−1.3; 8.5)
Max sub ATsha 676.1 0.00 4.4 (−0.5; 9.3) Min urb UTCI 606.7 0.00 11.7 (4.1; 19.3)∗∗

Max urb ATsun 676.4 0.00 2.8 (−1.9; 7.5) Ave sub 𝑇air 607.7 0.00 8.4 (0.1; 16.8)∗

Min sub UTCI 677.9 0.00 3.2 (−1.9; 8.3) Max urb ATind 609.1 0.00 11.7 (3.9; 19.5)∗∗

Min sub ATsha 678.4 0.00 5.3 (0.4; 10.2)∗ Ave sub UTCI 613.8 0.00 5.5 (1.0; 10.0)∗

Ave sub UTCI 679.3 0.00 3.3 (−2.2; 8.8) Ave urb UTCI 617.6 0.00 11.3 (2.7; 19.9)∗∗

Min urb 𝑇air 679.8 0.00 10.2 (1.5; 16.7)∗ Min urb 𝑇air 617.8 0.00 9.2 (0.4; 18.0)∗

Ave sub ATsha 680.0 0.00 3.0 (−1.9; 7.9) Ave urb ATsha 620.6 0.00 6.4 (−0.5; 13.3)
Ave sub ATsun 680.4 0.00 3.7 (−0.4; 7.8) Min sub 𝑇air 621.3 0.00 7.2 (−0.4; 14.8)
Min urb ATsha 680.9 0.00 7.5 (1.6; 13.4)∗ Ave urb ATsun 621.8 0.00 6.5 (1.0; 12.0)∗

Max sub ATsun 681.8 0.00 4.3 (0.2; 8.4)∗ Max urb ATsun 622.7 0.00 6.2 (0.7; 11.7)∗

Max sub ATind 685.0 0.00 4.4 (−0.5; 9.3) Max sub 𝑇air 623.2 0.00 2.8 (−4.3; 9.9)
Ave urb UTCI 691.8 0.00 5.6 (−1.1; 12.3) Ave urb 𝑇air 631.4 0.00 10.2 (0.8; 19.6)∗

Min sub 𝑇air 702.3 0.00 7.1 (0.6; 13.6)∗ Max urb UTCI 639.2 0.00 9.3 (1.1; 17.5)∗

Min sub ATind 704.8 0.00 5.3 (0.2; 10.4)∗ Max urb 𝑇air 641.5 0.00 4.8 (−3.6; 13.2)
Ave urb ATind 713.8 0.00 4.5 (−1.0; 10.0) Max urb ATsha 642.1 0.00 7.2 (0.3; 14.1)∗

AIC: Akaike’s Information Criterion; 𝑤
𝑖
(AIC): Akaike weights; Max: maximum; Min: minimum; Ave: average; urb: urban; sub: suburban; UTCI: Universal

Thermal Climate Index; ATsun: apparent temperature assessed outdoors also taking into consideration the solar radiation contribution; ATsha: apparent
temperature assessed outdoors in the shade; ATind: apparent temperature assessed in indoor conditions; 𝑇air: environmental temperature.

thermal/air temperature predictor of heat-related mortality
in different geographical contexts.

A large amount of environmental epidemiological studies
carried out worldwide over recent decades applied different
thermal indicators by using a predefined relation of changed
daily temporal summaries (daily average, maximum, or min-
imum values), which further complicated the explanations
and comparisons of the results.

Most of studies generally used single meteorological
parameters, in particular air temperature, or simple, mainly
two-parameter, direct indices [3, 6–11] as environmental
predictors of mortality. Moreover, recent progress in the
field of outdoor thermal comfort assessment led to the
development of the UTCI [16], which represents a universal
solution to the problem of characterizing the human thermal
environment based on the most advanced multinode model
of human thermoregulation coupled with a state-of-the-art

clothing model. However, at the present time, no consistent
information is available regarding the smoothed shape of
exposure-response curves between mortality and different
biometeorological (direct and rational indices) and air tem-
perature indicators.

Currently, what is clearly known and generally recognized
is the short-term impact of heat onmortality with the greatest
effect on the elderly [9]. In a recent study carried out in
the same geographical context as this study, the authors also
evidenced a greater short-term impact of heat on the very
elderly population (people aged ≥75) [3]. This is the reason
why this study directly focused on the very elderly.

The main findings of this study can be summarized as
follows.

