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Passione ed energia
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Introduction

In the industrial design of turbomachinery, a key factor is rep-
resented by time-to-market. The strong competition among
turbomachinery companies to satisfy customer requirements
and the more and more stringent environment regulations,
pushes towards the design of compact machines with high ef-
ficiency and reliability, and reduced costs. The efforts and the
resources to employ in redesigning a whole machine, starting
from scratch, does not meet generally the time requirements
of a market strategy. This leads to face the issue of split-
ting the main redesign problem in smaller, easier to manage,
problems in order to reduce time and costs while preserving
competitiveness. For these reasons, the aerodynamic as well
as the mechanical redesign of a single component become a
key aspect.

Nowadays, a redesign problem is often a multidisciplinary
issue, which involves simultaneously aerodynamic as well as
aero-mechanical and heat transfer aspects. The geometries
of the components have complex three-dimensional features
always more difficult to manage with simple and standard
one-dimensional approaches based on empirical correlations.
Moreover, the customers requirements aim to obtain a reli-
able and flexible product able to work in the whole operating
envelope of a plants. Thus, due to the huge amount of infor-
mations that should be concurrently taken into account to
meet all the requirements to design a new line of products,
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it is easy to understand the need for the designer to employ
a modern computer-based redesign procedure to obtain an
optimal solution in a reasonable time.

All these considerations are enough to explain the indus-
trial interest in pushes the researcher for a continuous im-
provement of these tools towards automatic and effective pro-
cedures for multidisciplinary design. The emphasis is justified
by the capability of these optimization algorithms to exploit
the great amount of information provided by numerical simu-
lations, and correlate them to the geometrical parameters in
order to find their optimal combinations.

The main topic of this PhD thesis is the description and
the analysis of a redesign strategy for high-pressure steam
turbine stages. The overall procedure will be presented, from
the choices made for the stage optimization to the numerical
verifications need for the new product industrialization. The
optimization technique relies on a response surface method,
coupling the high-fidelity CFD RANS computations with an
optimization algorithm based on meta-models. The emphasis
will be mainly focused on two meta-models in particular, the
support vector machines and the artificial neural networks:
an entire chapter will be devoted to their description, and a
comparison between these two methodologies will be reported
in the section concerning the results of the stage optimization.
A wide section will be devoted to the impact of surface rough-
ness, since it is a relevant and active research area and it plays
a role of main importance into blades design.
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Chapter 1

Redesign strategy

In this chapter a brief description of the redesign strategy
employed in this work will be reported. After some general
consideration on the steps usually involved in such a method-
ology, the key aspects of each step will be analysed critically.

1.1 General consideration

With respect to some decades ago, the approach of the de-
signer to the aerodynamic and mechanical redesign of a tur-
bomachinery component is changed. Many often the require-
ments of the customer involve to investigate a component
with complex three-dimensional geometry and to test it in
different operating condition simultaneously, with the scope
to optimize the performance under stringent constraints. To
solve such a multidisciplinary problem is need to explore
a wide design space and consider tens of variables to find
their better combination, in order to satisfy all the targets.
This make the work of the designer very hard for both time-
consumption and satisfaction of the obtained results.

These industrial needs have been the spring that have
pushed into the development of computer-based design tech-
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niques. These driven the designer into research an optimal
solution of such problems, in a reasonable time and with good
results.

Many often, such an approach couple the high-fidelity
results of the computational fluid dynamics (CFD) simula-
tions, with the capability of optimization algorithms to man-
age the great amount of informations contents in these data.
The algorithms “replace” the work of the designer, employing
these informations to find an optimal geometrical configura-
tion which respects the objectives and the constraints of the
problem studied.

A redesign procedure is generally composed by different
phases, generally split up in four main steps: parametrization
of the geometry, sampling of the design space, CFD simula-
tions, and thorough research of a optimal solutions set. Each
step plays an important role into achieve a good optimiza-
tion result. As far as parametrization is concerned, many
efforts have been done during the last decades to improve
it, achieving a high-level of maturity. Different approaches
were proposed in order to ensure an easy and robust handling
of blades and meridional flow paths geometries, for axial as
well as centrifugal turbomachines (Chen and Yuan [1], Bur-
guburu and le Pape [2], Checcucci et al. [3], Pritchard [4]).
These generally employ parametric curves (Bézier, B-splines
or N.U.R.B.S.) to describe the component to study (Fig. 1.1).

Often, the control points of the curves are related each one,
in order to directly handling the main geometrical features of
the component. The sampling of the design space is by now
guided by means of quasi-random sequence (e.g. latin hyper-
cube, Sobol’s sequence, hypersphere, etc.), that are simple
to manage and allow to avoid samples clustering (Fig. 1.2).
Thinking that the CFD computations can not be entirely re-
placed by any other tool although their time consumption
(however more and more reduced by using multi-core clus-
ter), the weak link of the overall procedure seems the opti-
mization algorithm. Nowadays many different strategies can
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Figure 1.1: Examples of parameterization

be cited and classify in categories, basing on the different fea-
tures or the integration level with the coupled CFD code that
each one have: such as gradient methods, methods based on
the response surface approximation (e.g. ANN, D.O.E.), ex-
ploratory techniques (e.g. Genetic Algorithm, Simulated An-
nealing), adjoint method etc. (Rubechini et al. [5], Bonaiuti
et al. [6], Leung and Zingg [7], Van den Braembussche et
al. [8], Ellbrant et al. [9], Chahine et al. [10]). Each one shows
advantages and drawbacks, depending by the number of de-
grees of freedom, the multi-dimensions design space shape,
e.g. convex, continuum etc., the number of calculations re-
quired, the level of problem approximation. This wide possi-
bility of choice for the end users, point out that during the
years no one of the proposed methods is resulted better than
others. Thus, in the author’s opinion is here that is neces-
sary to spend a lot of efforts, in order to improve the whole
optimization process.

Among the vary strategies, the methods based on the re-
sponse surface seem have reached a good level of maturity and
represent a good compromise in terms of time-consumption
and prediction accuracy. They are suitable for optimization
problem where the design space has a complex multi-peak
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Figure 1.2: Examples of design space sampling

shape and many geometrical parameters have to be taken
into account. An example of optimization cloud is shown in
Fig. 1.3 where stage efficiency is plotted against mechani-
cal constraints. Recently a novel approach to rebuild the re-
sponse surface of an optimization problem was employed: the
support vector machine (SVM). The characteristics of such
an approach have allowed its use in very different scientific
fields, from defect diagnostics of steam and gas turbines, to
environmental or medical applications. It was used as classi-
fier or in regression mode and sometimes was applied within
an hybrid structure together with artificial neural network or
genetic algorithm.

Seo et al. [11] employed an hybrid SVM-ANN to diagnos-
tic the defects of a gas turbine engine, pointed out the reliabil-
ity of the diagnose predicted. Lu and Wang [12] assessed the
feasibility of use a SVM approach to monitoring the air pol-
lutant level into the atmosphere. The results obtained were
compared with those of an RBF network, pointed out the bet-
ter prediction accuracy of the SVM approach. Adankon and
Cheriet [13] applyed a least-square support vector machine to
handwriting recognition showing the usefulness of this model
as classifier and the importance of the hyper-parameters se-
lection. Anguita et al. [14] used a SVM for the aerodynamic
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Figure 1.3: Example of an optimization cloud

design of the blade profile of a turbine cascade. The meta-
model was used in regression mode to solve a bi-dimensional
problem with sixteen degrees of freedom and two objective
function (outlet flow angle and total pressure loss coeflicient).

Once an optimal solution is found some verifications, in
different configurations from the one/ones studied during the
optimization, have to be carried out. Usually in this phase
can be defined a matrix of calculations in which the main
loss sources are investigated, such as profile, secondary and
leakage losses (following an historical classification). To this
end, the parameters that play a significant role in affecting
these losses are varied in a range of practical interest. Depend-
ing on the specific application can be considered parameters
such as aspect ratio (AR), radius ratio (RR), stagger angle,
robustness to incidence, pitch to chord ratio, blade size and
count ratio, surface roughness, leakage mass flow and so on.
As a results, such verifications provide a big picture of the
advantages and drawbacks derived from the use of the op-
timized geometry. Thus allowing its industrialization within
the design chain and the fine tuning of the preliminary design
tools.
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1.2 Optimization procedure

In this work, the redesign of the high-pressure steam turbine

stage has been carried out by means of the following strategy.

The adopted approach is similar to that proposed by Pierret

and Van den Braembussche. [15], which involve CFD analyses

and a response surface method for the optimum selection.
The overall procedure is composed of several steps:

e geometry parametrization

e sampling of the design space

CFD runs of each sample

e response surface generation

CFD verification of optimal solution

A powerful and versatile parametrization is one of the
key aspect of the blade optimization. In this work the three-
dimensional blade geometry was handled by using a parame-
terization based on Bézier curves. The use of such approach,
to describe the airfoil and the span-wise distribution of all air-
foil parameters, ensure good and accurate reproduction of the
blade shape, moving a limited set of significant parameters.

The design space was defined once the parameters sub-
jected to optimization and their variation range were selected.
A low-discrepancy sequence was used to populate the design
space, in order to have a more uniform sampling, and make
the training of the meta-model more efficient. Then, the cor-
responding geometries were calculated.

A meta-model was used to generate an approximate re-
sponse surface for each objective function (OF) and con-
straint. Usually an artificial neural network is employed, and
is reliability has already tested in different applications (Rube-
chini et al. [16] and [5], Checcucci et al. [3]). In this work
the author propose to use a novel meta-model for the aero-
dynamic design of turbomachinery blade: a support vector
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machine. The type used was a least-square SVM and it was
employed in regression mode. More details will be given in
the next chapter while a comparison with the ANN approach
will be discussed in chapter 4.

Finally, a set of optimal geometries suggested by the meta-
model, which satisfy objective functions and constraints, were
verified through numerical simulations, leaving to the de-
signer experience the choice of the final solution.

Once an optimal solution is found, some verifications are
planned in different configurations from the one/ones studied
during the optimization. According to the industrial design
rule, a matrix of additional calculations is defined identifying
those parameters that affect the main sources of loss. For
the present case, a detailed analysis of the effects of surface
roughness will be carried out. Finally, the impact of stagger
angle, AR, RR and shroud leakages on stage performance will
be investigated.



Chapter 2

Meta models

In this chapter the description of the features of two meta-
models will be reported and discussed in details. First, the
novel approach proposed in this work, the support vector ma-
chine, will be described and the parametric analysis carried
out to proper select the hyper-parameter will be discussed. Fi-
nally, a widely used meta-model, the artificial neural network,
will be presented and different training methodology will be
analysed.

2.1 Support vector machine

2.1.1 Some background information

The support vector machines (SVM) has been developed at
the end of the nineties from Vapnik et al. They are based on
the support vector algorithm, generalization of the general-
ized portrait develop from Vapnik et al. (about sixties). It is
framed into the statistical learning theory (Vapnik - Chervo-
nenkis theory), which characterized the learning algorithms
property, allowing them to generalize to new data the ele-
ments prior learned.
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As learning method, the support vector algorithm is able
to generate an approximate function of the response surface of
the problem, starting from a set of input/output parameters
(training data), in classifier and regression mode. An impor-
tant aspect in the SVM approach is how the approximation
function is sought. Generally this problem is related to find
the best function that minimize the empirical risk. As com-
monly used into statistical machine learning or to train an
artificial neural network, using a typical loss function such as
squared error or absolute value error. The SVMs formulation
instead is based on a different approach following the struc-
tural risk minimization. This is a key aspect for the learning,
because it aims to minimize the generalization error admit-
ting some lack into training data set approximation.

