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Introduction

A feature of many complex systems is the interaction between different types of individ-
uals or agents. These agents could, for example, represent people in a model of disease-
spreading, or molecules in a system of chemical reactions. The classical approach to study
the dynamics of such models is based on the deterministic framework, commonly referred
to as the mean-field limit, in which the evolution of the concentration of the species is de-
scribed by coupled ordinary differential equations: the concentrations are assumed to be
continuous variables, and they explicitly depend on time, and also on space in the case of
spatially extended systems. These equations may include the presence of multiple funda-
mental interaction mechanisms, such as effects of competition and cooperation. However,
this is an approximation that ignores the dynamics of a single individual, in favour of a
global macroscopic view of the whole. The populations are in fact supposed infinite, a
working hypothesis that can not capture crucial aspects related to the discreteness of the
medium.

Alternatively to the deterministic approach, one can proceed with the stochastic mod-
elling, retaining the descriptive level of the individual. The system is composed of a finite
number of constituents, whose microscopic interactions are encoded by means of chemical
reactions, having a determined success rate. A reaction between the agents is a stochastic
event, and its probability depends on the relative concentrations of the reactants. In
the limit of infinite size the two approaches coincide, while working with a finite num-
ber of elements the intrinsic noise can deeply influence the macroscopic dynamics of the
system. Under certain conditions, the finite size effects can determine the emergence of
spatio-temporal regular dynamics, revealing a degree of collective organization otherwise
absent in the context of the deterministic formulation. These effects have been observed
analytically and numerically in models such as predator-prey [1] and in other biomedical
applications [2, 3, 4, 5]. Recently, a self-organized dynamics has also been detected in
presence of autocatalytic reactions [3].

The two levels of description can be correlated through an analytical tool, known as
the van Kampen method. This technique is a perturbative procedure in the inverse of
the size of the system. This acts as a small parameter, that enables us to characterize
the stochastic corrections to the mean-field equations.

The aim of the first two chapters of this thesis is twofold. First we will analyse
numerically and analytically some stochastic models in order to highlight the role of
fluctuations due to finite size effects. Secondly, we will show the limit of the classical use
of van Kampen expansion and we will suggest how to improve the prediction.

In particular, in the first chapter, we will introduce a stochastic intracellular calcium
oscillation model. We will demonstrate that the stochastic component of the dynamics,
which is not considered in deterministic reference models, can show the emergence of
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self-sustained oscillations, named quasi-cycles.

The second chapter is devoted to investigate the van Kampen expansion beyond the
classical Gaussian approximation, commonly used in the literature. Indeed, when the
system is characterized by a low number of individuals, the distribution of fluctuations
is skewed and thus the Gaussian profile, obtained at the conventional order of approx-
imation, is not appropriate, higher orders corrections can be in principle accounted for
to reconcile theory and simulation. To investigate this probability we will introduce two
different models: the first one is a auto-catalytic reaction scheme due to Kaneko [6], while
the second one is the well-know voter model [7]. For both models we will derive the van
Kampen expansion beyond the Gaussian order and we will find a generalized Fokker-
Planck equation, that will enable us to write down the system for the moments of the
fluctuations. Once solved numerically such a system, one can rebuild the profile of the
distribution of fluctuations. In the last section of this chapter we will present another
method of approximation, the Wentzel–Kramers–Brillouin (WKB) [8], and we will discuss
its validity with respect to the van Kampen method.

The models considered so far do not explicitly account for an important aspect which
proves essential in the dynamics of interacting particles: the space. Indeed, a wide field of
investigation focuses on the study of spontaneous formation of inhomogeneous stationary
states in spatially extended systems. Some of them are explained by means of a fun-
damental paradigm of the deterministic context: the Turing instability [9]. In analogy
with the a-spatial models, also for this class of problems, under suitable conditions, the
intrinsic noise can induce the formation of self-organized collective dynamics that are not
predicted in the mean-field approximation [10]. Starting from this background, the pur-
pose of the last two chapters is to elaborate on the role of the finite size effects showing
that the stochastic system can be driven toward spatio-temporal organized configuration
not predicted by the deterministic formulation.

In particular, in the third chapter, we will present a model in one spatial dimension
that is used for studying pattern formation and wave propagation in individual based
models of population dynamics. We will consider the problem of pattern formation in a
generic two species reaction-diffusion model, under the hypothesis that only one species
can diffuse [11]. For such system, the classical Turing instability cannot take place. At
variance, by working in the generalized setting of a stochastic formulation, Turing like
patterns can develop, seeded by finite size corrections. General conditions are given for
the stochastic Turing patterns to occur. From the shape of the power spectrum, we
categorize the patterns in two classes, waves or stationary Turing-like patterns.

Finally, in the fourth chapter, we will account explicitly for the finite carrying capacity
of the hosting volume. Starting from a microscopic formulation of the Brussellator model,
cross diffusive terms appear in the diffusion equation, when the competition for space is
taken into consideration. Working in the context of the deterministic approach and due
to the modified diffusion scheme we will show that the Turing instability can take place
for some parameters not predicted by the standard approach. In particular we will see
that the Turing instability can set in for all ratios of the main diffusivities, also when
the (isolated) activator diffuses faster then the (isolated) inhibitor. Indeed, while in the
classical approach it is necessary that one species diffuses much faster than the other, in
our revisited diffusion scheme this mathematical constraint is no longer valid [12]. In the
same chapter a stochastic variant of the Brusselator model is studied. The model accounts
for a long range coupling among constituents [13]. The mean-field limit of the model is
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studied, and the conditions for Turing and wave instability are obtained. A degenerate,
cusp-like transition that separates the domains of Turing and wave order can take place.
The point of transition is worked out analytically. Again, the region of Turing instability,
as delimited by such transition point, can set in if the inhibitor diffuses slower then the
activator. This is a consequence of the generalized diffusion scheme analyzed and which
originates from having imposed an effect of spatial competition.
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Chapter 1

Biological applications:

intracellular calcium oscillation

model

The effect of noise on non-linear dynamical systems has been studied for a long time and
is now a well-defined field. Recent studies concern systems which fundamentally involve
discrete entities, for example individuals in an ecological system. The populations is
modelled stochastically, for example random births and deaths. In some cases it may be
that the stochastic effects alter substantially the behaviour of non-linear system. It is
possible to observe different properties of a given system in the presence or in the absence
of noise. Examples can be found in a lot of different contexts such as population dynamics
[1], evolutionary game theory [14], and epidemics [15]. In these cases we refer to the noise
as intrinsic noise, coming from the system itself.

One of the most famous effects found in these systems regards the existence of a tem-
poral oscillatory behaviour, as we have mentioned in the introduction. It was found that
in some situations, the noise has an influence in demographic behaviour. The stochas-
ticity of the system would be sufficient to perturb the stationary state, predicted by a
deterministic or mean-field type analysis, and produce cyclic behaviour. This kind of
oscillatory behaviours are referred to as quasi-cycles [1].

In particular, in this first chapter, we present a model of biological relevance that is
characterized by quasi-cycles. This is a model for calcium intracellular oscillations that
are important for the functioning of the cellular machinery. We have investigated the
model, both numerically and theoretically. The classical models for calcium oscillation
are deterministic and the intrinsic noise (due to individual based effects) is not consid-
ered. This noise is relevant at low concentrations, a regime of interest for intracellular
calcium oscillations. Recently, Li and Hou [16] have published a microscopic version of
the Goldbeter model [17, 18]. The Goldbeter model is a scheme for calcium dynamics,
which assumes two species in mutual interaction. Working in such generalized stochas-
tic context, it was shown numerically [16] that the intrinsic noise can yield stochastic
oscillations. Motivated by this observation, we have developed an analytical study to
explain the spontaneous emergence of quasi-cycles in the above stochastic Ca2+ model
[16]. The analysis is performed under a linear noise approximation. We obtained a close
prediction for the power spectrum of stochastic fluctuations. The presence of a peak at
non-zero frequency in the profile of power spectrum implies, that the system presents an
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oscillating dynamics seeded by the intrinsic noise. We carried out analytically a formula
that describes the maximum frequency in function of the parameters of the model.

1.1 Biological context and existing literature

Calcium Ca2+ oscillations prove fundamental in many different life processes, including,
among the others, muscle contraction, neural activity and fertilization [19]. At rest con-
ditions, the calcium in the cell cytoplasm is kept at low concentration, while it is present
at much higher concentration outside the cell, or inside small intracellular compartments
as the endoplasmic reticulum, the sarcoplasmic reticulum and the mithocondria. Large
gradients can indeed induce a sudden increase in the concentration of calcium dispersed
inside the cellular milieau, by either releasing it from the internal stores or importing it
from the outside environment, through specific voltage-gated channels.

In non-excitable cells, binding of an agonist, hormone or neurotransmitter, to cell-
surface receptors initiates a cascade of reactions which promotes the production of the
second messenger inositol trisphosphate (IP3). This latter diffuses through the cytoplasm
and eventually binds to the IP3 receptors, positioned on the membrane of the endoplas-
matic reticulum. The IP3 receptors act also as channels: upon binding of the IP3, the
channels open and let the Ca2+ to flow from the endoplasmatic reticulum into the cell
cytoplasm. Importantly, the release of calcium as mediated by the IP3 receptors can oc-
casionally stimulate an additional release of Ca2+ from the endoplasmic reticulum. This
is an autocatalytic process, usually termed calcium-induced calcium release (CICR) [20].

Different models have been developed in the past to describe the self-consistent gener-
ation of calcium oscillations. According to the pioneering model [21] sustained oscillations
of cytosolic Ca2+ develop as mediated by the rise in IP3, triggered by external stimu-
lation. This rise elicits the release of Ca2+ from an IP3-sensitive intracellular store, a
process which in turn activate a further release of calcium from a second, independent
compartment insensitive to IP3. Building on this formulation Goldbeter and collaborators
[17, 18] have then elaborated a simplified scheme, particularly interesting for pedagogical
reasons, where two distinct species, the cytosolic calcium and the calcium stored inside
a IP3 sensitive compartments, are solely assumed to mutually interact. Working in this
simplified setting, it was observed [22] that repetitive calcium spikes, evoked by external
stimuli, are not necessarily linked to concomitant IP3 oscillations. The models mentioned
above are deterministic in nature and, as such, assume the system to be ideally described
in terms of continuum concentration amounts.

As opposed to this vision, one can favour an individual based description, which effec-
tively accounts for the intrinsic discreteness of the scrutinized system. Stochastic effects
are therefore present and stem from the finite size of the population of elementary con-
stituents. Such stochastic contributions, endogenous to the system, can amplify via a
resonant mechanism and so yield macroscopic oscillations in the discrete concentration in
a region of the parameters for which a stable fixed point is predicted, as follows the deter-
ministic linear stability analysis [1, 23]. Similar conclusions apply to spatially extended
systems [24, 3, 10]. As concerns calcium dynamics, stochasticity has been mainly associ-
ated to external disturbances [25, 26]. The stochastic opening and closing of the channels
have been for instance identified as a plausible cause of perturbation. At variance, Li and
Hou [16] have recently investigated a discrete version of the Goldbeter model, showing
that the inherent demographic noise can possibly drive stochastic oscillations, even when
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the underlying deterministic system is in a non-oscillatory state. The analysis carried out
in [16] relies on numerical simulations. However, the effect of finite size fluctuations can
be also analytically appreciated by expanding the governing master equation under the so
called Linear Noise Approximation scheme. In doing so, one can obtain a close prediction
for the power spectrum of stochastic fluctuations and characterize the resonant frequency
as a function of the parameters of the model.

We shall work along these lines, by revisiting the microscopic model [16], which we
will slightly modify. We will then perform a complete analytical treatment of the model,
recover the Goldbeter’s scheme in the mean field limit and characterize the distribution of
stochastic fluctuations in terms of a Fokker Planck equation derived from first principles.
The stochastic oscillations observed in [16] are here interpreted as quasi-cycles of the
discrete microscopic model, so building an ideal bridge with e.g. [1].

The chapter is organized as follows. In the next section we will introduce the stochastic
model, inspired to [16] and constructed so to converge to the Goldbeter scheme [17, 18] in
the deterministic limit. In section 1.2.1 we will then turn to study the governing master
equation, under the linear noise approximation and elaborate on the role of stochastic
fluctuations. We will in particular obtain a close prediction for the power spectrum of
fluctuations that we will benchmark to direct simulations. An approximate expression for
the resonant frequency is also derived and proved to be adequate.

1.2 Stochastic model and the master equation

We will hereafter introduce the stochastic a model for intracellular calcium oscillations.
The model describes the process of calcium-induced calcium released (CICR), a biological
process whereby calcium promotes calcium release from intracellular stores. As we shall
discuss in the following the model is inspired to the formulation [16] and set up so to
make contact, in the mean field, with the celebrated model proposed by Goldbeter and
collaborators [18]. We will in particular consider two species, that we shall respectively
denote Z e Y . Z stands for the calcium ions Ca2+ which are populating the cytosol, the
liquid found inside cells. Y is meant to label the Ca2+ which are stored inside a specific
compartment, insensitive to the IP3 and termed Y. We will indicate with s the number of
ions of type Z, i.e. dispersed in the cytoplasmic matrix. The integer q quantifies instead
the abundance of species Y , the ions sequestered in the compartment.

To progress in the model definition, we assume that the stochastic dynamics, which
ultimately governs the evolution of the intracellular calcium, is an homogeneous Markov
process. We will moreover label with V the volume of the cell. V defines in turn the
characteristic size of the system. As we shall make clear in the following, the continuum
deterministic limit is recovered by taking V → ∞.

A Ca2+ ion can for instance migrate outside the cell, passing through specific channels
which are hosted on the membrane walls. In term of chemical equation, one can ideally
represent this event as:

Z
k−→ 0,

where the parameter k stands for the reaction rate associated to the hypothesized
transformation. Conversely, calcium ions can reach the cytosol, coming from a second
IP3 sensitive compartment, called X . Following the CICR paradigm, this latter process
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is autocatalytic and can be represented as:

Z
ν1βV/s−−−−→ Z + Z.

Elements of type Z can also come from the exterior of the cell, a process exemplified
by:

0
ν0−→ Z,

To complete the formulation of the model, we also assume that Ca2+ can exit the IP3-
insensitive compartment Y to increment the population of cytosolic calcium according to
the reactions 1

0
ν3−→ Z Y

ν3V/q−−−→ 0 (1.1)

The leaky transport form the IP3 insensitive pool Y to the cytosol is here modeled as:

Y
kf−→ 0 0

kf q/s−−−→ Z (1.2)

Finally, the ions can take the inverse path from the cytosol to the container Y:

Z
ν2V/s−−−→ 0 0

ν2−→ Y. (1.3)

We wish to emphasize again that to each chemical equations introduced above, we
have attached a quantity, constant or function of the concentration q/V and s/V , which
quantifies the probability per unit of time for the reaction to eventually occur. The
parameters ν0, ν1β, ν3 and ν2, k ,kf are bound to a microscopic, although artificial,
description of the scrutinized process but will be later on shown to correspond to the
control parameters that appear in the deterministic model pioneered by Goldbeter. More
precisely, β, ν0, ν1, kf e k are positive constants, β controlling the degree of stimulation.
The functions ν2 and ν3 are respectively associated to the pumping process and to the
release of calcium from the intracellular store. Following [22], to take into account the
cooperative nature of the two processes, as well as the positive feedback exerted on the
transport by cytosolic Ca2+, we posit:

ν2

( s
V

)
= VM2

(s/V )n

Kn
2 + (s/V )n

ν3

( s
V
,
q

V

)
= VM3

(q/V )m

Km
R + (q/V )m

(s/V )p

Kp
A + (s/V )p

(1.4)

where VM2, VM3 denote the maximum rates of Ca2+ pumping into and release from the
intracellular store. These processes are assumed to be mimicked by Hill like functions with
cooperative indices respectively equal to n and m. The integer index p accounts instead
for the degree of cooperation of the activation process. KA, K2 and KR are threshold
constants for pumping, release and activation.

1We will not indulge further on elaborating on a possible biological interpretation of the model. We
rather insist on the fact that this is one of the possible microscopic, hence intrinsically stochastic formu-
lation, which yields in the continuum limit to the aforementioned Golbeter model, as we will substantiate
in the following. We have in particular decided to use two distinct chemical equations to model the
Ca2+ release, as it was done in [16]. Alternatively, one could have mimicked the process by requiring.

Y
ν3V/q
−−−−→ Z. The general conclusion that we will derive holds also if the latter choice is instead made.

Similar considerations also apply to the last two pairs of reactions.



1.2 Stochastic model and the master equation 13

When it comes to the stochastic model, the state of the system at time t is known once
the two integer quantities (s, q) are being assigned. The analysed process is intrinsically
stochastic and, as such, can be rigorously described in terms of a master equation for the
probability P (s, q, t) of seeing the system in the state (s, q) at the time of observation
t. As a preliminary step, one needs to explicitly write down the transition rates T (·|·)
from a given initial state (right entry) to the final state (left entry), compatible with the
former, as dictated by above chemical equations. In formulae one gets:

T (s− 1, q|s, q) = k
s

V

T (s+ 1, q|s, q) = ν0 + ν1β + ν3

( s
V
,
q

V

)
+ kf

q

V

T (s− 1, q|s, q) = ν2

( s
V

)
+ k

s

V

T (s, q + 1|s, q) = ν2

( s
V

)

T (s, q − 1|s, q) = ν3

( s
V
,
q

V

)
+ kf

q

V
.

(1.5)

The master equation that rules the dynamics of the stochastic process under the
Markov assumption can be cast in the form:

∂

∂t
P (s, q, t) =− T (s+ 1, q|s, q)P (s, q, t) + T (s, q|s− 1, q)P (s − 1, q, t)

− T (s− 1, q|s, q)P (s, q, t) + T (s, q|s+ 1, q)P (s + 1, q, t)

− T (s, q + 1|s, q)P (s, q, t) + T (s, q|s, q − 1)P (s, q − 1, t)

− T (s, q − 1|s, q)P (s, q, t) + T (s, q|s, q + 1)P (s, q + 1, t).

(1.6)

Equation (1.6) can be written in a slightly more compact form:

∂

∂t
P (s, q, t) =

[
(ε+s − 1)T (s − 1, q|s, q) + (ε−s − 1)T (s+ 1, q|s, q)

+(ε+q − 1)T (s, q − 1|s, q) + (ε−q − 1)T (s, q + 1|s, q)
]
P (s, q, t),

(1.7)

where use has been made of the so called step operators ε±q , ε
±
s defined as:

ε±s f(s, q) ≡ f(s± 1, q)

ε±q f(s, q) ≡ f(s, q ± 1).

The master equation provides an exact description of the stochastic dynamics. It is
however difficult to handle it analytically. Progress in the analysis can be made via per-
turbative calculations to which will refer in the forthcoming section. Alternatively, the
investigated system can be numerically simulated. By combining numerical and analyt-
ical tools, it is indeed possible to elaborate on the crucial role played by the stochastic
fluctuations, stemming from the finite size and therefore intrinsic to the system. Before
turning to discuss this important aspect, we devote the remaining part of this section to
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deriving the mean field limit of the model, namely the underlying deterministic picture
that can be formally recovered when operating in the thermodynamic limit V → ∞.

To this end, we look after the average concentrations 〈s〉 and 〈q〉 respectively defined
as:

〈s〉 =
∑

s,q

sP (s, q, t) 〈q〉 =
∑

s,q

qP (s, q, t).

