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Abstract

In the latest decades, noise and vibration characteristics of products have
been growing in importance, driven by market expectations and tightening
regulations. Accordingly, CAE tools have become irreplaceable in assisting
acousticians through the design process, and their accuracy and efficiency are
essential to model the behavior of complex engineering systems.

This dissertation aims at increasing the computational efficiency of determi-
nistic simulation techniques for steady-state noise and vibration problems.
In particular, the focus is on the efficient evaluation of weighted frequency
integrals. Classic approaches make use of numerical quadrature to evaluate a
frequency integral. However, the response of a vibrating system is commonly a
highly oscillating function of frequency, and a large number of sampling points
might be required to achieve an accurate integration. As an alternative, the
residue theorem is proposed to compute the weighted integrals. The refined
integration over real frequencies is replaced by a few computations at complex
frequencies, with a consequent increased accuracy and computational efficiency.

A weighted integral is first evaluated to compute the band-averaged input
power into a vibrating system. The ideal rectangular weighting function is
approximated by using the square magnitude of a Butterworth filter. Applying
the residue theorem, the integral can be evaluated by computing the system
response at a few points in the complex frequency plane. These points are
some of the filter poles, equal in number to the order of the filter. This
allows for an efficient integration, regardless of the bandwidth of analysis.
Such a result is successively generalized. The band integral is computed by
moving the path of integration to the complex frequency plane and applying
efficient quadrature schemes. Due to the smoothness of the integrand in the
complex frequency plane, the accuracy and efficiency of the technique are
further increased. Moreover, it is shown that using numerical quadrature in the
complex plane indirectly leads to the definition of a novel family of weighting
functions over the real frequency domain.
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vi ABSTRACT

The proposed techniques for the evaluation of the band-averaged input power
are accurate, efficient, easy to implement and can be employed within any
classic deterministic framework. Applications allow assessing the effectiveness
of the methodology for complex geometries and frequency dependent properties,
and in combination with optimization schemes.

When the order of the Butterworth filter is one, its square magnitude
corresponds to the Lorentzian function, which allows computing the weighted
average over a wide frequency range by evaluating the response at a single
complex frequency. However, due to its bell-shape, the Lorentzian is not
suitable to evaluate band values, and its use as a weighting function is
investigated in three different ways. The ensemble mean input power is
estimated by using the Lorentzian-weighted frequency averaging. The same
procedure is used to evaluate the direct field dynamic stiffness of a component.
Finally, the Lorentzian is used as a mass-frequency density function within the
Fuzzy Structure Theory.



Sommario

Negli ultimi decenni, spinta da aspettative di mercato e normative sempre più
stringenti, l’importanza delle prestazioni acustiche e vibrazionali dei prodotti
è molto aumentata. Di conseguenza, gli strumenti CAE sono diventati
insostituibili nell’assistere l’ingegnere acustico durante la fase di progettazione e
la loro accuratezza ed efficienza sono essenziali per modellare il comportamento
di sistemi ingegneristici complessi.

L’obiettivo di questa tesi è il miglioramento dell’efficienza computazionale
delle tecniche di simulazione deterministiche per problemi stazionari nel campo
dell’acustica e vibrazioni, con particolare attenzione alla valutazione efficiente
di integrali pesati in frequenza. Approcci classici utilizzano tecniche di
quadratura numerica per valutare suddetti integrali, ma dato che la risposta
di un sistema vibrante è comunemente una funzione altamente oscillante della
frequenza, un grande numero di punti di campionamento può essere necessario
per ottenere un integrazione accurata. Il teorema dei residui è proposto come
alternativa per il calcolo di integrali pesati. Con tale metodo si sostituisce il
raffinato campionamento sull’asse delle frequenze reali con un ridotto numero
di calcoli a frequenze complesse, ottenendo un significativo miglioramento
dell’accuratezza e dell’efficienza computazionale.

La soluzione di un integrale pesato è utilizzata per il calcolo della potenza
mediata su bande in ingresso ad un sistema vibrante. La funzione peso
rettangolare è approssimata dall’ampiezza quadrata del filtro di Butterworth.
Utilizzando il teorema dei residui, l’integrale può essere valutato calcolando
la risposta del sistema in pochi punti nel piano delle frequenze complesse.
Tali punti corrispondono ad alcuni dei poli del filtro di Butterworth, uguali
in numero all’ordine del filtro stesso. Questa procedura permette di integrare
efficientemente, indipendentemente dall’ampiezza della banda.
Il risultato è successivamente generalizzato. L’integrale di banda è calcolato
spostando il percorso di integrazione nel piano delle frequenze complesse e
applicando schemi efficienti di quadratura numerica. Il comportamento regolare
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della funzione integranda nel piano delle frequenze complesse, assicura che
l’accuratezza e l’efficienza di queste tecniche siano ulteriormente migliorate
rispetto all’utilizzo della media con filtro di Butterworth. Inoltre, è dimostrato
che l’utilizzo di quadratura numerica nel piano complesso porti indirettamente
alla definizione di famiglie di funzioni peso sull’asse reale della frequenza.
Le tecniche proposte per la valutazione della potenza in ingresso su bande sono
accurate, efficienti, di facile implementazione e possono essere utilizzate con
ogni metodologia deterministica classica. Una serie di applicazioni permettono
di valutare l’efficacia del metodo per geometrie complesse, proprietà dipendenti
dalla frequenza e in combinazione con schemi di ottimizzazione.

Quando l’ordine del filtro di Butterworth è uguale a uno, la sua ampiezza
quadrata corrisponde alla funzione di Lorentz, che permette il calcolo della
media pesata su ampi intervalli di frequenza valutando la risposta a una singola
frequenza complessa. Tuttavia, data sua forma a campana, la Lorentziana non
è adatta per la valutazione di medie su bande e il suo utilizzo come funzione
peso è studiato in tre diverse situazioni. Utilizzando la media in frequenza
pesata con la Lorentziana si valuta l’ingresso di potenza mediato sull’insieme di
strutture nominalmente identiche. La stessa procedura è utilizzata per valutare
la rigidezza dinamica di campo diretto di un dato componente. Infine, la
Lorentziana è usata come funzione di densità massa-frequenza all’interno della
Fuzzy Structure Theory.



Beknopte samenvatting

Het belang van het vibro-akoestische gedrag van een product is in de voorbije
decennia sterk toegenomen, ten gevolge van een striktere regelgeving en
strengere markteisen. CAE-technieken zijn dan ook onontbeerlijk geworden
voor akoestische ingenieurs tijdens het ontwerpproces. De nauwkeurigheid en
efficiëntie ervan zijn cruciaal bij het modelleren van het gedrag van complexe
systemen.

Deze thesis heeft als hoofddoel het verbeteren van de rekenefficiëntie van
deterministische simulatietechnieken voor stationaire trillings- en geluidspro-
blemen. Meer specifiek ligt de focus op de efficiënte berekening van gewogen
frequentie-integralen. Conventionele methodes maken gebruik van numerieke
kwadratuurregels om frequentie-integralen te evalueren. De respons van
een trillend systeem is echter vaak een sterk oscillerende functie van de
frequentie, waardoor een groot aantal kwadratuurpunten vereist kan zijn voor
een nauwkeurige integratie. Dit werk stelt de residustelling voor als alternatief
voor het berekenen van gewogen integralen. De rekenintensieve integratie over
reële frequenties wordt dan vervangen door een paar berekeningen op complexe
frequenties. Dit leidt tot een verhoogde nauwkeurigheid en rekenefficiëntie.

Eerst wordt een gewogen integraal geëvalueerd om het bandgemiddelde
ingangsvermogen in een trillend systeem te berekenen. Het ideale rechthoekige
venster als wegingsfunctie wordt benaderd door de kwadratische magnitude
van een Butterworth-filter. Toepassen van de residustelling laat toe om de
integraal te evalueren door de systeemrespons te berekenen in een paar punten
in het complexe frequentievlak. Deze punten zijn een aantal van de polen
van de filter, in aantal gelijk aan de orde van de filter. Dit zorgt voor een
efficiënte integratie, ongeacht de bandbreedte van de analyse. Dit resultaat
wordt vervolgens veralgemeend. De bandintegraal wordt berekend door het
integratiepad te verschuiven naar het complexe frequentievlak en efficiënte
kwadratuurregels toe te passen. Dit verhoogt de nauwkeurigheid en efficiëntie
van de techniek nog meer, dankzij de gladheid van de integrand in het complexe
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x BEKNOPTE SAMENVATTING

frequentievlak. Voorts wordt aangetoond dat numerieke kwadratuur in het
complexe vlak leidt tot de definitie van een nieuwe familie van wegingsfuncties
over het reële frequentiedomein.

De voorgestelde technieken voor het berekenen van het bandgemiddelde
ingangsvermogen zijn nauwkeurig, efficiënt, eenvoudig te implementeren, en
kunnen toegepast worden binnen elk conventioneel deterministisch kader. Toe-
passingen laten toe om de doeltreffendheid van de methodologie te beoordelen
voor complexe geometrieën en frequentie-afhankelijke eigenschappen, en in
combinatie met optimalisatieschema’s.

Als de orde van de Butterworth-filter één is, komt de kwadratische magnitude
ervan overeen met de Lorentz-functie. Dit laat toe om het gewogen gemiddelde
over een brede frequentieband te evalueren door de respons op een enkele
complexe frequentie te berekenen. De Lorentz-functie is omwille van haar
klokvorm echter niet geschikt voor het evalueren van bandwaardes, en
het gebruik ervan wordt op drie verschillende manieren onderzocht. Het
ensemble-gemiddelde ingangsvermogen wordt geschat door gebruik te maken
van Lorentz-gewogen frequentiemiddeling. Dezelfde procedure wordt gebruikt
om de dynamische stijfheid in het directe veld van een component te
berekenen. Ten slotte wordt de Lorentz-functie gebruikt als een massa-
frequentie-dichtheidsfunctie in het kader van de Fuzzy Structure Theory.
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Chapter 1

Introduction

The purpose of computing
is insight, not numbers.

R. Hamming, [79]

The rapid increase in computational power is changing the product design
process substantially, leading to an actual virtual prototyping revolution. Up
to some decades ago, the overall design cycle was guided by experienced engi-
neers, who tailored prototypes in a slow iterative building-testing-optimizing
procedure. With the advent of simulation technology, prototypes turn more and
more into digitalized versions, hosted by Computer Aided Engineering (CAE)
platforms, embedding several modeling environments. Nowadays, engineers
can quickly investigate design parameter sensitivities on virtual prototypes,
leading to products with an optimized performance, available in a shorter time-
to-market and with a significant reduction of development costs.
Within this evolution, also the role of acousticians and dynamicists has
undergone a substantial change. In the past, noise and vibration engineers
focused on the last part of the design cycle, when the product arose with
some annoying noise or an unwanted vibration. Today, driven by market
expectations and tightening regulations, noise and vibration characteristics of
new products have received growing attention. Sound quality and vibration
levels directly influence the customer experience and are key factors for
marketing strategies: the sound quality inside a car cabin or the level of
vibration perceived within an aircraft are everyday examples [58]. As noise
exposure increases the risk of ischemia and other disturbances [3], health issues
are also growing in importance, and modern urban and working environments
are designed to shield people from noise pollution due to traffic and machineries.
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Furthermore, the development of new high-tech products always leads to
new sounds and poses novel challenges for vibro-acousticians, like for electric
vehicles, where the roaring sound of the combustion engine has been replaced
by the high-frequency whistling of electric motors.

In this context, CAE tools have become irreplaceable in assisting acousticians
through the design process, and large research efforts have been spent on
improving their capability to handle complex problems. Nowadays, many
challenges are present in the world of vibro-acoustic modeling, and the aim of
the presented research is to go one step further in the improvement of numerical
tools for steady-state noise and vibration simulations.

1.1 Current challenges in numerical steady-state
vibro-acoustics

Systems of engineering interest are usually complex [67]. Such a complexity
can refer to the amount of information needed to model a system consisting
of a large number of subsystems. Alternatively, the dynamic behavior of the
system can be considered to be complex, in the sense that it reacts in many
different manners. For example, a detailed model of a car consists of several
thousands of components, and its response, up to 10 kHz, presents about
one million acoustic and three million structural modes. This already gives
an idea of the amount of information needed to model such a problem in a
numerical environment. Additionally, the accuracy of the input data is a key
factor for a reliable numerical simulation, although it is not easy to obtain
in practice: properties, geometries and external influences always differ from
nominal values and are inevitably affected by variability and uncertainty. As
a result, the responses of nominally identical systems can significantly differ
from each other, as illustrated in fig. 1.1, which shows the effect of variability
on the response of 99 nominally identical cars [102]. This lack of information
has drastic consequences in numerical modeling and often exacerbates vibro-
acoustic problems.
Given this premise, predicting the behavior of such complex systems over
the whole audio frequency range is one of the most challenging tasks for
acousticians, and, for this purpose, numerical tools are required to be accurate,
efficient and able to handle non-determinism.

The first challenge for the analyst is the correct modeling of the physical
problem. A detailed model has to be properly reduced according to the problem
to solve. This implies that not all components are modeled and that a suitable
approximation for their properties is necessary. This process is not an easy task,
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Figure 1.1: Structure-borne acoustic response at the driver’s ear measured on
99 nominally identical ISUZU RODEO’s [102].

Figure 1.2: Qualitative FRF of a complex system [159].

and the model characteristics are commonly chosen as function of the frequency
range of interest and the adopted numerical technique. Generally, the audio
frequency range is fragmented in the low- and high-frequency regions, which
are bridged by a transitional mid-frequency zone. Over these regions, the
Frequency Response Function (FRF) of a complex system exhibits different
behaviors, which are qualitatively illustrated in fig. 1.2 [159].
When the wavelength of analysis is larger than or similar to the characteristic
dimension of the system, it belongs to the low-frequency range (LF). At
these frequencies, the system response is characterized by a small number of
distinguishable global modes, which correspond to resonance frequencies (see
fig. 1.2). The sensitivity to variations in model properties and geometry is
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small, but the influence of the boundary conditions may be large. Element-
based methods, such as the Finite Element Method (FEM) [9, 223] and
the Boundary Element Method (BEM) [17, 53] are well-established for low-
frequency problems and provide a local approximation for the field variable.
As model characteristics are considered known with high precision, these
approaches are also called deterministic techniques.
When the frequency of analysis increases up to several times the fundamental
frequency of the system, the vibration is qualified as high-frequency (HF) and
generally implies a high modal density and high modal overlap. Consequently,
the response is not dominated by individual modes, but presents a rather
smooth behavior and is highly sensitive to small variations in system properties
and geometry (see fig. 1.2). The fine discretization required to capture small
oscillations is the first computational hurdle impeding the use of element-based
techniques for high-frequency. Moreover, the impossibility of determining
precise model properties leads to a conceptual limitation for deterministic
approaches. For these reasons, energetic approaches are preferred for high-
frequency modeling, like the Statistical Energy Analysis (SEA) [132, 133],
which is the most widely used tool in this frequency range and only requires
gross model parameters. Under the assumptions of a diffuse wavefield and
weak coupling between system subcomponents, SEA yields the spatial- and
frequency-averaged energy within each subsystem, which is also representative
of the average taken on the ensemble of nominally identical structures.
Especially for built-up structures, the transition region from low- to high-
frequencies is gradual and is called the mid-frequency range (MF). In this region,
distinct components can carry different wavelengths and can be differently
influenced by variability in system properties. Both deterministic and energetic
approaches present some limitations when moving to mid-frequencies. The
former require a large number of degrees of freedom (DOFs) to model
the problem. Moreover, the presence of non-determinism may lead to an
unsatisfactory degree of reliability and representativity of the solution. On the
other hand, the wavefield diffusivity might be violated, leading to unacceptably
large SEA confidence intervals.

Currently, no numerical technique exists to analyze the steady-state behavior
of a structure in the whole audio frequency range. Over the last twenty years,
rather than trying to formulate approaches unifying modeling procedures over
the audio frequency range, narrowing the mid-frequency gap has been one of
the main research challenges [50, 179]. As a result, three major families of
approaches have been developed.
The first family aims at pushing low-frequency approaches higher in frequency,
by increasing their computational efficiency and including non-determinism. A
second family attempts to relax on the underlying assumptions of the energy
methods, trying to include local or modal information to pull down the lower
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frequency bound of validity. A final group of so-called hybrid approaches
employs both deterministic and energetic modeling techniques in the same
framework to model components which carry waves traveling at different
speeds.
The techniques discussed in this dissertation aim at increasing the computa-
tional performance of classic deterministic techniques to perform averaging
procedures. However, their application is not confined to the first but rather
extended to all three aforementioned families. Before presenting the main
research achievements, the role of averaging techniques and the computation
of the input power are now introduced.

1.2 Averaging techniques and input power compu-
tation

The behavior of a vibrating system can be described by either kinematic or
energetic quantities. In each case the response is a function of four variables:
time, space, frequency and a vector collecting model descriptors. While
time becomes redundant for steady-state phenomena, space and frequency
are necessary to fully define the analysis, together with a set of descriptors
grouping all the information related to geometry, material properties, boundary
conditions, loadings, operating conditions, etc.
Averaging procedures can be performed over each of these variables [132].
However, while time averaging of harmonic quantities simply consists of
averaging over a cycle of vibration, averaging over space, frequency and model
parameters might be computationally demanding and leads to information of
high practical interest.
Space-averaging can be carried out either over a part or over the whole extent
of the physical domain and it gives an idea of the overall vibration level present
in the component. The computational cost of this operation is relatively low
and usually involves only a post-processing step.
Computing ensemble-averages involves averaging over random variations of
the model parameters and allows assessing the influence of non-determinism
on the system response. Estimating the ensemble behavior can be very
computationally cumbersome, as stochastic techniques might be necessary. For
example, a commonly used approach is the Monte Carlo (MC) method [62].
This strategy consists of running a massive amount of simulations, each time
using a different set of parameters complying with the prescribed statistics.
Depending on the level of variability, a MC simulation can involve hundreds
or thousands of recalculations. For example, in fig. 1.3, the MC approach is
employed to estimate the ensemble mean input power into a simply supported
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Figure 1.3: Comparison between frequency and ensemble-averaged input power
for a simply supported plate perturbed with random masses. Samples (gray
lines), ensemble mean (dotted line), 1/3 octave band average (solid line) and
50 Hz bandwidth average (dashed line).

plate excited by a point force and of which the material density is perturbed by
means of 20 randomly distributed masses. To compute the ensemble-average,
300 samples have been used. This also highlights the large computational effort
required to estimate ensemble statistics of dynamic systems.
Finally, frequency averaging procedures require the computation of weighted
integrals and can have a wide range of applications. Firstly, they can provide
a good approximation for the ensemble-average at a reduced computational
cost. In general, this is the case when the statistical overlap is relatively large
and the system response can be considered ergodic [141]. The validity of this
hypothesis is strongly dependent on the choice of the frequency interval on
which the average is carried out. At low-frequencies, the modal overlap is
expected to be very small and a number of resonance frequencies has to be
covered, say three to five [58]. With decreasing wavelength, the response shows
a smoother behavior and such a frequency interval can be decreased in width.
This can be seen in fig. 1.3. Nevertheless, the relation between ensemble and
frequency averaging is still subject of current research [131].
In many cases, expressing the response in the format of predefined frequency
bands is preferred to a high spectral resolution. For instance, for vehicle noise
or building acoustics, octave or third octave bands are often used [58].
The outcomes of band-averaging are illustrated in fig. 1.3. The input power
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is averaged both on one-third octave bands and on 50 Hz-bands. A good
agreement between frequency and ensemble-averaging can be observed when
the response statistics saturate.
The computation of weighted frequency integrals is commonly performed by
means of numerical quadrature [43]. However, since the response of a dynamic
system can be a highly oscillatory function, a large number of sampling
frequencies might be needed to obtain accurate estimates, with a subsequent
high computational cost.

In this work, the main focus is on the evaluation of the frequency-averaged input
point mobility, which is straightforwardly related to the power injected by a
force. As it directly connects the strength of the excitation to the vibration of
the structure, an accurate evaluation of the input power is an important piece of
information. Nevertheless, its estimation is a difficult task, especially for built-
up systems, in which flexible and stiff components are mounted together to
improve the dynamic properties of the machinery. Stiffened plates, for instance,
are encountered in structures like vessels, aircraft, trains etc. In most of the
cases, the machinery is designed such that heavy loads are applied on the main
frame of the structure. As a consequence, stiff components control the power
injected into the whole structure, and a detailed vibration analysis is required
to determine its magnitude.
One way of evaluating the input power into a structure is through experimental
analysis, although obtaining a direct measurement of the input power is
not simple [40]. Alternatively, when the wavelength is much smaller than
the characteristic dimension of the component, its geometrical features are
assumed to be of infinite extent and the input mobility can be easily
expressed in analytical form for common elements such as rods, beams, plates,
cylindrical shells, etc. [40, 132]. This approximation is widely applied in
high-frequency modeling, where energetic approaches are used. For more
general structures, the most reliable way to numerically evaluate the input
power is to use deterministic methods, although their accuracy comes with a
higher computational cost. Approaches such as FEM and BEM are perfectly
suited to investigate the effects of boundary conditions, inhomogeneities and
discontinuities on the system behavior; especially in the transition region from
low- to high-frequencies, where deterministic modeling is complementary to the
energetic one.

Frequency-averaged input power can have many applications in vibro-acoustic
design and analysis. For example, the power injected into the system
constitutes the driving factor for energy approaches, which implicitly handle
frequency-averaged quantities [132]. Consequently, a precise estimate of the
input power can lead to a reasonable level of solution accuracy, even in the case
that high-frequency assumptions are only roughly met [57]. Furthermore, the
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knowledge of the input power leads to the input mobility, which can be useful
to build lumped parameter systems, and allow complicated substructures to be
seen as parts of a mechanical circuit [58].
Frequency averaging procedures can also be useful to perform more advanced
design studies. For instance, optimizing the behavior of a structure over a band
highly improves the robustness of the optimal configuration with respect to a
single frequency optimization [173]. However, if not performed efficiently, the
averaging operation can seriously slow down the analysis.

Finally, from a broader perspective, frequency averaging falls in the class of
techniques attempting at estimating highly oscillatory integrals, which are not
only confined to the noise and vibration area [33]. Those integrals are common
in many other branches of computational physics, such as electromagnetism,
optics, quantum chemistry, image processing etc. Although these topics are
not covered in this manuscript, the following techniques can be easily extended
to other domains.

1.3 Research objectives and achievements

The research presented in this dissertation aims at formulating efficient tools
for performing frequency averaging operations. Classic algorithms make use
of numerical quadrature techniques to estimate a weighted integral. Since the
response of a vibrating system is an oscillating function of frequency, many
sampling points might be required to obtain accurate estimates. On the other
hand, more advanced schemes for highly oscillatory integrals require a priori
knowledge of the integrand, which is often not the case for complex vibrating
systems.
The residue theorem is originally employed in the following. As a result,
accurate band evaluations can be obtained with a substantial reduction of
computational effort.
The main achievements of the research described in this dissertation can be
grouped in two categories.

Efficient evaluation of band-averaged input power This part of the research
is devoted to the efficient evaluation of band integrals. Firstly, this is obtained
by using the square magnitude of a Butterworth filter to approximate the
rectangular weighting function. Instead of an expensive and extensive use of
quadrature techniques, the average can be easily estimated by evaluating the
system response at a few points in the complex frequency plane, these points
being some of the filter poles, equal in number to the order of the filter. This
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allows for an efficient integration, regardless of the bandwidth. Subsequently
this concept is generalized. The band integral is computed by moving the
path of integration to the complex frequency plane and applying efficient
quadrature schemes. The smoothness of the frequency response function over
the alternative path is higher and leads to more efficient and accurate integral
evaluations. The application of this procedure also shows that it is possible
to define a family of weighting functions corresponding to certain paths and
integration schemes.
The robustness of the approach with respect to complex geometries and
frequency dependent properties is proven through examples.
This strategy is also successfully exploited for optimization purposes. Thanks
to its efficiency, it can quickly lead to the identification of the configuration
which performs best over a frequency range.

Use of Lorentzian-weighted frequency averaging The square magnitude of
the Butterworth filter of order one coincides with the Lorentzian function. Due
to its bell-shape, the Lorentzian function weighs the integral over a wider
frequency band, rather than providing a band value, and one single response
evaluation at a complex frequency leads to the Lorentzian-weighted frequency
average, without the need for refined quadrature integration. This concept is
exploited in different ways.

• The possibility of representing the ensemble mean response by means of
frequency averages is investigated. This requires the shape parameter,
which describes the Lorentzian function, to be properly tuned. In this
sense, the research attempts to connect the response statistics to the
aforementioned parameter for providing an estimate of the ensemble-
average.

• When performed on the dynamic stiffness of the system, the Lorentzian-
weighted frequency average leads to the direct field dynamic stiffness.
This information can be exploited within the context of hybrid techniques,
or other strategies, where the computation of the direct field is required.

• The use of the Lorentzian function is extended to the Fuzzy Structure
Theory (FST) [185] in the form proposed by Pierce [166]. In this case, the
Lorentzian is employed to describe the mass-frequency density function
of a fuzzy component.

As proposed in this dissertation, the use of the residue theorem to evaluate
weighted integrals is novel in the field of noise and vibration. However, the
presented ideas could be easily generalized and extended to other domains
where the integration of highly oscillating functions is of interest.
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1.4 Outline of the dissertation

This dissertation is organized in eight chapters; an appendix is added to clarify
specific topics. The general outline of the manuscript is now presented.

Chapter 1 introduces the importance of fast and accurate numerical tools
to improve the product design process and provides a general overview
of the topics developed within this research path. Chapter 2 describes
the mathematical underlying formulations for vibro-acoustic problems and
illustrates the current state-of-the-art for steady-state noise and vibration
modeling and highly oscillatory integral computation.

The main idea of exploiting the residue theorem to solve weighted frequency
integrals is presented in ch. 3, where the square magnitude of the Butterworth
filter is used to weigh a frequency integral. These concepts are further exploited
in ch. 4, where the aforementioned procedure is extended towards a more
general and efficient procedure for band-averaged input power evaluation. Both
chapters present application cases to prove the computational benefits of the
proposed strategy.

Chapter 5 and 6 are dedicated to advanced applications of the proposed strategy.
In the former, a geometrically complex structural component and a frequency-
dependent acoustic problem are investigated, while in the latter, the approach
is used in combination with an optimization strategy, providing the best design
configuration over a frequency band.

Chapter 7 focuses on the use of the Lorentzian-weighted frequency averaging
procedure. In order to compute the ensemble average, the shape parameter
of the Lorentzian is properly tuned based on the response statistics of the
system under investigation. Moreover, in this chapter the use of the Lorentzian
function is exploited to evaluate the direct field dynamic stiffness and within
the context of the FST.

Conclusions and perspectives for future research are provided in ch. 8.

Appendix A describes the features of the Wave Based Method (WBM) [49],
which is extensively used in some of the applications.



Chapter 2

Background on prediction and
integration techniques for
linear second-order dynamic
systems

The response of a dynamic system in the time domain consists of a transient
and a steady-state component. For asymptotically stable systems, the former
dies out after the excitation is applied and the vibration is characterized
by the steady-state, or time-invariant, behavior. From an analytical point
of view, solving a transient problem involves the solution of a differential
equation in the time domain, while for steady-state conditions, a time-harmonic
solution is assumed, and the problem can be expressed in the frequency domain.
Describing the mathematical formulations underlying the latter phenomena is
the first objective of the following chapter. These include structural, acoustic
and coupled/uncoupled vibro-acoustic problems. However, the complexity of
real-life applications hampers the possibility of finding a closed-form solution
for such differential equations. For this reason, numerical methods have
been developed to yield an approximate solution at a reasonable expense of
computational resources. The second major objective of this chapter is to
provide an overview of the currently existing numerical techniques. These are
divided in two main families: deterministic and energetic approaches. Such
methods are not only essential to tackle low- and high-frequency problems,
they also constitute the building blocks for more advanced techniques to cover
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the mid-frequency range and to deal with non-determinism. In order to allow
the positioning of the work into a broader perspective, the third objective of this
chapter is to give a short overview of the existing techniques to estimate highly
oscillatory integrals. These can be thought as a generalization of frequency
averaging calculations, which are the main focus in this dissertation.

The chapter is organized as follows. Section 2.1 provides the general problem
formulations. Section 2.2 describes the main features of a typical vibro-
acoustic response. A survey of the numerical methods is given in sec. 2.2.1
to 2.2.6, which illustrate the state-of-the-art techniques for low-frequencies,
high-frequencies, their extensions for mid-frequencies, hybrid approaches and
methods to handle non-determinism. A short overview of methods for highly
oscillatory integrals is given in sec. 2.3. The position of the research is discussed
in sec. 2.4. Finally, sec. 2.5 is dedicated to concluding remarks.

2.1 Steady-state problem formulation

This section focuses on the description of the structural, acoustic and vibro-
acoustic problem. The mathematical conventions used in the following are
now introduced. The physical space R3 is a Cartesian reference system
(i, j, k) and a generic point is indicated as x = (x1, x2, x3). Since linear
steady-state phenomena are of interest in the following, a generic solution
w(x, t) = w(x, ω)eiωt to a boundary problem is harmonic with positive time
dependence, where i indicates the imaginary unit, i2 = −1, ω the angular
frequency of analysis and t the time.
The Einstein convention for summation over repeated Latin indices is adopted.

2.1.1 Structural problem

Let Ωs be a three-dimensional (3D) domain occupied by a structure at
equilibrium, as depicted in fig. 2.1. The smooth boundary ∂Ωs, with normal ns,
is divided in two non-overlapping parts, ∂Ωs = ∂Ωs,d ∪ ∂Ωs,s. Over ∂Ωs,d and
∂Ωs,s, prescribed displacements and surface forces are applied, respectively. A
body force field f(x, ω) is also defined in Ωs. The complex amplitude of the
displacement of a particle at point x is denoted by the vector u(x, ω).
The components of the linearized symmetric strain tensor ǫ are defined as

ǫkh(x, t) =
1
2

[uk,h(x, t) + uh,k(x, t)] , (2.1)

where uk,h identifies the rate of variation of the k-th component with respect
to the h-th direction, with k, h = 1, 2, 3. The symmetric stress tensor σ can be
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defined accordingly by means of the constitutive law

σij(x, t) = aijkh ǫkh(x, t), (2.2)

where aijkh, with i, j = 1, 2, 3, is the tensor associated with the elastic
properties of the material and is positive definite. Under steady-state
conditions, the governing equation for the elastodynamics problem can be
formulated as

ω2ρsui(x, ω) + σij,j(x, ω) = −fi(x, ω) in Ωs, (2.3)

where ρs denotes the mass density of the structure. The application of boundary
conditions leads to a well-posed problem. A prescribed displacement ū is
applied on the boundary ∂Ωs,d,

u(x, ω) = ū on ∂Ωs,d. (2.4)

When the structure is fixed, ū = 0, while if it is free ∂Ωs,d = ∅. Finally, on
∂Ωs,s the surface force field, s̄, is applied,

σ(x, ω) · ns(x) = s̄ on ∂Ωs,s, (2.5)

where ns is the vector normal to ∂Ωs,s. If dissipation mechanisms are included
in the description of the material properties, an imaginary term has to be taken
into account in the stress tensor,

σ
(diss)
ij (x, ω) = σij(x, ω) + iω bijkh ǫkh(x, ω), (2.6)

where bijkh represents the coefficients of the damping tensor.

The general elastodynamics problem is commonly solved through the construc-
tion of a variational formulation which leads to associated mass and stiffness
linear operators. For slender components like beams, plates and shells, the
mass and stiffness terms result in simplified forms [76].
Time-averaged quantities are computed by averaging over a cycle of vibration
and are of high interest for the steady-state analysis of vibrating systems. The
potential energy density, epot, can be expressed as

epot(x, ω) =
1
4

aijkh ǫij(x, ω) ǫ∗
kh(x, ω), (2.7)

where •∗ indicates the complex conjugate of •. The kinetic energy density, ekin,
reads

ekin(x, ω) =
ω2

4
ρsuj(x, ω)u∗

j (x, ω). (2.8)



14 BACKGROUND ON PREDICTION AND INTEGRATION TECHNIQUES FOR LINEAR
SECOND-ORDER DYNAMIC SYSTEMS

j

k

i

∂Ωs,d

∂Ωs,s

Ωs

ns

b

f

b
x

Figure 2.1: Geometrical configuration of the structural problem.

Summing kinetic and potential energy leads to the total mechanical energy
density, which is widely used to describe high-frequency phenomena. The time-
averaged active power injected by the source f into the system is given by

Pin(ω) =
1
2

Re
{

iω
∫

Ωs

uj(x, ω)f∗
j (x, ω) dΩs(x)

}

, (2.9)

where Re {•} is the real-part operator. Using the imaginary part operator leads
to the computation of the reactive input power. Finally, the time-averaged
dissipated power can be computed as

Pdiss(ω) =
ω2

2

∫

Ωs

bijkh ǫij(x, ω)ǫ∗
kh(x, ω) dΩs(x). (2.10)

2.1.2 Acoustic problem

Let Ωa be a 3D domain occupied by an inviscid, homogeneous and compressible
fluid at rest, of smooth boundary ∂Ωa, with normal na, as depicted in fig. 2.2.
Let p(x, ω) describe the low amplitude fluid oscillations at a point x.
Under steady-state conditions the acoustic problem is governed by the
Helmholtz equation,

∇2p(x, ω) + k2
a p(x, ω) = − i

ρaω
q(x, ω) in Ωa, (2.11)

where ∇2 indicates the Laplacian operator and ka is the acoustic wavenumber
associated to the speed of sound ca (ka = ω/ca). The symbols ρa and q
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Figure 2.2: Geometrical configuration of the acoustic problem.

respectively indicate the density of the medium and the volumetric source
strength located in Ωa.
For a generic interior acoustic problem, the boundary ∂Ωa can be split in three
non-overlapping regions, such that ∂Ωa = ∂Ωa,v ∪ ∂Ωa,Z ∪ ∂Ωa,p. On ∂Ωa,v, a
normal velocity v̄n is applied,

∇p(x, ω) · na = −iωρav̄n on ∂Ωa,v. (2.12)

where ∇ is the gradient operator. On ∂Ωa,Z , the pressure and its normal
derivative are related through the normal impedance Z̄,

∇p(x, ω) · na = −i
ωρa

Z̄
p(x, ω) on ∂Ωa,Z . (2.13)

Finally, on ∂Ωa,p, a prescribed pressure p̄ is imposed,

p(x, ω) = p̄ on ∂Ωa,p. (2.14)

When unbounded acoustic problems are considered, a fourth partition at
infinity, ∂Ωa,∞, has to be taken into account, over which the Sommerfeld
radiation condition is imposed. This condition implies that no energy is
radiated from infinity and is formalized as follows,

lim
|x|→∞

|x|
(

∂p(x, ω)
∂ |x| + ikap(x, ω)

)

= 0 in Ωa,∞. (2.15)
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Also for acoustic problems, the effects of loss mechanisms can be taken
into account. Commonly, an imaginary dissipation factor is included in the
description of the speed of sound propagation.
The acoustic problem can be written in an equivalent variational formulation,
leading to the construction of mass and stiffness linear operators [159]. Once
the pressure field is known, derived acoustic quantities can be calculated. The
acoustic particle velocity v(x, ω) is computed as,

v(x, ω) =
i

ρaω
∇p(x, ω), (2.16)

The time-averaged total acoustic energy density is given by,

etot =
1
4

[

ρa |v(x, ω)|2 +
|p(x, ω)|2

ρac2
a

]

. (2.17)

The time-averaged active acoustic intensity I(x, ω) is expressed as,

I(x, ω) =
1
2

Re {p(x)v∗(x)} . (2.18)

If the imaginary part is computed instead of the real one, the reactive acoustic
intensity is obtained. Finally, the time-averaged acoustic power Pacou is
obtained by integrating the active acoustic intensity over a surface S,

Pacou =
∫

S

I(x) · na(x) ds(x), (2.19)

where na is the normal to the infinitesimal surface ds. Integrating the reactive
intensity leads to the reactive acoustic power.

2.1.3 Fluid-structure interaction

This class of problems describes the situation when an elastic structure is in
contact with a fluid. In this case, there is a mutual interaction such that the
fluid pressure is influenced by the structural vibrations and, vice versa, the
acoustic pressure constitutes a distributed load along the interface.
If the vibro-acoustic interaction is weak, the structural and the acoustic
problems can be treated separately, without taking into account the back-
coupling effect of one domain on the other. This is a reasonable assumption
when the elastic structure has high stiffness and the fluid is characterized
by a low density. In an uncoupled model, the structural vibration provides
the excitation for the acoustic volume, whose behavior does not influence the
former. If the acoustic field excitation is the primary source of excitation for
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the structure, their behaviors can again be analyzed separately.
On the other hand, when the fluid density is high or when the stiffness and
mass of the structure is very low, interaction between the structure and the
fluid is not negligible. In that case the mutual interaction has to be taken into
account into a coupled vibro-acoustic model by means of coupling terms. The
coupling condition for the structure is,

σ(x, ω) · ns = p(x, ω)ns on ∂Ωs,i, (2.20)

with ∂Ωs,i the wetted surface, and for the fluid boundary,

∇p(x, ω) · na = ω2ρsu · na on ∂Ωa,i. (2.21)

2.2 Response of a vibro-acoustic system

Solving a vibro-acoustic problem consists of finding a solution either to eq. (2.3),
to eq. (2.11) or to a coupled version of the two. Commonly, such a solution
cannot be found in a closed form and numerical techniques are necessary to
yield an approximation.
Generally, the response of a vibrating system is an oscillating function of space
and frequency, and either a fine domain discretization or a proper number of
oscillatory functions have to be employed to accurately represent its behavior.
However, while the frequency response may become smoother, with decreasing
wavelengths, the spatial pattern presents an increasingly oscillatory behavior.
For this reason, the numerical model should be refined accordingly when moving
to higher frequencies.
Based on the spatial oscillatory behavior of the solution, it is possible to
divide the audio frequency range into two main regions, namely low- and high-
frequency, bridged by a mid-frequency interval.
When the spatial oscillation is comparable to the characteristic size of the
problem under analysis, the corresponding wavelength belongs to the low-
frequency range. The response of the system is characterized by distinct
resonance peaks, which involve global modes of the component, as shown in
fig. 1.2. Small changes in the geometry and system properties slightly affect
the response, and a relatively low number of DOFs is necessary to characterize
the system behavior. The low-frequency behavior is of interest because of the
global nature of the modal response, which leads to a high level of energy and
large amplitude of vibration.
On the other hand, when the frequency of analysis corresponds to many
times the fundamental natural frequency of the component, the vibrational
regime belongs to the high-frequency region. Contrarily to the low-frequency
range, high-frequency is characterized by highly oscillatory spatial patterns
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and sensitivity to system parameter perturbation. The high modal overlap
allows the response to be very smooth in the frequency domain, as qualitatively
depicted in fig. 1.2. Due to the potential for high sound transmission and
radiation and for fatigue problems, high frequencies are of high practical
interest. Finding a solution to a high-frequency problem is feasible in practice
but presents two main limitations. Firstly, it requires a high refinement of
the numerical scheme and a consequently large computational effort. Secondly,
due to the effects of uncertainties, it would lead to a result of low practical
interest. For these reasons, instead of solving eq. (2.3) or (2.11), the problem
is commonly reformulated in terms of averaged energetic quantities and its
solution allows predicting the ensemble average, rather than the response of a
single nominal structure.
Moving from low- to high-frequencies is not abrupt and consists of a gradual
transition. This is particularly relevant for complex systems, whose modal
density exhibits large variations over different frequency bands. In the mid-
frequency region, uncertainty and variability increasingly influence the response
of the system, as can be observed in fig. 1.1, and solving the governing equations
as such, might be computationally very demanding. On the other hand, moving
to an energetic description of the problem might yield unsatisfactory results.
Currently, no approach is able to provide meaningful insight on the system
behavior over the whole audio frequency range. However, rather than tackling
such a unified problem, researchers have been focusing on extending the range of
applicability of deterministic and energetic modeling to cover the mid-frequency
gap [50]. A comprehensive review of the numerical methods for steady-state
noise and vibration problems is given in the next sections, grouped as follows:

• low-frequency techniques;

• methods to push low-frequency techniques higher in frequency;

• high-frequency techniques;

• methods to pull high-frequency techniques lower in frequency;

• Fuzzy Structure Theory and hybrid techniques;

• methods to handle non-determinism.

2.2.1 Low-frequency techniques

The main assumption behind low-frequency techniques is that model properties,
boundary conditions and excitations are known with absolute precision. These
details allow to fully define the problem statement of eq. (2.3) and (2.11). A
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variational formulation is then used to provide an approximate solution to the
dynamic problem, which represents the local behavior of the field variable.
The following section presents the main features of the most used tools for
low-frequency analysis, namely FEM and BEM.

Finite Element Method FEM [9, 223] is the most used technique for
structural applications and is also widely used for acoustic problems, especially
interior ones. The generic problem domain Ω is divided into nel elements of
finite dimension, Ωi (with i = 1, 2, . . . , nel), over which the field variable w(x)
is approximated by a weighted sum of nodal values wj with j = 1, 2, . . . , nnod,

w(x) ≈ ŵ(x) =
nnod
∑

j=1

wjN
(i)
j , (2.22)

where N
(i)
j represents the j-th term of a low-order polynomial function

describing the variable over Ωi, also called shape function. A Galerkin weighted
residual formulation is used to impose the boundary conditions and excitations,
leading to the definition of a dynamic stiffness matrix, which, multiplied by the
vector w containing all nodal field variables, equilibrates the forcing term f ,

(

−ω2M + iωC + K
)

w = f . (2.23)

The terms M, C and K represent the mass, damping and stiffness matrices,
respectively. Except for some particular cases, they are banded, symmetric,
sparsely populated, positive definite and frequency independent. Moreover,
due to the polynomial nature of the shape functions, the integration over the
elements can be easily performed. All these advantageous characteristics allow
a computationally efficient solution of the system of equations by means of
both direct and modal solvers. Eventually, in the post-processing phase, the
field solution can be evaluated by means of the shape functions.
Although simplicity makes FEM a very flexible tool, some limitations have to
be taken into account [143]. The use of low-order polynomial functions leads
to the so-called interpolation error, for which the solution may significantly
differ from the exact system response. Additionally, poor accuracy is yielded
when describing derivatives of primary variables, as they are computed by
differentiating polynomial shape functions. Another type of error is the
dispersion error, due to the difference between the real wavelength in the
physical problem and the one represented in the discretized domain. This error
is accumulated along the domain and highly influences the solution accuracy.
These problems can be mitigated by a proper domain discretization. In the
low-frequency range, the interpolation error is dominant, and six to ten linear
elements per wavelength are commonly used to discretize acoustic domains [16].
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For structural problems some rules are proposed in ref. [204]. When increasing
the frequency, the dispersion error highly degrades the solution accuracy, and
a larger number of elements might be required, with a corresponding increase
of computational load.
A final disadvantage of FEM arises when dealing with unbounded domains [69].
Since the Sommerfeld condition is not inherently satisfied by the formulation,
an artificial truncation boundary should be introduced to simulate energy
absorption at infinity. Furthermore, the size of the problem rapidly grows
when modeling the exterior domain. To tackle unbounded problems, proper
strategies have been developed, i.e. Infinite Elements [15], Absorbing Boundary
Conditions [70, 71] and Perfectly Matched Layer [77, 83].