The support vector machines can work with linearly sepa-
rable and non-separable data in ”N”-dimensions. In practice
the training algorithm try to seek the optimum hyperplane
separator that maximize the distance between the training
samples closest to this plane and the plane itself. This prob-
lem can be solve with the Lagrange multipliers technique,
where the generic multiplier, A;, is obtained by solving a
quadratic programming problem. Each input parameter that
has the corresponding A strictly greater than zero is called
support vector. These are the critical samples of the training
set and most close to the optimum hyperplane. This proce-
dure, briefly described, can be used for linearly separable and
non-separable data, introducing slack variables for the not-
separable case and admitting, in this second case, a certain
tolerance to the errors.

For problems with separable or non-separable non-linear
data, the same procedure early described can be employed
by mapping the initial non-linear ”N”-dimensions input pa-
rameters in a new space with higher dimension, called feature
space: in this space the data are again linearly separable or
non-separable. Then a kernel function is introduced within
the optimization algorithm, to avoid numerical instability and
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higher computational time with respect to the linear case.

In this work a least-square SVM was employed, this type
of machine is computationally more efficient than the stan-
dard SVM method, because the training algorithm treats
linear equations instead to solve a quadratic programming
problem. On the other hand, this simplification reduced the
sparseness capability of the machine, that can be restore, al-
most partially, using different methods.

The decision function found by the LS-SVM is in the form:

f(@) = signfw ¢(z:) + 1] (2.1)
where w and b are determined by solving the following opti-

mization problem to minimize the training error and find the
optimum hyperplane:

1 1 &
minimize W W + 27 Zl e? (2.2)

subjected to y; — w'gzﬁ(zi) —b=¢ Vi=1,.,N (2.3)

where w is the weight vector, v is the regularization term
which determines the trade-off between the model complexity
(flatness) and the training error, e; are the error variables, y;
are the output data, ¢(z;) is the function which maps the
input data into a so-called higher dimensional feature space,
and b is the bias term. The introduction of a squared loss
function into the objective function and an equality constraint
into the second equation, make the problem to solve linear.

Some more details about how to solve the optimization
problem, which technique can be used to improve the ro-
bustness and the sparseness of the machine, can be found
in Suykens et al. [17, 18] and Valyon [19]. Moreover, more
details involving the training algorithm formulation and a
wider bibliography, can be found within more specialist work
on this topic, such as Vapnik ([20],[21]), Burges [22], Smola
and Scholkopf [23] and Cherkassky and Ma [24].
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2.1.2 Hyper-parameters selection

Once the optimization problem is formulated mathematically
(represented by the equations system (2.2) and (2.3)), a good
setting of v and the kernel parameters is need to get the bet-
ter SVMs generalization performance. The impact of the reg-
ularization term on the solution of the optimization problem
can be pointed out from the figure 2.1, where the LS-SVM
was used to approximate the function (2.4), employing the
training dataset composed by the open squares.

y(z) =

Among the different kernel functions that can be adopted
to map the input samples in the feature space, the stronger
regularized universal Fourier kernel function was employed,
defined by the following equation:

. (2.4)

1— o2
K(xi,2;) = O<o<l (25
(@i, z;) 2(1 — 20cos(x; — ;) + 02) 7 (25)

Figure 2.1 shows several approximation functions generated
by setting different values of the regularization term v ranging
from 10! up to 10%, held fixed any other parameter. The figure
highlights as the increase of « reduce the flatness and arise the
complexity of the response surface predicted, in order to ob-
tain a better approximation of the function y(z). This result
do not means that the value of v has to be greater as possible,
because a major complexity often implies a worse generaliza-
tion performance. The effect is more or less marked depending
on the studied problem: in particular from the samples that
compose the training set and the shape of the response surface
to generate. The great variability of the parameter and the
corresponding predictions makes the selection of this factor
very important into research the right solution of a specific
problem.

Similar conclusions can be draw for the kernel parameters.
Using the Kernel function represent by the equation (2.5),
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the only hyper-parameter to set is o. Figure 2.2 summaries
the results obtained by setting different values of ¢ ranging
from 0.1 up to 0.6, for a fixed value of v. With respect to ~
values, the range of ¢ is very narrow and the variability of the
response surface generated is wide. Moreover there is not a
regular trend towards a better approximation of the function
to fit. This makes any conclusion on the trade-off between
training and generalization capability difficult to get from this
simple analysis. Thus, the selection of this parameter has to
be made with more careful that for the v value, due to its
strong impact on the solution found.

These few considerations, get from this simple case, are
enough to sensitize the reader to the importance of a right
selection of the hyper-parameter and to justify a parametric
analysis. This one was performed in order to set v and o to
employ for a complex class of problems with many input and
output variables, such as the aerodynamic redesign reported
in the next chapter.

The first step of the parametric analysis was to create
a database representative of such an optimization problem
in order to train the LS-SVM. A design space generated by
varying eleven input parameters in a specific range was se-
lected. The sampling of the space was performed using a
quasi-random sequence, rather than a random sampling, to
ensure a well determined statistical distribution of the new ge-
ometries in terms of mean value and variance. Moreover, all
the input parameters are non-dimensional between -1 and 1.
The variables selected allow to handle the three-dimensional
geometry of a blade row and are typical for both axial and
centrifugal machines, such as inlet and exit angles, thick-
ness distribution etc. For each geometry, a three-dimensional
RANS calculation was performed in order to evaluated three
objective functions (output variables for the SVMs), again
commons for both axial and centrifugal machines, such as
efficiency, mass flow rate and work coefficient (hereafter re-
ferred as OF1, OF2 and OF3).
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The database created in this way is representative of an
aerodynamic redesign problem, making the tuning of the SVMs
hyper-parameters suitable for other optimization problems of
this type.

Once the database was created, the impact of v and o
value on the fitting and generalization error was investigated
in a wide bi-dimensional space ranging from 1.0x10! up to
1.0x108, for the first parameter, and from 0.1 up to 0.7 for
the second one. The LS-SVM was trained using about 1800
examples to compound the fitting data set (hence to train
the machine) and about 200 for the generalization one. The
results of such an analysis is presented severally for each pa-
rameter, by cutting the studied surface at a constant value
of the other variable. This allow to show the informations
content into the results in a more clear way. First, the im-
pact of v was analysed. Figure 2.3 and 2.4, show the trends
of the fitting and generalization error, calculated by means
of (2.9). Here the errors were reported with respect to + for
each objective functions:

SN Wiern — Yisvarl
Err(y) = &=L C’;\? SVM (2.6)

The fitting error shows a monotonous decreasing trend
with the rise of the hyper-parameter for each OF considered,
suggesting the use of a very high value of v to have the lower
error. The same conclusions was previously found analyz-
ing the impact of hyper-parameters for the function reported
into the equation (2.4). Similar considerations can be draw
analyzing the trend get for the generalization error. Now the
curves are almost flat and present a minimum value when =y is
about 5.0x10% <+ 1.0x10%, depending from the objective func-
tion choose. Thus taking a v value of about 1.0x10* seems
guarantee the better generalization performance of the LS-
SVM. Nevertheless, in the experience of the authors, seem
that the better performance of the meta-model in terms of
quality of the approximated response surface generated, is
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reached when the two errors, fitting and generalization, are
close among them and produce a low error.

Bearing in mind this consideration, with referring to fig-
ure 2.5 where the curve that represent the difference between
the two errors are shown, a « value of about 1.0x10% was se-
lected. This value will be employed in the optimization prob-
lem described in the next chapter. It is worth noticing that
to summarized the results for all the OF in a single figure,
the selection of the scale of the y-value modify the actual
shape of the curve. This hide to the reader that the variation
between the maximum and the minimum error can ranging
from about 20% to 50%, depending on the function, making
important the impact on the response surface rebuilding.

Once chosen the value for «, the impact of o was studied.
The trend of the fitting and generalization error with respect
to o are shown in figure 2.6 and 2.7 for each of the three
objective functions. Respect to the « analysis, two different
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trend were identified for the errors, a monotonic decreasing
for the fitting and a quasi-parabolic with an optimum value
for the generalization one. The choice of the right value, in
accordance with the previous study, was made by checking
the difference among the two errors. Thus, a value of ¢ = 0.1
seems represent the better trade-off for each objective func-
tion and therefore was selected and used during the redesign
presented later. Again, as for the v analysis, the scale of the
y-value of the graphs hide the high variations of the hyper-
parameter with respect to o value, that in this case can reach
one order of magnitude.

It is worth to note as the narrow range of variations of o
with respect to v imply a more careful selection. Its optimal
value can be slightly vary from a problem to another, while
the value of v is certainly more stable and reliable to different
redesign applications.
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2.2 Artificial neural network

2.2.1 Some background information

An artificial neural network (ANN) is a dynamic system which
tries to reproduce the way of work of the neural network of
human brain. This can be compared to a high-complex, non-
linear and parallel computer. Its base unity is the neuron, and
the information that two or more neurons exchange between
them is weighted by the strength of the synaptic connections:
here is contained all the knowledge acquired. Thus an ANN
is a system based on simple process unit, which elaborate the
data of a determine problem in parallel, and store into the
strength of neural connection the knowledge acquired during
a training process. Such a knowledge will be exploit to find a
new solution when a never seen input is used to interrogate
the network. This architecture allow to solve non-linear and
complex problems, hard to simple manage with other meth-
ods.

Considering a generic network topology (Fig. 2.9), a k-
neuron incoming input consists of the outputs (O) of the
m unities linked to it and weighted by the strength of the
synaptic connection wgy,, between the unity k£ and m. The
sum of these weighted inputs represent the neuron activation
v (2.7): the corresponding neuron output will depend by the
transferring function ¢ adopted (2.8). The most use are the
sigmotd and hyperbolic tangent.

v = ZwkmOm (2.7)

m

Oy = ¢(v,) (2.8)

The value of the weights of each synaptic connection is de-
termined by the network training. In this phase, a series of
input/output couples is provided to the network in order to
make it able to re-build the shape of the response surface of
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the problem. In practise, during the training it has to find the
right values combination of all the synaptic connections.
From a mathematical point of view the training process
consists in to research the minimum of an error surface in N-
dimensions. The more easy and robust method employed ex-
ploit the gradient descent technique, which base the weights
correction on the first order derivative of the error surface.
Others technique which are based on second order criteria,
needs of more stringent conditions to be applied and are more
complex to implement, thus are not widely used. The train-
ing procedure consist in to run the network using the inputs
available, compare the results with the desired output and
compute the error made (generally a quadratic error):

e= 3 S 1) (2.9)
k

Then the value of the weights is corrected according to the
gradient descent technique.

