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ABSTRACT
We present the first kinematic study of an α�-dynamo in the general relativistic magneto-
hydrodynamics regime, applied to thick discs orbiting around Kerr black holes and using a
fully covariant mean-field dynamo closure for the Ohm law. We show that the α�-dynamo
mechanism leads to a continuous exponential growth of the magnetic field within the disc
and to the formation of dynamo waves drifting away or towards the equatorial plane. Since
the evolution of the magnetic field occurs qualitatively in the same fashion as in the Sun, we
present also butterfly diagrams that characterize our models and show the establishment of an
additional time-scale, which depends on the microscopic properties of the turbulent motions,
possibly providing an alternative explanation to periodicities observed in many high-energy
astrophysical sources where accretion on to a rotating black hole is believed to operate.

Key words: accretion, accretion discs – dynamo – magnetic fields – MHD – plasmas –
relativistic processes.

1 IN T RO D U C T I O N

Ordered, large-scale magnetic fields are believed to be a fundamen-
tal ingredient of the accretion processes that power many of the
astrophysical sources of high-energy emission, like jets from active
galactic nuclei (McKinney & Blandford 2009) or gamma-ray bursts
(Bucciantini et al. 2009; Rezzolla et al. 2011). This is particularly
true for the Blandford–Znajek mechanism (Blandford & Znajek
1977) where the rotational energy is extracted from a rotating black
hole through large-scale magnetic fields penetrating the ergosphere
and twisted by the rotation of the surrounding space–time. Unfor-
tunately, it is still not clear how such magnetic fields originate. The
process of collapse to the compact objects which are believed to
be the engines that power these sources could amplify any pre-
existing frozen-in field. However, recent MHD simulations of col-
lapsing dense cores (Hennebelle & Fromang 2008; Santos-Lima, de
Gouveia Dal Pino & Lazarian 2012) have shown how the magnetic
braking due to a pre-existing large-scale magnetic field can ex-
tract angular momentum from the cloud fast enough to prevent the
formation of a disc. Turbulent reconnection can efficiently inhibit
the magnetic braking by removing magnetic flux, and therefore a
turbulent magnetic field allows the formation of a disc. However,
turbulent motions and small-scale instabilities in accretion discs,
such as the Magneto-Rotational Instability (MRI; Balbus 2003),
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could enhance the level of turbulent magnetic fields, but the tangled
final configuration would not be able to drive large-scale outflows.

A solution for the origin of the necessary large-scale magnetic
field is a dynamo process. If one considers the presence of small-
scale correlated fluctuations in the flow due to turbulence (that
invariably arises in astrophysical plasmas with very high fluid
and magnetic Reynolds numbers) a mean-field dynamo mechanism
(Moffatt 1978) could lead to a large-scale effective electromotive
force capable of generate and sustain a large-scale magnetic field.
While this process has been vastly studied in classical MHD (mostly
the solar dynamo), there are only a few applications in general rela-
tivity (GR). In particular, Khanna & Camenzind (1996) have tested
the role of a differentially rotating absolute space in exciting dynamo
modes in accretion discs in Kerr metric in the simplified regime,
where the displacement current is neglected and for a fixed velocity
field. This approximation was shown to be reasonable by Branden-
burg (1996), but it cannot be achieved consistently in a covariant
formalism, if causality is to be preserved. It might also not be ap-
propriate when fast and variables motions, as expected in accretion,
near the event horizon with velocities close to the speed of light are
allowed to develop. The first formulation of a fully covariant closure
of the general relativistic magnetohydrodynamics (GRMHD) equa-
tions for a non-ideal plasma with a mean-field dynamo mechanism
has been presented by Bucciantini & Del Zanna (2013), but so far
it has never been applied to an actual astrophysical system. In this
paper, we present the first example (to our knowledge) of a resistive
GRMHD simulation of a thick disc orbiting around a Kerr black
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hole with a mean-field dynamo mechanism. Given a small magnetic
seed, we follow its evolution through the kinematic phase, assuming
therefore that its feedback on the dynamics can still be neglected.
We use the ECHO code (Del Zanna et al. 2007), combined for the
first time with a third-order IMplicit-EXplicit (IMEX) Runge–Kutta
scheme (Pareschi & Russo 2005), to integrate the Maxwell equa-
tions in the 3+1 formalism (Gourgoulhon 2012) using the fully
covariant mean-field dynamo closure for the Ohm law given by
Bucciantini & Del Zanna (2013).