Here the sums run over all positive integer pairs (s,q). A closed system of equations
for the above quantities can be derived starting from the master equation (1.6), and as
follows a standard procedure that we will here detail with reference to 〈s〉. Let us start
by multiplying both members of (1.6) times s and sum over all possible states (s, q).
The left hand side of the master equation takes the form:

∑

s,q

s
dP (s, q, t)

dt
=

d

dτ

∑

s,q

s

V
P (s, q, t) =

d < s >

dτ
,

where we have introduced the rescaled time τ = t/V .
Consider now the first two terms on the right hand side. By implementing in the second
term the change of variable s− 1 → s one gets:

∑

s,q

s
(
− T (s+ 1, q|s, q)P (s, q, t) + T (s, q|s− 1, q)P (s − 1, q, t)

)
=

=
∑

s,q

(
− sT (s+ 1, q|s, q) + (s+ 1)T (s + 1, q|s, q)

)
P (s, q, t) =

= 〈T (s+ 1, q|s, q)〉 .

Similar considerations apply to the other two terms that appear in the right hand side of
equation (1.6):

∑

s,q

s
(
− T (s− 1, q|s, q)P (s, q, t) + T (s, q|s+ 1, q)P (s + 1, q, t)

)
=

=
∑

s,q

(
− sT (s− 1, q|s, q) + (s− 1)T (s − 1, q|s, q)

)
P (s, q, t) =

= −〈T (s− 1, q|s, q)〉 ,

where the second element of the sum has been transformed by operating the shift
s+ 1 → s. The remaining terms in the master equation are associated to changes in the
species q and yield no contribution to the equation for 〈s〉. To clarify this point, let us
consider the third pair of terms in the right hand side of equation (1.6). By replacing in
the last of these terms q − 1 → q one gets:

∑

s,q

s
(
− T (s, q + 1|s, q)P (s, q, t) + T (s, q|s, q − 1)P (s, q − 1, t)

)
=

=
∑

s,q

(
− sT (s, q + 1|s, q) + sT (s, q + 1|s, q)

)
P (s, q, t) = 0.

Summing up, by collecting all terms together, the following equation for the average
concentration 〈s〉 is eventually found:

d < s >

dτ
= 〈T (s+ 1, q|s, q)〉 − 〈T (s− 1, q|s, q)〉 .
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By recalling the expression for the transition rates, as given in equations (1.5), we obtain:

d < s >

dτ
= ν0 + ν1β +

〈
ν3

( s
V
,
q

V

)〉
+ kf

〈q〉
V

−
〈
ν2

( s
V

)〉
− k

〈s〉
V
.

Consider for instance
〈
ν3

( s
V
,
q

V

)〉
. In the limit V −→ ∞, it is legitimate to neglect the

correlations which formally implies setting:

〈
ν3

( s
V
,
q

V

)〉
−→ ν3

(〈s〉
V
,
〈q〉
V

)
.

In conclusion, by introducing:

φ = lim
V→∞

〈s〉 /V (1.8)

ψ = lim
V→∞

〈q〉 /V (1.9)

and recalling eqs. (1.4) one gets:

dφ

dτ
= ν0 + ν1β − ν2(φ)− kφ+ kfψ + ν3(φ,ψ). (1.10)

A formal identical calculation can be carried out for the other species to eventually
obtain:

dψ

dτ
= −kfψ − ν3(φ,ψ) + ν2(φ). (1.11)

Equations (1.10) and (1.11) constitute the deterministic approximation of the stochas-
tic model. As anticipated, they match the classical model studied by Dupont and Gold-
beter in [18]. This latter model displays a Hopf bifurcation: by tuning the control param-
eter β, a transition occurs which changes the stable stationary points into an oscillating
solution. Three regimes can be in particular identified, depending on the value of the
degree of cell stimulation β , and are schematically depicted in figure 1.1, adapted from
[27]. Region II, delimited by the critical values β = b1 and β = b2, identifies the domain
where self-sustained oscillations of intracellular Ca2+ are predicted to occur as follows a
straightforward linear stability analysis applied to system (1.10)-(1.11). In regions I and
III, the concentration of Ca2+ converges to a stationary stable state. The asymptotic
concentration increases linearly with the parameter β. For this reason, zones I and III
are often referred to as to the regions of respectively low and high Ca2+ concentration.

Beyond the mean field prediction is instructive to simulate the master equation (1.6),
which provides an exact description of the underlying stochastic dynamics. This task can
be accomplished by resorting to the celebrated Gillespie scheme [28], a Monte Carlo based
algorithm which produces realizations of the stochastic model which agree with the cor-
responding master equation (1.6). In figure 1.2 deterministic and stochastic simulations
are confronted for a choice of the parameters that would position the system in region
III. The deterministic solution (black online) approaches the asymptotic state, after an
oscillatory transient that gets rapidly damped. At variance, persistent oscillations are
observed in the stochastic model. Such sustained oscillations, also termed in the litera-
ture quasi-cycles, result from a resonant effect and originates from the amplification of
the inherent finite sizes fluctuations. Interestingly, Ca2+ oscillations can hence develop
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Figure 1.1: Schematic bifurcation diagram showing the domain and amplitude of intracel-
lular Ca2+ oscillations as a function of the degree of cellular stimulation β, which act as
control parameter. Sustained oscillations develop in region II, for a range of stimulation
laying between two critical values of β, respectively denoted b1 and b2. In region I and III,
the system converges to stable stationary fixed point. The solid lines in region II stand
for lowest and highest levels of cytosolic Ca2+ oscillations.

outside the region of the parameters for which a deterministic limit cycle is predicted to
occur. This observation was already made in [16], based on simulative evidences. We
shall take one step forward by characterizing the phenomenon analytically and so making
contact with the concept of quasi-cycles as introduced above. To this end, we will com-
pute the power spectrum of fluctuations and identify the, spontaneously selected, resonant
frequency. The next section is entirely devoted to reporting about the calculations.

1.2.1 The role of finite size fluctuations: characterising the stochastic

oscillations.

Consider the discrete concentration
s

V
. Following the linear noise approximation, also

called the van Kampen ansatz [29], one can express s/V (resp. q/V ) as the sum of two
distinct contributions. On the one side the deterministic solution, namely φ(t) (resp. ψ),
which denotes the concentration in the mean field limit. The other contribution refers
instead to the stochastic perturbation termed ξ (resp. η) and assumed to scale as 1/

√
V .

In formulae:

s(t)

V
= φ(t) +

ξ√
V
, (1.12)

q(t)

V
= ψ(t) +

η√
V
. (1.13)

In the limit for V → ∞ the stochastic contributions drop away and one is left with
the deterministic concentrations φ and ψ. Working at finite, although large V , one can
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Figure 1.2: Time evolution of the intracellular calcium concentration φ. Parameters are
set so to have the system in region III, as identified in the main body of the chapter
and in the caption of figure 1.1. The black solid line which converges to an asymptotic
stable fixed point refers to the integration of the deterministic system (1.10) and (1.11).
The wiggling curve (red online) follows stochastic simulations. Persistent oscillations are
found, which display a characteristic frequency. This latter can be analytically predicted
as discussed in section 1.2.1. Parameters are β = 0.823, KR = 2µmol/L, k = 10s−1,
KA = 0.9µmol/L, n = 2, m = 2, p = 4, VM3 = 500µmol/(Ls), VM2 = 65µmol/(Ls),
kf = 1s−1, ν0 = 1(µmol)/(Ls), ν1 = 7.3µmol/(Ls), K2 = 1µmol/L. For this choice of
the parameters, the critical values of β are respectively b1 = 0.291 and b2 = 0.775.

carry out a perturbative expansion of the governing Master equation, the quantity 1/
√
V

acting as a small parameter. This is the van Kampen system size expansion [29], that
allows one to recover the mean field equations at the leading order, and then characterize
the distribution of fluctuations, at the next to leading order.

Let us start by noting that the step operators that appear in the left hand side of eq.
(1.7), can be expanded as:

ε±s ' 1± 1√
V

∂

∂ξ
+

1

2V

∂2

∂ξ2
ε±q ' 1± 1√

V

∂

∂η
+

1

2V

∂2

∂η2
.

It is then necessary to expand in series of 1/
√
V the transition rates, which are non-

linear function of the discrete concentrations. We shall hereafter outline the main step of
the calculation with reference to the term T (s, q + 1|s, q), and then generalize the results
to the other contributions. As a first step, let us introduce the van Kampen ansatz into
the formula for T (s, q + 1|s, q) as defined in (1.5):

T (s, q+1|s, q) = VM2
zn

Kn
2 + zn

= VM2

(
φ+

ξ√
V

)n

Kn
2 +

(
φ+

ξ√
V

)n = VM2

φn
(
1 +

ξ

φ
√
V

)n

Kn
2 + φn

(
1 +

ξ

φ
√
V

)n .
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A simple algebraic manipulation yields to:

T (s, q + 1|s, q) =
VM2φ

n

Kn
2 + φn

(
1 + n

ξ

φ
√
V

)(
1− n

ξ

φ
√
V

φn

Kn
2 + φn

)

' VM2
φn

Kn
2 + φn

[
1 +

ξ√
V

nKn
2

φ(Kn
2 + φn)

]
,

where use has been made of the approximate relations (1 + ε)n = 1 + nε + o(ε) and
1

(1 + ε)
= 1− ε+ o(ε), for ε << 1. In conclusion, by re-organizing the various terms, one

gets the final expression:

T (s, q + 1|s, q) ' VM2
φn

Kn
2 + φn

[
1 +

ξ√
V

nKn
2

φ(Kn
2 + φn)

]
+ o

(
1√
V

)
.

Following a similar strategy for the other transition rates, one eventually obtains:

T (s+ 1, q|s, q) 'ν0 + ν1β + VM3
ψm

Km
R + ψm

φp

Kp
A + φp

[
1 +

η√
V

mKm
R

ψ(Km
R + ψm)

+
ξ√
V
×

× pKp
A

φ(Kp
A + ψp)

]
+ kf

(
ψ +

η√
V

)

T (s− 1, q|s, q) 'VM2
φn

Kn
2 + φn

[
1 +

ξ√
V

nKn
2

φ(Kn
2 + φn)

]
+ k

(
φ+

ξ√
V

)

T (s, q + 1|s, q) 'VM2
φn

Kn
2 + φn

[
1 +

ξ√
V

nKn
2

φ(Kn
2 + φn)

]

T (s, q − 1|s, q) 'kf
(
ψ +

η√
V

)
+ VM3

ψm

Km
R + ψm

φp

Kp
A + φp

[
1 +

η√
V

mKm
R

ψ(Km
R + ψm)

+

+
ξ√
V

pKp
A

φ(Kp
A + ψp)

]
.

Introduce now Π(ξ, η, t), the distribution of fluctuations formally defined as:

Π(ξ, η, t) = P (s(φ(t), ξ), q(ψ(t), η), t) , (1.14)

where s(φ(t), ξ) and q(ψ(t), η) follow respectively eqs. (1.12) and (1.13). Taking the
derivative of eq. (1.14) with respect to time yields:

∂Π

∂t
=
dP

dt
=
∂P

∂t
+
∂P

∂s
V φ̇(t) +

∂P

∂q
V ψ̇(t).

Hence:

∂P

∂t
=
∂Π

∂t
− ∂P

∂s
V φ̇(t)− ∂P

∂q
V ψ̇(t). (1.15)

On the other hand:

∂Π

∂ξ
=
∂P

∂s

∂s

∂ξ
=

√
V
∂P

∂s

∂Π

∂η
=
∂P

∂q

∂q

∂η
=

√
V
∂P

∂q
,
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which takes us to:
∂P

∂s
=

1√
V

∂Π

∂ξ

∂P

∂q
=

1√
V

∂Π

∂η
.

Equation (1.15) can be therefore cast in the form:

∂P

∂t
=
∂Π

∂t
− ∂Π

∂ξ

√
V φ̇(t)− ∂Π

∂η

√
V ψ̇(t), (1.16)

which transform into:

∂P

∂t
−→ 1

V

∂Π

∂τ
− 1√

V

∂Π

∂ξ
φ̇(τ)− 1√

V

∂Π

∂η
ψ̇(τ).

by operating the change of variable τ → t/V . To proceed in the analysis one needs
to insert into the master equation (1.6) the approximate expressions for the transition
rates, as well as the above relation for ∂P/∂t. The terms can be therefore re-organized
depending on their respective order in 1/

√
V . At the leading order, namely the terms

proportional to 1/
√
V , one eventually recovers the mean field deterministic system for

the continuum densities φ and ψ. At the next to leading order, a Fokker-Planck for the
distribution of the finite size fluctuations is instead obtained.

1.2.2 Leading order: the mean field limit

The contributions relative to 1/
√
V result in:

−∂Π
∂ξ

dφ

dτ
− ∂Π

∂η

dψ

dτ
=
(
− ν0 − ν1β − ν3(φ,ψ) − kfψ + ν2(φ) + kφ

)∂Π
∂ξ

+

+
(
kfψ + ν3(φ,ψ) − ν2(φ)

)∂Π
∂η

.

By grouping together the terms proportional to
∂Π

∂ξ
(resp.

∂Π

∂η
) and requiring their sum

to return zero, one ends up with the following system of differential equations for the
mean field concentrations φ and ψ:

dφ

dτ
= ν0 + ν1β + ν3(φ,ψ) + kfψ − ν2(φ)− kφ

dψ

dτ
= −kfψ − ν3(φ,ψ) + ν2(φ).

The above equations are identical to eqs. (1.10) and (1.11) as derived in the preceding
section. However, the van Kampen expansion enables us to take one step forward in the
study of the stochastic model. A rather complete characterization of the fluctuations can
be in fact gained by operating at the next to leading approximation, as we shall outline
in the remaining part of this section.

1.2.3 The next to leading approximation: the Fokker-Planck equation

for the fluctuations.

Consider now the terms that scale as V −1 in the expansion of the master equation. In
formulae one has:
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∂Π(ξ, η, τ)

∂τ
=

{
1

2

(
kfψ + ν3(φ,ψ) + ν2(φ)

)
∂2η +

1

2

(
ν0 + ν1β + ν3(φ,ψ) + kfψ + ν2(φ)+

+ kφ
)
∂2ξ + ∂η

[(
kf + ν3(φ,ψ)

mKm
R

ψ
(
Km
R + ψm

)
)
η +

(
ν3(φ,ψ)

pKp
A

φ
(
Kp
A + φp

) − ν2(φ)×

× nKn
2

φ
(
Kn

2 + φn
)
)
ξ

]
+ ∂ξ

[
−
(
kf + ν3(φ,ψ)

mKm
R

ψ
(
Km
R + ψm

)
)
η

(
k + ν2(φ)

nKn
2

φ
(
Kn

2 + φn
)−

−ν3(φ,ψ)
pKp

A

φ
(
Kp
A + φp

)
)
ξ

]}
Π(ξ, η, τ).

This is a linear Fokker Planck equation, which can be put in the standard form:

∂Π(x, τ)

∂τ
= −

2∑

i=1

∂

∂xi
Ai(x)Π(x, τ) +

1

2

2∑

i,j=1

∂2

∂xi∂xj
Bi,jΠ(x, τ), (1.17)

where we have introduced the vector x = (x1, x2) = (ξ, η). In the above eq.(1.17), Ai(x)
represents the i-th component of the vector:

A(x) =Mx,

where M is a 2× 2 matrix:

M =




−k − ν2(φ)
nKn

2

φ
(
Kn

2 + φn
) + ν3(φ,ψ)

pKp
A

φ
(
Kp
A + φp

) kf + ν3(φ,ψ)
mKm

R

ψ
(
Km
R + ψm

)

−ν3(φ,ψ)
pKp

A

φ
(
Kp
A + φp

) + ν2(φ)
nKn

2

φ
(
Kn

2 + φn
) −kf − ν3(φ,ψ)

mKm
R

ψ
(
Km
R + ψm

)



.

(1.18)
The terms Bi,j in equation (1.17) are the entries of the diagonal diffusion matrix B:

B =

(
ν0 + ν1β + ν3(φ,ψ) + ν2(φ) + kfψ + kφ 0

0 kfψ + ν3(φ,ψ) + ν2(φ)

)
. (1.19)

Notice that the coefficients of the above matrices M and B depend on time τ , as the
continuum concentration φ and ψ do. The Fokker-Planck that we have derived makes it
possible to characterize the distribution of fluctuations and explain, on solid interpretative
ground, the emergence of the quasi-cycles as reported in figure 1.2. To this end, by
building on the general approach first derived in [1] and later on exploited in e.g. [23],
we will hereafter obtain a closed expression for the power spectrum of the stochastic
fluctuations. It will be hence possible to determine a priori, and as a function of the
parameters of the model, the frequency of the Ca2+ oscillations, which gets selected as
follows the amplification of the intrinsic noise.
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1.3 The power spectrum of fluctuations

A stochastic differential equation of the Langevin type can be associated to the Fokker
Planck equation [29]. The Langevin equation describes the time evolution of the fluctu-
ations, returning a global distribution which obeys to the corresponding Fokker Planck
equation. For our case, the relevant Langevin equation, equivalent to eq. (1.17), reads:

d

dτ
xl(τ) =

2∑

j=1

Ml,jxj(τ) + λl(τ) l = 1, 2; (1.20)

where xl is the l-th component of the vector x = (ξ, η) and λl(τ) stands for a stochastic
variable which satisfies the following conditions:

〈λl(τ)〉 = 0
〈
λl(τ)λj(τ

′)
〉
= Bl,jδ(τ − τ ′).

It should be noticed that the amplitude of the noise term is controlled by the diffusion
matrix B and ultimately relates to the chemical parameters of the model. In other words,
the noise follows the microscopic formulation of the problem and it is not imposed as an
external source of disturbance.

To study the emergence of regular patterns in time, the quasi-cycles, it is convenient
to Fourier transform the Langevin equation (1.20):

− ıωx̂l(ω) =

2∑

j=1

Ml,jx̂j(ω) + λ̂l(ω) l = 1, 2; (1.21)

where ·̂ stands for the Fourier transform and ω represents the Fourier frequency. The
contribution λ̂(ω) verifies:

〈
λ̂l(ω)

〉
= 0

〈
λ̂l(ω)λ̂

∗
j (ω)

〉
= Bl,j, (1.22)

where λ̂∗j(ω) denotes the complex conjugate of λ̂j(ω). Eq. (1.21) yields:

x̂l(ω) =
2∑

j=1

(−ıωIl,j −Ml,j)
−1 λ̂j(ω) =

2∑

j=1

Φ−1
l,j (ω)λ̂j(ω) l = 1, 2;

where Φ(ω) = −ıωI −M . The power spectrum can be calculated as:

Pl(ω) =
〈
|x̂l(ω)|2

〉
= 〈x̂l(ω)x̂∗l (ω)〉 =

〈
2∑

j,r=1

Φ−1
l,j (ω)λ̂j(ω)(Φ

∗
l,r)

−1(ω)λ̂∗r(ω)

〉
=

=
2∑

j,r=1

Φ−1
l,j (ω)

〈
λ̂j(ω)λ̂

∗
r(ω)

〉
(Φ†)−1

l,r (ω) =
2∑

j,r=1

Φ−1
l,j (ω)Bj,r(Φ

†)−1
l,r (ω)

where use has been made of eq. (1.22) and where we have introduced Φ† = (Φ∗)T .
In conclusion, one gets:

Pl(ω) =
2∑

j,r=1

Φ−1
l,j (ω)Bj,r(Φ

†)−1
l,r (ω) l = 1, 2. (1.23)
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Figure 1.3: The power spectrum of fluctuations as a function of ω is plotted for species Z. The
solid line stands for the theoretical prediction (1.24), while the symbols refer to the stochastic
simulations averaged over 200 independent realizations. The power spectrum is normalized by
the maximum. The parameters are set as in figure 1.2. The system is hence initialized to fall in
region III, as depicted in the schematic diagram of figure 1.1.

