
�

�

“main” — 2014/9/23 — 22:27 — page 421 — #1
�

�

�

�

�

�

Pesquisa Operacional (2014) 34(3): 421-445
© 2014 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2014.034.03.0421

PRECONDITIONING ISSUES IN THE NUMERICAL SOLUTION OF
NONLINEAR EQUATIONS AND NONLINEAR LEAST SQUARES

Stefania Bellavia1* and Margherita Porcelli2

Received October 10, 2013 / Accepted January 4, 2014

ABSTRACT. Second order methods for optimization call for the solution of sequencesof linear systems. In

this survey we will discuss several issues related to the preconditioning of such sequences. Covered topics

include both techniques for building updates of factorized preconditioners and quasi-Newton approaches.

Sequences of unsymmetric linear systems arising in Newton-Krylov methods will be considered as well

as symmetric positive definite sequences arising in the solution of nonlinear least-squares by Truncated

Gauss-Newton methods.
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1 INTRODUCTION

We consider sequences of linear systems of the form:

Ak s = bk k = 0, 1, . . . (1)

where Ak ∈ IRn×n is large, sparse, nonsingular and bk is the corresponding right-hand side.
The matrix Ak and the vector bk change from one system to the next and they are not available
simultaneously. Newton-type methods for optimization problems require the solution of linear

systems of the form (1), whose characteristics of the matrices Ak depend on the class of prob-
lems considered and on the specific method used. Here, we will focus on sequences arising in
optimization methods for nonlinear systems and nonlinear least-squares problems and assume to

use a Krylov subspace method to solve the linear systems.

It is well-known that a clever solution of the linear algebra phase required in most nonlinear op-
timization methods is crucial for their practical implementation [20] and it is widely recognized
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that preconditioning is a critical ingredient for an efficient iterative solution of linear systems.

There is a continuum of choices for preconditioning of the sequence {Ak } which range from
freezing the preconditioner computed for the first matrix of the sequence to recomputing a pre-
conditioner from scratch for each matrix. Recomputing the preconditioner for each matrix of the

sequence may be too expensive and pointless accurate. On the other hand, freezing the precon-
ditioner may yield a low convergence or a failure of the Krylov solver. A compromise between
these two approaches is given by updating techniques where efficient preconditioners for the

current system are derived from previous systems of the sequence in a cheap way. This way, the
expensive computation of a new preconditioner is avoided and some of the computational effort
is shared among the linear systems of the sequence. The expected performance of an updated

preconditioner in terms of linear iterations are in between those of the frozen and the recomputed
preconditioners, while an overall saving in terms of computational time is expected. We note that
updated preconditioners may deteriorate in practice along the sequence and that therefore the
definition of suitable strategies for adaptively refresh the preconditioner when needed represents

a decisive issue.

In this semi-survey we focus on updating procedures giving rise to implicit and/or explicit
preconditioners. A preconditioner is implicit if its application, within each step of the Krylov
method, requires the solution of a linear system. For example, preconditioners based on

incomplete factorization of the matrix Ak are of implicit kind. On the other hand, an explicit
preconditioner provides an approximation of the inverse of Ak and the preconditioning operation
reduces to computing matrix-vector products. Approximate inverse preconditioners fall in this

class [10, 11]. Both quasi-Newton-type updates [12, 13, 34, 35, 37] and fully-algebraic proce-
dures like those in [2, 8, 15, 24, 25] will be covered. Methods falling in the first class update the
preconditioners by matrices of small rank, using quasi-Newton formula. The obtained precon-

ditioners are of explicit kind. Methods in the second class build implicit and/or explicit precon-
ditioners starting from an incomplete factorization of a specific matrix of the sequence or of its
inverse. Then, preconditioners for the matrices of the sequences are obtained by cheap updates

of such a factorization. We will also consider situation where the matrix Ak is not available, but
matrix-vector products with Ak can be computed or approximated by operators. In other words
matrix-free approaches are also discussed.

Other approaches are possible, we mention preconditioners based on recycled Krylov informa-

tion [27, 33, 41] and Incremental ILU preconditioners [18]. We do not cover these approaches in
this semi-survey.

The paper is organized as follows. In Section 2 we describe classical optimization algorithms
for nonlinear systems and nonlinear least-squares problems which give rise to the sequences we

are interested in. Section 3 is devoted to the description of nearly matrix-free preconditioning
strategy. In Sections 4 and 5 we focus on preconditioners based on updating a given incomplete
factorizations and based on quasi-Newton-type updates, respectively. Finally, Sections 6 and

Section 7 concern the analysis of the practical implementation and of the numerical behaviour of
the described strategies.
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Notations

Throughout the paper, the subscript k will denote an iteration counter and for any function h, hk

will be the shorthand for h(xk ). Unless explicitly stated, ‖ · ‖ denotes an arbitrary vector norm

and induced matrix norm. The entries of a matrix A ∈ IRn×n are denoted either as ai j or (A)i j .
Given a nonnegative integer γ , [A]γ ∈ IRn×n indicates the band matrix obtained extracting
from A the main diagonal and γ upper and lower diagonals. If γ = 0, [A]0 is the diagonal

matrix formed from the elements of the diagonal of A. The off-diagonal part A − [A]0 of A is
denoted by the symbol off (A). If A is lower (upper) triangular, [A]γ is obtained extracting from
A the main diagonal and γ lower (upper) diagonals. Similarly, off (A) is formed by the lower

(upper) extra diagonals of A. We borrow notations used by MATLAB in linear algebra: diag,
tril, triu. Given a vector v the notation (v)i denotes the i-th component of v, when clear from the
context the brackets are dropped. Finally, Pk and Bk denote, respectively implicit and explicit

preconditioners for Ak , that is Pk � Ak , while Bk � A−1
k .

2 APPLICATIONS

In this section we briefly describe optimization methods for nonlinear systems and nonlinear
least-squares problems. We focus on the linear algebra phase enlightening that sequences of

linear systems of the form (1) arise and describing the special structure of the matrices involved.
Then, we turn our attention to the following two classes of problems:

• Nonlinear systems:
�(x) = 0, (2)

where � : IRn → IRn is continuously differentiable.

• Nonlinear least-squares problems

min
x∈IRn

f (x) = 1

2
‖F(x)‖2

2, (3)

where F : IRn → IRm is continuously differentiable.

Let �′ and F ′ be the Jacobian matrices of � and F , respectively.

2.1 Sequence arising in Newton-Krylov methods

Newton-Krylov methods [6, 17, 21] applied to the nonlinear system (2), require the solution of
the following sequence of linear systems:

�′
ks = −�k , k = 0, 1, . . . (4)

where xk is the current iterate. Such linear systems are approximately solved by a Krylov method.
More precisely, an Inexact-Newton step sI

k satisfying

‖�′
ks + �k‖ ≤ ηk‖�k‖ ηk ∈ (0, 1) (5)

Pesquisa Operacional, Vol. 34(3), 2014
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is computed. In (5) ηk is the so-called forcing term. It is used to control the accuracy in the

solution of the system (4) and its choice influences the convergence rate of the Newton-Krylov
procedure. These methods are often embedded in suitable globalization strategies [1, 5, 26].