Awgm = =0 with 0<n<1 (2.10)

8wkm
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where 7 is the learning rate. The procedure is iterative and
is repeated until the mean error made on the whole set of in-
put reach the desired value. It is important to find the better
combination of the weights in which way these are initialized.
This can affects the global time of the training and favour
an early neurons saturation. A generic initialization of the
weights matrix suggest to have a null mean value and a vari-
ance equal to the square root of the synaptic connections. The
training procedure described is call supervised. Generally the
training set is split up in two database: the first is call fitting
set, composed of about 80 — 90% of the total training set,
while the second is call validation set. The first database is
used to train the network, while the second one is employed to
verify the generalization capability acquired during the train-
ing. The network never seen this last set of example during
the training. Thus the resulting outputs predicted for this
database is only dependent by the accuracy of the response
surface re-building. A key factor to have a high accuracy of
the response surface approximation is provide a significant
set of example well representative of the problem to study.

In this work a simple feed forward network with two hid-
den levels was used. According to Hecht-Nielsen theorem, this
structure of the network is able to compute any function F'(x)
with a certain accuracy. A gradient-based back-propagation
algorithm was employed for the training. The method consists
in two steps. In the first one, the network is run employing
all the example of the fitting database and the error made is
calculated. Then, in the second step the weights correction is
performed by propagating the error to back. Thus the layer
close to the output are the first to be corrected and so on
for all the other layers. In order to speed up the learning,
a momentum term («) has been implemented into training
algorithm. Moreover, in order to improve the generalization
capability, ten neural network with different architectures and
weights initialization were adopted for an effective hybridiza-
tion.
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More details concern the network typology, training algo-
rithm formulation and hybrid networks can be found in [25,
26, 27, 28].

2.2.2 Learning rate and momentum term

As discuss for the support vector machine case, a key factor
to have a good training of the meta model is the set up of
all the coefficients involve in the training phase. For the ANN
two are the parameters to be set: the learning rate and the
momentum term.

As in the case of the SVM hyper-parameters selection,
the same database (fitting as well as validation) representa-
tive of an aerodynamic redesign problem was selected. With
respect to the SVM case, all the input parameters were non-
dimensional between 0 and 1, according to the definition limit
of the sigmoid transferring function. Moreover, the same ob-
jective functions, that is the output variables, and were se-
lected.

First looking at the effect of learning rate on training.
This coefficient determine the training speed up and conver-
gence, with minor impact on the generalization capability.
The higher is its value and the higher is the weights correc-
tion. The effect of the learning rate is to do swing the weights
values on the error surface until a minimum of the function is
reached. From one hand, high n allows to have a quick train-
ing but no-convergence of the process is possible, that is a
higher generalization error or an over-training of the network
can be reached. On the other hand, low 1 ensures the conver-
gence of the training but the risk to find a relative minimum
is higher. The result depend on the case. Figure 2.10 shows
the trend of fitting error by varying the learning rate value
between 0.1 and 0.9: for the sake of clarity only three curves
are reported. An increasing of 7 speed up the learning mainly
in firsts phases of the process, and as a result the target error
is reached more quick. As aforementioned, this do not always
correspond to a training convergence. In fact, looking at fig-
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ure 2.11, for the higher 7 results the higher generalization
error. Analysing the two plot, a value of n = 0.5 seems rea-
sonable to speed up the training and improve the prediction
capability of the network.

A simple way to increase the training stability at higher
learning rate is introduce a momentum term («/) in the weights
correction formula:

Awgp, = f(a, Awgm—1) with 0<a<1 (2.11)

The effect of this term is to increase the weight correction
when the partial derivative, calculate for the example n, has
the same sign of the one calculate for the example n — 1.
While, in the case that the two derivatives have opposite sign
the correction Awgy, is reduced. Thus, the training process is
more quick ans stable. Quicker, because when the two deriva-
tives have the same sign, it means that the gradient vector
is moved in the right direction toward the minimum of the
error surface. To correct the weight of a bigger quantity cause
a rapid achievement of the optimum value of w which mini-
mize the error of network output. Moreover, the training in
more stable because when the two derivatives have opposite
sign, the weight is less corrected and the oscillation of the
network over the error surface is smaller with respect to the
case with a = 0. Figure 2.12 and 2.13 show the trend of fit-
ting and validation error by varying « in a range from 0.0 to
0.9, held fixed n = 0.5: as for n analysis only three curves are
reported within the plots. Analysing them it can be point out
that the same fitting error is obtained with a reduced number
of epochs and the generalization capability is improved. As
a result, a value of & = 0.7 seem reasonable for the present
application.

2.2.3 Hybrid neural networks

An hybrid neural network is a system formed by more net-
work which work in parallel, and in which the outputs are
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combined among them. In this way the error of the resulting
output value is reduced with respect to the one obtained from
each network separately. This reduction is obtained in both
fitting and generalization errors. The last one is the main
goal of the hybridization, due to the difficulties to improve
the generalization capability previously discussed.

In order to have a proper hybridization, the errors of the
networks employed must have null average and to be mutually
independently. It is reasonable to think that a similar condi-
tion can be satisfy employing networks very different among
them. In practise this means to use a different weights initial-
ization, structure of the network, e.g. different neuron number
and activation function, learning and momentum coefficient.
Moreover, each network can be trained with only a part of
the available examples: the fitting set can be divide into "N”
groups with only same example shared among the networks.
The higher is the error independence, and better will be the
hybridization effects. Three are the most used methods to
combine the networks output:

e Naive method
e Basic Ensemble Method (B.E.M.)
e Generalized Ensemble Method (G.E.M.)

The first one is the most easy to apply but also the less
efficient. In practise, once the "N” network were trained the
user will choose to use the network with the lower error, losing
all the knowledge stored by the other networks during the
training.

In the second method (B.E.M.), the final output is ob-
tained by averaging the outputs of the "N” networks trained
(2.12), thus exploiting all the knowledge acquired by all the
networks.

1 N
y(i) = 5 2_ui)) (2.12)
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Defining;:
m(i) = f(z) — fi(z) (2.13)

the deviation of the true function the rebuilding one, and:

MSELf] = Em?] (2.14)
the mean square error of each networks in term of m;, it
is possible to estimate that the average of the mean square
errors is reduced of "N” times:

N
e 1 9
MSE = + ; E[m? (2.15)

The G.E.M. method generalized the approach previously
discussed. In this method the outputs of "N” networks are
combined with a weighted average. In this way the networks
which provide a higher error have a lower impact on the final
output. This is computed modifying the equation (2.12) as
follow:

N
. 1 )
y(i) = N z_:l ;yi(Jj) (2.16)
Here « is the weight of network 4, defined by:

92 N
0= ety with Y ey =1 (2.17)
Zj:l €; i=1

where o represent the error of network 7. From a mathemati-
cal point of view, the error made with this third method will
be always less or equal to the one made with the others two,
since these are particular cases of the last one. An example of
the improvement obtainable with a hybrid network is shown
in Figure 2.14. The prediction of a single ANN is compared
to the one of a hybrid network (ten ANN) in which the out-
puts were combined using the G.E.M. method. This results
were compared to the output of the validation set employed
for the selection of both learning and momentum coefficients:
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for the sake of clarity only few data are reported without al-
ter the content of the picture. The figure highlights the better
generalization capability of the hybrid network, which rebuild
with higher accuracy the trend of the value of the validation
set. The drawback of use the hybrid ANN lies on the training
time-consumption which will be ”N” times the one of a single
network. However, the use a cluster multi-cores to perform
the learning phase drastically minimize this aspect.



Chapter 3

TRAF code

In this chapter the characteristics of the CFD code used for
calculations will be described. Some more details concerning
the model used to solve transitional flows, and the boundary
conditions for surface roughness and shroud leakages compu-
tations will be reported.

3.1 The flow solver

In the present work, the multi-row, multi-block version of the
TRAF solver was used (Arnone [29, 30]). The unsteady, three-
dimensional, Reynolds averaged Navier-Stokes equations are
written in conservative form in a curvilinear, body fitted co-
ordinate system and solved for density, absolute momentum
components, and total energy. The spatial discretization of
the equations is based on a finite volume cell-centered scheme
on non-periodic C-; H-, and O-type grids (Fig. 3.1). Both
scalar and matrix dissipation models introduced by Jame-
son et al. [31] and Swanson and Turkel [32], together with
an eigenvalue scaling, were implemented, to minimize the
amount of artificial diffusion inside the shear layers. The sys-
tem of governing equations is advanced in time using an ex-

29
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Figure 3.2: Examples of total kinetic energy contours
in a separated shear layer

where g* = 0.09, and
R=Cy(1 — e ¥/ wk, (3.3)

is a function used to transfer energy from k;, to k, ¢ =
max (R, — C4,0) is a transition parameter based on the wall-
normal-distance Reynolds number R,, C; = 1.0, C5 = 8 and
Cy4 = 10. The production term of the laminar kinetic energy
is Py = 1,52, where S is the shear rate and vy is the “laminar
eddy-viscosity”, which is modelled as follows:

vy = Cl \/1?4(59 (3.4)

with C; = 1. For details on the implementation see Pacciani
et al. [36, 38].

The inlet conditions for k and w are obtained from the
prescribed values of free-stream turbulence intensity k., =
3/9Tu? u? , and turbulence length scale wy, = éo/2/ZToo. The
inlet condition for ky is as follows: ks = koo (see [37] for more
details).

Surface roughness model

According to Wilcox [35, 39] at the wall k,, = 0 and the value
of w is modified in order to account for the effects of surface
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roughness:
v*2 403 kI <5
Wy = Vs SR ) SR - { )\R+ (4)\% _ )\R) 6(5—]6?) 7k;i- >5
(3.5)

v* is the friction velocity, kI = ksv* /v is the roughness height
in wall units, and Ag = 100/k}. The constant Cj in the
laminar kinetic energy model Eq. 3.4 was calibrated in order
to sensitize the transition to the roughness height &} :

C1 = fi(kT) = maX{O.&Ztanh [(kj/18.13)2/3“ (3.6)

3.1.2 Shroud leakage model

In shrouded turbines, the leakage flows play an important role
in the overall turbine performance. The physics of these sec-
ondary flows and their interaction with the mainstream flow
have been intensively investigated in recent years (Wallis et
al. [40], Pfau et al. [41], Rosic et al.[42]). These studies show
that these complex, three-dimensional and non-uniform flows
affect the main flow path, modifying the blade loading and
pressure distribution near the endwalls. They also change the
incidence and enhance the secondary flows in the next blade
row, with a consequent rise of the associated losses. As dis-
cussed by Rosic et al. [43], the need to account for the leakage
flows in a three-dimensional multistage calculation has led
to the development of shroud models with varying degrees
of complexity and computational costs. These models range
from a simple “black box” approach, where the leakage flow
is modeled by extracting and re-injecting the flow at given
positions upstream and downstream of the blade row with
a specified angle, to three-dimensional, multi-block, unsteady
simulations including the mainstream, the shroud cavities and
the seal tooth regions.