After some algebraic manipulation, Eq. (1.23) yields to the following explicit forms:

PZ(ω) =
aZ + bZω

2

(ω2 − Ω2)2 + Γ2ω2
(1.24)

PY (ω) =
aY + bY ω

2

(ω2 − Ω2)2 + Γ2ω2
, (1.25)

where Γ = −tr(M), Ω =
√
det(M) aZ = B1,1M

2
2,2−2B1,2M1,2M2,2+B2,2M

2
1,2, bZ = B1,1,

bY = B2,2 e aY = B2,2M
2
1,1 − 2B1,2M2,1M1,1 +B1,1M

2
2,1.

To test the adequacy of the theory we can plot the power spectrum of fluctuation
of species Z around the mean field stationary point, for a choice of the parameters that
falls outside the region of deterministic oscillations and compare the prediction to the
numerical profile obtained by averaging over many realizations of the stochastic dynamics.
The comparison is displayed in figure 1.3. A clear peak is found in the power spectrum,
thus confirming that the stochastic oscillations as seen in figure 1.2 stem from finite size
fluctuations. The agreement between theory and numerical simulations is excellent. Quasi
cycles can therefore develop outside the region of mean field order, and the associated
frequency can be adequately estimated via perturbative analytical means.

An approximate estimate for the resonant frequency, where the peak of the power
spectrum is positioned, can be analytically worked out. Let us assume legitimate to
neglect, as a first approximation, the term proportional to ω2 in the numerator of PZ(ω),
see eq. (1.24). Then PZ(ω) is maximum when the denominator is minimum, namely
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Figure 1.4: The power spectrum of fluctuations PZ as a function of ω, for different choices of β.
is plotted for species Z. The symbols identify the location of the maxima, while the solid line is
obtained by plotting PZ(ωmax), as a function of β. The quantity ωmax follows the approximate
eq. (1.27).

when |detΦ(ω)| takes the smallest possible value. Denote by λi i = 1, 2 the eigenvalues
of matrix M . Hence:

|detΦ(ω)| =
2∏

j=1

(−ıω − λj)(ıω − λ∗j ).

Since M is by definition a real matrix, the eigenvalues λi can be either real or complex
conjugate. If they are real, then |detΦ(ω)| = (ω2 + λ21)(ω

2 + λ22). If they are complex
λ1 = λ∗2 = λ. If one posits λ = λR + ıλI , then:

|detΦ(ω)| = |ω2 + (λ2R − λ2I) + 2ıλRλI |2. (1.26)

This latter case is of interest to us, as quasi-cycles can develop only if the corresponding
mean field dynamics approaches the asymptotic stationary state, via damped oscillations.
The condition for the minimum of (1.26) readily translates into the final expression for
the resonant frequency ωmax:

ωmax =
√
λ2I − λ2R. (1.27)

In figure 1.4 the theoretical power spectrum of fluctuations is plotted for different
values of β. The symbols identify the position of the peaks while the solid line refers
to the approximate formula PZ(ωmax), where ωmax is given by (1.27). This comparison
points to the correctness of formula (1.27), which therefore encodes all the necessary
information to estimate the resonant frequency as a function of the parameters of the
model.
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1.4 Conclusion

Calcium oscillations are crucial for the functioning of the cellular machinery and for this
reasons have been widely investigated, both experimentally and theoretically. Dynamical
models have been proposed, to different levels of sophistication, which make it possible to
reproduce in silico the processes that underly the emergence of sustained Ca2+ oscillations.
Most of the models so far discussed in the literature are of deterministic inspiration and,
as such, omit the inherent stochastic perturbations, which stem from individual based
effects. This latter are particularly important at low concentrations, a regime which is
certainly of interest when it comes to modeling intracellular calcium oscillations.

Recently, Li and Hou [16] have put forward a microscopic version of the celebrated
Goldbeter model [17, 18], a paradigmatic scheme for calcium dynamics, which assumes
two species in mutual interaction. Working in such a generalized stochastic setting, it was
shown numerically [16] that the intrinsic noise can drive stochastic oscillations, termed
in [1] quasi cycles, also outside the region where a determinitic limit cycle is predicted to
occur.

Starting from this observation, and to make contact with the theoretical literature
devoted to the phenomenon of quasi-cycles, we have here carried out an analytical study
of a stochastic Ca2+ model [16]. The analysis is carried out under the linear noise approx-
imation and allows us to obtain a close prediction for the power spectrum of stochastic
fluctuations. This latter displays an isolated peak, whose reference frequency appears to
be controlled by the chemical parameters of the model, as e.g. the degree of external
stimulation β. The validity of the theory is confirmed by direct numerical simulations of
the examined stochastic model.

In conclusion, by building on recent advances on the study of noise induced oscillations
in stochastic population dynamics models, we have here cast on solid mathematical ground
the numerical observations of [16], so confirming that intrinsic noise can play an important,
although often neglected, role in the onset of intracellular calcium oscillations.

We have shown that the van Kampen expansion works well on the classical approxi-
mation and that it allows us to understand some phenomena that are not explicitly taken
into account in the deterministic limit. However, for very low concentration, or in a model
with an absorbing boundary, it may happen that the linear approximation does not yield
a satisfying description of the behaviour of the fluctuations. For this reason, in the next
chapter, we will consider three different models to elaborate on the validity of non linear
noise approximation. Moreover, we will explicitly perform the van Kampen expansion
beyond the Gaussian approximation to quantify analytically the skewed behaviour of
the distribution of the fluctuations. Performing such extended expansion we will obtain
a generalized Fokker-Planck equation, that describes the behaviour of the fluctuations.
From the Fokker-Planck equation, with a standard procedure, it is possible to obtain a
system of ordinary differential equations for the moments of the unknown distribution.
The knowledge of the moments enable one to rebuild the profile of the distribution of
fluctuations.



Chapter 2

Validity of van Kampen expansion

beyond Gaussian-approximations

This chapter is devoted to describe the validity of the van Kampen expansion beyond
the classical Gaussian approximation. To achieve this result, we have used two differ-
ent models. In the first one a complex network of autocatalytic chemical reactions is
studied both numerically and analytically. The van Kampen perturbative scheme is im-
plemented, beyond the second order approximation, so to capture the non Gaussianity
traits as displayed by the simulations. The method is targeted for the first model to
the characterization of the third moments of the distribution of fluctuations, originating
from a system of four populations in mutual interaction under an auto-catalytic chemical
reaction scheme. The theory predictions agree well with the simulations, pointing to the
validity of the van Kampen expansion beyond the conventional Gaussian solution. The
second model is a one-dimensional stochastic version of a voter model with an absorbing
boundary. The distribution of fluctuations is analytically characterized within the gener-
alized van Kampen expansion, accounting for higher-order corrections. The theoretical is
shown to successfully capture the non-Gaussian traits of the sought distribution return-
ing an excellent agreement with the simulations, for all times and arbitrarily close to the
absorbing barrier. At large times, a compact analytical solution for the distribution of
fluctuations is also obtained, bridging the gap with previous investigations [23]. In the
final part of the chapter we consider a third model, a stochastic version of the logistic
equation, and we compare the van Kampen expansion to the Wentzel–Kramers–Brillouin
approximation.

2.1 Analytical study of non Gaussian fluctuations in a

stochastic scheme of autocatalytic reactions

The cell is a complex structural unit, that defines the building block of living systems
[30]. It is made of by a tiny membrane, constituted by a lipid bilayer, which encloses
a finite volume and protects the genetic material stored inside. The membrane is semi-
permeable: nutrients can leak in and serve as energy storage to support the machinery
functioning. Metabolism converts energy into molecules, i.e. building cell components,
and releases by-product. Evolution certainly guided the ancient supposedly minimalistic
cell entities, the so-called protocells [31],[32],[33], through subsequent steps towards the
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delicate and complex biological devices that we see nowadays. Focusing on primordial
cell units, back at the origin of life, the most accredited scenario dictates that chemical
reactions occurred inside vesicles, small cell-like structures in which the outer membrane
takes the form of a lipid bilayer [33]. Vesicles possibly defined the scaffold of prototypical
cell models, while it is customarily believed that autocatalytic reactions might have been
at play inside primordial protocell. The shared view is that protocell’s volume might have
been occupied by interacting families of replicators, organized in autocatalytic cycles. A
chemical reaction is called autocatalytic if one of the reaction products is itself a catalyst
for the chemical reaction. Even if only a small amount of the catalyst is present, the reac-
tion may start off slowly, but will quickly develop once more catalyst is produced. If the
reactant is not replaced, the process will again slow down producing the typical sigmoid
shape for the concentration of the product. All this is for a single chemical reaction, but
of greater interest is the case of many chemical reactions, where one or more reactions
produce a catalyst for some of the other reactions. Then the whole collection of con-
stituents is called an autocatalytic set. Autocatalytic reactions have been invoked in the
context of studies on the origin of life as a possible solution of the famous Eigen’s paradox
[34]. This is a puzzling logic concept which limits the size of self replicating molecules to
perhaps a few hundred base pairs. However, almost all life on Earth requires much longer
molecules to encode their genetic information. This problem is handled in living cells by
the presence of enzymes which repair mutations, allowing the encoding molecules to reach
large enough sizes. In primordial organisms, autocatalytic cycles might have contributed
to the inherent robustness of the system, translating in a degree of microscopic coopera-
tion that successfully prevented the Eigen’s evolutionary derive towards self-destruction
to occur. It is therefore of interest to analyze the coupled dynamics of chemicals organized
in extended cycles of autocatalytic reactions.

It is in this context that our work is positioned. We will in particular consider a
model of autocatalytic reactions confined within a bounded region of space. The model
was pioneered by Togashi and Kaneko [35] and more recently revisited by [2],[3]. It was
in particular shown that fluctuations stemming from the intimated discreteness of the
scrutinized medium can seed a resonant effect yielding to organized macroscopic patterns,
both in time [2] and space [3].

As we shall clarify in the forthcoming discussion, the model here examined is intrin-
sically stochastic and falls in the realm of the so called individual-based description. The
microscopic dynamics follows explicit rules governing the interactions among individuals
and with the surrounding environment. Starting from the stochastic scenario and per-
forming the perturbative development (the van Kampen expansion [29]) with respect to
a small parameter which encodes the amplitude of finite size fluctuations, one obtains,
at the leading order, the mean-field equations, i.e. the idealized continuum description
for the concentration amount. These latter govern in fact the coupled evolution of the
average population amount, as in the spirit of the deterministic representation. Including
the next-to-leading order corrections, one obtains a description of the fluctuations, as a
set of linear stochastic differential equations. Such a system can be hence analyzed ex-
actly, so allowing us to quantify the differences between the stochastic formulation and its
deterministic analogue. This analysis was performed in [2] with reference to the a-spatial
version of model, and in [3] where the notion of space is instead explicitly included.

In this section, we take one step forward by analytically characterizing the fluctuations
beyond the second order in the van Kampen perturbative scheme [29, 36], i.e. the Gaus-
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sian approximation, and so quantifying higher contributions in the hierarchy of moments
of the associated distribution. As we shall demonstrate, and with reference to the ana-
lyzed case study, we can successfully quantify non Gaussian fluctuations, within the van
Kampen descriptive scenario, in agreement with the recent investigations of Grima and
collaborators [37] and previous indications of Risken and Vollmer [38]. Indeed, the aim
of our work is to recover an analytical description of the asymmetry in the distribution
of the fluctuations already observed in [35]. As we will show in the following sections,
accounting for higher orders in the van Kampen system size expansion, allows one to
obtain a more accurate prediction of the moments, which explains the skewed numerical
profile of the fluctuations pointed out in [35]. This work has been in part develop during
my master stage, but took to completion in the early stage of my PhD training, with the
implementation and extension of dedicated numerical simulation.

The section is organized as follows. In the following subsection we will introduce the
model under scrutiny. Then we will turn to discussing the associated master equation,
derive the mean field equation, and characterize the fluctuations within the Gaussian
approximation. Non Gaussian traits are revealed via numerical (stochastic) simulations
for small system sizes. These features are analytically inspected and explained by working
in the framework of a generalized Fokker-Planck formulation where the role of the finite
population is explicitly accommodated for.

2.1.1 The stochastic Kaneko model

The autocatalytic reaction scheme as introduced in [2] describes the dynamics of k species
which interact according to the following rules

Xi +Xi+1
ri+1−→ 2Xi+1 with Xk+1 ≡ X1

E
αi−→ Xi

Xi
βi−→ E (2.1)

where Xi denotes an element of the i–th species, while E is the null constituent or
vacancies. The parameter ri (with rk+1 ≡ r1) is the autocatalytic process rate, while
αi and βi are the rates at which the molecules appear and disappear from the system.
The size of the system is denoted by N , then

∑k
i=1 ni+nE = N , where nE is the number

of E.

It is worth emphasizing that the concept of vacancies E enables us to accommodate for
a finite carrying capacity of the hosting volume. The approach can be readily extended
to the case where the space is accounted for by formally dividing the volume in small
patches, each being characterized by a limited capacity. Species can then migrate between
neighbors cells, therefore visiting different regions of the spatial domain in which they are
confined. This generalization is discussed in [3]. We will here solely consider the a-spatial
version of the model, aiming at characterizing the fluctuations beyond the canonical
Gaussian approximation. In the following, we will introduce the master equation that
rules the stochastic dynamics of the system defined by the closed set of chemical equations
(2.1).
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2.1.2 The master equation and its expansion

Let us start by introducing the master equation that governs the evolution of the stochastic
system described above. First, it is necessary to write down the transition rates T (n′|n)
from the state n to the state n′, where n ≡ (n1, . . . , nk) is the vector whose components
define the number of elements of each species at time t. These transition rates are

T (n1, . . . , ni − 1, ni+1 + 1, . . . , nk|n) = ri+1
ni
N

ni+1

N
,

T (n1, . . . , ni + 1, . . . , nk|n) = αi

(
1−

∑k
j=1 nj

N

)
,

T (n1, . . . , ni − 1, . . . , nk|n) = βi
ni
N
.

In this way, the differential equation for the probability P (n, t) reads

d

dt
P (n, t) =

k∑

i=1

(ε+i ε
−
i+1)T (n1, ...ni − 1, ni+1 + 1, ...nk)P (n, t)+

k∑

i=1

(ε−i − 1)T (n1, ..., ni + 1, ni+1, ..., nk)P (n, t)+

k∑

i=1

(ε+i − 1)T (n1, ..., ni − 1, ni+1, ..., nk)P (n, t)

(2.2)

where ε±i are the step operators which act on an arbitrary function f(x) as
ε±i f(x) = f(. . . , xi ± 1, . . .).

As we have already underline in the previous chapter the above description is exact:
no approximations have yet been made. At this stage we could resort to numerical simu-
lations of the underlying chemical reactions by means of the Gillespie algorithm [28, 39].
This method produces realizations of the stochastic dynamics which are formally equiv-
alent to those found from the master equation (2.2). Averaging over many realizations
enables us to calculate quantities of interest. We will comment on the results of such
simulations, in the following. A different route is however possible which consists in dras-
tically simplifying the master equation, via a perturbative calculation, the van Kampen
system size expansion [29, 36]. We will again notice that it is effectively an expansion in
powers of N−1/2, which to the leading order (N → ∞) gives the deterministic equations
describing the system, while at next-to-leading order returns the finite N corrections to
these. The van Kampen ansatz is:

ni
N

= φi +
ξi√
N
. (2.3)

where ξi is the i-th component of the k-dimensional stochastic variable ξ = (ξ1, ξ2, ...). To
proceed in the analysis we make use of the working ansatz (2.3) into the master equation
(2.2). Then, it is straightforward to show that the operator ε±i can be approximated as:

ε±i = 1± 1

N1/2

∂

∂ξi
+

1

2N

∂2

∂ξ2i
± 1

3!N3/2

∂3

∂ξ3i
+ . . .
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The first step in the perturbative calculation consists in expliciting in the master
equation the dependence on the concentration vector y = n/N . It is legitimate to assume
that this latter quantity changes continuously with time, as far as each instantaneous
variation is small when compared to the system size. We therefore proceed by defining
the following distribution:

Π(ξ, t) = P (y, t) = P
(
φ(t) +

ξ√
N
, t
)
.

A simple manipulation yields to:

∂P

∂t
= −

√
N

k∑

i=1

∂Π

∂ξi

dφi
dt

+
∂Π

∂t
.

Similarly one can act on the right hand side of Eq. (2.2) and hierarchically organize
the resulting terms with respect to their N–dependence. The outcome of such algebraic
calculation are reported in the following. We will in particular limit our discussion to
the Gaussian approximation, by neglecting, at this stage, the N−3/2 terms. We will
then return on this important issue and discuss the specific role that is played by N−3/2

corrections.

2.1.3 The N
−1/2 terms

As concerns the terms of order N− 1
2 one obtains:

− 1√
N

k∑

i=1

∂Π

∂ξi

dφi
dτ

=
1√
N

k∑

i=1

(ri+1φiφi+1 − riφi−1φi)
∂Π

∂ξi

+
1√
N

k∑

i=1

[
βiφi − αi

(
1−

k∑

m=1

φm

)]∂Π
∂ξi

where the rescaled time τ is defined as τ = t/N . Thus the following system of differential
equations holds for the concentration amount φi

dφi
dτ

= riφi−1φi − ri+1φiφi+1 + αi

(
1−

k∑

m=1

φm

)
− βiφi, (2.4)

which in turn corresponds to working within the so–called mean field approximation and
eventually disregard finite size corrections. We should emphasize that Eqs. (2.4) are
obtained by elaborating on the exact stochastic chemical model and exploring the limit
for infinite system size N → ∞.

To make contact with previous investigations [2] we shall assume the simplifying set-
ting with βi = β, αi = α and ri = r ∀i. Under this condition, all species asymptotically
converge to the fixed point φ∗ which is readily calculated as:

α
(
1−

k∑

m=1

φ∗
)
− βφ∗ = 0 −→ φ∗ =

α

kα+ β
. (2.5)

We now turn to numerical simulation based on the Gillespie algorithm and discuss
the case with k = 4 species. As reported in Fig. 2.1, once the initial transient has
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Figure 2.1: Temporal evolution of one of the species concentrations for a system composed
by 4 species and parameters set as N = 8190, ri = 10 and αi = βi = 1/64 ∀i. The noisy
(red online) line represents one stochastic realization thought the Gillespie algorithm
[28, 39], while the dashed black line shows the numerical solution of the deterministic
system given by Eq. (2.4).

died out, the numerically recorded time series keep on oscillating around the reference
value as specified by relation (2.5). The mean field dynamics has conversely relaxed to
the deputed equilibrium value. These oscillations stem from the finite size corrections
to the idealized mean field dynamics and will be inspected in the following. We will
be in particular concerned with characterizing the statistical properties of the observed
signal, and quantify via rigorous analytical means the moments of the distribution of the
fluctuations.