Then, a sequence of the form (1) has to be solved, with

Ak ≡ �′
k , bk ≡ −�k .

Generally, the Jacobians �′
k are sparse unsymmetric matrices but there are also a number of

applications such as e.g., unconstrained optimization, or discretization of nonlinear PDEs with
Picard linearization, where �′

k are symmetric.

By continuity, matrix �′
k varies slowly from one step k to the next whenever the iterates xk and

xk+1 are sufficiently close; e.g this is the case when the iterates are close enough to a solution.

The action of the Jacobians times a vector v required by the Krylov solver is usually provided by
an operator or is approximated by finite-differences, i.e.

�′
kv � �(xk + εv) − �k

ε‖v‖ (6)

where ε is a proper chosen positive constant. This is computed at cost of one �-evaluation. We

refer to [16] for details on the approximation of Jacobian-vector product by finite-differences and
on the convergence analysis for variants of Newton-Krylov methods that employ such approxi-
mation.

2.2 Truncated Gauss-Newton methods for nonlinear least-squares

Consider now the solution of the nonlinear least-squares problem (3) by a Truncated Gauss-
Newton method [28, 29, 42]. At each iteration k, a search direction sI

k is computed by approxi-

mately minimizing the quadratic model

mk (s) = 1

2
‖Fk + F ′

ks‖2
2

over IRn and then a moving step to update the current iterate xk is obtained by imposing a suitable

sufficient decrease condition [28, 42].

For the computation of the step sI
k , a CG-like method [30, 40] is applied to the normal equations

F ′
k

T F ′
ks = −F ′

k
T Fk, (7)

until a prescribed reduction of the value of ∇mk is produced, i.e.

‖∇mk(s)‖ ≤ ηk‖∇mk(0)‖, (8)

where ηk ∈ [0, 1) is the forcing term.

Summarizing, in a Truncated Gauss-Newton framework a sequence of the form (1) is generated
with

Ak ≡ F ′
k

T F ′
k , bk ≡ −F ′

k
T Fk .

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/9/23 — 22:27 — page 425 — #5
�

�

�

�

�

�

STEFANIA BELLAVIA and MARGHERITA PORCELLI 425

We remark that the matrices Ak are symmetric positive semidefinite for general nonlinear least

squares problems but that they are positive definite whenever m ≥ n and F ′
k is full rank. Note that

if CG is initialized with the null vector, CG terminates in a finite number of iterations computing
the minimum norm step (the Newton step), see [30]. We further underline that CG-like methods

require the action of both F ′
k

T and F ′
k . The action of F ′

k on a vector v can be approximated by
finite differences, employing formula (6) replacing � by F and �′ by F ′.

3 NEARLY MATRIX-FREE PRECONDITIONING

Krylov methods applied to linear systems (1) can be implemented in a matrix-free manner, i.e.

without requiring the computation of the matrix Ak , provided that an operator performing the
product of Ak times a vector is available. Then, in principle, Newton-Krylov methods for non-
linear systems as well as Truncated Gauss-Newton methods for unconstrained minimization can

be implemented in a matrix-free manner whenever such operator is available. As already noted,
for sequences arising in the Newton-Krylov framework a possible choice is to approximate the
action of the Jacobian on a vector via the finite differences operator.

On the other hand, when an algebraic preconditioner is used, the full matrix Ak is needed and if

it is not available it has to be computed or approximated via the operator performing the product
of Ak times a vector. This task is usually expensive. For example, in the Newton-Krylov context,
when the Jacobian is not explicitly available, the most relevant part of the computational time is

devoted to the approximation of the Jacobian by finite-differences. Therefore, in the optimization
community there has been interest in updating strategy that can be implemented in a nearly
matrix-free manner, that is close to true matrix-free settings. Specifically, nearly matrix-free

preconditioning has the following properties: a few full matrices are formed; for preconditioning
most systems of the sequence, matrices that are reduced in complexity with respect to the full
Ak ’s are required; matrix-vector product approximations by finite differences can be used; see

[25, 32].

Note that a preconditioning strategy that requires only the computation of selected elements of
Ak , can be considered nearly-matrix free whenever the function that performs the matrix-vector
product is separable. More precisely, let F be the function that, evaluated at v ∈ IRn , provides

the product of Ak times v. F is said separable if its evaluation can be easily separated in the
evaluation of its function components, i.e. computing one component of F costs about an n-th
part of the full function evaluation [25]. WhenF is the finite-differences operator,F is separable
whenever the nonlinear function itself is separable.

In the situation where F is separable and only selected entries of the current matrix Ak are re-
quired to build the preconditioner, the preconditioning strategy may be considered nearly matrix-
free as the evaluation of selected elements of Ak can be considerably less costly than forming

the whole matrix. In fact, note that the entry (Ak )i j is given by the i-th component of the vector
Ak e j , where e j is the j -th vector of the canonical base. Then,

(Ak )i j = Fi (e j )

Pesquisa Operacional, Vol. 34(3), 2014
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and the cost of evaluating a selected entry of Ak corresponds approximately to the n-th part of

the cost of performing one matrix-vector product. This implies that evaluating the diagonal of Ak

costs about as performing one matrix-vector product.

4 UPDATING OF PRECONDITIONER’S FACTORIZATION

The approaches proposed in [2, 8, 15, 24, 25] focus on updating the factorization of a precondi-

tioner for a specific matrix As of the sequence with the aim of building preconditioners for the
subsequent matrices. These processes give rise to factorized preconditioners that are products of
matrices easy to invert. Clearly, in all the proposed procedure the updating is obtained at a low

computational cost, significantly lower than the cost of computing a new preconditioner from
scratch. In what follows, we will refer to As as the seed matrix, to Ps and Bs as the seed precon-
ditioner in the implicit and explicit form, respectively. Furthermore, it is assumed that the matrix

As is available and an incomplete factorization process of As and A−1
s can be carried out without

breakdowns.

The preconditioner updates in [2, 8, 15, 24, 25] are inspired by the attempt to cheaply approxi-
mate the ideal update to an existing preconditioner [24]. Let

Ps = L DU, (9)

be an incomplete ILU factorization of As where D is diagonal and L and U are lower and upper
triangular matrices, respectively, with unit main diagonal [44].

Then, As ≈ L DU and using the equality Ak = As + (Ak − As ) we get

Ak ≈ L(D + L−1(Ak − As )U
−1)U. (10)

Therefore, the matrix
P I

k = L(D + L−1(Ak − As )U
−1)U, (11)

represents the ideal updated preconditioner in the sense that, for any matrix norm ‖·‖, its accuracy
‖Ak − P I

k ‖ for Ak is equal to the accuracy ‖As − Ps‖ [24].