Boundary Element Method BEM [17, 53] is mainly used in acoustics and is
based on the discretization of the Helmholtz integral equation,

c(x)p(x) =
∫

∂Ωa

[

p(y)
∂G(x, y)

∂na
− ∂p(y)

∂na
G(x, y)

]

d∂Ωa(y), (2.24)

where c(x) is a constant depending on the position of x: 1/2 when x is over
a smooth boundary, 1 when x is inside the domain and 0 when x lies outside
the domain. If x is located over a non-smooth boundary, c is equal to α

4π ,
where α is the solid angle subtended by the boundary ∂Ωa at x. The symbol
G indicates the Green’s kernel, which satisfies the homogeneous Helmholtz
equation, and na is the normal to the boundary ∂Ωa at y. BE techniques do
not require the discretization of the whole domain, but only of its boundaries.
As a consequence, models are smaller with respect to FEM, and unbounded
problems can be solved without additional conditions at infinity. However,
also BEM requires mesh refinement for increasing frequencies [142], although
the accuracy does not decrease when computing derived acoustic variables,
i.e. velocity, as it happens with FEM. On the other hand, the computational
efficiency of BEM is limited by its matrices which are complex, fully populated
and frequency dependent, and their computation requires special care due to
the presence of singularities in the Green’s kernels.
Two different BEM formulations exist. The direct formulation is based on
eq. (2.24), which is solved for the pressure and its derivative at the nodal
positions. This allows solving either an interior or an exterior problem in
the post-processing step. On the other hand, the indirect formulation allows
handling both problems at the same time. Such a formulation is a combination
of two direct problems [18] and results in a system of equations in terms of
the so-called single and double layer potential densities at nodal positions. In
general, the indirect BEM shows some advantages over the direct one. Its
matrices are symmetric and it can handle geometries with open boundaries.
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Due to its features, the BEM is widely used for exterior problems rather than
interior ones [80], although the model size commonly does not exceed 104

elements. It is also widely used in combination with FEM to solve coupled
structural-acoustic problems.
A final drawback of BEM is the non-uniqueness of the solution for exterior
problems with closed geometry, which pollutes the response with fictitious
resonances. The Combined Helmholtz Integral Equation Formulation [177]
has been proposed as a remedy for direct BEM, while for indirect BEM the
Burton and Miller approach [21] and the Internal Impedance Method [42] can
be used.

2.2.2 Pushing low-frequency techniques higher

Since the solutions to eq. (2.3) and (2.11) are oscillating functions of space, a
very refined domain discretization is required to capture small oscillations with
reasonable precision. As a consequence, the model size and computation time
drastically increase with frequency. To overcome these limitations, research
has focused on the enhancement of low-frequency techniques, such that they
can preserve their ability to capture the local dynamic behavior at a reduced
computational cost.
This section illustrates the main enhancements to the classic FEM and BEM
approaches and the so-called Trefftz approaches, as alternatives to element-
based techniques.

Enhancements to FEM The first type of improvement to FEM belongs
to the group of adaptive refinement techniques, which increases the model
accuracy by refining the description of the field variables in the domain. The
so-called h-refinement technique uses an iterative error estimator, which allows
enriching the mesh wherever the solution accuracy is poor [16, 93]. The order
of the polynomial can also be increased, resulting in the p-refinement [52].
The combination of the aforementioned techniques leads to the so-called hp-
refinement [94, 172]. These processes allow a reduction of the number of
elements, with a corresponding reduction in solving time. However, they are
not very effective against dispersion errors, for which wave-based discretization
methods allow enriching or even replacing the polynomial solution using plane
waves or other analytical functions. The Partition of Unity Method [7]
belongs to this family and allows the inclusion of a priori knowledge about
the governing equation. The approximate solution to the Helmholtz equation
can be expressed by using an increasing number of plane wave basis functions,
leading to a reduction of dispersion and pollution errors. In the Partition of
Unity FEM (PUFEM) [192], a local basis of discrete plane waves (or other
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special functions) is adopted to enrich the classic FE approximation. Although
the dispersion error can be reduced this way, PUFEM leads to highly oscillatory
integrals and ill-conditioning problems. As an alternative approach, the
Discontinuous Enrichment Method [60, 61] belongs to the family of multiscale
methods. Plane wave basis functions enrich the classic polynomial field within
each element, while Lagrange multipliers are used to enforce weak continuity
of the solution at the interfaces. This procedure improves the conditioning
of the system matrices and provides accurate results for 2D and 3D acoustic,
elastodynamics and vibro-acoustic problems [195]. The method has also been
extended to Partition of Unity BEM [161].

The family of stabilized formulations tackles the dispersion problem. These
approaches try to reduce the phase error by adding stabilizing terms to the
traditional variational formulation. In the Galerkin Least Squares (GLS) [81]
approach a residual in least squares form is added to the classic Galerkin
formulation and is multiplied by a stability parameter. This allows modifying
the wave propagation in order to minimize the phase error [8, 198], also in the
case of highly deformed meshes [82]. For 1D cases, this leads to the correct
solution, while for 2D and 3D problems the direction of propagation has to be
known a priori. The gradient of the residual related to the governing equation
can be added to the classic formulation, leading to the so-called Galerkin
Gradient Least Squares Method (GGLS) [63]. GLS and GGLS are quite similar
for linear finite elements, and numerical comparisons for different configurations
are reported in ref. [82]. However, they are unified under the Generalized
Galerkin Least Squares Method [197], where two stabilization parameters have
to be tuned.
An alternative way of reducing the dispersion error is by modifying the
integration scheme used to compute the mass and stiffness matrices. By
shifting the integration points with respect to the classic position suggested
by the Gaussian or Gauss-Lobatto quadrature schemes, the phase error is
significantly decreased [74]. Such a modified quadrature leads to a fourth-
order rate dispersion error, while classic Galerkin or GLS only lead to a
second order behavior. The advantage of this approach lies in the fact that
the computational load of the simulation does not increase. However, so far
the approach has only been applied to 2D Helmholtz problems. It is worth
mentioning that for quadrilateral and hexahedral elements this scheme can be
exactly retrieved by using the GGLS method. The performance of these two
approaches has been compared in ref. [13, 14] through numerical examples,
showing the superiority of the GGLS.

A third branch of strategies aims at enhancing the solution process, which in
FEM is the most time consuming part. Solving large direct problems with
classic Gaussian elimination or factorization is very demanding. Alternatively,
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iterative solvers can be adopted to reduce the computational effort [55] and
parallelize the process [92]. Krylov solvers can be used for steady-state
simulations [176], although their robustness is highly problem dependent.
Recently, much research has been conducted to develop fast frequency sweep
algorithms to speed up direct computations by reducing the number of matrix
inversions [85, 137]. The underlying idea is to compute the system response
at one expansion frequency. Thanks to the knowledge of the derivatives of the
system matrices, it is possible to determine the solution behavior at neighboring
frequencies. This approach has been used to improve the performance of FEM,
especially when frequency dependent components are present [188], as well as
of acoustic BEM [126].

A totally different philosophy is adopted by domain decomposition strategies.
These are based on the idea of splitting a large problem in parallel non-
overlapping smaller ones. Component Mode Synthesis (CMS) [36] consists
of dividing the original model into smaller parts, solving the subcomponents
individually and then recombining the results into a global-level solution. Each
subcomponent is represented in terms of uncoupled modes, and a higher
computational efficiency is achieved, especially when the interface DOFs are
small compared to the size of the problem. Towards the improvement of this
approach, the Automated Multi-level Substructuring has been developed to
allow the decomposition based on the mathematical properties of the model,
rather than on the analyst’s experience [10].

Enhancements to BEM In order to reduce the computational disadvantages
given by fully populated BEM matrices, the Fast Multipole BEM (FMBEM)
[75, 130] has been proposed for large acoustic simulations. The FM algorithm
divides the domain into near and far fields. While the former is solved by using
the classic BEM, in the latter, a cluster of boundary elements is formed and
the solution is evaluated through multipole expansions. As a result, instead of
computing the interactions between all nodes of the model, the contributions
from groups of nodes are first centralized and then projected only once. The
system of equations does not need a full assembly procedure to compute the
matrix-vector product and the computational cost is reduced from O(n3

nod)
for a standard BEM analysis to O(nnodlog(nnod)), with nnod the number of
DOFs. This also has positive effects on the memory consumption. On the
other hand, for small models the large overhead of the clustering procedure
is disadvantageous, making a BEM analysis more convenient. Moreover, like
BEM, also FMBEM suffers from non-uniqueness, and its mitigation has been
proven to be beneficial for its convergence as well [41]. FMBEM has been
successfully applied for industrial problems towards the mid-frequency region
[78].
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The Smooth Integral Formulation (SIF) [213, 214], recently renamed Stochastic
BEM (SBEM), has been proposed to extend the validity of the classic BEM
to higher frequencies. The Green’s kernels are perturbed by introducing
geometrical variability in nodal positions and are computed in an averaged
sense. This procedure leads to the computation of the First Order Moments of
the field variable. Second Order Moments are then calculated by using a second
set of equations, which is based on energy relationships and is complemented
by auxiliary equations. The resulting quadratic average response shows a
resonant low-frequency behavior, which becomes smoother as the frequency
increases, offering the possibility to represent the smooth transition from low-
to high-frequency. Although the computational effort increases with respect to
traditional BEM, the number of elements needed to represent the solution can
be highly reduced. The approach has been applied to 1D and 2D structures
[211, 214], acoustic cases [170] and has been extended in a hybrid form FE/SIF
[171, 212].

Trefftz approaches Instead of expressing the field variables in terms of
polynomial shape functions, Trefftz methods [201] use exact information related
to the governing equation and can be divided in direct and indirect ones
[101, 169]. The idea underlying direct Trefftz methods is very similar to BEM.
The boundary of the domain is discretized and the field variable is described
in terms of polynomial shape functions. Instead of using Green’s kernel to
minimize the functional, a complete set of fundamental solutions is used as basis
functions. Consequently, problems related to singular integrals are not present.
On the other hand, indirect Trefftz approaches describe the field variable by
means of a set of functions which inherently satisfy the differential equation.
The weighting factors for each function are obtained by enforcing the boundary
conditions. Both methods assure convergence to the exact solution and present
matrix ill-conditioning [222]. While applications of the direct Trefftz strategy
are very limited [28, 144, 183], the exploration of indirect approaches is quite
advanced.
A whole class of Trefftz methods consists of providing the exterior/interior
problem solution as a sum of contributions from sources located in the
interior/exterior domain. This strategy takes different names in the literature,
such as the Method of Fundamental Solutions [59], or the Equivalent Source
Method [105]. The determination of the strength of the sources leads to the
correct description of the field variable. However, the correct choice of their
number and position is highly problem dependent and represents the main
difficulty of the approach [105, 158].
For a more complete overview on Trefftz approaches for steady-state acoustic
modeling the reader is referred to ref. [169].
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The Wave Based Method (WBM) [49] belongs to the family of indirect Trefftz
approaches. The system response is described by a weighted sum of wave
functions, which inherently satisfy the governing Helmholtz homogeneous
equation(s) over the smallest bounding rectangle circumscribing the actual
physical domain. The weighting factors are computed by means of a Galerkin
weighted residual formulation, in which the trial functions are described in
terms of the same basis functions used for the field expansion. This allows
to impose boundary conditions, domain interface conditions and loads for a
prescribed problem. A sufficient condition for the convergence of the WBM
is the convexity of the domain, which may imply the use of a large number
of subdomains and a corresponding increase of computational effort. To
circumvent this limitation, two extensions have been developed. The hybrid
FE/WBM merges the versatility of the FEM to the efficiency of the WBM [167].
The WBM is used for large convex domains, while small details are modeled by
means of the FEM. The Multi-Level WBM [202] has also been developed as a
general framework to deal with multiple inclusion problems and heterogeneities,
which can be modeled using the WBM as well as other deterministic techniques.
So far, the WBM has been successfully applied to a large variety of problems,
such as bounded [203] and unbounded [12] acoustics, structural [206, 210],
vibro-acoustic [168] and poro-acoustic problems [47]. Some details of the WB
formulation are described in Appendix A.

2.2.3 High-frequency techniques

In the previous section, several methodologies have been presented that
break the computational limits of deterministic simulations. However, when
moving to higher frequencies, uncertainty and variability inherently influence
deterministic modeling, leading to predictions which in some cases are even
meaningless. Consequently, rather than looking for accurate approximations
of eq. (2.3) and (2.11), the problem is modified, such that the underlying
equation consists of a balance between the power injected by external sources
and the power exchanged and dissipated within the system. Energetic variables
substitute kinematic ones and, in most of the cases they are representative of
frequency averaged quantities. Additionally, for some approaches, the local
information is lost.
The following section provides a brief overview of the existing techniques for
the analysis of high-frequency vibration.

Statistical Energy Analysis SEA [133, 132] was introduced in the 1960s and
over the years it has become one of the most used tools for high-frequency
vibration analysis of large mechanical assemblies, i.e. aircraft, trains, ships,
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Figure 2.3: SEA subsystem network.

buildings, offshore structures, etc [37, 97]. The SEA philosophy is completely
opposite to deterministic modeling. As illustrated in fig. 2.4, a complex system
is represented by a network of Nsys subsystems. Each subsystem represents
a wave-type instead of a component and is defined by gross geometrical
parameters rather than precise descriptors. Primary variables are global
quantities, evaluated as energy averages over the spatial extent of the j-
th component, over the frequency band of interest and implicitly over the
ensemble.
The fundamental assumption underpinning SEA is the wavefield diffusivity,
meaning that all wave directions are equally probable, or equivalently, that
all modes are equally energetic. This condition is promoted by high modal
density, irregular geometrical features, broad band excitation and multiple,
uncorrelated input forces. Additionally, the coupling between subsystems is
supposed to be weak.

The governing SEA equations are derived from a power balance for each
subsystem,

Pin,j = Pdiss,j +
Nsys
∑

k=1
k 6=j

Pjk. (2.25)

The symbol Pin,j denotes the power injected into the j-th subsystem. As
it represents the driving term of the energetic relation (2.25), its accuracy
has considerable impact on the result of the simulation [57]. Usually, Pin

is computed using analytical relations, evaluated through measurements, or,
more expensively, by means of deterministic calculations. In the first case, it is
a common procedure to use the input power into an infinite (or semi-infinite)
structure [132]. This approximation leads to a reasonable accuracy when SEA
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hypotheses are fully satisfied and the frequency of analysis is high. Nevertheless,
when single modes have major influence on the response, the approximation of
infinite systems can be inaccurate.
In eq. (2.25), the term Pdiss,j represents the dissipated power and is quantified
by the following relation,

Pdiss,j = ωηjEj , (2.26)

where ηj is the damping coefficient of subsystem j, which is commonly small
and can be estimated through measurements. The symbol Ej represents the
energy in subsystem j.
The term Pjk in eq. (2.25) describes the power flow between subsystems j and
k, which is proportional to the difference of their uncoupled modal energies,

Pjk = ωηjknd,j

(

Ej

nd,j
− Ek

nd,k

)

, (2.27)

where the symbol nd,• indicates the modal density of component •. The term
ηjk indicates the coupling loss factor (CLF), which quantifies the ratio of the
energy stored in the subsystem j to the energy transferred to subsystem k
across the interface. The hypothesis of weak coupling between subsystems
assures that the CLF satisfies the reciprocity relation ηjknd,j = ηkjnd,k [107].
As their accuracy has a high impact on the prediction, a large part of the
SEA literature is devoted to their evaluation. CLFs can be computed by using
either experiments or analytic models, based on wave or modal formulations.
Alternatively, they can be computed by means of deterministic approaches
[139, 174, 182, 196].
A key feature of SEA is that it inherently incorporates uncertainty and provides
a response representative of a population of nominally identical systems. In its
original formulation, SEA is only capable of predicting the mean behavior,
although the variance prediction can be included [119].
Nowadays, SEA is a mature technique and has been explored in many directions.
The main advantages over other high-frequency or deterministic techniques
are its simplicity and computational efficiency, although accurate parameter
estimators and material libraries are needed, as they have a huge impact
on the reliability of the results. These advantages make SEA very versatile,
especially for optimization and sensitivity studies during the preliminary design
stage. On the other hand, SEA has strong limitations when moving towards
lower frequencies, in particular when subcomponents do not support diffuse
field or are strongly coupled. However, these conditions do not violate the
validity of the power flow relationships, but the predicted response might
present unacceptable deviations from the exact one. To partially overcome
this difficulty, hybrid techniques have been developed.
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Vibrational conductivity analysis High-frequency vibration can also be
approximated by using the analogy with heat transfer. This leads to a
continuum form of SEA, which has been investigated under different names:
Power Flow Finite Element [152], Energy Finite Element Analysis (EFEA)
[218] and Simplified Energy Method [122]. The governing equation for such a
vibrational conductivity approach is

ωηe + ∇ · I = Pin (2.28)

where η is the damping loss factor of the component and e is the energy density.
Pin is the power injected by a source and like in SEA, it represents the driving
term. The energy flow is indicated with the vector I and is imposed as a
boundary condition,

I = − c2
g

ωη
∇e, (2.29)

where cg is the group velocity. Similarly to SEA, the vibrational conductivity
analysis requires the computation of coupling coefficients and an input power
term. However, despite the local nature of the approach, the smoothness of
the energy field allows using a coarser discretization to solve the problem [149],
which can be easily implemented and used within a commercial FE software.
This might also explain the popularity of this approach.
The fact that the field is approximated by using uncorrelated plane waves can
lead to accurate results for one-dimensional systems [152], but when moving
to higher dimensions the approximation might lead to some problems [22, 110].
In fact, according to the vibrational conductivity, the energy density decreases
with the square root of the distance from the driving point, while the exact
solution decreases linearly with the distance. This can yield large errors,
especially when the direct field is dominant, as it happens for heavily damped
plates. Moreover, the energy density is infinite at the driving point according
to the vibrational conductivity, which is true for membranes, but is not correct
for plates. To overcome these issues, hybrid approaches have been developed
that include direct field information [84, 184].

Other relevant techniques Transmission coefficients at a junction can be
highly dependent on the direction of the incident wave. This can lead to
directional wavefields which violate the diffusivity condition of classic SEA.
In the Wave Intensity Analysis [108, 111] the wavefield is not assumed to be
diffuse and a finite Fourier series is used to describe the directional dependency
of the wave intensity in the subsystem. Relaxing on the wavefield diffusivity
allows a significant improvement of the prediction with respect to SEA when
its fundamental assumptions are not satisfied. The amplitudes of the Fourier
expansion are determined through the solution of a power balance between
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the reflected and transmitted wave intensity at the junction. Classic SEA
relationships are retrieved if only the first term of the series is considered, as it
represents the diffuse wave field. Also in this case the knowledge of the input
power is necessary to evaluate the energy.

To provide an alternative to the vibrational conductivity, the Radiative Energy
Transfer Method [123, 124] has been developed for multi-dimensional structural
vibrations and enclosure acoustics. Under the assumption of uncorrelated
sources and negligible wave interferences, the local energy density is computed
by integrating the contribution from actual power sources and fictitious power
sources distributed over the boundary. In general, the power reflected by the
boundary is unknown and can be evaluated by using conventional BE schemes.
The smooth response is representative of the frequency-averaged response of
the system. Since the direct field is in agreement with the exact solution, this
approach leads to significant improvements with respect to classic vibrational
conductivity analysis [125].

Finally, instead of using a thermal analogy, the Complex Envelope Displace-
ment Analysis (CEDA) [23] describes the problem in terms of a complex
envelope. CEDA makes use of the Hilbert transform to map the fast high-
frequency oscillating behavior into an envelope with low-frequency content.
This allows circumventing the computational limitations connected to the
prediction of high-frequency phenomena. However, extending CEDA to 2D and
3D problems requires the introduction of the Complex Envelope Vectorization
(CEV) [68], which uses a vector instead of a one-dimensional variable. The
possibility of using a low-frequency representation of the response allows the
use of coarse meshes for modeling the physical problem. CEV yields accurate
results especially when the direct field is preponderant and the modal density
is relatively high.

2.2.4 Pulling high-frequency techniques lower

Energetic approaches are very reliable when the underlying hypotheses are
satisfied. This is not the case for low-frequency problems. Moreover, all
complex structures consist of components which carry different wavefields. This
situation may violate the assumptions and lead to unreliability of classic energy
techniques.
This section presents an overview of the existing techniques which allow
lowering the limit of validity of high-frequency approaches, or enriching them
with low- and mid-frequency information.

Energy Distribution Analysis (EDA) [64, 135] can be used to estimate
parameters like CLFs at junctions for which analytical values are difficult to
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compute, or where there is a strong coupling. EDA models also allow including
correlated and localized excitations, contrary to pure SEA modeling, which
assumes delta-correlated and broad-band excitation. Moreover, EDA provides
time and frequency-averaged subsystem energies, input and dissipated powers.
The approach starts from classic FE models, as only the mass and stiffness
matrices are required, and its core lies in the solution of an eigenproblem and
energy post-processing. In the latter process, the response is evaluated from
modal interaction and by performing frequency averaging, which in most of
the cases can be performed analytically. EDA can also be used to determine
CLFs in a “quasi-SEA” approach, consisting of an SEA model with indirect
CLFs [134]. Several aspects have to be considered when applying an ED
approach. Solving a large eigenproblem might be computationally demanding,
and model reduction techniques can be very advantageous. In this context,
Component Modal Analysis [135] or CMS have been explored, together with
the introduction of Characteristic Constraint Modes [24], to reduce the amount
of problem DOFs. Furthermore, commercial packages propose automated
algorithms to subdivide a complex structure in a proper set of SEA subsystems
[66].

Several other approaches have been developed to enhance the CLF estimation.
For example, a robust approach was proposed in ref. [196], which allows the
evaluation of the mean and the variance of the energetic quantities based on
uncertain parameters. Alternatively, the point-mobility theory [139] allows
deriving SEA parameters based on estimates of the drive-point conductance
computed at all response points and all the locations of the substructures where
vibration is transmitted. These parameters can then be used in combination
with classic SEA models to evaluate power transfer functions for a built-up
system [138, 140]. The use of global FE can require a large computational
effort. For this reason, single components can be analyzed by imposing free or
clamped boundary conditions, which may lead to a rough estimate especially
in the low-frequency range. A wave based substructuring technique can be
applied to the bare subsystem in order to increase the accuracy of the model
[174]. The point-mobility approach is quite mature in its current state and
allows an efficient computation of SEA parameters starting from a FE model.

2.2.5 Fuzzy Structure Theory and hybrid techniques

At the end of the 1980s, with the necessity of analyzing complex structures
at a low computational cost, Soize developed the Fuzzy Structure Theory
(FST) [25, 185] (which is not related to fuzzy logic). The FST tackles all
those cases of structures consisting of a stiff frame, which is called master
structure, and a number of “fuzzies”, which are all the subcomponents attached
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to the primary structure, of which the properties are either uncertain, unknown
or not accessible to deterministic modeling. As shown in fig. 2.4, one can
consider the main frame of a ship as a master structure. This part of the
model can be treated with conventional modeling techniques, such as FEM.
All secondary structures and equipments connected to the master structure are
modeled as mass-spring-damper oscillators. According to the original Soize
formulation, their properties are described in a probabilistic sense by four
main parameters: the mass, damping and modal density distributions of the
oscillators, and the coupling factor which allows to determine whether the
component is connected through a point or a more extended junction. These
parameters allow assembling a random impedance matrix Zfuzzy, which is added
to the impedance of the master system,

iω (Zmast + Zfuzzy) w = f . (2.30)

The random equation (2.30) is recursively solved for the displacements of the
master structure, w. Thanks to the knowledge of the probability distributions,
it is possible to estimate the moments of the fuzzy impedance and include
successive orders in the solution expansion.
The interesting aspect of the FST is the possibility of reducing a complex
model to the bare DOFs of the master structure, for FE modeling. It is
worth underlining that the FST is not meant to estimate the average response
of an ensemble of nominally identical systems, but it allows predicting the
behavior of a system of which the parameters cannot be properly modeled
[159]. However, this approach also presents several difficulties. Apart from
the complex mathematical formalism, it remains difficult to hypothesize fuzzy
parameter distributions for complex systems. Much research has been carried
out to overcome this limitation [166, 191, 215], although nowadays, the
FST is not widely applied. Nevertheless, dividing the structure in a purely
deterministic master structure and somewhat statistical fuzzy structures has
been of inspiration for following research. In fact, all complex structures consist
of components responding in different ways. While deterministic approaches
can be suitable to describe the behavior of those having a few modes over the
frequency band of interest, they are not convenient for modeling components
with higher modal density. On the other hand, energy methods can be used
for the latter, while their use might be meaningless for stiffer components.
For this reason, over the last fifteen years, research has been focusing on
the development of hybrid techniques, which allow the coupling between
deterministic and statistical approaches. A first attempt to formulate a hybrid
deterministic/statistical approach is proposed in ref. [118], where 1D structures
are considered. Successively, the idea of coupling deterministic and statistical
methods has been enriched with the diffuse field reciprocity relationship
[116, 181], which allows to back-couple statistical systems to deterministic ones.
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Fuzzy substructure

Master structure

Figure 2.4: Fuzzy structure consisting of a master structure and fuzzy
substructures.

As such, this relationship is the core of the hybrid deterministic/statistical
approach [180] and has led to the hybrid FE/SEA and WBM/SEA [209].
In FE/SEA, stiff components are fully deterministic and are treated with
FEM, although any deterministic approach can be used to model their
behavior. Flexible components are treated with SEA and are assumed to be
highly random, so that natural frequencies and mode shapes conform to the
Gaussian Orthogonal Ensemble (GOE) [145]. Interfaces between statistical
subcomponents are also modeled as deterministic DOFs.
The cross-spectrum Sww of the response evaluated at a point on a deterministic
subsystem can be expressed as follows,

Sww = D−1
tot



Sff +
Nsys
∑

k

(

4Ek

ωπnd,k
Im
{

D
(k)
dir

}

)



DH
tot. (2.31)

The term Dtot represents the total dynamic stiffness matrix of the whole system,
and Sff the cross-spectral matrix of the loading applied to the master system.
In absence of statistical systems, the sum disappears and eq. (2.31) provides
the response of the deterministic system. If Nsys random subsystems are
considered, the blocked contribution from the reverberant field is considered.
This contribution is quantified by means of the diffuse field reciprocity relation,
which connects the energy Ek in the k-th subsystem, its modal density nd,k

and the direct field dynamic stiffness matrix, D
(k)
dir . The latter represents the

dynamic stiffness matrix of a corresponding infinitely extended component and
can be computed in several different ways [34, 114, 180].
In this form, the hybrid approach allows the computation of the mean behavior
of the system. However, considering GOE statistics [112, 113] it is also possible
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to extend the method to the variance prediction [35, 120].
From a computational point of view, the use of SEA components results into
a considerable reduction of DOFs. However, several matrix inversions are
necessary within the pre-processing step, and this might not have a negligible
impact on the overall solving procedure [162].
Although this hybrid approach is very recent, it has already been successfully
applied to industrial problems [26, 34]. Current research is focusing on the
inclusion of parametric uncertainty in the description of the deterministic
system [30] and on the automatic recognition of statistical systems [115].
The possibility of hybridizing deterministic FEM and EFEA has also been
investigated [88, 221] to deal with structures consisting of stiff and flexible
components.

2.2.6 Non-determinism

Non-determinism plays a crucial role in numerical modeling and its influence
is related to the frequency of analysis. As can be observed in fig. 1.1, with
decreasing wavelength, the system behavior is increasingly sensitive to small
changes.
According to the definitions provided by Oberkampf [156, 157], two main
sources of non-determinism can be distinguished: variability and uncertainty.
Variability describes the variation of a system property. Commonly, this is
referred to as a range of values or defined by a probability density function.
For example, a certain geometrical dimension can vary due to manufacturing
tolerances, or the material characteristics can be affected by alterations due
to external influences. On the other hand, properties that are unknown or
unspecified due to a lack of knowledge, are referred to as uncertain and are
commonly found when modeling boundary conditions, loadings, damping etc.
The presence of uncertainty and variability is also related to the design process.
In the early design stage, problems are mainly affected by uncertainties, which
after a proper detection and investigation process can be characterized in
a statistical sense and treated as variability. Numerical tools able to cope
with non-determinism can help increasing the robustness of the design. This
highlights the importance of the research in this area.

Variability can be tackled by means of probabilistic approaches. In particular,
when the statistics of the random variables are well-known, parametric
approaches can be used. In this case, the most direct way to obtain the
response statistics is to perform an MC simulation [62]. In principle, this
technique samples the design space by using a massive amount of simulations
and extracts the response statistics out of these data.
Stochastic methods [178], like the Stochastic Finite Element Method [155, 189]
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are also well-established in the field of probabilistic parametric modeling.
Similar to classic FEM, the domain is discretized, but probabilistic models
are associated to random fields. The equations of motion are then formulated
by using a proper expansion or perturbation scheme. This procedure leads
to the estimation of the response statistics. Nevertheless, the computational
cost highly penalizes these approaches, especially for dynamic problems.
Consequently, applications presented in literature are limited to simple cases
[4].

A non-parametric probabilistic model has been developed by Soize [186, 187],
which uses the principle of maximum entropy. The statistics of the response are
generated through the randomization of the mass and stiffness matrices of the
nominal system, of which the statistics are controlled by proper dispersion
parameters. Since the statistics of the associated eigenproblem cannot be
evaluated analytically, an MC simulation is used. The method has been applied
to a wide class of problems, e.g. automotive applications [54], buildings [5] and
satellites [163]. However, in [127] the physical consequences of non-parametric
modeling as proposed by Soize are investigated. It is argued that the result of
the approach may be conflicting with physical expectations about the analyzed
systems. For instance, it is observed that, with increasing uncertainty, the
average modal density diverges from the asymptotic value. However, the non-
parametric approach seems to be able to deal with unknown terms of lower or
higher order in the governing differential equation.
It is worth mentioning that also SEA can be classified as a non-parametric
approach, while the SBEM can be treated as a probabilistic parametric
approach.

In real applications, the variable statistics are often unreliable or not available,
and their identification and quantification is expensive. Moreover, the
computational cost of a probabilistic simulation can be very high. In this
case, a non-probabilistic approach can be seen as complementary to the former
and provide a range of possible responses for an input with uncertainties [146].
This allows evaluating the worst case scenarios, without necessarily taking into
account a probabilistic point of view.
A class of possibilistic approaches allows taking into consideration different
scenarios and different design configurations. The Interval Finite Element (IFE)
[51] and the Fuzzy Finite Element (FFE) [147] analysis belong to this family.
In the IFE, non-deterministic parameters are defined within a bounded interval.
By taking into account all possible models, the minimum and maximum values
for the response are found through by an IFE simulation. This approach is
very simple, but the interdependency between the non-deterministic variables
is lost during the solution procedure. This leads to an overestimation of the
output interval. However, the information related to the intervals may be



METHODS FOR OSCILLATORY INTEGRALS 35

affected by uncertainty. In order to describe incomplete data, the FFE has
been developed. Instead of dividing a set into members and non-members of
the set, a membership function is introduced to define the degree of membership
of the fuzzy set. According to the α-level technique, such a membership
function is divided into α levels, which identify α intervals. The fuzzy solution
is computed by assembling the corresponding interval analyses at each level
[44, 147]. Alternatively, an optimization approach can be used to solve the
problem [45]. While the application of the IFE is mainly limited to academic
cases, the FFE has already been applied to several research areas [148].

2.3 Methods for oscillatory integrals

As mentioned in the Introduction, the response of a vibrating system is often
expressed in a frequency averaged format. Since the detailed response of
a deterministic calculation is very sensitive to the input model parameters,
narrow band responses are often of limited practical use, and, especially in
the mid- and high-frequency ranges, many noise and vibration problems can
be assessed by using averaged responses. These require the solution of an
oscillatory integral over a band of frequencies. However, the computation
of highly oscillatory integrals is a very important problem in many branches
of computational analysis and not only for noise and vibration simulations.
For example, in electromagnetism or telecommunications, highly oscillatory
integrals are of high relevance, as well as for image processing, optics, quantum
chemistry, electrodynamics, etc.
An highly oscillatory integral is formally defined as,

I =
∫ ωb

ωa

f(ω)eikg(ω) dω, (2.32)

with k > 0 and with the amplitude, f , and the oscillator, g, being smooth
real functions. The most direct approach to evaluate integral (2.32) is by using
Gaussian quadrature. However, if the oscillation within the interval is high
enough, using classic quadrature is meaningless.
In the following, four main families of methods to deal with highly oscillatory
integrals are presented.

2.3.1 Asymptotic methods

Asymptotic methods [219] are based on the observation that when the
oscillations of the integrand increase, they cancel out, and the integral is
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mainly determined by the behavior of the integrand at the endpoints, stationary
points, singularities and discontinuities. In correspondence of these regions,
less cancellation occurs. According to this branch of methods, the integral is
asymptotically expanded, leading to its approximation,

QA
s = −

s
∑

l=1

1
(−ik)l

{

σl(ωb)eikg(ωb) − σl(ωa)eikg(ωa)
}

, (2.33)

where the so-called moments can be computed as follows,

σ1(ω) =
f(ω)
g′(ω)

, σl+1(ω) =
σ′

l(ω)
g′(ω)

, (2.34)

where s indicates the (finite) number of terms to include in the expansion.
Expression (2.33) is valid only when there are no stationary points of g in the
interval [ωa, ωb], namely the function g′(ω) does not present any root over that
interval. Moreover, the expansion can be computed only if the moments are
known. The error goes to zero as fast as k−s−1, meaning that the estimate
becomes more accurate with increasing the oscillation of the integrand. On the
other hand, when k is small, the estimate can diverge.

2.3.2 Filon-type methods

Filon quadrature was originally developed in 1928 and has been recently
extended in ref. [95]. Filon-type methods suggest to integrate an approximation
of f using a quadrature rule in its classical form, where the weights are
computed by solving additional integrals. The approximation proposed by
Iserles and Nørsett [95] is such that f and its derivatives are exactly interpolated
at the endpoints and stationary points using Hermite polynomials. This leads
to the approximation,

QF =
n
∑

j=1

p
∑

l=0

wj,lf
(l)(ωj), (2.35)

where ωj are n nodal points, while p is number of derivatives that are
interpolated. The coefficients wj,l are computed by integrating the functions
used as a basis for the interpolation. The error behaves as k−s, where the
order s depends on the number of derivatives. This holds when the quadrature
points include all stationary points.
The knowledge of the integrand and its derivatives is the only requirement for
the evaluation of the integral, and this constitutes the main advantage of Filon-
type quadrature. On the other hand, evaluating the weights wj,l implies the
solution of supplementary oscillatory integrals.
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2.3.3 Levin-type methods

Levin-type methods [129, 160] are different from asymptotic approaches as they
do not require the knowledge of the moments. The integral I is evaluated as
follows,

∫ ωb

ωa

f(ω)eikg(ω) dω =
[

F (ω)eikg(ω)
]ωb

ωa

, (2.36)

where the function F (ω) is such that,

d
dω

[

F (ω)eikg(ω)
]

= f(ω)eikg(ω), (2.37)

and is approximated by the function v(ω), built through the solution of a
system of equations involving the derivatives of f . This procedure leads to the
approximation,

QL =
[

v(ω)eikg(ω)
]ωb

ωa

. (2.38)

This family of integration approaches presents the same approximation
accuracy of the asymptotic methods, and it provides accurate estimates for
low values of k. However, the knowledge of the moments is not necessary. On
the other hand, Levin-type methods only work when F is a smooth function.

2.3.4 The numerical steepest descent

The numerical steepest descent [91] presents an accuracy comparable to the
asymptotic one and is dependent on the behavior of the oscillator in the complex
ω-plane. In fact, the term eikg(ω) decays exponentially as g presents increasing
imaginary values. Additionally, its decaying behavior is not oscillating over
a path that presents a constant Re {g}. In this context, the steepest descent
method makes use of the Cauchy’s theorem [73], that states that a line integral
of an analytic function only depends on the endpoints. The idea is then to
decompose the integral, including paths on which the behavior of the integrand
is exponentially decaying and non-oscillatory. These paths can always be found
and only depend on the function g, regardless of f . Gaussian quadrature can
be used over such alternative path.
Due to the numerical implementation in ref. [91], the method is referred to as
the numerical steepest descent. In general, evaluating the path of integration
requires the solution of a non-linear problem, and the presence of singularities
may be an obstacle to reach accurate integration.
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2.3.5 Discussion

Contrarily to classic quadrature, the error of the aforementioned techniques is
inversely proportional to the power of k, meaning that the accuracy increases
with increasing the oscillatory behavior. However, this holds true when
the underlying hypothesis on the integrand are verified. For asymptotic
and Filon-type methods, the knowledge of the moments of the integrand is
necessary. Levin-type methods require the absence of stationary points. Finally,
to successfully apply the numerical steepest descent, the knowledge of the
oscillator is also required.
In this regard, the response of a vibro-acoustic system can be described as
an oscillating function of frequency characterized by several stationary and
singular points, i.e. corresponding to resonances, which are not known a priori.
Additionally the phase information is not immediately available. For these
reasons, the aforementioned techniques cannot be readily applied to vibro-
acoustic systems, and classic quadrature remains the most reliable option to
integrate over frequency.

2.4 Position of the research with respect to the

state-of-the-art

A frequency averaged quantity is commonly computed by solving a weighted
integral. To evaluate band-values, such a weighting function must resemble a
rectangular window. Currently, the most general and widely used strategy
for computing a weighted integral is to perform numerical quadrature [43]
over an interval of (real) frequencies. Nevertheless, due to the oscillatory
behavior of the integrand function, many integration points might be required
to avoid frequency aliasing, and achieving accurate integrations can be very
computationally demanding, especially for lightly damped systems. A survey
of quadrature rules is not provided here, although some of them are described
in sec. 4.2.2.

The alternative strategies proposed in this dissertation make use of the residue
theorem [73] to evaluate frequency-averaged quantities through integration
in the complex frequency plane. In particular, the focus is on input power
computation, although the averaging procedure can be extended to other
quantities. In the literature concerning noise and vibration modeling, the
residue theorem is often employed to evaluate frequency integrals, i.e. [109, 154].
Nevertheless, its use to compute general weighted integrals as presented in
this dissertation, is novel and leads to integration strategies of which the
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differentiating features are the computational efficiency, accuracy, ease of
implementation and wide applicability. Regarding the latter characteristic,
since the proposed approaches do not rely on any fundamental approximation,
they can be used in combination with any classic deterministic technique,
according to the overview presented in sec. 2.2.1 and 2.2.2. Due to the
increased computational efficiency with respect to classic quadrature, the
present techniques can be classified as enhancements to deterministic modeling.
Accordingly, they can be used to improve the performance of an optimization
process over a band, for instance.
The use of such techniques is not restricted to the low-frequency domain. As
highlighted in sec. 2.2.3, the accurate input power evaluation is crucial for
energy-based approaches, but, in many situations, is not an easy-to-retrieve
quantity. In this direction, the proposed strategies can be employed to pull
high-frequency techniques lower, since an enhanced deterministic strategy can
be used to provide information to energy-based approaches. This might be the
case for band-averaged input power or input mobility.
Frequency averaging techniques can also be exploited in the context of non-
determinism. In fact, the mean behavior of an ensemble of nominally identical
structures can be approximated by the frequency averaged response of a single
sample, provided that the perturbation level is high enough. In this manuscript,
a Lorentzian function is used as a weighting function to perform frequency
averaging. The Lorentzian function is a bell-shaped curve, of which the features
are reported later in sec. 7.1 and fig. 7.1. Due to its advantageous mathematical
characteristics, performing Lorentzian-weighted frequency averaging leads to
significant computational benefits, especially if compared to the computation
time of an MC simulations. Furthermore, the computation of the frequency-
averaged dynamic stiffness, leads to the direct field dynamic stiffness matrix
[116], which can be exploited in the context of hybrid deterministic/statistical
approaches, as well as for CLF computation within SEA [181].
Finally, the Lorentzian function can be used as a mass-frequency distribution
within the FST, according to Pierce’s theory [166]. Also in this case, using the
residue theorem avoids the solution of more cumbersome integrals.

2.5 Conclusion

Well-established approaches exist to model low- and high-frequency vibrations,
namely deterministic and energetic approaches. However, rather than trying
to unify the audio frequency range, current techniques attempt to shorten the
mid-frequency region. This is done either by breaking the computational limits
of low-frequency approaches or by lowering the bound of applicability of energy
techniques.
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Among all the deterministic techniques, much of the research is spent on
improving the classic FEM formulation. This is not only due to its application
flexibility. In fact, its versatility can be exploited to tackle disparate problems
belonging to different scientific disciplines, allowing a quicker evolution of the
basic principles towards higher computational efficiency. This is in contrast
to the development of energetic approaches, which is mostly restricted to the
vibro-acoustic field, apart from the application of the vibrational conductivity
analysis. However, recently the use of the reciprocity relation has been extended
to electromagnetism [117].

Looking at future perspectives in the world of numerical vibro-acoustics, the
development of computationally efficient techniques will still be a key objective
for the next years, certainly supported by a fast increase in computing power.
Regarding the latter, already in 1965, Moore prophesied that the processor
performance would double every 18 months [150]. So far, such a rapid growth in
computational resources allowed CAE platforms to become very effective design
tools, and if today’s challenges are mainly restricted to simulations of complex
assemblies, multi-physics and multi-scale simulation tools will certainly be
tomorrow’s. However, even in the most technologically advanced scenario,
the impossibility of relying on precise information about the system seems
evident. This problem becomes crucial at high-frequencies, where the influence
of uncertainty and variability becomes irreducible.

In this context, the novel work presented in this manuscript can be positioned
in different ways. The efficient computation of frequency-averaged input power
can, in principle, be performed with any classic deterministic techniques. The
result of the analysis can be exploited to increase the quality of an energy model
or to run a faster optimization over a frequency band. On the other hand, the
use of the Lorentzian-weighted frequency averaging procedure can lead to the
evaluation of the mean ensemble behavior of a structure and to the direct field
dynamic stiffness of a component, useful, for instance, in the context of hybrid
methods or CLF computation. Finally, the Lorentzian function can be used
in the context of the FST, as a prototype function for the mass of the fuzzy
substructure.
The main principles underpinning the present work can be applied to other
branches of computational sciences, where the integration of oscillatory
functions is required. Optics, electromagnetism, image processing, quantum
chemistry are some examples.



Chapter 3

The Butterworth-weighted
frequency averaging

This chapter is dedicated to the introduction of an efficient technique to
evaluate the input power over frequency bands. Instead of exploiting traditional
numerical quadrature, the proposed approach makes use of the residue theorem
to calculate a weighted integral over the frequency.
When the poles of the system are confined to the upper half of the complex
frequency plane, the integral reduces to the computation of the function
residues at the poles of the weighting function, which in this chapter is chosen
to be the square magnitude of a Butterworth filter. The number of frequency
evaluations is independent of the bandwidth, and a considerable computational
saving is obtained for large frequency bands. For hysteretic damping models,
system poles may be located in the lower half of the complex plane, and the
application of the present technique leads to an approximate integration rather
than an exact one. However, the error is strictly dependent on the rate of
decay of the weighting window and can be reduced by increasing the order of
the Butterworth filter.
Two application examples show that the proposed strategy provides an accurate
and efficient tool for the computation of the input power over frequency bands.

The structure of the chapter is as follows. Section 3.1 introduces the existing
techniques to estimate input power into vibrating systems. Sections 3.2 and 3.3
provide an introduction to the frequency-averaged input power and the use of a
Butterworth filter as a weighting function. In sec. 3.4 the causality principle is
recalled concerning viscous and hysteretic damping models. Successively these
concepts are exploited in sec. 3.5 for the efficient computation of the frequency
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integral by means of the residue theorem. Numerical examples are given in sec.
3.6. The computational performance of such a technique is illustrated in sec.
3.7, where also its implementation is discussed. Conclusions are drawn in sec.
3.8.