2.1.4 The N
−1 corrections

Finite size effects related to the N−1 corrections result in the Fokker-Planck equation:

∂Π

∂τ
= −

k∑

i=1

∂

∂ξi

[
Ai(ξ)Π

]
+

1

2

k∑

j=1

k∑

i=1

∂2

∂ξi∂ξj

[
bijΠ

]
(2.6)

which governs the evolution of the distribution Π(·). Here Ai(ξ) reads:

Ai(ξ) = (riφi−1 − ri+1φi+1)ξi − ri+1φiξi+1 + riφiξi−1 − αi

k∑

m=1

ξm − βiξi,

while bij stands for the element ij of matrix B defined as:

bij =





ri+1φiφi+1 + riφiφi−1 + αi(1−
∑k

m=1 φm) + βiφi if i = j
−ri+1φiφi+1 if j = i+ 1
−riφi−1φi if j = i− 1
0 if |i− j| > 1.
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For the sake of clarity we shall introduce the matrix M of elements mij defined as:

mij =





riφi−1 − ri+1φi+1 − αi − βi if i = j
−ri+1φi − αi if j = i+ 1
riφi − βi if j = i− 1
−αi if |i− j| > 1

and so rewrite Ai as:

Ai =
k∑

j=1

mijξj.

The Fokker-Planck equation (2.6) has been previously obtained in [2] and shown to explain
the regular oscillations displayed in direct stochastic simulations. The oscillations, in fact,
materialize in a peak in the power spectrum of fluctuations which can be analytically
calculated working in the equivalent context of the Langevin equation. Here, we take a
different route and reconstruct the distribution of fluctuations through the calculation of
the associated moments. To allow for analytical progress, we will assume again identical
chemical reactions rates for all species, namely ri = r, βi = β and αi = α ∀i. Moreover,
we will focus on the fluctuations around the equilibrium and so require φi = φ∗ ∀i. Under
these conditions the matrix M is circulating and can be cast in the form:

M =




m0 m1 m2 m2 . . . m3

m3 m0 m1 m2 . . . m2

m2 m3 m0 m1 . . . m2

. . . . . . . . . . . . . . . . . .
m1 m2 m2 m2 . . . m0



.

with m0 = −α − β, m1 = −rφ∗ − α, m2 = −α, and m3 = rφ∗ − α. The k × k matrix
reads instead:

B =




b0 b1 0 . . . 0 b1
b1 b0 b1 . . . 0 0
0 b1 b0 . . . 0 0

. . . . . . . . . . . . . . . . . .
b1 0 0 . . . b1 b0



;

where b0 = 2rφ∗φ∗+α(1−kφ∗)+βφ∗, and b1 = −rφ∗φ∗. We recall that the solution of the
Fokker–Planck equation (2.6) is a multivariate Gaussian which is univocally characterized
by the associated families of first and second moments. Working within this setting, it
is hence sufficient to derive the analytical equations that control the time evolution of
the first two moments of the distribution. We will in particular provide closed analytical
expressions for the asymptotic moments and draw a direct comparison with the numerical
experiments.

2.1.5 Analytical estimates of the fluctuations distribution moments

Define the moment of order p for ξi the quantity

〈ξpi 〉 =
∫

Π(ξ)ξpi dξ
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Let us illustrate the analytical procedure that is here adopted, with reference to 〈ξ2i 〉. To
this end we start from Eq. (2.6) and multiply it on both sides by the factor ξ2i . Integrating
over Rk in dξ = (dξ1, dξ2, ..., dξk), yields:

∫
ξ2i
∂

∂τ
Π(ξ, τ)dξ =

∫
ξ2i
∑

i
∂
∂ξi
Ai(ξ)Π(ξ, τ)dξ

+
∫
ξ2i

1
2!

∑
i,j

∂2

∂ξi∂ξj
bi,j(ξ)Π(ξ, τ)dξ. (2.7)

Consider the right hand side of Eq. (2.7) and operate two successive integrations by parts.
Just two terms survive, as it can be trivially argued for. Hence, bringing out the time
derivative from the integral at the left hand side of Eq. (2.7), the sought equation for the
second moments reads:

˙〈ξ2i 〉 = 2mi,i〈ξ2i 〉+ 2mi,i−1〈ξiξi−1〉+ 2mi,i+1〈ξiξi+1〉+ 2mi,i+2〈ξiξi+2〉+ bi,i (2.8)

where i = 1, ..., 4. Use has been made of the definitions of the coefficients mij. With
analogous steps one immediately obtains the differential equation that governs the time
evolution of quantity 〈ξiξj〉:

˙〈ξiξj〉 =mi,i〈ξiξi+1〉+mi+1,i〈ξ2i 〉+mi,i+1〈ξ2i+1〉+mi,i+2〈ξi+1ξi+2〉
+mi+1,i+1〈ξiξi+1〉+mi+1,i+2〈ξiξi+2〉+mi+1,i〈ξ2i 〉
+mi,i+3〈ξi+3ξi+1〉+ bi,i+1.

(2.9)

which, in practice, encodes the degree of temporal correlation between species i and j.
The picture is completed by providing the equations for the first moments which read:

˙〈ξi〉 = mi,i〈ξi〉+mi,i−1〈ξi−1〉+ 〈ξi〉mi,i+1 −mi,i+2〈ξi+2〉.

Taking into account all possible permutations of the involved indexes i, j, both ranging
in the interval from 1 to 4, and recalling the Eq.s (2.8)–(2.9), one eventually obtains a
closed system of ten coupled ordinary differential equations. For the simplified case ri = r,
αi = α, βi = β ∀i, this latter can be cast in a compact form by introducing the matrix:

K =




2m0 2m1 2m2 2m3 0 0 0 0 0 0
m3 2m0 m1 m2 m1 m1 m2 m3 0 0
m2 m3 2m0 m1 0 m1 0 m2 m3 0
m1 m2 m3 2m0 0 0 m1 0 m2 m3

0 2m3 0 0 2m0 2m1 2m2 0 0 0
0 m2 m3 0 m3 2m0 m1 m1 m2 0
0 m1 0 m3 m2 m3 2m0 0 m1 m2

0 0 2m2 0 0 2m3 0 2m0 2m1 0
0 0 m1 m2 0 m2 m3 m3 2m0 m1

0 0 0 2m1 0 0 2m2 0 2m3 2m0




By further defining:

X =
[
〈ξ21〉 〈ξ1ξ2〉 〈ξ1ξ3〉 〈ξ1ξ4〉 〈ξ22〉 〈ξ2ξ3〉 〈ξ2ξ4〉 〈ξ23〉 〈ξ3ξ4〉 〈ξ24〉

]

and the vector
D = [b0 b1 0 b1 b0 b1 0 b0 b1 b0]
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one gets

Ẋ = KX +D.

As anticipated, we focus in particular on the late time evolution of the system, i.e. when
the fluctuations’ distribution has converged to its asymptotic form. This request trans-
lates into the mathematical condition Ẋ = 0, which implies dealing with an algebraic
system of equations. Given the peculiar structure of the problem, and by invoking a
straightforward argument of symmetry 1, one can identify three families of independent
unknowns, namely:

〈ξ21〉 = 〈ξ22〉 = 〈ξ23〉 = 〈ξ24〉 =: Γ1

〈ξ1ξ2〉 = 〈ξ1ξ4〉 = 〈ξ2ξ3〉 = 〈ξ3ξ4〉 =: Γ2

〈ξ1ξ3〉 = 〈ξ2ξ4〉 =: Γ3.

(2.10)

Closed analytical expressions for the unknowns Γ1,Γ2 and Γ3 as a function of the chemical
parameters can be derived and take the form:

Γ1 =
2b0
5α

− b1
5α

Γ2 = − b0
10α

+
3b1
10α

(2.11)

Γ3 = − b0
10α

− b1
5α
.

In deriving the above, we have assumed a further simplifying condition, namely α = β.
The adequacy of the predictions is tested in Fig. 2.2, where Γ1 and Γ2 are plotted
versus the independent parameter α. Recalling the explicit forms of b0 and b1 one can
immediately appreciate that Γ3 is indeed independent of α. For this reason we here avoid
to include Γ3 in Fig. 2.2. One can moreover make use of the knowledge of the moments to
reconstruct the profile of the distribution Π(ξ). In particular, and due to the symmetry
of the model, we solely focus on the marginal distribution Π(ξ) = Π(ξi) for i = 1, . . . , 4.
In practice, we project the distribution in a one-dimensional subspace by integrating over
three out of four scalar independent variables ξi. In Fig. 2.3, a comparison between theory
and stochastic simulations (relative to small N values) is drawn. While the agreement
is certainly satisfying, deviations from the predicted Gaussian profile manifest as the
population size shrinks. As we shall demonstrate, these distortions, which materialize
in a skewed distribution, can be successfully explained within an extended interpretative
framework that moves from the van Kampen system size expansion. In the following
section we will hence extend the calculation beyond the Gaussian approximation. In
doing so we will operate in the general setting for α 6= β, but then specialize on the choice
α = β to drastically reduce the complexity of the inspected problem.

2.1.6 Beyond the Gaussian approximation

We shall here go back to discussing the higher orders, N−3/2 corrections to the Fokker-
Planck equation. We will in particular consider the various terms that contribute to
the generalized Fokker-Planck equation grouping them as a function of the order of the

1It can be shown (see Fig. 1 of [2]) that the four families of chemicals evolve in pairs. Odd species
k = 1, 3 are mutually synchronized. The same applies to the even pairs k = 2, 4.
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Figure 2.2: Plots of the moments Γ1 and Γ2 as functions of α. The black lines show the
theoretical predictions given by Eq. (2.11), while the (colored online) symbols represent
the numerical simulations of the stochastic problem. Each symbol corresponds to a dif-
ferent component of the family according to (2.10). Parameters are set as N = 2000,
α = β.

derivative involved. The order N−3/2 terms that involve the first derivatives can be
expressed as:

k∑

i=1

[ ∂
∂ξi

− ∂

∂ξi+1

]
ri+1ξiξi+1Π(ξ, τ) =

k∑

i=1

∂

∂ξi
[ri+1ξiξi+1 − riξi−1ξi]Π(ξ, τ)

= −
k∑

i=1

k∑

j=1

∂

∂ξi
lijξiξjΠ(ξ, τ),

where lij are the elements of the k × k circulant matrix L which, for ri = r ∀i reads:

L =




0 −r 0 . . . 0 r
r 0 −r . . . . . . 0
0 r 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . −r 0
0 . . . . . . r 0 −r
−r 0 . . . 0 r 0




.
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Figure 2.3: Comparison between the stationary marginal Gaussian distribution and the
stochastic simulations (the y–axis has a logarithmic scale). The solid (red on line) line
shows the theoretical prediction according to the van Kampen theory. The (green online)
circles represent the numerical distribution for a system with N = 200, while the (red
online) triangles refer to a system with N = 2000. For all the curves r = 10, α = β = 0.1.

The order N−3/2 contribution which depends on the second derivatives can be also ex-
pressed in a matricial form. In fact, we have:

1

2

[ ∂2
∂ξ2i

βiξi −
∂2

∂ξ2i
αi
∑

w

ξw + ri+1
∂2

∂ξ2i
(ξiφi+1 + φiξi+1) + ri

∂2

∂ξ2i
(ξiφi−1 + φiξi−1)

+ 2ri+1
∂

∂ξi

∂

∂ξi+1
(ξiφi+1 + φiξi+1)

]
Π(ξ, τ) =

k∑

i=1

k∑

j=1

∂

∂ξi∂ξj
dij ,

where the k × k matrix D of elements dij , for ri = r ∀i, reads:

dij =





βξi − α
∑

w ξw + r(ξiφ
∗ + ξi+1φ

∗) + r(ξiφ
∗ + ξi−1φ

∗) if i = j
−r(ξiφ∗ + ξi+1φ

∗) if j = i+ 1
−r(ξiφ∗ + ξi−1φ

∗) if j = i− 1
0 otherwise.

Finally, the third order derivatives contribute as:

[
− 1

3!

∂3

∂ξ3i
αi(1−

∑

m

φm) +
1

3!

[ ∂
∂ξi

− ∂

∂ξi+1

]3
ri+1φiφi+1 +

1

3!

∂3

∂ξ3i
βiφi

]
Π(ξ, τ) =

−
∑

i,j,w

∂3

∂ξi∂ξj∂ξw
eijwΠ(ξ, τ),
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where we introduced the matrix E defined as:

eijw =





r(φ∗)2 j = i w = i+ 1
r(φ∗)2 j = i− 1 w = i− 1
r(φ∗)2 j = i+ 1 w = i
−r(φ∗)2 j = i+ 1 w = i+ 1
−r(φ∗)2 j = i w = i− 1
−r(φ∗)2 j = i− 1 w = i
−[βφ∗ − α(1− kφ∗)] i = j = w.

In conclusion, one gets the following equation for the distribution Π(ξ, τ) [40]:

∂Π(ξ, τ)

∂τ
=−

k∑

i=1

∂

∂ξi
[Ai(ξ)Π(ξ, τ)] +

1

2

k∑

i,j=1

∂2

∂ξi∂ξj
[bijΠ(ξ, τ)]

− 1

N1/2

k∑

i=1

∂

∂ξi
[Ci(ξ)Π(ξ, τ)] +

1

2N1/2

k∑

i,j=1

∂2

∂ξi∂ξj
[dij(ξ)Π(ξ, τ)]

− 1

3!N1/2

k∑

i,j,w=1

∂3

∂ξi∂ξj∂ξw
[eijwΠ(ξ, τ)],

(2.12)

where:

Ci(ξ) =

k∑

j=1

lijξiξj.

We will refer to the latter as to the generalized Fokker-Planck equation. In the following
section we will discuss the corrections to the Gaussian approximation as deduced by the
above mathematical framework.

2.1.7 Non Gaussian corrections to the moments of the distribution

Starting from Eq. (2.12) we shall now assume k = 4 and calculate the first three moments
of the asymptotic distribution of the fluctuations around the mean field equilibrium.
Clearly, the derivation can be in principle extended to evaluate the contribution of higher
moments. The algebraic complexity of such an extension is however considerable and
for this reason the third is the largest moment here characterized. The conclusions are
nevertheless rather interesting as evaluating the third moment allows us to quantify the
observed degree of skewness in the distribution of fluctuations.

When it comes to the first moment one gets:

d

dt
〈ξi〉 =mi,i〈ξi〉+mi,i−1〈ξi−1〉+mi,i+1〈ξi〉+mi,i+2〈ξi+2〉

+
1

N1/2
[li,i−1〈ξiξi−1〉+ li,i+1〈ξiξi+1〉].

(2.13)

This equation differs from the one obtained in section 2.1.5 for the additional contribution

1

N1/2
[li,i−1〈ξiξi−1〉+ li,i+1〈ξiξi+1〉] .

Thanks to the symmetry of the system, which ultimately stems from having assumed
ri = r ∀i, we can operate in a highly simplified framework. We notice in fact that
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the above term is function of the second moments, which have been estimated above and
quantified as 〈ξiξi+1〉 = 〈ξiξi−1〉 = Γ2+o(1/

√
N). Further we observe that li,i−1 = −li,i+1.

Hence the corrections to the Gaussian solution as exemplified in Eq. (2.13) contribute
with an overall term of order N−3/2, which can be legitimately neglected at this level
of approximation. In conclusion the equation for the first moments is identical to that
obtained in section 2.1.5.

Working in complete analogy, for the second moments we find:

〈ξ̇2i 〉 =2mi,i〈ξ2i 〉+ 2mi,i+2〈ξiξi+2〉+ 2mi,i+1〈ξiξi+1〉+ 2mi,i−1〈ξiξi−1〉+ bi,i

+
2

N1/2
[li,i+1〈ξ2i ξi+1〉+ li,i−1〈ξ2i ξi−1〉],

for the variance of each involved species (recalling that the first moments are indeed null)
and

〈 ˙ξiξi+1〉 =mi,i〈ξiξi+1〉+mi,i+2〈ξi+1ξi+2〉+mi,i+1〈ξ2i+1〉+mi+1,i〈ξ2i 〉
+mi+1,i+1〈ξiξi+1〉+mi+1,i+2〈ξiξi+2〉+mi,i+1〈ξ2i 〉+mi,i+3〈ξi+1ξi+3〉

+
1

2
bi,i+1 +

1

2
bi+1,i +

1

N1/2
[li,i+1〈ξiξ2i+1〉+ li,i−1〈ξiξi−1ξi+1〉

+ li+1,i〈ξ2i ξi+1〉+ li+1,i+2〈ξiξi+2ξi+1〉],
for the mutual correlation between distinct populations. The index i ranges from 1 to 4.
Again the extra contributions are limited to the terms stored in square brackets and prove
to be negligible at this level of approximation. In fact the third order correlations therein
involved should scale as N−1/2 as requested by a simple consistency argument and as we
shall prove a posteriori. Then, also in this case, thanks to the specific form of the matrix
L, the additional contribution, stemming from third order moments, vanishes. We come
hence to the conclusion that the second moments are identical to those calculated in the
preceding section 2.1.5 working within the Gaussian ansatz.