It is evident that the ideal update is not suitable for practical use. In general, the matrix L−1(Ak −
As )U−1 is expensive to build; moreover P I

k is dense and its factorization is impractical. Both

structured and unstructured updates have been proposed where approximations of the factors
of P I

k are employed. The term structured refers to the fact that the approximations used have
a special structure. Unstructured updatings based on Gauss-Jordan transformations have been

proposed in [24]. Here, we will deal with updating preconditioner strategies which use struc-
tured approximation of the factors of Pk and differ in the way the term L−1(Ak − As )U−1

is approximated. These strategies are nearly-matrix free whenever the function F performing

matrix-vector products is separable.

In particular, the inverse of matrices L and/or U are approximated by simpler matrices obtained
sparsifying them dropping some of their elements or retaining only their main diagonal and/or a

Pesquisa Operacional, Vol. 34(3), 2014
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few upper and lower diagonals. This is motivated by large class of matrices where L−1 and U−1

contain many entries which are small in magnitude. Classes of matrices with decaying inverses,
i.e. with entries of the inverse that tend to zero away from the main diagonal, were detected and
analyzed in several papers: banded symmetric positive definite and indefinite matrices [22, 36];

nonsymmetric block tridiagonal banded matrices [38]; matrices of the form f (A) where A is
symmetric and banded and f is analytic [9]. Typically, the rate of decay of the entries of A−1

is fast if A is diagonally dominant. As an example, we plot in Figure 1 the sparsity pattern

(on the left) and the wireframe mesh (on the right) of the 2D Laplacian matrix and its inverse,
respectively. Note that 2D Laplacian matrix is banded (tridiagonal) and diagonally dominant.

Figure 1 – The 2D Laplacian matrix A: sparsity pattern of A (on the left) and wireframe mesh of its inverse

A−1 (on the right) (n = 2500).

4.1 Updates based on triangular approximation of the current matrix

A first approach in the definition of nearly matrix-free updating procedures is due to Duintjer
Tebbens and Tůma in [24, 25].

The practical updating techniques proposed in [24] are based on the implicit preconditioner Ps

given in (9). In order to obtain a factorized preconditioner for Ak , in (11) the matrix Ak − As

is replaced by a nonsingular and easily to be inverted approximation and either L−1 or U−1 are
approximated by the identity matrix. The approximation consists of two steps. First, the ideal

update (10) is approximated by

Ak ≈ L( D + (Ak − As )U
−1 )U = L( DU + (Ak − As ) ), (12)

or

Ak ≈ L(D + L−1(Ak − As ))U = (L D + (Ak − As ))U. (13)

Note that, in the first case L it is assumed to be close to the identity matrix and L−1 in (10), is
neglected while, in the second case U−1 is discarded relying on the assumption that U is close
to the identity matrix.

Pesquisa Operacional, Vol. 34(3), 2014
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Several options have been proposed in [24] to replace DU + (Ak − As ) or L D + (Ak − As ) by a

nonsingular and easily invertible approximation. One option is to approximate Ak − As in (12)
or (13) by its upper/lower triangular part which gives rise to

PU
k = L( DU + triu(Ak − As )), (14)

P L
k = (L D + tril(Ak − As ))U, (15)

respectively. This way the preconditioner is available in a factorized form and is obtained em-
ploying information on Ak reduced in complexity with respect to the full matrix. The cost for

applying this preconditioning is the solution of two triangular systems. Clearly, PU
k and P L

k are
expected to be accurate when the factor U and L are close to the identity matrix and tril(Ak −As )

or triu(Ak − As ) are useful approximation of Ak − As , that is one triangular part of Ak − As

contains more relevant information than the other part. A typical situation of this kind arises
when matrices come from upwind/downwind discretization schemes [24] and in compressible
flow problems [15].

In order to use the above triangular updates the upper or lower triangular part of Ak is needed.

Interestingly, the explicit computation of such triangular parts may be avoided and nearly matrix-
free implementations of this approach are possible. Two possible approaches have been proposed
in [25]. The first approach gives rise to a partial matrix estimation problem whose solution pro-

duces an approximation of the required triangular part. This proposal has been enhanced in [43]
where a two-sided bicolouring method is used. The second approach, that we will now briefly de-
scribe, avoids matrix estimation and assumes separability of the function F performing matrix-

vector products. Consider the update (15). The application of P L
k requires the solution of the

lower triangular systems
(E + tril(Ak ))z = v

where the matrix E = L D − tril(As ) is known. Then, the vector z is computed as follows:

zi = vi −∑
j<i(E)i j z j −∑

j<i(Ak )i j z j

eii + (Ak )ii
, i = 1, . . . , n.

The term
∑

j<i(Ak )i j z j required in the above computation is the i-th component of the vector
Ak z̄, with z̄ = (zi , z2, . . . , zi−1, 0, . . . , 0)T and therefore∑

j<i

(Ak )i j z j = Fi (z̄) i = 1, . . . , n. (16)

Then, the application of the preconditioner in a matrix-free manner can be performed as follows.
First, before solving the linear system, the diagonal of Ak is computed. Then, each application
of the preconditioner within the Krylov solver is performed exploiting (16). This calls for the

evaluation of n components of the functionF and ifF is separable, it is accomplished at the cost
of one F-evaluations. Therefore, this updating procedure can be performed in a nearly matrix-
free manner requiring one F-evaluation for computing the diagonal of Ak and one F-evaluation

at each iteration of the Krylov solver, in order to apply the preconditioner. In the solution of
nonlinear systems (4), when F is the finite difference operator and � is separable, this cost is
approximately the cost of one �-evaluations for each iteration of the Krylov solver.

Pesquisa Operacional, Vol. 34(3), 2014
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4.2 Updates based on banded approximation of the current matrix

In this subsection we review the updating strategies proposed in [2, 8] which differ from those
discussed in the previous section. In fact, the strategies in [24, 25] are based on the observation

that P I
k requires the knowledge of L−1 and U−1 and avoid the computation of such inverses

approximating one of them with the identity matrix. On the other hand, the idea in [2, 8] is to
retain more information on the inverse of L or U and to exploit information from both the lower

and upper triangular parts of the current matrix instead of discarding either the lower or the upper
part as in the approach previously described.

The techniques proposed in [8] attempt to approximate P I
k by extracting banded parts of the

matrices appearing in it. In particular, the matrix Ak − As in P I
k is replaced by the band matrix

[Ak − As ]β . Let us consider, first, the case β > 0. In this case, band approximate inverses of L
and U are built in order to replace L−1 and U−1 in (10). An algorithm for computing exactly the
matrices [L−1]γ and [U−1]γ without the complete inversion of L and U has been proposed in

[8] and we refer to [8] for its description. Here, we underline that each row of [U−1]γ (column
of [L−1]γ ) can be computed independently from the others and the computation can be carried
out in parallel. Once [L−1]γ and [U−1]γ have been calculated, the seed preconditioner L DU is

updated as follows:

P B
k = L

[
D + [L−1]γ [Ak − As ]δ [U−1]γ

]
β

U (17)

giving rise to an implicit preconditioner for Ak . In case the value δ = 0 is used, i.e. only the

diagonal of the difference Ak − As is retained, the ideal preconditioner (10) simplifies to

Ak ≈ L DU + �k,

where
�k = [Ak − As ]0

and the updating procedure is carried out without involving L−1 and U−1.