The plan of this paper is as follows. In Section 2, we briefly
describe the mean-field dynamo mechanism and its implementation
in the ECHO code. Then in Section 3, we illustrate the setup of
our simulations, and our choice for the dynamo properties. We
finally show the results of our study and present our conclusions in
Section 4. In the following, we set c = G = 1 and absorb all the
factors

√
4π in the definition of the electromagnetic field.

2 DY NA M O M O D E L A N D E QUAT I O N S

For classical MHD, the introduction of a mean-field mechanism
leads to the following form of the resistive-dynamo Ohm law:

E′ = E + v × B = η J + ξ B, (1)

where E, B and J are, respectively, the electric field, magnetic field
and current measured by an Eulerian observer, E′ is the electric field
measured in the frame comoving with the fluid-velocity v, η is the
magnetic resistivity due mostly to mean-field effects (and in smaller
part to collisions) and ξ is the mean-field dynamo coefficient (most
commonly employed in the literature as αdyn ≡ −ξ ). The latter term
is a direct result of the assumption of correlated turbulent motions
in the plasma, and provide the means for the generation of currents
J ′ ≡ ξ/ηB parallel to the magnetic field B, in contrast with the
ideal case where J = (∇ × B) ⊥ B. Following Bucciantini & Del
Zanna (2013), we adopt a fully covariant form of Ohm’s law for a
resistive plasma with a mean-field α-dynamo effect given by

eμ = ηjμ + ξbμ, (2)

where eμ, bμ and jμ are, respectively, the electric field, magnetic
field and current measured by an observer comoving with the fluid
4-velocity uμ. The spatial projection of equation (2) is then given
by

�[E + v × B − (E · v)v] = η( J − qv), (3)

and provides a mean to express the current J in terms of E, B and
v. Here, � ≡ (1 − v2)−1/2 is the Lorentz factor and q = ∇ · E is
the local charge density.

Since only the electric and magnetic fields evolve through time,
we just need to integrate the Maxwell equations, which in the 3+1
formalism are

γ −1/2∂t

(
γ 1/2 B

) + ∇ × (αE + β × B) = 0, (4)

γ −1/2∂t

(
γ 1/2 E

) + ∇ × (−αB + β × E) = −(α J − qβ), (5)

with γ the determinant of the spatial metric tensor γ ij, α the lapse
function and β the shift vector. Computing J from equation (3)
and substituting it in equation (5), we obtain the final form of the
equation for the evolution of the electric field:

γ −1/2∂t

(
γ 1/2 E

) = ∇ × (αB − β × E) − (αv − β)(∇ · E)

− α�/η{[E + v × B − (E · v)v] − ξ [B − v × E − (B · v)v]}.
(6)

The above equation applies, rather than its ideal limit, when η is
not completely negligible, as it occurs when in addition to the usual
ohmic diffusivity we take into account the turbulent contribution.
In this case, we do expect the terms ∝η−1 to influence heavily
the evolution of the electric field, and since they may evolve on a
time-scale τ η much shorter than the MHD time-scale some sort of
implicit time integrator must be employed to guarantee stability to
the integration of equation (6).

3 SI M U L AT I O N SE T U P

3.1 The background model

The assumption of kinematic dynamo implies that the background
flow structure can be assumed as given. Our disc model corresponds
to an unmagnetized thick torus with constant specific angular mo-
mentum L, in dynamical equilibrium, orbiting around a Kerr black
hole (in Boyer-Lindquist coordinates) with specific angular momen-
tum a = 0.99MBH, as described in Font & Daigne (2002). Distances
and time are expressed in units of MBH.

