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Abstract
Bone tissue engineering represents one of the most 
challenging emergent fields for scientists and clinicians. 
Current failures of autografts and allografts in many 
pathological conditions have prompted researchers to 
find new biomaterials able to promote bone repair or 
regeneration with specific characteristics of biocompat-
ibility, biodegradability and osteoinductivity. Recent 
advancements for tissue regeneration in bone defects 
have occurred by following the diamond concept and 
combining the use of growth factors and mesenchymal 
stem cells (MSCs). In particular, a more abundant and 
easily accessible source of MSCs was recently discov-
ered in adipose tissue. These adipose stem cells (ASCs) 
can be obtained in large quantities with little donor 
site morbidity or patient discomfort, in contrast to the 
invasive and painful isolation of bone marrow MSCs. 
The osteogenic potential of ASCs on scaffolds has been 
examined in cell cultures and animal models, with only 
a few cases reporting the use of ASCs for success-
ful reconstruction or accelerated healing of defects of 
the skull and jaw in patients. Although these reports 

extend our limited knowledge concerning the use of 
ASCs for osseous tissue repair and regeneration, the 
lack of standardization in applied techniques makes the 
comparison between studies difficult. Additional clinical 
trials are needed to assess ASC therapy and address 
potential ethical and safety concerns, which must be 
resolved to permit application in regenerative medicine.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The complex and dynamic process of bone 
tissue engineering is a challenging field in regenerative 
medicine. Current research is focused on the optimiza-
tion and facilitation of bone regeneration by combin-
ing growth factors and mesenchymal stem cells with 
the many types of materials that have been studied 
as scaffolds. This review presents an overview of ideal 
scaffold properties and discusses the application of 
adipose-derived stem cells in bone tissue engineering 
and translational medicine.
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INTRODUCTION
Recent progress in the field of  bone tissue engineering 
has led to new and exciting research concerning regen-
erative medicine. This interdisciplinary field is focused 
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on the development of  biological substitutes that restore, 
maintain or improve tissue function by applying the prin-
ciples of  engineering and the life sciences[1]. The primary 
target of  clinical therapeutic strategies is the regeneration 
of  bone for skeletal reconstruction of  large bone defects 
created by trauma, infection, tumor resection and skeletal 
abnormalities, or cases in which the regenerative process 
is compromised, including avascular necrosis, atrophic 
non-union and osteoporosis. Strategies that stimulate 
bone healing to reduce or treat complications are becom-
ing more important, due to the increase in life expectancy 
and ageing of  the world population.

Autologous grafts represent the “ideal graft bone sub-
stitutes” and are currently the gold standard therapeutic 
strategy as they combine all essential components to in-
duce bone growth and regeneration, including osteogenic 
cells, osteoinductive growth factors and bone-supporting 
matrix. Autografts are non-immunogenic and histocom-
patible, as they are the patient’s own tissue. Although they 
reduce the likelihood of  immunoreaction and transmis-
sion of  infection[2], autografts are limited and commonly 
result in donor site morbidity as a result of  the additional 
surgical harvesting procedures, and are accompanied by 
the risk of  infection, hematoma and chronic pain, which 
can all lead to implant failure[3-7]. An alternative approach 
involves the use of  allogenic bone grafts obtained from 
human cadavers or living donors, which bypasses the 
complications associated with harvesting and quantity of  
graft materials. However, allogenic grafts are limited by 
tissue matching, disease transmission, batch variability 
and an inability to survive and integrate following implan-
tation[8-10].

The limited success of  auto- and allografts in some 
clinical situations has stimulated the investigation of  a 
wide variety of  biomaterials to be used as scaffolds, and 
the development of  promising clinical therapies[11]. Ad-
vantages to utilizing sophisticated bone scaffolds include 
the elimination of  the risk for disease transmission, fewer 
surgical procedures, and reduced risk of  infection or im-
munogenicity. Moreover, there is an abundant availability 
of  synthetic or natural biomaterials that can be employed, 
including collagen, hydroxyapatite (HA), β-tricalcium 
phosphate (β-TCP), calcium phosphate cements and 
glass ceramics. The concept of  bone substitution involves 
the replacement of  bone structure to allow the migra-
tion, proliferation and differentiation of  bone cells and to 
promote vascularisation, thus utilizing the body’s natural 
biological response to tissue damage in conjunction with 
engineering principles. Current models of  in vitro bone 
formation are based on the idea that the same factors 
known to play a role during embryonic development can 
be used to induce cellular differentiation and function in 
the process of  regeneration[12]. In order to engineer an 
environment supporting bone formation, combinations 
of  biochemical and biophysical signals need to be pre-
sented to the cells in a three-dimensional setting in a way 
that allows interactions between the surrounding cells 
and the extracellular matrix. The complexity of  signal-