In this situation, in order to obtain a factorized preconditioner and make L DU + �k of practical
use, in [8] the following strategy is proposed to compute a cheap approximate factorization of
the form

P D
k = Lk DkUk ≈ L DU + �k . (18)

Given the seed preconditioner Ps = L DU the factors Lk, Dk, Uk in (18) are obtained updating

the seed preconditioner factorization as follows

Dk = D + �k, (19)

Sk = diag((Sk)11, . . . , (Sk)nn ), (Sk)ii = |(Dk)ii |
|(Dk )ii | + |(�k)ii | , i = 1, . . . , n, (20)

diag(Lk) = diag(Uk) = (1, . . . , 1)T ,

off (Lk) = off (L)Sk, off (Uk ) = Skoff (U ). (21)

Pesquisa Operacional, Vol. 34(3), 2014
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The previous definition is motivated by the desire for having preconditioners that can be applied

at the same cost as the seed preconditioner and that mimic in some sense the behavior of the
corresponding matrices L DU + �k. In fact, by the form of the diagonal scaling matrix Sk, the
off diagonal parts of Lk and Uk decrease in absolute value as the entries of �k increase, i.e. when

the diagonal of L DU+�k tends to dominate over the remaining entries. On the other hand, when
the entries of �k are small then L DU +�k is close to L DU , Sk is close to the unit matrix, and the
factors Lk and Uk are close to L and U respectively. Moreover, the sparsity pattern of the factors

of Ps is preserved and the cost to form P D
k is low since the computation of Dk is negligible while

the computation of Lk and Uk consists in scaling the nonzero entries of L and U . Finally, by
construction, (Sk)ii ∈ (0, 1], i = 1, . . . , n, and this ensures that the conditioning of the matrices

Lk and Uk is at least as good as the conditioning of L and U , respectively [4].

We underline that the above described updating strategy represents a generalization to the unsym-
metric case of approaches proposed in [3, 4]. In fact, in [3, 4] updating techniques for diagonally
modified symmetric positive definite systems have been developed.

A further strategy is presented in [2] where sparse approximations of the matrices L−1 and U−1

are employed. Such approximations are built computing an incomplete factorization for A−1
s of

the form
A−1

s ≈ W D−1Z T , (22)

where D is a diagonal matrix, and W and Z are sparse unit upper triangular matrices. Note that
W and Z are sparse approximations to U−1 and L−1, respectively and

Bs = W D−1 Z T (23)

is an explicit preconditioner for As . A possibility to construct this sparse approximate inverse pre-
conditioner is to use the incomplete generalized Gram-Schmidt orthogonalization process with
respect to the bilinear form associated to As given in [10]. Alternatively, one can first compute

an ILU factorization of As and then approximately invert L and U [11].

Exploiting factorization (22) and the relation As ≈ Z−T DW −1, equality Ak = As + (Ak − As )

yields

Ak ≈ Z−T
(

D + Z T (Ak − As )W
)

W −1.

Then,

B I
k = W

(
D + Z T (Ak − As )W )

)−1
Z T

represents the explicit ideal preconditioner.

Since the mid-term D + Z T (Ak − As )W may be full, the above ideal preconditioner cannot be
used in practice. Then, in [2] cheap approximations of D+Z T (Ak −As )W have been considered.

In particular, Ak − As is replaced by the band matrix [Ak − As ]δ, and Z T [Ak − As ]δW by the
band matrix [Z T [Ak − As ]δW ]β , for some nonnegative β and δ. Therefore, the updated explicit
preconditioner for Ak is

B E
k = W

(
D + [Z T [Ak − As ]δW ]β

)−1
Z T . (24)

Pesquisa Operacional, Vol. 34(3), 2014
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Similar ideas have been employed to build updating strategies for preconditioning sequence of

linear systems arising in deblurring and denoising image restoration [7].

We further observe that in (24) as well as in (17) when β = 0, the middle factor in P B
k and B E

k is
diagonal and the application of the preconditioner is straightforward; on the other hand if β > 0
the application of B E

k and of P B
k requires the solution of one banded linear system. In terms of

computational cost, only small values of β and δ are viable and if β is nonzero, direct methods
for banded systems are convenient. Finally, in both approaches the main diagonal and δ lower
and upper diagonals of Ak are needed for building the preconditioner. In a matrix-free setting

one possibility is to compute the nonzero entries of the matrix [Ak ]δ exploiting the separability
of the matrix-vector operator, as described in Section 3. A less expensive approach is based on
the observation that in both cases [Ak ]δ is needed to compute the product [Ak ]δ R, where R is the

sparse triangular matrix W in (24) or the triangular, band matrix [U−1]γ in (17). Then, letting
R j be the j -th column of R and

φ j = [Ak ]δ R j ,

we can observe that φ j has at most δ + j nonzero entries in case R = W and at most δ + γ

nonzero entries in case R = [U−1]γ . These nonzero entries can be computed as follows. Note
that

φi j =
∑
l∈L

(Ak )il (R)l j , (25)

where L = {l : l ∈ [lm , lM ], lm = max{i − δ, 0}, lM = min{i + δ, n}}. Then

φi j = (Ak w)i = Fi (w), with w = (0, 0, 0, Rlm , j , . . . , , RlM , j , 0, 0, 0)T .

Therefore, the computation of each nonzero entry of φ j requires the evaluation of one component
of the functionF .

4.3 Accuracy of the updated preconditioners

Intuitively, the effectiveness of the updated preconditioners described in the previous subsection

depends on the accuracy of the seed preconditioner, on the magnitude of the discarded quantities
in the approximation of Ak − As and on the quality of the approximations to L−1 and/or U−1.

The following theorem summarizes the above considerations and the theoretical results given
in [2, 8, 24] regarding the preconditioners P L

k , PU
k , P B

k and B E
k . Similar considerations on

preconditioner P D
k will follow. Concerning the accuracy of P L

k and PU
k , in the following analysis

we limit ourselves to consider the update P L
k in (15). Obviously, analogous results apply to PU

k

in (14). Let us introduce the following functions

oγ (A) = A − [A]γ ,

for any matrix A and γ ≥ 0, and

o(Ak − As ) =
⎧⎨
⎩

triu(Ak − As , 1) if Pk = P L
k

oδ(Ak − As ) if Pk = (B E
k )

−1
or Pk = P B

k
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Note that o(Ak − As ) represents the discarded quantity in the approximation of Ak − As .