In this work, a simple one-dimensional model of shroud
cavity was used (Rubechini et al. [44],[16]). For a specific
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shroud geometry (Fig. 3.3), the model calculates the leak-
age mass flow, total enthalpy rise and change in angular mo-
mentum through the cavity and the flow conditions at the
interface between the cavity and the mainstream. Following
an approach similar to that proposed by McGreeham and
Ko [45], the flow through the shroud cavity is completely
modeled, and its interaction with the main flow path is cal-
culated by imposing coupled source/sink boundary conditions
at the cavity /mainstream interface.



Chapter 4
Stage optimization

This chapter describes the optimization of a high-pressure
stage for reaction steam turbine drums. Once discussed the
redesign targets, the preliminary results obtained comparing
the two meta-models previously described will be presented.
Then the final optimum will be selected employing the SVM
approach and its performance will be compared with the ones
of the original geometry. Finally, a section will be devoted to
the surface roughness related issue and its impact on blades
design will be addressing.

4.1 Problem definition

The stage investigated is composed of prismatic blades and
usually employed in both high and mid-pressure steam tur-
bines. This type of blading is characterized by high aspect
ratio (AR) and low radius ratio (RR). It is designed to work
in a repeating stage environment and in a wide range of op-
erating conditions, using a single airfoil geometry for stator
and rotor rows.

The present optimization is aimed at maximizing the tur-
bine’s power output and efficiency, meeting the manufactura-

34
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Figure 4.1: Camber line optimization parameters

bility constraints for the number of stages and the blade count
of each stage. During the optimization process several con-
straints of a different nature were imposed in order to meet
the present design rules. First of all, the mass flow rate was
held constant. In this way the required stage loading increase
was obtained without changing the operating point when re-
placing the original stage with the optimized one. Moreover,
for the blade loading distribution over the airfoil surface and
especially on the rear part of the suction side, limitation of the
diffusion rate was imposed to avoid boundary layer separa-
tion. As far as the mechanical integrity issues are concerned,
both the static and the dynamic behaviors of each geometry
were checked downstream of the CFD analysis. Accounting
for structural limitations is essential for final design purposes.
It may guide the designer in choosing a given solution among
several aerodynamic optima by eliminating those geometries
that do not meet structural requirements. In the present opti-
mization, the mechanical integrity checks relied on simplified
design rules. They are based on the evaluation of root tensile
stress and minimum inertia moment-to-area ratio (Jpmin/A),
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ensuring the same mechanical capability for the optimized
geometry as the original one.

In the first optimization step, a realistic geometry of the
meridional flow-path was chosen, representative of an embed-
ded stage of an existing HP /TP package. Bearing in mind that
the optimized airfoil should operate in a wide range of flow
coefficients, as the original one does, two different optimiza-
tions were carried out assuming boundary conditions repre-
sentative of low and high flow coefficient operating conditions.
To do this, two design points were identified, characterized by
different mass flow rates and expansion ratios. Following this
strategy, the whole range of operating conditions of interest
will be covered by two optimized airfoils: the first working in
the low-to-mid flow coefficient range, and the second working
in the mid-to-high one.

A single airfoil for stator and rotor rows was used, ac-
cording to the original design strategy. Such an assumption,
together with that of prismatic blades, limited the parameters
subjected to optimization to those of a single airfoil section,
thus dramatically reducing the number of degrees of freedom
of the redesign problem. As a consequence, the stage geome-
try was handled by varying only nine parameters in all, which
control the camber line (Fig. 4.1) and thickness distribution
over the airfoil for both stator and rotor rows simultaneously.
The trailing edge thickness was maintained constant. The
choice of which degrees of freedom employ, that is, which pa-
rameters modify during the redesign, was done by taking into
account which of them had a relevant effect on the objective
function considered. This is a crucial aspect if a good result
from an optimization procedure would be obtained. In the au-
thor’s experience the number of d.o.f. to adopt, must be that
strictly necessary to allow the handling of the main parame-
ters affected the objective functions of the redesign problem.
In fact, when deals with the three-dimensional redesign of a
turbomachinery component, the burst of the degrees of free-
dom is easy to achieve, with the consequence sudden increas-
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ing of the design space’s dimensions. Generally this occurs
when the designer attempts to handle all the features of the
geometry to optimize, making very hard for any optimization
technique to really optimize all the parameters selected.

Once specified the range of variation of each parameters,
the design space was populated using a quasi-random sam-
pling. Then, the corresponding geometries were calculated
by means of three-dimensional viscous run, employing the
Wilcox’s two-equations k-w high-Reynolds model for the tur-
bulence closure. In order to account for the repeating envi-
ronment experienced by the stage within the actual turbine,
suitable repeating boundary conditions were adopted, aimed
at obtaining prescribed pressure and temperature drops while
ensuring the same span-wise profiles at stage inlet and out-
let (Rubechini et al. [16]). The training database generated
was compound of about 2000 geometries: about 1800 for the
fitting set and 200 for the validation one. It is worth notic-
ing that, despite the high number of calculations and the low
number of d.o.f., the design space is only well sampling and
not fill fully populated. This make necessary the use of a tool
that is able to rebuild the shape of the response surface with
the better approximation possible.

In the successive sections, the results of the optimiza-
tions will be presented and discussed, in terms of performance
curves over a wide range of operating conditions and compar-
ison with the experimental measurements.

4.2 Experimental facility

The experimental investigation was performed in the blow-
down facility for linear cascades located at the LFM (Labo-
ratorio di Fluidodinamica delle Macchine) in Milan. This is a
transonic wind tunnel with a test section of 80x470 mm, fed
by 6000 kg of pressurized air stocked at 20 MPa (Dossena et
al. [46, 47]), as depicted in Fig 4.2. For the purpose of the
present work, cascade was composed of 9 blades and the cen-
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Figure 4.2: Experimental test section scheme

Table 4.1: Cascade experimental conditions

Total pressure 1 to 1.3 bar
Total temperature 288 K
Isentropic exit Mach 0.25 to 0.64
Reynolds 3.5x10° to 9.5x10°
Inlet flow angle -20 to 430 degrees
Turb. intensity ~ 1%

tral passage was outfitted with 36 pressure taps of 0.4 mm di-
ameter, 20 located on the suction side and 16 on the pressure
side. Flow field measurements were performed by traversing
a miniaturized five hole probe with a head diameter of 1.8
mm on a plane located 0.5 axial chords downstream trailing
edge: the measurement plane is defined by a grid of 50 points
repeated -approximately every 2 mm equally spaced along
two blade pitches- 10 times at different span-wise positions
on one half of the blade height. The probe was calibrated in
the range + 25 deg and + 16 deg in yaw and pitch angles
respectively, and for Mach numbers ranging from 0.2 to 1.0.
The estimated probe accuracy for static and total pressure is
+ 0.3% of the dynamic pressure, while for flow angle mea-



Chapter 4 Stage optimization 39

surement is 4+ 0.2 degrees. A prismatic 3 hole probe was used
for a continuous monitoring of inlet total pressure. In order
to provide proper CFD inlet boundary conditions, a minia-
turized flattened total pressure probe was traversed in the
upstream boundary layer for all considered flow conditions.
The inlet free-stream turbulence intensity was estimated 1%
by means of hot wire anemometer measurements. The geom-
etry of the airfoils were scaled up in order to obtain the best
compromise between Reynolds number (based on chord and
exit velocity) and cascade aspect ratio (about AR = 1.4). The
experimental results are available in terms of surface loading
distributions and enthalpy loss coefficients, defined by:

- (@)

The aerodynamic measurements were performed at three
different expansion ratios (PR), for Mach numbers ranging
from 0.25 to 0.64. Due to the test rig layout, Reynolds and
Mach numbers cannot be controlled independently, so the cor-
responding Reynolds numbers range from 3.5x10° to 9.5x10°.
For each pressure ratio, three different incidence angles were
also tested in the broad range from —30 to +20 degrees. A
summarized of the experimental conditions is reported in ta-

ble 4.1.

4.3 Comparison between SVM and
ANN approach

The first of the two optimization campaigns, the one at low
flow coefficient, was performed employing both the meta-
model described in chapter 2.

The results obtained with the support vector machine ap-
proach were compared with those of an hybrid artificial neu-
ral network. Both the models were trained using the same
database, and their training parameters were selected in order
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to get the best prediction accuracy. According to the para-
metric analyses reported in chapter 2, a value of v = 5.0x103
and o = 0.1 were chosen for the SVM training, while a value
of n = 0.5 and o = 0.7 were selected for the ten ANNs
ones. A first important difference, between these two mod-
els, can be found in the number of training parameters to
set up at the beginning. In particular, the ANN has got all
the unknown referred to neurons and hidden layers number,
which LS-SVM has not. Another consideration concerns the
time consumption of the meta-model training: LS-SVM re-
sults lower expensive than ANN about two order of magni-
tude. This is a remarkable advantage mainly when deals with
greater database and more degrees of freedom, because com-
puting requirements assume a relevant importance compared
to the overall procedure time.

Now, looking at the results. Concerning fitting and gen-
eralization errors (in percentage), figure 4.3 reports a first
comparison between ANN and LS-SVM (MECH and AERO
are referred to the static and dynamic constraints respec-
tively). For both meta-models the errors are very low (<
0.5%) and comparable for each objective function/constraint,
with a narrow margin of advantage for ANN. This suggests
that both tools were correctly trained and the number of
samples used for the training was suitable. Once verified the
learning of the meta-models, they were used to find a set
of optimum solution and the suggested geometries were ver-
ified using CFD calculations (fig. 4.4). For both models, the
suggested geometries lie on the Pareto front of the space in-
vestigated, and respect the imposed constraints for mass flow,
diffusion rate and mechanical integrity check. In order to anal-
yse the meta-models performance, the generalization error
and the difference between models prediction and CFD com-
putations is shown in figure 4.5. For each objective function,
the generalization error obtained during the training is com-
parable to the one outcome, with a general better result for
LS-SVM, confirming the training goods. These results high-
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light the prediction capability of the LS-SVM, that seems
more precise and consistent in terms of prevision ability than
ANN, even if a critical review of the results, point out that
the difference are not so big. Figure 4.6 and 4.7 shows a com-
parison between meta-models prediction and CFD verifica-
tion. According to the errors show in figure 4.5 the predic-
tion is very good for all the objective functions, and the two
models demonstrate to well understood the effect that each
parameters have on the optimization targets. In particular,
LS-SVM have a better accuracy than ANN concerning the
efficiency prevision (fig. 4.6), even if the difference is small
(about 0.05%) in this case also. An explanation can be given
analyzing figure 4.8 and 4.9, where the efficiency trend with
respect to two of the nine parameters subjected to optimiza-
tion is shown. The two meta-models approximate the design
space with high accuracy, but in different way. From the re-
sults seems that the LS-SVM have learned with a better accu-
racy the impact on efficiency of these two parameters, while
respecting the imposed constraints.
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For all these reasons, the second optimization campaign
and the choice of the final optimums were carried out em-
ploying the SVM.

4.4 Optimization results

Two different optimizations, performed at both high and low
flow coefficient conditions, were carried out to achieve the
optimization targets. As a result, two different optimum air-
foils were identified. Each one of these airfoils, hereafter re-
ferred to as OPT-A (for low ¢) and OPT-B (for high ¢) re-
spectively, were tested in off-design conditions by varying the
stage pressure drop. The goal was to draw a performance
curve in the range of interest, thus providing two optimum
curves at low and high flow coeflicient conditions. Two equiv-
alent curves were obtained by setting the original airfoil at
two different stagger angles, in order to cover the same flow
coefficient range. In addition, both optimized airfoils were re-
staggered to cover the whole operating range: the OPT-A one
was opened and tested at high flow coefficient, whereas the
OPT-B one was closed to fit the low ¢ region.