ing, with temporal and spatial gradients of  molecular and 
physical factors affecting bone morphogenesis, presents 
significant challenges to engineering fully viable, func-
tional bone. This “diamond concept” has allowed the sci-
entific community to consider more complex interactions 
between scaffolds, cells and growth factors in order to 
induce tissue regeneration in bone defects[13]. This article 
presents a concise review regarding the main proper-
ties of  scaffolds, the most recent progress in bone tissue 
engineering using human adipose-derived stem cells and 
current models used for bone regeneration.

PROPERTIES OF ENGINEERED BONE 
SCAFFOLDS 
An ideal scaffold must address multiple physical and bio-
logical requirements in order to optimize bone regenera-
tion. One of  the most important stages of  bone tissue 
engineering is the design and processing of  a porous, 
biodegradable three-dimensional (3D) structure. This 
scaffold provides a structural and logistical template for 
developing tissue, which can markedly affect cell behav-
ior. The properties of  scaffolds that are important for 
bone formation include the size, distribution and shape 
of  the pores, the surface roughness, the presence of  cell 
attachment sites and the biomechanics of  both the mate-
rial and the scaffold structures[14-17]. The most suitable 
scaffolds for bone formation are those made of  osteo-
conductive materials, such as bone proteins and HA, with 
mechanical properties similar to those of  load-bearing 
native bone that stimulate osteogenesis and have large 
and interconnected pores to facilitate cell infiltration and 
matrix deposition, and rough inner surfaces to promote 
cell attachment. Additionally, scaffolds should be aniso-
tropic structures that can be fashioned into anatomically 
correct shapes that also have the capacity for vasculariza-
tion. Scaffolds should also incorporate and control the 
delivery of  bioactive molecules, such as growth factors or 
drugs that regulate cellular function, accelerating healing 
and preventing pathology[18,19]. Furthermore, as scaffolds 
will be replaced over time by new formed bone, they 
should be comprised of  resorbable materials, or materi-
als that degrade in an enzymatic or hydrolytic way, such 
as polymers, or can be dissolved by cells such as osteo-
clasts[20,21].

The majority of  studies are currently focused on the 
development of  3D structures that mimic the anatomical 
and biochemical organization of  cells and native matrix 
in order to achieve suitable mechanical properties for 
bone tissue[22]. Numerous materials have been shown to 
support in vitro bone formation by human cells, including 
bioceramics like HA, β-TCP, bio-glasses and biodegrad-
able polymers[23,24], and natural or synthetic collagen, 
fibrin, chitosan or polyesters[25,26]. Scaffolds containing 
composites of  these materials provide an optimized and 
convenient alternative as they combine the advantages of  
both bioactive ceramics and biodegradable polymers[27-31].
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OSTEOINDUCTIVE BIOMOLECULES
One of  the most challenging tasks for the development 
of  bone graft substitutes is to produce scaffolds with os-
teoinductive properties, which can involve the application 
of  biologically active molecules. Growth factors that nat-
urally occur within a healthy bone matrix or are expressed 
during fracture healing can be used to direct the develop-
ment of  structures, vascularization and differentiation 
of  bone cells[19]. Growth factors, such as cytokines, are 
endogenous proteins that act on a wide variety of  cells 
and direct their actions by binding to and activating cell-
surface receptors. As developmental bone formation is an 
orchestrated cellular process tightly controlled by actions 
of  growth factors, their use in engineered scaffolds is an 
obvious strategy when the bone integrity is compromised 
and bone tissue needs to be repaired[32,33]. This strategy 
aims to enhance the local presence of  bone-depositing 
osteoblasts, either by attracting the cells to the repair site 
or by inducing the proliferation of  local undifferentiated 
precursor cells, followed by the transformation of  pre-
cursor cells into an osteoblastic phenotype[34].