(i) Simple, direct four- and three-parameter indices
(ATsun and ATsha) showed the highest correlations
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Figure 1: Relationships between daily average thermal predictors (lag
0-1) (
∘C) and mortality of the very elderly (subjects ≥75 years of age) in

an inland city (Florence) and coastal-plain city (Livorno). Relationships estimated by using urban and suburban meteorological data for the
period 2006–2008 (May–October). UTCI: Universal Thermal Climate Index; ATsun: apparent temperature assessed outdoors also taking the
solar radiation contribution into account; ATsha: apparent temperature assessed outdoors in the shade; ATind: apparent temperature assessed
in indoor conditions; 𝑇air: environmental temperature. Analyses were controlled for air pollution concentrations, daylight hours, year, day of
the week, public holidays, and summer population decrement.

with UTCI. Conversely, the direct two-parameter
index (ATind) and the single meteorological param-
eter (𝑇air) showed the lowest correlations.

(ii) “U-” and “J-shaped” relationships between short-
term effects of each daily thermal indicator and mor-
tality were identified in the inland and coastal plain
cities, respectively. Furthermore, when the same geo-
graphical location was considered, similar exposure-
response curves were observed between total mortal-
ity and different thermal indicators in both urban and
suburban areas of the inland plain city. On the other
hand, steeper right-hand slope curves (heat effects)
were observed in the urban area of the coastal city
than in the suburban ones.

(iii) Urban daily average ATsun and minimum ATsha
showed the lowest AIC values and the highest proba-
bility (almost 50% for the average ATsun and 60% for

the minimum ATsha) of being the best model among
the set of 30 candidate models. For these reasons,
these thermal indicators were selected as the best
predictors of heat-related all-cause mortality in the
very elderly for the inland (urban daily averageATsun)
and coastal (urban daily minimum ATsha) cities, also
revealing significant expected % change of death due
to a 1∘C increase above the 75th percentile. On the
other hand, less predictive model-fits often included
the ATind for the inland city and prevalently involved
daily maximum indicators for the coastal city.

4.1. UTCI versus Direct Indices and Air Temperature Variables.
As expected, simple direct indices which also consider the
extra effect of wind and solar radiation in addition to relative
humidity and air temperature formeasuring thermal comfort
showed the highest correlations with UTCI. In a recent
study [12] the authors also found a significant better fit of
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Figure 2: Relationships between daily maximum thermal predictors (lag
0-1) (
∘C) and mortality of the very elderly (subjects ≥75 years of age)

in an inland city (Florence) and coastal-plain city (Livorno). Relationships estimated by using urban and suburbanmeteorological data for the
period 2006–2008 (May–October). UTCI: Universal Thermal Climate Index; ATsun: apparent temperature assessed outdoors also taking the
solar radiation contribution into account; ATsha: apparent temperature assessed outdoors in the shade; ATind: apparent temperature assessed
in indoor conditions; 𝑇air: environmental temperature. Analyses were controlled for air pollution concentrations, daylight hours, year, day of
the week, public holidays, and summer population decrement.

three-parameter AT (the version which also accounts for
the extra effect of wind speed, called ATsha in this study)
with UTCI than other simple two-parameter indices, such
as the Heat Index, the Humidex, or the Wet-Bulb Globe
Temperature. In particular, the authors observed a correlation
coefficient of 95.35%, slightly lower than the mean values
of 96.46% and 96.67% highlighted in this study when daily
average and minimum values were considered, respectively.
However, it was also higher than the correlation coefficient
of 88.16% found in this study when daily maximum values
were used. Blazejczyk et al. [12] also evidenced a lower
slope coefficient, 0.716, than the very good ones detected
in this study, 1.000, 1.028, and 0.922, when mean average,
minimum, and maximum values were taken into account.
This probably depends on the different dataset characteristics
of the meteorological variables used in both studies. The
correlation and slope coefficients between simple, direct two-
parameter indices (Heat Index, Humidex or Wet-Bulb Globe

Temperature) and UTCI found in the Blazejczyk et al. [12]
study were lower than those observed in this study, probably
due to the fact that the thermal indices used required a more
restrictive air temperature range of application (calculated for
air temperature>20∘C) than in this study inwhich the simple,
direct two-parameter index used (ATind) was applicable over
a wide range of temperatures (no temperature restrictions
were considered).