The centre of the torus is located at a radius rc = 5, while its inner
edge is at rin = 3. Here, the temperature is pc/ρc 	 7 × 10−3, where
p and ρ are density and pressure. With these choices we determine
ρ, v and p at every point of the disc. The disc is assumed to be
surrounded by a low-density (ρatm 	 10−5ρc) hot (patm/ρatm 	 0.5)
atmosphere in hydrostatic equilibrium and corotating with the disc
itself (so that the atmosphere is also in Keplerian-like rotation).
As we will show, the choice of the initial seed magnetic field is
unimportant (apart from the parity with respect to the equator) for
the evolution of the dynamo, given that the fastest growing mode
will always be selected. Model can be initialized either with a purely
toroidal seed field (BT) or a purely poloidal seed field (BP). The
initial field is always confined within the disc. The initial electric
field is then set equal to the ideal value E = −v × B.

Given that in this Letter we aim at presenting a first astrophysical
application of a mean-field dynamo in GR to a situation of interest,
our choice for the dynamo properties is mostly dictated by sim-
plicity. We will therefore use the simplest possible choice for the
parameter η and ξ , that still preserve some of their expected global
properties. We are aware that a sub-scale model for the turbulence
will be required to build a proper realistic model; however, we hope
to show here the feasibility of this approach, and derive a rough
understanding of its working.

Because of the kinematic approximation we adopted, we expect
the behaviour of the α�-dynamo to be affected by the values of η

and ξ alone, since the other free parameters of the model affect only
fixed quantities. Here, we investigate the response of the system to
a variation of this two parameters.

Let us consider the magnetic resistivity first. We assume the
resistivity to be confined in the disc, where turbulent motions can
act to dissipate the mean field. The resistivity in the disc scales as

η(r, θ ) = ηdisc

√
ρ(r, θ ) − √

ρ∗
atm√

ρc − √
ρ∗

atm
, (7)

where the central density ρc is also the maximum density, ρ∗
atm is

the minimum one in the atmosphere, and ηdisc is the normalization
value of the resistivity. The atmosphere is assumed to be an ideal
conductor. The other option, corresponding to the opposed regime,
is to assume it to be highly resistive, but we will not consider here
this latter case. Since it is not possible to set η = 0 using the IMEX
schemes, we have set ηatm = 10−5 (which is also a lower bound
to the resistivity in the entire domain). We have verified that at the
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resolution of our runs, such value gives results indistinguishable
from the ideal case (this is the value of our numerical resistivity).

In the same way, we assume mean-field dynamo to act only inside
the disc. The fact that the dynamo parameter ξ never appears at the
denominator in the resistive GRMHD equations allows us to set its
value in the atmosphere to zero. Being ξ proportional to the plasma
kinetic helicity, it has therefore to be odd in the axial coordinate
z = r cos θ , so that ξ (r, θ ) = −ξ (r,π − θ ). In analogy with the
resistivity, the simplest form we can choose is

ξ (r, θ ) :=
{

ξdisc
ρ(r,θ ) cos θ

(ρ cos θ )max
, inside the disc

0, in the atmosphere.
(8)

The profiles of resistivity and mean-field dynamo coefficient are
shown in Fig. 1.

A mean-field dynamo process taking action in an accretion disc
leads to a α�-dynamo, where the toroidal magnetic field is en-
hanced by the differential rotation (the �-effect) and the poloidal
component increases through the mean-field dynamo (known in lit-
erature as the α-effect). In the kinematic case, the dynamics of such
a system is characterized by the following dynamo numbers:

Cξ = ξR

η
, C� = ��R2

η
, (9)

Figure 1. Profiles and contours of the resistivity η (upper panel) and dy-
namo coefficient ξ (lower panel) normalized respectively to ηdisc and ξdisc.
The red solid line is the event horizon and the dashed lines represent the
boundary of the computational domain.

which estimate the efficiency of the dynamo processes (due, re-
spectively, to the mean-field dynamo and the differential rotation)
in enhancing the magnetic field amplitude against the dissipation
due to a finite resistivity of the plasma. In these relations, R repre-
sents a typical high scale of the disc (for thick discs we used the
radius of the centre), while �� is a typical shear (we have chosen
the difference in angular velocity between the centre and the inner
edge of the disc).