The introduction of  specific biomolecules has been 
shown in animal models to enhance the union of  non-
union type (a fracture that does not heal by itself  after 
several months) bone fractures[32]. Many growth factors 
that have been used in bone repair with some degree of  
success include mitogens such as platelet-derived growth 
factors, metabolic regulators such as insulin-like growth 
factors, angiogenic proteins such as basic fibroblast 
growth factors, and morphogens such as bone morpho-
genetic proteins (BMPs)[35-39]. BMPs, which are members 
of  the transforming growth factor beta (TGF-β) super-
family, have been the most extensively studied, as they are 
potent osteoinductive factors that induce the mitogenesis 
and differentiation of  mesenchymal stem cells and other 
osteoprogenitors[35,11]. They are a very promising candi-
date for the treatment of  bone diseases and defects, as a 
number of  experimental and clinical trials demonstrate 
their safety and efficacy[40-42]. However, the clinical appli-
cation of  BMPs is currently limited to the use of  BMP-2 
for open tibial fractures and spinal fusion, and BMP-7 
(OP-1) for non-unions with limited indication for spinal 
fusion[43,44], which were approved by the U.S. Food and 
Drug Administration in 2004. The clinical and scientific 
utility of  bone tissue engineering largely depends on the 
ability to create scaffolds with specific characteristics 
that predictably direct cells to differentiate into the right 
phenotypes in a spatially and temporally defined pattern 
guided by molecular and physical factors.

HUMAN ADIPOSE-DERIVED MSCS 
The combination of  engineered scaffolds with recent 
developments in the emerging field of  stem cell science 
may allow the use of  stem cells to repair tissue damage 
and, eventually, to replace organs. MSCs are non-hema-
topoietic cells of  mesodermal derivation that are present 

in a number of  postnatal organs and connective tissues. 
The stroma of  bone marrow contains bone marrow mes-
enchymal stem cells (BMSCs) capable of  differentiating 
into osteogenic, chondrogenic, adipogenic and endothe-
lial lineages[45-48], and thus is the most well studied source 
of  MSCs for bone regeneration. Bone marrow transplan-
tation is also being used clinically in combination with 
osteoconductive materials to augment bone healing[9].

In the last few years, MSCs have been isolated from 
other tissue sources including trabecular bone[49], synovi-
um[50], umbilical cord[51], periodontal ligament[52] and other 
dental tissues[53], skeletal muscle, cord blood and skin[54-56]. 
Although the stem cell populations derived from these 
sources are valuable, common problems include limited 
amounts of  available tissues and low numbers of  har-
vested cells, which necessitate at least some degree of  ex 
vivo expansion or further manipulation before preclinical 
or clinical use. In contrast, a promising population of  
MSCs has been identified within adipose tissue, termed 
adipose-derived stem/stromal cells (ASCs) by the regen-
erative medicine community during the Second Annual 
International Fat Applied Technology Society Meeting in 
2004. Human adipose tissue is ubiquitous and can easily 
be obtained in large quantities with little donor site mor-
bidity or patient discomfort[45], in contrast to the invasive 
and painful procedure for isolating BMSCs. Moreover, 
stem cell yields are greater from adipose tissue than from 
other stem cells reservoirs, a significant factor for use 
in regenerative medicine. As many 1 × 107 ASCs can 
routinely be isolated from 300 ml of  lipoaspirate, with 
greater than 95% purity. ASCs comprise 2% of  nucleated 
cells in processed lipoaspirate, with a yield of  5000 fi-
broblast colony-forming units (CFU-F) per gram of  adi-
pose tissue, compared with estimates of  about 100-1000 
CFU-F per milliliter of  bone marrow[57,58]. In general, cell 
isolation protocols include density gradient centrifugation 
of  the collagenase-digested tissue (lipoaspirate or minced 
adipose tissue)[57-61], followed by the seeding of  the pel-
leted stromal vascular fraction (SVF) on monolayer cul-
ture plastics. The adherent cell population can then be 
expanded and used in a variety of  assays.