In conclusion, the authors also reported that direct
indices (i.e., AT) are less correlated with UTCI than indices
derived from various human heat budget models, such
as the Perceived Temperature, the Physiological Equivalent
Temperature, or the Standard Effective Temperature. One of
the possible reasons for the noncompliance is the lack of
the radiation factor in the equations [12]. However, these
authors did not apply the four-parameter AT version [24]
which also includes the extra effect of solar radiation (ATsun).
The ATsun revealed the best relationships with UTCI among
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Figure 3: Relationships between daily minimum thermal predictors (lag
0-1) (
∘C) and mortality of the very elderly (subjects ≥75 years of age)

in an inland city (Florence) and coastal-plain city (Livorno). Relationships estimated by using urban and suburbanmeteorological data for the
period 2006–2008 (May–October). UTCI: Universal Thermal Climate Index; ATsun: apparent temperature assessed outdoors also taking the
solar radiation contribution into account; ATsha: apparent temperature assessed outdoors in the shade; ATind: apparent temperature assessed
in indoor conditions; 𝑇air: environmental temperature. Analyses were controlled for air pollution concentrations, daylight hours, year, day of
the week, public holidays, and summer population decrement.

the thermal indicators considered when daily average and
maximum values were used in this study.

The reason behind the higher correlation coefficient of
the direct three- and four-parameter indices with UTCI
recorded in this study, compared to other more simple, direct
two-parameter indices or the individual air temperature, is
only due to the inclusion of the extra effect of wind speed
in ATsha and the global radiation in ATsun. The inclusion
of these parameters in the thermal comfort assessment
allows a better and more complete representation of the
thermal environment as considered when using UTCI. This
is also confirmed by the fact that when maximum thermal
indices and air temperature indicators were compared with
UTCI, the ATsun, which also considers the radiant solar
contribution for outdoor thermal comfort evaluation, was
the only indicator to show a high correlation coefficient
value >90%. Conversely, when daily minimum values were
considered, the solar radiation contribution assumed less

importance and both ATsun and ATsha showed similar high
correlations with UTCI. Furthermore, in these conditions,
simple two-parameter indices, such as ATind, also showed
high correlation coefficients with UTCI (over 90%).

4.2. Exposure-Response Curves between Mortality and each
Thermal Indicator. Both cities showed two well-known
shaped short-term relationships between different thermal
indicators and mortality of the very elderly (aged ≥75),
already evidenced in many previous studies [3, 34, 35]. In
this study, these relationships were studied over a wider
“warm” period (from May to October) than that generally
considered in previous studies (from June to August) to
detect the association between heat and mortality. The
reason for this choice was that the area studied is often
subjected to “anomalous” heat stress conditions that can also
occur earlier, during the average/late spring months (such as
May/June) or later, during the early/average autumn months
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(September/October). By way of example, during May of
2007 and May and September of 2008, the inland plain city
also experienced several days with very high (for the period)
maximum air temperatures, close to or slightly higher than
27∘C. It is known that an equivalent high daily temperature
could be more dangerous in May, when people are not still
acclimatized to the heat, than in August, because very high
temperatures are unusual that early in the season [36].

Exposure-response curves between total mortality and
different thermal indicators clearly showed different shapes
at a regional scale, with stepper right-hand slope curves (heat
effects on mortality) in the milder coastal plain city. These
patterns were already evidenced in a previous study [3] and
the authors concluded that a population living at the coast
is more susceptible to the heat and less adaptable to sudden
temperature changes and heat extremes. This is because the
coastal city generally shows reduced daily temperature ranges
and lower temperature variations during the warmest period
of the year than the inland city.

As already reported in a previous Korean study [15],
similar exposure response curves between all-causemortality
and a simple daily mean, maximum, and minimum direct
index (the ATind) and 𝑇air were observed in two different
Korean cities (one inland and one seashore cities). This is in
agreement with our study, where the curves obtained with
different indicators had similar shapes. However, the Korean
study also showed different curves when another rational
index (the Perceived Temperature) was used as an indicator.
This situation has not been confirmed in this study, where a
more advanced rational index (UTCI) was applied.

Our study also showed that all thermal rational and direct
indices assessed and the air temperature measured by using
meteorological data recorded by weather stations located
in urban and suburban areas might have heterogeneous
relationships with mortality in the coastal city. In another
Italian study [37] which evaluated the association between
mortality and heat measured by using airport and city-centre
temperatures, the authors found that in two cities (Rome
and Turin) the exposure values were very similar, while in
another city (Milan) the AT differed greatly between stations.
Therefore, it is also plausible to expect dissimilar heat-related
mortality results when different sources of meteorological
data are used in epidemiological environmental studies. For
this reason, studies assessing the potential impact of heat
on mortality need to take different environmental exposure
contexts into account, that is,meteorological data recorded by
urban or suburban weather stations, in order to ensure more
accurate estimates of health effects on the population.