3.2 Numerical methods and settings

Our domain extends in the range r = [r+ + 1.5, 25], θ = [π/4 −
0.2, 3π/4 + 0.2], where r+ is the radius of the event horizon. All of
our simulations were performed on a numerical grid of 256 × 256
points. The grid is logarithmically stretched in the radial direction in
order to have a larger resolution near the black hole (222 grid points
within r = 10). The domain has been shaped to fully contain the
disc. We have verified that the magnetic field never migrates beyond
the polar regions that we have excised. We have also verified that at
this resolution the results are converged.

Developing what has been done by Bucciantini & Del
Zanna (2013), we adopted an IMEX Runge–Kutta scheme
(Pareschi & Russo 2005; Palenzuela et al. 2009) to perform the
time integration of equations (4) and (5). In particular, extending
previous results, we have implemented the SSP3(4,3,3) scheme,
that guarantees third-order accuracy in time. This has been coupled,
for the hyperbolic part, to an HLL solver with a fifth-order spa-
tial reconstruction routine (MP5), which allow us to reach a global
third-order accuracy and to get convergent results already at modest
resolutions (for more comprehensive numerical tests see Del Zanna,
Bugli & Bucciantini 2014).

4 R ESULTS AND DI SCUSSI ON

In Table 1, we show the various runs of our study. They differ by
the value of η, ξ and the initial profile of the magnetic field. In
all of the models where the initial magnetic field is toroidal (sym-
metric to the equator), the α-effect generates from the beginning a
poloidal antisymmetric component (see Fig. 2): therefore the mag-
netic field has quadrupolar symmetry. On the other hand, starting
with a poloidal field (antisymmetric to the equator) a toroidal anti-
symmetric component arises due to the �-effect, thus the field has
dipolar symmetry.

In either cases, the magnetic field evolves to an eigenstate of
the system, that is reached after a relaxation-time that ranges, de-
pending on the particular model, roughly between 3 Pc and 30 Pc,
with Pc 	 76.2GMBH/c3 the orbital period of the disc centre. As
shown in Fig. 3, the eigenstate is characterized by a dynamo wave
that propagates away from the equatorial plane for ξ > 0. For the
models with ξ < 0, the propagation occurs towards the equatorial
plane, qualitatively in agreement with the solar dynamo case and
consistent with our definition of ξ ≡ −αdyn (Moffatt 1978). The
magnetic field appears to originate approximately where the dy-
namo parameter is stronger, and then drifts from that location. As
the field migrates towards the atmosphere, or towards the equator
(depending on the sign of ξ ), resistive effects become proportionally
stronger and the field is dissipated.

Besides this drifting, the amplitude on the poloidal and toroidal
components of the magnetic field grow exponentially with the
same growth rate. This because, in the kinematic regime we have
assumed, there is no quenching effect. The growth rate increases for
larger values of ξ . The ratio between the maximum of the poloidal
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Table 1. Values of the parameters and the dynamical characteristics of each model.

Binit ηdisc ξdisc Cξ C� Growth rate Period BP/BT smax χ0

Model 1 BT 10−3 10−3 5 400 0.30 10.34 0.12 2.90 1.22
Model 2 BT 10−3 −10−3 −5 400 0.25 9.14 0.12 0.67 1.41
Model 3 BT 10−3 5 × 10−3 25 400 1.26 3.31 0.36 2.42 1.14
Model 4 BT 10−3 2 × 10−4 1 400 0.06 33.14 0.04 3.18 1.26
Model 5 BT 5 × 10−3 5 × 10−3 5 80 0.37 6.63 0.17 3.11 1.26
Model 6 BT 2 × 10−4 2 × 10−4 5 2000 0.21 17.23 0.07 2.64 1.22
Model 7 BP 10−3 10−3 5 400 0.30 10.34 0.12 2.95 1.18
Model 8 BP 10−3 5 × 10−3 25 400 1.26 3.31 0.36 2.36 1.14
Model 9 BP 10−3 2 × 10−4 1 400 0.06 34.47 0.04 3.13 1.26
Model 10 BP 10−3 −10−3 −5 400 0.25 9.54 0.12 0.82 1.37

Figure 2. Growth of BT = √
BφBφ and BP =

√
BrBr + BθBθ (upper

panel) and their ratio with time (lower panel) for Model 1. The magnetic
fields are expressed in unit of the initial maximum value of BT. The time is
measured in units of the orbital period of the centre of the disc Pc.

component and the maximum of the toroidal one ranges from 0.04
to 0.36 and shows an oscillating behaviour indicative of a phase
difference between these two components.