Let us now turn to calculating the third moments. After a lengthy derivation we end
up with:

〈ξ̇3i 〉 =3m0〈ξ3i 〉+ 3m3〈ξ2i ξi−1〉+ 3m2〈ξ2i ξi+2〉+ 3m1〈ξ2i ξi+1〉+ 3b0〈ξi〉

+
3

N1/2
[m4〈ξ2i 〉+m3〈ξiξi+1〉+m3〈ξiξi−1〉+ 3m2〈ξiξi+2〉] +

m5

N1/2

+
1

N1/2
[3r〈ξ3i ξi−1〉 − 3r〈ξ3i ξi+1〉],

where m0 = −2α, m1 = −α− r/5, m2 = −α, m3 = −α+ r/5, m4 = 2r/5, m5 = m6 = 0,
m7 = −2r/5, m8 = r/25 and m9 = −r/5. Here again, and as anticipated in the preceding
discussion, we have chosen the simplifying setting with α = β, which consequently implies
φ∗ = 1/5. Elaborating on the symmetry one can identify five families of independent
moments, which obey to the above and the following differential equations:

d

dt
〈ξ2i ξi−1〉 = 3m0〈ξ2i ξi−1〉+ 2m3〈ξiξ2i−1〉+ 2m1〈ξiξi+1ξi−1〉+ 2m2〈ξiξi−1ξi+2〉

+m3〈ξ2i ξi+2〉+m1〈ξ3i 〉+m2〈ξ2i ξi+1〉+ b0〈ξi−1〉+ 2b1〈ξi〉

+
1

N1/2
[m3〈ξ2i−1〉+m6〈ξiξi+1〉+m3〈ξi+1ξi−1〉+m2〈ξi−1ξi+2〉+m7〈ξ2i 〉]

− m8

N1/2
+

1

N1/2
[−2r〈ξi−1ξ

2
i ξi+1〉+ 2r〈ξ2i−1ξ

2
i 〉+ r〈ξ2i ξi−1ξi+2〉 − r〈ξ3i ξi−1〉],
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and

d

dt
〈ξ2i ξi+1〉 = 3m0〈ξ2i ξi+1〉+ 2m3〈ξiξi−1ξi+1〉+ 2m1〈ξiξ2i+1〉+ 2m2〈ξiξi+1ξi+2〉

+m3〈ξ3i 〉+m1〈ξ2i ξi+2〉+m2〈ξ2i ξi−1〉+ b0〈ξi+1〉+ 2b1〈ξi〉

+
1

N1/2
[m3〈ξ2i+1〉+m6〈ξiξi+1〉+m3〈ξi+1ξi+3〉+m2〈ξi+1ξi+2〉+m7〈ξ2i 〉]

+
m8

N1/2
+

1

N1/2
[−2r〈ξ2i+1ξ

2
i 〉+ 2r〈ξi−1ξi+1ξ

2
i 〉+ r〈ξ3i ξi+1〉 − r〈ξ2i ξi+1ξi+2〉],

for adjacent populations with respect to the assumed ordering. For next–to–neighbors
correlation one gets:

d

dt
〈ξ2i ξi+2〉 = 3m0〈ξ2i ξi+2〉+ 2m3〈ξiξi−1ξi+2〉+ 2m1〈ξiξi+1ξi+2〉+ 2m2〈ξiξ2i+2〉

+m3〈ξ2i ξi+1〉+m1〈ξ2i ξi−1〉+m2〈ξ3i 〉+ b0〈ξi+2〉+
1

N1/2
[−r〈ξ2i ξi+1ξi+2〉

+ r〈ξi−1ξi+2ξ
2
i 〉] +

1

N1/2
[m2〈ξ2i+2〉+m4〈ξiξi+2〉+m3〈ξi−1ξi+2〉

+m3〈ξi+1ξi+2〉].
Finally, for correlations that involve three distinct species, we find:

d

dt
〈ξiξi+1ξi−1〉 = 3m0〈ξiξi+1ξi−1〉+m3〈ξi+1ξ

2
i−1〉+m1〈ξ2i+1ξi−1〉+m2〈ξi+2ξi+1ξi−1〉

+m3〈ξ2i ξi−1〉+m1〈ξiξi+2ξi−1〉+m3〈ξiξi+1ξi+2〉+m2〈ξiξ2i−1〉

+m1〈ξ2i ξi+1〉+m2〈ξiξ2i+1〉+ b1〈ξi−1〉+ b1〈ξi+1〉+
1

N1/2
[m9〈ξi−1ξi〉

+m9〈ξi+1ξi〉+m7〈ξi−1ξi+1〉] +
1

N1/2
[−r〈ξ2i+1ξiξi−1〉+ r〈ξi+1ξiξ

2
i−1〉].

Clearly, the fourth moments enter the equation for the third ones. To close the system
and so enable for quantitative predictions, we can estimate the zero–th order contribution
to the fourth moments by recalling the Gaussian solution as obtained in Section 2.1.5 and
neglecting the 1/

√
N terms. In formula:

〈ξ4i 〉 = 3(〈ξ2i 〉)2

〈ξ3i ξj〉 = 3〈ξ2i 〉〈ξiξj〉
〈ξ2i ξ2j 〉 = 〈ξ2i 〉〈ξ2j 〉+ 2(〈ξiξj〉)2

〈ξ2i ξjξk〉 = 〈ξ2i 〉〈ξjξk〉+ 2〈ξiξj〉〈ξiξk〉.

The above quantities can be analytically estimated at equilibrium and expressed as a
function of respectively Γ1, Γ2, Γ3, as derived in section 2.1.5.

2.1.8 The asymptotic evolution of the third moments

Let us now write down the system of differential equations that controls the dynamics of
the five independent families of moments of order three 2. Such a system takes the form

Ẋ = VX + S, (2.14)

2The system reduces to five families of independent moments as follows a the inherent symmetry of
the problem to which we alluded in the preceding discussion.
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Figure 2.4: Plots of X1 (see Eq. (2.15)) as functions of the parameter α, for a system
with β = α, N = 200 and r = 10. The solid black lines represent the numerical solution
of the system (2.14), while the symbols refer to the stochastic simulations (each of the
four symbols is associated to a different species).

where X is

X =
[
〈ξ3i 〉 〈ξ2i ξi+1〉 〈ξ2i ξi−1〉 〈ξ2i ξi+2〉 〈ξiξi+1ξi−1〉

]
, (2.15)

and the matrix of coefficients V reads:

V =




3m0 3m1 3m3 3m2 0
m3 3m0 2m1 +m2 m1 2m3 + 2m2

m1 2m3 +m2 3m0 m3 2m1 + 2m2

m2 m3 m1 3m0 + 2m2 2m3 + 2m1

0 m2 +m1 m3 +m2 m3 +m1 3m0 +m1 +m3 +m2



.

Finally the vector S is:

S = 1/
√
N [s1 s2 s3 s4 s5] ,

where:

s1 = 3m4Γ1 + 6m3Γ2 + 3m2Γ3

s2 = m3Γ1 +m7Γ1 +m3Γ3 +m2Γ2 +m6Γ2 +m8

+[−2r(Γ1)
2 + 2rΓ3Γ1 − 2rΓ3Γ2 + 2rΓ1Γ2]

s3 = m3Γ1 +m7Γ1 +m3Γ3 +m2Γ2 +m6Γ2 −m8

+[2r(Γ1)
2 − 2rΓ1Γ3 + 2rΓ3Γ2 − 2rΓ1Γ2]

s4 = m4Γ3 + 2m3Γ2 +m2Γ1

s5 = m7Γ3 + 2m9Γ2.
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Figure 2.5: Plots of X2 as functions of the parameter α. For the parameters’ setting and
the explanation of the symbols see caption of Fig. 2.4.
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Figure 2.6: Plots of X3 as functions of the parameter α. For the parameters’ setting and
the explanation of the symbols see caption of Fig. 2.4.
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Figure 2.7: Plots of X4 as functions of the parameter α. For the parameters’ setting and
the explanation of the symbols see caption of Fig. 2.4.
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Figure 2.8: Plots of X5 as functions of the parameter α. For the parameters’ setting and
the explanation of the symbols see caption of Fig. 2.4.
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We now turn to numerical simulations to validate the correctness of the theory.
Stochastic simulations are performed for small systems (N = 200) and the time evolution
of the third moments is monitored for each of the considered species and by varying the
parameter α, while keeping r unchanged. Results are displayed in Fig.s 2.4–2.8, where the
simulations outcome (symbols) are compared to the theory predictions. The agreement
has to be considered satisfactory, a conclusion which a posteriori validates the theory
assumptions and in particular confirms the predictive ability of the van Kampen expan-
sion beyond the Gaussian approximation [37, 29]. We notice that the overlap between
simulations and theory is less accurate for small values of α. This discrepancy may be due
to the related to the fact that small values of α means reactions less probable and thus
the dynamics is slow. Increasing the simulation time or averaging over more realizations
would help increasing the match.

For this specific case we have reached a good agreement between theory and numerical
simulations. Moreover, the complexity of the model makes it hard to extend the analysis
beyond the order of approximation here concluded. To eventually checks the adequacy of
the generalized van Kampen expansion, testing is convergence a different order, we shall
consider in the next section a single one dimensional version of the Voter model in the
presence of an absorbing boundary.

2.2 Voter model

In this section we start by the stochastic version of the Voter model introduced in [2] and
we will analytically demonstrate that by extending the van Kampen expansion to include
higher orders corrections, beyond the classical approximation, allows us to accurately
reproduce the observed distribution of fluctuations at any time. Non Gaussian traits
reflecting the presence of the absorbing barrier are nicely captured by the method, which
proves therefore accurate also close to the boundary. Even more interesting, the van
Kampen solution is shown to converge at late times to the distribution calculated in [2],
this latter being hence explained within a sound and universal descriptive picture.

Let us start by introducing the stochastic discrete voter model. As in the spirit of
[2], we consider a system made of N elements in mutual interactions, possibly organized
in different species. Label with X1 the elements of a specific species and with X0 all
the other entities. The following chemical equations are proposed to rule the microscopic
dynamics:

X1 +X0
1−→ 2X0,

X0 +X1
1−ν−→ 2X1,

X1 +X1
ν−→ X1 +X0.

The master equation which stems from the above system reads:

d

dt
Pn(t) = (ε−n − 1)[T (n + 1|n)Pn(t)]

+(ε+n − 1)[T (n − 1|n)Pn(t)], (2.16)

where Pn(t) is the probability of photographing the system at time t in a configuration
with n individuals belonging to the population of X1 and ε±n are the step operators [29].
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The transition rates are given by:

T (n+ 1|n) = (1− ν)
(N − n)

N

n

N

T (n− 1|n) =
n

N

N − n

N
+ ν

n

N

n

N
,

where the initial states are the right entries and the final states the left ones. As follows
the above, n = 0 is an absorbing state while n = N corresponds to a reflecting barrier.
As usual, the van Kampen approach requires imposing:

n

N
= φ(t) +

ξ√
N
, (2.17)

where 1/
√
N plays the role of a small parameter and paves the way to the perturbative

expansion hereafter discussed. By inserting the working ansatz (2.17) into the master
equation (2.16), and hierarchically organizing the resulting terms with respect to their
N -dependence, one obtains at the first order the mean-field deterministic equation for the
continuum concentration φ(τ) (τ being the rescaled time t/N), namely dφ/dτ = −νφ,
whose solution reads φ(τ) = φ0 exp(−ντ). Higher order contributions results in a gen-

eralized Fokker-Planck equation for the new probability Π(ξ, τ) = P
(
φ(τ) + ξ/

√
N, τ

)
.

By truncating the expansion at the second order yields the standard Fokker-Planck equa-
tion, which predicts Gaussian fluctuations. Allowing instead for higher order corrections,
generates a cascade of terms whose relative weights are controlled by the finite size N .
After a lengthy algebraic derivation one ends up with:

∂Π

∂τ
=

∞∑

k=1

1

(k + 1)!

1

N (k−1)/2

∂k+1

∂ξk+1

[
f(φ, k + 1)Π

]

+

∞∑

k=1

1

k!

1

N (k−1)/2

∂k

∂ξk

[
g(φ, ξ, k)Π

]
(2.18)

+

∞∑

k=3

1

(k − 1)!

1

N (k−1)/2

∂k−1

∂ξk−1

[
q(ξ2, k − 1)Π

]
,

where:

f(φ, k) =

{
2φ− 2φ2 − νφ+ 2νφ2 for k even
νφ for k odd

g(ξ, φ, k) =

{
2ξ − 4φξ + 4νφξ − νξ for k even
νξ for k odd

q(ξ, k2) =

{
2ξ2(ν − 1) for k even
0 for k odd.

Formally, the positiveness of the probability Π(·) is not guaranteed a priori under the
generalized Fokker-Planck evolution, an observation that was made rigorous in [41, 42].
However, with reference to specific case studies [38], it was shown that unphysical negative
values are just occasionally attained by Π(ξ, τ), and punctually localized in the tails of
the distribution. The phenomenon fades off when including a sufficiently large number of
terms in the development. The adequacy of the prediction can be a posteriori evaluated
via a direct comparison with the numerical experiments.
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Figure 2.9: The distribution of fluctuations at distinct rescaled times τ . The snapshots
refer to: (a) τ = 5, (b) τ = 36, (c) τ = 41 and (d) τ = 50. The symbols stand for direct
stochastic simulations. The solid lines represent the theoretical predictions as obtained
within the generalized Fokker Planck scenario. We have in particular truncated the sums
in the Fokker-Planck (2.18) to k = 3 (1/N3/2 corrections) and included 200 moments in the
final estimates of the generating function. The dashed lines refer to the Gaussian solutions
obtained working within the van Kampen expansion at the, conventional, next to leading
approximation (1/N1/2 terms). Here ν = 0.01 and the distributions are normalized so to
have the maximum equal to one.

To progress with the calculation, we set off to estimate the moments of the sought
distribution Π(ξ, τ). Let us recall that the moment of order h is defined as

〈ξh〉 =
∫ ∞

−∞
Π(ξ)ξhdξ.

Multiply both sides of the generalized Fokker-Planck equation by the factor ξh and inte-
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grate over R in dξ. A straightforward manipulation yields to:

d

dτ
〈ξh〉 =

+
h−2∑

k=1

1

(k + 1)!

f(φ, k + 1)

N (k−1)/2

h!(−1)k+1

(h− (k + 1))!
〈ξh−(k+1)〉

+

h−1∑

k=1

1

k!

g(φ, ξ, k)

N (k−1)/2

h!(−1)k

(h− k)!
〈ξh−k+1〉 (2.19)

+
h+2∑

k=3

1

(k − 1)!

q(ξ2, k − 1)

N (k−1)/2

h!(−1)k−1

(h− (k − 1))!
〈ξh−(k−1)+2〉

where use has been made of the supposed regularity of the distribution Π(ξ, τ) to drop
out the boundary terms resulting from integrating by parts 3.

We therefore dispose of a closed system of first oder differential equations for the
moments of the distribution Π(ξ, τ). We can integrate it numerically and so estimate
the quantities 〈ξh〉, for all h, at any time τ . The knowledge of the moments enables
us to immediately reconstruct the characteristic function, and so recover, upon Fourier
transform inversion, the distribution Π(ξ, τ). The predicted profiles are displayed in Fig.
2.9 (solid line) for different times. A comparison is drawn with the outcome of direct
stochastic simulations based on the exact Gillespie algorithm [28] (symbols), returning
excellent agreement. The distribution of fluctuations displays clear non-Gaussian traits.
It gets in fact more and more skewed as time progresses, reflecting the non trivial interplay
with the absorbing boundary. Surprisingly, and at odds with what customarily believed,
the van Kampen ansatz proves accurate well beyond the Gaussian approximation that is
often invoked to justify its intrinsic validity. As a corollary, it seems tempting to argue
that the transformation (2.17) from discrete to continuum variables is an exact one, and
not just an approximation that presumably descends from the central limit theorem, as
occasionally speculated.

It is also very instructive to analyze the asymptotic fate of the distribution of fluctu-
ations, as predicted within the realm of the van Kampen theory. Based on intuition, we
expect that when time goes to infinity, the distribution Π(ξ, τ) converges to a Dirac delta
centered in zero. Indeed, plugging into the moments’ equations (2.18), the asymptotic
mean-field solution φ = 0, and looking for stationary solutions of the obtained system
(i.e. setting the derivatives to zero), one readily gets 〈ξh〉 = 0 ∀h, the moments of a delta
function. However, for times large enough that φ ' 0, but before the system has relaxed
to its stationary state, the generalized Fokker-Planck equation (2.18) reads:

∂Π

∂τ
= ν

∂

∂ξ
(ξΠ) +

2− ν

2
√
N

∂2

∂2ξ
(ξΠ) , (2.20)

where we have only retained the term in 1/
√
N dropping higher orders corrections. Per-

3In the definition of the moments we integrate from −∞ to ∞. In principle, the maximum extent
of the allowed (negative) fluctuations is limited by the presence of the absorbing boundary. Strictly, the
lower extreme of the above integral should read −

√

(N)φ(τ ). Assuming however that the distribution of

fluctuations Π(ξ, τ ) is exactly zero at ξ = −
√

(N)φ(τ ), one recovers the same equations for the moments
as those obtained by formally extending the domain of integration to −∞.
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Figure 2.10: The distribution of fluctuations at large times. Right panel: the distribution
Π(ξ′, τ) is plotted as function of the rescaled ξ′. Symbols refer to numerical simulations
relative to distinct N . In particular, N = 500 (circles) and N = 1000 (triangles). The
solid line stands for the (normalized) solution (2.23). Here ν = 0.01 and the distributions
are normalized to unit. Left panel: the distribution Π(ξ, τ) is plotted versus ξ at τ = 388.
Symbols refer to the simulations, while the solid line stands for the (normalized) solution
(2.23) after the change of variable ξ′ → ξ

√
(N) is performed.

form now the scaling ξ → ξ′/
√

(N). The equation (2.20) can be cast in the form:

∂Π

∂τ
= ν

∂

∂ξ′
(
ξ′Π
)
+

2− ν

2

∂2

∂2ξ′
(
ξ′Π
)
. (2.21)

The large time distribution Π(ξ′, τ) is therefore insensitive to the system size N and
bears consequently universal traits. Equation (2.21) can be solved analytically (see also
[2]) to give:

Π(ξ′, τ) =
2ν

2− ν

1

1− e−ντ
exp

[
2ν(ξ′ + ξ′0e

−ντ )

(2− ν)(1− e−ντ )

]

×
(
ξ′

ξ′0
eντ
)− 1

2

I1

(
4ν
√
ξ′0ξ

′eντ

(2− ν)(eντ − 1)

)
, (2.22)

where I1(·) is the modified Bessel function of the first kind. For large τ , recalling that
I1(x) ' x/2 when x is small, one can approximate Eq. (2.22) as:

Π(ξ′, τ) ∝ ξ′0

(
2ν

2− ν

)2

exp
(
− 2ν

2− ν
ξ′
)
exp(−ντ), (2.23)

Operating with the rescaled variable ξ′, which, it is worth emphasizing, emerges natu-
rally within the van Kampem expansion, when the large time limit is being considered, it is
equivalent to inserting into the governing master equation the modified ansatz n = Nφ+ξ′.
This latter corresponds to the strategy adopted in [2] for the specific choice α = 0. In
other words, and interestingly enough, the expected fluctuations ξ′ are comparable to the
discrete population size n, when the absorbing boundary is being approached. We have
therefore recovered exactly the same solution as obtained in [2], while working within the
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generalized, but conventional, van Kampen approach. The adequacy of (2.23) is chal-
lenged in 2.10 versus numerical simulation returning a perfect quantitative agreement.
Notice that different distribution profiles recorded at distinct values N , nicely superpose
when the rescaled fluctuations ξ′ is employed.

As a side remark, we stress that the same conclusion can be drawn working in the
Fourier space and operating under analogous approximations. Retaining only 1/

√
N

corrections in (2.19), assuming φ → 0 and performing the scaling 〈ηh〉 = 〈ξh〉N h
2 4, one

immediately obtains the following N independent differential equations for the moments
evolution:

∂

∂τ
〈ηh〉 = −νh〈ηh〉+ h(h− 1)

2
(2− ν)〈ηh−1〉. (2.24)

Equations (2.24), here obtained within the extended van Kampen scenario, could be
also derived via the alternative, supposedly distinct, approach discussed in [2]. Equations
(2.24) can be in fact straightforwardly deduced from Eq. (2.21) (see also Eq. (8) in [2])
following the same strategy for the evaluation of the moments as outlined above.

In conclusion, the van Kampen approximation works effectively for all times, well
beyond the Gaussian approximation and in a regime where the presence of the absorbing
boundary is definitely important. The method returns in fact the correct asymptotic
solution (a delta function centered in the origin), but also converges to the large time
solution calculated in [2], which is therefore contextualized within a general descriptive
picture. At moderate times, after the Gaussian approximation has broken down, direct
comparisons with the numerical experiments, as reported in this section, testify on the
excellent predictive ability of the van Kampen theory. This is an important observation,
that will certainly motivate using the van Kampen machinery beyond the limited domains
of applications for which it was originally conceived, and/or later referred to [2]. Future
investigations will be targeted to extending the current analysis to cases where the ab-
sorbing boundary competes with a non trivial stable fixed point, as well as models for
which the notion of space is explicitly accounted for [3, 24].