4.3.The Selection of the BestThermal Indicator of Heat-Related
Mortality in Different Geographical Areas. At the present
time, only a few recent studies have tried to investigate the
effect of various thermal indictors on mortality data [14, 15,
17–19] in the aim of selecting the best predictor of mortality.
Currently, great uncertainty surrounds the establishing of the
most appropriate thermal indicator, as well as the daily tem-
poral characteristic (daily average, maximum, or minimum
values) for best fitting the thermal impact on mortality.

A previous study carried out in US cities [17] and two
in Australian cities [18, 19] found that no single temperature
measure was superior to the others. One reason advanced
by several authors [17] was the high correlation among
different thermal indicators showing the same predictive
ability. However, these studies only used individual meteoro-
logical parameters or simple, direct two- or three-parameter
indices as potential indicators of mortality. Furthermore, the
analyses were not controlled for air pollution in theAmerican
study, while the Australian studies controlled for PM

10
, NO
2
,

and O
3
. In another study carried out in two Korean cities

[15], the authors investigated the effect on mortality, also
controlled for PM

10
and O

3
, by using a rational index,

the Perceived Temperature based on a human heat budget
model, compared with other simple direct indices or air
temperature indicators. The authors found that in terms of
model fitting by AIC, for one city (Seoul), the dailymaximum
Perceived Temperature was the best predictor for the all-
cause mortality risk. The interpretation of the authors is
that, because the city of Seoul is located near the sea, the
Perceived Temperature, which also includes the humidity
effect, was a better indicator of excess mortality than the air
temperature. This is also confirmed by the fact that the two
other bestmodel indicators found for Seoul always accounted
for the humidity effect (daily mean Perceived Temperature
and minimum AT). Conversely, the worst indicator of total
mortality included the dailymaximumair temperature.How-
ever, because different results were also observed for another
city, the authors concluded that the rational and direct indices
used in the study do not always act as the best predictors
for the assessment of heat-related mortality [15]. In a more
recent study [14] conducted in Taiwan, the authors identified
the apparent temperature index, assessed in the form of
a three-parameter AT index, as the most optimal high-
temperature index associated with all-cause mortality. The
AT was selected as the best model from among eight high-
temperature indices, including three single air temperature
measurements (average, maximum, and minimum) and five
different simple, direct indices.

In this study, our findings partially confirm several results
of the Korean study and are in firm agreement with the
Lin et al. [14] conclusion. Indeed, direct multivariate indices
(ATsun and ATsha), which also account for the extra effect of
wind speed and/or solar radiation, as well as the combined
contribution of humidity and air temperature, were selected
as the best predictors for all-cause very-elderly mortality risk
in the inland plain city (daily average ATsun) and the coastal
city (daily minimum ATsha). In particular, the probability of
being the best predictive model among the other candidate
models considered in this study was nearly (in the inland
plain city) or above (in the coastal plain city) 50%.

However, the UTCI was never identified as the best
thermal predictor of all-cause very-elderly mortality in this
study. This is probably due to the specific characteristics
of UTCI, which includes a complex multinode model of
thermoregulation coupled with a clothing model that deter-
mines strong thermal sensitivity greatly influenced by the
immediate surroundings. For this reason, the UTCI naturally
represents the best approach for exhaustive thermal comfort
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studies. However, it also requires accurate micrometeoro-
logical measurements of a specific location and subjective
information (clothing thermal and physical activity char-
acteristics) which is not generalized for epidemiological
studies over wide geographical areas (such as cities), where
great, uncontrolled variability and different types of human
behavior exist. For this reason simplified approaches for
thermal comfort assessment for awide set of people have been
preferred.

However, although the use of direct multivariate (four-
or three-parameter) indices revealed the best fitting with
all-cause very-elderly mortality attributable to heat stress,
different multivariate index indicators were identified in both
cities. For example, the urban average ATsun, identified as the
best predictive model for the inland plain city, also showed
a poor predictive power for the coastal city. The same was
also observed for the best indicator identified for the coastal
city. Consequently, our findings suggest the use of direct
multivariate indices as indicators naturally recommended
for epidemiological heat-related mortality studies especially
when the very elderly are considered; however, the choice
of the most appropriate multivariate thermal index should
be based on the geographical characteristics of the place
investigated and the data available. In the inland plain city,
the use of a full direct index is suggested which also accounts
for the extra solar radiation contribution, besides the other
meteorological effects. In other terms, because the extra effect
of wind speed and relative humidity is more prevalent in a
coastal city than in an inland city, the use of three- (𝑇air, RH,
and𝑉

10
) or also direct two-parameter (𝑇air and RH) indices is

sufficient for obtaining an effective prediction of heat-related
mortality.