Although the study of  human ASCs (hASCs) is 
emerging, the standardization of  isolation and culture 
procedures could improve quality control and facilitate 
comparisons between different studies. There are discrep-
ancies in the results of  studies from different laboratories 
due to differences in the methods and quality of  hASC 
isolation, which can affect the composition of  the initial 
cell culture, as well as in the procedures used to culture 
the cells. Cell culture basal medium, generally contain-
ing 10% fetal bovine serum, is often supplemented with 
epidermal growth factor, fibroblast growth factor-2 
and/or TGF-β[58,62,63]. In addition, some protocols may 
recommend differing initial cell seeding densities, though 
evidence suggests that low seeding densities and subcon-
fluent passaging are recommended[64,65]. Other variables 
that may affect the composition of  the initial isolated cell 
culture cannot be standardized, such as donor age, gen-
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entiation potential in populations expressing CD29 and 
CD105. These data clearly demonstrate that SVF from 
adipose tissue is comprised of  several stem cell subpopu-
lations that exhibit in vitro chondrogenic and osteogenic 
differentiation profiles. Therefore, these subpopulations 
should be studied in order to select those most suitable 
for application in bone and cartilage regenerative medi-
cine.

APPLICATION OF hASCs AND 
SCAFFOLDS FOR BONE TISSUE 
ENGINEERING
Since the discovery of  hASC osteogenic differentiation, 
substantial progress has been made toward the use of  
these cells as an optimal source for bone regeneration. 
Although initial applications involved the direct admin-
istration of  stem cells into the target fracture site, cur-
rent paradigms using scaffolds loaded with stem cells are 
preferred as they provide support for cell colonization, 
migration, growth and differentiation[72]. Combined with 
the support of  a scaffold, the directed osteogenesis of  
hASCs confirms that adipose tissue is a promising au-
tologous source of  osteoblastic cells for bone regenera-
tion. Utilization of  hASCs in scaffolds for bone tissue 
engineering has been heralded as the alternative strategy 
of  the 21st century to replace or restore the function of  
traumatized, damaged or lost bone.

In the last ten years, several cell characterization stud-
ies have extensively described the differentiation potential 
and function of  hASCs in vitro[58,62,67,69]. Many types of  
materials have been used to confirm these positive hASC 
characteristics, which have become available for scaffold-
assisted bone regeneration in a variety of  tissue engineer-
ing strategies. The importance of  the scaffold in hASC 
osteogenesis has been demonstrated in a number of  
studies that recommend the use of  different materials, in-
cluding ceramics[73], titan alloys[74,75], natural and synthetic 
polymers[76,77], and natural or semi-synthetic grafts[78,79], 
with variable porosity, roughness, and methods of  fabri-
cation for future regenerative applications. A clear trend 
has emerged toward the use of  composite scaffolds due 
to their superior properties and structures[80-82] derived 
from the combination of  two or more materials[83-87].

The study of  hASCs for bone regeneration has 
largely involved the insertion of  biomaterials in rat and 
nude mouse models[88-92]. Furthermore, a femoral defect 
in nude rats is available and calvarial defect models have 
been described for other species, to demonstrate the 
application and optimization of  hASCs in regenerative 
medicine[93-97]. However, relatively few reports are avail-
able concerning the utilization of  hASCs for human 
bone tissue regeneration (Table 1). The first compelling 
evidence supporting the clinical application of  an hASC 
scaffold to promote fracture healing was reported by 
Lendeckel et al[98] in 2004. In this work, a combination 
of  autologous hASCs obtained from the gluteal region 

der, body mass index, ethnicity and medical history[66]. It 
is therefore important to standardize hASC isolation and 
culturing methods to maximize the reliability and repro-
ducibility of  results from different laboratories.

COMPOSITION AND 
CHARACTERIZATION OF CULTURED 
hASCs
The SVF that is obtained from processed adipose tissue 
contains a highly heterogeneous cell population, includ-
ing non-adherent cell populations. A complete character-
ization of  SVF cell populations was done by Yoshimura 
et al[64] in which they identified endothelial cells, pericytes, 
blood-derived cells, fibroblasts, vascular smooth muscle 
cells and preadipocytes, in addition to the potential 
hASCs. Although the adherence of  hASCs allows for 
their selection from the SVF during subsequent tissue 
culture passages, other cell types, such as fibroblasts, can 
also adhere to the culture plastic. Thus, other cell types, 
or subpopulations, may compromise the proliferation 
and/or differentiation potential of  hASCs.