Up to now, we have shown two different models, for which we have demonstrated a
posteriori the validity of the van Kampen expansion beyond the Gaussian approximation.
In the next section we compare the generalized van Kampen expansion and the WKB
approximation. We focus in particular on extinction dynamics, i.e. the transition from
the vicinity of a non-trivial fixed point of the deterministic dynamics to a trivial fixed
point. In the linear-noise approximation the phenomenon of extinction it is so rare to be
negligible. When the extinction phenomenon is not longer negligible, higher corrections
prove essential. To draw the comparison between WKB and the van Kampen approach
and quantify their predictive ability, we will perform simulations and calculations for a
stochastic version of the logistic equation.

2.3 WKB versus generalized van Kampen system size ex-

pansion: the stochastic logistic equation

2.3.1 Introduction

Here we will focus on extinction dynamics, that is, transitions from the vicinity of a
non-trivial fixed point of the deterministic dynamics, to a trivial fixed point where all

4This is equivalent, in Fourier space, to the transformation ξ → ξ′/
√

(N) of the original fluctuation ξ.
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the individuals have become extinct. If the parameters of the models are chosen so that
the two fixed points are not too close, then extinctions will be rare and the state of the
system will continue to fluctuate about the non-trivial fixed point for a long period of
time. In this situation the van Kampen system-size expansion [29] has proved to be a
powerful tool. Essentially the method gives the deterministic equations to leading order
in a expansion in (inverse) system-size, and linear stochastic corrections to this result
at next-to-leading order. This linear approximation, sometimes called the linear-noise
approximation, corresponds to Gaussian fluctuations, and is an excellent approximation
if extinctions are so rare as to be negligible.

In principle, extinction events can be incorporated into the system-size expansion by
going beyond the Gaussian approximation, and including non-linear terms in the stochas-
tic differential equation giving the approximate stochastic dynamics. This should give rise
to a tail on one side of the probability distribution function which will characterise the
extinction process. These higher-order calculations have only been carried out recently,
and then only by a few authors [37, 7, 43]. In addition if there are only a few individuals
in the system, extinction effects will be very important, and one may have to go to quite
high-order in the expansion to get an accurate form for what will be a very non-Gaussian
distribution.

By contrast, the standard technique to look at rare events from one metastable state to
another is to use a WKB-like approximation [44]. This goes under many names: large de-
viation theory [45], the instanton method, Freidlin-Wentzell theory [46], amongst others.
It consists of postulating that the dominant contribution to the probability distribution
is exponentially small in N , the system-size, that is, is of the order of e−NS . Here S is
a function of variables describing the system in the deterministic limit which turns out
to satisfy a Hamilton-Jacobi equation. The corresponding Hamiltonian, known as the
FreidlinWentzell Hamiltonian, can be used to describe the extinction trajectories, even
though they are stochastic in nature.

The aim of this section is to explore the connection between the van Kampen system-
size expansion at higher-order and the WKB method. They have a very different basis,
and to the best of our knowledge, their predictive power in regimes where extinctions
are important have not been compared. We will carry out the explicit assessment of
their range of validity and comparison with numerical simulations on a specific stochastic
system with one degree of freedom to minimise numerical errors. In the case of the
WKB method, most of the steps can be performed analytically, which also makes the
interpretation of the results more straightforward. A simple dynamical system with a
stable non-trivial fixed point and an unstable trivial fixed point is the logistic equation φ̇ =
rφ [1− (φ/k)], and the stochastic model we will choose to study will have this equation
as its deterministic limit.

2.3.2 Model

In this section we will introduce the model as an individual based model, and write down
the master equation, which governs its stochastic dynamics. The two techniques we are
comparing can be viewed as different approximations for these dynamics. We will describe
them in this section and apply them to the model in the following section.

As discussed in the Introduction probably the simplest model which contains the
features which we wish to explore is a system containing identical individuals denoted by
A. We assume that there are n such individuals, and since the size of the system is taken
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to be characterised by an integer N , we suppose that there are (N − n) nulls denoted by
E. These are vacancies, which in a spatial version of the model would denote spaces which
could potentially be colonised by a individual. If the only processes are (asexual) birth,
competition and death, then we may define the well-mixed model through the reactions

A+ E
b−→ A+A, A+A

c−→ A+ E, A
d−→ E. (2.25)

The last equation, for instance, indicates that an individual of type A dies at a rate d
to give a vacancy, E. Simple combinatorics then gives the rate at which the number
of individuals increases from n to (n + 1) to be given by b (n/N) (N − n)/N . A more
accurate statement of these rates would replace one of the N factors in the denominator
by (N − 1), but since we wish to keep the analysis as simple as possible we will not do
this. If we scale the time by a factor of N , then the transition rate from state n to state
(n+ 1) may be written as:

T (n+ 1|n) = bn
(
1− n

N

)
. (2.26)

Similarly, the transition rate from state n to state (n− 1) is

T (n− 1|n) = n
(
d+ c

n

N

)
, (2.27)

where once again factors of N(N − 1) and n(n − 1) have been replaced by N2 and n2

respectively. Since the transition rates T (n+ 1|n) and T (n− 1|n) define the model, this
choice simply corresponds to a slight variant of the standard model, which can be justified
on grounds of simplicity.

The master equation is an equation for the rate of change with time of the probability
of finding n individuals in the system at time t, denoted by P (n, t). Since this is simply
the rate of transitions into the state n minus the rate of transitions out of state n, it
reads:

dP (n, t)

dt
= T (n|n+ 1)P (n + 1, t)

+T (n|n− 1)P (n − 1, t)

−T (n− 1|n)P (n, t)− T (n+ 1|n)P (n, t). (2.28)

This equation cannot be solved exactly, so we need to resort to either numerical methods
or approximation techniques. It is frequently simpler to simulate [28] the processes given
in Eq. (2.25), rather than numerically solve the master equation, and the results we give
in Section III to assess the accuracy of the approximation techniques are found in this
way. We now briefly outline the two approximation methods that we use in this section.

2.3.3 The van Kampen system size expansion

The first, the van Kampen system-size expansion has as the leading-order approximation
the deterministic differential equation found by taking the limit N → ∞. In the case of the
model just described, this is the logistic equation given in the Introduction. However this
equation emerges as the leading order approximation to the model defined by Eqs. (2.26)
and (2.27), and does not have to be postulated independently. The next-to-leading order
gives a linear stochastic differential equation, which describes Gaussian fluctuations about
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the deterministic equation. If the intention is to simply study the stochastic dynamics of
the model well away from the boundaries, it is usually sufficient to work to this order.
However it is possible to go higher orders to obtain non-Gaussian corrections to the
probability distribution function (pdf). One of the main aims of this section is to argue
that these higher-order corrections enable reliable estimates for the pdf to be obtained
very close to the boundaries.

To apply the van Kampen expansion we first write down the master equation (2.28)
in terms of step-operators E± defined by E±f(n) = f(n ± 1), where f is an arbitrary
function:

dP (n, t)

dt
=
(
E+ − 1

)
[T (n− 1|n)P (n, t)]

+
(
E− − 1

)
[T (n+ 1|n)P (n, t)] . (2.29)

The ansatz which forms the basis of the method is to write:

n

N
= φ(t) +

ξ√
N
. (2.30)

Here φ(t) is the solution of the deterministic equation valid in the limit N → ∞ and ξ is
the (continuous) stochastic variable which gives the deviation of the stochastic trajectory
from this deterministic value. The pdf when written in terms of ξ is denoted as Π(ξ, t),
thus P (n, t) = Π(ξ, t). Let us quickly reviewed the main step of the calculation already
discussed in the previous section. After the change of variables (2.30), the left-hand side
of the master equation (2.28) becomes:

dP

dt
=
∂Π

∂t
−
√
N
∂Π

∂ξ

dφ

dt
. (2.31)

The right-hand side of the master equation in the form (2.29) can also be written in terms
of φ and ξ by (i) eliminating n in the transition rates (2.26) and (2.27) using Eq. (2.30),
and (ii) noting that the step-operators may be written as

E± = 1 +

∞∑

`=1

(±1)`

`!

1

N `/2

∂`

∂ξ`
. (2.32)

Equating the left-hand and right-hand sides of the master equation, after rescaling
time by introducing τ = t/N , we can match inverse powers of N1/2 to obtain a set
of equations for the dynamics of the process. This is carried out explicitly in 2.3.6. At
leading order — obtained by matching the coefficients of N−1/2 — one finds the equation:

dφ

dτ
= rφ

(
1− φ

k

)
, (2.33)

where r = b − d and k = (b − d)/(b + c). This is the logistic equation, which could be
guessed as the deterministic of the model, even if the identification of the constant k is
not so obvious. This has the solution:

φ(τ) =
kφ0

[k − φ0] e−rτ + φ0
, (2.34)

where φ0 ≡ φ(0). This has the required feature that, as long as φ0 6= 0, then φ(τ) → φ∗

as t→ ∞, where φ∗ = k is the non-trivial fixed point.
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Once the leading-order contributions have been extracted the left-hand side is simply
∂Π/∂τ , but the right-hand side contains derivatives of Π with respect to ξ of all orders.
The resulting equation has the general structure:

∂Π

∂τ
=

∞∑

k=1

1

Nk/2

∂k

∂ξk
[fk(ξ)Π]

+

∞∑

k=0

1

Nk/2

∂k+1

∂ξk+1

[
gk(φ, ξ)Π + hk(φ)

∂Π

∂ξ

]
, (2.35)

where the explicit form of the functions fk, gk and hk are given in 2.3.6.
To proceed in the analysis we introduce the moment of order q of the distribution Π:

< ξq >=

∫
ξqΠ(ξ)dξ. (2.36)

From the generalized Fokker-Planck equation (2.35) one can obtain a set of ordinary
differential equations for the coupled evolution of the first q moments of the distribution
Π. The method is straightforward [29] and consists in multiplying both sides of equation
(2.35) by ξq and carrying out an integration over the variable ξ. One eventually ends up
with the following equation for any integer for the moment < ξq > (q being na arbitrary
positive integer):

d < ξq >

dτ
=

q+1∑

k=2

hk−1(−1)k−1q! < ξq−(k−1)+2 >

(k − 1)!(q − (k − 1))!N (k−1)/2

+

q∑

k=1

gk(−1)kq! < ξq−k+1 >

k!N (k−1)/2(q − k)!

+

q−1∑

k=1

(−1)k+1q!fk+1 < ξq−(k+1) >

(k + 1)N (k−1)/2(q − (k + 1))!
.

(2.37)

The explicit form of gk, fk+1, hk−1 can be found in 2.3.6. From (2.37), one can write
down a system of ordinary differential equations for the first q moments of the distribution
of fluctuations. Notice, however, that the equation for the q-th moment depends on higher
moments. The obtained system is hence ill posed, and dedicated truncation strategies
need to be imposed to eventually recover a closed, self-consistent formulation for the
problem at hand. For the case of the model here examined, higher moments contribute
with terms that can be safetely neglected when operating at a given oder of the expansion
in powers 1/

√
N . This entails the possibility of implementing a rather natural truncation

scheme, on which we will return in the forthcoming section. Once complemented by a
dedicated closure, system (2.37) can be solved numerically and the estimated moments
used to reconstruct the sought distribution via Fourier inversion, as we will point out in
the following section.

2.3.4 The WKB expansion

The second method hereafter outlined, the WKB approximation, involves a different
form of scaling. The starting point is the master equation (2.28), but written in terms of
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x = n/N and N , rather than n. To this end we write P (n, t) = P (Nx, t) = Π(x, t) and
T±(n± 1|n) = NΩ±(x), so that:

Ω+(x) = bx(1− x), Ω−(x) = c(d+ cx). (2.38)

We assume that N is so large that x is effectively continuous. Looking for the quasi-
stationary solution of the master equation (2.28) in one of the basin of the attraction of
the stable fixed point imply dealing with the following problem:

Ω−

(
x+

1

N

)
Π
(
x+

1

N

)
+Ω+

(
x− 1

N

)
Π
(
x− 1

N

)

− [Ω−(x) + Ω+(x)] Π(x) = 0.
(2.39)

To solve the above time-independent equation for the stationary distribution, we apply
the WKB approximation [44, 47] to Π(x) as

Π(x) = K(x) exp(−NS(x))
[
1 +O

( 1

N

)]
, (2.40)

where both of S(x) and K(x) are of the order of unity. Substituting (2.40) into (2.39),
Taylor expanding with respect to N−1 and collecting together the leading order terms
yield:

∑

r=±1

Ωr(x)
[
exp(rS′(x)− 1)

]
= 0, (2.41)

where S′(x) = dS(x)/dx. The above equation can be seen as a stationary Hamilton-
Jacobi equation H(x, S′(x)) = 0 for S with Hamiltonian

H(x, p) =
∑

r=±1

Ωr(x)[exp(rp)− 1], (2.42)

where p = S′(x). From equation (2.42) one gets the following Hamilton’s equations:

{
ẋ = ∂H

∂p =
∑

r=±1Ωr(x) exp(rp)

ṗ = −∂H
∂x = −∑r=±1[exp(rp)− 1]∂Ωr(x)∂x ,

(2.43)

where the dot denotes differentiation with respect to time.
From the solution of these equations one finds the so called fluctuation trajectories

xf and the corresponding momenta pf . For the zero energy solution H = 0 that we are
interested in, the action calculated along a given fluctuation trajectory reads:

Sf =

∫ t

t0

pf ẋfdt
′. (2.44)

From Hamilton’s equations (2.43) one readily find the trivial solution pf = 0, provided:

ẋ = Ω+(x)− Ω−(x). (2.45)

This is customarily called the relaxation trajectory and corresponds to the determin-
istic approximation to the examined model. In fact, multiplying both sides of the original
master equation by n and summing over all possible states one gets:
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d < n >

dt
= NΩ+(x)−NΩ−(x), (2.46)

where < n >=
∑

n nP (n, t). Dividing then by N and performing the continuum
limit, one ends up with equation (2.45), namely the deterministic limit. The relaxation
trajectory eventually converges to the stable fixed point. Here, we are rather interested
into solutions of the Hamilton’s equations (2.43) with pf 6= 0, which enables us to explore
trajectories not allowed in the mean field limit.

The non trivial solution of equations (2.43) reads:

p = ln
Ω−(x)

Ω+(x)
; ẋ = Ω−(x)−Ω+(x). (2.47)

The action associated to this path might be calculated (see 2.3.7) to finally give:

S(x) =
(d+ cx) ln(d+ cx)

c
+

(b− bx)ln(b− bx)

b

− (d+ cx)

c
− (b− bx)

b
+

(d+ c)

c

− (c+ d)

b
ln
[b(d+ c)

c+ b

]
.

(2.48)

We recall that the solution that we are looking for is in the form:
P (x) = K(x) exp(−NS(x)). One therefore needs to estimate the amplitude factor K(x).
At the next to leading order expansion of the stationary master equation (2.39) one gets
the following partial differential equation for the unknown function K(x):

∂H

∂p

K ′

K
= −1

2
p′
∂2H

∂p2
− ∂2H

∂p∂x
. (2.49)

For the interesting case p 6= 0, with p(x) specified by equation (2.47), one can solve
equation (2.49) to obtain:

K(x) =
A√

Ω+(x)Ω−(x)
, (2.50)

where A is a constant to be determined. For the sake of completeness we hereafter provide
the expression for K(x) which applies to the case p = 0:

K(x) =
B

Ω+(x)−Ω−(x)
, (2.51)

To find the constant A in equation (2.50) we expand the quasi-stationary distribution
Π(x) in the vicinity of the fixed point x = x∗, that is the non trivial fixed point:

Π(x) ≈ A√
Ω+(x∗)Ω−(x∗)

exp
(
−NS(x∗)

− N

2
S′′(x∗)(x− x∗)2

)
,

(2.52)

where use had been made of the fact that S′(x∗) = ln(Ω−(x
∗)/Ω+(x

∗)) = 0. A straight-
forward calculation allows us to write:

S′′(x∗) = (b+ c)2/b(c+ d)2,
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and therefore:

Π(x) ≈ A

Ω+(x∗)
exp [−NS(x∗)] exp

(
− λ

2
(x− x∗)2

)
, (2.53)

where λ = N(b + c)2/b(c + d). By imposing the normalization condition for Π(x) we
obtain the following expression for A:

A =

√
λ

2π
exp [NS(x∗)] Ω+(x

∗). (2.54)

which eventually yields:

Π(x) =

√
NS′′(x∗)

2π

[Ω+(x
∗)Ω−(x

∗)

Ω+(x)Ω−(x)

]1/2
×

× exp−N [S(x)− S(x∗)].

(2.55)

In conclusion, we have derived a closed analytical expression for the quasi-stationary
distribution Π, under the WKB working hypothesis. In the following section we will
test the adequacy of formula (2.55), and of the homologous prediction obtained in the
framework of the van Kampen expansion, by performing a direct comparison with the
outcome of stochastic simulations.

2.3.5 Numerical simulations

As discussed in the preceding section, by operating under the WKB procedure, one can
derive a closed analytical expression for the quasi-distribution Π around the deterministic
fixed point x∗. On the other hand, by extending the van Kampen analysis beyond the
Gaussian order of approximation, we have obtained a set of coupled differential equations
for the moments of the distribution of fluctuations. The knowledge of the moments
enables us in principle to reconstruct the corresponding distribution via a standard Fourier
inversion. In this Section we aim at comparing the two theoretical predictions, and assess
their respective validity versus direct simulations of the stochastic dynamics.

While it is straightforward to display the result of the WKB analysis, some comments
are mandatory as concerns the interpretation of the calculation based on the van Kampen
system expansion. To recover the stationary distribution of fluctuations we consider the
ensemble of first q moments and impose a truncation in the van Kampen expansion at
e.g. order 1/N2, namely two orders beyond the conventional Gaussian approximation. To
obtain a closed system for the unknown moments, we omit in the equation for d < ξq > /dτ
the term proportional to < ξq+1 > /

√
N , more specifically the contribution k = 2 in the

first sum of the left hand side of equation (2.37). In principle, one cannot formally drop
such term, our expansion being targeted to the order 1/N2, which requires including
terms up to 1/N3/2 in the equation for the moments. On the other hand, the error
committed when neglecting a contribution proportional to 1/

√
N in the equation for

the q-th moment, becomes rapidly negligible when approaching the first moments of the
hierarchy. More precisely, the imposed closure will impact the j-th moment equation with
an associated error that we can estimate of order 1/N (q−j−1)/2, from the structure of the
ruling equations (2.37). In other words, only the equations for moments j = q − 1 and
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Figure 2.11: The (green) diamonds stand for the distribution in lin-log scale rebuilt
from the Gillespie’s algorithm simulation. The (black) solid line is the theoretical pro-
file obtained following the van Kampen strategy, with the first thirty moments, arrested
to order of 1/N2. The blue dot-dashed line is instead obtained by arresting the dis-
tribution to order of N−1. The (purple) dashed-line refers to the so-called Gaussian
approximation (order 1/N1/2 in the van Kampen expansion). The parameters used are:
N = 1000 c = 0.5 b = 0.3 d = 0.2. For this choice of the parameters the fixed point
of the deterministic dynamics is φ∗ = 0.125.

j = q − 2 are affected by the imposed truncation, all other errors being negligible at the
considered order of expansion. If q is large, one can therefore hope that the errors in
the last three equations of the hierarchy are sufficiently localized to not compromise the
estimate of a large subset of moments. The comparison with the simulations will provide
an a posteriori validation of the proposed approximation.