Fig. 4.10 shows the comparison between the efficiency
curves of the original airfoil and those of the optimized air-
foils. The efficiency gain obtained from the optimizations, in
terms of peak-to-peak An from original geometry, is about
0.5% for the OPT-A airfoil (low ¢), and 1.25% for the OPT-
B one (high ¢). The new geometries exhibit similar operat-
ing range as the original, and maintain an elevated efficiency
gain in off-design conditions. It is worth noting that the posi-
tion of the peak efficiency undergoes a shift towards the low
flow coefficients for the optimized geometries. This is due to
a different position of the new airfoils in the ¢ — ¥ chart, as
shown in Fig. 4.11, associated with the blade loading increase
required as optimization target.

Fig. 4.10 also shows how similar the OPT-A performance
is to the re-staggered version of the OPT-B, closed to fit the
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same ¢ — ¢ working line, and the same holds true when com-
paring the OPT-B geometry to the opened version on the
OPT-A one. In both cases, the benefits of using the native
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optimized airfoil instead of the re-staggered one seem quite
small, with a peak-to-peak An of about 0.03%. This impor-
tant result, due to the fact that mechanical constraints were
independent of the operating conditions and thus driving the
two optimizations towards similar airfoil shapes with differ-
ent stagger angles, suggested the possibility of using a single
optimized airfoil: besides a negligible lack in performance, the
overall design process greatly benefits from the ease of man-
aging a single airfoil. In light of these considerations, and ob-
serving that most of the existing stages are actually designed
to work at low flow coefficients, the OPT-A was selected to
cover, by re-staggering, the entire operating range. A com-
plete characterization of such an airfoil (which hereafter will
be referred to as the OPT airfoil) will be presented in chap-
ter 5.

Compared to the original design, the OPT geometry is
thinner, has a higher nominal stagger angle (by about 8 de-
grees) and a smaller radius of curvature in the rear part of
the suction side (Fig. 4.12). The large leading edge exhibited

— Original
— OPT

Figure 4.12: Airfoil geometries comparison
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by both airfoils ensures a good mechanical capability and ro-
bustness with respect to incidence required for the wide oper-
ating range whereby these blades are thought. The reduction
of thickness, limited by structural constraints, has played an
important role in increasing the efficiency, in fact the opti-
mization pushed towards the reduction of the thickness-to-
chord ratio. The combination of the other two new features,
higher stagger and smaller radius of curvature, has provided
the loading increase. Moreover, the small radius of curvature
leads to move the blade loading towards the uncovered part of
the suction surface, thus producing a more aft-loaded distri-
bution (Fig. 4.13) and an increase of the diffusion rate (about
10%). A comparison in terms of isentropic Mach distribution
is shown in Fig. 4.13, where it can be observed the most uni-
form distribution of the OPT airfoil. It is the detailed control
of the pressure and suction surfaces curvature, and the asym-
metric thickness distribution in the leading edge region, that
produced a smooth acceleration on the pressure side.

Parallel to the numerical activity, an experimental cam-
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paign was conducted in which both the original and the OPT
airfoils were tested in the linear cascade arrangement de-
scribed in section 4.2.

Although the experimental campaign was mainly focused
on the characterization of the mid-span airfoil section, the
measurements were performed at ten spanwise positions, over
one half of the blade height. This allowed the comparison be-
tween measurements and CFD not only in terms of 2D results
at mid-span (profile losses, velocity distributions), but also in
terms of spanwise distributions of flow angle and loss coeffi-
cient. To do this, CFD calculations were carried out over the
3D cascade geometry, by imposing the measured boundary
conditions (inlet profiles, outlet static pressure profile) in or-
der to reproduce as accurately as possible the experimental
operating conditions. According the low turbulence intensity
and to relatively low Reynolds numbers, transitional condi-
tions are likely to be found within the test rig. For this reason,
calculations were performed using a low-Reynolds formula-
tion of the two-equation k-w model.

The results of such computations, in terms of spanwise
distributions of loss coefficient and blade-to-blade exit flow
angle, are shown in Figures 4.14 and 4.15. The comparison is
quite encouraging, showing a substantial agreement between
the test rig environment and the computational one. Such a
good agreement is confirmed by looking at the surface pres-
sure distributions at mid-span, reported in Figures 4.16 and
4.17 for both the original and the optimized geometries.

The main goal of the experimental activity was to confirm
the performance increase of the new OPT airfoil over the
original one in terms of profile loss. Figures 4.18 to 4.20 report
the predicted and measured lapse rates, at cascade midspan,
for three different incidence angles at varying Mach numbers
from 0.25 to 0.64 (and Reynolds numbers from 3.5x10° to
9.5x10°).

As a first comment, it can be noticed that the measure-
ments confirm, for any pressure ratio and incidence angle,
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the superiority of the OPT airfoil. A general agreement is ob-
served between measures and predictions in terms of shape of
the loss curves, which follow the theoretical trend of loss re-
duction with increasing Reynolds number. Moreover, the loss
level is also fairly well predicted, the maximum error between
computations and measurements being lower than 0.3%.

More specifically, some appreciable differences arise for
the highest Mach (and hence Reynolds) number cases, espe-
cially at off-design incidences. At any incidence, computations
predict the same loss-decreasing trend for both the original
and the OPT airfoils, whereas measurements highlight a dif-
ferent tendency between the two airfoils. In particular, for
the OPT airfoil, at My = 0.64 the measured profile loss re-
mains almost constant for the —30 negative incidence case,
and slightly rises for the +20 positive one. This behavior,
which is limited to the highest Reynolds, off-design incidence
cases, is likely to be related to transitional issues: the OPT
airfoil might undergo an earlier transition, thus increasing
the profile loss with respect to the CFD-predicted value. It
should be remarked that, although calculations where car-
ried out using a transition-sensitive turbulence model, many
factors could prevent from completely reproducing the transi-
tional behavior within the actual cascade for all investigated
configurations. Just to cite a few among these factors, we may
address the inherent sensitivity of CFD-predicted transitional
behavior to the turbulence modeling, the uncertainty affect-
ing inlet turbulence characteristics (intensity, length scale),
and the impact of the actual surface roughness on transition
onset.

Whatever the reason of the small discrepancy between
predictions and measurements for the highest Reynolds num-
bers, measurements confirm in all cases the superiority of
the OPT airfoil over the original one. Furthermore, consid-
ering that in a real machine these airfoils deal with higher
Reynolds numbers and turbulence intensities, and that the
benefits of the OPT airfoil increase the closer they get fully-
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turbulent conditions, even greater benefits would be reason-
ably expected in real turbine applications.

4.5 Impact of surface roughness

In all the calculations performed during the optimization cam-
paigns, the wall boundary condition was set according to the
formulation for hydraulically smooth surface. Thus a verifica-
tion of the impact of roughness on the stage performance is
mandatory for addressing the design of new stage. The results
will be presented for the optimized geometry only and in a
non-dimensional format, in order to have a general character
and to be extended to the original geometry also.

4.5.1 Background information

The effects related to the blade surface roughness are a well-
known issue for the turbomachinery designer, in particular
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when dealing with the estimation of the components’ perfor-
mance.

The influence of surface finishing on the behavior of the
adjacent flow is an aspect studied by researchers for nearly
a century. The basis of these studies are the works of Niku-
radse [48] and Schlichting [49], which approached the rough-
ness related issue in rough pipes and flat plates. On the base
of these pioneering works, many researchers have continued to
study both experimentally and numerically the effects of sur-
face roughness on the turbomachineries performance. A vast
amount of literature on the subject is available to the turbo-
machinery community, likely due to the many aspects that
are involved with it (Bons [50], Flack and Schultz [51]). Once
the equivalent sand grain methodology proposed by Schlicht-
ing [52] was accepted, from an experimental point of view,
many efforts were made to characterize surface finishing. The
goal was to find an empirical correlation to convert the met-
rics roughness (R,, R: and so on) into a sand grain (k) one,
and to employ this parameter for comparison purposes and to
fine tune closure models of numerical codes. Much progress
was made in this direction, but unfortunately, because of the
huge variety of surface typologies (nowadays also analysed by
three-dimensional techniques), there is no unique correlation
which solves this issue. It is worthwhile noticing that the con-
version factor to obtain the sand grain roughness parameter
can vary up to a factor of five, depending on the correlation
adopted (Bons [50]). Some criteria employ the standard met-
rics roughness such as the one proposed by Speidel [53] and
Hummel et al. [54]. Other authors have tried to characterize
the shape of the rough element, and to extract a roughness
density parameter to use in their correlation. Among these,
the ones proposed by Dirling [55], Sigal and Danberg [56], van
Rij et al. [57], and Waigh and Kind [58] are some of the most
often used.

Many other works concerned with experimental tests were
performed in cascade rigs as well as in multi-stage environ-
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ments. The goal was to provide detailed information on the
effects that roughness has on the components’ performance.
Zhang et. al [59] studied the influence of surface roughness
on the aerodynamic losses of a turbine vane, analysing the
effects of different rough surfaces (uniform and variable) and
Mach number distributions. They found a loss increase with
the increase of the exit Mach number, and quantitative and
qualitative different flow characteristics by varying roughness.
Im et al. [60] investigated the effect of leading edge roughness
and Reynolds number on compressor profile loss. They found
a high impact of rough blade on performance even if only 2%
of the blade pressure and suction side was rugged. This was
mainly due to the influence of the rough surface on the suc-
tion side laminar separation bubble: the losses were reduced
at lower Reynolds numbers and increased at the higher ones.
Vézquez and Torre [61], and Hodson and Howell [62] studied
the effect of surface roughness on efficiency of a low pressure
turbine. Their results suggested that at high altitude, the ef-
fect of “as-cast”rough airfoils did not affect the efficiency.

The research has been active from the numerical point
of view too. Many efforts were made to take into account
the roughness with an appropriate wall boundary condition
for the turbulence closure. In the work of Boyle [63], a nu-
merical investigation of the effects of incidence and surface
roughness was carried out, using the roughness model pro-
posed by Cebeci and Chang. The performance of a two-stage
turbine over a wide range of operating conditions was com-
puted. A good agreement was found between computations
and measurements in terms of turbine efficiency for both the
smooth and the rough blades. A numerical and experimental
investigation of the effects of roughness in compressor blades
was carried out by Mesbah et al. [64]. They compared the re-
sults obtained with three different turbulence models, k — L,
k —w and Spalart-Allmaras, with the measurements in terms
of blade load distributions and losses. A good agreement was
only found for the smooth blade. Boyle and Senyitko [65]
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reported an experimental and numerical analysis of surface
roughness effects on a turbine vane, for four exit Mach num-
bers and three turbulence intensities. In their work, several
metrics-to-sand grain roughness correlations were compared.
Moreover, a comparison between the results obtained with
the Cebeci and Chang [66], and the Wilcox roughness models
were presented. Good results were obtained using the Cebeci
model coupled with Mayle’s [67] transition model, compared
to the poor predictions obtained with Wilcox’s model.