3.1 Input power computation

Evaluating the power injected into a structure by a source is of high interest
when analyzing the vibrational behavior of a mechanical system. In the first
place, it provides a direct connection between the strength of the excitation and
the vibration of the structure. Secondly, it can enrich the quality of an energetic
numerical model, as the input power is the driving term for approaches like SEA
or EFEA.

When the wavelength is small compared to the system dimensions, the input
power can be estimated by using analytical formulations, which assume that
the spatial extent of the component is infinite [132]. This leads to a reasonable
approximation when high-frequency hypotheses are satisfied. However, in the
transition region from low- to high-frequency, single modes may dominate the
response, and the previous approximation becomes less accurate. In this case,
deterministic modeling is complementary to the energetic one, and approaches
like FEM and BEM are perfectly suited to assess the effects of boundary
conditions, inhomogeneities and discontinuities. On the other hand, such a
high flexibility comes at a high computational cost of the simulation.
Deterministic modeling assumes that the position and the phase of the source
are precisely defined and the existence of a coherence in the wave patterns
generated into the system provides a limitation to the low-frequency range.
On the contrary, according to high-frequency assumptions, it is often preferred
to assume that the excitation is spatially delta-correlated and broad-band. This
assures that the power is equally injected into each mode, or equivalently that
the wave field is diffuse [58]. Such a rain-on-the-roof excitation is difficult
to realize in a deterministic sense and, in practice, the input power is often
evaluated as a frequency-averaged value.

In many cases, the response is preferred in band format. Usually, the choice
of the frequency interval is such that at least a number of natural frequencies
are covered, i.e. three to five [40]. Alternatively, it is common to express the
response in format of frequency bands of predefined bandwidth, i.e. one or one-
third octave bands. In both cases, to evaluate the average response or its band
value, one could use numerical quadrature schemes [43]. However, particularly
at low-frequencies, the response of a vibrating system may exhibit distinct
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resonance peaks which reduce the effectiveness of the integration scheme. With
increasing frequency, the solution can be rather smooth and few sampling points
may be enough to evaluate the integral over the frequency band. This reduces
the computational load, but at the same time the estimate may be inaccurate.

3.2 Frequency integral of the input power

The focus is on the steady-state, linear behavior of second-order dissipative
systems, which can either consist of one single component, i.e. a bare plate,
or of several components, i.e. mechanical assemblies. All these systems are
commonly constrained and excited by an external influence, i.e. a force, which
generates a proportional motion. In this context, it is useful to introduce the
concept of input point mobility defined as,

Y (ω) =
v(xf , ω)

F0
, (3.1)

where ω is the angular frequency of analysis, F0 represents the complex
amplitude of a harmonic input force, F , such that F = F0eiωt, with i being the
imaginary unit and t the time. Finally, v represents the complex amplitude of
the velocity at the excitation point, xf [139].
The knowledge of the input mobility of a dynamic system is a very important
piece of information, as it leads to the power injected into the system by the
external source F ,

Pin(ω) =
1
2

|F0|2 Re {Y (ω)} , (3.2)

that can be equivalently expressed in terms of displacements at the excitation
point u(xf , ω),

Pin(ω) =
1
2

Re {iωu(xf , ω)F ∗
0 } , (3.3)

with Re {•} indicating the real part of • and (•)∗ representing the complex
conjugate operator. As previously mentioned, it is common practice to evaluate
the input power as a frequency-averaged value,

〈Pin〉∆ω =
1

∆ω

∫

∆ω

Pin(ω) dω, (3.4)

where 〈•〉∆ω represents the frequency average operator over the band ∆ω.
In order to perform the frequency integration, the eq. (3.4) can be more
conveniently expressed as an integral over the whole frequency axis

〈Pin〉W =
∫ +∞

−∞

W (ω)Pin(ω) dω, (3.5)
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Figure 3.1: Comparison between rectangular window (dashed line) and
Butterworth filter of order 8 (solid line), centered at 0 Hz and cut-off frequency
equal to 10 Hz (a). Position of the poles of the aforementioned filter over the
complex z plane (b).

where the frequency averaging operator 〈Pin〉W does not necessarily refer to a
band and W (ω) is a generic weighting function, of which the features will be
discussed in sec. 3.3. If the area below a rectangular weighting window is equal
to unity, integrals (3.4) and (3.5) give the same result.
To evaluate eq. (3.5), the technique proposed in this chapter consists in
evaluating the integral by means of the residue theorem [73]. As discussed
in sec. 3.3 and 3.4, the position of the poles of the weighting function and
the input mobility can be such that considerable benefits are achieved both in
terms of computational time and accuracy.

3.3 Choice of the weighting function

In literature, several functions are available to approximate the features of a
rectangular window [217]. The simplest one is the Butterworth filter, which is
illustrated in fig. 3.1(a).
The square magnitude of the Butterworth filter is a real-valued function of
mathematical form,

B(ω) =
A

1 + (ω−ω0

ωC
)2n

, (3.6)

where ω0 is defined as the center frequency and the cut-off frequency, ωC ,
represents the half-width at half-maximum. Both ω0 and ωC are real quantities.
The symbol n defines the order of the filter and the constant A represents the



CHOICE OF THE WEIGHTING FUNCTION 45

amplification factor of the filter. If A is taken to be

A =
n sin( π

2n )
πωC

, (3.7)

the area under the curve is normalized and the result of integration (3.5), using
B(ω), as weighting function, represents the Butterworth-weighted averaged
input power. If the filter is not normalized and the amplification factor is
taken to be equal to unity, the integral (3.5) provides an approximation for the
input power over the ideal frequency band [ω0 − ωC , ω0 + ωC ]. In the following,
function B(ω), eq. (3.6), is applied as a weighting function, strictly speaking,
and will be referred to as Butterworth filter.
To analyze the properties of the Butterworth filter, it is convenient to move
to the complex frequency plane, z, such that z ∈ C. In the remainder of this
chapter, the notation z is used when the frequency value may be complex, while
ω is used when the value is real.
For a filter of order n, 2n poles are located in the complex z plane at the
following positions,

zk = ω0 + ωCe−iθk , (3.8)

where
θk =

π

2n
(1 + 2k). (3.9)

The value k is an integer (k ∈ Z) which defines the position of a pole. When
0 ≤ k ≤ n − 1, the k-th pole is located in the lower complex half plane (LHP);
when n ≤ k ≤ 2n − 1, the k-th pole is located in the upper complex half plane
(UHP). From eq. (3.8), it appears that the poles are distributed over a circle of
radius ωC and center frequency ω0. The position of the poles for a Butterworth
filter of order 8 can be seen in fig. 3.1(b).
As n increases, the shape of the filter becomes closer to the shape of a
rectangular window. This can be observed in fig. 3.2, where the area below
a normalized Butterworth filter is evaluated over the range [ω0 − ωC , ω0 + ωC ].
If the order is 1, the Butterworth filter corresponds to the Lorentzian function,
which will be used later in this dissertation.
For the sake of completeness, it has to be mentioned that other types of filters
exist to resemble a rectangular window, i.e. the elliptic filter and the Chebyshev
filter type I and type II [217]. In this work, the Butterworth filter is chosen
because of its smoothness and regularity. In fact, the aforementioned filters
present ripples which degrade the regularity of the window. However, they can
be used according to the present approach, once the mathematical form of the
filter is known.
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3.4 Influence of the damping model

After having introduced how the poles of a Butterworth filter are distributed
over the complex plane, now the attention is focused on the poles of the input
mobility and how the choice of the damping model influences their position.
Any real system must respect the causality principle, which means that the
past cannot depend on the future [164]. It can be shown that a causal and
stable system response in the time domain leads to a transfer function which is
analytic in the LHP (LHP becomes UHP if the opposite time convention e−iωt

is taken), or equivalently, that the function poles are confined in the UHP [199].
The causality and the stability of the system is strictly dependent on the
mathematical model used to describe the damping mechanism. In the literature
several damping models are available, nevertheless some of them may violate
either the causality or the stability principles and lead to ambiguities or
paradoxes.
In this dissertation, only viscous and hysteretic damping are described in
detail. For further clarifications the reader is referred to the specific literature
concerning the topic: a survey is given in reference [164].
A final distinction has to be made between a continuous model and its numerical
representation. The former consists of an ideally infinite number of DOFs, N ,
which is instead finite for numerical models. With increasing N , the numerical
model provides a more accurate approximation to the continuous one. Since in
the following the main focus is on numerical modeling, the system behavior is
described by a finite set of variables.
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3.4.1 Viscous damping

One of the most used and general damping models is viscous damping [40],
for which the dissipation effect is proportional to the velocity of the system
oscillation. The input mobility can be expressed as a modal sum,

Y (ω) = iω
N
∑

r=1

φ2
r(xf )

ω2
r − ω2 + 2iωωrξr

, (3.10)

where φr(xf ) is the mass-normalized mode shape evaluated at xf and N is the
number of DOFs of the system. The symbol ωr represents the r-th natural
frequency of the system. The damping ratio ξr is expressed as

ξr =
cr

2
√

mrkr

, (3.11)

where mr and kr are respectively modal mass and stiffness of the r-th mode.
It can be easily verified that for positive values of the damping coefficient, cr,
the poles of function Y (ω) lie in the UHP, as schematically illustrated in fig.
3.3. If cr is taken to be a function of frequency, one should make sure that this
does not affect the analyticity of function Y (ω) over the LHP.
Viscous damping is often used in FE modeling [223] and it may be useful
to mention the conditions under which the poles of the transfer function are
confined to the UHP. Firstly, a set of differential equations can be formulated
in a direct fashion as,

Mq̈ + Cq̇ + Kq = f0, (3.12)

where M, C and K represent mass, damping and stiffness matrix, respectively.
The generalized forcing vector is expressed as f0 and the generalized coordinates
are referred to as q. To assure that the poles of a system with viscous damping
lie in the UHP, matrices M, C and K have to be positive definite [106].
This condition can be verified by computing the roots of the characteristic
polynomial of eq. (3.12),

det(−ω2M + iωC + K) = 0, (3.13)

where det(•) indicates the determinant operator.
When the aforementioned condition is satisfied, the mathematical model
provides a causal and stable response and no system poles are present in the
LHP.

3.4.2 Hysteretic damping

When the excitation is harmonic, the damping mechanism can be approximated
by introducing a complex modulus. This type of damping is commonly referred
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Figure 3.3: Position of system (×) and filter (∗) poles over the complex z plane
and path of integration for the case of viscous damping.

to as hysteretic damping and is represented by a loss factor η which multiplies
the Young’s modulus of the material, E(1 + iη) [40]. If, on the one hand, the
use of hysteretic damping yields mathematical advantages, on the other hand,
it also leads to causality problems when moving from the frequency to the time
domain [38, 39].
For hysteretic damping, the input mobility can be expressed as

Y (ω) = iω
N
∑

r=1

φ2
r(xf )

ω2
r(1 + iη) − ω2

. (3.14)

By considering η as a constant and equating the denominator in eq. (3.14) to
zero, one can show that the system poles lie symmetrically over the first and
third quadrant of the complex z plane,

z(u)
r = +ωr

√

1 + iη ≈ +ωr(1 + i
η

2
), (3.15)

z(l)
r = −ωr

√

1 + iη ≈ −ωr(1 + i
η

2
),

where the approximation holds for small values of η and the superscripts u and
l refer to the upper and the lower half of the complex z plane respectively. The
position of the poles is illustrated in fig. 3.4.



EVALUATION OF THE FREQUENCY INTEGRAL 49

b

*
*

*

*

**

×

×

×

×

×

×

Im {z}

Re {z}

ΓR

Γ0

ωC

ω0

Figure 3.4: Position of system (×) and filter (∗) poles over the complex z plane
and path of integration for the case of hysteretic damping.

3.5 Evaluation of the frequency integral

This section focuses on the efficient evaluation of integral (3.5), which is
conveniently expressed in terms of displacements at the excitation point,
u(xf , ω),

〈Pin〉W =
1
2

∫ +∞

−∞

W (ω)Re {iωu(xf , ω)F ∗
0 } dω. (3.16)

By considering a real-valued weighting function, it is possible to write the
frequency-averaged input power as follows,

〈Pin〉W =
1
2

Re
{

i
∫ +∞

−∞

W (ω)ωu(xf , ω)F ∗
0 dω

}

. (3.17)

As previously mentioned, several numerical quadrature schemes are available
to provide an estimation of integral (3.17). Nevertheless, their efficiency and
accuracy are compromised by the fact that the integrand, W (ω)ωu(xf , ω)F ∗

0 ,
is commonly an oscillating function of frequency.
An alternative way to perform the integration consists of using the complex
residue theorem [73]. The theorem states that a line integral over a piecewise
smooth, closed, counterclockwise oriented curve C of a function g(z) analytic
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inside and on C except at finitely many isolated poles, z1, z2, . . . , zNp
, is equal

to,
∮

C

g(z) dz = 2πi
Np
∑

s=1

res {g(zs)} , (3.18)

where res {g(zs)} is the residue of function g(z) at the pole zs. If the integration
is carried out over a clockwise curve, the sign of the result changes.

3.5.1 Application of the residue theorem for a general case

The integral in eq. (3.17) is evaluated over the whole real frequency axis ω,
which will be referred to as Γ. In order to apply the residue theorem to evaluate
the integral

IΓ =
∫

Γ

W (ω)ωu(xf , ω)F ∗
0 dω, (3.19)

it is necessary to move to the complex frequency z plane. The path of
integration, C, is chosen to consist of a semicircle with radius R centered at the
origin, ΓR, and the part of the real frequency axis, Γ0, that closes the path. In
principle, the curve ΓR can be located either in the upper or in the lower half
of the complex z plane. The convenience in choosing the latter will become
clear later on. An example path is shown in fig. 3.4.
If the system is causal and stable, the function u(xf , ω) is analytic in the LHP
and the poles are confined in the UHP. However, when the aforementioned
principles are not respected, some system poles may lie in the third quadrant
of the complex z plane.
Also the poles of the weighting function W (ω) are located over the complex
plane. If W (ω) is a Butterworth filter, B(ω), the poles are spread both in the
LHP and UHP and located over a circle, as explained in sec. 3.3.
As R → +∞, Γ0 tends to Γ, coincident with the real frequency axis. Moreover,
IC = IΓ, since the integral over ΓR vanishes. To prove the latter statement, let
us consider the case in which the hysteretic damping model is present (a viscous
loss mechanism would lead to a similar result). Some of the system poles are
located in the third quadrant and the closing path ΓR is located in the LHP,
as illustrated in fig. 3.4. Firstly, the integrand of integral IΓR

is rewritten and
factorized as

g(z) =
Az |F0|2 ω2n

C
∏2n−1

k=0 (z − zk)

N
∑

j=1

−φ2
j(xf )

(z − z
(u)
j )(z − z

(l)
j )

, (3.20)

where zk and zj represent the Butterworth and system poles, respectively. To
evaluate the integral over ΓR as R grows to infinity, the function g(z) can be
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bounded by minimizing its denominator. The smallest distance between ΓR

and a pole in the LHP is R −
∣

∣

∣
z

(l)
k

∣

∣

∣
and R −

∣

∣

∣
z

(l)
j

∣

∣

∣
for the Butterworth and

system poles respectively. When the pole is located in the UHP, the smallest
distance is equal to

∣

∣

∣
R − z

(u)
k

∣

∣

∣
and

∣

∣

∣
R − z

(u)
j

∣

∣

∣
, respectively. Consequently, the

function g(z) can be bounded as,

|g(z)| ≤ AR |F0|2 ω2n
C

∏n−1
k=0 (R −

∣

∣

∣
z

(l)
k

∣

∣

∣
)
∏2n−1

k=n

∣

∣

∣
z

(u)
k − R

∣

∣

∣

(3.21)

×
N
∑

j=1

∣

∣φ2
j (xf )

∣

∣

(R −
∣

∣

∣
z

(l)
j

∣

∣

∣
)
∣

∣

∣
R − z

(u)
j

∣

∣

∣

.

Using this result to bound the integral, provides

∣

∣

∣

∣

∫

ΓR

g(z) dz

∣

∣

∣

∣

≤ πAR2 |F0|2 ω2n
C

∏n−1
k=0 (R −

∣

∣

∣
z

(l)
k

∣

∣

∣
)
∏2n−1

k=n

∣

∣

∣
R − z

(u)
k

∣

∣

∣

(3.22)

×
N
∑

j=1

∣

∣φ2
j(xf )

∣

∣

(R −
∣

∣

∣
z

(l)
j

∣

∣

∣
)
∣

∣

∣
R − z

(u)
j

∣

∣

∣

∼
1

R2n
,

which tends to zero as R → +∞.

As a consequence of the previous considerations, the integral over the closed
path, C, corresponds to IΓ and by means of the residue theorem, it is possible
to evaluate it as a sum of the residues of the function g(z) at N system poles,
z

(l)
j , and n filter poles, zk, located in the LHP,

IΓ = −2πi





N
∑

j=1

res
{

g(z(l)
j )
}

+
n−1
∑

k=0

res {g(zk)}



 . (3.23)

If the curve ΓR is chosen to lie in the UHP, this does not hamper the use of
the residue theorem. Nevertheless, as it will become clear later in this chapter,
the previous choice leads to a more efficient integral evaluation.

3.5.2 Integration when system poles are confined in the UHP

When the causality and stability principles are respected, as for instance in the
case of viscous damping, system poles are located over the UHP. Consequently,
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the LHP is only populated by some of the filter poles and integral IΓ can be
evaluated as,

∫

Γ

W (ω)ωu(xf , ω)F ∗
0 dω = −2πi

n−1
∑

k=0

res {W (zk)zku(xf , zk)F ∗
0 } , (3.24)

where zk corresponds to one of the poles of the weighting function W (ω),
located in the LHP.
In general, the position of the system poles is not known a priori, while the
position of the window poles is exactly known, provided that the window has a
closed mathematical expression. The result in eq. (3.24) states that, no matter
where the system poles are located, if the function zu(xf , z)F ∗

0 is an analytic
function in the LHP and vanishes sufficiently quickly as the frequency tends to
infinity, the weighted frequency integral can be evaluated simply by computing
the system response at some of the window poles.

In the case that the weighting function is a square magnitude of a Butterworth
filter, B(ω), the residue must be evaluated at the poles zk located over the
LHP, thus considering eq. (3.8) with 0 ≤ k ≤ n − 1. Since the poles are simple
[73], the residue can be expressed as

res {B(zk)zku(xf , zk)F ∗
0 } = lim

z→zk

(z − zk)
Azu(xf , z)F ∗

0

1 + ( z−ω0

ωC
)2n

. (3.25)

By considering eq. (3.8) and applying the de l’Hôpital rule [73], it can be verified
that this limit tends to

res {B(zk)zku(xf , zk)F ∗
0 } = −AωC

2n
e−iθkzku(xf , zk)F ∗

0 , (3.26)

where θk can be computed according to eq. (3.9).
By summing the residues at the Butterworth filter poles, it is possible to express
the integral (3.24) as

∫

Γ

B(ω)ωu(xf , ω)F ∗
0 dω =

iπAωCF ∗
0

n

n−1
∑

k=0

zku(xf , zk)e−iθk . (3.27)

The evaluation of the integral only requires the computation of the system
response at complex frequencies, which correspond to the filter poles.
As a result, the Butterworth-weighted input power, 〈Pin〉B , is evaluated as

〈Pin〉B = −1
2

πAωC

n
Re

{

F ∗
0

n−1
∑

k=0

zku(xf , zk)e−iθk

}

. (3.28)



EVALUATION OF THE FREQUENCY INTEGRAL 53

It is worth noting that when dealing with energetic approaches, quadratic
quantities are of primary interest. The position of the poles of these quantities
is symmetrically distributed over the complex z plane, as they are equal to the
product of primary quantities times their complex conjugate. Consequently,
the residue theorem cannot be exploited in such an efficient manner, and the
frequency integral can only be analytically evaluated if the positions of the
poles are known.

3.5.3 Integration when system poles are not confined in the
UHP

As previously observed, when the damping mechanism is modeled using
hysteretic damping, causality and stability paradoxes occur and this is
confirmed by the fact that system poles are not confined in the UHP. For
this reason, efficiently applying the residue theorem is not possible without
the exact knowledge of the position of the system poles. At a glance,
replacing the damping coefficient η with η sgn(ω) may seem to solve the
issue but it compromises the analyticity of the transfer function, which
becomes discontinuous at ω = 0 [38, 190]. However, as it is shown in the
following, the relation obtained in eq. (3.28) can still be considered a reasonable
approximation to evaluate the input power in the case of hysteretic damping.

In this context, using eq. (3.23) provides an exact result but the computational
efficiency of the proposed approach is clearly reduced, and the eigenvalue
problem has to be solved to evaluate IΓ. Nevertheless, integral (3.23) can be
approximated by evaluating the residues only at the filter poles located inside
the path C, analogously to eq. (3.27). This can be shown by evaluating the
residue of the integrand function g(z), in case of hysteretic damping,

g(z) =
Az |F0|2

1 + ( z−ω0

ωC
)2n

N
∑

j=1

φ2
j(xf )

ω2
j (1 + iη) − z2

, (3.29)

at the system poles.
For real-life applications, the structure is commonly constrained and it is
reasonable to assume that the poles are simple, meaning that each pole has
multiplicity equal to one. The residue of function g(z) at a system pole, z

(l)
j ,

can be computed as follows,

res
{

g(z(l)
j )
}

= lim
z→z

(l)
j

[

(z − z
(l)
j )

Az |F0|2
1 + ( z−ω0

ωC
)2n

N
∑

r=1

φ2
r(xf )

ω2
r(1 + iη) − z2

]

(3.30)
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where the sum can be split,

res
{

g(z(l)
j )
}

= lim
z→z

(l)

j






(z − z

(l)
j )

−Az |F0|2
1 + ( z−ω0

ωC
)2n

N
∑

r=1
r 6=j

φ2
r(xf )

(z − z
(u)
r )(z − z

(l)
r )







+ lim
z→z

(l)
j

[

(z − z
(l)
j )

−Az |F0|2
1 + ( z−ω0

ωC
)2n

φ2
j (xf )

(z − z
(u)
j )(z − z

(l)
j )

]

=
−Az

(l)
j |F0|2

1 + (
z

(l)
j

−ω0

ωC
)2n

φ2
j (xf )

(z(l)
j − z

(u)
j )

, (3.31)

where z
(u)
j and z

(l)
j are defined in eq. (3.15). The position of the poles is

symmetric with respect to the origin of the coordinate system and since z
(l)
j =

−z
(u)
j the previous equation provides the following result,

res
{

g(z(l)
j )
}

= −1
2

Aφ2
j (xf ) |F0|2

1 +
(

z
(l)
j

−ω0

ωC

)2n , (3.32)

meaning that the residue of g(z) at the system poles z
(l)
j , is dependent on the j-

th mass normalized mode shape, φj , at the excitation point and on the feature
of the Butterworth filter.
If IΓ is approximated only by considering the filter poles, as in eq. (3.27), it
is possible to quantify the absolute error on the input power by evaluating
the residues at the system poles. In this case the absolute error ǫabs can be
expressed in the following mathematical form,

ǫabs =
1
2
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. (3.33)

By introducing eq. (3.32) in the previous equation, a bounding expression can
be formulated as

ǫabs <
1
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. (3.34)
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To evaluate a bounding function for the absolute error, ǫabs, one can consider
the following inequality,

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

πA |F0|2 φ2
j(xf )

1 +
(

z
(l)
j

−ω0

ωC

)2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
N
∑

j=1

∣

∣

∣
πA |F0|2 φ2

j (xf )
∣

∣

∣

∣

∣

∣

∣

∣

1 +
(

z
(l)
j

−ω0

ωC

)2n
∣

∣

∣

∣

∣

. (3.35)

The numerator of the right-hand term in eq. (3.35) is a bounded function which
is independent of frequency when system properties are frequency independent,

∣
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∣φ2
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∣ ≤ πA |F0|2 hj , (3.36)

where hj is the upper bound related to the j-th mode.
Before bounding the denominator of eq. (3.35) some considerations are
necessary.
Firstly, the quantity z

(l)
j refers to the pole position over the complex plane

and its real and imaginary parts are related through the damping coefficient
η, which is commonly small (η ≪ 1). Furthermore, since z

(l)
j is in the third

quadrant and ω0 is real and positive, it can be verified that
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where ω
(l)
j indicates the real part of the pole z

(l)
j .

Secondly, for the denominator the following inequality holds
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Introducing eq. (3.36) and (3.38) in eq. (3.34) leads to an absolute error, ǫabs,
which is bounded by a converging series,

ǫabs <
1
2

πA |F0|2 ω2n
C

N
∑

j=1

hj

(ω(l)
j − ω0)2n

, (3.39)

where hj is an upper bound related to the eigenfunction of the j-th mode shape
and ω

(l)
j is the real part of the correspondent eigenfrequency in the LHP.

The series in eq. (3.39) is convergent as N increases and can be considered as
an upper bound for the error function. Moreover, it is clear that the bounding
function has a strong dependence on the characteristics of the filter. Note that
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Figure 3.5: Amplitude decay for different Butterworth filters.

each term appearing in the sum in eq. (3.39) is small if ωj is located away
from ω0 in the complex plane. In that case, the terms also quickly decrease
further with increasing n. This is due to the quick decay of the amplitude of
the Butterworth filter outside of a circle with radius ωC centered around ω0,
shown in fig. 3.4. To illustrate how fast the amplitude of the filter decreases
with frequency, fig. 3.5 compares three different filters. Thus, for the bound
(3.39) to be small, it is sufficient that the system pole closest to ω0 lies at a
distance bigger than ωC . Since the system poles lie in the third quadrant, and
ω0 lies on the positive real line, this is almost always the case, except perhaps
for values of ω0 close to zero.
Finally, expression (3.39) still includes the position of the system poles and a
term related to the eigenfunctions, which are not known a priori and make
an estimate of ǫabs not possible for complex systems. For simple components,
the position of the poles over the real ω axis can be hypothesized by using
approximated relations to estimate the modal density nd(ω) (∈ ℜ+) [132, 220],
which provides the number of modes over a frequency band and leads to ω

(l)
j ≈

−j/nd(ω).

When the order of the filter is high enough, it is reasonable to assume that the
error is negligible and the Butterworth-weighted input power can be evaluated
as

〈Pin〉B ≈ −1
2

πAωC

n
Re

{

F ∗
0

n−1
∑

k=0

zku(xf , zk)e−iθk

}

. (3.40)

The accuracy of this approximation will be assessed in the next section.
However, it is important to underline that when the system poles lie in the



APPLICATION CASES 57

UHP, the residue provides an exact result just by evaluating the response at
complex frequencies, which correspond to the filter poles.

3.6 Application cases

In this section, two application cases are proposed to show the level of
accuracy achievable when evaluating the input power by means of the residue
theorem. The first one is a simply supported rectangular plate, for which the
eigenfrequencies and eigenfunctions are known analytically and allow assessing
the validity of the error bounding function (3.39). The second case consists of
two plates stiffened by a beam. Both examples include hysteretic damping as
loss mechanism, for which the efficient evaluation of the input power results in
an approximation rather than an exact result.

It is important to underline that the main concern lies with the accuracy of the
integration rather than the accuracy of the model or the one of the numerical
technique used to solve the physical problem. In fact, the efficiency of the
frequency integration and its precision are totally independent of the ability
of the model to represent the physical reality of the problem. In this regard,
the main source of accuracy loss is inherent to the use of a Butterworth filter
to approximate a rectangular window. As illustrated in fig. 3.2, this can be
reduced by increasing the order of the filter. A second source of accuracy loss
has to be considered when system poles are not confined to the UHP. This has
been discussed in the previous sec. 3.5.3.
In order to quantify the accuracy of the approach, the relative error, ǫrel, is
defined as

ǫrel =

∣

∣

∣
〈Pin〉(ref)

B − 〈Pin〉(approx)
B

∣

∣

∣

〈Pin〉(ref)
B

, (3.41)

where 〈Pin〉(ref)
B and 〈Pin〉(approx)

B indicate the reference value and its approxi-
mation, respectively.

3.6.1 Simply supported plate

This application case consists of a thin simply supported plate [128] made
of steel, Young’s modulus E, 210 GPa, Poisson ratio ν, 0.3 and density, 7850
kg/m3. The damping mechanism is assumed to be hysteretic and characterized
by a coefficient η equal to 0.01, constant over the whole frequency range. The
plate is rectangular with dimensions lx = 1 m, ly = 0.6 m and thickness d = 2
mm. A point force excitation is applied at (0.7, 0.4)m.
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For simply supported plates the mass-normalized mode shapes have mathemat-
ical form,

φnx,ny
(x, y) =

2√
Mtot

sin
(

nxπx

lx

)

sin
(

nyπy

ly

)

, (3.42)

and eigenfrequencies are given by,

ω2
nx,ny

=
D

ρd

[

(

nxπ

lx

)2

+
(

nyπ

ly

)2
]2

, (3.43)

where Mtot is the total mass of the plate and D is the bending stiffness of the
plate, Ed3

12(1−ν2) . The subscripts nx and ny identify the modes for each of the
two directions. Thirty modes per direction are used in the framework of the
Rayleigh-Ritz approach [40] to evaluate the system response.
In the remainder of this example, the Butterworth-weighted input power is
computed in two different ways. On the one hand, according to the proposed
technique, the band values are approximated by evaluating the residues at the
filter poles, as expressed in eq. (3.40). On the other hand, having available
both eigenfunctions (3.42) and eigenfrequencies (3.43) allows the computation
of the exact integral (3.23) by evaluating the residues of the function g(z) at
all the poles located inside the integration path C in fig. 3.4. The result of the
latter procedure provides a reference value for the error estimation.
The input power into the plate is shown in fig. 3.6. The frequency range of
analysis sweeps 23 one-third octave bands (from 22 Hz to 4467 Hz). The narrow
band input power is compared with the averages over the aforementioned bands.
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Figure 3.6: Comparison between narrow band and band-averaged input power
for a simply supported plate.
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Equation (3.23) is applied to evaluate the Butterworth-weighted input power,
by using a filter of order 14.
In fig. 3.7, the third octave band input power is evaluated by using different
weighting functions. The reference for the comparison is evaluated by using a
rectangular window and is computed by means of numerical quadrature with
the trapezoidal rule. A sampling step of 0.01 Hz assures that the evaluation
is very accurate despite the simple integration rule used. This result is
compared with the ones given by three Butterworth filters of order 8, 10 and 12,
respectively. The frequency integral is evaluated by computing the integrand
residues at both the system and the filter poles. This provides an exact value
of integral (3.19).
As previously mentioned, the approximation of a rectangular window by means
of a Butterworth filter represents the main source of accuracy loss. To
further investigate this issue, the relative error with respect to the numerical
quadrature is illustrated in fig. 3.8. The reference input power and its
approximation are evaluated as previously explained. Filters with different
number of poles are used to emphasize the effect of the order. In general,
as the order increases, the approximation is closer to the one provided by a
rectangular weighting function, as suggested by fig. 3.2.
Similar results are illustrated in fig. 3.9, where seven octave bands are
considered (from 22.4 Hz to 2818 Hz). It is important to notice that, although
the sampling scheme has a very high resolution, the numerical quadrature
inevitably introduces errors which affect the comparison.
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Figure 3.7: One-third octave band input power into a simply supported plate.
Comparison between rectangular window and Butterworth filter as weighting
functions.
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Figure 3.8: Relative error resulting from the use of a Butterworth filter to
approximate a rectangular weighting function for a simply supported plate and
1/3 octave bands.
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Figure 3.9: Relative error resulting from the use of a Butterworth filter to
approximate a rectangular weighting function for a simply supported plate and
octave bands.

If the damping model was viscous, the error resulting from the integration
procedure would have been limited to the one due to the use of a Butterworth
filter to resemble a rectangular window. However, the presence of hysteretic
damping results in the use of an approximate relation instead of an exact
one. The relative error resulting from using eq. (3.40) for one-third octave
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Figure 3.10: Relative error resulting from eq. (3.40) to evaluate 1/3 octave
band input power into a simply supported plate.
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Figure 3.11: Relative error resulting from eq. (3.40) to evaluate octave band
input power into a simply supported plate.

bands is quantified in fig. 3.10 and it decreases consistently with increasing
order of the Butterworth filter. Double floating point format has been used
in these computations. Note that for the first, second, fifth and sixth bands
corresponding to order 8, the relative error is actually smaller than machine
precision, due to an exact cancellation of the terms in the numerator of eq.
(3.41). For higher orders of the Butterworth filter, the error from neglecting
the system poles becomes very small, and machine precision accuracy is reached.
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Figure 3.12: Absolute error over 1/3 octave bands resulting from eq. (3.40) to
estimate the input power into a simply supported plate and comparison with
the error bounding function (3.39).

Similar results are presented in fig. 3.11, where octave band computations are
performed. For both examples, the reference value for the error estimation is
evaluated according to eq. (3.23). Comparing fig. 3.8 with 3.10, and fig. 3.9
with 3.11, it can be observed that the error due to the use of a Butterworth
filter when approximating a rectangular window, is predominant over the error
due to approximation (3.40).
The absolute error on the input power and its bounding function (3.39) are
shown in figs. 3.12 and 3.13 for one-third octave band and one octave band
computations, respectively. As the problem eigenfunctions are known for
simply supported thin plates, the parameter hj can be estimated a priori from
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Figure 3.13: Absolute error over octave bands resulting from eq. (3.40) to
estimate the input power into a simply supported plate and comparison with
the error bounding function (3.39).

eq. (3.42). In fact hj is constant for all modes and equal to 4/Mtot. Moreover, to
approximate the position of the poles, the modal density of a simply supported
plate is used [132]. For all the analyzed cases, the function (3.39) bounds the
absolute error, which is computed as the difference between the approximate
Butterworth-weighted input power and its exact evaluation, as reported in eq.
(3.33).
The knowledge of mode shapes and eigenfrequencies provides useful information
to compare the exact evaluation of the frequency integral against its approx-
imation. For more complex cases, their evaluation is more difficult since a
complete eigenvalue problem needs to be solved. Nevertheless, this does not
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introduce an obstacle to the application of the presented technique, as is done
for a more realistic situation in the next example.

3.6.2 Stiffened plates

When high-frequency assumptions are not violated, treating finite structures as
infinite can provide a reasonable approximation. According with the previous
example, the input power into an infinite homogeneous plate is a constant
function of frequency [132], and this is confirmed in fig. 3.6. In fact, when the
wavelength is small enough, the band-averaged input power becomes almost
constant and independent of frequency. However, there are situations in which
this approximation leads to poor predictions. When dealing with low- and mid-
frequencies and built-up structures, the wavenumbers of the stiff components
have a strong influence on the overall response, and boundary conditions have
an important impact on the behavior of the input mobility of the system.
Moreover, property and material inhomogeneities may be present and influence
the injected power, as well. For these cases, the use of the presented approach
can be advantageous as it provides an accurate evaluation over a frequency
band at a low computational cost. The structure under consideration in the
next example consists of two plates connected through a stiffener. The two
plates have dimensions 0.4×0.6 m each and 1 mm thickness. The material
is aluminum, Young’s modulus, 70 GPa, Poisson ratio, 0.3 and density, 2700
kg/m3. The beam is made of steel, Young’s modulus, 210 GPa, Poisson ratio,
0.3, density, 7850 kg/m3, its length is 0.6 m and the section is 0.02×0.01 m. For
all components, hysteretic damping is adopted with loss factor η equal to 0.01,
constant with frequency. The system is excited by a point force located on the
axis of the stiffener at 0.16 m from one of the two edges and is simply supported
along the edges. The plates are discretized by 5288 quadrilateral shell elements,

Figure 3.14: Finite element model of the stiffened plates.
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Figure 3.15: Comparison between narrow band and band-averaged input power
for two stiffened plates.
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Figure 3.16: One-third octave band input power into two stiffened plates.
Comparison between rectangular window and Butterworth filter as weighting
functions.

while for the stiffener, 488 solid elements are used. The FE model and the
geometry of the problem are illustrated in fig. 3.14. The commercial software
Nastran 2010 [2] has been used to pre-process the system matrices.

As can be seen in fig. 3.15, the input mobility is characterized by peaks at the
stiffener wavenumbers. Similarly to the previous case, the response has been
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Figure 3.17: Relative error resulting from the use of a Butterworth filter to
approximate a rectangular weighting function for two stiffened plates and 1/3
octave bands.

averaged over 17 bands (starting from 22.4 Hz to 1122 Hz), which in fig. 3.15
are computed by using a Butterworth filter of order 14.
For this case, evaluating the exact integral is much more difficult than in
the previous example, since the eigenvalue problem should be solved entirely
to compute expression (3.23). As an alternative, the frequency integral is
evaluated by means of numerical quadrature, using a trapezoidal scheme with
a frequency step equal to 0.01 Hz.
To investigate the use of a Butterworth filter as an approximation to a
rectangular window, the one-third octave band values have been compared
in fig. 3.16 for different orders. Here, the Butterworth-weighted values are
computed by evaluating the residues only at the filter poles according to eq.
(3.40). The relative error is illustrated in fig. 3.17, where the reference value is
estimated by using a rectangular window as weighting function and numerical
quadrature. Figure 3.18 shows the same comparison for five octave bands (from
22.4 Hz to 707.9 Hz) from which it is possible to draw similar conclusions. Like
in the previous example, as the order of the filter increases, the Butterworth
weighted integrals are closer to the ones computed by using a rectangular
window.
Applying eq. (3.40) and limiting the residue evaluation to the filter poles
introduces an approximation quantified in fig. 3.19, where the relative error is
evaluated for different Butterworth filters covering third octave bands. Figure
3.20 illustrates the same computation over one octave bands. For each case,
the reference value for the Butterworth-weighted frequency integral has been



APPLICATION CASES 67

31.5 63 125 250 500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e 
er

ro
r

Center frequency of octave band [Hz]

 

 

Butterworth, order 8
Butterworth, order 10
Butterworth, order 20
Butterworth, order 50

Figure 3.18: Relative error resulting from eq. (3.40) to evaluate the input power
into two stiffened plates and octave bands.
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Figure 3.19: Relative error resulting from eq. (3.40) to evaluate 1/3 octave
band input power into two stiffened plates.

estimated by using numerical quadrature with trapezoidal rule and 0.01 Hz step.
Also in this case, as the order of the filter increases, the relative error decreases,
although less regularly than in the previous case, fig. 3.10. An explanation for
this can be given by considering that, in the present example, the reference
values are computed using a quadrature integration, while in the previous one
the integrals have been evaluated in an exact way. However, the precision is
very high over the whole frequency range of analysis. Comparing figs. 3.17 and
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Figure 3.20: Relative error resulting from eq. (3.40) to evaluate octave band
input power into two stiffened plates.

3.18 shows that the relative error for octave band input power computation
is higher than in the case of third octave bands. This is due to the fact that
for octave bands the ratio ωC/ω0 is larger than for third octave bands. As a
consequence, the error in eq. (3.39) can also be larger. However, although the
error is very low in general, it can be easily controlled and reduced by increasing
the order of the filter.
Finally, comparing fig. 3.19 with 3.17 and fig. 3.18 with 3.20 confirms that the
error due to the use of the approximate relation (3.40) is smaller than the one
due to the use of a Butterworth filter to resemble a rectangular window.

3.7 Computational considerations

3.7.1 Computation time

The main advantage of the proposed procedure to evaluate the input power
over frequency bands, is the considerable reduction of computation time.
When computing the frequency integral over a large bandwidth, classic
numerical quadrature rules are very expensive, especially when an accurate
estimation is required. This is firstly due to the oscillatory behavior of the
integrand function, which may require a very refined integration step to achieve
a good precision. In contrast, the residue theorem does not require a sampling
procedure. To quantify the computational performance, fig. 3.21 compares
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Figure 3.21: Computation time to evaluate the one-third octave band input
power into two stiffened plates. Classic numerical quadrature is compared
with the present technique for different orders of the Butterworth filter.

solution times to evaluate one-third octave band input power into two stiffened
plates. The numerical quadrature used in this analysis has a 1 Hz step, which,
although is larger than what was shown in the previous section, is a reasonable
choice for a real application case. If the integration step was 0.01 Hz, like
in the previous example, the elapsed time would be 100 times larger than
what presented in fig. 3.21. The Butterworth-weighted frequency averaging is
performed by using three different filters with increasing order, namely 8, 16
and 50. Accordingly, they require an increasing number of response evaluations
at complex frequencies: 8, 16 and 50, respectively, coincident to the poles of the
square magnitude of the Butterworth filter. Data are obtained using a Windows
7 64-bit desktop machine, processor Intel(R) Core 2 Quad CPU, clock rate 3
GHz and 8 GB RAM. The Matlab sparse solver [1] is used to solve the FE
system of equations. As expected, the use of numerical integration leads to
computation times which increase proportionally with the bandwidth. The
solution time required by the proposed technique is constant over the bands
and proportional to the order of the Butterworth filter. When frequency is
low, the numerical quadrature is faster than the proposed approach, since the
bandwidth is small. As the frequency increases, the use of the residue theorem
becomes more advantageous in terms of time. The benefits can be even more
evident if octave bands are taken into account, as their bandwidth is larger
when compared to the one-third octave bands.
The performance in terms of solution accuracy is compared in fig. 3.22. The
reference value to compute the relative error is the one obtained using a
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Figure 3.22: Relative error resulting from the comparison of different
integration techniques and a reference value computed by means of numerical
quadrature with frequency sampling equal to 0.01 Hz over 1/3 octave bands.
The case analyzed consists of two plates stiffened by a beam and the hysteretic
damping coefficient is equal to 0.01.

rectangular window and numerical quadrature with integration step equal
to 0.01 Hz. Using a rectangular window and a quadrature integration step
equal to 1 Hz allows computing relatively accurate band values. The use of a
Butterworth filter in combination with the residue theorem provides accurate
results as well, although the difference between the shapes of the weighting
windows has to be taken into account. When the order of the filter is high,
the proposed approach outperforms numerical quadrature, especially at high-
frequencies where computational times are much lower. Furthermore, the use
of the residue theorem allows performing band evaluations independently from
any sampling refinement. This becomes particularly advantageous when the
damping coefficient is very small and numerical quadrature may require a large
number of sampling points to achieve an accurate evaluation of the input power.
Analogously to the previous case, this issue is investigated in fig. 3.23, where
the hysteretic damping coefficient is equal to 0.001. The relative error resulting
from the use of a 1 Hz step quadrature rule is high, especially when compared
to the values obtained by using the proposed technique. It is interesting to see
that for the first band, the input power predicted by the Butterworth filter of
order 8 is very poor. This is due to the fact that a sharp power peak is located
at about 21 Hz, which is very close to the lower bound of that frequency band
(22.4 Hz), and the system has a flat response within the band. The Butterworth
function does not decay fast enough to cut the power peak out of the frequency
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Figure 3.23: Relative error resulting from the comparison of different
integration techniques and a reference value computed by means of numerical
quadrature with frequency sampling equal to 0.01 Hz over 1/3 octave bands.
The case analyzed consists of two plates stiffened by a beam and the hysteretic
damping coefficient is equal to 0.001.

band. Nevertheless, as the order increases, the relative error becomes smaller.
Finally, the computational advantage allows the present approach to be applied
also in the context of mid-frequency modeling. As previously mentioned,
an accurate evaluation of the input power can seriously improve the quality
of an energetic model, especially where high-frequency assumptions are not
completely fulfilled. Here, the residue theorem provides a valuable alternative
for simulating large models and assemblies.