Theorem 4.1. Let Pk be either P L
k or P B

k or (B E
k )

−1
. Then,

‖Ak − Pk‖ ≤ ‖As − Ps‖ + c̄‖o(Ak − As )‖ + ek (26)

where c̄ and ek take the following form. If Pk = P L
k , then

c̄ = ‖U‖, ek = ‖I − U‖‖Ak − As ‖;

if Pk = P B
k , then c̄ = 1 and

ek = (‖L‖‖U‖‖oγ (L−1)‖‖oγ (U−1)‖ + ‖L‖‖oγ (L−1)‖ + ‖U‖‖oγ (U−1)‖)
× ‖[Ak − As ]δ‖ + ‖L‖‖U‖||oβ([L−1]γ [Ak − As ]δ[U−1]γ )‖

if Pk = (B E
k )

−1
, then

c̄ = 1, ek = ‖Z−1‖‖W −1‖‖oβ(Z T [Ak − As ]δW )‖.

Proof. Note that

Ak − Pk = (Ak − As ) + (As − Ps ) + (Ps − Pk). (27)

Let us consider the quantity Ps − Pk for each preconditioner. Focusing on (15) we have

Ps − Pk = −tril(Ak − As )U = −(Ak − As )U + o(Ak − As )U

and the thesis trivially follows from (27). Concerning preconditioner (17),

Ps − Pk = − L([L−1]γ [Ak − As ]δ [U−1]γ )U + L(oβ([L−1]γ [Ak − As ]δ [U−1]γ ))U

= − L((L−1 − oγ (L−1)) [Ak − As ]δ(U−1 − oγ (U−1))U

− L(oβ([L−1]γ [Ak − As ]δ [U−1]γ ))U

= −[Ak − As ]δ − L(oγ (L−1) [Ak − As ]δoγ (U−1))U

+ ( [Ak − As ]δoγ (U−1))U + L(oγ (L−1) [Ak − As ]δ)
− L(oβ([L−1]γ [Ak − As ]δ [U−1]γ ))U

Then, the thesis follows from (27) and the definition of ek .

Finally, let us consider the case Pk = (B E
k )

−1
. Since Ps = Z−T DW −1, from (24) it follows:

Ps − Pk = −Z−T (Z T [Ak − As ]δW )W −1 + Z−T oβ(Z T [Ak − As ]δW )W −1

= −[Ak − As ]δ + Z−T oβ(Z T [Ak − As ]δW )W −1

and (27) yields the thesis.

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/9/23 — 22:27 — page 433 — #13
�

�

�

�

�

�

STEFANIA BELLAVIA and MARGHERITA PORCELLI 433

The previous theorem enlightens that ‖Ak − Pk‖ depends on the accuracy of the seed precondi-

tioner, on the discarded quantity o(Ak − As ) and on the magnitude of ek . Note that, considering
preconditioner P L

k , ek is small whenever U is close to the identity matrix. On the other hand,
in the approach employing P B

k the magnitude of ek depends on the magnitude of the discarded

quantities in the approximation of L−1 and U−1 as well as in the approximation of the matrix
[L−1]γ [Ak − As ]δ[U−1]γ . Finally, when preconditioner B E

k is considered the more accurate is
the approximation [Z T [Ak − As ]δW ]β to Z T [Ak − As ]δW , the smaller is ek .

With this result at hand, it is possible to show that the updated preconditioners have the potential

to be more effective than reusing Ps (frozen preconditioner). This is shown in the next lemma,
whose proof follows the lines of Lemma 2.1 in [24].

Lemma 4.2. Let Ps, Pk, c̄ and ek be given as in Theorem 4.1. Assume that Ps satisfies

‖As − Ps‖ = ε‖As ‖ < ‖As − Ak‖, (28)

for some positive ε. Then

‖Ak − Pk‖ ≤ ε‖As ‖ + c̄‖o(Ak − As )‖ + ek

‖Ak − As‖ − ε‖As‖ ‖Ak − Ps‖. (29)

Proof. Condition (28) provides the following bound

‖As − Ak‖ − ε‖As‖ = ‖As − Ak ‖ − ‖As − Ps‖
≤ ‖Ak − Ps‖.

This fact along with (26) yields

‖Ak − Pk‖ ≤ ε‖As ‖ + c̄‖o(Ak − As )‖ + ek

‖Ak − As ‖ − ε‖As ‖ (‖Ak − As ‖ − ε‖As ‖)

≤ ε‖As ‖ + c̄‖o(Ak − As )‖ + ek

‖Ak − As ‖ − ε‖As ‖ ‖Ak − Ps‖,

which completes the proof. �

Note that the coefficient of ‖Ak − Ps‖ in (29) can be smaller than 1 provided that the discarded

quantity ‖o(Ak − As )‖ and ek are small.

Let us now consider the preconditioner Pk = P D
k . It is possible to prove that also in this case

(26) holds with c̄ = 1 and
ek = ĉ‖�k‖, (30)

with ĉ = 2‖off (L)‖‖off (U )‖ + 3(‖off (L)‖ + ‖off (U )‖). In fact we have o(Ak − As ) =
off (Ak − As ) and

‖Ak − P D
k || ≤ ‖Ak − (L DU + �k)|| + ‖L DU + �k − P D

k ‖
≤ ‖As − Ps‖ + ‖Ak − As − �k‖ + ‖L DU + �k − P D

k ‖.
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By [8, Theorem 3.1] it follows

‖L DU + �k − Pk‖ ≤ ek ,

with ek given in (30). Then, since Ak − As − �k = off (Ak − As ) we get (26).

We conclude this section observing that if ‖ · ‖ denotes the 1 or the infinity norm, inequality (26)
yields

‖Ak − Pk‖ ≤ ‖As − Ps‖ + C‖Ak − As ‖, (31)

where C is a strictly positive constant. This is due to the fact that by the properties of the 1
or the infinity norm, ‖[A]γ ‖ ≤ ‖A‖ and for any matrix A and nonnegative γ and ‖o(Ak −
As )‖ ≤ ‖Ak − As‖. Then, ‖Ak − Pk‖ is small whenever Ps is an accurate preconditioner for
As and if Ak is close to As . In other words the updating procedures are expected to be effective
in case of slowly varying sequences. This is likely to appear in sequences arising in the last
iterations of a Newton-Krylov solver, as observed in Subsection 2.1. On the other hand, this
observation suggests that the performance of an update preconditioner may deteriorate when Ak

is not close to As and therefore it is advisable to combine the updating procedures with adaptive
technique for refreshing the preconditioner and building a new reference matrix As and a new
seed preconditioner (see Section 6).

5 QUASI-NEWTON UPDATES

The main idea of the works [12, 13, 34, 35, 37] is to build a sequence of preconditioners by
imposing the secant condition as typical of the implementation of quasi-Newton methods.