4.5.2 Experimental measurements
Test rig

The experimental investigation was carried out in the blow-
down facility for linear cascades located at the LFM (Labo-
ratorio di Fluidodinamica delle Macchine) at Politecnico di
Milano. This is a transonic wind tunnel with a test section
of 80 mm height and 470 mm wide, fed by 6000 kg of pres-
surized air stocked at 200 bar. For the aim of the present
research, the cascade was composed of 9 blades (Fig. 4.2).
Several repetitions (5 to 10) of the same test were performed
to have a wider statistic analysis and reduce measurement un-
certainty. The periodicity condition was achieved by means of
a movable tailboard located downstream of the cascade: the
differences in flow field measured downstream of the central
passages were found to be within the measurements accuracy.
The blade geometry represents a typical stator employed in
reaction stages of high/intermediate pressure steam turbines.
The blades were scaled up, in order to obtain the best com-
promise between Reynolds number range (based on chord and
exit velocity) and cascade aspect ratio (about AR = 1.3).

The Reynolds number variation was obtained by pressurizing
the test section in the range from 1 to 3.5 bar, by means
of a variable sonic throat located at the outlet section of
the wind tunnel. To guarantee an independent fine tuning
of both Reynolds and Mach numbers, an 8” butterfly valve
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Table 4.2: Cascade experimental conditions

Total pressure 1 to 3.5 bar
Total temperature 250 to 295 K
Isentropic exit Mach 0.50
Reynolds 0.7x10° to 2.5x10°
Turb. intensity ~ 1%

Table 4.3: Cascade data

Aspect ratio 1.3
Flow deflection 73°
Zweifeil number  0.70

and a 2” regulation valve were installed. The whole range of
Reynolds numbers from 0.7x10% to 2.5x10% - characteristic
of typical steam turbines blades of different sizes -, was cov-
ered by means of 10 to 20 points for each surface roughness
considered. Data reported here have been collected at the
same expansion ratio - i.e. at a downstream isentropic Mach
number of approximately 0.5 -, irrespective of the Reynolds
number. The cascade inlet flow angle was set in order to have
nominal incidence on the blade. A summary of experimental
conditions and cascade data are reported in Tables 4.2 and
4.3.

Detailed measurements of the 3D flow field downstream
of the cascade have been performed by traversing at midspan
a miniaturized five-hole probe (head 1.8 mm) at a distance
of 50% of the blade axial chord. The five-hole probe mea-
surement grid was defined by 50 points spaced equally (ap-
proximately 1lmm) along a single blade passage. The five-hole
probe was pre-aligned to the downstream pitch-wise mass av-
eraged flow angle evaluated at atmospheric back pressure con-
dition. The central hole of the downstream probe was con-
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Table 4.4: Shot-peening micro-spheres features

ks/C Diameter [mm]  Material

0.4x10~* 0.21-0.3 Ceramic
0.8x10~* 0.21-0.3 Ceramic
0.9x10~4 0.21-0.3 Ceramic
1.6x10~4 0.4 Steel
2.5x10~% 0.4 Steel

nected to a very high accuracy differential pressure trans-
ducer. It was directly coupled on the reference side to the
upstream total pressure line supplied by a three-hole probe
located one axial chord upstream of the cascade. Since the
maximum local flow angle variation downstream of the blades
in all the tests with respect to the probe pre-alignment was
1 degree, the total pressure coefficient of the five-hole probe
was always null (i.e. the correction to be applied on the pres-
sure reading of the central hole to obtain the local flow total
pressure is null). This means that the central hole pressure
reading was coincident with the local actual total pressure
of the flow. In this operating conditions, the uncertainty of
the local total pressure drop measurement is dramatically re-
duced, since only the differential pressure transducer uncer-
tainty is involved in the measurement chain, thus excluding
the uncertainty involved in the whole probe calibration pro-
cess.

The surface roughness variation was obtained by a pro-
gressive machining of the blades, by means of shot-peening
using micro-spheres of different diameter. Thus, five rough-
ness values ranging from k,/C=0.4x10"* to 2.5x10~* were
considered in the frame of the present work. The smallest of
them can be considered equivalent to the finish of a smooth
blade. The conversion factor between metrics R; and equiv-
alent sand grain roughness ks was defined as suggested by
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Speidel [53] and Schlichting [49], and defined by:

7256

More details about roughness and the shot-peening pro-
cedure are reported in Table 4.4.

Finally, in order to complete the data set required for CFD
computations, total temperature, flow angle and turbulence
intensity (estimated Tu ~ 1%) at the cascade inlet were also
measured.

(4.1)

Results

The experimental results were available in terms of blade
loading and mass averaged total pressure loss coefficient Y,
defined by:
Y — Po1 — Po2 (4.2)
Po2 — Ps2

The campaign was mainly focused on the investigation
of the surface roughness effects on the profile losses, thus the
measurements were performed at cascade midspan. The blade
loading was measured for the smooth blade only, that is before
shot-peening.

Experimental results are summarized in Fig. 4.21, where
the loss coefficient is reported as a function of the Reynolds
number for all the k;/C investigated. In this plot, as well
as for the other successive plots, losses are normalized with
respect to the value at Rey = 1210° and k,/C = 1.62107%.
The shape of the curve for lower ky/C, suggests that the
campaign was carried out in a range of Reynolds number for
which the boundary layer over the blade surface is laminar
for a large part of the suction side. In fact, the trend is very
close to the Re™%% curve that represents the loss trend of a
laminar boundary layer.

Looking at the other curves, increasing the surface rough-
ness leads to a shift of the critical Reynolds (Rez ¢r) towards
smaller values. Here Res ., is defined as the value at which
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Figure 4.21: Experimental total pressure loss coefficient

the loss curves start to differ from the laminar trend. The
sudden increase in the profile loss is due to boundary layer
laminar-to-turbulent transition, and the shape of this increase
depends on the combined effect of Rey . and ky/C: lower
roughnesses lead to a mild increase and vice-versa. This sce-
nario suggests that most of the data lie in a region where the
boundary layer is mainly transitional. For the higher rough-
ness only, the fully-rough regime is reached for the higher
Reynolds number measured. These considerations are simi-
lar to the results found by Boyle and Senyitko [65] in their
cascade test rig by varying surface roughness. In their study,
wide regions of laminar flow were also found in particular for
the smooth blade case. Moreover, these results are in line with
the statement of Bons[50], whereby in a clean/quiet wind tun-
nel it is possible to obtain a transition Reynolds number of
about 3210,

Similar considerations on the transitional nature of these
experiments can be inferred from Fig. 4.22 and 4.23. Pro-
file losses are shown as a function of k,/C in Fig. 4.22 and
Res 1, in Fig. 4.23 respectively. In both plots, each curve is
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associated with a different Reynolds number value: for the
sake of clarity only the most significant Reynolds numbers
are reported. In Fig. 4.22, the plot shows a region of low
and quite constant losses for the lower roughness (laminar
boundary layer). A steep increase in the loss coefficient is
found when both ks/C and Res are increased, corresponding
to the trigger of boundary layer transition. Then, a substan-
tial loss independence from the Reynolds number is observed.
These trends are similar to the ones found by Speidel [68] by
means of an experimental campaign carried out in a linear
cascade, and re-discussed by Schlichting [52]. In that case, the
discussion was mainly focused on the impact of blade pres-
sure distribution on boundary layer transition for different
roughness values. As found in the present work, the results
pointed out wide regions of laminar flow over the blade in cas-
cade conditions. Figure 4.23 allows an estimation of Res j_ cr
whereby the transition is induced by roughness of about 130.
This value is in good agreement with the one proposed by
Feindt [69], and suggests that the conversion factor from R;
to ks of 2.56 used, is reasonable for the present case.

4.5.3 Numerical results
Cascade environment

The experimental data obtained for the cascade were used to
fine tune the roughness model. The goal of the calibration was
to improve the model’s capability of predicting roughness-
transitional flows. Then, the tuned model will be used to pre-
dict the impact of roughness in an actual stage environment.

Three-dimensional viscous steady runs were performed in
order to match the experimental measurements. A 340x64x72
O-type grid (Fig. 4.24) with a y* ~ 0.1 was used to ensure
high accuracy and reliability of the computations.

A first comparison between experiments and computa-
tions concern the blade loading. Figure 4.25 shows a substan-
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Figure 4.24: Cascade two-dimensional O-type grid

tial agreement between the test rig environment and compu-
tational one.

The model calibration was started from the measurements
at ky/C = 1.6x107%, for which laminar, transitional, and
fully-rough flow regimes are successively encountered at in-
creasing exit Reynolds numbers. A parametric study was car-
ried out in order to calibrate the numerical transition by
varying the model constant C1 (see Eq. (3.4)). This parame-
ter controls the laminar kinetic energy production, playing a
role of crucial importance in determining the Res ., that trig-
gers the transition, and the consequent loss increasing. The
analysis led to the correlation reported in Eq. (3.6). Such
a tuning was extended to all the tested surface roughness,
and the results are summarized in Fig. 4.26. The compari-
son shows a generally good agreement, in particular the Re.,
and the subsequent increasing of losses are well predicted.
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line) results
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The computations confirm wide region of laminar flow for
Rey < Rey . For higher values, the boundary layer under-
goes the laminar-to-turbulent transition and the extension of
the turbulent portion grows with the Reynolds number. Thus,
a quasi fully-rough regime can be considered to be reached at
higher Res, in particular for the higher values of k.

From the analysis of Fig. 4.26, two considerations can be
made. The first one concerns the transitional flow region. Fix-
ing the value of the Reynolds number, the increase of losses
while increasing ks/C depends on two phenomena which act
at the same time: the first concerns the augmentation in losses
due to the rough surface, while the second one is linked to the
boundary layer transition. The combination of these two as-
pects yields a sudden increase in the profile loss, up to 1.5-2
time the value depending on the case. The second consid-
eration instead concerns the turbulent region. The effect of
transition on losses is negligible and only the roughness vari-
ation is accountable for loss increases. That is, this augmen-
tation has to be comparable to the one estimated in a fully-
rough regime. CFD results predict a ratio between the loss
coefficient Y (at highest Res and ks/C') and the one for the
smooth surface in fully-turbulent condition Yy,,00tn 0of about
1.58. This result is in very good agreement with the value
of Y /Ysmootn =~ 1.55 obtained with the correlation of Craig
& Cox [70], which is widely used for turbomachinery appli-
cations. Similar results are found by using the correlations
proposed by Aungier [71].

Real stage environment

The proposed numerical framework was successively used to
carry out a comprehensive CFD analysis of a high-pressure
steam turbine stage. The goal was to investigate the influence
of roughness on the losses over the whole stage envelope.
With respect to the cascade measurements, the actual
stage environment add some important aspects that may af-
fect the profile losses: potential effect from upstream or down-
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stream rows, higher free-stream turbulence intensity and wakes
from the previous rows. All of these perturbations can affect

the boundary layer laminar-to-turbulent transition and may

influence how the rough surface affects the losses.