3.7.2 Implementation

A second major advantage of this approach is its flexibility and ease of
implementation. In fact, it can be applied in combination with any
deterministic approach, i.e. FEM, BEM. Moreover, the implementation does
not require so much effort since the frequency integral can be evaluated as a
weighted sum of the input power computed at complex frequencies instead of
real ones.
It is worth noting that the use of octave and one-third octave bands is only
illustrative in this chapter. The application can be extended to any type of
frequency band and this choice does not affect the efficiency or the accuracy of
the computation. As previously mentioned, this is valid when system poles are
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confined in the UHP. On the other hand, the disadvantage of the approach is
mainly related to the fact that, when some of the system poles lie in the LHP,
it provides an approximate value rather than an exact one. Nevertheless, as
previously shown, the error can be controlled by using a proper order of the
Butterworth filter.
From a solver point of view, a direct solution is the most suitable choice for
the proposed technique. In fact, the use of a modal solver would reduce the
computational advantage gained by moving the integration path to the complex
plane. Nevertheless, for problems in which eigenvalues and mode shapes are
computed, the use of the residue theorem would provide a valuable alternative
to numerical quadrature schemes for computing mean values over frequency
bands in the post-processing step.
Finally, it is worth underlining the effect of a computation at a complex
frequency instead of a real one on the numerical method. For approaches
like BEM or the WBM handling complex frequencies instead of real ones does
not require any additional computational effort. On the contrary, for FEM
the introduction of complex numbers influences the computational effort to
solve the problem. Nevertheless, evaluating the system matrices at a complex
frequency leads to modified damping and stiffness matrices. This can be
shown by considering a generic linear second-order system in which dissipation
mechanisms can be described by both viscous and hysteretic damping. In this
case the dynamic stiffness matrix D has the mathematical form,

D(z) = −z2M + izC + K(1 + iη), (3.44)

where z represents the complex frequency of analysis and may be considered
one of the filter poles. Since z is a complex frequency, the previous expression
can be rewritten as follows,

D(zr − izi) = −(zr − izi)2M + i(zr − izi)C + K(1 + iη) (3.45)

= −z2
rM + izr(2ziM + C) + iηK + (z2

i M + ziC + K),

where zr and zi represent respectively the real and imaginary part of z. Note
also that as the filter poles are in the LHP, both of them are positive numbers
in eq. (3.45). It is evident from eq. (3.45) that the dynamic stiffness matrix
evaluated at a complex frequency can be reformulated as a modified dynamic
stiffness evaluated at a real one. Moreover, the second and the fourth terms of
eq. (3.45) correspond respectively to a modified viscous damping and stiffness
matrices. In case the FEM solver can only handle real frequencies, eq. (3.45)
can be used to reformulate matrices and evaluate the problem solution.
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3.8 Conclusion

In this chapter, an efficient technique to evaluate the input power over frequency
bands is presented. In contrast to numerical quadrature schemes, the residue
theorem can be efficiently exploited to compute a weighted integral over the
frequency. In fact, when system poles are distributed only in the upper half of
the complex frequency plane and the residue evaluation is limited to the poles
of the weighting function, which is a Butterworth filter in this chapter.
When system poles are not confined in the upper half plane, evaluating
the integral by computing the residues at the filter poles results in an
approximation, rather than an exact result. However, as the order of the filter
increases, the error decreases and the frequency band values are estimated very
accurately.

Two application examples are shown to assess the accuracy of the proposed
strategy. Firstly, the possibility of approximating a rectangular window by
means of a Butterworth filter is investigated. By increasing the order, the shape
of a Butterworth filter is closer to a rectangular window but on the other hand
the number of frequencies at which the system has to be evaluated increases
as well. As a rule of thumb, a filter of order 8-10 allows achieving accurate
frequency band evaluations at a low computational cost. Secondly, as both
examples include hysteretic damping, the accuracy is assessed of the proposed
technique when system poles are not confined in the UHP. In fact, the error
function is proven to show a decay rate which is proportional to the order of
the filter. Consequently, it can be easily and efficiently controlled. Finally, the
computational efficiency of the method is shown by comparing its performance
with numerical quadrature. Especially when the structure is lightly damped,
the proposed strategy shows major advantages, since it is independent of the
refinement of the sampling procedure to approximate the integrals.





Chapter 4

Use of quadrature schemes in
the complex frequency
domain

The previous chapter dealt with the use of the residue theorem as an efficient
alternative to classic quadrature for evaluating integrals over frequency bands.
The square magnitude of a Butterworth filter was employed to approximate
the features of an ideal rectangular window, which is commonly used to weigh
the response over real frequencies. As a result, the band-averaged input power
can be computed by evaluating the system behavior at complex frequencies
instead of real ones, with these complex values being some of the poles of the
Butterworth filter.
The fact that a few computations at complex frequencies allow accurate
band evaluations, regardless of the bandwidth, is very advantageous from a
computational point of view, and providing further improvements and insight
motivates the research presented in this chapter.
The main idea lies in the generalization of the result in ch. 3. Instead of using
a window to filter the response over a band, the integral is directly defined over
the band itself. Thanks to the residue theorem, this problem can be equivalently
solved by integrating over a path in the complex plane, which will be either a
semi-circle or a semi-ellipse in the following, and on which classic quadrature
can be applied. Moreover, the use of this alternative strategy indicates that the
Butterworth-weighted frequency averaging presented in ch. 3, corresponds to
the use of the midpoint rule over a semi-circle taken in the complex frequency
plane. Consequently, more efficient techniques can be used to yield a more
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accurate estimate. The use of adaptive integration schemes is also investigated
to perform convergence studies.
Finally, having seen that there is an equivalence between a weighting function,
i.e. the Butterworth filter, and a quadrature rule applied over a path in the
complex plane, the possibility of applying the inverse procedure is investigated.
In other words, for a given quadrature rule applied over a path in the complex
plane, it will be shown that it is possible to formulate a weighting function
located over the real frequency axis.
In order to compare the improvement with respect to results in ch. 3, the same
application cases are presented. However, while in ch. 3 the investigation is
limited to the evaluation of active input power, in the following both real and
imaginary parts of the input mobility are used as integrand functions. Gaussian,
Lobatto and Clenshaw-Curtis quadrature rules are compared, while the Gauss-
Kronrod-Patterson rule is presented in the context of adaptive integration [43].

The chapter is structured as follows. In sec. 4.1 the band-averaged mobility
integral is presented, while in sec. 4.2 its solution by means of the residue
theorem is explained. In sec. 4.3 a possible correlation between the
aforementioned integration schemes and weighting functions is proposed.
Application cases are illustrated in sec. 4.4 and, finally, in sec. 4.5, conclusions
are drawn.

4.1 Frequency-averaged input mobility

The band-averaged input mobility can be evaluated through the integral,

〈Y 〉∆ω =
1

∆ω

∫

∆ω

Y (ω) dω, (4.1)

where 〈•〉∆ω represents the frequency average operator performed over the band
∆ω. In general, the mobility transfer function Y (ω) is frequency dependent and
consists of a real part, namely the conductance G(ω), and an imaginary part,
the susceptance S(ω), such that the input mobility can be expressed as,

Y (ω) = G(ω) + iS(ω). (4.2)

The conductance is always positive, regardless of the time convention and is
related to the amount of active power injected into the system. On the other
hand, the susceptance can be either positive or negative and is proportional to
the reactive power. According to eq. (4.2), integral (4.1) can be rewritten as,

〈Y 〉∆ω =
1

∆ω

∫

∆ω

G(ω) dω +
i

∆ω

∫

∆ω

S(ω) dω, (4.3)
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which highlights the contributions of the frequency-averaged conductance and
susceptance. By assuming that the amplitude of the excitation is frequency
independent and constant over the band, the averaged complex input power,
P

(c)
in , can be straightforwardly calculated from the input mobility,

〈

P
(c)
in

〉

∆ω
=

1
2

|F0|2 〈Y 〉∆ω . (4.4)

The approach presented in ch. 3 proposes the use of the residue theorem
for the efficient evaluation of the active input power weighted by using the
square magnitude of a Butterworth filter. However, without loss of generality,
the approach can be extended to the evaluation of band-averaged complex
quantities.
The main goal of the following sections is to generalize the strategy illustrated in
ch. 3 and improve its efficiency. Moreover, results will be extended to complex
quantities, rather than merely real ones.

4.2 Evaluation of the frequency integral

Integral (4.1) is rewritten as

IΓ0 =
∫

Γ0

Y (ω) dω, (4.5)

where Γ0 corresponds to ∆ω. The curve Γ0 lies over the real positive frequency
axis and consists of all the frequencies inside the interval [ω0 − ωC , ω0 + ωC ],
with ω0 the center frequency of the interval and ωC its half-width, which also
stands for the cut-off frequency of an associated ideal rectangular window.
In order to apply the residue theorem, it is necessary to move from a real
variable ω to the complex plane of variable z ∈ C. Again, z is used when the
frequency value may be complex, while ω is used when the value is real.
The path of integration C is chosen such that it includes Γ0 and the closure
is fulfilled by means of a smooth curve Γr which is located in the complex z
plane. An example is illustrated in fig. 4.1, although in principle Γr does not
need to be a circle. Hence, the residue theorem leads to the following result

IΓ0 + IΓr
=
∫

Γ0

Y (ω) dω +
∫

Γr

Y (z) dz = −2πi
Np
∑

s=1

res {Y (zs)} , (4.6)

from which it is clear the necessity to know whether the integrand Y (z) has
poles located inside the path C (sec. 3.4). Furthermore, the mathematical
features of the closing curve Γr have to be specified in order to compute IΓr

.
These aspects are discussed in the following sections.
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Figure 4.1: Integration path C = Γ0 ∪Γr in the complex z plane, with Γr being
a semi-circle centered at ω0 and radius ωC . The position of the poles of the
input mobility is indicated by the symbol ×.

4.2.1 Definition of the integration path C

Provided that the function Y (z) is analytic in the fourth quadrant of the
complex z plane, the path C can be closed in the LHP by means of a curve Γr.
As a result of the residue theorem, since no poles lie inside the contour path C,
it is possible to write,

IΓ0 = −
∫

Γr

Y (z) dz = −IΓr
, (4.7)

which is a very interesting result, as it substitutes an integral over the real
frequency domain by using an integral over a path in the complex plane. At this
stage, it is important to make a remark which will be clarified later by means
of examples. As mentioned in ch. 3, moving to complex frequencies in the LHP
has the effect of additional damping on the system response. Consequently, the
response function becomes increasingly smoother when moving away from the
real frequency axis and the integration can be performed more efficiently, with
a smaller number of integration points. This should clarify, for the moment, the
advantage of moving the integration path to complex frequencies instead of real
ones. Nevertheless, it has to be underlined that, for non-dissipative systems, the
input mobility is purely complex and system poles lie over the real frequency
axis. Consequently, the knowledge of their position is necessary to evaluate
IΓ0 . This jeopardizes the efficiency of this approach, as the position of the
singularities has to be computed through the solution of an eigenvalue problem,
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Figure 4.2: Integration path C = Γ0 ∪ Γr over the complex z plane, with Γr

being either a semi-ellipse or a semi-circle centered at ω0. The solid, dashed
and dotted lines represent a semi-ellipse with a = 2, a semi-ellipse with a = 0.5
and semi-circle, respectively. The position of the poles of input mobility is
indicated by the symbol ×.

and explains why only dissipative systems are considered here. However, this
is not seen as a limitation, as all real systems present loss mechanisms.

In order to facilitate the mathematical description of integral IΓr
, the curve

Γr is now taken to be either a semi-circle or a semi-ellipse. Some examples
are illustrated in fig. 4.2. Both curves can be parametrized in θ, and in the
following the detailed expressions for the associated integrals will be given.

Integration over a semi-circle

The semi-circle is chosen such that the radius is equal to ωC and the center
is located at ω0. To evaluate IΓr

, the curve Γr is parametrized as a function
of θ, which is defined on the interval [0, π], as illustrated in fig. 4.1. So, using
cylindrical coordinates, a point taken on Γr can be defined as

z = ω0 + ωCe−iθ, (4.8)

and
dz = −iωCe−iθ dθ. (4.9)
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Integral (4.7) in the complex variable z is rewritten as

IΓr
= −iωC

∫ π

0

Y (z(θ))e−iθ dθ, (4.10)

where θ is a real variable and the integration is performed over the interval
[0, π].

Integration over a semi-ellipse

In this case, Γr is a semi-ellipse. As illustrated in fig. 4.2, the curve is chosen
such that the center is coincident with ω0, the length of the semi-axis on the
real axis is equal to ωC and the length of the semi-axis parallel to the imaginary
axis is equal to ωB.
A point over the ellipse can be defined as

z = ω0 + ωC cos(θ) − iωB sin(θ) (4.11)

and
dz = − [ωC sin(θ) + iωB cos(θ)] dθ. (4.12)

Finally, the integral over Γr can be expressed as

IΓr
= −

∫ π

0

Y (z(θ))[ωC sin(θ) + iωB cos(θ)] dθ. (4.13)

In the following, ωB is taken such that

ωB = a · ωC , (4.14)

where a ∈ R+. When a = 1, the ellipse is a circle and eqs. (4.10) and (4.13)
provide the same result. When a < 1 the major axis is lying on the real axis,
as indicated by the dashed line in fig. 4.2. Finally, if a > 1 the major axis is
parallel to the imaginary axis and this configuration is represented by the solid
line in fig. 4.2.

4.2.2 Use of numerical quadrature schemes to evaluate IΓr

At this stage, the mathematical form of Γr has been defined and IΓr
can be

evaluated by means of numerical techniques. When quadrature schemes are
applied, it is common to express n integration points, ζj , over the interval
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[−1, 1], such that the integral IΓr
over a semi-circle in eq. (4.10), can be written

as

IΓr
= − iπωC

2

∫ +1

−1

Y (z(ζ))e−iθ(ζ) dζ ≈ − iπωC

2

n
∑

j=1

wjY (z(ζj))e−iθ(ζj). (4.15)

If Γr is a semi-ellipse, it follows from eq. (4.13) that

IΓr
= −π

2

∫ +1

−1

Y (z(ζ))[ωC sin(θ(ζ)) + iωB cos(θ(ζ))] dζ (4.16)

≈ −π

2

n
∑

j=1

wjY (z(ζj))[ωC sin(θ(ζj)) + iωB cos(θ(ζj))].

Both in eq. (4.15) and (4.16), wj represents the j-th weight associated to the
integration point ζj . From a computational point of view the results in eqs.
(4.15) and (4.16) only require the system response to be evaluated at complex
frequencies instead of real ones. If the model has frequency dependent terms,
i.e. damping, the strategy is still applicable as long as system poles do not lie
inside the path of integration.

Weights wj and abscissas ζj are chosen according to the adopted quadrature
scheme. In the literature there exist several efficient schemes to evaluate
integral IΓr

, and only a few of them are reported here. However, for more
detailed information on the following schemes, the reader is referred to the
book of Davis and Rabinowitz [43].
The most efficient scheme is the Gaussian quadrature rule, which allows exactly
integrating polynomials of degree 2n − 1. Gaussian quadrature has one main
disadvantage related to the possibility of reusing abscissas and weights from
previous evaluations to perform adaptive integration. In fact, if one wishes to
increase the accuracy of an integral estimate based on n Gauss points by using
m > n Gauss points, these m points and their weights need to be recomputed.
This hampers the possibility of straightforwardly exploiting the concept of
adaptivity (also called nested quadrature) and reusing the initial n function
evaluations. To overcome this limitation, Kronrod proposes to start with a
set of n Gauss points and add n + 1 abscissas (and 2n + 1 new weights) to
the previous set. The extra points are the zeros of Stieltjes polynomials. This
allows exactly integrating a polynomial of degree 3n + 1, if n is even, and
3n + 2, if n is odd, and provides information related to the convergence of the
estimate. In case the estimate obtained by applying the Kronrod scheme does
not show a satisfying convergence, Patterson suggests to add 2n + 2 abscissas
(and 4n + 3 new weights), which lead to an exact integration of a polynomial
of degree 6n + 5. The Patterson sequence used in this work is: 3 Gauss points,
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7 Kronrod points, 15 Patterson points (G3-K7-P15).
So far, only open quadrature schemes have been mentioned, meaning that the
endpoints of the interval are not included in the set of abscissas. On the
other hand, the scheme is said to be closed if the integrand function is also
evaluated at the endpoints. Among all cases where closed rules can be helpful,
the situation where the integrand has singular-like behavior at the boundaries
of the integration interval, is of particular interest. This might be the case if a
system pole lies very close to the endpoint of the band. Lobatto rule is based
on Gaussian quadrature rule to which the end points are added. Consequently,
also the weighting factors are modified with respect to the classic Gauss rule.
Lobatto quadrature provides exact integration for polynomials of degree 2n−3.
The Clenshaw-Curtis quadrature scheme also belongs to the family of closed
techniques. Instead of locating the abscissas at zeros of Legendre polynomials,
the Clenshaw-Curtis scheme requires the abscissas to be zeros of Chebyshev
polynomials. Although in theory, it can only exactly integrate polynomials of
degree n, in practice, it shows an accuracy which is comparable to Gaussian
quadrature [200]. In fact, for a low number of integration points, the error
rate decays to the power of −2n, which means it converges as fast as Gaussian
schemes [216]. Finally, it is worth mentioning that the Clenshaw-Curtis rule
also allows adaptive integration by doubling its order.
In fig. 4.3 the abscissas of the aforementioned integration schemes are compared.

4.2.3 Equivalence between Butterworth-weighted averaging
and midpoint integration scheme

After having seen how classic quadrature schemes can be used to evaluate
integral IΓr

, it is interesting to analyze the result provided by the use of the
midpoint rule performed over a semi-circle and verify that this corresponds to
Butterworth-weighted averaging proposed in ch. 3.
The midpoint rule belongs to the family of rectangular rules and exactly
integrates linear functions. The integration interval is divided into n panels
and the integrand is evaluated at the center point of each panel. Taking into
account the semi-circle in fig. 4.1 and dividing it into n equal panels, one can
locate the integration points at the following positions,

zk = ω0 + ωCe−iθk , (4.17)

where
θk =

π

2n
(1 + 2k) (4.18)

and k is an integer (k ∈ Z), such that 0 ≤ k ≤ n − 1. The corresponding
weights are equal to 2

n , namely the length of the k-th panel on the interval
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Figure 4.3: Abscissas for different quadrature rules.

[−1, 1]. Consequently, if IΓ0 is evaluated by using the midpoint rule over a
semi-circle, the integration (4.15) results in

IΓ0 =
iπωC

n

n−1
∑

k=0

Y (zk)e−iθk , (4.19)

which is equivalent to eq. (3.27). In other words, evaluating the Butterworth-
weighted frequency-averaged input mobility is equivalent to using the midpoint
rule over a semi-circle in the complex z plane. In fact, the poles of a
Butterworth filter centered at ω0 and with cut-off frequency ωC are located
over a circle of center ω0 and radius ωC . Their positions are equally spaced
and exactly correspond to the positions of the integration points of the midpoint
rule over the same circle. Finally, the order of the equivalent Butterworth filter
is equal to the number of integration points used to integrate IΓr

.
The evident connection between the Butterworth-weighted averaging procedure
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and the integration in the complex plane motivates the following investigation
to see whether it is possible to apply the inverse procedure. In other words,
from a generic integration scheme performed over a curve in the complex plane,
we want to define an equivalent window in the real frequency domain. This
will be the topic of the next section.

4.3 Quadrature schemes and weighting functions

So far, the focus has been on the evaluation of the averaged input mobility over
the band Γ0. This has been accomplished by applying the residue theorem and
by equating IΓ0 to the integral carried out over a secondary curve Γr, which
lies in the complex plane. Numerical quadrature is used to estimate IΓr

. In
sec. 4.2.3, it has been proven that there is an equivalence between using the
midpoint quadrature rule in combination with the aforementioned procedure
and the evaluation of the Butterworth-weighted averaging. In this section, the
inverse procedure is proposed.
The starting point is the average value of a generic function g(ω) over the
band Γ0, provided the integration scheme performed over a given Γr. After
having defined the mathematical features of a generic weighting function, W ,
its parameters are chosen such that the corresponding W -weighted frequency
average of g(ω), over the whole real frequency axis, equals the average of g(ω)
over the band Γ0, which is computed by means of numerical integration over
Γr. According to the previous cases, this procedure is developed for Γr being
either a semi-circle or a semi-ellipse.
Although this inverse procedure does not seem to be always possible, it provides
further insight into why the accuracy of the band evaluation significantly
increases when more accurate integration schemes are used over the path Γr.

4.3.1 Determination of weighting function parameters

First of all, the W -weighted integral of the function g(ω) over the real frequency
axis is computed as follows,

IΓ0′
=
∫

Γ0′

W (ω)g(ω) dω. (4.20)

To evaluate IΓ0′
by means of the residue theorem, it is necessary to move to the

complex frequency z plane. The path of integration C is chosen to consist of
the curve Γ0′ = [−R, R], which lies on the real frequency axis, and a semi-circle
ΓR lying in the LHP, centered at the origin and of radius R which ensures C
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Figure 4.4: Position of system (×) and filter (∗) poles over the complex z plane
and path of integration.

is closed. The idea is to let R → +∞, such that Γ0′ → Γ, where Γ coincides
with the whole real frequency axis.
Regarding the weighting function, W (z), is defined as a rational function of
complex variable,

W (z) =
2n
∑

j=1

Aj

z − zj
, (4.21)

where n is defined as the order of the weighting function and zj identifies the
position of a pole in the complex plane. Suppose that n poles are located in
the LHP, while the remaining n are located in the UHP and are defined as the
complex conjugates of the former. In order to associate a weighting function on
the real frequency axis with an integration scheme performed over a path Γr in
the complex plane, it is assumed that the poles in the LHP are located at the
integration points over Γr. Moreover, it is assumed that none of the poles lies
on the real frequency axis. An example is illustrated in fig. 4.4, where Γr is a
semi-circle centered at ω0 and of radius ωC . The coefficient Aj associated with
a pole in the UHP is taken to be the complex conjugate of the corresponding
pole in the LHP. These conditions are imposed to assure the symmetry of the
weighting function.
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Now the weighting function W (z) can be reformulated as

W (z) =
n
∑

j=1

(

Aj

z − zj
+

A∗
j

z − z∗
j

)

. (4.22)

The function g(z) is supposed to be analytic in the LHP, which is a reasonable
assumption, as it may resemble the transfer function of a causal and stable
system. Finally, it is hypothesized that when |z| → ∞

|W (z)g(z)| → 0, (4.23)

so the integrand function vanishes over the semi-circle IΓR
as R → ∞. This

hypothesis mainly defines the behavior of g(z), as W (z), by definition, vanishes
at infinity. As g resembles the system vibration, it is not supposed to influence
the overall vanishing behavior of |W (z)g(z)|. If this was the case, the response
of a damped system would show an oscillating behavior with amplitude which
increases to infinity faster than the vanishing of W , when |z| → ∞.
The residue of function W (z)g(z) can be evaluated at zj as

res {W (zj)g(zj)} = lim
z→zj

(z − zj)

[

n
∑

i=1

(

Ai

z − zi
+

A∗
i

z − z∗
i

)

]

g(z) (4.24)

= lim
z→zj

(z − zj)







n
∑

i=1
i6=j

(

Ai

z − zi
+

A∗
i

z − z∗
i

)

+

(

Aj

z − zj
+

A∗
j

z − z∗
j

)






g(z)

= Ajg(zj).

As the function g(z) is supposed to be analytic in the LHP, the poles inside
the path C are n poles of the weighting function, zj , and after applying the
residue theorem, one obtains

IΓ + IΓR
=
∫ +∞

−∞

W (ω)g(ω) dω = −2πi
n
∑

j=1

g(zj)Aj . (4.25)

Finally, the coefficients Aj have to be determined, such that the integral over
Γ provides the same result as IΓ0 (= −IΓr

), which corresponds to the integral
over the band centered at ω0 and of half-width ωC . Integral IΓr

is computed
by means of numerical quadrature, as reported for example in eqs. (4.15) and
(4.16). The coefficients are readily obtained by equating each of the n terms in
(4.25) to the corresponding weighted term in the Riemann sum of the integral
over Γr and assuming that the function g coincides with the mobility function
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Y .
At this stage, a strategy to determine the poles and the coefficients of function
(4.22) has been presented. As it will be shown by means of examples,
such a procedure allows to represent the features of the weighting function
corresponding to the quadrature scheme used to estimate integral IΓ0 . In the
following paragraphs, the explicit expressions of W (ω), for Γr being either a
semi-circle or a semi-ellipse, are given.

It is worth mentioning that the aforementioned procedure to determine the
weighting function which corresponds to an integration scheme is applicable to
open integration schemes. For closed schemes, end points are included into the
set of integration points and the procedure does not seem to be applicable. In
fact, if a pole is located at the end point, its position is purely real over Γr,
meaning that W would show a singular behavior on the real axis, compromising
the shape of the corresponding weighting function. This does not mean that
closed rules cannot be used to evaluate integral (4.7).

Poles zj located over a circle

When Γr is a semi-circle, the coefficients Aj can be determined by using eq.
(4.15),

Aj = −1
4

ωCe−iθj wj , (4.26)

where wj and θj correspond to the weighting coefficient of the j-th integration
point and its angular position on the interval [0, π]. Finally, the weighting
function W (ω) has the following form,

W (ω) = −ωC

4

n
∑

j=1

wj

(

e−iθj

ω − zj
+

eiθj

ω − z∗
j

)

. (4.27)

By applying the Euler formula and after some calculations, eq. (4.27) can be
reformulated as

W (x) =
n
∑

j=1

w′
j

1 − x cos(θj)
x2 − 2x cos(θj) + 1

, (4.28)

where x = ω−ω0

ωC
and w′

j = wj

2 . Expression (4.28) allows one to normalize
the position of the filter on the real frequency axis with respect to the center
frequency and the width of the band. Moreover, it highlights the fact that
W (x) is a real-valued function.
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Poles zj located over an ellipse

In case the poles are located over an ellipse, the coefficients of the weighting
function can be determined from eq. (4.16),

Aj = −1
4

[ωB cos(θj) − iωC sin(θj)] wj (4.29)

and the weighting function,

W (ω) = −1
4

n
∑

j=1

wj

[

ωB cos(θj) − iωC sin(θj)
ω − zj

+
ωB cos(θj) + iωC sin(θj)

ω − z∗
j

]

.

(4.30)
Also in this case, after some calculations, eq. (4.30) can be reformulated as

W (x) =
n
∑

j=1

aw′
j

1 − x cos(θj)
x2 − 2x cos(θj) + cos2(θj) + a2 sin2(θj)

, (4.31)

where again x = ω−ω0

ωC
and w′

j = wj

2 .

4.3.2 Examples and discussion

Equations (4.27) and (4.30) provide general expressions that associate an
integration scheme, performed over Γr, with a weighting function over Γ.
Now the features of the weighting functions obtained by means of the
aforementioned procedure are illustrated.
Figure 4.5 compares different weighting functions obtained by means of the
aforementioned strategy. Four different types of weighting functions are
compared to the ideal rectangular window. In particular, the midpoint and
Gaussian integration rules are used over a circle; the former resulting in
the square magnitude of a Butterworth filter. Gaussian quadrature is also
used over two different ellipses, with a = 2 and a = 0.5, respectively. The
obtained weighting functions are shown for different numbers of integration
points, namely 6, 8 and 10, and their positions over circles and ellipses are
illustrated as well.
Results show that the weighting function described by using Gaussian
quadrature better resembles a rectangular window with respect to the
Butterworth filter. Moreover, as the number of integration points increases, the
Gauss-based weighting functions tend to the rectangular window much quicker
than the Butterworth one. This can be seen as a consequence of the higher
precision of Gaussian quadrature with respect to the midpoint rule. On the
other hand, the Gauss-based weighting functions assume negative values just
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Figure 4.5: On the left, comparison between the rectangular window and
weighting functions obtained by using midpoint rule over a semi-circle,
Gaussian rule over a semi-circle, Gaussian rule over a semi-ellipse with a = 2
and with a = 0.5. On the right, Gaussian integration points (•) over a circle,
ellipse with a = 2 and a = 0.5 and midpoint rule integration points over a
circle (×). Figures (a), (b) and (c) refer to 6, 8, and 10 integration points,
respectively.
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above the cut-off frequency and show one or more overshoots within the band
of interest. Results also show that using an ellipse with major axis located over
the real frequency axis has a sharper cut-off behavior, but also more pronounced
ripples, as the number of integration points decreases.
The result of the aforementioned procedure is not explored in detail here.
Future research will focus on possible extensions of these concepts and on the
proposed connection between weighting functions and integration schemes.

4.4 Application cases

In this section, three aspects of the proposed numerical strategy are investigated
for the application cases presented in ch. 3, consisting of a simply supported
plate and two plates stiffened by a beam. In sec. 4.4.1, the accuracy achieved by
using the midpoint integration scheme over a circle (equivalent to Butterworth-
weighted frequency averaging) is compared to Gaussian quadrature applied
over both circles and ellipses. In sec. 4.4.2, the performance of Kronrod and
Patterson adaptive schemes is presented. Finally, in sec. 4.4.3, the accuracy
of two alternative integration rules, namely Lobatto and Clenshaw-Curtis
schemes, is assessed.

It is important to underline that the ability of the proposed approach is strictly
related to the oscillatory behavior of the integrand function, which is not known
a priori and is to be considered uncorrelated from the engineering complexity
of the analyzed case. The following examples represent, in this sense, a valid
benchmark. In fact, the bare plate presents a number of modes which increases
with wider one-third octave bands, meaning that the function becomes more
and more oscillatory over the frequency bands of interests. On the other hand,
when a stiffener is added, the behavior of the input mobility becomes more
oscillatory at the beam resonances. This is closer to what happens when
components with different modal densities are assembled together.

In order to quantify the accuracy of the approach, the relative error, ǫrel, is
defined as

ǫrel{•} =

∣

∣

∣
〈•〉(ref)

∆ω − 〈•〉(approx)
∆ω

∣

∣

∣

∣

∣

∣
〈•〉(ref)

∆ω

∣

∣

∣

, (4.32)

where 〈•〉(ref)
∆ω and 〈•〉(approx)

∆ω indicate the reference value and its approximation,
respectively. The quantity • can be either complex input power or complex
input mobility, as in both cases it leads to the same relative error. However,
the following narrow band plots refer to the input mobility, as it is the integrand
function in previous integrals.
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Three types of integration paths are benchmarked in the next sections: semi-
circle, semi-ellipse with a = 2 and semi-ellipse with a = 0.5. Midpoint rule is
used only over the circular path as it corresponds to the Butterworth-weighted
integration scheme used in ch. 3. On the other hand, the Gaussian quadrature is
performed over all types of paths by means of 6, 8 and 10 integration points. In
order to show the advantages of performing adaptive integration, the Kronrod
and Patterson rules are also applied in the sequence G3-K7-P15. The reference
solution in all cases is evaluated by integrating over a semi-circle by means of a
very refined Gaussian scheme consisting of 200 points. The computation times
are not discussed in this chapter, as they lead to conclusions similar to what
is presented in ch. 3. It is worth remarking the fact that the present approach
requires the system of equations to be solved as many times as the number of
the integration points. This is, in general, independent of the bandwidth. On
the other hand, classic integration rules performed over the real axis require
a number of sampling points which increases with the bandwidth and so does
the computation time.

4.4.1 Use of Gaussian quadratures over Γ
r

and comparison
with Butterworth-weighted averaging

Simply supported plate

The parameters related to this application case are described in sec. 3.6.1. The
complex input mobility into the plate is shown in fig. 4.6. The frequency
range of analysis sweeps 23 one-third octave bands (from 22 Hz to 4467
Hz). The narrow band input power is compared with the averages over the
aforementioned bands.

In figs. 4.7 and 4.8, the relative errors on the real and imaginary input mobility
are shown, respectively. In general, when performed over the same circle,
Gaussian quadrature performs better than the midpoint rule and, consequently,
it better approximates the band-average value with respect to the Butterworth
filter. It can be noted that the imaginary value over the band centered at 1600
Hz is largely overestimated for a low number of integration points. This may
be explained by investigating the behavior of the integrand functions over the
integration path. In fig. 4.9, the real and imaginary input mobility is plotted as
a narrow band response function over different paths. The solid line in the left
figures represents the mobility as function of real frequency. The other lines on
the right represent the mobility evaluated over Γr, which is a function of the
variable θ = [0, π]. The bands under consideration are the 9th (centered at 160
Hz) and the 19th (centered at 1600 Hz). As expected, the real part is always
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Figure 4.6: Comparison between narrow band and band-averaged input
mobility for the simply supported plate of sec. 4.4.1.

positive while the imaginary part assumes both positive and negative values.
Observing fig. 4.9(b), it is clear that the input mobility is a highly oscillatory
function over the real frequency band of interest. On the other hand, it is
possible to appreciate that the integrand function becomes much smoother
when evaluated over paths located in the complex plane. In fact, when Γr

is either a semi-circle or a semi-ellipse, it does not present any pronounced
oscillation. Further insight can be gained by observing fig. 4.10, where the
real and imaginary parts of input mobility are represented over the complex
frequency plane. The peaks of the function correspond to the resonance
frequencies of the plate, which are located in correspondence of the poles of
the mobility. Since damping mechanism is present, their positions have both
a real and (positive) imaginary part. However, when moving towards larger
negative imaginary frequencies, the mobility shows a very smooth behavior.
When integrating over paths in the complex plane, the integrand function is
evaluated on contours taken over such a smooth surface, which inherently lends
itself to an easier integration through classic quadrature rules. Moreover, since
no poles are present in the LHP, the calculation of the residues is not necessary
to estimate the frequency integral. These observation explain why a highly
accuracy can be achieved by just using a few integration points. However,
particular care has to be taken when sampling the regions close to the endpoints
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Figure 4.7: Error related to the real band-averaged input mobility of the simply
supported plate for 6 (top), 8 (center) and 10 (bottom) integration points taken
over either a semi-circle or a semi-ellipse.
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Figure 4.8: Error related to the imaginary band-averaged input mobility of
the simply supported plate for 6 (top), 8 (center) and 10 (bottom) integration
points taken over either a semi-circle or a semi-ellipse.
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Figure 4.9: Real and imaginary part of the the mobility function evaluated over
the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2 (right).
Figure (a) refers to the 9th and (b) to the 19th third octave band. Note the
right figures are function of θ.
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(a)

(b)

Figure 4.10: Real and imaginary parts of the input mobility over the complex
frequency plane. The black solid line indicates the function over the real
frequency axis.
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Figure 4.11: Error related to the real (top) and imaginary (bottom) band-
averaged input mobility of the simply supported plate for 6, 8 and 10 Gauss
integration points taken over the real frequency band.

of the integration path, where the integrand can show abrupt increases or
decreases. This is probably what causes inaccurate integration when only a
few integration points are used. In fact, as the number of integration points
increases, over the 1600 Hz band, the accuracy improves as well. In this regard,
it is important to notice that when Γr is an ellipse with a = 0.5 the integrand
has less abrupt variation close to the endpoints, although the function presents
some small oscillations inside the frequency band of integration, which are also
expected when moving Γr closer to the real frequency axis. This explains
why the integration over the ellipse with a = 0.5 provides more consistency
to the results in all the benchmark cases presented in this article. Due to
abrupt variations, results are less accurate if Γr is predominantly extended in
the direction perpendicular to the real frequency axis. Data related to the
integration over a semi-ellipse with a = 2, are an example. Furthermore, from
more extensive investigations, which are not reported here, it has been observed
that using larger values of a worsens the accuracy of the integration. In general,
the choice of the a parameter is user-dependent and its optimization may be
difficult, if not impossible. On the other hand, using a semi-circle eliminates
this degree of freedom and yet provides good accuracy, although setting a = 0.5
seems to perform well in all analyzed cases.
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The performance of Gaussian schemes over different paths is also confirmed by
the shape of the weighting functions in fig. 4.5. When Γr is a semi-ellipse with
a = 0.5, the shape of the weighting function is closer to an ideal rectangular
window and it gives larger weight to the zones closer to the endpoints. When
Γr is either a semi-circle or a semi-ellipse with a = 2, the weighting function is
still closer to a rectangular window than a Butterworth filter.
Figure 4.11 allows assessing the accuracy of the proposed approach against
Gaussian quadrature performed over the real axis. When the behavior of the
integrand is not oscillatory, integrating over the real frequency axis provides
more accurate results. This can be observed by comparing how the mobility
oscillates over the first, third and fourth band in fig. 4.6 with corresponding
relative error in fig. 4.11. However, when this is not the case, moving to the
complex plane guarantees a significant improvement in terms of accuracy.

Stiffened plates

The structure under consideration in the next example was described in sec.
3.6.2. As it can be seen in fig. 4.12, the input mobility is characterized by
peaks at the stiffener resonances. Similarly to the previous case, the response
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Figure 4.12: Comparison between narrow band and band-averaged input
mobility for the stiffened plates of sec. 4.4.1.
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has been averaged over 17 one-third octave bands (starting from 22.4 Hz to 1122
Hz). In figs. 4.13 and 4.14, the errors on the real and imaginary part of the
band-averaged input mobility are shown. Results confirm what was observed
in the previous case. Again, Gaussian quadrature shows a better performance
with respect to the midpoint rule, and integrating over a semi-ellipse with
a = 0.5 provides accurate results which are consistent for all cases.
In general, the accuracy of the integration is higher than what was obtained in
sec. 4.4.1. This may be explained by considering the behavior of the integrand
function. The simply supported plate presents a higher modal density and thus,
a higher oscillatory behavior. On the other hand, the stiffened plate presented
here has a less oscillatory behavior and this may facilitate the integration
procedure. However, this does not reduce the relevance of this application
case. In fact, the input mobility into a stiffened structure is highly influenced
by the behavior of the stiffener. As it can be observed in fig. 4.12, higher peaks
are located at the beam wavenumbers and this makes the integrand function
more oscillatory at the corresponding bands. Nevertheless, this does not seem
to affect the accuracy of the integration.
Similarly to what illustrated in the previous section, in fig. 4.15 the behavior of
the mobility function is compared when the frequency of analysis is either real
or complex. The response is evaluated at the corresponding 8th and 16th third
octave bands. The left-hand side figures illustrate the behavior of the mobility
over the interval of real frequencies. The plots on the right-hand side show the
mobility as a function of θ, in which semi-circles and semi-ellipses in the complex
plane are parametrized. Although in figs. 4.15(a) and 4.15(b) the integrands
are less oscillatory than for the bare simply supported plate, they preserve a
smooth behavior when moving to the complex frequency plane. This explains
the higher accuracy achievable by using a smaller number of integration points.
Additionally, while the behavior of the mobility over the real axis is strictly
dependent on the interval of analysis, in the complex plane this relation seems
to be less strict. This may indicate a small dependence between the frequency
interval of integration and the behavior of the mobility in the complex plane.
Nevertheless, as also indicated in the previous section and confirmed in the
next chapter, the oscillatory behavior can be highly influenced by the path
chosen in the complex plane. As the path moves closer to the real frequency
axis (i.e. semi-ellipse with a = 0.5), some oscillations may appear in the central
region of the θ interval. On the other hand, when the path of integration
presents branches that move almost perpendicularly to the real frequency axis
(i.e. semi-ellipse with a = 2), prominent oscillatory behavior can be present at
the endpoints of the interval.
Finally, in fig. 4.16, the relative error corresponding to the use of Gaussian
quadrature over the real frequency axis is shown. Also in this case, when
the integrand is not oscillatory, the accuracy is very high. Nevertheless, even
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Figure 4.13: Error related to the real band-averaged input mobility of the
stiffened plates for 6 (top), 8 (center) and 10 (bottom) integration points taken
over either a semi-circle or a semi-ellipse.
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Figure 4.14: Error related to the imaginary band-averaged input mobility of
the stiffened plates for 6 (top), 8 (center) and 10 (bottom) integration points
taken over either a semi-circle or a semi-ellipse.
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Figure 4.15: Real and imaginary part of the the mobility function evaluated
over the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2
(right). Figure (a) refers to the 8th and (b) to the 16th third octave bands.
Note the right figures are function of θ.



APPLICATION CASES 103

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

Center frequency of 1/3 octave band [Hz]

 

 

6 Gauss points
8 Gauss points
10 Gauss points

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

 

 

6 Gauss points
8 Gauss points
10 Gauss points

Figure 4.16: Error related to the real (top) and imaginary (bottom) band-
averaged input mobility of the stiffened plates for 6, 8 and 10 Gauss integration
points taken over the real frequency band.

when this condition is not satisfied, using the residue theorem provides more
accurate results. This can be seen by comparing the behavior of the first seven
bands in fig. 4.12 to the corresponding relative error in fig. 4.16. When the
input mobility presents a peak, the accuracy of Gaussian quadrature drops if
performed over the real frequency axis.

4.4.2 Adaptive integration schemes

In this section, the effectiveness of adaptive integration is investigated. In
the series of figs. 4.17 to 4.20, the Patterson adaptive scheme is applied in
the sequence G3-K7-P15 for the aforementioned application cases. Results
show an increasing convergence towards the reference value as the order of the
quadrature increases. If the convergence reached after 15 Patterson evaluations
is not satisfactory, one might perform a successive refinement by using 31
Patterson points (or P63, P127, P255 if necessary). Note that when performing
the G3 sequence the accuracy might not be very high, due to the low number
of integration points.
When considering an adaptive scheme, one should always take into account



104 USE OF QUADRATURE SCHEMES IN THE COMPLEX FREQUENCY DOMAIN

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e 
er

ro
r

Center frequency of 1/3 octave band [Hz]

 

 

15 Patterson points on circle
15 Patterson points on ellipse (a=2)
15 Patterson points on ellipse (a=0.5)

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e 
er

ro
r

 

 

7 Kronrod points on circle
7 Kronrod points on ellipse (a=2)
7 Kronrod points on ellipse (a=0.5)

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e 
er

ro
r

 

 

3 Gauss points on circle
3 Gauss points on ellipse (a=2)
3 Gauss points on ellipse (a=0.5)

Figure 4.17: Error related to the real band-averaged input mobility of the
simply supported plate evaluated by using adaptive integration schemes: 3
Gauss points (top), 7 Kronrod points (center) and 15 Patterson points
(bottom).
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Figure 4.18: Error related to the imaginary band-averaged input mobility of
the simply supported plate evaluated by using adaptive integration schemes:
3 Gauss points (top), 7 Kronrod points (center) and 15 Patterson points
(bottom).



106 USE OF QUADRATURE SCHEMES IN THE COMPLEX FREQUENCY DOMAIN

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

Center frequency of 1/3 octave band [Hz]

 

 

15 Patterson points on circle
15 Patterson points on ellipse (a=2)
15 Patterson points on ellipse (a=0.5)

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

 

 

7 Kronrod points on circle
7 Kronrod points on ellipse (a=2)
7 Kronrod points on ellipse (a=0.5)

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

 

 

3 Gauss points on circle
3 Gauss points on ellipse (a=2)
3 Gauss points on ellipse (a=0.5)

Figure 4.19: Error related to the real band-averaged input mobility of the
stiffened plates evaluated by using adaptive integration schemes: 3 Gauss points
(top), 7 Kronrod points (center) and 15 Patterson points (bottom).
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Figure 4.20: Error related to the imaginary band-averaged input mobility of
the stiffened plates evaluated by using adaptive integration schemes: 3 Gauss
points (top), 7 Kronrod points (center) and 15 Patterson points (bottom).
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the fact that the information related to the convergence is paid at the cost
of a lower accuracy, as Kronrod and Patterson rules have worse convergence
rates than the Gaussian quadrature. This can be observed by comparing the
accuracy provided by 10 Gauss points, which is already satisfactory, to the
one obtained by using 15 Patterson points. The gain in accuracy for the P15
scheme may not justify the computational cost of 5 additional calculations for
each frequency band, unless one is interested in the convergence rate.
It is worth mentioning that also the midpoint rule can be used adaptively
and so does the Butterworth-weighted averaging. Nevertheless, its use is very
disadvantageous for this application. In fact, besides the poor convergence
rate, the number of points to refine the integration is very large. For example
one sequence is M3-M9-M27-M81. Using a trapezoidal rule rather than the
midpoint would lead to a sequence growing with a factor of two in each step,
although its accuracy would not be very high. On the other hand, using
an adaptive Clenshaw-Curtis rule might provide very precise estimates and
a sequence which doubles the number of points at each step. This is considered
a valid alternative to the Gauss-Kronrod-Patterson, but it is not reported in
this manuscript.