For sequences of the form (4) arising in the solution of nonlinear systems using a Newton-like
method, we describe the Broyden-type rank-one updates proposed in [12] and its variant for the
special case where the Jacobian is SPD [13], while regarding sequences where the matrices Ak

are SPD, as those arising in Truncated Gauss-Newton method for nonlinear least-squares, we
review a different approach based on L-BFGS updating described in [37].

5.1 Low rank updates for sequences arising in Newton-Krylov methods

The use of structured quasi-Newton formulae as preconditioners for sequences of the form (4)
arising in Newton-Krylov solvers was firstly proposed in some pioneering papers by Martinez,
see e.g. [34, 35].

In particular, Martinez introduced a new class of preconditioners that are obtained combining a
classical incomplete factorization preconditioner for �′

k with the “structured least-change secant
update” (LCSU) framework. Then, in this approach a preconditioner P LCSU

k for the kth system
of the sequence (4) has the form

P LCSU
k = Ck + Ek, (32)

with Ck including partial information on �′
k and Ek is updated using LCSU techniques [19]. In

order to use P LCSU
k as preconditioner, its inversion must be inexpensive and one may consider

Ck as an incomplete factorization of �′
k and Ek as a low-rank matrix such that P LC SU

k solves a
secant equation.
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Following this approach, the computation of P LCSU
k is performed assuming that a preconditioner

of choice Ck is built at every Newton iteration and enriched with the matrix Ek that is obtained
by low-rank update of Ek−1. The main focus of [34, 35] is on convergence analysis of a Newton-
Krylov method incorporating the preconditioner explicitly in the definition of the trial point. In
other words, a modification of the classical Newton-Krylov method is proposed where the trial
step that solves P LCSU

k s = −�k is attempted and the convergence properties of the resulting
method are studied, while the accuracy of the preconditioner is not analyzed.

On the other hand, Bergamaschi et al. proposed in [12], quasi-Newton updating techniques that
belong to the class (32) focusing on the accuracy of the preconditioner at each nonlinear iteration
and on the numerical implementation issues.

Given a seed matrix �′
s and either an explicit or an implicit seed preconditioner, the strategy

proposed in [12] consists in updating this preconditioner using rank-one updates. Such an update
is obtained imposing a secant equation that takes into account both the Newton step computed
at the previous nonlinear iteration and the difference between the last two consecutive function
values.

Let Pk be a preconditioner for �′
k , let sk be the k-th Newton step and let yk = �k+1 − �k . Then

the new updated preconditioner Pk+1 ≈ �′
k+1 is obtained by imposing the secant condition

Pk+1sk = yk .

In the general unsymmetric case, Pk+1 is uniquely determined by choosing the closest matrix to
the current Pk satisfying the secant condition, i.e.

Pk+1 = argmin
P : Psk=yk

‖P − Pk‖F

where ‖ · ‖F is the Frobenius norm. This yields the classical Broyden formula:

Pk+1 = Pk + (yk − Pk sk)sT
k

sT
k sk

(33)

and therefore Pk+1 is obtained updating the previous preconditioner via Broyden-type rank-one
updates.

Note that in this approach the computation of an incomplete factorization of the Jacobian at
each Newton-Krylov iteration is not needed. In fact, preconditioner Pk belongs to the class (32)
according to the following choice of the matrices Ck and Ek : Ck = 0 and Ek = Pk , except for
the seed iteration k = s, where Cs = Ps and Es = 0.

Using the Sherman-Morrison formula the inverse Bk+1 of Pk+1 can be obtained by

Bk+1 = Bk − (Bk yk − sk)sT
k Bk

sT
k Bksk

. (34)

In [12] the accuracy of the preconditioner in terms of the distance

‖I − P−1
k �′

k‖
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is analyzed. The derivation of this bound differs in the classical analysis of Broyden methods
as the trial step here is computed solving the Newton equation with the true Jacobian, while in
Broyden method the trial step solves Pks = −�k . The analysis is carried out under classical
hypothesis on � for the convergence of Newton or Newton-like approaches and it is proved
assuming that the seed Jacobian is �′

0. Then, if the initial guess x0 is sufficiently close to the
solution x∗ of (2) and the initial seed preconditioner P0 is sufficiently close both to �′

0 and to
�′(x∗), then ‖I − P−1

k �′
k‖ can be tuned to any fixed accuracy. In particular the following result

is proved , see [12, Theorem 3.6].

Theorem 5.1. Assume that (2) has a solution x∗, that �′(x) is Lipschitz continuous and �′(x∗)
is nonsingular. Let α = ‖�′(x∗)−1‖. Then, fixed δ1 ∈ (0, 1/α) and δ̂1 > 0, there exist δ, δP, δ̂P

strictly positive such that if ‖x0 − x∗‖ ≤ δ, ‖P0 − �′
0‖ ≤ δP and ‖P0 − �′(x∗)‖ ≤ δ̂P , then

‖I − P−1
k �′

k‖ ≤ δ̂1α

1 − δ1α
k = 1, 2, . . .

In [13] the previous approach is specialized to sequences arising in nonlinear systems where the
Jacobian are SPD matrices. In this case, the updating strategy is performed using BFGS rank-two
updates so that the symmetry and the positive definiteness of the preconditioners is preserved.
Then, given an SPD seed preconditioner �′

s , Pk+1 and its inverse Bk+1 are computed as follows

Pk+1 = Pk + yT
k yk

yT
k sk

− (Pksk)(Pk sk)
T

sT
k Pksk

,

and

Bk+1 =
(

I − sT
k yk

sT
k yk

)
Bk

(
I − yT

k sk

sT
k yk

)
+ sksT

k

sT
k yk

. (35)

Note that if P0 is SPD then Pk is SPD under the condition sT
k yk > 0 [31]. A result on the accuracy

of the BFGS preconditioner (35) analogous to Theorem 5.1 was proved in [13, Theorem 3.6] with
the further assumption that P0 is SPD.

Interestingly, these ideas have been also used for preconditioning the sequence of linear systems
arising in Newton methods for large symmetric eigenproblems [14].

The implementation of the above procedures can be made in a complete matrix-free manner
without computing the preconditioner explicitly. In fact, assume to have a seed Jacobian �′

s ≡
�′̄

k
and the corresponding seed preconditioner Bs , then the application of the preconditioner Bk

in (34) and (35) can be performed using a recursive formula which require the computation of
one matrix vector products with Bs , and a number of scalar products and daxpy operations that
depends on k − k̄.

Therefore, if Bs is in the form of an approximate inverse preconditioner, its application is straight-
forward and Bk results a “pure explicit preconditioner”. Else if Bs is given as the inverse of an
incomplete factorization, then Bk ≈ �′

k
−1 and its application requires the solution of two trian-

gular sparse linear systems.
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It should be underlined that quasi-Newton like preconditioners suffer from two main drawbacks,
namely the increasing cost of memory for saving yk and sk and the increasing CPU time to apply
the preconditioner. Moreover, the accuracy result given in Theorem 5.1 holds provided that x0 is
sufficiently close to x∗. Then, in practice restart procedures must be used especially if the number
of nonlinear iterations is high. We postpone the discussion on this topic to Section 6.