To reduce the heterogeneity of  cultured ASCs, a 
washing procedure in the beginning of  the cell culture 
can be used, as various cell types adhere to the plastic 
at different time points[66]. Additionally, flow cytometric 
sorting or immunomagnetic separation with specific cell 
surface markers can be used to isolate and purify specific 
subpopulations of  hASCs. However, there is considerable 
heterogeneity in commonly analyzed hASC surface mark-
ers, which can be modified by the culturing procedure. 
The cell phenotype can also be influenced by differences 
in the cell purification procedure and by the number of  
passages[66-70]. Mitchell et al[59] identified hematopoietic lin-
eage cells from the SVF using flow cytometry based on 
their expression of  CD1, CD14, CD45 and other mark-
ers, which were lost with progressive passages. The loss 
of  these markers indicates that they do not represent the 
adherent population. Moreover, SVF cells exhibit low lev-
els of  classic stromal cell markers (CD13, CD29, CD44, 
CD73, CD90, CD105, CD166) in the earliest stages of  
isolation, and assume a more homogeneous profile with 
consistently high levels of  stromal markers after four to 
five passages, a temporal expression pattern that resem-
bles what has been reported in human BMSCs[54]. Work 
from Rada et al[71] demonstrated the complexity of  hASC 
populations by showing that they are composed of  sev-
eral subpopulations that express different levels of  hASC 
markers and exhibit distinctive differentiation potentials. 
In their study, hASC subpopulations were isolated using 
immunomagnetic beads specific for CD29, CD44, CD49, 
CD73, CD90, CD105, p75 and STRO-1, and cultured 
with specific chondrogenic or osteogenic media in or-
der to evaluate their differentiation potential into these 
lineages. Among all the hASC subpopulations isolated, 
STRO-1-containing populations had the highest osteo-
genic potential, with the highest chondrogenic differ-

147 April 26, 2014|Volume 6|Issue 2|WJSC|www.wjgnet.com

Romagnoli C et al . Adipose-derived stem cells in bone regeneration



and bone grafts from the dorsal iliac crest was used for 
the treatment of  a multi-fragment calvarial fracture in 
a 7-year-old girl. An autologous fibrin glue was applied 
using a spray adapter to keep the cells in place, and post-
operative healing was uneventful after three months. 
In 2009, Mesimäki et al[99] described a novel method to 
reconstruct a major maxillary defect in an adult patient 
using autologous hASCs that were produced in clean 
room facilities free of  animal-derived reagents, combined 
with recombinant human BMP-2 and β-TCP granules. 
The patient’s healing was also clinically uneventful in this 
case, thus paving the way for extensive clinical trials using 
ASCs in custom-made implants for the reconstruction of  
bone defects. Moreover, the use of  autologous cells, han-
dled and prepared without animal-derived materials with 
good manufacturing practices in standard clean rooms, 
demonstrates that these cells can be considered safe for 
applications in tissue regeneration, according to the clini-
cal cell therapy safety standards of  the European Union.

Defects of  the skull and jaws have been successfully 
reconstructed or their healing has been accelerated by the 
use of  hASCs[98-102], extending our limited knowledge re-
garding the potential use of  hASCs for osseous tissue re-
pair and regeneration. Work published in 2012 by Sándor 
demonstrates the synergistic effect of  hASCs, resorbable 

scaffolds (β-TCP and bioactive glass) and growth factors 
(BMP-2), in the treatment of  23 patients with craniofa-
cial osseous defects[103]. He has established the utility of  
hASCs in combination with biomaterials in 85% of  the 
cases followed after bone reconstruction, though the 
long-term success of  this procedure needs to be verified 
using a large sample.