4.4.3 Alternative integration schemes

As a final investigation, the Lobatto and Clenshaw-Curtis quadrature rules
are shortly benchmarked in this section. Figures 4.21 to 4.24 show their
performances when 8 integration points are used for the aforementioned cases.
Although they both provide more accurate results than the midpoint rule over
a semi-circle, they approximately have the same precision and, in general, are
slightly less accurate than Gaussian quadrature.

4.5 Conclusion

In ch. 3, the residue theorem has been proposed to efficiently evaluate frequency-
averaged input power. The possibility of extending that result motivated the
research described in this chapter. Instead of computing the integral by using
quadrature rules over the real frequency axis, the integration path is deformed
and moved to the complex plane. This assures the integrand to be smoother
and permits an accurate integration by using classic quadrature techniques
with reduced number of sampling points.
This procedure is readily linked to the one proposed in ch. 3, where a
Butterworth filter has been used as a weighting function. In fact, in this chapter
it is proven that evaluating the Butterworth-weighted frequency average
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Figure 4.21: Error related to the real band-averaged input mobility of the
simply supported plate evaluated by using Lobatto (top) and Clenshaw-Curtis
(bottom) quadrature with 8 points.
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Figure 4.22: Error related to the imaginary band-averaged input mobility of the
simply supported plate evaluated by using Lobatto (top) and Clenshaw-Curtis
(bottom) quadrature with 8 points.



110 USE OF QUADRATURE SCHEMES IN THE COMPLEX FREQUENCY DOMAIN

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

Center frequency of 1/3 octave band [Hz]

 

 

Clenshaw−Curtis points on circle
Clenshaw−Curtis points on ellipse (a=2)
Clenshaw−Curtis points on ellipse (a=0.5)

25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

10
−10

10
−5

10
0

R
el

at
iv

e 
er

ro
r

 

 

Lobatto points on circle
Lobatto points on ellipse (a=2)
Lobatto points on ellipse (a=0.5)

Figure 4.23: Error related to the real band-averaged input mobility of the
stiffened plates evaluated by using Lobatto (top) and Clenshaw-Curtis (bottom)
quadrature with 8 points.
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Figure 4.24: Error related to the imaginary band-averaged input mobility of the
stiffened plates evaluated by using Lobatto (top) and Clenshaw-Curtis (bottom)
quadrature with 8 points.
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corresponds to using the midpoint rule over a semi-circle in the complex plane.
Moreover, also the inverse procedure is formulated, namely, for a given open
quadrature rule in the complex plane, it is possible to express a frequency
weighting function over the real frequency axis.
In order to benchmark the improvements, two application cases are proposed.
For both cases, Gaussian, Clenshaw-Curtis and Lobatto quadrature rules are
performed over semi-circles and semi-ellipses, used as integration paths in the
complex plane. Results show a very high accuracy at a computational cost
which is reduced with respect to the results shown in ch. 3. In order to perform
adaptive quadrature, the Gauss-Kronrod-Patterson rule is presented, which
allows convergence evaluation.
With the present advances, the proposed strategy provides an even more
efficient tool to evaluate frequency-averaged input mobility. Moreover, the
ease of implementation allows to straightforwardly use it in combination with
deterministic methodologies for fast and accurate calculations.





Chapter 5

Application to second-order
dynamic systems of industrial
complexity

In the previous chapters, the residue theorem has been employed to efficiently
evaluate the band-averaged power injected by a force into a vibrating system.
The approach has been benchmarked on both bare and stiffened plates.
However, most real-life applications present complex geometrical features
and frequency dependent properties. While analytical expressions may lead
to rough predictions for these cases, the present approach improves the
computational performance of accurate deterministic modeling.

The following chapter focuses on two application cases, which present a higher
complexity than the previous ones. The first example consists of a suspension
shock-tower for automotive applications and allows assessing the ability of the
technique to integrate the response of a component with a complex geometry.
In the second case, the model under analysis is a simplified acoustic car cavity,
excited through the firewall and with frequency dependent absorbing walls.
This configuration allows benchmarking the approach for acoustic problems
with distributed excitations and frequency dependent properties.

The chapter is divided in three main sections. The suspension shock-tower
case is presented in sec. 5.1, while sec. 5.2 is dedicated to the acoustic example.
Finally, conclusions are drawn in sec. 5.3.
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5.1 Suspension shock-tower

This application case is dedicated to the investigation of the effects of
geometrical complexity on the accuracy of the band-averaging procedures. In
sec. 5.1.1, the numerical model is presented, while results are illustrated in sec.
5.1.2.

5.1.1 Model description

This example consists of a suspension shock-tower, fig. 5.1(a), located inside a
Chrysler Neon, fig. 5.1(b). The component is made of steel, Young’s modulus
210 GPa, Poisson ratio 0.3, density 7850 kg/m3. Its thickness is 2 mm. The
model dimensions are such that the diagonal of a parallelepiped circumscribing
the shock-tower is about 450 mm. Hysteretic damping model is used with
coefficient η equal to 0.01. The FE mesh consists of 5876 nodes and 5874 shell
elements, as illustrated in fig. 5.1(a). The mean dimension of the elements
is 5 mm. Also in this case Nastran has been used to pre-process the system
matrices, which are successively solved in Matlab.

(a) (b)

Figure 5.1: Finite element model of the shock-tower (a). Position of shock-
tower within the car assembly (b).

Clamped boundary conditions are applied along the outer edges. However,
since using the residue theorem allows a quick band evaluation, one might
rapidly perform analyses with different types of boundary conditions. This
highlights the high potential of this strategy to provide fast and accurate results,
when insight at a component level is required.
A harmonic point force is applied at the center of the hole of the shock-tower
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Figure 5.2: Comparison between narrow band and band-averaged input
mobility for the shock-tower.

cap and represents the force transmitted from the wheel through the suspension.
All degrees of freedom over the hole edge are rigidly connected, as shown in fig.
5.1(a).

The geometrical features of this component pose a serious limitation to classic
models based on the assumption of an unbounded domain. According to SEA
modeling, the system under analysis could be decomposed into a number of
subcomponents, which carry different wavelengths. For example, the upper
face could be modeled as a plate, which is connected to the rest of the
structure through a stiffener. As such, the junction is difficult to model with
bare analytical formulations, and estimating the input power as the one into
an infinite plate would actually lead to a poor prediction, especially at low
frequencies. More in general, assuming that the input power into a component
of a built-up structure is independent of the coupling with other components
may be incorrect in many situations. In fact, the assumption is reasonable
for weakly coupled components, namely components that do not share global
modes. In this situation, the power injected into the isolated subsystem can
be assumed to be independent of the surrounding ones. On the other hand,
when the coupling is strong, the behaviors of the coupled components tend to
merge and the power injected into the coupled system has to be considered
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(a) 2nd mode - 1084 Hz (b) 3rd mode - 1371 Hz

(c) 12th mode - 2262 Hz (d) 25th mode - 3252 Hz

Figure 5.3: Selected mode shapes of the suspension shock-tower.

[136]. Such a situation is very common at low frequencies, where global modes
are present and highlights the advantage of modeling a complex component
by means of deterministic techniques, which allow investigating the effects of
boundary conditions and inhomogeneities on the system response accurately.

5.1.2 Results

In a first analysis, the frequency range of interest covers 26 one-third octave
bands (from 22.4 Hz to 8913 Hz). The real and imaginary parts of the input
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mobility are shown in fig. 5.2, and to gain further insight in the system behavior
some mode shapes are analyzed in fig. 5.3. The mobility peak at 1084 Hz
corresponds to the second mode of the system (fig. 5.3(a)) and involves the
vibration of the top circular plate of the shock-tower in the direction of the
excitation force. At this frequency a large amount of power can be injected
into the system. A large amount of power can also be injected at 3252 Hz,
where the structure has its 25th mode (fig. 5.3(d)), and the top plate shows
again a vibration predominant in the excitation direction. In correspondence
of the 3rd mode (fig. 5.3(b)), the top plate is twisting rather than pulsating.
This explains the lower mobility to which the surrounding of the plate is also
contributing. Finally, the injected power is low when the modes shapes show
large amplitude oscillations in other areas of the structure and do not involve
the vibration of the top plate, as for the 12th mode (fig. 5.3(c)).
The hysteretic damping model is used with a constant loss factor, and
system poles populate the first and third quadrant of the complex frequency
plane. This condition allows replacing the integration over an interval of real
frequencies with one over a path in the complex plane. To compute the band
values, the same integration schemes adopted in ch. 4 are employed in this
example, namely 6, 8 and 10 Gauss points over semi-circles and semi-ellipses
with coefficient a equal to 0.5 and 2. The midpoint rule is also used over semi-
circles to allow a comparison with the Butterworth-weighted average.
The relative error is computed as in eq. (4.32), and the reference values are
evaluated by using 200 Gauss points over semi-circles. Figures 5.4 and 5.5
show the relative error on the averaged real and imaginary parts of the mobility.
Since no resonance is present within the first fifteen bands, the integrals are
estimated with very high precision, but also for increasing frequencies the
accuracy remains high. Compared to the midpoint rule, Gaussian quadrature
provides more accurate band evaluations, especially when used over semi-
ellipses with a = 0.5.
In fig. 5.6, Gaussian quadrature integration is performed over the real axis with
the same number of points as in the previous cases. When the mobility is not
oscillating, the integration is very accurate. However, it becomes less accurate
with increasing frequency, due to the presence of resonance peaks. Over these
bands, the use of the residue theorem provides significant advantages in terms
of accuracy.

Note that in fig. 5.6, for low frequencies, an increase in the number of Gauss
point does not correspond to an increase in accuracy. This stagnation means
that a few Gauss points taken over the real axis provide more accurate
integration than a large number of Gauss points taken in the complex plane.
The fact is not surprising, since the integrand is extremely smooth at real low-
frequencies, while moving to the complex plane may introduce numerical errors
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Figure 5.4: Error related to the real band-averaged input mobility of the shock-
tower for 6 (top), 8 (center) and 10 (bottom) integration points taken over
either a semi-circle or semi-ellipse. One-third octave band results.
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Figure 5.5: Error related to the imaginary band-averaged input mobility of the
shock-tower for 6 (top), 8 (center) and 10 (bottom) integration points taken
over either a semi-circle or semi-ellipse. One-third octave band results.
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Figure 5.6: Error related to the real (top) and imaginary (bottom) band-
averaged input mobility of the shock-tower for 6, 8 and 10 Gauss points taken
over the real frequency band. One-third octave band results.

and small oscillations, especially close to the endpoints, see fig. 4.9. However,
the accuracy level is very high, and this does not compromise the validity of
the previous results. Moreover, the oscillatory behavior of the function is not
known a priory and using the residue theorem seems to be more reliable for
band computations. In figs. 5.7 and 5.8, the mobility is plotted as a function
of either real and complex frequency. Four third octave bands are investigated,
namely the 9th, 17th, 22nd and 24th band. The left-hand side figures show
the real and imaginary parts of the mobility as a function of real frequencies,
while on the right-hand side, the frequency of analysis is taken in the complex
frequency plane over either semi-circles and semi-ellipses, and the function is
parametrized in θ ∈ [0, π]. Note that the θ-axis is reversed in order to show
that the mobility at θ = 0 and θ = π assumes the same values as at the lower
and upper bounds of the real frequency interval.
Comparing the function over different paths in the complex plane it is possible
to notice that the oscillating behavior gradually decreases with increasing the
distance from the real axis. Consequently, when using a small semi-ellipse,
some oscillations may be present inside the interval of integration. On the
other hand, by using a large semi-ellipse, the integrand shows a non-oscillatory
behavior in the middle region of the θ interval, but it presents more abrupt
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Figure 5.7: Real and imaginary part of the the mobility function evaluated over
the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2 (right).
Figure (a) refers to the 9th and (b) to the 17th third octave bands. Note the
right figures are function of θ.
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Figure 5.8: Real and imaginary part of the the mobility function evaluated over
the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2 (right).
Figure (a) refers to the 22nd and (b) to the 24th third octave bands. Note the
right figures are function of θ.
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variations close to the endpoints. This effect seems common when moving in
the direction perpendicular to the real frequency axis. As observed also in the
previous chapter, using a = 0.5 leads to a good balance between these two
effects and a consequent good accuracy level. On the contrary, when a = 2,
the behavior at the endpoints may be sharp leading to poor accuracy levels, in
some cases. However, the best path of integration is problem dependent and
difficult to determine a priori.
As previously explained, when the mobility is not oscillating over the interval,
using quadrature over real frequencies is more effective with respect to the
integration in the complex frequency plane. In fact, oscillations close to
the endpoints are inevitably introduced, see fig. 5.7(a). However, as the
frequency increases, the oscillatory behavior becomes more prominent over real
frequencies, while plots over paths in the complex frequency plane preserve their
non-oscillatory behavior.
Figures 5.7 and 5.8 not only provide an insightful explanation regarding the
high accuracy and efficiency of the proposed strategies. They also show a low
dependency between the width of the frequency interval and the oscillatory
behavior of the integrand in the complex plane.

Results obtained for 9 octave bands (from 22.4 Hz to 5263 Hz) are reported
in figs. 5.9 and 5.10. They confirm the aforementioned observations regarding
the level of accuracy. Note the ability of the approach to estimate the ninth
octave band value (width equal to 2445 Hz), with a relative error lower than
1% just by using 6 system evaluations.
Figure 5.11 shows the accuracy provided by Gaussian quadrature performed
over the real axis, which also in this case proves to be precise only in absence
of mobility oscillations.
It is interesting to observe that using the residue theorem to integrate over
wider bands does not seem to affect the precision of the estimates, which present
values comparable to the ones obtained for third octave bands. On the other
hand, the accuracy decreases when integrating the oscillating mobility over the
real frequency axis.
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Figure 5.9: Error related to the real band-averaged input mobility of the shock-
tower for 6 (top), 8 (center) and 10 (bottom) integration points taken over
either a semi-circle or semi-ellipse. Octave band results.
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Figure 5.10: Error related to the imaginary band-averaged input mobility of
the shock-tower for 6 (top), 8 (center) and 10 (bottom) integration points taken
over either a semi-circle or semi-ellipse. Octave band results.
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Figure 5.11: Error related to the real (top) and imaginary (bottom) band-
averaged input mobility of the shock-tower for 6, 8 and 10 Gauss points taken
over the real frequency band. Octave band results.

5.2 Acoustic car cavity

This application case deals with the input power into an acoustic system which
resembles a car cavity. The computation of input power into acoustic systems
is introduced in sec. 5.2.1. Successively, the analyzed model is described in sec.
5.2.2. In sec. 5.2.3, the approximate position of the poles for an acoustic system
with admittance boundary conditions is discussed. Finally, in sec. 5.2.4 the
accuracy and computational performance for this application case are assessed.

5.2.1 Input power into acoustic systems

Prescribed (non-zero) boundary conditions are a source of injected power for
acoustic systems. Either pressure or its spatial derivatives can be defined over
a portion of the boundary and excite the system. Estimating the active input
power in this case requires the integration of the active acoustic intensity over
the corresponding portion of the boundary. At a point x on the boundary ¯∂Ωa,
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the active intensity can be estimated as

I(x) =
1
2

Re {p(x)v∗(x)} , (5.1)

and the power injected into the system reads,

Pin =
∫

¯∂Ωa

I(x) · na(x) d ¯∂Ωa, (5.2)

where na(x) is the normal to the boundary ¯∂Ωa at point x. Analogously, to
evaluate the reactive input power, it is necessary to integrate the imaginary
part of the complex intensity vector over the surface ∂Ω̄a.
For the BEM, the computation of the input power does not necessarily require
the post-processing step. In fact, the solution of a BEM problem leads to the
pressure and its derivative at the nodal locations, which can then be integrated
according to eq. (5.2). A similar situation is encountered in WB modeling,
as the wave functions computed at the Gauss points over ¯∂Ωa can be stored
during the pre-processing step and reused for the integration (5.2).

For distributed loadings, the residue theorem can be straightforwardly used
to evaluate the band average input power, whether the prescribed conditions
are uniform or non-uniform. On the other hand, if the power is injected by a
vibrating structure, the use of the residue theorem may be more problematic.
This is mainly due to the fact that on the interface both velocity and pressure
are initially unknown. Furthermore, the poles of the intensity function (5.1)
may be located both in the UHP and in the LHP, and this reduces the efficiency
of the proposed strategy. Alternatively, if the systems are uncoupled, one can
first compute the velocity at a given point on the interface and successively
use it as a boundary condition for the acoustic problem. This procedure is
possible only if the prescribed velocity function does not present any unknown
singularity in the LHP.

Active power can also be injected by point sources. Acoustic monopoles are an
example often encountered in practice and their field can be expressed as

p(rq) = iωρaq
e−ikarq

4πrq
, (5.3)

where q represents the volume velocity, given by the product of the normal
velocity and the surface area of the radiator and rq is the distance between the
source and the target point.
The issue with the evaluation of the complex power injected by a monopole
source is the singularity it presents for rq → 0. In fact, this makes it impossible
to retrieve the pressure value and evaluate the power. One can easily remedy
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Figure 5.12: Car-like cavity and bounding box for WB modeling.

this by modeling the monopole as a sphere, or a more complex object and
impose a velocity boundary condition over its surface. The input power can
be estimated by using eq. (5.2), allowing also the inclusion of source directivity
information. Traditional approaches like FEM and BEM can be used to model
such a problem. Alternatively, in the framework of the WBM, the Multi-level
strategy [202] can be successfully exploited.

5.2.2 Model description

The car-like acoustic cavity under analysis is represented in fig. 5.12 and is filled
with air of density 1.225 kg/m3, speed of sound 340 m/s and acoustic loss factor
equal to 0.001. The main dimensions of the cavity are lx =1.5 m, ly =0.9 m and
lz =1.0 m. The volume is excited through the firewall (corresponding to the
face on the yz-plane passing through the origin) by a unit velocity boundary
condition (1 m/s). A frequency dependent admittance boundary condition
is applied over the top and the bottom face of the cavity. The normalized
admittance, Ān = ρaca,0 An, applied over the headliner surface, is expressed as
a cubic function of frequency,

Ā(headl.)
n (f̄) = i 0.025 + i 0.034f̄ + (0.25 + i 0.67)f̄2 − (0.15 + i 0.60)f̄3, (5.4)

while on the carpet, the following normalized admittance condition is applied,

Ā(carpet)
n (f̄) = i 0.08 + i 0.2f̄ + (1.72 + i 1.77)f̄2 − (1.13 + i 1.92)f̄3, (5.5)
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where f̄ = 2πω/2000. Impedance values are taken from ref. [188]. The
normalized admittance is shown as a function of frequency in fig. 5.13. A
purely reflecting boundary condition is applied over the remaining surfaces of
the model.

The WBM is used to simulate the behavior of the cavity, and the adopted
formulation for 3D acoustic problems is detailed in Appendix A. The advantage
in using the WBM for this application is not only related to its higher
convergence with respect to classic element-based techniques. Unlike the FEM,
the introduction of complex frequencies of analysis does not influence the
computational effort of the WBM, as its matrices inherently handle complex
quantities.
From a modeling point of view, while element-based techniques use mesh
enrichment, the WBM allows refining the solution accuracy simply by
increasing the number of wave functions employed to represent the field variable
expansion. According to the current WB modeling procedure, the number
of wave functions is a function of the (real) frequency of analysis and of a
truncation parameter T , which is set equal to 2 in the following cases. However,
moving the frequency of analysis to the complex plane may lead to a number
of wave functions which differs from the one necessary when the problem is
computed at a real frequency. The difference in the number of wave functions
may affect the solution accuracy and, indirectly, influence the precision of the
band evaluation. In order to restrict the assessment only to the accuracy of
the band calculation, the number of wave functions is kept constant over each
interval of analysis. This number is chosen according to the upper bound of the
frequency interval, as it assures the highest accuracy over the band of interest.

There are several aspects of interest in the following application. First of all,
an acoustic enclosure has an asymptotic modal density which increases with
the square of the frequency. Thus, also the oscillatory behavior of the mobility
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Figure 5.13: Normalized admittance as function of frequency.
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increases with frequency. The type of excitation does not take place at a
single point, but is distributed over a surface, and the boundary conditions
are frequency dependent. Moreover, the presence of the admittance boundary
condition leads to a modification of the acoustic behavior compared to the
case of purely reflecting boundaries. Consequently, system resonances are
influenced both in amplitude and location. However, system poles are not
expected to invade the LHP and the proposed approach can still be applied.
Before presenting the results, this is proven in a simplified analysis reported in
the next section.

5.2.3 Poles of an acoustic cavity with admittance boundary
conditions

The goal of the following section is to provide an approximation for the position
of system poles when the acoustic cavity presents absorbing walls.
Consider an acoustic volume, for example a rectangular room of domain Ωa,
and suppose that an admittance boundary condition is applied over the walls,
∂Ωa. Under steady-state conditions, this problem can be formulated as follows,

{

∇2p(x, ω) + k2
a p(x, ω) = 0 in Ωa

∇p(x, ω) · na(x) = −iρaωAnp(x, ω) on ∂Ωa
, (5.6)

where the symbol An indicates the normal admittance. Loss mechanisms are
included in the description of the speed of sound by introducing a loss factor,
η, such that

ca = ca,0 (1 + iη) . (5.7)

Consequently, also the wavenumber ka = ω
ca

is complex.
A general solution to problem (5.6) is not easy, as the presence of absorbing
walls leads to frequency dependent eigenvalues and to eigenfunctions which
do not necessarily satisfy orthogonality [20]. To simplify the analysis, assume
that the walls are almost rigid and that the admittance value is very low,
ρaca,0 |An| < 1. Under this assumption, the eigenfunctions of the Neumann
problem can be considered a reasonable approximation for the ones related to
the current auto-adjoint problem and they can be used to find the approximated
eigenvalues of the Helmholtz problem (5.6) [20].
Multiplying the Helmholtz equation by the n-th eigenfunction φn and
integrating over the acoustic volume Ωa, leads to

∫

Ωa

(

∇2p + k2
ap
)

φn dΩa = 0. (5.8)

The term φn∇2p can be expressed as the sum of p∇2φn and the divergence of
φn∇p − p∇φn, and by using Gauss’s theorem [73], expression (5.8) can then
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be reformulated as
∫

Ωa

p
(

∇2φn + k2
aφn

)

dΩa +
∫

∂Ωa

φn∇p · na d∂Ωa = 0, (5.9)

where it has been considered that φn satisfies the reflecting boundary conditions.
Applying the homogeneous Helmholtz equation, the equality ∇2φn = −k2

nφn

can be used in the first integrand, where kn
1 is the wavenumber corresponding

to the Neumann problem eigenvalue, which must be real and positive.
Moreover, the gradient of the pressure in the second integral can be written
according to the admittance boundary condition. These considerations lead to

∫

Ωa

p
(

k2
aφn − k2

nφn

)

dΩa − iρaωAn

∫

∂Ωa

φnp d∂Ωa = 0. (5.10)

The pressure p can be written as an expansion of orthogonal eigenfunctions φn

with coefficients an. Due to the mode orthogonality, expression (5.10) can be
reformulated as follows,

(

k2
a − k2

n

)

an − ika,0

∑

m

Bnmam = 0, (5.11)

where

Bnm =
1
Va

∫

∂Ωa

φnρaca,0Anφm d∂Ωa, (5.12)

and Va is the volume of the enclosure. Since the walls are almost rigid, one
can assume that the terms Bnm, with m 6= n are of minor importance, and the
poles can be found by evaluating the roots of the function,

k2
a − k2

n − ika,0Bnn = 0. (5.13)

If the walls are perfectly rigid, Bnn = 0, and the angular frequency of the
system poles is identified by

ω1,2 = ±ωn(1 + iη), (5.14)

where ωn is the real part of the n-th eigenvalue. This result confirms that in
absence of damping, system poles are purely real. When a loss mechanism is
introduced in the fluid description, they populate the first and third quadrant
of the complex frequency plane.
The analysis of the position of the poles may be difficult when both the real and
imaginary parts of the admittance are non-zero. To simplify the investigation,
an undamped system is considered. In this case, the n-th eigenvalue is located
at

ω1,2 =
ca,0

2

(

iBnn ±
√

4k2
n − B2

nn

)

. (5.15)

1The subscript a is omitted for the problem eigenvalues.



132 APPLICATION TO SECOND-ORDER DYNAMIC SYSTEMS OF INDUSTRIAL COMPLEXITY

For real Bnn with increasingly positive values, poles present a larger imaginary
part and a smaller real one. Consequently, with increasing real admittance, the
resonance peaks become smoother and move towards lower frequencies. On
the other hand, for a purely imaginary admittance, eigenvalues move towards
higher frequencies for increasingly negative values and lower frequencies for
increasingly positive ones.

To see the effect of damping and admittance on the position of the poles for the
analyzed system, the active input power into the complex frequency plane is
shown in fig. 5.14. Four different configurations of the car cavity are analyzed as
combinations of the system with and without damping or admittance boundary
condition. Since the integration is carried out over the real frequency axis,
the contour plots are limited to the first and fourth quadrant of the complex
frequency plane. For the case without damping nor absorption, the active
power is zero over the real frequency axis. However, the position of the poles
can still be identified. A slight movement towards higher imaginary frequencies
of the eigenvalues can be observed when damping is added to the system, as
predicted by eq. (5.14). Moreover, since a loss mechanism is present, the input
power is non-zero over the real frequency axis. A significant change in the
position of the poles can be seen when an admittance boundary condition is
included in the model. Since both real and imaginary parts in (5.4) and (5.5) are
positive, the poles move towards lower real and larger imaginary frequencies, as
predicted by the previous simplified mathematical model. If the real part of the
admittance is negative, system eigenvalues move towards negative imaginary
frequencies. In this case, the model represents the situation where the wall
reacts anticipating the pressure wave, meaning that the condition is anti-causal.

The previous analysis confirms that no poles lie in the fourth quadrant of
the complex plane for the case under investigation. This condition allows the
efficient application of the residue theorem for band integration.

5.2.4 Results

The following analysis is carried out over 17 one-third octave bands (from 22.4
Hz to 4467 Hz). Figure 5.15 shows the active and reactive components of the
input power. Also in this case the error is quantified through eq. (4.32), and
the reference solution is estimated by means of 200 Gauss points distributed
over semi-circles.
The relative error over the bands is shown in figs. 5.16 and 5.17, for the active
and reactive input power, respectively. The level of precision is good, and
already 6 points provide satisfactory accuracy for several bands. Using 6 points
to integrate the reactive power over the 500 Hz and 630 Hz bands leads to poor
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Figure 5.14: Contour plot of the active input power over the complex frequency plane. The unit in the color map is
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Figure 5.15: Comparison between narrow band and band-averaged input power
into the car cavity.

results. However, the estimate becomes more accurate with increasing the
number of integration points.

Figure 5.18 reports the accuracy of Gaussian quadrature with 6, 8 and 10
points, and the trapezoidal rule with a 1 Hz resolution step. The accuracy
of Gaussian integration is high when the function does not oscillate, namely
for very low frequencies and for high frequencies, in the case of active power.
When the integrand contains more peaks, 6 to 10 Gauss points provide
rough estimates of the band value. On the other hand, the accuracy of the
trapezoidal rule is strictly dependent on the width of the band. For narrow
bands, the small number of sampling points is not sufficient to achieve high
precision, and Gaussian quadrature is clearly better. When the width of the
band increases, the trapezoidal scheme provides more accurate estimates than
Gaussian. However, the increased accuracy comes at a higher computational
cost.
Comparing fig. 5.18 with figs. 5.16 and 5.17 confirms that the residue theorem
can be used as an accurate alternative to classic quadrature on real frequencies.
In figs. 5.19 and 5.20, the input power is plotted as function of real frequencies
and θ, which is used to parametrize semi-circles and semi-ellipses in the complex
frequency plane. The conclusions are very similar to the ones in the previous
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Figure 5.16: Error related to the real band-averaged input power into the car
cavity for 6 (top), 8 (center) and 10 (bottom) integration points taken over
either a semi-circle or semi-ellipse. One-third octave band results.
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Figure 5.17: Error related to the imaginary band-averaged input power into
the car cavity for 6 (top), 8 (center) and 10 (bottom) integration points taken
over either a semi-circle or semi-ellipse. One-third octave band results.
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case. When the power is not oscillating over real frequencies, numerical
quadrature is more effective, as slight oscillations are inevitably introduced
when moving to the complex frequency plane. On the other hand, with
increasing frequencies, the input power oscillates much less over semi-circles
and semi-ellipses in the complex plane, if compared to its behavior over real
frequencies. Also in this case, the dependency between the oscillating behavior
over the θ interval and the frequency interval of analysis, seems not to be strict.
Additionally, in figs. 5.19 and 5.20 can be observed a global behavior similar
to figs. 5.7 and 5.8, meaning that the accuracy of the present techniques is not
strictly related to the nature of the dynamic problem under analysis, nor on
its geometrical complexity.
Finally, fig. 5.21 shows the advantage in terms of computation time, with
respect to trapezoidal integration. The reason why the overall computation
time increases with frequency is due to the truncation rule used in the WB
model. As previously mentioned, the number of wave functions is kept constant
over each band and increases with frequency. The significant reduction of
solving time provided by the use of the residue theorem is evident, especially
over the largest intervals, which require several function evaluations to compute
the band value.
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Figure 5.18: Error related to the real (top) and imaginary (bottom) band-
averaged input power into the car cavity for 6, 8 and 10 Gauss points taken
over the real frequency band. Octave band results.
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Figure 5.19: Real and imaginary part of the the input power evaluated over
the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2 (right).
Figure (a) refers to the 6th and (b) to the 8th third octave bands. Note the
right figures are function of θ.
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Figure 5.20: Real and imaginary part of the the input power evaluated over
the real axis (left), semi-circle, semi-ellipse with a = 0.5 and with a = 2 (right).
Figure (a) refers to the 12th and (b) to the 15th third octave bands. Note the
right figures are function of θ.
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Figure 5.21: Computation time for the car example.

5.3 Conclusion

In this chapter, the approach presented in chs. 3 and 4 is applied to two
examples.
The first application consists of a suspension shock-tower excited by a point
force. The component has a shape which is less regular than the ones examined
in the previous chapters, thus providing a benchmark of higher geometrical
complexity.
An acoustic enclosure resembling a car cavity is investigated in the second
example. The cavity is excited through a prescribed velocity applied to the
firewall and presents frequency dependent absorption boundary conditions over
the walls. In this case, the approach is tested for an acoustic problem with a
distributed excitation and frequency dependent properties.
In both examples, the residue theorem has proven to be a very efficient and
accurate alternative to classic quadrature for the evaluation of band-averaged
input power.



Chapter 6

Application to
structural-acoustic
optimization problems

Reducing the vibration of a mechanical structure and its radiated noise is a
challenging goal for acousticians. In this regard, optimization techniques are
very helpful to identify the best performing configuration. However, when the
target is a band rather than a single frequency, classic quadrature techniques
may require a large number of samples to achieve accurate estimates of the
band-averaged values, and this dramatically slows down the computation.

The main achievement of the research presented in this chapter, is the
formulation of an efficient numerical strategy to optimize the properties
of Dynamic Vibration Absorbers (DVAs) in order to improve the dynamic
behavior of the structure over a frequency band. Instead of using global
displacements or acoustic-related quantities, the input power into the structure
is used as an objective function. In fact, minimizing the power injected by a
force into a vibrating system leads to a minimization of its input point mobility
and allows an indirect reduction of the global vibration and radiated acoustic
power. This strategy has been proposed and successfully applied in ref. [96]
for topology optimization. However, when the target is a band rather than a
single frequency, the computation can be prohibitively demanding. In order
to increase the computational performance, the residue theorem is adopted to
evaluate the frequency-averaged input power.

In the following chapter, Genetic Algorithms (GAs) [87] are used for the
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optimization process and the WBM is employed to simulate the dynamic
behavior of the plate. Compared to traditional FEM, the WBM shows a higher
convergence rate and does not restrict the DVA position to nodal locations.
Moreover, when dealing with point connections, only a few rows and columns
have to be added to the system of equations of the bare structure. These
advantageous features perfectly fit the framework of an optimization scheme.
The vibration reduction of a rectangular plate excited by a point force is
investigated in two different scenarios. In the first case, one DVA is optimized
such that it can minimize the input power over one band. In the second case,
two DVAs are used to minimize the input power over two frequency bands.
In all cases, minimizing the band-averaged input power leads to a reduction of
the global vibration and radiated acoustic power. Additionally, the obtained
designs are proven to be robust against variations in the DVA parameters.
The computational performance is assessed, in order to show the significant
advantages of the use of the residue theorem against classic quadrature
techniques.

The chapter is organized as follows. A short literature survey on the use
of passive devices for vibration control is given in sec. 6.1. Theoretical and
numerical aspects related to the problem formulation are presented in sec. 6.2.
In sec. 6.3, the optimization procedure is illustrated and validated by numerical
examples in sec. 6.4. Finally, conclusions are drawn in sec. 6.5.

6.1 The use of DVAs for passive vibration control

The vibration of a structure and its radiated noise are key aspects to consider
when designing a mechanical system. This can be achieved by changing the
properties of the system, i.e. by varying its stiffness, mass or damping, or by
actively acting on the oscillation by introducing external influences. The former
strategy is called passive vibration control, and among the numerous passive
devices, DVAs are widely used [48, 90, 193].
A DVA is generally modeled as a mass-spring-damper resonator, and, due to
the light-weight properties, it can be easily installed on engineering structures,
such as vehicles and industrial machineries [194]. Its ability to absorb
energy from the host structure is maximal at its resonance frequency and
is also related to the damping coefficient. Conventional approaches suggest
to design the DVA such that it can abate the vibration level of one mode.
This is commonly done by considering the behavior of the bare structure,
rather than a coupled fluid-structure model. However, this procedure is not
always very effective. In fact, when the noise at one tone is reduced, the
noise at other frequencies may increase, resulting into a global worsening
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of the perceived sound. Furthermore, DVAs can lose their efficiency when
small changes occur with respect to the nominal host system or to the
original resonator design. In real-life applications, operating conditions or
manufacturing processes inevitably introduce uncertainty and variability in
the model description, causing possible changes in the forcing frequency or in
the system response. These reasons motivate the strong need for DVA design
procedures to improve the vibrational behavior over a band rather than at
a single target frequency. In this regard, optimization techniques are very
helpful to identify the best performing configuration. A procedure is proposed
in ref. [173], where the properties of the DVA are optimized by solving a non-
linear constraint optimization problem. The behavior of the structure improves
significantly over the band of interest, and the final design is proven to be
robust against variations of the DVA properties. A very recent approach [46]
is based on the minimization of the worst-case gain in the frequency band of
interest; GAs are used to perform the optimization. Also in ref. [89], GAs
are used to optimize the parameters of DVAs and Helmholtz resonators, where
the objective function is the acoustic potential energy within a payload fairing.
Due to the large number of passive systems, the energy is smeared out over a
broad frequency range, similarly to what is observed in Soize’s fuzzy structure
theory [185].
In ref. [27], the use of DVAs for vibration reduction in both narrow and wide
frequency bands is investigated. It is observed that the choice of the DVA
parameters are strongly dependent on the bandwidth and its location. In fact,
for larger bandwidths, the optimal DVA should not be located at the point with
maximum vibration, and multi-modal coupling has to be taken into account
during the design phase. Moreover, the optimal damping is strongly dependent
on the target band.
An alternative way of creating a stop-band behavior is proposed in ref. [31],
where a grid of resonators properly distributed over a panel, allows the global
vibration level to be significantly attenuated over a band of frequencies. Instead
of determining the properties by means of an optimization procedure, the ratio
between the frequency of the resonator and the propagating wave frequency
of the unit cell is proven to be key for the efficiency of the grid. These ideas
are brought to practical applications in ref. [32], where honeycomb core panels
combine high stiffness to mass ratio with an excellent capability of attenuating
global vibration over a band.

The choice of the band-averaged input power as an objective function for
optimal DVA design, together with the application of the residue theorem to
significantly speed up the computation, constitute the core of the proposed
optimization process and the main novelty of the following chapter.
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Figure 6.1: Problem geometry.

6.2 Theoretical aspects and numerical methodolo-

gies

The focus in this application is on the acoustic radiation from a baffled thin
plate with resonators attached, as illustrated in fig. 6.1. In the following
sections, the numerical approaches to predict the response of the uncoupled
vibro-acoustic system are presented. In particular, to solve the structural
problem, the WBM is used with its extension to point connections [208]. On
the other hand, the Rayleigh integral is used to compute the acoustic power
radiated from the plate [40].

6.2.1 Plate bending with point connections

For thin plates and low frequencies, the effects of rotary inertia and shear
deformation can be neglected. This leads to the Kirchhoff theory [128]. When
npc point connections are taken into account, the out-of-plane displacements w
of a plate in bending are governed by the following partial differential equation,

∇4w(x) − k4
bw(x) =

1
D

F0δ(x, xf ) +
1
D

npc
∑

i=1

F0,pc,iδ(x, xpc,i), in Ωp, (6.1)
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where kb is the bending wavenumber, and D is the bending stiffness. The
symbol F0 represents the complex amplitude of the harmonic point force
applied at xf , while F0,pc,i is the force exerted by the i-th point-connected
DVA. δ indicates the Dirac delta function. The plate surface coincides with
the two-dimensional domain Ωp of boundary ∂Ωp. Simply supported boundary
conditions are imposed over ∂Ωp, meaning the prescribed displacements and
bending moments are zero.

The bending of a bare, simply supported plate can be modeled by using the
WBM, as described in Appendix A. According to the formulation presented in
ref. [208], the effect of npc DVAs is now included into the WB formulation. The
variable expansion (A.20) results in the following,

w(x) ≈ ŵ(x) = Ψ(x) · c + ŵf (x) +
npc
∑

i=1

ŵpc,i(x), (6.2)

with Ψ and c vectors containing nb wave functions Ψb, and the corresponding
contribution factors cb. The function ŵf is the particular solution of eq. (6.1)
subject to the point force of amplitude F0, eq. (A.10). The symbol ŵpc,i denotes
the particular solution for the force exerted on the plate by the i-th point
connection,

ŵpc,i(x) = − ifpc,i(ω)wpc,i

8k2
b D

[

H
(2)
0 (kbrpc,i) − H

(2)
0 (−ikbrpc,i)

]

, (6.3)

where rpc,i is the Euclidean distance between x and the location of the i-th DVA,
xpc,i, H

(2)
0 is the Hankel function of second kind and zero order, and fpc,i(ω)

represents the force-displacement relation with mathematical expression,

fpc,i(ω) =
F0,pc,i

wpc,i
=

mpc,i ω2 (kpc,i + iωcpc,i)
kpc,i + iωcpc,i − mpc,iω2

, (6.4)

where mpc,i is the mass of the i-th DVA, kpc,i is its stiffness and cpc,i the
damping coefficient. The introduction of the particular solution (6.3) into the
residual formulation (A.29) leads to a system of (nb) × (nb + npc) equations, to
which npc auxiliary equations are added as follows,

wpc,i(xpc,i) = Ψ(xpc,i) · c + ŵf (xpc,i) +
npc
∑

i=1

ŵpc,i(xpc,i). (6.5)

The system of equations now has the form
[

A Bpc

Cpc Dpc

]{

c

wpc

}

=
{

f

fpc

}

, (6.6)
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where A and f are the matrix and the right-hand side of the system related
to the bare plate, without point connections. The vector wpc is composed of
the displacements at each point connection location. For the sake of brevity,
matrices Bpc, Cpc, Dpc and vector fpc are not reported in detail here. The
reader is referred to ref. [208] for their complete expressions. However, it is
worth noting that the inclusion of point connections does not influence the
main matrix, A, and only requires the addition of npc columns and npc rows
to the system. As a consequence, to analyze different configurations, the main
system A is not recomputed. Moreover, since the WBM matrices are generally
very small, preprocessing the WBM matrices is more expensive than solving
the system. Hence, this constitutes an advantageous property of the WBM for
procedures which require iterations, such as optimization strategies and MC
simulations [208].

6.2.2 Radiated acoustic power

In the following applications, the thin baffled plate is immersed into a
fluid. Under steady-state conditions, the acoustic problem is governed by the
Helmholtz equation,

∇2p(x) + k2
a p(x) = 0, in Ωa (6.7)

where p is the acoustic pressure, ka is the acoustic wavenumber ω
ca

, with ca

the speed of sound in the medium of density ρa. The three-dimensional semi-
unbounded fluid is represented by the domain Ωa. The boundary can be split
in three non-overlapping regions, Ωp ∪∂Ωb ∪∂Ωa,∞, where Ωp is the fluid-plate
interface boundary, ∂Ωb is the infinite baffle and ∂Ωa,∞ is the boundary at
infinity, on which the Sommerfeld condition is applied.
The interaction between fluid and structure can be modeled in two ways. When
the structure has high stiffness and is in contact with a low-density fluid, the
interaction between the two is weak and can be neglected. The two domains
can be considered separately and each one serves as an exterior excitation for
the other. If the elastic structure is immersed in a high-density fluid, the two
are strongly coupled and mutually interacting with each other. In this case,
they have to be modeled as a coupled vibro-acoustic system. Although this
approximation is valid in any case, it is more computationally demanding, due
to coupling terms taken into account.
In the following case, the plate presents a high stiffness and the fluid has
low density, thus it is reasonable to assume that the mutual interaction is
weak and negligible. Under this assumption, the problem can be treated as
uncoupled, and the normal plate velocity distributions are independent of the
surface pressures.
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A reflecting boundary condition is applied over the baffle ∂Ωb, while on the
boundary Ωp, a velocity boundary condition is applied from the structural
vibration. This is formalized as follows,

Lv [p(x)] = iωw(x), (6.8)

where Lv is the normal velocity operator Lv(•) = i
ρaω

∂•
∂na

.

The acoustic radiated power can be used as a measure of the noise emitted from
a structure. Supposing that the surface of the plate is part of an infinite plane,
the pressure at a point x ∈ Ωa can be computed by means of the Rayleigh
integral,

p(x) =
iωρa

2π

∫

Ωp

vn(y)
e−ikaR

R
dΩp(y), (6.9)

where R = |x − y|, and vn is the normal velocity. The acoustic power radiated
from the vibrating plate can be computed by integrating the acoustic intensity
over the surface Ωp, obtaining the following expression,

Pacou =
ωρa

4π

∫

Ωp

∫

Ωp

vn(y)
sin (kaR)

R
v∗

n(x) dΩp(y) dΩp(x), (6.10)

which can be computed as suggested in [86]. A singularity occurs when R = 0.
However, as R → 0, sin (kaR) /R → ka. In the following application cases,
integral (6.10) has been integrated by using 400 Gauss points over the surface
Ωp.

6.3 Optimization procedures

This section presents the key points of the optimization procedure proposed in
the following chapter. In sec. 6.3.1, the choice of the band-averaged input power
as a cost function, is discussed. Section 6.3.2 is dedicated to the description of
the main features of GAs. Finally, sec. 6.3.3 summarizes the main aspects of
the optimization procedure.
It is worth noting that the use of Butterworth-weighted frequency averaging is
only illustrative in the following examples. The approach can be easily extended
to the use of classic quadrature in the complex plane, as presented in ch. 4.