As an additional remark, we recall that we are here interested at the asymptotic dis-
tribution of fluctuations, around the non trivial fixed point of the deterministic dynamics.
This implies setting to zero the derivatives d < ξq > /dτ in equation (2.37), after having
imposed φ = φ∗ in the functions fk, gk and hk, as defined in 2.3.6. The system of differ-
ential equations for the evolution of the moments is hence transformed into an algebraic
system that can be readily solved by matrix inversion. The distribution of fluctuation
is finally determined by Fourier inverting its corresponding moments expansion. In the
following, we will report results obtained when considering the first thirty moments in
the expansion, i.e. considering the first q = 30 algebraic equations for the stationary
moments.

In figure 2.11 we compare the distributions of fluctuations obtained via the van Kam-
pen procedure, at different order of approximations. The Gaussian solution, obtained
by truncating the expansion at the order 1/

√
N , is displayed with a dashed line (purple

online). The point-dashed line and the solid line refer respectively to the van Kampen
approximation at order 1/N3/2 and one at 1/N2. The symbols stand for the distribution
rebuilt from direct stochastic simulations, based on the Gillespie’s algorithm, for the sys-
tem (2.25). When the order of the approximation is increased, the theoretical distribution
tends to adjust nicely on the numerical profile.
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Figure 2.12: The (green) diamonds stand for the distribution in lin-log scale rebuilt from
the Gillespie’s algorithm simulation. The (black) solid line represents the van Kampen
approximation with the first thirty moments, and the expansion arrested to order of
1/N2. The (red) dashed line is the WKB approximation. The parameters used are:
N = 1000 c = 0.5 b = 0.3 d = 0.2. For this choice of the parameters the fixed point
of the deterministic dynamics is φ∗ = 0.125.

In figure 2.12 the performace of the van Kampen systems size expansion and the WKB
scheme are respectively compared. The solid line stands for the distribution of fluctua-
tions obtained via the extended van Kampen system size calculation at order 1/N2, while
the dashed line refers to the WKB analysis. As in figure 2.11, the symbols represents
the numerically determined profile. In both cases the agreement with the numerics is
satisfying and the overall skewness of the distribution appears to be properly captured by
the theories. The WKB solution tends to deviate from the expected profile for negative
fluctuations amount (at system sizes of few tens of individuals), when the van Kampen ap-
proximation, at the considered order of expansion, prove still adequate. The fact that the
van Kampen solution interpolate correctly the simulated data, constitutes an a posteriori
validation of the implemented closure strategy.

2.3.6 Details of van Kampen expansion

By inserting in the master equation (2.28) the development of the step operator (2.32)
and the van Kampen ansatz, the resulting equation is the (2.35). We consider as an
example the following term of the master equation:

(ε+n − 1)[T (n − 1|n)Pn(t)] =
( ∞∑

k=0

1

k!

1

Nk/2

∂k

∂ξk
− 1
)

[
(dφ+ dξ/

√
N + cφ2 + 2cφξ/

√
N + cξ2/N)Π(ξ)

]
.

It is possible to observe that for k = 0 the operator in the brackets is null, because
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the value of the first term of the Taylor expansion is equal to one, so we obtain:

(ε+n − 1)[T (n − 1|n)Pn(t)] =
( ∞∑

k=1

1

k!

1

Nk/2

∂k

∂ξk

)

[
(dφ+ dξ/

√
N + cφ2 + 2cφξ/

√
N + cξ2/N)Π(ξ)

]
.

We divided the contributions depending on the different power in ξ for the derivative
and we obtain:

( ∞∑

k=1

1

k!

1

Nk/2

∂k

∂ξk
(dφ+ cφ2)Π

)
+
( ∞∑

k=1

1

k!

1

Nk/2+1/2

∂k

∂ξk
(2cφξ + dξ)Π

)

+
( ∞∑

k=1

1

k!

1

Nk/2+1

∂k

∂ξk

[
cξ2
]
Π
)
.

(2.56)

Collecting together the terms proportional to different powers of N in the first order,
we recover the mean field equation (2.33), that corresponds to the term of the development
for k = 1. The leading order results in the following generalized Fokker-Planck equation:

∂Π

∂τ
=

∞∑

k=2

1

k!

1

Nk/2−1

∂k

∂ξk
(dφ+ cφ2 + (−1)k(bφ− bφ2))Π

+

∞∑

k=1

1

k!

1

Nk/2−1/2

∂k

∂ξk
(2cφξ + dξ + (−1)k(+bξ − 2bφξ))Π

+

∞∑

k=1

1

k!

1

Nk/2

∂k

∂ξk

[
(cξ2 − bξ2(−1)k)Π

]
.

We denote by:

fk(φ) = (dφ+ cφ2 + (−1)k(bφ− bφ2)) (2.57)

fk =

{
(b+ d)φ+ (c− b)φ2 if k is odd

(d− b)φ+ (b+ c)φ2 if k is even.
(2.58)

For the other two terms we obtain:

gk(ξ, φ) = (2cφξ + dξ + (−1)k(+bξ − 2bφξ))

gk(ξ, φ) =

{
[(2c− 2b)φ+ (b+ d)]ξ if k is even

[(2b+ 2c)φ+ (d− b)]ξ if k is odd.
(2.59)

hk(ξ) = cξ2 − bξ2(−1)k

hk(ξ
2) =

{
(c− b)ξ2 if k is even

(b+ c)ξ2 if k is odd.
(2.60)
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Rearranging the terms in the sums, we obtain the generalized Fokker Planck, equation
(2.35) in the main body of the section.

Now we want to calculate the equation of the moments at any order. By focusing on
the right hand side we multiply both sides by ξq and integrating over R. We obtain the
following equation:

∫ ∞∑

k=1

1

(k + 1)!

1

N (k−1)/2
ξq
∂k+1

∂ξk+1

[
fk+1(φ)Π

]
dξ +

∫ ∞∑

k=1

1

k!

1

N (k−1)/2
ξq
∂k

∂ξk

[
gk(φξ)Π

]
dξ

+

∫ ∞∑

k=2

1

(k − 1)!

1

N (k−1)/2
ξq
∂k−1

∂ξk−1

[
hk−1(ξ

2)Π
]
dξ.

Concentrate on the first term:

∫ ∑∞
k=1

1
(k+1)!

1
N(k−1)/2 ξ

q ∂k+1

∂ξk+1

[
fk+1(φ)Π

]
dξ =

∑∞
k=1

1
(k+1)!

1
N(k−1)/2 fk+1(φ)

∫
ξq ∂

k+1

∂ξk+1Πdξ.

The only non-null terms are those corresponding to k + 1 6 q:

∑∞
k=1

1
(k+1)!

1
N(k−1)/2 fk+1(φ)

∫
ξq ∂

k+1

∂ξk+1Πdξ =

∑q−1
k=1

1
(k+1)!

1
N(k−1)/2 fk+1(φ)

(−1)k+1q!
(q−(k+1))!

∫
ξq−(k+1)Πdξ =

∑q−1
k=1

1
(k+1)!

1
N(k−1)/2 fk+1(φ)

(−1)k+1q!
(q−(k+1))! < ξq−(k+1) > .

Similarly for all the other terms we obtain finally the following moments equation:

d < ξq >

dτ
=

q+1∑

k=2

hk−1(−1)k−1q! < ξq−(k−1)+2 >

(k − 1)!(q − (k − 1))!N (k−1)/2

+

q∑

k=1

gk(−1)kq! < ξq−k+1 >

k!N (k−1)/2(q − k)!

+

q−1∑

k=1

fk+1(−1)k+1q! < ξq−(k+1) >

(k + 1)N (k−1)/2(q − (k + 1))!
.

2.3.7 Details of WKB approximation

We here calculate the function S(x), along the trajectory with p 6= 0. Recall that

S(x) =

∫ x

x∗
p dx, (2.61)

where the integral extends from the fixed point x∗ to x. By using condition p = ln(Ω+/Ω−)
we get:

S(x) =

∫ x

x∗
ln
[d+ cx

b− bx

]
dx. (2.62)

By setting y = d+ cx, we find

∫
ln[d+ cx]dx = c−1

∫
ln ydy = c−1[y ln y − y].
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In complete analogy, imposing y = b− bx, implies

∫
ln[b− bx]dx = −b−1

∫
ln ydy = −b−1[y ln y − y].

Combining together:

S(x) =
(d+ cx) ln(d+ cx)

c
+ (1− x) ln(b− bx)

− (d+ cx)

c
− (1− x) + constant.

(2.63)

At the fixed point:

S(x∗) = (c−1 + b−1)k ln k − (c−1 + b−1)k + constant. (2.64)

where k = b(c+d)
(c+b) .

After some manipulation one eventually finds the final expression (2.48).

2.4 Conclusion

In this chapter we have presented three different models, and in all of them we have
used the van Kampen expansion beyond the classical approximation. Here we have been
interested in extending the perturbative calculation beyond the second order approxima-
tion and challenge its adequacy in capturing the deviation from the idealized Gaussian
behavior. Recent support on the validity of the van Kampen higher orders calculation
have been provided by Grima and collaborators [37].

We here have brought one more evidence on the accuracy of the procedure within
a rather complex model the first considered in this chapter, where different species are
simultaneously made to interact. Numerical simulations performed in a stochastic setting
with modest sizes of the population involved, so to magnify the role played by finite size
corrections, confirm the correctness of the theory predictions. Due to the complexity of
the proposed model, it is not possible to evaluate a large gallery of successive moments
and so reconstruct the full distribution of fluctuations. The analysis is hence limited
to the third moments, which however quantify the degree of skewness of the recorded
fluctuations.

In the second model [7], we returned on the issue of the validity of the van Kampen
ansatz, working within a considerably simpler setting, the voter model, that enables us
to explicitly calculate all the moments of the distribution at any order of the expansion.
We were hence able to recover a general and exact analytical solution for the distribution
of fluctuations that agreed very well with the simulations.

In the last section we have considered a logistic model with a stable non-trivial fixed
point and an unstable trivial fixed point. The stochastic model was chosen so as to
obtain a logistic equation as its deterministic limit. We were interested in characterizing
the distribution of fluctuations, a question of paramount importance if one aims to study
the extinction dynamics. Stochastic fluctuations may, in fact, drive the system from the
vicinity of a non-trivial fixed point of the deterministic dynamics, to a trivial fixed point
where all the individuals have become extinct. For sufficiently large population sizes,
extinction will be rare and the state of the system will fluctuate about the non-trivial fixed
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point for a long time. In this situation the van Kampen system-size expansion constitutes
a powerful analytical tool to estimate the distribution of fluctuations. As we have already
discussed, the method gives the deterministic equations to leading order in an expansion
in (inverse) system-size. The linear stochastic corrections are found at the next-to-leading
order, giving an excellent approximation of the dynamics if extinctions are so rare as to be
negligible. When the size of the population is reduced, non Gaussian traits prove crucial
and one needs to go beyond the conventional order to eventually resolve the skewness of
the distribution. Alternatively, a WKB-like perturbation scheme can be implemented to
derive a closed analytical approximation for the distribution of fluctuations. The method
consists on postulating that the dominant contribution to the probability distribution
scales as e−NS(x) whereN is the system-size and S(x) is a solution of a fictitious Hamilton-
Jacobi equation that is self-consistently derived by carrying out the perturbative analysis.
The corresponding Hamiltonian can be used to describe the extinction trajectories, and
consequently the distribution of the stochastic fluctuations. The theoretical predictions
have been compared to the results of the numerical simulations, obtained by solving the
examined stochastic model via the standard Gillespie’s algorithm [28]. In both cases the
agreement has to be considered satisfactory. The advantage of the WKB method over the
generalized expansion resides in that the former enables one to recover a closed analytical
expression for the distribution of fluctuations. At variance, the latter requires calculating
the fixed point of a large set of algebraic equations for the moments of the distribution,
a step that can be only performed numerically. We also recall that the extended van
Kampen method must be accompanied by a dedicated truncation strategy, to get a fully
consistent system for the unknown moments. The validity of the imposed closure can only
be tested a posteriori by a direct comparison with numerical, or experimentally available,
data.



Chapter 3

Spatial model: Stochastic Turing

pattern formation

This chapter, together with the following, concerns the study of reaction-diffusion models
as possible mechanisms for generating spatial patterns. Indeed, spatial patterns are ubiq-
uitous in nature: the early patterning in the embryo of the fruit fly, spatial patterning
in slime moulds, chemical oscillating reaction and bacterial patterns [48]. Much of the
research in developmental biology, both experimental and theoretical, aims at elucidating
the mechanisms which underlay pattern formation. The first explanation theory was put
forward by Turing in the classical paper [9], devoted to morphogenesis. From then on
reaction diffusion theory became an established field of research.

In this chapter we will study the problem of pattern formation in a generic two species
reaction-diffusion model, under the hypothesis that only one species can diffuse. For such
systems, the classical Turing instability cannot take place. At variance, by working in the
generalized setting of a stochastic formulation, Turing like patterns can develop, through
finite-size corrections. General conditions are given for the stochastic Turing patterns to
occur. The predictions of the theory are tested for a specific case of study.

3.1 Stochastic Turing Patterns for systems with one diffus-

ing species

Spatio temporal self-organized patterns [48] can spontaneously emerge in a reaction-
diffusion system. A small perturbation of a homogeneous fixed point can for example
amplify, as follows a symmetry breaking instability seeded by diffusion, and eventually
yield to a steady state non homogeneous solution. These are the Turing patterns [9],
recurrently investigated in chemistry [49, 50] and biology [48].

The majority of studies devoted to the Turing instability consider two, mutually in-
teracting, species. More specifically, and following the customarily accepted paradigm,
one species activates the production of the other, this latter acting through an inhibitor
feedback. Systems of three [51] simultaneously diffusing species have been also considered
and shown to display a rich zoology of possible patterns and instabilities. Patterns can
also develop if only one species is allowed to diffuse in the embedding medium, provided
the system is composed of at least three coupled species [52]. In contrast, it is well known
[52] that two species systems where only one species can migrate, cannot undergo Turing
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instability. Models however exist which fall within this category [18]. For this reason, it
is of general interest to theoretically explore the possibility of bifurcation patterns of such
systems, beyond the classical Turing framework. This chapter aims at elaborating along
these lines, by considering the generalized concept of stochastically driven patterns.

Reaction-diffusion systems are in fact generally studied by resorting to deterministic
mathematical models. The continuum concentrations of the interacting species is hence
monitored over space and in time. As opposed to this, one can develop an individual
based description of the scrutinized dynamics, which effectively accounts for the inherent
discreteness of the system. Stochastic contributions, stemming from finite size corrections,
can thus modify the idealized mean field picture and occasionally return alternative sce-
narios to interpret available data.

In a series of recent publications, the effect of the intrinsic noise was indeed shown
to create stochastic patterns, in a region of the parameters for which macroscopically
ordered structures do not occur. When the deterministic dynamics predicts a stable ho-
mogeneous state, the stochastic component can amplify via a resonant mechanism, giving
birth to stochastic Turing patterns [53, 10, 12, 54]. The effect of finite size fluctuations
can be characterized with numerical simulations, but also analytically via the van Kam-
pen system size expansion. As previously discussed this allows to expand the governing
master equation, which accounts for the role of demographic fluctuations. At the first
order of the expansion, the deterministic mean-field model is obtained, while the second
order contributions form an equation for the stochastic fluctuations.

Working in this context, we will consider a simple birth and death model, with two
species, of which one can diffuse. The reaction rates are assumed to be generic non
linear functions of the concentration amount. Conditions for the emergence of stochastic
Turing patterns are derived. More concretely, stochastic Turing patterns can materialize
if the power spectrum of fluctuations has at least a peak for a non zero spatial wave
number k for ω, the Fourier time frequency, equal to zero. We will here prove that
a non trivial maximum of the power spectrum exists, if the system matches specific
conditions that we shall mathematically characterize. The validity of our conclusions are
tested for a simple non linear model, which falls in the general class of models inspected.
With reference to this specific case study, we perform stochastic simulations through the
Gillespie’s algorithm and confirm a posteriori the adequacy of the predictions.

The chapter is organized as follows. In the next section we will prove that, over a
continuum support, the Turing instability cannot take place for reaction-diffusion models
with two interacting species of which only one is allowed to diffuse [52]. If space is
instead discrete, Turing like pattern can in principle take place, but only if the non
diffusing species acts as a self-activator. However, when the condition for the instability
are met, the most unstable mode k is always located in π, a trivial consequence of the
imposed discretization. As we shall here demonstrate, accounting for the intrinsic finite
size fluctuations allows one to obtain a more complex landscape of possible instabilities.
In Section 3.3 we introduce the stochastic birth and death model that we shall use as a
reference case study. The model is completely general and the reaction rates are assumed
to depend on the species concentration, via generic non linear functions. Then, in Section
3.4, we first derive the mean-field deterministic limit: the only request that we shall
put forward has to do with the existence of a stable fixed point for the aspatial mean-
field system. We then proceed to derive the Fokker-Planck equation that describes the
fluctuations. From this, in Section 3.5, we calculate the power spectrum of fluctuations,
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and find the mathematical conditions for having stochastic Turing patterns. We turn in
Section 3.6 to considering a particular non-linear model, to verify the correctness of our
predictions. Finally, in Section 3.7 we sum up and conclude.

3.2 Deterministic reaction-diffusion system with one diffus-

ing species

Let us start by considering two species respectively characterized by the continuum con-
centrations φ(r, t) and ψ(r, t). Here r stands for the spatial variable and t represents time.
Imagine the following general system to rule the dynamics of the concentrations:

∂φ

∂t
= f(φ,ψ) +D∇2φ

∂ψ

∂t
= g(φ,ψ), (3.1)

where ∇2 is the standard Laplacian operator and the functions f(·, ·) and g(·, ·) account
for the interactions among the species. As anticipated we are focusing on the specific
case study where just one species, specifically φ, is allowed to diffuse, D denoting its
diffusion coefficient. Notice that ψ is also function of the spatial variable r, as it depends
on the concentration φ, the species which can in turn migrate. We shall here assume that
a fixed point of the homogeneous system exists. This is a uniform solution φ(r) = φ̂,
ψ(r) = ψ̂, with φ̂ and ψ̂ constants, such that f(φ̂, ψ̂) = g(φ̂, ψ̂) = 0. We shall furthermore
assume that the fixed point (φ̂, ψ̂) is stable. In the following we will prove that no Turing
instability can occur, if just one species can diffuse.

To this end we consider a small perturbation w of the initial homogeneous stationary
state, in formulae:

w =

(
φ− φ̂

ψ − ψ̂

)
. (3.2)

Since |w| is by hypothesis small we can linearize system (3.1) around the fixed point and
so eventually obtain:

ẇ = Jw +D∇2w, D =

(
D 0
0 0

)
. (3.3)

where ẇ represents the time derivative of w and J is the Jacobian matrix defined as:

J =

(
fφ fψ
gφ gψ

)
, (3.4)

where e.g. fφ stands for ∂f/∂φ evaluated at the fixed point (φ̂, ψ̂). Similar definitions
apply to the other entries of the matrix J .