As a final comment we note that these techniques are closely related to the Newton-Krylov
setting, while the factorization updating approaches described in Section 4 can be applied to
sequences arising in a more general context.

5.2 Limited-memory quasi-Newton updates for SPD sequences

In this section we consider the solution of sequences of systems (1) where the matrices Ak

are SPD and assume to use the PCG method for approximately solving the linear systems. We
describe a class of preconditioners, given in [37], built exploiting information collected by the
CG method applied to the previous system of the sequence. This approach results in a limited-
memory BFGS technique that can be applied to a general sequence of SPD linear systems, as
those arising in the solution of nonlinear least-squares. In [37] special attention is devoted to the
context of solution of large-scale unconstrained minimization problems where the matrices Ak

corresponds to the Hessian of the objective function evaluated at the current point.

The basic idea is to observe that solving the SPD system Ak s = bk is equivalent to minimizing
the convex quadratic function

qk(s) = 1

2
sT Ak s − bT

k s

whose gradient is given by the residual r(s) = Ak s − bk of the linear system.

Then, if a BFGS formula is computed exploiting information collected by a minimization process
for qk , then an SPD approximation of the inverse of the Hessian of qk , that is Ak , is obtained. This
approximation can be used as an explicit preconditioner for the minimization of the subsequent
system Ak+1s = bk+1.

Let {si } and {ri } denotes the sequence of iterates and residuals generated by the CG method
applied to the solution of the linear system Ak s = bk and assume that the following m vector-
pairs (wi , yi ) have been computed and stored:

wi = si+1 − si , yi = ri+1 − ri , i = l1, . . . , lm . (36)

Then, the limited memory BFGS approximation to the inverse of the Hessian Ak of qk(s), built
using the m vector-pairs (36), is given by [39]

H (m) = (V T
lm · · · V T

l1 )H̄ (Vl1 · · · Vlm ) (37)

+ρl1(Vlm · · · Vl2)w
l1 (wl1 )T (Vl2 · · · Vlm )

+ρl2(Vlm · · · Vl3)w
l2 (wl2 )T (Vl3 · · · Vlm )

...

+ρlm wlm (wlm )T
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with
ρi = 1/(yi )T (wi), Vi = I − ρi yi (wi )T , i = l1, . . . , lm ,

and H̄ to be

Hl = (wl )T yl

(yl )T yl I,

where l denotes the last correction pair generated in the previous CG cycle. Then Bk = H (m)

is used as an approximate inverse preconditioner for the next system of the sequence. The same
scheme can be repeated for the subsequent systems of the sequence always using CG information
of the mostly recently solved system. In this strategy the first system of the sequence is solved
by the unpreconditioned CG method and the m vectors-pairs (36) are computed and stored.

The parameter m determines the amount of memory in the preconditioner and is normally chosen
to be much smaller than the number of variables so that the cost of applying the preconditioner is
not too large. There exist different strategies to choose the m correction pairs to be used at each
iteration. One considers simply the last m pairs, another saves vectors which are approximatively
randomly distributed throughout the CG run.

The effectiveness of the automatic preconditioner (37) has been extensively investigated in [37]
including experiments within a Hessian-free Newton method for solving unconstrained opti-
mization problem and tested on different strategies for choosing the m pairs (36). Results seem
to indicate that the limited memory BFGS preconditioner may be useful when the coefficient
matrices Ak are not very sparse or when Ak is not explicitly available and products of Ak times
vectors are expensive to compute.

6 REFRESH AND RESTART STRATEGIES

Generally, the updating procedures presented in this survey require the use of restarting tech-
niques to refresh the seed preconditioner.

In particular, the effectiveness of preconditioners presented in Section 4 depends on the differ-
ence between Ak and As (see (31)) and when this difference becomes large, the quality of the

updated preconditioner Pk can deteriorate and the convergence of the linear solver can slow
down. To handle this issue, in the proposals [2, 8] the quality of the preconditioner is checked
out. More precisely, if the linear solver fails in computing an inexact Newton step with the pre-

scribed accuracy a new reference matrix and a new preconditioner are initialized. In [15] periodic
re-factorizations of the seed preconditioner are used. Moreover, it is also noted that in CFD appli-
cations parts of the sequence of linear systems show large entries in the difference matrices and

in other parts system matrices are very close. In the latter case the use of the updating procedure
seems to be unproductive as the frozen preconditioner is powerful. Then, in [15] an adaptive
technique to avoid unnecessary updating is adopted.

On the other hand, algorithms based on quasi-Newton formula typically suffer from the increas-

ing cost of memory for saving the work vectors yk and sk . Moreover, if the number of linear
systems to be solved is high (e.g. more than ten nonlinear iterations are performed), the applica-
tion of the preconditioner may be too heavy to be counterbalanced by a reduction in the iterations
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number of the iterative linear solver. In [37] the memory cost is implicitly kept low by using the

limited memory implementation. The option followed in [12, 13] consists in recomputing the
seed preconditioner after a fixed number kmax of iterations, see Section 7. The fine tuning of
kmax is not a trivial task and it has been addressed in [13]. The numerical experiments performed

there suggest that kmax belonging to the interval [1, 5] might be a good choice to get a sufficiently
accurate preconditioner and to keep the overall overhead of the algorithm low.

7 NUMERICAL ILLUSTRATION

In this section we give a numerical illustration of the typical behaviour of updated preconditioners

presented in this survey. We focus on sequences arising in Newton-Krylov methods for nonlinear
systems of the form (4) and we selected two preconditioning strategies. One is the strategy based
on the updating of the factorized approximate inverse seed preconditioner B E

k given in (24)

(FINVUP strategy); the other is the Broyden-type updating given in (34) (BroyUP strategy).
The reported results are illustrative of the behaviour of the updating strategies falling in the two
classes reviewed in this survey. We compare the behaviour of these updating procedures with

those of the frozen preconditioner (Freeze strategy) and the recomputed preconditioner (Recomp
strategy). In the Freeze strategy the preconditioner is computed only for the first reference matrix
�′

0 and reused in all the subsequent nonlinear iterations; in the Recomp strategy a preconditioner

for each linear system of the sequence is recomputed from scratch.

BiCGSTAB is used as Krylov solver and the linear inner iterations are stopped when condition
(5) is met. We refer the reader to [2, 12] for details on the implementation of the Newton-Krylov
method.

Concerning the FINVUP preconditioner, we summarize the numerical experience given in [2].

The seed Jacobian used was the first reference matrix of the sequence, and an approximate sparse
inverse preconditioner Bs is constructed using an incomplete LDU factorization with drop tol-
erance of the seed matrix followed by the approximate inversion of the factors L and U. A drop

tolerance has been used to perform the approximate inversion of the triangular factors.