6.3.1 Minimization of the power injected into the structure

When dealing with the optimization of the dynamic behavior of a structure, it
is of major interest to minimize the vibration. Depending on the problem, one
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may be interested in minimizing either the global or the local response. On the
other hand, if the main concern is with the improvement of the noise emission,
it may be of importance to minimize the acoustic power radiated from the
structure.
The choice of the objective function plays a crucial role in the optimization
process, and some computational aspects have to be taken into account. For
example, using the acoustic radiated power, or any other acoustic-related
quantity, as an objective function can lead to computationally demanding
simulations. In fact, both structural and acoustic problems have to be solved
for each iteration of the optimization process. This can significantly slow down
the calculation time.
As an alternative to reduce the acoustic radiated power, Jog [96] suggests to
minimize the power injected into the uncoupled structure. This strategy leads
to a minimization of the input mobility of the structure. As a consequence,
structural resonances are drifted away from the target frequency and the overall
level of vibration is decreased. Moreover, when the vibro-acoustic model is
uncoupled, the optimization is performed on the bare structure, reducing the
computational cost. The potential of this approach has been shown by means
of several examples in ref. [151].

A delicate additional aspect to consider when designing a mechanical compo-
nent is the frequency range over which the performance of the structure should
be optimal. Usually this choice can be related to the knowledge of the external
excitations. Single-tone sources are rare in real-life applications. Moreover, the
presence of uncertainty and variability may influence the nominal position of a
resonance frequency, reducing the effectiveness of vibration control treatments.
In these situations, optimizing the behavior over a band of frequencies is often
preferred rather than targeting a single frequency. Nevertheless, the increased
robustness of the configuration comes at a high computational price. In fact,
the use of quadrature schemes to capture highly oscillating mobility functions
can dramatically slow down the efficiency of the optimization scheme.
In this context, using the residue theorem to estimate band-averaged input
power provides a powerful tool to perform accurate band evaluations at
a reduced computational cost. This can efficiently be embedded in an
optimization process and increase the overall performance of the procedure.

6.3.2 Genetic algorithms

For this type of problems, GAs can be used [72, 87]. Unlike gradient-based
optimization schemes, GAs are inspired by natural selection processes, where
the best individuals dominate the population [207]. As a first step of the
optimization scheme, a random population is created and ranked based on
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the fitness (objective) function. Individuals with a higher ranking position
have higher probability of being selected for reproduction. The successive
generation consists of children created by crossover, namely randomly mixing
the selected parents. In this process, the so-called mutation is also performed,
by which the genetic sequence of an individual is mutated according to a
random variable. The process is repeated until one of the convergence criteria
is reached. The main advantage of evolutionary algorithms is their robustness,
having an increased chance of finding a global optimum or near global optimum.
On the other hand, they have a high computational cost.

The minimization of the input power, averaged over the interval I, can be
formulated as a single objective (SO) optimization,

min 〈Pin〉I , (6.11)

subject to the side constraints,

bj ≤ bj ≤ bj , j = 1, . . . , nvar, (6.12)

where each of the nvar elements of the design variable vector, b, is defined by the
upper and lower bounds, b and b, respectively. However, many optimization
problems in engineering require the minimization of nobj (conflicting) objectives.
In this case, the problem is referred to as a multi-objective (MO) optimization
and analogously to (6.11), it can be formulated as,

min
[

〈Pin〉I1
, 〈Pin〉I2

, . . . , 〈Pin〉Inobj

]

, (6.13)

subject to the side constraints (6.12). Two main strategies exist to deal with
MO problems [153, 224]. According to the first category, the MO functions
can be aggregated into a single function by means of a weighted sum, and the
problem can be solved with SO optimization strategies. Here the choice of
the weights plays a crucial role. Alternatively, it is often preferred to know
the so-called Pareto front, which is the locus on which all the non-dominated
solutions lie.

In the following application case, the first strategy is applied to solve an MO
problem. The power injected into different bands will be aggregated, weighted
with equal weights and minimized by using GAs. However, the choice of the
weights is in general not straightforward. In fact, if the power injected into one
band is predominant with respect to other bands of interest, one could end up
with a solution which attempts to minimize such a band and leave the others
unaltered. Although this might be the best configuration, a different choice
of the weighting factors may lead to a solution that is more effective for other
bands.
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6.3.3 Summary and advantages of the procedure

The aim of this section is to summarize the procedure adopted for the
optimization and highlight the advantages in using the WBM in this context.
Among all the properties of the WB modeling for vibration problems, two are
of particular interest for this specific application. First of all, the WBM is a
meshless approach. Consequently, it allows locating the resonator at any point
over the plate and it does not require any re-meshing procedure. Using classic
FEM would be much more disadvantageous, as the position of the DVA is
confined to nodal points. Secondly, the WBM shows a higher convergence rate
than element-based approaches, and a lower number of degrees of freedom is
needed to model the problem. This becomes even more important when point
connections are present, as they introduce a local perturbation, which requires
a high mesh resolution to be properly captured. For point connections, another
advantage is that the system of equations consists of a main part representing
the bare system, A and f , and a number of rows and columns, Bpc, Cpc, Dpc

and fpc, of which the size is proportional to the number of point connections.
Consequently, moving the position of a DVA or changing its properties does
not require a change in the main system of equations.
To evaluate the input power over a band, only a few computations at complex
frequencies are required, according to the procedure presented in ch. 3. So,
the small matrices of the bare system can be computed at the aforementioned
complex frequencies and stored in memory. At each iteration they are recalled
and complemented with the point connection contributions. The problem is
solved for the wave contribution factors, and the input power is computed.
GAs are used to solve the following optimization problem, that is performed in
four steps:

1. Problem definition. Data related to the problem geometry, material,
boundary conditions, excitation etc. are defined. Parameters of the GA
are specified, i.e. tolerance, population size, crossover fraction, etc.

2. Determination of the n complex frequencies of analysis. According to the
order of the Butterworth filter to use, the complex frequencies, at which
the solution has to be computed, are determined,

z = [z1, z2, . . . , zk, . . . , zn] . (6.14)

3. Evaluation and storage of system matrices. The WB matrices and right-
hand side vectors for the bare system are computed at each complex
frequency,

A1, A2, . . . , Ak, . . . , An, f1, f2, . . . , fk, . . . , fn. (6.15)
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Since n is normally small and the WB matrices have a reduced number of
DOFs, storing the matrices does not require large memory consumption.

4. Optimization process. At each iteration, l, system matrices are recalled
and complemented with a number of columns and rows equal to the
number of point connections considered in the problem. Also the right-
hand side dimensions are increased,

[

Ak Bpc,k,l

Cpc,k,l Dpc,k,l

]{

ck,l

wpc,l

}

=
{

fk

fpc,k,l

}

, (6.16)

the letter k denotes the k-th complex frequency. Successively, the system
of equations is solved, and the input power is evaluated. This process is
repeated until convergence is reached and the band-averaged input power
is minimized.

The applicability of this strategy can easily be extended to an FE model. In
fact, introducing a DVA at a certain point location involves the modification of
the mass, stiffness and damping matrices of the corresponding node. Matrices
can be computed only once and stored in memory. Within the iterative
optimization procedure, the best configuration can be found. Although the
WBM is more advantageous for this specific application, the proposed strategy
can be used for cases where the potentialities of FEM are exploited at best, i.e.
for complex geometries.

The algorithms applied here for the optimization process belong to the category
of non-gradient based. Nevertheless, the procedure can be extended to gradient
based algorithms, as shown by Koo [103]. In ref. [103], FEM is used to simulate
the behavior of a vibrating cube, in which the thickness of a group of shell
elements represents a set of design variables. The Adjoint Variable Method
[29, 104] is used for the optimization process, while the residue theorem is
used to evaluate the band-averaged power injected by harmonic point force
excitations. This combination leads to a drastic abatement of the acoustic
power radiated from the structure, with a significant improvement of the
computational performance.

6.4 Application cases

The following section is dedicated to the application examples. Model
properties and problem details are reported in sec. 6.4.1. In sec. 6.4.2,
the numerical procedures employed to compute the objective function are
introduced and used in sec. 6.4.3, for SO optimization, and in sec. 6.4.4 for
multiple band minimization.
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6.4.1 Problem description

The plate under consideration is simply supported and rectangular of dimen-
sions 1×0.6 m, 1 mm thick. The material is steel of Young’s modulus 210
GPa, density 7800 kg/m3 and Poisson ratio 0.3. The damping mechanism is
hysteretic with constant loss factor equal to 0.01. The plate is baffled and
radiates in air characterized by a density of 1.225 kg/m3, and a speed of sound
of 340 m/s. The source is a harmonic point force arbitrarily chosen at (0.85,
0.15)m.
The WBM is used to predict the behavior of the plate, and a truncation
factor T = 2 is chosen. To evaluate the acoustic radiated power, the Rayleigh
approach is used, as described in eq. (6.10).

Two frequency ranges are of interest in the following examples. The first band
covers the region from 26 Hz to 32 Hz. Over that band, two modes are strongly
contributing to the system response and they are located at 29.1 Hz (3,1) and
29.9 Hz (1,2). The second frequency range of interest sweeps frequencies from
58 Hz to 79 Hz. In this band, four modes are contributing, and two of them
strongly radiate. They are located at 64.1 Hz (1,3), 66.9 Hz (4,2), 68.5 Hz (5,1)
and 71.6 Hz (2,3). All the mode shapes are indicated in fig. 6.2.

According to classic applications, the vibration level of the plate can be reduced
by tuning the DVAs on structural resonances. This procedure leads to a
reduction of the vibration at the target frequency, but it may result in a
worse performance for the neighboring frequencies. To reduce this effect, a
de-tuned configuration is often preferred, resulting into a mass-like or stiffness-
like impedance of the resonator. This allows improving the vibrational behavior
also for other frequencies. To further decrease the vibration level, several DVAs
can be added to the host structure, especially when more than one mode is
tackled. In the following applications, a reduced number of DVAs is used to
tackle a band on which several modes are contributing. This serves as a pure
example to show the potential of the present strategy for vibration control
problems. However, also in this case, the number of DVAs can be increased to
obtain superior noise and vibration reduction.

6.4.2 Objective function evaluation and optimization

Two types of optimization problems are carried out. The first one focuses
on the minimization of the input power over the band (58, 79) Hz as an SO
optimization. The second one attempts to find the optimal design on the
bands (26, 32) Hz and (58, 79) Hz, using an MO optimization process. In all
optimization processes, the design variables are the coordinates of the DVAs
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(a) 29.1 Hz (b) 29.9 Hz

(c) 64.1 Hz (d) 66.9 Hz

(e) 68.5 Hz (f) 71.6 Hz

Figure 6.2: Mode shapes inside the first band, (a) and (b), and the second
band, (c) to (f).

on the plate and their resonance frequencies.
Different techniques are used to compute the objective function. Butterworth
filters of order 4 (B4), 8 (B8) and 20 (B20) are used to evaluate the
band-averaged power injected into the structure. Besides the number of
computations, these schemes also differ in the weighting function. For a filter
of order 4, a small weight is still assigned to frequencies outside the band. This
is shown in fig. 6.3, where the square magnitude of a Butterworth filter is
illustrated for the aforementioned cases. With increasing order, the shape of
the filter becomes closer to that of a rectangular window. Alternatively, the
trapezoidal scheme is used as a quadrature rule to estimate the band power.
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Figure 6.3: Comparison between a rectangular window (thin solid line) and
function B(ω) of order 4 (dashed line), 8 (thick solid line) and 20 (dotted line).
The window is centered at 0 Hz and has a cut-off frequency equal to 5 Hz.

Three different integration steps are tested, namely 1 Hz (T1.0), 0.5 Hz (T0.5)
and 0.2 Hz (T0.2). Finally, to compare the results provided by the input power
minimization with a more classic approach, the space- and frequency-averaged
displacement is used as an objective function. In this case, the trapezoidal rule
with 0.5 Hz step is used to average over the frequency (D-T0.5), while 1600
integration points are taken over the plate surface. In general, using classic
quadrature schemes is more demanding, and the inaccuracy due to the rough
integration step also influences the convergence of the optimization algorithm,
as it will be shown in the following. Note that T1.0, T0.5 and T0.2 require
7, 13 and 31 function evaluations over the first band, and 22, 43 and 106 for
the second band, respectively. By using the Butterworth-weighted frequency
averaging, the function has to be evaluated only 4, 8 or 20 times according to
the number of complex frequencies.

Regarding the optimization schemes, the objective is normalized with respect
to the power injected into the bare plate, and the convergence is always reached
when the average change in the fitness value is less than the tolerance (10−7)
for 10 successive generations.
To quantify the reduction with respect to the initial design, a reduction
coefficient, r(•), is used and is computed by means of the following relation

r(•) = 100 · •ini − •opt

•ini
, (6.17)

where •ini stands for the initial value and •opt stands for the optimized value.
Reduction coefficients will refer to the band-averaged input power, acoustic
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Simul. ID B4 B8 B20 T1.0 T0.5 T0.2 D-T0.5
xpc[m] 0.879 0.879 0.878 0.878 0.878 0.878 0.870
ypc[m] 0.124 0.124 0.125 0.123 0.125 0.125 0.137

fres[Hz] 85.9 85.9 86.1 86.7 86.0 86.1 72.4
topt[s] 198.0 406.0 1256.6 1590.7 2412.3 6059.9 4266.3

Gen. [−] 41 44 55 62 46 48 51
rpow[−] 74.0 74.0 74.0 74.0 74.0 74.0 70.3
rdisp[−] 92.5 92.5 92.2 92.0 92.3 92.2 95.6
rrad[−] 88.4 84.4 87.9 87.2 88.0 87.9 95.0

Table 6.1: Optimal configurations for the case of SO optimization.

radiated power and square averaged displacements. The averages are computed
using numerical quadrature with trapezoidal rule and 0.1 Hz sampling step.
All simulations are run on a Windows 7 64-bit desktop machine, processor
Intel(R) Core 2 Quad CPU, clock rate 3 GHz and 8 GB RAM. GAs in Matlab
are used to perform the optimization procedures.

6.4.3 Single objective optimization

In this case, one DVA is used to reduce the vibration over the second band.
The three design variables are the x and y position of the DVA on the plate
and its resonance frequency. The mass of the resonator is 2% of the mass of
the bare plate, and the damping ratio is 0.1. Regarding the GA settings, the
population consists of 30 individuals and the crossover fraction is 0.5.

The optimal configurations and optimization parameters are reported in tab.
6.1. When the input power is minimized, all the optimization processes lead
to similar designs. The resonator is located close to the excitation point, as
it might be expected, and its resonance frequency falls above the interval of
interest (86.1 Hz). It can be verified that this configuration minimizes the
band-averaged input power.
All optimal designs present a noticeable improvement over the band. Data
related to solving times show the computational advantages of the proposed
approach, which are evident when comparing the design B4 with the ones
obtained with more refined schemes.

Minimizing the space- and frequency-averaged displacement leads to config-
uration D-T0.5, reported in tab. 6.1. The location of the resonator is not
far from the one provided by the input power minimization. However, the
resonance frequency for the D-T0.5 case falls inside the frequency band under
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Figure 6.4: SO optimization. Initial configuration (thin solid line); B20 (thick
solid line); D-T0.5 (dashed line).
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Figure 6.5: Contour plot of frequency-averaged displacement, 〈|w|〉, over the
band (58, 79) Hz. The symbol × indicates the point force, • the location of the
DVA, and + the maximum displacement point (7.83e-5 m without DVA and
2.88e-5 m with DVA). The unit of the contour map is [m].
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Parameter Deviation
xpc[m] ±0.005
ypc[m] ±0.005

fres[Hz] ±1
mpc[%] ±25
cpc[%] ±25

Table 6.2: Deviation from the nominal values for the DVA parameters.

analysis. The reduction of radiated power and averaged displacement of the
D-T0.5 configuration are higher than the ones of the B-series. However, this
comes at a much higher computational cost, which becomes significant when
comparing the performance of design B4 with D-T0.5. The improvements on
the narrow band response can be observed in fig. 6.4, which compares designs
B20 and D-T0.5 in terms of input power, radiated acoustic power and averaged
square displacement. The four peaks present on the narrow band input power
are reduced over the frequency interval. This leads to strong improvements
of the vibrational behavior of the panel. The configuration B20 presents a
higher input power peak compared to the D-T0.5, which also leads to a higher
radiated power and displacement level. However, as reported in tab. 6.1, the
power injected over the band is smaller for the B20 configuration.
Figure 6.5 shows the local behavior of the frequency-averaged displacement
over the plate for the initial configuration and the B20 design. The presence of
the resonator allows reducing the overall vibration of the plate in an average
sense.

To verify the robustness of the optimal configuration B20, all five DVA
parameters are perturbed from their nominal values according to uniform
distributions with boundaries reported in tab. 6.2. All five parameters are
uniformly distributed variables. Accordingly, a set of 300 random samples has
been considered to compute the mean response and the upper and lower bounds
of the input power, as shown in fig. 6.6. The deviation of the samples from the
mean response is larger inside the band than for other frequencies. However,
the perturbed design preserves improved characteristics compared to the initial
one.

6.4.4 Multi-objective optimization

MO optimization is investigated in this example. As previously mentioned,
there are two bands of interest, namely from 26 to 32 Hz and from 58 to 79 Hz.
Two DVAs are used to reduce the vibration. The mass of each device is equal
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to 0.1% of the mass of the bare plate, and their damping ratio is equal to 0.1.
Six design variables are considered, corresponding to x and y positions and the
resonance frequencies of the two resonators. The GA population consists of 40
individuals and the crossover fraction is 0.5.

The optimal configurations are shown in tab. 6.3, where the subscripts refer
to the DVA when describing the location and resonance, and to the band
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Figure 6.6: Effect of perturbation on DVA properties for the case of SO
optimization. Initial configuration (thin solid line); ensemble average (thick
solid line); upper and lower bounds of the ensemble (dashed lines).

Simul. ID B4 B8 B20 T1.0 T0.5 T0.2 D-T0.5
xpc,1[m] 0.502 0.503 0.505 0.722 0.701 0.505 0.504
ypc,1[m] 0.408 0.410 0.413 0.249 0.258 0.412 0.367

fres,1[Hz] 29.9 29.5 29.5 59.5 62.1 29.2 28.8
xpc,2[m] 0.882 0.883 0.882 0.871 0.894 0.882 0.874
ypc,2[m] 0.121 0.123 0.124 0.131 0.118 0.122 0.135

fres,2[Hz] 79.9 80.2 80.2 81.4 84.6 80.2 70.9
topt[s] 747.6 1839.1 4420.2 1933.4 6808.6 13167.2 9388.5

Gen. [−] 66 82 79 43 80 63 62
rpow,1[−] 30.2 30.6 30.5 -2.9 -1.9 30.7 22.4
rdisp,1[−] 90.1 90.0 89.5 -1.1 -1.9 89.6 93.3
rrad,1[−] 87.5 88.1 87.9 8.7 -3.9 88.4 89.7
rpow,2[−] 51.5 51.5 51.6 63.8 61.7 51.5 49.8
rdisp,2[−] 86.7 86.4 86.3 92.7 91.7 86.4 92.3
rrad,2[−] 66.6 66.3 66.2 79.4 74.6 65.9 87.0

Table 6.3: Optimal configurations for the case of MO optimization.
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for the reduction coefficients. Negative values in the reduction coefficients
indicate that the optimal design is worse with respect to the initial one. This
happens when rough trapezoidal quadrature schemes are not able to accurately
represent the band value, and the optimization algorithm leads to a result which
is not satisfactory. On the contrary, the residue theorem allows an accurate
band evaluation, and results provided by the B-series do not differ much from
each other. This explains why configurations T1.0 and T0.5 yield reduction
coefficients rpow, which are higher than the others on the second band, but
much lower on the first one. In those configurations both DVAs tackle the
same band.

In general, using the Butterworth-weighted frequency averaging procedure
allows a significant speed up of the computation. This is clear when comparing
configurations B4 and T0.2. In fact, although the optimal designs are not very
different from each other, a speed up factor of about 17 can be observed. Also
in this case, the minimization of the input power leads to a reduction of the
radiated sound power and the averaged displacement over the plate.
Although the lowest displacement level is not achieved in the B-series designs,
reduction coefficients are not much lower than the D-T0.5 ones, especially on
the first band. This can also be observed in fig. 6.7, where the narrow band
responses of configurations B20 and D-T0.5 are illustrated. Conclusions similar
to the ones for the previous example can be drawn for results on the band (58,
79) Hz, although the improvement is lower due to the reduced weight of the
device in the current application. On the other hand, configurations B20 and
D-T0.5 provide similar responses over the first band. From a computational
point of view, the proposed approach highly outperforms the strategy adopted
to design the D-T0.5 configuration, proving that it can be a very efficient tool
for optimizing the DVA parameters in an early stage design.

In fig. 6.8 and 6.9, the frequency-averaged displacements are illustrated for the
configuration B20. The first resonator tackles the modes present in the first
band and is located close to the center of the plate. Its resonance falls inside
the band of interest (29.5 Hz) and allows achieving a significant reduction of
the overall displacement level. The second resonator is located close to the
excitation point, like in the previous case, and its resonance frequency is above
the band (80.2 Hz).

The robustness of configuration B20 against variability is assessed in fig. 6.10.
The DVA parameters are perturbed according to tab. 6.2, and 300 random
samples have been used to predict the ensemble behavior. Similarly to the
previous example, over the bands of interest, the scatter on the response is
larger than for other frequencies. However, the perturbation does not worsen
the overall performance of the optimal design, compared to the initial behavior
of the system.
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Figure 6.7: MO optimization. Initial configuration (thin solid line); B20 (thick
solid line); D-T0.5 (dashed line).
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Figure 6.8: Contour plot of frequency-averaged displacement, 〈|w|〉, over the
band (26, 32) Hz. The symbol × indicates the point force, • the location of the
DVA, and + the maximum displacement point (3.97e-4 m without DVA and
1.40e-4 m with DVA). The unit of the contour map is [m].
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Figure 6.10: Effect of perturbation on DVA properties for the case of MO
optimization. Initial configuration (thin solid line); ensemble average (thick
solid line); upper and lower bounds of the ensemble (dashed lines).

6.5 Conclusion

This chapter presents a strategy to reduce the global vibration and radiated
acoustic power, by minimizing the input power over a frequency band. The
main feature of the present approach is the efficiency achieved by exploiting
the residue theorem. Instead of requiring a refined quadrature integration,
few calculations at complex frequencies allow accurate band computations,
regardless of the bandwidth. This allows to significantly speed up the
optimization process over frequency bands.
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The strategy has been applied to optimize the properties of DVAs in order
to improve the dynamic behavior of a baffled plate. In the first example, the
properties of one DVA are optimized to minimize the power injected by a
point force over a single frequency band. In the second one, the characteristics
of two DVAs are optimized to tackle two frequency bands. GAs have been
used as an optimization tool in combination with the WBM, which shows
high potential and efficiency for this application. For both examples, the
optimization strategy has been proven to be very effective in reducing the
radiated acoustic power and the overall displacement level over the band. A
significant gain in computation time is achieved compared to classic schemes.
Finally, the optimal configurations have been proven to be robust against DVA
parameter variability.

Although in this application the optimization strategy has been tested only on
baffled plates, the underlying idea can be easily extended to more complex cases.
A possible application could be related to the automotive field, where one may
be interested in minimizing the power injected by a broad-band vibration of
the engine into the car frame. The present techniques can be used to quickly
determine a design configuration to reduce the global vibration level.



Chapter 7

The Lorentzian-weighted
frequency averaging

So far, the focus was on the computation of averages taken over bands of
frequencies. In ch. 3, such a procedure is performed by approximating the
features of a rectangular window by means of the square magnitude of a
Butterworth filter. With increasing order, the shape of the filter comes closer
to the one of an ideal square window. On the other hand, when the order of
the filter is one, the square magnitude of a Butterworth filter coincides with
the Lorentzian function.

The Lorentzian is a bell-shaped curve and is defined by a center frequency and
a shape parameter. Since it presents only one pole in the LHP, the Lorentzian-
weighted frequency average can be computed by adding to the real frequency
of analysis an imaginary part, which depends on the shape parameter. This
characteristic makes it particularly attractive, as it can lead to an average over
a broad frequency range by means of a single computation. However, due to
its bell-shape, the Lorentzian only roughly approximates a rectangular window,
and its use is not as straightforward and intuitive as for band averaging.

The purpose of this chapter is indicating possible ways of employing the
Lorentzian-weighted frequency averaging in the context of vibro-acoustic
modeling. Rather than drawing definitive conclusions regarding its use, the
objective is to initiate the exploration of this novel area, proposing possible
applications and directions for future research.
After the introduction of the Lorentzian in sec. 7.1, three applications are
explored in the context of noise and vibration simulations.
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• Evaluation of the ensemble-averaged input power. Under ergodic
assumption, frequency averaging can be employed to estimate the
ensemble mean behavior of perturbed systems, with significant reduction
of computations. In this context, the Lorentzian function can be used
as a weighting function to perform frequency averaging and estimate
the ensemble mean input power. However, to compare frequency- and
ensemble-averaged quantities, the choice of the width of the Lorentzian
is not straightforward. This is the main research issue addressed in sec.
7.2, where two strategies are proposed to tune the shape parameter on
the amount of variability present in the system.

• Computation of the direct field dynamic stiffness. The direct
field dynamic stiffness allows the calculation of the power exchanged by a
system and is widely used in the context of hybrid approaches as well as
for CLF computations in SEA [181] (sec. 2.2.5). One way of evaluating
the direct field dynamic stiffness is through the ensemble averaging of
the dynamic stiffness, and the use of the Lorentzian-weighted frequency
averaged dynamic stiffness in this context is investigated in sec. 7.3.

• Lorentzian as mass-frequency density function in the FST. A key
parameter for the application of the FST, as proposed by Pierce [166], is
the mass-frequency distribution function. This allows the definition of
the fuzzy impedance, which is a key ingredient for the application of
the FST (sec. 2.2.5). In sec. 7.4, the Lorentzian function is used as a
mass-frequency density function. Its advantageous mathematical features
allow simplifying the integration procedure and the calculation of the
impedance.

The chapter is concluded with sec. 7.5, where some remarks and observations
are reported.

7.1 The Lorentzian function

The Lorentzian function, also known as Cauchy distribution, is a single-peak
function of mathematical form,

L(ω) =
1

πγ

1

1 +
(

ω−ω0

γ

)2 , (7.1)

where ω0 is the location of the peak of the distribution and γ is a shape
parameter, which specifies the half-width at half-maximum. The Lorentzian
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Figure 7.1: Lorentzian function centered at ω0 = 0 and with γ = 1/π.

is symmetric around ω0 and its features are illustrated in fig. 7.1.
The maximum amplitude of the Lorentzian is equal to 1/(πγ) and the
corresponding cumulative distribution function is,

l(ω) =
1
2

+
1
π

arctan
(

ω − ω0

γ

)

. (7.2)

Unlike the Normal distribution, the Lorentzian belongs to the family of heavy-
tailed distributions, as its tails are not exponentially bounded. Consequently,
its mean is undefined and its variance is infinite. More in general, the
Lorentzian function has no finite moments of any order. These characteristics
make it suitable to model extreme risk analysis and financial problems. The
Lorentzian can also be considered as a ratio distribution between two centered
Normal distributed variables. For this reason, it is also called Normal ratio
distribution.

As it can be observed from eq. (7.1), the Lorentzian function corresponds to the
square magnitude of a Butterworth filter of order one. The shape parameter γ
corresponds to the cut-off frequency ωC of a Butterworth filter. Two poles are
located in the complex frequency plane, at ω0 ± iγ.

7.2 Evaluation of the ensemble average input
power

Most manufactured systems with nominally identical properties show a
significant deviation from their nominal characteristics [102]. This is mainly
due to the production and assembly processes, as well as the operational
and environmental conditions, which influence the system properties. From
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a computational point of view, the presence of such a variability creates several
difficulties for the prediction of the dynamic behavior of the ensemble of
structures. For this reason, when the statistical overlap is sufficiently high [141],
the response is considered ergodic and the ensemble mean can be approximated
with frequency average values [131]. In this regard, the Lorentzian allows a
straightforward evaluation of the frequency-averaged input power, but in order
to represent the ensemble mean the parameter γ has to be properly tuned.

The main goal of this section is to investigate the possible correlation between
γ and the amount of variability present in the system, in order to predict the
average input power for the ensemble of structures. Two strategies to tune
the parameter γ, are proposed in sec. 7.2.2 and applied to single- and multi-
component systems in sec. 7.2.3 and 7.2.4, respectively. Additional comments
are reported in sec. 7.2.5.

7.2.1 Lorentzian-weighted frequency-averaged input power

As discussed in ch. 3, the frequency-averaged input power can be expressed as
an integral over the whole frequency axis,

〈Pin〉W =
∫ +∞

−∞

W (ω)Pin(ω) dω, (7.3)

where W (ω) represents a generic weighting function. So far, the interest has
been mainly focused on approximating the band value, which requires W (ω)
to be as close as possible to a rectangular window. Under the hypothesis of
system poles lying in the UHP, the Butterworth-weighted frequency average
reads,

〈Pin〉B = −1
2

πAωC

n
Re

{

F ∗
0

n−1
∑

k=0

zku(xf , zk)e−iθk

}

, (7.4)

where the notation is the same as adopted in ch. 3. When n > 1, the band-
average is computed as a weighted sum of system responses computed at certain
complex frequencies. If n = 1, the square magnitude of the Butterworth filter
is equal to the Lorentzian, and the Lorentzian-weighted frequency average can
be evaluated by computing the system response at one complex frequency
corresponding to the pole of the weighting function, lying in the LHP,

〈Pin(ω0)〉L =
1
2

Re {v(ω0 − iγ) · F ∗
0 } , (7.5)

where according to definition (7.1) and (3.7), A = 1/(πγ). When the loss
mechanism is modeled as hysteretic, system poles are not confined in the
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UHP and (7.5) is an approximation rather than an equation. As a result
the Lorentzian-weighted frequency averaging can be evaluated by shifting the
frequency of analysis to a complex frequency, and a full frequency sweep can be
run, providing the mean as a narrow-band response. However, the possibility
of predicting the ensemble mean through the Lorentzian-weighted frequency
average requires the γ parameter to be tuned, and contrarily to band averaging
its choice is far from obvious and will be discussed in the next section.

7.2.2 The choice of the γ parameter

Variability in the system properties produces scatter on the natural frequencies
and perturbs the nominal mode shapes. Based on this consideration, two
strategies are proposed to tune the γ parameter.

First strategy

The first strategy takes into account the eigenfrequency statistics and the
concept of Statistical Overlap Factor (SOF). The SOF was introduced by
Manohar and Keane, to estimate the frequency beyond which individual modes
cease influencing the response [141]. Its mathematical expression is defined as
follows,

Sk =
2σk

µk
, (7.6)

where σk is the standard deviation of the k-th natural frequency from its mean
value, and the mean frequency spacing, µk, is equal to the inverse of the modal
density.
According to definition (7.6), statistical overlap occurs when the random change
in the position of a natural frequency exceeds the mean frequency spacing.
Consequently, the SOF provides a measure of the number of crossing and
veering modes that can occur in a perturbed system. When the frequency is
low, the perturbation has often negligible effects on the eigenvalue statistics and
statistical overlap barely occurs. When the wavelength becomes smaller, the
perturbation has a major influence on the position of the natural frequencies,
which can cross or veer from each other. As a result, the SOF increases with
frequency until it saturates, meaning that further perturbation has negligible
influence on the eigenvalue statistics [98, 99, 112, 113].
To evaluate the statistics, an ensemble of perturbed systems is taken and, based
on the eigenvalues of each realization, it is possible to extrapolate the mean and
the variance of each perturbed natural frequency. To facilitate the prediction of
the SOF for simple systems, it is possible to approximate it analytically using
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a first-order perturbation analysis [100].
For rectangular plates perturbed by Nm randomly distributed masses of mass
ma, the variance of a natural frequency is approximated, as suggested in ref.
[100]. The mathematical relation, based on a first-order perturbation analysis,
assumes that the k-th natural frequency is modified according to the following
relation,

ω2
k → ω2

k



1 −
Nm
∑

j=1

maφ2
k(xmj

)



 , (7.7)

where φk is a mass normalized mode shape function associated to the k-th
mode. As a result, the variance of the position of the k-th eigenvalue can be
written as,

σ2
k = 0.3125

Nmm2
a

M2
tot

ω2
k, (7.8)

where Mtot is the total mass of the bare plate.
Expression (7.8) provides a useful guideline for the degree of statistical overlap,
but is considered invalid as the SOF approaches unity, that is when the standard
deviation σk is equal to half the mean frequency spacing, µk, and after which
frequency further perturbation does not significantly influence the average
response.
In principle, σk is a discrete function and quantifies the spread around a certain
eigenfrequency, ωk. However, it can be calculated as a continuous function of
frequency,

σ2 = 0.3125
Nmm2

a

M2
tot

ω2. (7.9)

This provides a general trend for the influence of the uncertainty on the system
response over the frequency range of interest. In order to cover the scatter in
the response and compare the Lorentzian averaging with ensemble averaging,
the γ parameter is chosen equal to σ in eq. (7.9). As the position of the
nominal natural frequencies is modified due to the perturbation, the width of
the Lorentzian is taken to be large enough to encompass the spread in the
response and provide a frequency-averaged value. After σ reaches unity, it is
kept constant for higher frequencies. Accordingly, also γ is considered as a
constant value.
Note that natural frequencies are not supposed to be Lorentzian distributed.
The Lorentzian is only used as a weighting function to perform frequency
averaging.
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(a) 53rd nominal mode - 320 Hz

 

 

(b) 53rd perturbed mode - 314 Hz

 

 

(c) 54th nominal mode - 323 Hz

 

 

(d) 54th perturbed mode - 317 Hz

Figure 7.2: Comparison between nominal (left) and perturbed modes (right).

Second strategy

By applying the first approach, the information related to the behavior of the
nominal system tends to get lost with increasing the statistical overlap, and
the statistics are characterized by the mean distance between two successive
eigenfrequencies. As an example consider fig. 7.2. Figures 7.2(a) and 7.2(c)
show the 53rd and 54th nominal mode shapes and eigenfrequencies of a simply
supported plate. When the plate is perturbed with 20 randomly distributed
masses, the corresponding eigenfrequencies move from their nominal positions.
Over the ensemble, the location of the perturbed eigenfrequencies leads to
the determination of the statistics related to the corresponding nominal
eigenfrequencies and successively to an estimate for σ53 and σ54. According
to the first strategy, the obtained σ can be used to tune γ.
The procedure described so far does not take into account the mode shapes
of the corresponding eigenfrequencies and where they move with respect to
their nominal position. Since the frequency averaging is performed on the
nominal response, knowing how much each eigenfrequency moves when the
corresponding mode shape is perturbed may provide indication on how to weigh
its contribution. From fig. 7.2, one may conclude that when the 53rd mode is
perturbed, it can move to the 54th eigenfrequency position, and similarly, the
nominal 54th can become the 53rd in the perturbed configuration. Accordingly,
the statistics differ from the ones only based on the eigenfrequencies.
Based on these consideration, the second proposed strategy attempts to
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associate the perturbed mode shapes to the corresponding nominal ones, and
to evaluate the eigenfrequency statistics accordingly.

Following this idea, after having computed the nominal natural frequencies
and mode shapes, the eigenvalues and eigenvectors of the perturbed systems
are evaluated through MC simulations. For each realization, perturbed mode
shapes are associated to the nominal ones according to the highest Modal
Assurance Criterion (MAC) value [56]. Perturbed eigenvalues are reorganized
as function of the nominal mode shapes, and the statistics of the nominal
natural frequencies are evaluated. Since the standard deviation obtained by
applying this procedure, is highly oscillating, a linear approximation is used to
regularize it and tune γ as explained in the previous strategy.
It is important to underline the conceptual limits of this procedure. At low
frequencies, individual modes dominate the average response of the structure,
and investigating the statistics of perturbed mode shapes can be relatively
easy. As frequency increases, the behavior of the perturbed system becomes
sufficiently random that the knowledge of the nominal mode shapes is no
longer required to determine the average response. Consequently, due to the
complexity of mode shapes, tracking modes becomes difficult and less reliable.

7.2.3 Simply supported plate

In this section, the Lorentzian-weighted frequency averaging is applied to
evaluate the input power into a Kirchhoff plate perturbed by randomly
distributed masses.

Model and numerical methods

The plate under investigation is simply supported of dimensions of 1×0.6 m
and 1 mm thickness. The material is aluminum, Young’s modulus 70 GPa,
density 2700 kg/m3, Poisson ratio 0.3 and hysteretic damping coefficient 0.01.
A harmonic unit force excitation is applied at point (0.7, 0.4)m. The system is
perturbed by adding randomly distributed masses over its surface, for a total
of four different cases consisting of 10, 20, 30 and 50 masses. Each mass is 0.2%
of the total mass of the bare plate. The analyses are performed up to 1 kHz,
in which frequency range the plate under consideration has approximately 185
modes.

Eigenfrequency statistics are estimated through MC simulations consisting of
200 realizations each. Natural frequencies and mode shapes are evaluated by
means of an FE model consisting of 6165 nodes and 6000 quadrilateral shell
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elements of mean size 10 mm. The software Nastran is used to solve the
eigenproblems. On the other hand, to evaluate the narrow band input power,
the WBM is employed with a truncation factor T = 2. The effect of point
masses is included into the WB model by using the same strategy illustrated
in sec. 6.2.1. In fact, if the resonator presents infinite rigidity, it behaves like a
pure point mass, and the force-displacement relation (6.4) becomes mjω2. The
formulation is fully detailed in ref. [208].

Results

The results provided by the two aforementioned strategies for the eigenfre-
quency statistics evaluation are illustrated in fig. 7.3. The thick irregular line
represents the standard deviation evaluated without using mode-tracking. For
all cases, σ increases with decreasing wavelength, until after a certain frequency
further perturbation has negligible influence on the average response. Such a
saturation point shifts towards lower frequencies with increasing perturbation.
The thick regular line represents the analytical approximation, which is based
on eq. (7.8), up to the point when the SOF reaches unity; for increasing
frequencies, the standard deviation is kept constant. In all cases, the σ value
computed by the MC simulation is approximated with reasonable accuracy by
the analytical model.
Thin lines are representative for the statistics evaluated by retrieving nominal
modes in the perturbed configurations. The irregular line indicates the result
obtained from an MC simulation. When frequency is low, the thick and
the thin lines are almost overlapping and perturbed mode shapes present
eigenvalues not far from their nominal position. Contrarily to the previous
strategy, the standard deviation does not level off with increasing frequencies,
and the more the system is perturbed, the steeper the trend is. To approximate
the behavior of the standard deviation a regular fitting over the whole set of
data is performed, and it is represented by the thin regular lines. This allows
regularizing the curves and expressing the γ parameter as a linear function. For
high perturbation levels, the two strategies behave differently from each other.
On the contrary, for a low number of masses, σ evaluated by mode tracking can
be well approximated by the relation (7.8), considered over the whole frequency
range.

Once the standard deviations are approximated, the γ parameter is tuned
accordingly. To evaluate the ensembles, each of the following MC simulation
consists of 50 realizations. Figure 7.4 shows the results when γ is tuned
according to the first approach (thick regular line in fig. 7.3). After the
SOF reaches unity, the approximation of the standard deviation is taken to be
constant. Consequently, the width of the Lorentzian function does not increase
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Figure 7.3: Standard deviation of the eigenvalue distributions evaluated
without tracking nominal modes (thick irregular lines), by tracking nominal
modes (thin irregular lines) and respective approximations (thick and thin
regular lines).
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with frequency and leads to an overestimation of the average response.
In fig. 7.5, the Lorentzian is tuned on the linear approximation of the
standard deviation evaluated by using mode tracking. For all cases there
is a good agreement between MC mean values and Lorentzian-weighted
frequency averages, especially in the higher frequency range, where the previous
approach overpredicts the mean response. Moreover, as frequency increases
the frequency-averaged power tends to the input power into an infinite plate
(dashed line).

7.2.4 Stiffened plates

The aim of the following section is to investigate the applicability of the
Lorentzian-weighted frequency averaging to predict the ensemble behavior of a
structure consisting of multiple components.

Model and numerical methods

The system under investigation is shown in fig. 7.6. The structure is made of
two plates connected through a beam; all the edges of the structure are simply
supported and the excitation is a unit point force located 0.1 m away from one
end of the beam.
The Bernoulli theory is used to model the beam of length 0.6 m and cross-
section 0.01×0.01 m. The material is steel, Young’s modulus 210 GPa, Poisson
ratio 0.3, density 7850 kg/m3 and hysteretic damping loss factor equal to 0.01.
The Kirchhoff theory is applied to model the plate of dimensions 1.2×0.6 m
and 0.75 mm thickness. They are made of aluminum, Young’s modulus 70 GPa,
Poisson ratio 0.3, density 2800 kg/m3 and hysteretic damping loss factor equal
to 0.01.
To evaluate the average response, the structure is perturbed by adding
randomly distributed masses on both plates. A coupled WBM-Rayleigh-Ritz
approach is used to predict the behavior of the system. The former was
used to model the plates with T = 2, while the latter to model the beam,
including 15 modes. Two MC simulations are performed with respectively
30 and 50 additional masses for each plate and consisting of 50 realizations.
Each additional mass is 0.3% of the total mass of the bare plate and each MC
simulation consists of 50 realizations. No perturbation is introduced on the
beam.
Natural frequencies and mode shapes of the bare plates are evaluated by means
of an FE model consisting of 7200 quadrilateral shell elements of mean size 10
mm. The software Nastran is used to solve the eigenproblems and each MC
simulation consists of 200 realizations.
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Figure 7.4: Input power evaluation. Comparison between MC samples (gray
lines), MC average (thin solid lines), Lorentzian frequency average with γ tuned
with the first approach (thick solid lines) and input power to an infinite plate
(thin, dashed lines).
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Figure 7.5: Input power evaluation. Comparison between MC samples (gray
lines), MC average (thin solid lines), Lorentzian frequency average with γ tuned
with the second approach (thick solid lines) and input power to an infinite plate
(thin, dashed lines)
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Figure 7.6: Geometry of the stiffened plates. Dimensions are in [mm] and not
to scale.

Results

Using the strategies described in the previous section and tuning γ by
using eigenfrequency statistics may be very problematic for multi-component
structures. On the one hand, no analytical relation exists to deal with the
approximation of the eigenvalue statistics for coupled systems. On the other
hand, tracking modes for multi-component structures may lead to unreliable
results, especially when the subsystems show different dynamic behaviors.
Alternatively, the width of the Lorentzian can be chosen to encompass a number
of natural frequencies of the most flexible parts. In fig. 7.7, the frequency-
averaged input power is computed by using two different γ parameters, which
are kept constant over the whole frequency range. The first one covers 10 modes
of the bare plate, while the second one encompasses 30 modes. The averaged
response is sensitive to the choice of the shape parameter. For large values of γ,
the peaks of the plates are filtered out and the ones of the beam are flattened.
As a result, the frequency-averaged response is far from the ensemble average.
In this case, the use of band averaging might provide more insightful results,
rather than a narrow band frequency-averaged response.

A second proposal to predict the ensemble average of multi-component systems,
can be made by selectively applying the averaging procedure on subsystems
which present a higher sensitivity to the perturbation.
In the current application, the beam has a modal density lower than the plates,
and it is reasonable to assume that its behavior is less sensitive to variability
over the frequency range under analysis. On the contrary, the behavior of the
plates can be highly altered by the introduction of random masses. Accordingly,
the Lorentzian is used to filter only the response of the plates, while the beam
is treated deterministically.
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Figure 7.7: Mean input power for the case with 50 masses (thin solid line) and
frequency-averaged input power with γ covering 10 (thick solid line) and 30
(thick dashed line) modes of the bare plate.