CONCLUSION
The emerging application of  hASCs on engineered scaf-
folds for bone tissue regeneration represents the most 
exciting challenge for the scientific community in fu-
ture translational medicine. The ability to obtain a large 
quantity of  MSCs from easily accessible adipose tissue, 
combined with the growing research on new biomateri-
als incorporating bioactive molecules such as drugs and 
growth factors, opens the way to new therapeutic ap-
plications. Although clinical trials have demonstrated 
the use of  hASCs for the reconstruction of  craniofacial 
defects in humans, there are many aspects that need to be 
examined and resolved. Further investigations are needed 
to standardize procedures for harvesting, isolating, cul-
tivating and preparing hASCs for clinical applications. 
The differences in currently applied techniques make 
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Table 1  Summary of current representative bone tissue engineering models combined with human adipose-derived stem/stromal 
cells

Scaffold origin Type of scaffold Active molecule Study type Differentiation pre-implant Implant area Species Ref.

Synthetic BCP - In vitro Yes - - [73]
Synthetic Ti6Al4V - In vitro Yes - - [74]
Synthetic Ti6Al4V - In vitro Yes - - [75]
Semi-synthetic CMCA Sr2+ In vitro Yes - - [76]
Semi-synthetic MPLA/CNC - In vitro - - - [77]
Semi-synthetic Silk/fibroin - In vitro Yes - - [79]
Semi-synthetic Apatite-coated CH/CS rhBMP-2 In vitro Yes - - [80]
Synthetic Bioactive glass - In vitro Yes - - [81]
Synthetic PCL - In vitro Yes - - [82]
Synthetic PLA/β-TCP - In vitro Yes - - [83]
Synthetic PLA/β-TCP - In vitro Yes - - [84]
Synthetic BCP - In vitro/In vivo Yes Femur Rat [86]
Semi-synthetic Collagen/PCL - In vitro Yes - - [87]
Synthetic PEG/PCL - In vitro/In vivo - Subcutaneous Rat [88]
Synthetic HA - In vitro/In vivo - Subcutaneous Rat [89]
Synthetic HA/ β-TCP - In vitro/In vivo - Subcutaneous Mouse [90]
Synthetic PCL/β-TCP - In vivo - Subcutaneous Rat [91]
Synthetic PLA - In vivo Yes Palate Rat [92]
Synthetic HA/β-TCP - In vivo - Femur Rat [93]
Synthetic Apatite-coated PLGA rhBMP-2 In vivo - Calvaria Mouse [94]
Semi-synthetic ABB/titanium - In vivo - Calvaria Rabbit [95]
Natural Fibrin matrix BMP-2 In vivo - Femur Rat [96]
Synthetic Carbon nanotube rhBMP-2 In vitro/In vivo Yes Subcutaneous Mouse [97]
Natural Fibrin glue - In vivo - Calvaria Human [98]
Synthetic β-TCP/titanium rhBMP-2 In vivo - Maxilla Human [99]
Synthetic β-TCP rhBMP-2 In vivo Yes Mandibula Human [100]
Natural ABB PRP In vivo Yes Maxilla/mandibula Human [101]
Synthetic β-TCP/bioactive glass rhBMP-2 In vivo Yes Craniofacial Human [103]

BCP: Biphasic calcium phosphate ceramics; Ti6Al4V: Titanium alloy; CMCA: Amidate carboxymethilcellulose; PLA: Poly(L-lactic acid); MPLA/CNC: 
Maleic anhydride grafted PLA/cellulose nanocrystals; CH/CS: Chitosan/chondroitin sulfate; PCL: Polycaprolactone; β-TCP: β-tricalcium phosphate; 
PEG: Polyethylene glycol; HA: Hydroxyapatite; PLGA: Poly(L-lactic acid-co-glycolic acid); ABB: Anorganic bovine bone; Sr2+: Strontium ion; rhBMP-2: 
Recombinant human bone morphogenetic protein; PRP: Platelet-rich plasma. 
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comparisons across studies difficult. Moreover, the lack 
of  guidelines for the proper utilization of  different bone 
scaffold materials may provoke safety concerns, impeding 
clinical trials and the translation of  scaffold technologies 
to the clinical environment. Prospective randomized clin-
ical trials are needed to identify clear indications for and 
to demonstrate clinical outcomes of  the hASC therapies. 
Ethical and safety concerns must be resolved to prevent 
human testing as the first stage in novel scaffold develop-
ment.
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