In order to quantitatively characterize the migration of the mag-
netic field within the disc, we produced for each model a butterfly
diagram considering the value of the toroidal field along the tra-
jectories of its maxima at different times. From the diagrams for
Models 1, 2 and 7, shown in Fig. 4, is now evident the periodicity
of the eigenstate and its spatial scale. For larger values of ξ we
retrieve smaller periods and smaller spatial scales, while decreasing
the action of the mean-field dynamo both periods and spatial scales
increase.

It is interesting to note that the particular symmetry of the initial
magnetic fields does not affect the dynamical characteristics of
the eigenstate selected by the problem: comparing for example the
results for Models 1 and 7 (which differ only by the initial field)

we can see how the growth rate, the period, the spatial scale and
the ratio between poloidal and toroidal component are roughly the
same. Moreover, observing the butterfly diagrams is evident how the
initial symmetry of the magnetic field at the passage at the equator
(quadrupolar for the first six models, dipolar for the rest of them)
is preserved during all the evolution of the system. This means that
the state reached by the system is degenerate in the parity at the
equator of the magnetic field.

The turbulence proprieties, that determine the characteristics of
the mean-field dynamo, can in principle set a time-scale (the dynamo
wave period) which might be unrelated to the large-scale dynamics.
Of course the same turbulence that sets the dynamo coefficient
ξ , as well as the mean-field resistivity η, should be related with
other properties of the disc like the typical viscosity, and might
be influenced by the cooling properties and the ionization state
of the plasma. Understanding these possible connections, and their
observable consequences, is however beyond the scope of this paper.
We hope to extend this initial introductory work to a more realistic
regime, where a more meaningful choice for η and ξ , based on a
turbulent model, could allow us to properly evaluate the importance
of mean-field effects (Brandenburg & Sokoloff 2002). This could
help our understanding of some of the unexplained time-variability
observed in accreting systems (Gilfanov 2010), which cannot be
naively associated with orbital periodicities.

The relation between mean-field dynamo and MRI in thick discs
is also a fundamental aspect to be investigated. So far, this has been
studied numerically only in the classical MHD limit in the shearing
box local approximation (for a review Blaes 2013). When vertical
stratification is included, magnetic buoyancy couples with the turbu-
lent dynamo effects (Brandenburg et al. 1995) and quasi-periodical
field amplification, migration and reversal can be observed (Davis,
Stone & Pessah 2010; Flock et al. 2012). It would be interesting to
reproduce these effects of self-generated turbulence in the GRMHD
case as well.

Further developments might also include: the quenching of the α

effect; the dynamical feedback of the magnetic field on the evolution
of the hydrodynamical quantities, requiring the integration of the
full set of GRMHD equations. Moreover, in this study we have fixed
not only the disc structure but also the mass and the spin of the black
hole. The role of these parameters needs also to be investigated, to
understand if there are possible observable quantities that could help
us to constrain them. This could be of potential interest especially
in view of the large improvements in precision of the measurements
of the mass and the spin of a black hole of the last few years (Risaliti
et al. 2013).
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Figure 3. Evolution of the toroidal component of the magnetic field for Model 1. The red solid line is the event horizon, while the dashed lines represent the
trajectories of the maxima of the magnetic field, inclined with respect to the equator by an angle ±χ0. The magnetic field is measured in units of the maximum
of the initial profile and the time in units of Pc.

Figure 4. Butterfly diagrams for the Models 1 (left), 2 (centre) and 7 (right), showing the value of the toroidal magnetic field along the trajectories of the
drifting (shown in Fig. 3) as a function of time. The magnetic field has been normalized to its maximum value in the whole domain at every time, which is
measured in units of the orbital period of the centre of the disc Pc. The parameter s ≡ z/sin χ0 represents the position on the trajectories.
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