The stage investigated was composed of prismatic rows.
The optimized blade geometry used during the experimen-
tal campaign was employed for both the stator and the rotor
rows. The inlet boundary conditions measured during cascade
tests were adopted for the computations (P, T3 and Tu),
while the back pressure was changed, in order to have an exit
Mach number of about 0.50 for both the rows (Tab. 4.2). The
stator inlet flow angle was chosen to have nominal incidence
on the blade, while the value of the rotational speed assures
the same incidence on the rotor row. For the blades axial gap,
a typical value employed in a real machine layout was selected
(about 0.4 stator Cy,). The meridional channel geometry has
a constant mean radius, and it is slightly conical in order to
ensure the same axial velocity in both the rows (Fig. 4.27). In
this way, the mid-span sections of the two blades work at the
same conditions as for the cascade tests. Moreover, an aspect
ratio of about AR = 3.2 and a radius ratio of about RR = 1.3
were chosen in order to ensure a two-dimensional flow in these
sections. All the runs were performed at the same expansion
ratio, while the Reynolds number varies within the range in-
vestigated experimentally. Moreover, the same five values of
surface roughness tested were taken under consideration.

Three-dimensional viscous unsteady runs were performed,
employing a full-annulus approach. Due to the high compu-
tational costs of the unsteady runs, stator and rotor blades
have the same blade count, resulting in a periodicity domain
of 1:1. The number of time-steps was selected after a sensitiv-
ity analysis carried out using three different values: 25, 50 and
100. Fifty time-steps per blade passing period ensured the in-
dependence of the solutions from time-steps. The O-type grid
used for the cascade computations was adopted for the two-
row discretization (Fig. 4.24). A summary of computational
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Figure 4.27: Stage meridional view

Table 4.5: Stage data

Axial gap 0.4C 4
Aspect ratio 3.2
Radius ratio 1.3
Periodicity domain 1:1

data of the stage are reported in Table 4.5.

The total pressure loss coefficient at mid-span section of
both the stator and the rotor rows were calculated from the
time-averaged solution. The data were collected in order to
compare the results with the ones obtained for the cascade.
The analysis of the results leads to different conclusions for
the two rows. Employing the same boundary conditions of
the cascade tests, the stator still works as a cascade-like en-
vironment. The boundary layer shows a laminar behavior for
large part of the suction side even at the higher values of the
Reynolds number, in particular for the lower values of ks /C.
Then, as happens for the cascade flow, a transitional behavior
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Figure 4.28: Computed total pressure loss coefficient
of rotor row: time-averaged CFD (black filled symbol
and solid line) and Craig & Cox correlation (red open
symbol) results

is found for the higher surface roughness and Reynolds num-
ber values. For the investigated case, with a subsonic exit
flow, the presence of a blade row, which generates a poten-
tial field downstream, has a negligible effect on the genera-
tion of profile losses. As far as the rotor is concerned, the
trend of profile losses depicts a different scenario. The pe-
riodic impact of the wakes near the leading edge region of
the rotor, promotes the boundary layer transition. Most of
the suction side surface is affected by turbulent flow, which
results in a higher loss level compared to the steady state
cascade environment with attached boundary layer. This be-
havior is independent of the surface finishing of the blade,
and starts from the lower Reynolds investigated. The results
of the computations are summarized in Fig. 4.28, where the
rotor profile losses are reported as a function of Res for all the
five roughness (filled symbol and solid line). In all the cases,
the loss trend with respect to Reynolds is very close to the
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Re=%2 curve, which represents the loss trend of a turbulent
boundary layer. This is the reason why the loss level is about
twice the one found with the cascade experimental campaign
(Yref is the same for the two cases). The figure shows how
increasing ks/C has the main effect of moving the loss curve
towards higher values. Moreover, it modifies the value of the
threshold Reynolds (Rey;) at which the curve leaves the tur-
bulent trend: the higher the roughness, the lower the Rey,
value. Once the Rey, is overcome, increasing Res leads the
losses trend towards the fully-rough regime. With respect to
the cascade results, the ratio between Y (at highest Res and
ks/C) and Ysmooth, is slightly lower, about 1.45. In the same
plot the loss coefficients calculated by means of the Craig
& Cox correlation (open symbol) are reported. The compar-
ison with the CFD shows a generally good agreement. As
for the cascade tests, the correlation predicts an increase of
losses in fully-rough regime of Y /Y00t = 1.55. In this case,
the computations slightly under predict the roughness effect.
Analysing the plot, a slight shift in the absolute value is seen
for all the Reynolds and surface finishing computed. In par-
ticular, when comparing to Craig & Cox’s predictions, the
calculations compute a higher loss at the lower k;/C, and
underestimate it at higher ones. But the main difference is in
the estimation of Rey, and as a consequence, of the Reynolds
number at which the fully-rough regime starts. Figure 4.29
shows the time-averaged profile losses as a function of ks/C
for different Reynolds numbers. In light of the previous dis-
cussion both the CFD (black filled symbol and solid line) and
the Craig & Cox (red open symbol) results show a turbulent
nature. In this case, the loss trend does not present the typi-
cal “knee” of the transition region, but follows a quite linear
trend according to Speidel’s [68] results. From this point of
view, the comparison between the CFD and the correlative
approach is encouraging. In fact, despite the difference in the
absolute values, the slope of the curves is in good agreement
with the experiments too.
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Figure 4.29: Computed total pressure loss coefficient
of rotor row: time-averaged CFD (black filled symbol
and solid line) and Craig & Cox correlation (red open
symbol) results

As aforementioned at the beginning of section 4.5, all
these results are effective for the original geometry also. The
stage environment results have pointed out as, for this type
of blading, the effect of surface roughness is to shift the losses
curve towards higher values with respect to the smooth blade
ones. No potential or upcoming wakes effects are expected to
modify the losses curve. This is probably due to the flow con-
ditions, i.e. high Reynolds (about Re = 1.0x10°) and low exit
Mach numbers (lower than M = 0.5), whereby these blad-
ing are designed. Thus, they would suggest to use the best
allowed surface finishing to design the blade. It is reasonable
think that the same machining will be employed to manufac-
ture both the blades, thus producing the same roughness over
the surface. The optimized blade has a chord slightly greater
than the original one, hence it will work at lower Reynolds
number and relative roughness with a further reducing of the
profile loss. This further gain in performance is probably of
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an order of magnitude lower than the one found with the op-
timization. For these reasons, the results obtained with the
optimization and confirmed by cascade tests, are effective ir-
respective of the surface finishing adopted.



Chapter 5

CFD verification of
optimized stage

This chapter discusses the results of the post-optimization as-
sessment, in order to address the new stage industrialization
and the fine tuning of preliminary design tools. The main
sources of loss were investigated by means of CFD calcula-
tions. The analyses were performed in different geometrical
configurations from the one employed during the optimiza-
tion.

5.1 Computational framework

An exhaustive comparison between the performance of the
original and optimized geometries was carried out. The anal-
ysis was aimed at independently investigating the effects of
profile loss, secondary flows and tip clearance on the stage
efficiency, pointing out the differences in the aerodynamic be-
havior of the two geometries. The parametric study included
geometrical features such as stagger angle (£), aspect ratio
(AR) and radius ratio (RR) and was extended in a wide range
of flow coefficient (¢) to cover the expected operating space.

73
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Figure 5.1: Scheme of the meridional flow path geom-
etry and shroud leakages position

A cylindrical flow path geometry was selected (Figure 5.1),
to avoid local three-dimensional effects that can hide the ac-
tual impact of the parameter under investigation. For each
configuration, a performance curve was drawn by varying
the stage back pressure only, while keeping the same total
pressure and temperature distribution at stage inlet. Three-
dimensional viscous CFD run were performed by means of
Wilcox’s two-equation k-w high-Reynolds model for the tur-
bulence closure, and imposing the hydraulically smooth sur-
face hypothesis. Moreover, suitable repeating boundary con-
ditions were adopted in order to mimic the repeating stage
environment whereby these blading are thought. Finally, the
leakage model was not included into the computations when
the effect of profile and secondary losses were studied.

5.2 Impact of profile loss

The impact of the profile loss on the efficiency of the two
stages was studied by varying the stagger angle of the blade.
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Figure 5.2: Comparison between original and OPT per-
formance curves at different stagger angles (constant
AR, RR, Re¢)

Both stages employ prismatic blades, use a single airfoil for
stator and rotor rows, and are designed to work with an opti-
mum pitch-to-chord ratio at blade midspan. The only geomet-
rical feature that can affect the profile loss, with a fixed blade
size and flow path geometry, is the stagger angle. In fact, re-
staggering the blade changes the position of the working line
in the ¢-1 chart, modifying the deflection undergone by the
fluid, the loading of the airfoil and, as a consequence, the
aerodynamic performance.

The computations were performed in a cylindrical flow
path characterized by high AR (about AR/AR,.y = 1.0) and
low RR (about RR/RR.; = 1.08), in order to limit the in-
fluence region of the secondary flows near the endwalls. In
this way, the evaluation of the midspan loss was not affected
by secondary flows. The results of such an analysis are sum-
marized in Figure 5.2. Here the performance curves in terms
of total-to-total efficiency, for each stagger value, are reported
for both geometries investigated. Both stages show a generally
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Figure 5.3: Comparison between delta-efficiency and
delta-loss coefficients at different stagger angles (con-
stant AR, RR, Rec)

good off-design behavior for all the stagger angles, revealing a
good robustness to incidence, even though the OPT geometry
exhibits a slightly sharper leading edge. Moreover, the picture
highlights that the envelope curve of the peak efficiency for
the OPT has always a greater efficiency. This ensures a higher
stage efficiency when the OPT stage is employed instead of
the original, whatever the design point of the machine is.
The increase in the efficiency gain, with a rather linear trend
towards the high flow coefficients, is due to the different po-
sition of the peak efficiency of the envelope curve. Figure 5.3
shows the trend of An with stagger angle, evaluated for two
curves at the same working line. The picture points out the
almost linear trend of increasing the efficiency towards the
lower stagger values, from about 0.45% to 1.0%. A similar
consideration can be drawn, always from Figure 5.3, regard-
ing Ao+ and A(p,. The total loss coefficient was evaluated
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Figure 5.4: Total, profile and secondary loss coefficients
at different stagger angles: comparison between orig-
inal and OPT (constant AR, RR, Rec)

making a balance between the inlet and the outlet section of
the computational domain, while the profile loss was calcu-
lated at the blade midspan. Both are evaluated by means of
equation (5.1). The difference between these two coefficients,
in absence of leakage flows, provides the amount of secondary
losses (5.2).

g:l—(Q)Q (5.1)

C2is

and

Csec = Ctot - Cp (52)

As far as efficiency is concerned, the comparison was done
between two curves at the same working line. The trends of
the loss coefficients are similar to the efficiency ones. Observ-
ing the profile losses, it is worth noting that the benefits of the
OPT rise towards the reduced staggers, as previously found
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by analyzing the trend of the efficiency curves. This consid-
eration highlights that only the aerodynamic performance of
the airfoil guides the An, revealing that both stages have a
similar behavior in terms of secondary flows. Figure 5.4 con-
firms this result, showing total, profile and secondary loss
coefficient ((se.) of original and OPT, at different stagger po-
sitions. The picture shows how the impact of secondary loss
is almost constant in the whole range of stagger, or presents
a slight increases when the stagger, as well as the fluid deflec-
tion, increases. The trend is the same for the two airfoils and
has similar absolute value.