Four problems widely used in literature were considered: the Nonlinear Convection-Diffusion
problem (NCD), the Flow in a Porous Medium problem (FPM), the CounterCurrent Reactor prob-
lem (CCR) and the 2D Driven Cavity problem (2DC). Three of them, namely problems NCD, FPM

and 2DC, arise from the discretization of PDE problems. In all four problems, the dimension n
of the nonlinear systems was varied considering values ranging from 6400 to 62500. NCD has
been solved setting the Reynolds number equal to 250, 500, 1000 while 2DC has been solved

with Reynolds numbers 200, 250, 300 and 350. All these settings gave rise to a testing set made
of 22 problems.

The update of the preconditioner was performed allowing for a diagonal approximation (δ = 0
and β = 0) in (24) when sequences arising in the solution of problems (FPM) and (CCR) are

solved, while tridiagonal banded approximation (δ = 1 and β = 1) are used in the solution of
sequences arising in (FPM) and (2DC) problems.
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To compare the overall computational effort of the three preconditioning strategies (Freeze, Re-
comp, FINVUP), the performance profiles proposed by Dolan and Moré [23] was used. For each
problem P in the testing set and each Algorithm A, let LIP,A denote the total number of linear
iterations required to solve problem P using Algorithm A and LIP be number of linear iterations
required by the best algorithm to solve problem P, i.e. the algorithm which uses the fewest linear
iterations. Then, the linear iterations performance profile is defined for the algorithm A as

πA(τ ) = number of problems s.t. LIP,A ≤ τ LIP

number of problems
, τ ≥ 1.

Analogously, we define the CPU time performance profile φA(τ ), τ ≥ 1 measuring the effi-
ciency of the algorithm A in terms of the employed CPU time.

Here we use two different quantities to measure the computational effort of each strategy: the
number of BiCGSTAB iterations performed and the execution time needed to solve each test
(see Fig. 2).
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Figure 2 – Performance profile in terms of linear iterations (top) and execution time (bottom).
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The performance profiles show the typical behaviour of a factorization updating strategy: the
Recomp strategy is the most effective in terms of linear iterations, while FINVUP outperforms
the Freeze approach. The situation is quite different when we consider execution time. The
repeated computation of the factorization of the preconditioner is relatively expensive and there-
fore the recomputation strategy is in general less time efficient than updating. In fact, FINVUP is
the most efficient in the solution of 88% of the tests. In the solution of the 91% of tests FINVUP
requires a computational effort that is within a factor 3 within the best solver. Note also that
FINVUP is the most reliable strategy as it solved all the tests.

In Figure 3 we focus on the sequence arising in the solution of the NCD with n = 22500 and
Re = 500. We plot, for each nonlinear iteration, the number of linear iterations performed by
BiCGSTAB coupled with the Frozen and with the FINVUP strategy. The figure clearly shows
that the performance of the frozen preconditioner deteriorates soon during the solution of the
sequence and is rather unpredictable, while the updating strategy deteriorates only in the last two
iterations. Note the seed preconditioner has never been recomputed.
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Figure 3 – Problem NCD with n = 22500 and Re = 500: comparison, in

terms of linear iterations between the Frozen and the FINVUP strategy.

Next we focus on the Broyden-type update (34) and we show some of the results obtained in [12].
Specifically, we consider the sequence arising in the solution of the classical Bratu problem. In
[12] the problem has been discretized by 2D Mixed Finite Elements yielding to a sequence of
systems with n = 28600. Concerning the employed restart strategy, this is ruled by the choice of
the parameter kmax which represents the the maximum number of rank one corrections allowed.
Each kmax nonlinear iterations, the last kmax computed vectors s j , y j , j = k − kmax + 1, . . . , k
needed to compute the current preconditioner are replaced with the last computed sk, yk and a
new seed preconditioner Bs is formed.

In Table 1 we show the value of kmax, the number of nonlinear iterations (NLI), the number of
BiCGSTAB iterations (LI), the total CPU time in seconds. The first columns of the table refer
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to tests where the ILU(0) factorization is used to compute the seed preconditioner Bs and the
last columns refer to the case where the AINV factorization with drop tolerance 0.1 is used for
computing B−1

s . Small values of the allowed quasi-Newton corrections kmax are reported and
compared with the choice kmax = ∞ which corresponds to not employ the restarting procedure
and with the Frozen and Recomp strategy.

Table 1 – Results of BroyUP preconditioner on the Bratu problem.

Bs = I LU(0) B−1
s = AI N V (0.1)

Bk kmax NLI LI CPU kmax NLI LI CPU

Freeze – 7 851 11.59 – 7 882 18.35

Recomp – 7 754 8.65 – 7 908 19.7
BroyUP 1 7 442 6.51 1 8 574 14.62

BroyUP 2 7 470 6.56 2 7 517 13.07
BroyUP 3 7 501 6.93 3 7 647 16.1

BroyUP 5 7 529 7.09 5 7 561 14.08
BroyUP ∞ 6 515 9.67 ∞ 7 655 17.15

With both seed preconditioners (ILU(0) or AINV(0.1)) the use of BroyUP produces an accel-
eration in terms of both number of iterations and CPU time. Moreover, the restarting strategy
enhances the performance of the overall algorithm since the choice kmax = ∞ yields to the less
efficient implementation. This is not surprising since the results of Theorem 5.1 only hold when
x0 is near the solution. With the restarting strategy, the seed preconditioner is computed every
kmax iterations, thus taking advance from the nonlinear convergence. We note that these updat-
ing strategies outperform the Recomp strategy also in terms of linear iterations. This seems to be
due to the fact that, as opposite to the preconditioner updating factorizations, the preconditoner is
periodically recomputed and enriched by Broyden-rank one information on the current Jacobian.

8 CONCLUSION

The numerical solution of the linear algebra phase is crucial for effectiveness of optimization

methods and often dominates the computational time, especially when large-scale problems are
considered. Thus, the effectiveness of optimization algorithms is highly dependent on reliable
and effective tools for numerical linear algebra. In this paper we have attempted to highlight

some of the developments that have taken place in recent years in preconditioning techniques
for sequences of linear systems arising in optimization methods. In particular we focused on
preconditioner updating techniques for sequences arising in the solution of nonlinear systems and

nonlinear least-squares problems by Newton-Krylov methods. We described two main classes of
updating preconditioners, that is the class based on updating available factorizations and the class
based on quasi-Newton formula. We provided a uniform analysis of their accuracy showing their

advantages and their drawbacks. Finally, the implementation of both classes has been discussed
in a matrix-free setting and an overview of the practical behaviour of these strategies has been
reported.
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[10] BENZI M & TŮMA M. 1998. A sparse approximate inverse preconditioner for nonsymmetric linear

systems. SIAM J. Sci. Comput., 19: 968–994.
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