Furthermore, this study also showed that thermal indices
measured by an urban meteorological station in both cities
had a greater relationship with heat-related mortality than
thermal indicesmeasured by a suburban station, even though
no real break exists between urban and suburban areas.
However, it was not possible to identify an unequivocal daily
temporal characteristic (daily average, maximum, or mini-
mum values) of thermal index measurements for both cities.
Indeed, daily average andminimum thermal index indicators
were identified as the best models in the inland and coastal
cities, respectively. Several researchers [38] reported that the
use of the daily average temperature as an exposure indicator
of thermal conditions, taking the whole day and night into
account, generally provides more easily interpreted results
within a policy context. In another study [39], the authors
also found a close association of the minimum temperature
with heat effects. The impact might also be the strongest
when the very elderly are considered: when heat discomfort
conditions also persist during night-time hours, when the
body generally requires physiological rest, and when renal
tubular conservation of sodium and water diminishes during
periods of dehydration, all of which represent aggravating
factors for health, especially in the “elderly frail” with a
significant increase in the mortality risk. Conversely, daily
maximum indicators represent the worst model-fits in the
coastal city. This is probably due to the fact that cities on the

coast generally have reduced daily temperature ranges and
less frequent daily “extremes” than inland cities.

4.4. Strengths and Limitations. This study has several
strengths. Firstly, the newly developed UTCI, which
represents the state-of-the-art of outdoor thermal comfort
assessment, has been included, together with other thermal
indices, as a potential predictor of heat-related mortality.
Secondly, an accurate model selection was carried out by
using the Akaike weight scheme which is a useful tool for
supplementing the basic results obtained with the AICmodel
comparison analysis [31]. The analyses were controlled for
the main air pollution concentrations as confounding effects.
Previous studies reported differences between models with
and without the adjustment of air pollution, especially in the
case of extremely hot days and vulnerable groups [40, 41].

Some limitations should also be pointed out. Since the
identification of the best thermal predictor of heat-related
mortality was only investigated in two cities in this study, the
results cannot be applied to other countries and/or climates.
Indeed, the interaction between weather and human health
is mediated by socioeconomical and cultural (i.e., clothing
and diet) factors, besides adaptation of the population to
the local climate. However, it should also be noted that the
two cities considered in this study had two clearly different
climate conditions. In a recent study [42] the authors showed
how elderly patients who are living alone and also using
community care services are two times more at heat-related
health risk than other elderly people. Living alone, also
associated with critical health and low socioeconomic status,
can generally result in a significant increase in vulnerability
to heat conditions. Further improvements could be provided
in heat-related health risk estimations by taking socio-
economic conditions, perceptions, and cost factors of using
air-conditioning at home during the warmest period of the
year and cultural differences into consideration.

In addition, the analyses could also be extended to
different mortality categories and age groups. In this way it
would be possible to understand if different age andmortality
categories are sensitive to different thermal indicators.

5. Conclusion

This study showed how the use of direct multivariate indices,
which also account for the extra effect of wind speed and/or
solar radiation as well as the combined contribution of air
humidity and temperature, revealed the best fitting with
all-cause very-elderly mortality attributable to heat stress.
However, different multivariate thermal index predictors
were identified in both inland and coastal plain cities.
In addition, UTCI, which represents the best performing
index in thermal comfort assessment, was never identified
as the best predictor of all-cause very-elderly mortality. It
is hypothesized that simplified approaches for a general
thermal comfort assessment, such as direct multivariate
thermal indices, are preferable for epidemiological purposes.
The choice of the most appropriate multivariate thermal
index as a predictor of heat-related mortality should be
based on geographical characteristics and the availability data
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regarding the area considered. Further studies are needed to
confirm these results.The better understanding of the impact
of different thermal indicators on mortality in different
geographical contexts will provide relevant information for
developing efficient public health programs and heat-related
health risk assessments. This information could prove to
be very useful in developing preventive measures and for
functional implementation to improve previous local public
health emergency plans related to heat conditions.
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