5.3 Impact of secondary flows

Secondary flows effects on the aerodynamic performance of
the two stages were studied at three different stagger angles,
by varying independently the blade aspect ratio and radius
ratio of the meridional flow path. The three stagger values
were selected in order to compare the geometries along the
same working line in the ¢ — v chart.

First, the impact of aspect ratio was investigated at four
different values. In order to preserve the same Reynolds num-
ber based on blade chord (Rec), the blade height was varied
at a fixed chord length. For each AR, a flow path geometry
with a different mean diameter was selected, in order to keep
the radius ratio unchanged (constant value RR/RR,.; =
1.08). Moreover, the blade speed was modified to preserve
the kinematic similitude of the stage at midspan. The results
of the computations are summarized in Figure 5.5, where
the peak efficiency, calculated at different AR, is reported
for both stages at three different stagger angles. The compu-
tations confirm the well-known trend, whereby reducing AR
increases the blade span influenced by the secondary flows,
thus reducing the efficiency. The efficiency gain is nearly con-
stant for varying the aspect ratio, as seen in Figure 5.5. A
slight reduction in the gain is observed at higher stagger and
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lower aspect ratios. This is due to the different leading edge
geometries, nominal stagger angles and isentropic Mach num-
ber distributions over the blade surface of the two airfoils.
These cause an increase in loading in the front part of the
OPT airfoil that slightly intensifies the secondary flows, in
particular at higher stagger when the blade loading is higher.
Overall, the two stages exhibit similar secondary flows inten-
sity and depth of penetration into the main stream, as shown
in Figure 5.6. Here the span-wise distribution of swirl angles
at the bucket exit, is reported for several stagger angles. The
picture shows the evolution of the over- and under-turning
in the endwalls region due to passage vortex, and how the
secondary flows increase their penetration with reduced AR
and higher stagger angles, affecting the aerodynamic perfor-
mance of the stage. The percent of the blade height influenced
by these flows is almost the same for both the stages. This
is true even if Aay is slightly greater for OPT, in particu-
lar for higher stagger at AR/AR,.y = 0.5 as mentioned for
Figure 5.5. Due to repeating stage boundary conditions, the
same considerations drawn for the bucket are true for the
nozzle, even if the distribution of blade-to-blade exit angles
are quite different.

As far as the radius ratio analysis is concerned, four dif-
ferent values were investigated. The computations were per-
formed with different flow path geometries and blade speeds
in order to preserve the aspect ratio (fixed value AR/AR,.; =
0.75) and the kinematic similitude of the stage at midspan,
for each RR. The results are summarized in Figure 5.7, where
the peak efficiency, calculated at various RR, is reported for
both stages at three different stagger angles. Increasing the
radius ratio increases the variation of the inlet flow angle. The
blade operates with a very different incidence angle from hub
to tip, while the midspan works in every configuration in the
same way. Thus the endwalls regions work in very off-design
conditions. For these reasons the efficiency is progressively
reduced when the radius ratio is increased, as shown in Fig-
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ure 5.7. Figure 5.7 also shows that the radius ratio strongly
impacts the efficiency gain, reducing An for the more three-
dimensional configurations. In particular, the effect becomes
more intense at higher stagger angles, until the gain is nul-
lified. As discussed for the aspect ratio investigations, once
again the reason is linked to the different leading edge ge-
ometries, nominal stagger angles and isentropic Mach number
distributions over the blade surface of the two airfoils. In this
case, the impact is augmented from the greater incidence vari-
ation, which affects more the OPT airfoil. Figure 5.8 shows
the span-wise distribution of swirl angles at the bucket exit,
for several stagger angles. When comparing the two stages,
a similar angle distribution can be observed for the lower ra-
dius ratio, as well as the same penetration of the secondary
flows in the mainstream. In this case, the stagger effect is lim-
ited, and the over- and under-turning of the flow are confined
near the endwalls regions. Different considerations have to
be made for the case RR/RR,.; = 1.33. The impact of sec-
ondary flows is stronger for the OPT stage, and more marked
at the higher stagger. In fact, secondary flows grow up to
affect about 40% of the blade height, causing the efficiency
reduction previously discussed.

The effect shown in Figure 5.8 is also displayed in Fig-
ures 5.9 and 5.10, where the entropy contours downstream
of the OPT bucket are shown for RR/RR,.y = 0.96 and
RR/RR;.; = 1.33. In Figure 5.9, it can be noted for both
stagger angles the trace of the blade wake and the entropy
generated from the endwalls corner vortices. Moreover, the
wide loss region due to the passage vortex and the trail-
ing edge shed vorticity (or the vorticity generated within the
blade passage near the suction side induced by the passage
vortex) is shown. Analyzing both figures, it is confirmed that
the higher stagger configurations exhibit a wider trace of the
blade wake and a wider flow region affected by secondary
flows: as a consequence the efficiency is reduced. In particu-
lar, the secondary flows region grows as the stagger and radius
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ratio increase, filling about 40% of the blade height (higher
stagger and RR/RR,.; = 1.33), and producing an intensive
mixing and hence a high level of losses. The hub region is the
one where the impact of secondary flows is most significant
and most of losses are generated. This is due to the higher
positive incidence whereby the blade operates and leads to
the growth of these flows. Similar observations can be found
in Benner et al. [72] and Perdichizzi and Dossena [73].

5.4 Impact of shroud leakages

When dealing with stage performance predictions, the impact
of shroud leakages can not be neglected. In the present study,
the shroud leakages were included into the computations by
means of the shroud model previously described. The scheme
of Figure 5.1 shows where the shrouds were placed into the
computational domain. Figure 5.11 shows the CFD results

1 (Total-to-Total efficiency)

CFD w/o leak
—= CFD leak -----------

¢ (Flow coefficient)

Figure 5.11: Impact of shroud leakages on stage perfor-
mance
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performed for the OPT stage at three different stagger an-
gles, with and without including shroud leakages. Two main
effects can be pointed out: the reduction in efficiency and the
shift of the peak efficiency towards reduced flow coefficients.
The first aspect is due to the penetration of the leakage flow
into the mainstream, which perturbs the flow in the endwalls
region enhancing the mixing losses and affecting the next row
performance. As a result, an efficiency drop proportional to
the leakage mass flow rate is expected, as found by Rosic et
al. [42] in their work. The second aspect is due to the growing
impact that the leakage flows have with the increase of blade
loading, that causes a greater efficiency drop at higher work
coefficients, according to the Kacker and Okapuu formulation
for shrouded blades [74].

For the two blades under investigation, the seals have the
same geometry, therefore the comments made for the OPT
geometry still hold for the original one. The leakage mass
flow rate is driven by the pressure drop across the blade. Thus,
due to the greater blade loading, a higher leakage mass flow is
expected for the OPT airfoil with respect to the original one.
As a consequence, the efficiency increase obtained without
including the shroud model is reduced, by about an amount
equal to the difference of leakage mass flow.

The analysis of the main sources of loss has pointed out
that the two airfoils behave in a similar way from an aero-
dynamic point of view. For the basic two-dimensional loss,
the results show the important role played by the stagger
angle for this type of blading, having a strict link with the
profile loss. The re-staggering moves the stage working line
in a wide operating space, drawing a set of different perfor-
mance curves. It is the shape of the envelope of these curves
that guides the trend in efficiency gain, which is linked to
the aerodynamic behavior of the airfoil geometry. The sec-
ondary flows analysis shows that both geometries have a sim-
ilar aerodynamic behavior when these flows are confined to
the endwalls regions (high aspect ratio), and the span-wise
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variation of inlet flow angle is reduced (low radius ratio): for
these cases the efficiency gain remains about constant. Dif-
ferent results were found in the more three-dimensional flow
field, where the performance of the OPT stage decay more
quickly then the original ones, leading to a reduction in the
efficiency gain. Finally, the shroud leakages investigation has
introduced another penalty for the OPT stage. The greater
blade loading, together with the same seal geometry, causes a
major stage leakage mass flow. Thus, an increased efficiency
drop, equal to the difference of leakage mass flow between the
two geometries, is expected.

All these results are useful for the stage industrialization,
addressing the preliminary design tools modifications. This
means not only acts on the improvement of the performance
prediction capability, but also on the design rules which com-
pound the overall design chain. Generally the prediction ca-
pability relies on a correlative approach, exploiting empirical
expressions to predict the performance of each component,
addressing aerodynamic as well as mechanical design, in same
cases. The high maturity level of CFD computations can play
an important role in replacing lengthy and costly experimen-
tal campaigns with numerical simulations. Thus allowing the
fine-tuning of the used correlative approach and proving its
reliability. As far as the design rules is concerned, these results
can be transformed in practical design rules and guide the de-
signer in to select the better trade-off for the machine layout:
for example which meridional channel geometry employ and
in which operating point the stage should work.



Summary and
conclusions

In this PhD thesis, a redesign strategy for high-pressure steam
turbine stages was described in detail. The procedure was
applied to an industrial problem concerning the redesign of
a reaction stage for steam turbine drums. Each step of the
strategy was critically analysed in order to point out advan-
tages, drawbacks, and the implications that any designer’s
choice has on the final result.

The attention was mainly focused on the optimization
technique which relies on a response surface method, cou-
pling the high-fidelity CEFD RANS computations with an op-
timization algorithm based on meta-models. In particular,
two of these models were presented and analysed in depth:
the support vector machines and the artificial neural net-
works. A parametric analysis was carried out in order to
choose the better training parameters combination for each
model, thus allowing its best prediction capability. The com-
parison between SVM and ANN has proved their reliability in
approximating the response surface of the problem, making
them effective and suitable for multi-objective optimization
problems. For the present optimization, the SVM approach
was preferred to the ANNs one, due to the better accuracy
whereby has learned the links between parameters and ob-
jective functions/constraints. As a result, the final geometry,
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selected as optimum of the problem, observes all the imposed
constraints and ensures an efficiency increase between 0.5%
and 1.25% depending on the operating conditions.

In order to address the product industrialization, the ef-
fect of surface roughness and the losses associated with pro-
file, secondary flows, and leakages mass flow were investigated
in depth. The discussion of the effects of surface roughness
has put in light the importance of cascade experimental cam-
paigns in providing data to fine-tune the computational mod-
els, and at the same time the limits of such approach in to
mimic the real machine environment. As far as the analysis of
the main sources of loss is concerned, the results have high-
lighted which parameters affect mainly each of these source
of losses, put in light on which aspects the optimization has
pushed to yield the efficiency increase required. However, the
goal of this analysis was to transform the numerical results
in practical design rule, in order to update the preliminary
design tools and to address the design of the new machine.

Overall, the proposed strategy has proved to be a ro-
bust and flexible tool to use for multi-objective and multi-
disciplinary redesign problems. It reduces time and costs,
while preserving competitiveness. Therefore, it offers a valid
and accurate approach to meet the industrial requirements to
design new highly efficient and reliable machines.
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