The procedure to assemble the system of equations is the following,




Ab 〈Cb,p1 〉γb=0,γ1
〈Cb,p2 〉γb=0,γ2

〈Cp1,b〉γ1,γb=0 〈Ap1〉γ1
0

〈Cp2,b〉γ2,γb=0 0 〈Ap2 〉γ2









wb

〈wp1〉
〈wp2〉



 =





f

0
0



 (7.10)

where matrices Ai refer to the i-th system matrix, matrices Cij refer to the
coupling matrices between subsystems i and j, wi refers to the degrees of
freedom of system i and f to the excitation term. b, p1 and p2 refer to the
beam and to the plates, respectively.
When the operator 〈•〉γi

refers to a system matrix, the parameter γi indicates
the width of the Lorentzian. When 〈•〉γi,γj

refers to a coupling matrix, the
parameters γi and γj are used to average out the coupling terms belonging to
the component i and j, respectively. These matrices are evaluated at a complex
frequency corresponding to the pole of Lorentzian in the LHP.

The eigenvalue statistics of the bare, simply supported plates are shown in
fig. 7.8. They are estimated by using both the aforementioned approaches,
confirming the observations of sec. 7.2.3. However, since the strategy based on
mode-tracking led to more accurate predictions, its outcome is linearized and
used to tune γ also for this example. According to this choice, fig. 7.9 shows
the power injected into the beam when the plates are perturbed with 30 and 50
masses, respectively. For both cases, the solution is quite accurate especially in
the mid- and high-frequency ranges, and the peaks of the beam are not filtered
out as was the case in fig. 7.7.

As a final case, the γ parameters of the plates are chosen such that they cover
10 modes of a bare plate. According to the previous approach, this corresponds
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to the situation in which the plates are highly perturbed. As can be seen in fig.
7.10, the power is characterized only by the presence of the beam resonances
and it is in good agreement with the MC average when the randomness highly
influences the response. Since the perturbation does not strongly affect the
low-frequency behavior, there is a larger discrepancy between the MC mean
and the frequency-averaged value.

7.2.5 Additional comments

The objectives of this section are two. The first one is to explore the possibility
of using the Lorentzian-weighted frequency averaging to predict the mean
behavior of an ensemble of systems. The second objective is to gain insight
in how the shape parameter can be correlated to the amount of perturbation
in the system. To this end, two approaches based on the eigenvalue statistics,
have been investigated and applied to simply supported, rectangular plates.
The frequency-averaged power shows a good agreement with the MC mean
for all analyzed cases. However, an extension to more complex cases may
present several difficulties. First of all, evaluating the eigenvalue statistics is
not straightforward and using the mode-tracking strategy may be unreliable in
certain situations. Moreover, their estimation still requires an MC simulation,
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Figure 7.8: Eigenvalue statistics for bare plates perturbed with 30 (top) and
50 (bottom) masses. Standard deviation evaluated with mode tracking (thin
solid lines) and without mode tracking (thick solid lines).
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which is very computationally expensive. A possible way of simplifying the
analysis may be a further development of eq. (7.7), as it may lead to an
approximation of what is obtained by using mode-tracking.

When investigating multi-component structures, accurate results are obtained
by selectively applying the Lorentzian-averaging on the subsystems which are
more sensitive to perturbation. Especially when a wide Lorentzian is used,
there is a very good agreement with the ensemble mean. Such a result may
be explained by anticipating the concepts presented in the next section. When
performing frequency averaging, scattering effects of the reverberant field are
averaged out. Accordingly, only the coherent contribution of the direct field
is evaluated, and the component acts like an energy sink. In the previously
analyzed case, while the beam is vibrating deterministically, part of the energy
is absorbed by the plates. Nevertheless, on the ensemble, the presence of a
random reverberant field in the plates should act like a blocked force on the
beam, as indicated in (2.31) [181]. Such a contribution is proportional to
the modal energy of the plate and is not included in the system of equations
(7.10). However, the average response of the primary variable seems to provide
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Figure 7.9: Comparison between ensemble mean (thin solid line) and frequency-
averaged input power (thick solid line), for plates perturbed with 30 (top) and
50 (bottom) random masses. The γ parameters are tuned according to the
approximation in fig. 7.8.
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Figure 7.10: Comparison between ensemble mean (thin solid line) and
frequency-averaged input power (thick solid line), for plates perturbed with
50 random masses and γ chosen to encompass 10 modes of the bare plate.

a reasonable approximation for the ensemble mean. This conclusion would
suggest to further investigate to which extent the blocked force exerted by the
random reverberant field can be neglected.
For the cases where the approximation holds, the average response could be
predicted just by using a deterministic model, instead of hybrid determin-
istic/statistical ones. Moreover, as it will be shown in the following, for
element-based models, the mesh can be coarsened, allowing a speed up of the
computation. Finally, the smooth features of the response might facilitate
the application of model order reduction techniques, like the use of Padé
approximation [188], which would require a smaller number of matrix inversions
to evaluate the frequency sweep.

As a final conclusion, this section attempts to explore a novel area and to answer
some fundamental questions regarding the use of the Lorentzian-weighting
frequency averaging. However, further research is required to exploit the
underlying ideas at their maximal potential.

7.3 Direct field dynamic stiffness computation

In line with the techniques proposed in the previous chapters, the Lorentzian
function has been used to evaluate frequency-averaged input power. In the
following section, an alternative use of the Lorentzian-weighted frequency
averaging is proposed to compute the direct field dynamic stiffness of a
component at a junction. Such a quantity is very useful in the context of
noise and vibration simulations, as it allows to estimate the power exchanged
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by a system and is widely employed for hybrid approaches and SEA CLF
calculations [181]. The following section also aims at interpreting how the
physics of the problem is artificially altered when moving the frequency of
analysis to the complex plane.

The use of Lorentzian frequency averaging for direct field computation is
introduced in sec. 7.3.1, and applied to a plate in sec. 7.3.2. Advanced
applications are discussed in sec. 7.3.3.

7.3.1 Direct field, artificial damping and Lorentzian-averaging

From a wave perspective, the response of a vibrating system can be represented
as a superposition of a direct and a reverberant field [180],

u = udir + urev. (7.11)

The direct field, udir, is described as the outgoing wavefield associated to
a prescribed boundary condition or excitation, in the case the domain is
unbounded. On the other hand, the reverberant field, urev, consists of all
the waves excluded from the direct field and due to the reflection from the
boundaries.
When an ensemble of nominally identical systems is taken into account, the
direct field is not influenced by the properties of random boundaries, while
the reverberant field is highly sensitive to randomness and may vary a lot.
Moreover, in an ensemble sense, the reverberant field can be reasonably
approximated by a diffuse field created by an infinite number of waves
propagating in all directions with equal probability. Accordingly, the direct
field is the only coherent wavefield in the component. These considerations
lead to the following relation for the direct field,

E(u) = udir, (7.12)

and for the reverberant field
E(urev) = 0, (7.13)

where E(•) denotes the average taken over the ensemble.
Note that u is a primary quantity. When computing quadratic quantities, the
effect of the reverberant field does not vanish, but it has to be taken into
account as follows,

E(|u|2) = E(|udir|2) + E(|urev|2). (7.14)

After having introduced the notion of direct field, consider a generic dynamic
problem expressed in terms of nodal DOFs, u, which are divided in two sets.
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All DOFs which allow the coupling with other components are collected into
the boundary subset, ub. The remaining DOFs are collected into the ui subset,
representing the internal DOFs

u =
[

ub

ui

]

. (7.15)

The equations of motion of the system can be expressed in the form,
[

Dbb Dbi

Dib Dii

] [

ub

ui

]

=
[

fb

fi

]

, (7.16)

where D represents the global (frequency dependent) dynamic stiffness matrix.
If the dynamic stiffness is referred to ub, the dynamic stiffness DB is the Schur
complement of Dii, corresponding to the internal nodes, is

DB = Dbb − DbiD
−1
ii Dib. (7.17)

Taking into account the previous considerations, the direct field dynamic
stiffness can be obtained by averaging the dynamic stiffness matrix over
the ensemble, Ddir = E (DB) [116]. By assuming the equivalence between
ensemble- and frequency-average, the direct field dynamic stiffness can
be computed through a Lorentzian-weighted frequency averaging procedure.
Accordingly, the direct field dynamic stiffness can be computed by evaluating
the dynamic stiffness at a complex frequency, ω0 − iγ.

Alternatively, the direct field dynamic stiffness can be computed by assuming
that the component is heavily damped. In fact, over an ensemble, the variance
of the dynamic stiffness decreases and its value becomes deterministic by highly
increasing the damping in the system [116]. On the contrary, when the damping
is relatively low, waves travel from the excitation points towards the boundaries,
where they are reflected. This contributes to the creation of a reverberant field
within the structure. When the damping is high, waves are damped out before
they can interact with each other to create a reverberant field. Consequently,
the system behaves as if it was infinitely extended, and no reflection comes
from the boundaries. Similarly, when computing the response at a complex
frequency, an artificial damping is introduced in the dynamic stiffness matrix,
supporting the equivalence between the direct field and the Lorentzian-weighted
dynamic stiffness. By recalling the result in ch. 3, evaluating the system at
ω0 − iγ leads to the following dynamic stiffness,

D(ω0 − iγ) = −ω2
0M − γ2M + K + i (ηK + 2γω0M) , (7.18)

where only hysteretic damping is taken into account. The term 2γω0M

indicates the presence of an artificial damping in the system proportional to
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γ. This conclusion confirms the equivalence between computing the direct field
stiffness by means of ensemble averaging and assuming a high level of damping.
Moreover, it confirms why the Lorentzian-weighted frequency-averaged input
power of a finite system, asymptotically converges to the input power of an
infinite structure, when the frequency and γ are high, see fig. 7.5. Nevertheless,
it has to be underlined that the introduction of the parameter γ does not
directly perturb the properties of the system, since the original damping value
of the system is unaltered. Additionally, it allows a better control on the value
of such a fictitious damping, as a function of frequency.

7.3.2 Point dynamic stiffness of plates

For point connections, analytical expressions exist to evaluate the direct
field dynamic stiffness [121]. These assume that the domain is unbounded,
neglecting the possible coherences in the wavefield, due to the presence of
multiple connections. For connections of higher dimensionality, numerical
methods are necessary to evaluate the direct field dynamic stiffness. A very
general way of computing Ddir is with the BEM, allowing also to take into
account possible wavefield coherence between different junctions in the same
component.

In the following example, the direct field dynamic stiffness of a thin plate is
evaluated. The analytical formulation is compared to the Lorentzian-weighted
frequency average dynamic stiffness at a point connection.

The analyzed plate has an area of 1.02 m2, is 3 mm thick and its geometry is
shown in fig. 7.11. The material is aluminum, Young’s modulus 70 GPa, Poisson
ratio 0.3, 2700 kg/m3 and hysteretic damping loss factor equal to 0.01. The
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Figure 7.11: Geometry of the plate.
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results provided by two FEM models are compared in the following. The mesh
in fig. 7.12(a) consists of 408 nodes and 368 quadrilateral shell elements, with a
mesh size of about 56 mm. On the other hand, the mesh in fig. 7.12(b) consists
of 1552 nodes and 1472 quadrilateral shell elements, with a mesh size of about
28 mm. Nastran is used to pre-process the matrices, which are successively
manipulated in Matlab. The plate is simply supported, and the direct field is
computed with respect to the node highlighted in fig. 7.12(a). Such a node can
represent either an excitation point or a deterministic connection to another
system.

By assuming an infinite domain, the direct field dynamic stiffness can be
computed as follows,

Ddir(ω0) = i8ω
√

Dρpd, (7.19)

where D is the flexural rigidity of the plate, ρp its density and d the thickness.
On the other hand, the direct field dynamic stiffness can be computed by
evaluating the Lorentzian-weighted frequency-averaged dynamic stiffness of the
plate at the node of interest. This can be obtained by computing the Schur
complement of the dynamic stiffness corresponding to the internal DOFs, and
can be expressed as follows,

Ddir(ω0) = DB(ω0 − iγ). (7.20)

Figure 7.13 compares the direct field dynamic stiffness obtained by using the
analytical formulation and the proposed approach. For the numerical models,
the γ parameter is chosen such that it encompasses 10 and 30 modes in the
first and the second case, respectively. The number of modes is estimated by
using asymptotic modal density formulations [132].
The refined mesh provides results that in both cases are close to the analytic
curve. When 10 modes are covered, the response presents some fluctuations,
which are reduced by increasing γ. The model based on the coarse mesh

(a) (b)

Figure 7.12: Coarse (a) and refined (b) plate mesh.
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provides a result which improves with increasing the γ parameter. In fact, when
γ is chosen to encompass 10 modes of the system, some prominent fluctuations
are present on the response. This effect might be explained with the additional
artificial damping introduced into the system. When γ is large enough to
encompass 30 modes, the artificial damping is such that waves are damped out
immediately and a refined mesh is not necessary to capture the behavior of the
system. Accordingly, the prediction provided by such a model, is close to the
analytical result.
The possibility of mesh coarsening certainly requires further investigation, as
it may lead to a drastic reduction of the number of elements over the whole
component, or possibly to restricting the refinement only in correspondence of
the connection point.
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Figure 7.13: Point direct field dynamic stiffness for a plate.

7.3.3 Advanced applications

In the previous section, the Lorentzian-weighted frequency averaging is
employed to extract the direct field information from the dynamic stiffness
matrix. This is a very useful piece of information, as it leads to the amount of
energy the system can exchange and can be exploited in the context of hybrid
deterministic/statistical techniques as well as for CLF computation in standard
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SEA. For example, by using the diffuse field reciprocity relation [181], the CLF,
ηij , can be expressed in terms of direct field dynamic stiffness matrices,

ηij =
2

πωnd,i

∑

r

∑

s

Im
{

D
(j)
dir

}

rs

(

D−1
totIm

{

D
(i)
dir

}

D−H
tot

)

rs
, (7.21)

where i and j are two components, and D
(•)
dir is the direct field dynamic stiffness

of the corresponding component. Dtot is the total dynamic stiffness of the
junction, computed as the sum of the direct field dynamic stiffnesses. The
symbol •−H is the Hermitian transpose operator.
In principle, eq. (7.21) can be used for any type of junction, and the direct field
dynamic stiffness matrix can be calculated by applying the aforementioned
strategy.

The proposed approach allows a great flexibility, as Ddir can be evaluated by
manipulating the matrices of a FEM model. No alteration to the numerical
method is required, apart from the introduction of an artificial damping, due
to the computation at a complex frequency. On the other hand, computing the
Schur complement of the matrix corresponding to the internal DOFs requires
several operations, leading to an increased computational effort. In this regard,
the possibility of mesh coarsening could become very advantageous to speed
up the calculation.
Future research could focus on the application of these concepts in the context
of hybrid techniques and pure SEA modeling.

7.4 Use of the Lorentzian function within the Fuzzy
Structure Theory

So far, the Lorentzian has been used as a weighting function for a frequency
integral. The following section proposes its use as a mass-frequency density
function to construct a fuzzy impedance within the FST. Similarly to what was
observed in the previous sections, the unique features of the Lorentzian allow
a straightforward computation of the impedance by using a complex nominal
natural frequency for the fuzzy oscillator.

Soize’s theory is briefly recalled in sec. 7.4.1, and in sec. 7.4.2 the extension by
Pierce is introduced. In sec. 7.4.3, the fuzzy impedance based on the Lorentzian
is illustrated and compared with Pierce’s prototype function. Finally, sec. 7.4.4
presents a short discussion.
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7.4.1 The Fuzzy Structure Theory

The FST was proposed by Soize [25, 185] to tackle large dynamic problems.
The theory is based on the definition of a fuzzy structure as consisting of
a master, primary structure (MS), coupled with several fuzzy substructures
(FSs). The MS is a well-characterized part of the system, usually a stiff part,
i.e. the frame. The FSs represent all the equipment and secondary systems,
of which details are either unknown or not accessible to conventional modeling.
Contrarily to classic deterministic modeling, the FSs are described in terms of
random impedance operators, with the final objective of predicting the effect
of the fuzzy attachments on the modulus and the phase of the response at any
point of the MS.

A probabilistic approach is used to define the impedance operator, which allows
modeling the effects of the FSs on the MS. This leads to the construction of
the FST system of equations,

iω (Zmaster + Zfuzzy) w = f , (7.22)

where Zmaster is the impedance operator of the MS, and Zfuzzy is the
random boundary impedance of the FS. The symbol w represents the random
displacement field of the MS, while f are the external forces applied to the MS.

The FSs behave like weakly damped resonators, and their impedance depends
on four parameters: mass per unit area, rate of internal damping, modal density
and the equivalent coupling factor. The latter allows a distinction between
discrete (type I fuzzy impedance law) and continuous attachments (type II
fuzzy impedance law). Moreover, in the original formulation, Soize also includes
the cut-off frequency, which determines the frequency below which the FSs
present a purely mass-like behavior.
To construct the random boundary operator Zfuzzy, each coefficient has to be
defined in terms of its mean and deviation coefficient. Soize assumes that each
parameter is uniformly distributed over a certain interval, and the operator is
then built through a stochastic linearization process.

Once Zfuzzy is formulated, it can be decomposed into its deterministic mean
and random components, leading to a reformulation of eq. (7.22),

iω (Zdet + Zrand) w = f , (7.23)

where Zdet = Zmaster + E (Zfuzzy), with E (•) the expected value operator.
Equation (7.23) is a random equation and is solved recursively for w in terms
of its mean and higher order moments. For the sake of brevity, the details are
not reported here, but the reader is referred to [159].
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The main attractiveness of the FST is that modeling complex secondary
systems does not introduce any additional unknown with respect to the MS
model, when describing the field in terms of nodal values. This results in a
significant reduction of DOFs for very large structures. However, the fuzzy
impedance coefficients must be known, and, although identification methods
have been developed [159], their determination remains the main hurdle
limiting the applicability of the FST.

7.4.2 Pierce’s FST and prototype functions

Based on Soize’s theory, Pierce proposed an alternative formulation, which
allows reducing the number of unknown parameters and makes the underlying
mathematical formalism simpler [166].
In Pierce’s formulation, the parameters characterizing the oscillators are
governed by the principle of maximum ignorance, for which the number
of attachments, their location, mass, damping and resonance frequency are
unknown. The only known information is the distribution of the FS mass, mF ,
with respect to its natural frequency ωn. Such a function is called prototype
mass-frequency distribution and represents the amount of mass resonating
below a certain frequency ωn. The derivative of mF leads to the prototype
mass-frequency density function, dmF /dωn, which plays a key role in Pierce’s
theory. In fact, the impedance of a FS is constructed by averaging over the
natural frequency the impedance of the corresponding resonator, weighted by
using the mass-frequency density function.
Such a procedure shows that the presence of a FS results in an apparent mass
and damping acting on the master system. This is justified by considering that
the FS consists of several resonating oscillators, of which the resonances are
spread over frequency. Accordingly, they absorb energy from the MS, inducing
an additional apparent damping, and, due to their motion, an additional
apparent mass.

The apparent mass of a fuzzy resonator is computed from the reactance of the
resonator impedance,

mF,appar(ω) =
∫ ∞

0

dmF

dωn

[

ω2
n

(

ω2
n − ω2 + 4ω2ξ2

)

(ω2
n − ω2)2 + (2ξωωn)2

]

dωn, (7.24)

while its apparent damping is computed from the resistance,

RF,appar(ω) =
∫ ∞

0

dmF

dωn

[

2ξω4ωn

(ω2
n − ω2)2 + (2ξωωn)2

]

dωn, (7.25)
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where ξ is the damping ratio of the resonator and ω the angular frequency of
analysis. For the asymptotic limit of small damping, ξ → 0, the apparent mass
can be evaluated as

mF,appar(ω) = Pr
∫ ∞

0

dmF

dωn

ω2
n

ω2
n − ω2

dωn, (7.26)

and the apparent damping as

RF,appar(ω) =
πω2

2
dmF

dωn
, (7.27)

where Pr indicates the principal value of the integral [166]. With respect to
Soize’s original theory, this formulation allows to account for the effects of
attached structures simply by defining the mass-frequency distribution function.
Furthermore, the fuzzy impedance is deterministically determined, simplifying
the recursive solution of eq. (7.23).

In general, the form of the function mF (ωn) is not known, and it is
advantageous to formulate it as dependent on a small number of parameters.
A prototype function was proposed by Pierce [166], with the following
mathematical form,

mF (ωn) = mF (∞)
[

1 − e−ω2
n/2ω2

F,n

]

, (7.28)

where the symbol ωF,n represents the most probable natural frequency of the
FS and corresponds to the frequency at which the mass per frequency reaches
a maximum. The total mass of the FS is indicated by mF (∞). The mass-
frequency density function has the following form,

dmF

dωn
= mF (∞)

ωn

ω2
F,n

e−ω2
n/2ω2

F,n . (7.29)

The behavior of these functions is shown in figs. 7.14 and 7.15 (thin solid line).

Independently from Pierce, Strasberg and Feit [191] also investigated the effects
of several resonators attached on the MS. They studied the resistance and
reactance of a FS, when the mass-frequency distribution function is either given
by a geometric progression or a uniform variable. They also provide a relation
between the resistance induced by the FS and the apparent dissipation in the
MS.
More recently, Friis and Ohlrich [65] used a Gaussian function as a mass-
frequency distribution to model FSs attached to a beam.

In general, in Pierce’s FST a smoothed version of the mass-frequency
distribution is required. Such a smoothing effect can be seen as a sum of modes
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Figure 7.14: Prototype mass-frequency distribution function for ωF,n = 1 rad/s.
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Figure 7.15: Prototype mass-frequency density function for ωF,n = 1 rad/s.

which are closely spaced and which create sufficient overlap. In the following
section, the Lorentzian is proposed as a mass-frequency density function

7.4.3 Lorentzian mass-frequency density function

Suppose the mass-frequency distribution function has the following form,

m
(l)
F (ωn) = mF (∞)

[

1
2

+
1
π

arctan
(

ωn − ωF,n

γ

)]

, (7.30)

where the parameter γ determines the amount of mass distributed around the
natural frequency ωF,n. The superscript l indicates the similarity with the
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cumulative distribution of the Lorentzian, eq. (7.2). The features of function
(7.30) are illustrated in fig. 7.14 for different values of γ. With respect to
Pierce’s distribution, function m

(l)
F is non-zero for zero frequency, but when

γ ≪ ωF,n, the mass distributed over negative natural frequencies is very small.
However, by tuning γ parameter, it is possible to reduce this effect. Note also
that the mass is distributed differently compared to Pierce’s function.

A prototype function similar to m
(l)
F was proposed by Pierce in ref. [165],

although it was never developed in detail. In ref. [165], γ is replaced by ξωn,
meaning that the mass is mainly distributed in the half-power bandwidth of
the nominal resonator. However, the use of eq. (7.30) allows generalizing such
a formulation and gives the possibility of tuning the γ according to the fuzzy
distribution.

By deriving expression (7.30) with respect to the natural frequency, it is possible
to compute the mass-frequency density function, which in this case coincides
with a Lorentzian,

dmF

dωn
=

m
(l)
F (∞)
πγ

1

1 +
(

ωn−ωF,n

γ

)2 . (7.31)

Figure 7.15 allows comparing the Lorentzian with Pierce’s prototype density.
The latter covers a wide range of frequencies, while the effect is more localized
for the Lorentzian. When γ is small, the mass density is more concentrated
around the natural frequency and vice versa. In all cases, the Lorentzian
presents a decay which is steeper than Pierce’s prototype.

In order to estimate the apparent mass and damping of a FS described by a
Lorentzian prototype function, the impedance of a resonator is computed as
follows,

Z
(l)
F (ω) =

∫ +∞

−∞

mF (∞)
πγ

1

1 +
(

ωn−ωF,n

γ

)2

[

iω
(

ω2
n + 2iωnωξ

)

ω2
n − ω2 + 2iωnωξ

]

dωn. (7.32)

To simplify the calculation, the interval of integration is unbounded in both
directions, unlike in eq. (7.24) and (7.25). However, the weighting (or density)
function is commonly very small for negative frequencies, and their contribution
is assumed to be negligible.

Lorentzian-based fuzzy impedance

Integral (7.32) can be computed using the residue theorem, by applying a
procedure analogous to the one presented in ch. 3. In this case, the variable of
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integration is the natural frequency ωn, and over the natural frequency complex
plane, the poles of the impedance are located at,

zn,1,2 = −iωξ ± ω
√

1 − ξ2. (7.33)

Note that ω is the frequency of analysis, and the poles are located in the LHP.
On the other hand, the Lorentzian has two poles located at

z1,2 = ωF,n ± iγ, (7.34)

one in the lower and one in the upper half of the complex plane. According to
the procedure in ch. 3, the contour integration can be closed in the UHP, over
which the integrand vanishes. As a result,

Z
(l)
F (ω) = Z(ω; ωF,n + iγ), (7.35)

where Z is the impedance of the resonator, and the term inside the brackets
of the right-hand side indicates that the impedance is evaluated at frequency
ω, and its resonance frequency is complex, with imaginary part equal to the
shape parameter.
The apparent mass resulting on the MS can be evaluated by considering the
reactance of the impedance (7.35), while the additional damping is provided
by its resistance. With respect to expressions (7.26) and (7.27), result (7.35)
allows a direct use of the fuzzy impedance, without having to compute an
additional principal value, and without introducing asymptotic approximations.
Moreover, expression (7.35) gives the possibility to tune the γ parameter.

According to eq. (7.35), the fuzzy impedance is equal to the impedance of the
nominal resonator with a complex natural frequency ω′

F,n in the form,

ω′
F,n = ωF,n + iγ. (7.36)

The introduction of an imaginary part does not lend itself to a straightforward
interpretation. To gain further insight, the stiffness and the mass of the
resonator can be altered such that they lead to a complex resonance frequency,
ω′

F,n.

Assume that the variation of natural frequency is generated by a variation
of the stiffness, which has a real and imaginary part, kr and ki, respectively.
Accordingly, the shift of the natural frequency can be written as

√

kr + iki

mF (∞)
=

√

kF,n

mF (∞)
+ iγ, (7.37)

where kF,n represents the stiffness of the nominal resonator. Supposing that
mF (∞) is positive and real, the real part of the complex stiffness can be
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expressed as
kr = kF,n − γ2mF (∞), (7.38)

which highlights a softening effect proportional to the mass, and that γ should
not exceed the natural frequency ωF,n, to respect the positiveness of the stiffness
kr. On the other hand, the imaginary part of the stiffness is expressed as

ki = 2γ
√

mF (∞)kn, (7.39)

which acts like additional damping to the resonator.
As a result of the aforementioned procedure, the averaged impedance is equal to
the nominal impedance, with lower stiffness and higher damping. Equivalently,
the nature of the complex natural frequency can be considered as a combined
effect of an altered mass and additional imaginary stiffness. The new mass
is supposed to be real, to comply with its physical interpretation, while the
stiffness is complex, with its real part equal to the nominal stiffness of the
resonator. These considerations lead to the following relation,

√

kF,n + iki

mr
=

√

kF,n

mF (∞)
+ iγ. (7.40)

This allows determining the mass,

mr =
mF (∞)kF,n

kF,n − γ2mF (∞)
(7.41)

and imaginary part of the stiffness

ki =
2γkF,n

kF,n − γ2mF (∞)

√

kF,nmF (∞). (7.42)

Note that when the γ parameter is taken equal to 0, the modified mass becomes
equal to the original mass, while the imaginary stiffness is equal to zero.

Comparison with Pierce’s prototype

Now the focus is on the comparison between the apparent mass and damping
induced on the MS generated by Pierce’s and the Lorentzian prototypes. Figure
7.16 presents the normalized apparent mass as a function of frequency, for the
two prototypes. In the limit of zero frequency, the apparent added mass is
equal to the total mass of the attachment, as if the fuzzy and the MS were
rigidly connected. With increasing frequency, the attachments move in-phase
with the MS, and since their displacements are larger than their attachment
points, the kinetic energy is higher than in the case they were rigidly connected.
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Figure 7.16: Apparent normalized mass as function of frequency for ωF,n = 1
rad/s.
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Figure 7.17: Apparent normalized damping as function of frequency for ωF,n =
1 rad/s.

This justifies why the apparent mass is actually larger than the physical mass.
For Pierce’s prototype, the apparent mass drops below one when the driving
frequency is 86.5% the natural frequency and assumes negative values for
frequencies larger than 164% the natural frequency. Such an apparent mass
subtraction is due to the driving frequency being higher than the natural one.
This causes out-of-phase motion between the MS and the attachments, which
exert forces directed like the MS acceleration.
The behavior of the Lorentzian-based system fuzzy leads to similar conclusions.
When the width of the Lorentzian is small, the apparent mass addition is more
pronounced, and it quickly drops below zero for frequencies higher than the
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natural one. The transition from mass addition to mass subtraction happens
very close to the natural frequency, in agreement with the behavior of the
reactance of a damped resonator. On the other hand, when γ is larger, the
effect is spread over a broader frequency range, and both mass addition and
subtraction effects are reduced.

Regarding the apparent damping, the model suggested by Pierce presents
pronounced damping effects above the natural frequency, as shown in fig. 7.17.
This might be due to the fact that a large part of the mass is distributed in
that region, with a consequent large energy flow from the MS to the FS. On
the other hand, the Lorentzian function produces a localized apparent damping
around the natural frequency and allows more control on the distribution of
the absorption. When γ is small, the apparent damping is very high around
the natural frequency, with an inversely proportional decay rate. Note that the
decay rate is less steep than for Pierce’s prototype function.

7.4.4 Additional comments

Complex vibro-acoustic problems often present substructures which are difficult
to treat using conventional modeling and induce an apparent increased damping
on the MS, as proven by experimental results. To tackle this class of problems,
Soize developed the FST, which was successively extended and simplified by
Pierce with the introduction of the concept of prototype function.

The aim of this section is to propose the Lorentzian as a prototype function
within the FST. Compared to the functions proposed in the past, the Lorentzian
allows a straightforward computation of the FS impedance, without involving
numerical integration. Moreover, it gives the freedom of choosing the width
according to the problem.
A possible application can be in line with the one proposed in ref. [175], where
the apparent mass and damping are spread over a plate. This might be the
case when panels with electronic equipments are investigated. The equipment
is composed by several subcomponents which behave like fuzzy substructures.
Alternatively, one could concentrate the effect of a fuzzy attachment at a nodal
position of a FEM model, simulating the effects of a connection to a component
with a higher modal density.

Although the idea of reducing the structure to its primary components still
preserves its potential and inspired successive works, key questions remain open
almost 20 years after Pierce’s FST appeared. The main point which is still open
is how to estimate and calibrate the distribution on the secondary structures,
such that it can be used during the design process.
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7.5 Conclusion

The Lorentzian function corresponds to the square magnitude of a Butterworth
filter of order one. Accordingly, performing only one calculation in the complex
frequency domain allows computing an averaged value over a broad frequency
range. However, due to its bell-shape, the Lorentzian is not suitable to
approximate band-values, and its use in the context of noise and vibration
simulations is far from obvious. For this reason, the nature of this chapter is
purely exploratory, and attempts to answer fundamental questions regarding
the use of the Lorentzian function for weighted average computations. Each of
the proposed applications provides interesting perspectives and challenges for
future research. .

In sec. 7.2, the Lorentzian is used to predict the ensemble average input power
into systems with uncertain properties. To this end, the shape of the Lorentzian,
determined by the γ parameter, is chosen according to the natural frequency
statistics of the perturbed system, and two tuning strategies are investigated.
The first one relies on the eigenvalue statistics approximated by a first order
perturbation analysis. The second one attempts at evaluating the statistics by
tracking nominal modes in the perturbed configurations of an ensemble. A good
agreement between frequency and ensemble average input power is verified for
plates perturbed by randomly distributed masses, when γ is tuned according
to the second strategy.
The possibility of extending the ensemble mean prediction to multi-component
systems is also investigated. A good level of accuracy is obtained by
applying the Lorentzian averaging only on the components which present higher
sensitivity to perturbation.

In sec. 7.3, the Lorentzian-weighted frequency averaging is used to compute
the direct field dynamic stiffness of a component. Such a quantity can be
calculated by averaging the dynamic stiffness over an ensemble, or assuming
that the component is heavily damped. In both cases, this can be addressed
by evaluating the Lorentzian-weighted frequency averaging: assuming the
equivalence between ensemble mean, in the former, and observing that a
computation at a complex frequency introduces artificial damping in the
system.

Finally, in sec. 7.4.1, the Lorentzian is proposed as a mass-frequency
distribution function within the FST. With respect to other prototype
functions, the Lorentzian allows a straightforward evaluation of the fuzzy
impedance and gives the possibility to vary the mass distribution, by tuning of
the γ parameter.



Chapter 8

Conclusions and future
research

The research presented in this dissertation aims at improving the computational
efficiency of numerical strategies in the field of noise and vibration. In
particular, the key innovative contribution is the development of efficient
schemes to perform frequency averaging procedures. These require the solution
of highly oscillatory integrals, which are widely applied in computational
analysis.
According to classic strategies, weighted frequency integrals are evaluated by
using quadrature techniques. However, due to the oscillatory nature of dynamic
system descriptors, a large amount of sampling points might be needed to
achieve accurate integrations, with a subsequent increase of computational
effort.
In this dissertation, the residue theorem is employed to evaluate weighted
frequency integrals. As a result, refined quadrature schemes are replaced by
a few computations at complex frequencies, leading to more accurate integral
estimates at a reduced computational cost.

This final chapter consists of two main sections. An overview of the thesis
is given in sec. 8.1, which summarizes the main achievements. Section 8.2
suggests a number of interesting topics for future research.
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8.1 Overview and main achievements

With respect to the state-of-the-art in the field of numerical vibro-acoustics,
the present research enhances the computational performance of classic
deterministic modeling. The major novel contribution lies in the introduction
of the use of the residue theorem to compute weighted frequency integrals, with
the integrand being a generic descriptor of the dynamic system. Such weighted
integrals are used to estimate frequency-averaged quantities, although they can
be easily employed to evaluate oscillatory integrals more in general.

The proposed techniques present four distinguishing characteristics:

• Computational efficiency. With respect to classic quadrature in-
tegration, the proposed techniques allow a significant reduction of
computational resources. In fact, a refined quadrature integration is
replaced by a few computations at complex frequencies, leading to a
significant increase in computational efficiency.

• Accuracy. The accuracy of quadrature schemes is strictly dependent
on the oscillatory behavior of the integrand function. Especially when
resonance peaks are sharp, a refinement of the integration might be
necessary. The residue theorem allows evaluating weighted integrals with
an accuracy which does not strictly depend on the oscillatory behavior of
the integrand function and is independent of the width of the frequency
band.

• Wide range of applicability. The proposed integration strategies
can be used in combination with any deterministic technique, as long
as the requirements for applying the residue theorem are respected. No
geometrical restrictions are imposed, and the strategy can be potentially
extended to all fields where oscillatory integrals are of interest.

• Ease of implementation. The proposed strategies can be easily
implemented by replacing the real frequency of analysis with a complex
one. No further modification to the numerical approach is required.

The potential of these novel strategies can be exploited for different applications
and serve several purposes. In this dissertation, the focus is on the computation
of two types of frequency averages. The first one is the band-averaged power
injected into a vibrating system by a source, for which a rectangular window
is used as a weighting function. In the second one, the frequency averaging
procedure is performed by using a Lorentzian as a weighting function. Due to
its advantageous mathematical features, the Lorentzian allows straightforward
average computations. Its use is explored in different ways in this dissertation.
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8.1.1 Efficient band-average input power computations

The strategies developed in ch. 3 and 4 allow an efficient and accurate estimate
of the band input power. These are further benchmarked in ch. 5 and employed
to enhance optimization procedures in ch. 6.
The following sections report a global overview of the chapters, underlying the
main findings.

Butterworth-weighted frequency averaging

The Butterworth-weighted frequency averaging procedure is presented in ch. 3
and constitutes the main building block of this research track.

To compute the band-averaged power injected by a force into a vibrating system,
the rectangular window is approximated by using the square magnitude of a
Butterworth filter. Applying the residue theorem, the integral over the whole
real frequency axis is replaced by a weighted sum of system responses computed
at complex frequencies. These complex frequencies correspond to the poles of
the Butterworth filter lying in the lower half of the complex frequency plane.

This procedure leads to an exact evaluation when the poles of the system are
confined to the upper half of the complex frequency plane. Such a condition
is not satisfied when the damping mechanism is modeled as hysteretic, and
system poles are located in the third quadrant of the complex plane. However,
the error made by neglecting these poles is proven to be negligible, and the
Butterworth-weighted frequency average can still be accurately evaluated by
computing the response at only the filter poles, lying in the LHP. An analytical
expression is developed to prove that the aforementioned error can be written
as a bounded series and is negligible.

The proposed approach is benchmarked on a simply supported and on a
stiffened plate, both modeled with hysteretic damping. Although system poles
are present in the LHP, their influence is shown to be negligible. The major
source of error is the approximation of a rectangular window by using the square
magnitude of a Butterworth filter and can be easily controlled by increasing
the order of the filter. The examples prove the effectiveness of the approach,
both in terms of accuracy and solving time.
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Use of classic quadrature in the complex plane

In ch. 4, the Butterworth-weighted frequency averaging technique is generalized,
and further insight and improvements are presented for input power computa-
tion.

An ideal rectangular window is used to weigh the integral and instead of
evaluating the band-average over an interval of real frequencies, the integration
path is moved to the complex plane, where the input mobility shows a smoother
behavior. Over the new contour, classic quadrature schemes can be used with
a reduced number of integration points, leading to a significant reduction of the
computation time and to a higher level of accuracy compared to quadrature
performed over the real axis. Such a procedure is a generalization of the
Butterworth-weighted frequency averaging, and it is shown that the latter
corresponds to the use of the midpoint rule over a semi-circle in the complex
plane.

Numerical examples allow comparing different contours (semi-circle and semi-
ellipse) and quadratures (midpoint, Gaussian, Lobatto and Clenshaw-Curtis),
including adaptive integration schemes (Gauss-Kronrod-Patterson) to provide
convergence information. In addition, the connection between the use of
quadrature rules in the complex plane and weighting functions on real
frequencies is considered. It is shown that integration schemes in the complex
plane lead to the definition of weighting functions resembling the features of a
rectangular window.

Additional application examples are presented in ch. 5. The first case consists
of a suspension shock-tower excited by a point force. Its geometry has a
higher complexity compared to cases presented in the previous chapters. As a
final example, the band-averaged input power is computed for an acoustic car
cavity, excited through the firewall and with frequency dependent admittance
boundary conditions. For both cases, the use of the residue theorem for band-
integration is confirmed to be a very efficient alternative to classic quadrature.

Optimization over frequency bands

When it comes to the improvement of the vibrational behavior of a structure,
a robust design which maximizes the performance over a frequency band,
is often preferred. Nevertheless, using classic quadrature techniques may
seriously slow down the optimization process, and applying the residue theorem
can significantly enhance the computation. In this perspective, ch. 6 shows
the potential of the proposed techniques within the context of structural
optimization.
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In the analyzed application cases, the properties and location of DVAs are
chosen as design variables to minimize the average power injected into a baffled
plate. This leads to an indirect reduction of the radiated acoustic power and
global vibration over the band of interest. The dynamic behavior of the system
is simulated by using the WBM, while GAs are used as optimization tools.
Results show the large computational saving with respect to classic quadrature-
based optimization procedures, both for single- and multi-band minimization.
Furthermore, the optimal design is proven to be robust against DVA parameter
perturbation.

8.1.2 Lorentzian-weighted frequency averaging

The square magnitude of a Butterworth filter of order one corresponds
to a Lorentzian function. Accordingly, computing the Lorentzian-weighted
frequency average only requires the frequency of analysis to be shifted to a
complex value, of which the imaginary part is equal to the shape parameter
of the Lorentzian. Due to its bell-shape, the Lorentzian cannot properly
represent the features of a rectangular window, and its application is not
as straightforward as in the case of band-averaging. In ch. 7, three possible
applications are investigated, as summarized in the following.

Prediction of the ensemble mean input power

Under the assumption of ergodicity, the mean response of an ensemble of
systems can be estimated by averaging the nominal response over the frequency.
Accordingly, the research described in sec. 7.2 investigates the possibility of
using the Lorentzian-weighted frequency average to represent the mean input
power for an ensemble of structures. To this end, the Lorentzian shape
parameter is chosen according to the natural frequency statistics of the system
under investigation. Such a procedure allows weighing the response of which
eigenfrequency positions are perturbed.
The strategy is applied for the prediction of the ensemble power injected
into plates perturbed with random masses, showing good agreement with MC
simulation results. The case of a multi-component system is also analyzed, and
the ensemble mean is predicted with good accuracy by selectively performing
the Lorentzian averaging only on the perturbed components.
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Computation of the direct field dynamic stiffness

When an ensemble of systems is considered, the computation of the direct
field dynamic stiffness can be performed by evaluating the ensemble average
dynamic stiffness, or equivalently assuming the presence of a high level of
damping. As discussed in sec. 7.3, the dynamic stiffness can also be evaluated
by computing its Lorentzian-weighted frequency average. The procedure only
requires analyzing the system at a complex frequency instead of a real one.
Such a change can be interpreted as the introduction of additional apparent
damping to the system.
This procedure does not require the system properties to be altered and
provides a very general way of computing the direct field dynamic stiffness by
means of deterministic techniques, such as FEM. The result can be exploited
in the context of hybrid approaches, or for CLF computation.

Mass-frequency density function in the Fuzzy Structure Theory

The FST allows handling a complex structure by reducing its DOFs to the
ones of the master, primary structure. All secondary structures and attached
equipment are modeled as “fuzzy” oscillators. In Pierce’s version of the FST
[166], fuzzy structures are defined by a function which describes the distribution
of mass with respect to the natural frequency of the oscillator. In sec. 7.4, the
Lorentzian function is proposed as a mass-frequency density function for the
fuzzy attachments. By using the Lorentzian-weighted frequency integration,
the impedance of the fuzzy structure is computed by taking into account
a complex resonance frequency instead of a real one. Similarly to Pierce’s
formulation, this leads to an apparent mass and damping on the master
structure. Nevertheless, the Lorentzian allows a direct control on the mass
distribution through the choice of the shape parameter.

8.2 Future research topics

The use of the residue theorem to evaluate weighted frequency integrals, is
novel in the field of structural dynamics. The presented research attempts to
cover some fundamental issues regarding the applicability of such techniques.
However, research can still be extended in several directions towards novel
areas.
The following section collects some ideas to extend the present work.
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Weighting functions and quadrature rules The application of quadrature
rules over paths in the complex plane has led to the formulation of families
of weighting functions, of which the ability to resemble an ideal rectangular
window is dependent on the accuracy of the scheme and on the chosen contour.
Investigating the properties of these weighting functions might be a first step
towards an optimized use of quadrature schemes in the complex plane. Finally,
as the square magnitude of a Butterworth filter has been proven to be connected
to the use of the midpoint rule over a semi-circle in the complex frequency plane,
it would be interesting to investigate whether a similar relation exists for other
well-known filters, i.e. Chebyshev filters.

Solution of weighted integrals in other domains The use of the residue
theorem is particularly advantageous to integrate the response of second-order
linear systems, due to the fact that the integrand becomes much smoother
in the complex plane. Future research could extend these concepts to other
fields of engineering, where there is a need for fast computations of weighted
integrals.

Solution of highly oscillatory integrals in other domains The use of the
residue theorem is particularly advantageous to integrate the response of
vibrating systems due to the fact that the integrand becomes much smoother
in the complex frequency plane. However, the concepts presented in this
manuscripts can be easily extended for the solution of oscillatory integrals in
other fields of computational analysis, i.e. optics, quantum chemistry, image
processing, electromagnetism, etc. Additionally, the proposed methodologies
can be compared in terms of accuracy and robustness to other well-established
techniques to estimate highly oscillatory integrals (sec. 2.3).

Application to heavily damped and unbounded problems The main limita-
tion to the use of the residue theorem for band integration is the impossibility
to compute averaged quadratic quantities. As their poles are spread all over
the complex plane, they might be located inside the contour of integration,
highly reducing the efficiency of the approach. In general, this is the case for
bounded, lightly damped problems, such as finite plates and acoustic enclosures.
Nevertheless, for heavily damped or unbounded problems, system poles might
be far away from the real axis. This condition would allow extending the use
of the residue theorem to averaged quadratic quantities.
A case of particular interest is the exterior acoustic problem. In fact, the
presence of the Sommerfeld condition would suggest that poles naturally move
away from the real axis. However, the effects of the coupling with a vibrating
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structure and the presence of local resonances in the fluid have to be carefully
considered.
With regard to structure-fluid coupling, a distinction should be made. When
the problem is uncoupled, the structural vibration can be approximated by
using, for example, rational functions, leading to a form which may allow
the efficient use of the residue theorem. For coupled vibro-acoustic problems,
system poles are unknown, limiting the efficient exploitation of the proposed
techniques. However, there is no literature investigating the position of system
poles for exterior unbounded problems, and, as such, this could be a topic of
future research.
It is important to consider possible drawbacks of the numerical technique used
to model the problem. For example, the BEM has a non-unique solution for
exterior problems (with closed geometries). Consequently, the exterior solution
presents fictitious resonances, corresponding to system poles possibly located
close to the real axis. Although some approaches exist to mitigate this problem,
the impact they have on the position of the system poles is not clear. This might
be another open question for future research.

Lorentzian-weighted frequency averaging to predict the ensemble behavior
Approximating the behavior of an ensemble of systems by using frequency
averaging procedures is very attractive from a computational point of view.
A further gain can be achieved by exploiting the features of the Lorentzian
function, which allows computing the average by adding an imaginary part to
the real frequency of analysis. Future research could focus on the validity of
the ergodic assumption and on the tuning of the width of the Lorentzian for
the cases not explored in this manuscript.
The computation of the direct field dynamic stiffness is another application
area for the Lorentzian-weighted averaging. Current investigations are proving
the potential of the approach to compute CLFs. Moreover, due to the apparent
damping introduced in the system, the use of a coarser mesh does not seem
to affect the accuracy of the result. A complete understanding of the limits of
this procedure is still missing.
A final topic of high interest for future research might be the investigation of
the use of the Lorentzian Orthogonal Ensemble (LOE). It is observed in the
literature that the LOE shows convergence towards the GOE [19].

Use of the Lorentzian within the SBEM The Stochastic BEM [214] is a
BE technique which allows taking into account the effects of given geometrical
variabilities on the system response. Due to the introduction of perturbations
on the element positions, integrals are solved in an average sense. However,
since both the position of the source and the receiver element are described in
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a probabilistic way, integrating the Green’s function is computationally very
expensive, as many Gauss points are required. A possible step forward to speed
up the integration is to use the Lorentzian as a probability distribution function.
The use of the residue theorem might lead to an integral which only requires
the integration of Green’s functions evaluated at a point in the complex space.





Appendix A

The Wave Based Method

The WBM is a deterministic technique belonging to the family of Trefftz
methods [201]. Unlike element-based techniques, the domain is partitioned
into a small number of convex subdomains. The field variable is not described
by low-order polynomial shape functions, but is expanded in terms of wave
functions which a priori satisfy the governing partial differential equation.
This guarantees a higher convergence rate compared to classic element-based
techniques.

The development of the WBM started about 15 years ago, when Desmet
proposed it for the solution of bounded acoustic, structural and coupled vibro-
acoustic problems [49]. Successively, the application area has been extended
to unbounded acoustics [11], assemblies of flat shells [205], and poro-elastic
modeling [47]. Moreover, coupled approaches allow increasing the flexibility of
the method. The hybrid FE/WBM [167] allows handling geometrically complex
domains. The Multi-level WBM allows to efficiently take into account the
presence of scatterers and inclusions in the domain [202]. Recently, a coupled
BE/WBM has been developed for the inclusion of geometrically complex
scatterers [6]. Finally, the hybrid WBM/SEA has been developed to deal with
statistical/deterministic systems [208].

The following appendix is dedicated to the description of the WBM. In sec.
A.1, the basic WB formulation is provided. The differences between classic
FE and WB modeling are described in sec. A.2. Finally, in sec. A.3 and A.4,
the formulations for 3D bounded acoustic problems and bending vibration of
simply supported plates are presented, respectively.
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A.1 The WB modeling

Consider a generic steady-state problem governed by the differential equation,

L [w(x)] = b(x) in Ω, (A.1)

where L is a linear differential operator defined over the domain Ω with
boundary ∂Ω. w(x) is a scalar, or a vector, field variable, and b is an external
loading defined over the domain Ω. Suppose that the boundary ∂Ω is split into
nbound non-overlapping parts, ∂Ω =

⋃

i ∂Ωi. Over each partition, boundary
conditions are applied,

Bi [w(x)] = B̄i(x) on ∂Ωi, (A.2)

with Bi [•] a boundary differential operator, and B̄i the prescribed boundary
field. Over each boundary a generalized residual can also be defined as

Ri(x) = Bi [w(x)] − B̄i(x). (A.3)

Provided that the governing differential equation (A.1) can be cast into a
number of Helmholtz equations, the WB modeling procedure consists of four
main steps:

• Partitioning into convex subdomains;

• Field variable expansion;

• Construction of the system of equations;

• Solution of the system of equations.

Each of these steps is detailed in the following sections.

A.1.1 Partitioning into subdomains

When dealing with bounded problems, a sufficient condition to assure the
convergence of the solution, is the convexity of the domain [49]. If the
problem geometry is non-convex, the domain Ω can be divided into non-
overlapping convex subdomains, Ω(α). If the domain is unbounded, the problem
is decomposed into a bounded region, which surrounds the model, and an
unbounded one. The truncation surface is generally taken as a sphere or a
circle [11].
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Continuity conditions are imposed at the interface I of neighboring subdomains
α and β,

B(α,β)
I

(

w(α)(x), w(β)(x)
)

= 0, on ∂Ω(α,β)
I , (A.4)

where B(α,β)
I represents a generalized boundary differential operator.

A.1.2 Field variable expansion

Each component of the field variable w over the subdomain Ω(α) is approxi-
mated by the following expansion,

w
(α)
j (x) ≈ ŵ

(α)
j (x) = Ψ

(α)
j (x) · c

(α)
j + ŵ

(α)
b,j (x), (A.5)

where Ψ
(α)
j is a vector containing the wave functions evaluated at point x,

and c
(α)
j is a vector containing the wave contribution factors. Finally, ŵ

(α)
b,j

is the particular solution to the differential equation. The vectors Ψ and c

have dimension n
(α)
j . The wave functions satisfy the governing differential

equation and are selected based on the dimensions of the prism (or rectangle)
circumscribing the physical domain of analysis, also called bounding box
and illustrated in fig. 5.12. A first set of functions is chosen such that an
integer number of half wavelengths fits into the corresponding dimension of the
bounding box. The wavenumbers of the other wave functions are chosen to
satisfy the dispersion relation,

∑

i

k2
i = k2, (A.6)

where the index i sums up to 2 for 2D problems and to 3 for 3D.
The choice of the wave functions represents the distinctive characteristics of the
WBM with respect to other indirect Trefftz approaches. In case the domain is
unbounded, a set of wave functions is chosen such that it satisfies the governing
differential equation and the Sommerfeld condition at infinity.
The number of wave functions to include in the expansion (A.5) can be infinite,
in principle. In practice a frequency dependent truncation rule is applied to take
into account only a finite number of terms, such that the maximum wavenumber
component is larger than T times the physical wavenumber, where T is a user-
defined truncation parameter, usually ranging from 1 to 6 [208].

A.1.3 Construction of the system of equations

Boundary conditions and subdomain continuity are enforced through a
Galerkin weighted residual formulation. For each subdomain, they are
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orthogonalized with respect to a test function w̃ expanded using the same
wave functions as in the field variable expansion. The solution can be found by
solving the following integral equation,

∑

α

∑

i

∫

∂Ω
(α)
i

w̃
(α)
i (x)

(

Bi

[

w(α)(x)
]

− B̄i(x)
)

d∂Ω (A.7)

+
∑

α

∑

β 6=α

∑

i

∫

∂Ω
(α,β)

I

w̃
(α)
i (x)B(α,β)

I

[

w(α)(x), w(β)(x)
]

d∂Ω = 0.

Since the wave functions can be highly oscillating functions, accurate quadra-
ture schemes are needed to compute the boundary integrals. In the current
implementation, the Gaussian quadrature is implemented. Typically 12
integration points per wavelength are sufficient to provide accurate estimates
[208].
Since the test function is expanded in terms of the wave functions, eq. (A.7)
leads to a system of equations,

Ac = f , (A.8)

of which the system matrix A is complex, fully populated and frequency
dependent.

A.1.4 Solution and post-processing

The system of equations is solved for the wave function contribution factors. In
the post-processing part, the wave field is reconstructed by means of a weighted
sum of wave functions, evaluated at the target point. Derived quantities can
be obtained by analytic derivation of wave function expressions, without loss
of accuracy.

A.2 Characteristics of WB modeling

The WB modeling philosophy is different compared to classic FEM. This section
is dedicated to briefly compare the two worlds.

Problem discretization According to FE modeling, the problem domain is
decomposed into a number of non-overlapping small elements, over which the
field variable is described by means of low-order polynomial shape functions.
The accuracy of the solution increases with decreasing size of the elements,
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which are able to capture the oscillating behavior of the wavefield. On the
contrary, discretization is not required in WB modeling, for which the domain
is divided into a small number of large (convex) subdomains.

Geometrical flexibility The ability of representing complex geometries is one
of the main strength of FE modeling. Decreasing the size of the elements allows
capturing complex geometrical details. On the other hand, when the number
of WB subdomains increases, to represent a complex domain, the number of
interfaces increases as well, with a consequent impact on the computational
cost of the integration. For this reason, classic WB modeling performs at best
when applied to problems with moderate geometrical complexity. Nevertheless,
hybrid and Multi-level approaches have been developed to extend the range of
applicability to more complex geometries.

Degrees of freedom In FE modeling the DOFs are the field variable at
the nodal points, and the field is represented in terms of shape functions.
In fact, one of the main drawbacks in FEM is the loss of accuracy when
computing derived quantities, which are evaluated based on the nodal values.
On the other hand, when a wave formulation is adopted, the DOFs are the
contribution factors for each corresponding wave function. Derived quantities
can be analytically computed from the wave functions, without loss of accuracy.

System matrix properties A relevant advantage of the FEM is the structure
of the matrices. In fact they are sparsely populated, symmetric and generally
real and frequency independent. Depending on the application, the size of a FE
matrix can be very large, especially when moving towards higher frequencies,
or when 3D acoustic problems are analyzed. WB matrices are complex, fully
populated and frequency dependent. Moreover, due to the oscillatory nature
of the wave functions, the matrices may suffer from ill-conditioning. However,
due to the high convergence rate, WB matrices are generally much smaller than
FEM.

Computational performance Matrix building and solution are the most
computationally expensive phases when processing a numerical problem. For
FEM, the former phase is relatively fast, as it requires the integration of low-
order polynomial shape functions. On the other hand, the highly oscillating
wave functions require a relatively large number of integration points to
compute the boundary integrals. Concerning the processing part, the form of
FEM matrices highly facilitates the solution of the system of equations, which
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is slowed down by the size of the problem. On the contrary, the solution of a
complex system of equations is relatively more expensive, but due to the small
size of the matrix, the WBM can highly outperform FE modeling [208].

A.3 3D bounded acoustic problem

Suppose Ωa is a 3D acoustic domain, bounded by ∂Ωa. The boundary is divided
in three non-overlapping regions ∂Ωa = ∂Ωa,p∪Ωa,v ∪Ωa,Z , on which prescribed
pressure, velocity and impedance are imposed, respectively. A volume velocity
source is located at xq. The steady-state acoustic problem is governed by the
Helmholtz equation (2.11), as described in sec. 2.1.2 and shown in fig. 2.2.

Considering a single convex domain, the pressure p can be approximated by
the field variable expansion (A.5), as follows

p(x) ≈ p̂(x) = Ψ(x) · c + p̂q(x), (A.9)

with Ψ and c vectors containing na wave functions Ψa, and the corresponding
contribution factors ca.
The function p̂q is the particular solution of the Helmholtz equation subject to
the source of volume velocity q and is defined as

p̂q(x) = iρaωq
e−ikarq

4πrq
, (A.10)

where rq is the Euclidean distance between the excitation point xq and the
generic point x.
For 3D bounded problems, three types of acoustic wave functions are identified,
called r-, s- and t-set, respectively

Ψa,r = cos(kr,xx) cos(kr,yy)e−ikr,zz r = 0, 1, . . . , nr (A.11)

Ψa,s = cos(ks,xx)e−iks,yy cos(ks,zz) s = 0, 1, . . . , ns

Ψa,t = e−ikt,xx cos(kt,yy) cos(kt,zz) t = 0, 1, . . . , nt

From an infinite set of wavenumbers, a subset is selected based on the
dimensions of the smallest prism circumscribing the geometry, of which the
dimensions are lx × ly × lz. The first two wavenumber components are chosen
such that an integer number of half wavelengths fits into the dimension of the
bounding box in the corresponding direction. The third component is computed
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by means of eq. (A.6). This leads to the following wavenumber set,



















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
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








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a1π
lx

, a2π
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, ±
√

k2
a −

(

a1π
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)2

−
(

a2π
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)2
)
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(

a3π
lx

, ±
√

k2
a −

(

a3π
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)2

−
(

a4π
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)2

, a4π
lz

)

(kt,x, kt,y, kt,z) =

(
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√

k2
a −

(

a5π
ly

)2

−
(

a6π
lz

)2

, a5π
ly

, a6π
lz

)

(A.12)

In practice, the coefficients a1, a2, a3, a4, a5, a6 are truncated by using the
following rule,

n1

lx
≈ n2

ly
≈ n3

lx
≈ n4

lz
≈ n5

ly
≈ n6

lz
≥ T

ka

π
, (A.13)

where n1, n2, n3, n4, n5 and n6 are the integer truncation numbers and T is a
user defined truncation parameter. The total number of wavefunctions is

na = 2 [(n1 + 1)(n2 + 1) + (n3 + 1)(n4 + 1) + (n5 + 1)(n6 + 1)] . (A.14)

The Galerkin weighted residual approach is used to build the system of
equations, through the integral form,

−
∫

∂Ωa,p

Lv [p̃(x)] Rp(x) d∂Ωa,p +
∫

∂Ωa,v

p̃(x)Rv(x) d∂Ωa,v (A.15)

+
∫

∂Ωa,Z

p̃(x)RZ(x) d∂Ωa,Z = 0

where Lv is the normal velocity operator,

Lv =
i

ρaω

∂

∂na
. (A.16)

The test function p̃ is expressed in terms of the same wave functions as p̂.
The residuals are defined on each boundary: for prescribed pressure boundary
condition,

Rp(x) = p̂(x) − p̄(x) on ∂Ωa,p, (A.17)

normal velocity

Rv(x) = Lv [p̂(x)] − v̄n(x) on ∂Ωa,v, (A.18)

and normal impedance,

RZ(x) = LZ [p̂(x)] − p̂(x)

Z̄n(x)
on ∂Ωa,Z . (A.19)
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Substituting the field variable expansion (A.9) into eq. (A.15) leads to a system
of na equations in na unknowns.
If Ωa is divided in multiple convex subdomains, an additional integral term
takes into account the continuity conditions between subdomains in eq. (A.15).
Detailed expressions are reported in the literature [167].

A.4 Plate bending problem

Suppose Ωp is the 2D plate domain of boundary ∂Ωp of simply supported plate.
The out-of-plane bending of a thin plate is governed by the Kirchhoff equation,
(6.1).

Considering a single convex domain, the displacement field w can be
approximated by the field variable expansion (A.5), as follows

w(x) ≈ ŵ(x) = Ψ(x) · c + ŵf (x), (A.20)

with Ψ and c vectors containing nb wave functions Ψb, and the corresponding
contribution factors cb.
The function ŵf is the particular solution of the Kirchhoff equation subject to
the force of amplitude F0 and is defined as

ŵf (x) = − iF0

8k2
bD

[H(2)
0 (kbrf ) − H

(2)
0 (−ikbrf )], (A.21)

where rf is the Euclidean distance between the excitation point xf and the
generic point x. H

(2)
0 is the Hankel function of the second kind with order

zero.
For plate bending problems, the wave functions Ψb have mathematical form

Ψb1(x) = cos(kb1,x
x)e−ikb1,y

y b1 = 0, 1, . . . , nb1 , (A.22)

Ψb2(x) = e−ikb2,x
x cos(kb2,y

y) b2 = 0, 1, . . . , nb2 .

From an infinite set of wavenumbers, a subset is selected based on the dimension
of the smallest rectangular box circumscribing the plate geometry, of which the
dimensions are lx × ly. The first wavenumber components are chosen such that
an integer number of half wavelengths equals the dimension of the rectangular
bounding box in the corresponding direction,

kb1,x
=

b1π

lx
, (A.23)
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kb2,y
=

b2π

ly
. (A.24)

The other wavenumber components are calculated from the bending wave
number kb corresponding to the considered frequency,

kb1,y
=







±
√

k2
b − k2

b1,x

±i
√

k2
b + k2

b1,x

, (A.25)

kb2,x
=







±
√

k2
b − k2

b2,y

±i
√

k2
b + k2

b2,y

. (A.26)

The coefficients b1 and b2 are truncated by using the rule

nb1

lx
≈ nb2

ly
≥ T

ka

π
, (A.27)

where nb1 and nb2 are the integer truncation numbers and T is the truncation
parameter. The total number of wavefunctions is

nb = 4(nb1 + 1) + 4(nb2 + 1). (A.28)

The Galerkin weighted residual approach is used to build the system of
equations. In case of a simply supported plate, the residual formulation results
in the following expression

∫

∂Ωp

LQ[w̃(x)]Rw(x) d∂Ωp −
∫

∂Ωp

Lθ[w̃(x)]Rm(x) d∂Ωp = 0, (A.29)

where LQ and Lθ are respectively the generalized shear force and rotation
operators defined as follows,

LQ = −D
∂

∂np

[

∂2

∂n2
p

+ (2 − ν)
∂2

∂s2
p

]

, (A.30)

Lθ = − ∂

∂np
, (A.31)

where np and sp are the in-plane normal and tangential directions of the plate
boundary, respectively. The test function w̃ is expressed in terms of the same
wave functions as ŵ. The residuals are defined on the boundary: for prescribed
out-of-plane displacements,

Rw(x) = ŵ(x) − w̄(x) on ∂Ωp, (A.32)
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and prescribed bending moment,

Rm(x) = Lm [ŵ(x)] − m̄(x) on ∂Ωp, (A.33)

where the bending moment operator is expressed as,

Lm = −D

(

∂2

∂n2
p

+ ν
∂2

∂s2
p

)

(A.34)

Substituting the field variable expansion (A.20) into eq. (A.29) leads to a system
of nb equations in nb unknowns.
For the sake of brevity, the WBM formulation is here presented only for the
case of simply supported boundary conditions. The reader is referred to ref.
[208] for a more complete and general formulation in structural dynamics.
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and Schú’eller. Reliability analysis of a satellite structure with a
parametric and a non-parametric probabilistic model. Computer Methods
in Applied Mechanics and Engineering 198, 2 (2008), 344–357.

[164] Pierce, A. Causality and mathematical models in vibration and
acoustics, a realistic perspective. Journal of the Acoustical Society of
America 105, 5 (1999), 2710–2716.

[165] Pierce, A. D. Resonant-frequency-distribution of internal mass inferred
from mechanical impedance matrices, with application to fuzzy structure
theory. Journal of Vibration and Acoustics 119, 3 (1997), 324.



BIBLIOGRAPHY 231

[166] Pierce, A. D., Sparrow, V. W., and Russell, D. A. Fundamental
Structural-Acoustic Idealizations for Structures with Fuzzy Internals.
Journal of Vibration and Acoustics 117, 3A (1995), 339.

[167] Pluymers, B. Wave based modelling methods for steady-state vibro-
acoustics. PhD thesis, KU Leuven, 2006.

[168] Pluymers, B., Desmet, W., Vandepitte, D., and Sas, P.
Application of an efficient wave-based prediction technique for the
analysis of vibro-acoustic radiation problems. Journal of Computational
and Applied Mathematics 168, 1-2 (2004), 353–364.

[169] Pluymers, B., Hal, B., Vandepitte, D., and Desmet, W. Trefftz-
Based Methods for Time-Harmonic Acoustics. Archives of Computational
Methods in Engineering 14, 4 (2007), 343–381.

[170] Pratellesi, A., Pierini, M., Baldanzini, N., and D’ Amico, R. A
stochastic BEM formulation for vibro-acoustic analysis of structures in
the mid-to-high frequency range. WITPress, 2010, pp. 239–250.

[171] Pratellesi, A., Viktorovitch, M., Baldanzini, N., and Pierini,
M. A hybrid formulation for mid-frequency analysis of assembled
structures. Journal of Sound and Vibration 309, 3-5 (2008), 454–568.

[172] Rachowicz, W., Pardo, D., and Demkowick, L. Fully automatic hp-
adaptivity in three dimensions. Computer Methods in Applied Mechanics
and Engineering 195, 37-40 (2006), 4816–4842.

[173] Rade, D., and Steffen, V. Optimization of dynamic vibration
absorbers over a frequency band. Mechanical Systems and Signal
Processing 14, 5 (2000), 679–690.

[174] Ragnarsson, P., Pluymers, B., Donders, S., and Desmet, W.
Subcomponent modelling of input parameters for Statistical Energy
Analysis by using a wave-based boundary condition. Journal of Sound
and Vibration 329, 1 (2010), 96–108.

[175] Russell, D. A., and Sparrow, V. W. Backscattering from a baffled
finite plate strip with fuzzy attachments. Journal of the Acoustical Society
of America 98, 3 (1995), 1527–1533.

[176] Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd edition ed.
2003.

[177] Schenck, H. Improved integral formulation for acoustic radiation
problems. Journal of the Acoustical Society of America 1968 (44), 41–58.



232 BIBLIOGRAPHY

[178] Schuëller, G., and Pradlwarter, H. Uncertain linear systems
in dynamics: Retrospective and recent development by stochastic
approaches. Engineering Structures 31, 11 (2009), 2507–2517.

[179] Sestieri, A., and Carcaterra, A. Vibroacoustic: The challenges of
a mission impossible? Mechanical Systems and Signal Processing 34, 1-2
(2013), 1–18.

[180] Shorter, P., and Langley, R. Vibro-acoustic analysis of complex
systems. Journal of Sound and Vibration 288, 3 (2005), 669–699.

[181] Shorter, P. J., and Langley, R. S. On the reciprocity relationship
between direct field radiation and diffuse reverberant loading. Journal of
the Acoustical Society of America 117, 1 (2005), 85–95.

[182] Simmons, C. Structure-borne sound transmission through plate
junctions and estimates of SEA coupling loss factors using the finite
element method. Journal of Sound and Vibration 144, 2 (1991), 215–
227.

[183] Sladek, J., Sladek, V., and Van Keer, R. Global and local
Trefftz boundary integral formulations for sound vibration. Advances
in Engineering Software 33, 7-10 (2002), 469–476.

[184] Smith, M. A hybrid energy method for predicting high frequency
vibrational response of point-loaded plates. Journal of Sound and
Vibration 202, 3 (1997), 375–394.

[185] Soize, C. Probabilistic structural modeling in linear dynamic analysis of
complex mechanical systems. Part I - theoretical elements. La Recherche
Aerospatiale 5 (1986), 23–48.

[186] Soize, C. A nonparametric model of random uncertainties for
reduced matrix models in structural dynamics. Probabilistic Engineering
Mechanics 15, 3 (2000), 277–294.

[187] Soize, C. Generalized probabilistic approach of uncertainties in
computational dynamics using random matrices and polynomial chaos
decompositions. International Journal for Numerical Methods in
Engineering 81, 81 (2010), 939–970.

[188] Souza Lenzi, M., Lefteriu, S., Beriot, H., and Desmet, W. A
fast frequency sweep approach using Padé approximations for solving
Helmholtz finite element models. Journal of Sound and Vibration 332, 8
(2013), 1897–1917.



BIBLIOGRAPHY 233

[189] Stefanou, G. The stochastic finite element method: past, present and
future. Computer Methods in Applied Mechanics and Engineering 198,
9-12 (2009), 1031–1051.

[190] Strasberg, M. Insuring causality of frequency-response functions with
hysteretic damping. Journal of the Acoustical Society of America 109
(2001).

[191] Strasberg, M., and Feit, D. Vibration damping of large structures
induced by attached small resonant structures. Journal of the Acoustical
Society of America 99, 1 (1996), 335–344.

[192] Strouboulis, T., Copps, K., and Babuska, I. The generalized
finite element method. Computer Methods in Applied Mechanics and
Engineering 190, 32-33 (2001), 4081–4193.

[193] Sun, J. Q., Jolly, M. R., and Norris, M. A. Passive, Adaptive and
Active Tuned Vibration Absorbers: A Survey. Journal of Mechanical
Design 117, B (1995), 234.

[194] Sun, Z., Sun, J., Wang, C., and Dai, Y. Dynamic vibration absorbers
used for increasing the noise transmission loss of aircraft panels. Applied
Acoustics 48, 4 (1996), 311–321.

[195] Tezaur, R., Kalashnikova, I., and Farhat, C. The discontinuous
enrichment method for medium-frequency Helmholtz problems with a
spatially variable wavenumber. Computer Methods in Applied Mechanics
and Engineering (2013).

[196] Thite, A., and Mace, B. Robust estimation of coupling loss factors
from finite element analysis. Journal of Sound and Vibration 303, 3-5
(2007), 814–831.

[197] Thompson, L., and Kunthong, P. A residual based variational
method for reducing dispersion error in Finite Element Methods.
In ASME 2005 International Mechanical Engineering Congress and
Exposition (Orlando, Florida, USA, November 2005), no. IMECE2005-
80551, pp. 29–40.

[198] Thompson, L. L., and Pinsky, P. A Galerkin least-squares
finite element method for the two-dimensional Helmholtz equation.
International Journal for Numerical Methods in Engineering 38, 3 (1995),
371–397.

[199] Toll, J. Causality and the dispersion relation: logical foundations.
Physical review 104, 6 (1956), 1760–1770.



234 BIBLIOGRAPHY

[200] Trefethen, L. Is Gauss quadrature better than Clenshaw-Curtis?
SIAM review 50, 1 (2008), 67–87.

[201] Trefftz, E. Ein Gegenstück zum Ritzschen Vaerfahren. In Proceedings
of the Second International Congress on Applied Mechanics (Zurich,
Switzerland, 1926).

[202] Van Genechten, B. Trefftz-based mid-frequency analysis of
geometrically complex vibro-acoustic systems: hybrid methodologies and
multi-level modelling. PhD thesis, KU Leuven, 2010.

[203] Van Genechten, B., Atak, O., Bergen, B., Deckers, E.,
Jonckheere, S., Lee, J. S., Maressa, A., Vergote, K., Pluymers,
B., Vandepitte, D., and et al. An efficient Wave Based Method
for solving Helmholtz problems in three-dimensional bounded domains.
Engineering Analysis with Boundary Elements 36, 1 (2012), 63–75.

[204] van Hal, B. Automation and performance optimization of the wave
based method for interior structural-acoustic problems. PhD thesis, KU
Leuven, 2004.

[205] Vanmaele, C. Development of a wave based prediction technique for the
efficient analysis of low- and mid- frequency structural vibrations. PhD
thesis, KU Leuven, 2007.

[206] Vanmaele, C., Vandepitte, D., and Desmet, W. An efficient
wave based prediction technique for plate bending vibrations. Computer
Methods in Applied Mechanics and Engineering 196, 33-34 (2007), 3178–
3189.

[207] Venter, G. Review of Optimization Techniques. Wiley Blackwell (John
Wiley &amp; Sons), 2010.

[208] Vergote, K. Dynamic analysis of structural components in the mid
frequency range using the wave based method: non-determinism and
inhomogeneities. PhD thesis, KU Leuven, 2012.

[209] Vergote, K., Van Genechten, B., Vandepitte, D., and Desmet,
W. Development of a wave based prediction technique for the efficient
analysis of low- and mid- frequency structural vibrations. Computers &
Structures 89, 11-12 (2011), 868–877.

[210] Vergote, K., Vanmaele, C., Vandepitte, D., and Desmet, W. An
efficient wave based approach for the time-harmonic vibration analysis of
3D plate assemblies. Journal of Sound and Vibration 332, 8 (2013), 1930–
1946.



BIBLIOGRAPHY 235

[211] Viktorovitch, M., Moron, P., Thouverez, F., and Jézéquel,
L. A stochastic approach of the energy analysis for one-dimensional
structures. Journal of Sound and Vibration 216, 3 (1998), 361–378.

[212] Viktorovitch, M., and Pratellesi, A. A hybrid mid-frequency
formulation for vibro-acoustic predictions. Noise Control Engineering
Journal 56, 1 (2008), 71–84.

[213] Viktorovitch, M., Thouverez, F., and Jézéquel, L. A
new random boundary element formulation applied to high frequency
phenomena. Journal of Sound and Vibration 223, 2 (1999), 273–296.

[214] Viktorovitch, M., Thouverez, F., and Jézéquel, L. An integral
formulation with random parameters adapted to the study of the
vibrational behaviour of structures in the middle- and high-frequency
field. Journal of Sound and Vibration 247, 3 (2001), 431–452.

[215] Weaver, R. Mean and mean-square response of a prototypical
master/fuzzy structure. Journal of the Acoustical Society of America
101, 3 (1997), 1441–1449.

[216] Weideman, J. A. C., and Trefethen, L. N. The kink phenomenon
in Fejér and Clenshaw-Curtis quadrature. Numerische Mathematik 107,
4 (2007), 707–727.

[217] Williams, A. Electronic Filter Design Handbook. McGraw Hill, 1988.

[218] Wohlever, J., and Bernhard, R. Mechanical energy flow models of
rods and beams. Journal of Sound and Vibration 153, 1 (1992), 1–19.

[219] Wong, R. Asymptotic Approximation of Integrals (Classics in Applied
Mathematics). SIAM: Society for Industrial and Applied Mathematics,
2001.

[220] Xie, G., D.J., T., and Jones, C. Mode count and modal density of
structural systems: relationships with boundary conditions. Journal of
Sound and Vibration 274 (2004), 621–651.

[221] Zhao, X., and Vlahopoulos, N. A basic hybrid finite element
formulation for mid-frequency analysis of beams connected at an
arbitrary angle. Journal of Sound and Vibration 269, 1-2 (2004), 135–
164.

[222] Zielinski, A. P., and Herrera, I. Trefftz method: Fitting boundary
conditions. International Journal for Numerical Methods in Engineering
24, 5 (1987), 871–891.



236 BIBLIOGRAPHY

[223] Zienkiewicz, O. C. The Finite Element Method, 6th ed. Butterworth-
Heinemann, 2005.

[224] Zitzler, E., Laumanns, M., and Bleuler, S. A Tutorial on
Evolutionary Multiobjective Optimization. Springer-Verlag, 2004.



Curriculum vitae

Personal data

Roberto D’Amico
Born 5 September 1985, Prato, Italy
damico.rob@gmail.com

Professional experience

09/2011 - present: Ph.D. researcher at KU Leuven, Belgium

Topic: Efficient frequency averaging techniques; numerical techniques
for noise and vibration; uncertainty and variability.

Funding: Marie Curie ITN Project “Mid-Frequency” and the Research
Fund KU Leuven.

01/2010 - 09/2011: Ph.D. researcher at University of Florence, Italy

Topic: Stochastic BEM; numerical techniques for noise and vibration;
uncertainty and variability; acoustic BEM and Fast Multipole
BEM industrial applications.

Funding: Collaborative EU Project “MID-MOD”.

09/2009 - 12/2009: Internship at LMS International, Belgium

Topic: Improvement of solution accuracy for acoustic BEM and Fast
Multipole BEM.

09/2008 - 06/2009: Internship at Pramac, Italy

Topic: Design of a novel lifting mechanism for hand pallet trucks.

237



238 CURRICULUM VITAE

Education

10/2007 - 12/2009: M.Sc. degree in Mechanical Engineering, University of
Florence, Italy

Thesis: Fast multipole boundary element formulation for the vibro-
acoustic analysis of automotive and railway structures.

Grade: 110/110 cum laude
Other: Received the “Ciullini award” from Ordine degli Ingegneri

della Provincia di Firenze (Register of Engineers of Florence,
2011) and the “Pier Luigi Ferrara award” from Nuovo Pignone
(General Electric, 2010).

10/2004 - 09/2007: B.Sc. degree in Industrial Engineering, University of
Florence, Italy

Thesis: Design of a traversing gear for probe positioning in a wind
tunnel.

Grade: 110/110 cum laude
Other: Received the “Bardazzi award” (2008) and the “Ducati award”

in the mechanical design competition “La Fisica in Moto”
(2006).



List of Publications

Articles in refereed journals

[1] D’Amico, R., Koo, K., Claeys, C. C., Pluymers, B. and Desmet, W.
Optimal dynamic vibration absorber design for minimizing the band-
averaged input power using the residue theorem. Accepted with revisions
for publication in the Journal of Sound and Vibration (2014).

[2] D’Amico, R., Huybrechs, D., and Desmet, W. A refined use of
the residue theorem for the evaluation of band-averaged input power into
linear second-order dynamic systems. Journal of Sound and Vibration
333, 6 (2014), 1796–1817.

[3] Deckers, E., Atak, O., Coox, L., D’Amico, R., Devriendt, H.,
Jonckheere, S., Koo, K., Pluymers, B., Vandepitte, D. and
Desmet, W. The wave based method: an overview of 15 years of research.
Wave Motion 51, 4 (2013), 550–565.

[4] D’Amico, R., Koo, K., Huybrechs, D., and Desmet, W. On the use
of the residue theorem for the efficient evaluation of band-averaged input
power into linear second-order dynamic systems. Journal of Sound and
Vibration 332, 26 (2013), 7205–7225.

[5] D’Amico, R., Pratellesi, A., Baldanzini, N. and Pierini, M.
Reformulation of the Stochastic BEM to improve the computational
efficiency in the prediction of vibro-acoustic behaviour of structures with
uncertainties. Journal of Sound and Vibration 332, 9 (2013), 2132–2148.

[6] D’Amico, R., Pratellesi, A. and Pierini, M. Improving the
convergence of the Fast Multipole BEM for the exterior sound radiation
of a truck muffler. SAE International Journal of Commercial Vehicles 5,
1 (2012), 407–419.

239



240 LIST OF PUBLICATIONS

[7] D’Amico, R., Neher, J., Wender, B. and Pierini, M. On the
improvement of the solution accuracy for exterior acoustic problems with
BEM and FMBEM. Engineering Analysis with Boundary Elements 36, 7
(2012), 1104–1115.

Chapters in academic books

[8] Desmet, W., Pluymers, B., Atak, O., Bergen, B., D’Amico, R.,
Deckers, E., Jonckheere, S., Ku, K., Lee, J. S., Maressa, A.,
Navarrete Alzate, N., Van Genechten, B., Vandepitte, D. and
Vergote, K. The Wave Based Method. In “Mid-Frequency” CAE
Methodologies for Mid-Frequency Analysis in Vibration and Acoustics,
Chapter 1, KU Leuven (2012).

Articles in conference proceedings

[9] D’Amico, R., Koo, K., Claeys, C., Pluymers, B. and Desmet, W.
Optimization of the frequency averaged input power into plates with
dynamic vibration absorbers using the Wave Based Method. In Proceed-
ings of the International Conference on Vibration Problems (ICOVP2013)
(Lisbon, Portugal, 2013).

[10] Koo, K., D’Amico, R., Pluymers, B. and Desmet, W. Design
optimization of the frequency averaged input power using the residue
theorem. In Proceedings of the 20th International Congress on Sound
and Vibration (ICSV20) (Bangkok, Thailand, 2013).

[11] Deckers, E., Atak, O., Coox, L., D’Amico, R., Devriendt, H.,
Jonckheree, S., Koo, K., Pluymers, B., Vandepitte, D. and
Desmet, W. The Wave Based Method: current state of the art.
In Proceedings of the 1st Euro-Mediterranean Conference on Structural
Dynamics and Vibroacoustics (MEDYNA2013) (Marrakesh, Morocco,
2013).

[12] D’Amico, R., Vergote, K., Langley, R. and Desmet, W. On the
use of the Lorentzian function for the evaluation of the frequency averaged
input power into plates. In Proceedings of the International Conference on
Noise and Vibration Engineering (ISMA2012) (Leuven, Belgium, 2012).

[13] D’Amico, R., Vergote, K., and Desmet, W. Lorentzian-weighted
frequency averaging for the evaluation of the input power into one-



LIST OF PUBLICATIONS 241

dimensional structural dynamic systems. In Proceedings of the Inter-Noise
2012 Conference (New York, US, 2012).

[14] D’Amico, R., Pratellesi, A. and Pierini, M. Improving the
convergence of the Fast Multipole BEM for the exterior sound radiation
of a truck muffler. In Proceedings of the 7th International Styrian
Noise Vibration & Harshness Congress: the European Automotive Noise
Conference (ISNVH2012) (Graz, Austria, 2012).

[15] D’Amico, R., Pratellesi, A., Baldanzini, N. and Pierini, M.
Stochastic Boundary Element Method to predict the effects of geometrical
uncertainties in the mid-frequency vibro-acoustic analysis. In Proceedings
of Noise and Vibration: emerging methods 2010 (NOVEM2012) (Sorrento,
Italy, 2012).

[16] Bartolozzi, G., D’Amico, R., Pratellesi, A., and Pierini, M.
An efficient method for selecting CHIEF points. In Proceedings of the
7th International Conference on Structural Dynamics (EURODYN2011)
(Leuven, Belgium, 2011).

[17] D’Amico, R., Pratellesi, A., Pierini, M. and Tournour, M.
Efficient Method to Avoid Fictitious Eigenvalues for Indirect BEM.
In Proceedings of International Conference on Noise and Vibration
Engineering (ISMA2010) (Leuven, Belgium, 2010).

[18] Pratellesi, A., Pierini, M., Baldanzini, N. and D’Amico, R. A
Stochastic BEM Formulation for the Vibro-acoustic Analysis of Mid and
High-frequency Structures. In Proceedings of the 32nd International
Conference on Boundary Elements and Other Mesh Reduction Methods
(New Forest, UK, 2010).

[19] D’Amico, R., Pratellesi, A., Pierini, M. and Tournour, M.
Mitigation of the Non-uniqueness Problem for the Indirect Boundary
Element Method. In Proceedings of the 10th International Conference
on Recent Advances in Structural Dynamics (Southampton, UK, 2010).

Abstracts in conference proceedings

[20] Desmet, W., Atak, O., Bergen, B., D’Amico, R., Deckers, E.,
Jonckheere, S., Ku, K., Van Genechten, B., Vergote, K.,
Pluymers, B., and Vandepitte, D. The Wave Based Method: an effi-
cient alternative for vibro-acoustic predictions in the mid-frequency range.
In Proceedings of Innovations in Wave Modelling 2012 (Nottingham, UK,
2012).







FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF MECHANICAL

ENGINEERING

PRODUCTION ENGINEERING,

MACHINE DESIGN AND AUTOMATION

Celestijnenlaan 300B

B-3001 Heverlee, Belgium

SCHOOL OF ENGINEERING

DEPARTMENT OF INDUSTRIAL

ENGINEERING

Via di Santa Marta, 3

50139 Firenze, Italy


	Acknowledgements
	Abstract
	Sommario
	Beknopte samenvatting
	List of symbols
	Contents
	Introduction
	Current challenges in numerical steady-state vibro-acoustics
	Averaging techniques and input power computation
	Research objectives and achievements
	Outline of the dissertation

	Background on prediction and integration techniques for linear second-order dynamic systems
	Steady-state problem formulation
	Structural problem
	Acoustic problem
	Fluid-structure interaction

	Response of a vibro-acoustic system
	Low-frequency techniques
	Pushing low-frequency techniques higher
	High-frequency techniques
	Pulling high-frequency techniques lower
	Fuzzy Structure Theory and hybrid techniques
	Non-determinism

	Methods for oscillatory integrals
	Asymptotic methods
	Filon-type methods
	Levin-type methods
	The numerical steepest descent
	Discussion

	Position of the research with respect to the state-of-the-art
	Conclusion

	The Butterworth-weighted frequency averaging
	Input power computation
	Frequency integral of the input power
	Choice of the weighting function
	Influence of the damping model
	Viscous damping
	Hysteretic damping

	Evaluation of the frequency integral
	Application of the residue theorem for a general case
	Integration when system poles are confined in the UHP
	Integration when system poles are not confined in the UHP

	Application cases
	Simply supported plate
	Stiffened plates

	Computational considerations
	Computation time
	Implementation

	Conclusion

	Use of quadrature schemes in the complex frequency domain
	Frequency-averaged input mobility
	Evaluation of the frequency integral
	Definition of the integration path C
	Use of numerical quadrature schemes to evaluate Ir
	Equivalence between Butterworth-weighted averaging and midpoint integration scheme

	Quadrature schemes and weighting functions
	Determination of weighting function parameters
	Examples and discussion

	Application cases
	Use of Gaussian quadratures over r and comparison with Butterworth-weighted averaging
	Adaptive integration schemes
	Alternative integration schemes

	Conclusion

	Application to second-order dynamic systems of industrial complexity
	Suspension shock-tower
	Model description
	Results

	Acoustic car cavity
	Input power into acoustic systems
	Model description
	Poles of an acoustic cavity with admittance boundary conditions
	Results

	Conclusion

	Application to structural-acoustic optimization problems
	The use of DVAs for passive vibration control
	Theoretical aspects and numerical methodologies
	Plate bending with point connections
	Radiated acoustic power

	Optimization procedures
	Minimization of the power injected into the structure
	Genetic algorithms
	Summary and advantages of the procedure

	Application cases
	Problem description
	Objective function evaluation and optimization
	Single objective optimization
	Multi-objective optimization

	Conclusion

	The Lorentzian-weighted frequency averaging
	The Lorentzian function
	Evaluation of the ensemble average input power
	Lorentzian-weighted frequency-averaged input power
	The choice of the  parameter
	Simply supported plate
	Stiffened plates
	Additional comments

	Direct field dynamic stiffness computation
	Direct field, artificial damping and Lorentzian-averaging
	Point dynamic stiffness of plates
	Advanced applications

	Use of the Lorentzian function within the Fuzzy Structure Theory
	The Fuzzy Structure Theory
	Pierce's FST and prototype functions
	Lorentzian mass-frequency density function
	Additional comments

	Conclusion

	Conclusions and future research
	Overview and main achievements
	Efficient band-average input power computations
	Lorentzian-weighted frequency averaging

	Future research topics

	The Wave Based Method
	The WB modeling
	Partitioning into subdomains
	Field variable expansion
	Construction of the system of equations
	Solution and post-processing

	Characteristics of WB modeling
	3D bounded acoustic problem
	Plate bending problem

	Bibliography
	Curriculum vitae
	List of Publications