To solve the above system (3.3), subject to specific boundary conditions, one can
introduce the eigenfunctions Wk(x) of the Laplacian, such that

−∇2Wk(x) = k2Wk(x),

for all k ∈ σ, where σ is a suitable (unbounded) spectral set. Then we expand

w(x, t) =
∑

k∈σ

cke
λ(k)tWk(x), (3.5)
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where the constants ck refer to the initial condition. This is equivalent to performing a
Fourier-like transform of the original equation. The function λ(k), also called dispersion
relation, controls the growth (or damping) of the perturbation. More specifically the
solution of the linearized system (3.3) exists if

det (λI − J̃ ) = 0, (3.6)

where det(·) is the determinant and

J̃ =

(
fφ −Dk2 fψ

gφ gψ

)
. (3.7)

A simple calculation yields:

λ(k) =
(TrJ −Dk2) +

√
(TrJ −Dk2)2 − 4(detJ −Dk2gψ)

2
, (3.8)

where Tr(·) denotes the trace. Since we are interested in the growth of unstable pertur-
bations, we have here selected the largest λ(k). The Turing instability occurs if one can
isolate a finite domain in k for which λ(k) > 0. In formulae:

(TrJ −Dk2) +
√

(TrJ −Dk2)2 − 4(detJ −Dk2gψ) > 0

=⇒
√
(TrJ −Dk2)2 − 4(detJ −Dk2gψ) > −(TrJ −Dk2)

=⇒ −4(detJ −Dk2gψ) > 0

=⇒ Dk2gψ > detJ . (3.9)

The right hand side contribution in equation (3.9) is positive as the homogeneous fixed
point is supposed to be stable. If gψ < 0 it is clear that (3.9) does not admit solutions,
the left hand side of the equation being negative. At variance, when gψ > 0 we have:

k2 >
detJ
Dgψ

=⇒ k < −
√

detJ
Dgψ

and k >

√
detJ
Dgψ

. (3.10)

Equation (3.10) implies that the relation of dispersion λ(k) is positive for all values of
k ∈ σ above a critical threshold kc =

√
detJ /(Dgψ). The quantity λ(k) grows as k does,

the instability involving smaller and smaller spatial scales. It is therefore not possible to
delimit a finite window in k for which λ(k) is found to be positive, and, hence, the Turing
instability cannot take place. In conclusion, we have here confirmed a well establish
fact: a two species systems where only one species can migrate, cannot undergo Turing
instability [52].

Let us now turn to considering the case where the spatial support is supposed to
be discrete. In practice, this amounts to assume the physical space, in any dimension,
to be partitioned in a large collection of mesoscopic patches, where the constituents are
assumed to be uniformly mixed. The diffusion can take place between adjacent patches.
The differential equations that govern the evolution of the concentration are therefore
discrete in space, a setting that is for instance of interest when reaction-diffusion models
are applied to ecology [55].
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For simplicity, and without losing generality, we will hereafter consider the problem
in one dimension, assuming the physical space to be segmented in Ω cells, each of finite
linear size a. We label φi and ψi, with i = 1, . . . ,Ω, the discrete concentrations, that
respectively replace their continuum analogues φ and ψ.

The discrete Laplacian operator ∆ is defined as:

∆φi =
1

a2

∑

j=i±1

(φj − φi) , (3.11)

and periodic boundary conditions at i = 1 and i = Ω will be assumed throughout the
rest of the chapter. Let δ denote the transition probability per unit of time that control
the migration between neighbors mesoscopic patches. In the continuum limit δa2 → D,
when a→ 0. The discrete reaction diffusion system can be therefore written as:





∂φi
∂t

= f (φi, ψi) +
(
δa2
)
∆φi

∂ψi
∂t

= g(φi, ψi).

(3.12)

To study the onset of the instability, we operate in analogy with what has been done
above and perform a spatio–temporal Fourier transform of eqs. (3.12). The transform of
the discrete Laplacian ∆ reads ∆̃k = (2/a2)(cos(ak)− 1). Proceeding in the analysis, one
ends up with the following relation of dispersion:

λ(k) =
h(k) +

√
h(k)2 − 4(detJ + 2δ(cos(ak)− 1))gψ

2
, (3.13)

where h(k) = TrJ + 2δ(cos(ak) − 1). By imposing λ(k) > 0 one obtains, after a simple
algebraic manipulation, the following condition:

δ(1 − cos(ak))gψ > 2 detJ . (3.14)

As it happens for the case of the continuum, no solution of (3.14) are possible when
gψ < 0, namely when the non diffusing species has a self-inhibitory effect. At variance, if
gψ > 0 a finite interval in k can be found where λ(k) is different from zero, and the system
can therefore experience a Turing instability which is indeed seeded by the discreteness of
the spatial support. The most unstable mode kM is however found to be kM = π/(2a), a
trivial solution which stems from having assumed a discrete spatial support. It is worth
emphasizing that, as expected, kM diverges to infinity when the size of the patch a goes
to zero 1.

Starting from this setting, we will work in the context of a stochastic formulation of the
generic reaction diffusion system considered above and show that finite size corrections can
eventually drive the emergence of Turing like patterns. We will in particular specialize on
the case of a model defined on a discrete lattice and assume gψ < 0. Under this condition
the Turing patterns cannot develop in the mean-field approximation.

1The fact a discretised domain can produce wave modes to appears that do not exist in the continuum
case was also noticed in [54].
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3.3 The Model and its Master Equation

The system that we are going to study is a general two species birth-death model, in
which one of the species diffuses. As already mentioned, we assume the physical space
to be partitioned in Ω patches 2, and label with V their carrying capacity. The integer
index i runs from 1 to Ω and identifies the cell to which the species belong. Label the
two species Z and Y and assume the following chemical reaction scheme:

Zi
α−−→ Zi + 1 α =

1

Ω

V

si
f1

(
si
V
,
qi
V

)

Zi
β−−→ Zi − 1 β =

1

Ω

V

si
f2

(
si
V
,
qi
V

)

Yi
γ−−→ Yi + 1 γ =

1

Ω

V

qi
g1

(
si
V
,
qi
V

)

Yi
ρ−−→ Yi − 1 ρ =

1

Ω

V

qi
g2

(
si
V
,
qi
V

)

(3.15)

We indicated as si the number of elements of species Z and with qi the number of elements
of species Y in the cell i. Moreover, we require that f1, f2, g1, g2 are sufficiently regular
functions of the discrete number concentrations si/V and qi/V .

We assume that only Z diffuses and therefore write

Zi
δ/wΩ−−−−→ Zj Zj

δ/wΩ−−−−→ Zi, with j ∈ {i− 1, i+ 1}, (3.16)

where, in general, w is the number of neighboring cells of a given cell i and, therefore,
w = 2 in the present one-dimensional case. A state of the system is characterized by two
vectors, respectively ~s = (s1, s2, ..., sΩ) and ~q = (q1, q2, ..., qΩ). It is worth emphasizing
that the model is completely general: virtually any system composed by two species, one
of each diffusing, can be cast in the form introduced above, upon a proper choice of the
functions f1, f2, g1, g2.

We then turn to write down the master equation that governs the dynamics of the
system. To this end we need to calculate the transition probability associated with each
reaction:

T (si + 1, qi|si, qi) = α
si
V

T (si − 1, qi|si, qi) = β
si
V

T (si, qi + 1|si, qi) = γ
qi
V

T (si, qi − 1|si, qi) = ρ
qi
V

T (si + 1, sj − 1|si, sj) =
δ

Ω

sj
bV

T (si − 1, sj + 1|si, sj) =
δ

Ω

si
bV

.

By introducing the following “step operators”:

ε±sif(~s, ~q) = f(. . . , si ± 1, . . . , ~q), ε±qif(~s, ~q) = f(~s, . . . , qi ± 1, . . .),

2For the sake of simplicity, and without loosing generality we will set a = 1 in the following.
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the master equation reads:

d

dt
P (~s, ~q, t) =

Ω∑

i=1

[ (
ε+si − 1

)
T (si − 1, qi|si, qi) +

(
ε−si − 1

)
T (si + 1, qi|si, qi)

+
(
ε+qi − 1

)
T (si, qi − 1|si, qi) +

(
ε−qi − 1

)
T (si, qi + 1|si, qi)

]
P (~s, ~q, t)

+

Ω∑

i=1

∑

j∈{i−1,i+1}

[(
ε+siε

−
sj − 1

)
T (si − 1, sj + 1|si, sj)

+
(
ε−siε

+
sj − 1

)
T (si + 1, sj − 1|si, sj)

]
P (~s, ~q, t),

(3.17)

where, in accordance with our assumption of periodic boundary conditions, we adopt a
periodic convention for the indices out of the set {1, . . .Ω}.

The master equation is difficult to handle analytically and we perform a van Kampen
system size expansion, putting forward the ansatz:

si
V

= φi +
ξi√
V
,

qi
V

= ψi +
ηi√
V
. (3.18)

The number density si/V splits into two independent contributions: φi stands for the
deterministic (mean-field) concentration as measured in correspondence of the site i, and
ξi is a stochastic variable that quantifies the fluctuation that perturbs the mean-field so-
lution φi. Similar considerations apply to qi/V . The factor 1/

√
V takes into account the

finite volume of the system. In the limit for infinite systems size, the fluctuations can be
neglected and the stochastic system as formulated above converges to its deterministic
analogue. When working at finite V , stochastic fluctuations are important. The role of
fluctuations can be quantitatively studied by implementing the aforementioned perturba-
tive analysis, the van Kampen expansion [29], which assumes the amplitude factor 1/

√
V

to act as a small parameter. To this end we introduce the van Kampen hypothesis into
the master equation and split the contributions of order 1/

√
V and 1/V , to respectively

obtain the mean field equation and Fokker-Planck equation. To carry out the calcula-
tion explicitly one needs to expand the functions f1, f2, g1, g2 with respect to the small
parameter 1/

√
V . As a representative example, we consider f1 and obtain:

f1

(
φi +

ξi√
V
, ψi +

ηi√
V

)
≈ f1(φi, ψi)+

1√
V

∂f1
∂φi

(φi, ψi)ξi+
1√
V

∂f1
∂ψi

(φi, ψi)ηi+· · · (3.19)

where the derivatives are evaluated at ξi = 0, ηi = 0. Similar results hold for f2, g1 and
g2.

Let us introduce the new distribution

Π(ξi, ηi, t) = P (si(φi(t), ξi), qi(ψi(t), ηi), t), (3.20)

where si(φi(t), ξi) and qi(ψi(t), ηi) are given by (3.18). Inserting into the master equation,
and expanding the step operators to second order, one eventually obtains

Ω∑

i=1

∂Π

∂t
− ∂Π

∂ξi

√
V φ̇i −

∂Π

∂ηi

√
V ψ̇i = [A+B + C]Π, (3.21)
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where the contributions A,B,C take the following form:

A =
1

Ω

Ω∑

i=1

{
1√
V

[
(f2 − f1)

∂

∂ξi

]
+

+
1

V

[
∂

∂ξi

(
∂f2
∂φi

− ∂f1
∂φi

)
ξi +

∂

∂ξi

(
∂f2
∂ψi

− ∂f1
∂ψi

)
ηi +

1

2
(f1 + f2)

∂2

∂ξ2i

]}
,

B =
1

Ω

Ω∑

i=1

{
1√
V

[
(g2 − g1)

∂

∂ηi

]
+

+
1

V

[
∂

∂ηi

(
∂g2
∂φi

− ∂g1
∂φi

)
ξi +

∂

∂ηi

(
∂g2
∂ψi

− ∂g1
∂ψi

)
ηi +

1

2
(g1 + g2)

∂2

∂η2i

]}
,

C =
δ

bΩ

Ω∑

i=1

∑

j∈{i−1,i+1}

{
1√
V

[(
∂

∂ξi
− ∂

∂ξj

)
φi +

(
∂

∂ξj
− ∂

∂ξi

)
φj

]
+

+
1

V

[(
∂

∂ξi
− ∂

∂ξj

)
ξi +

(
∂

∂ξj
− ∂

∂ξi

)
ξj +

1

2

(
∂2

∂ξ2i
+

∂2

∂ξ2j
− 2

∂

∂ξi

∂

∂ξj

)
(φi + φj)

]}
.

3.4 Equations for the mean-field and the fluctuations

Introducing the rescaled time variable τ → t/ΩV , we obtain from (3.21) at the order 1/
√
V

the following system of ordinary differential equations for the mean field concentrations
φi and ψi: {

φ̇i = f1(φi, ψi)− f2(φi, ψi) + δ4φi
ψ̇i = g1(φi, ψi)− g2(φi, ψi),

(3.22)

where 4 = (φi+1 − 2φi + φi−1), the discrete Laplacian for a = 1. To proceed in the
analysis we suppose that the homogeneous system:

{
φ̇i = f1(φi, ψi)− f2(φi, ψi) ≡ f(φi, ψi)

ψ̇i = g1(φi, ψi)− g2(φi, ψi) ≡ g(φi, ψi),
(3.23)

admits a fixed stable point (φ̂, ψ̂). Notice that system (3.22), derived from a microscopic
stochastic formulation, coincides with the general mean-field model (3.12) considered in
Section 3.2.

The Fokker Planck equation that describes the dynamics of the fluctuations is obtained
by considering the terms proportional to 1/V in the master equation and reads as follows:

∂

∂τ
Π =

Ω∑

i=1


−

2∑

r=1

∂

∂ζr,i

(
2∑

m=1

Jrm,iζm,iΠ
)

+
1

2

2∑

r,l=1

i+1∑

j=i−1

∂

∂ζl,i

∂

∂ζr,j

(
B(i)
rl,jΠ

)

 . (3.24)
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Let us indicate as ~ζi = (ζ1,i, ζ2,i) the vector (ξi, ηi) in (3.24). The 2×2 matrices Ji = Jrm,i
are given by

Ji =




∂f1
∂φi

− ∂f2
∂φi

+ δ4 ∂f1
∂ψi

− ∂f2
∂ψi

∂g1
∂φi

− ∂g2
∂φi

∂g1
∂ψi

− ∂g2
∂ψi


 , (3.25)

and the three-vectors B(i)
rl are given by

B(i)
11 = (−δ(φi + φi−1),δ(φi−1 + 2φi + φi+1) + f1(φi, ψi) + f2(φi, ψi),− δ(φi + φi+1)) ,

B(i)
12 = B(i)

21 = (0, 0, 0), B(i)
22 = (0, g1(φi, ψi) + g2(φi, ψi), 0).

(3.26)

Note that, in the above expressions, the indices r and l label the species while the indices
i and j refer to the cells. The matrix Ji is the Jacobian matrix of (φi, ψi) 7→ (f1−f2, g1−
g2), modified with the inclusion of the spatial contribution represented by the discrete
Laplacian.

Matrix B can be cast in the more compact form:

B(i)
rl,j =

(
b
(0)
rl δi−j,0 + b

(1)
rl δ|i−j|,1

)
+ b

(1)
rl 4, (3.27)

where:

b(0) =

(
2δφ̂+ f1(φi, ψi) + f2(φi, ψi) 0

0 g1(φi, ψi) + g2(φi, ψi)

)

b(1) =

(
−δφi 0

0 0

)
.

We are interested in studying the fluctuations around the fixed point, when the deter-
ministic system is in a steady state, i.e. when (φi, ψi) ≡ (φ̂, ψ̂), ∀i. A powerful mean of
investigation is the power spectrum of fluctuations, that allows us to resolve the typical
spatio-temporal frequencies that are represented in the recorded signal. The analysis of
the power spectrum is carried out in the next section.

3.5 Power Spectrum of fluctuations

The above Fokker-Planck equation is equivalent [29] to the Langevin equation:

d

dt
ζr,i(t) =

2∑

l=1

Jrl,iζl,i(t) + λr,i(t), (3.28)

where λr,i(t) is a stochastic contribution which satisfies the following relations:

〈
λl,i(t), λr,i′(t

′)
〉
= Blr,|i−i′|δ(t− t′), (3.29)

〈λl,i(t)〉 = 0. (3.30)
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and 〈·〉 denotes expectation. Upon Fourier transform one gets:

− iωζ̃r,k(ω) =

2∑

l=1

J̃rl,kζ̃l,k(ω) + λ̃r,k(ω), (3.31)

where (̃·) stands for the Fourier transform both in space and time. Notice that matrix J̃i
coincides with the matrix Ji given in (3.25) where the discrete Laplacian 4, is replaced
by its Fourier transform 4̃k. As previously remarked, and recalling that a = 1, one gets:

4̃k = 2(cos(k)− 1). (3.32)

Define
Φrl,k(ω) = −iωδrl − J̃rl,k,

then the solution of (3.31) reads:

ζ̃r,k(ω) =

2∑

l=1

Φ−1
rl,k(ω)λ̃r,k(ω). (3.33)

The power spectrum of the stochastic variable ζr,i(t) is defined as:

Pr(k, ω) =
〈
|ζ̃r,k(ω)|2

〉
. (3.34)

Making use of condition (3.29) one gets:

Pr(k, ω) =
〈
|ζ̃r,k(ω)|2

〉
=

2∑

l,p=1

Φ−1
rl,k(ω)B̃lp,k(Φ†)−1

rp,k(ω). (3.35)

By recalling expression (3.27) one gets:

B̃lp,k =
(
b
(0)
lp + 2b

(1)
lp

)
+ b

(1)
lp 4̃k, (3.36)

which allows us to rewrite the power spectra in the form Pr(k, ω) [24, 3]:

PZ(k, ω) ≡ P1(k, ω) =
CZ,k + B̃11,kω

2

(ω2 − Ω2
0)

2 + Γ2ω2
, (3.37)

PY (k, ω) ≡ P2(k, ω) =
CY,k + B̃22,kω

2

(ω2 − Ω2
0)

2 + Γ2ω2
. (3.38)

where the functions CZ,k and CY,k are respectively defined:

CZ,k = B̃11,k(
˜̂J22,k)

2 + B̃22,k(
˜̂J12,k)

2 − 2B̃12,k
˜̂J12,k

˜̂J22,k,

CY,k = B̃22,k(
˜̂J11,k)

2 + B̃11,k(
˜̂J21,k)

2 − 2B̃12,k
˜̂J21,k

˜̂J11,k,

(3.39)

and

Ω0 =

√
det Ĵrl,k, (3.40)

Γ = −Tr Ĵrl,k. (3.41)
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In the above expression, the symbol (̂·) indicates that from hereon the matrices are
evaluated at the fixed point (φ̂, ψ̂); (̃·) stands instead for the spatial Fourier transform.

As anticipated, we are interested in studying the presence of stochastic stationary
patterns. We remember that stochastic Turing patterns [53, 10] are signaled by the
presence of at least a peak for the power spectrum in the direction of k, the spatial
wavenumber, for ω = 0, where ω stands for the time frequency. We are therefore going
to analyze the functions PZ(k, 0) ≡ P1(k, 0) and PY (k, 0) ≡ P2(k, 0), which respectively
reads:

PZ(k, 0) =
CZ,k
Ω4
0

=
b22(J11 + δ4̃)2 + (b11 − 2φ̂δ4̃)J21

2

(detJ + J22δ4̃)2
, (3.42)

PY (k, 0) =
CY,k
Ω4
0

=
(b11 − 2φ̂δ4̃)J22

2 + b22J12
2

(detJ + J22δ4̃)2
, (3.43)

where we have introduced:

b11 = f1(φ̂, ψ̂) + f2(φ̂, ψ̂), (3.44)

b22 = g1(φ̂, ψ̂) + g2(φ̂, ψ̂). (3.45)

To study the conditions that yield to one or more peaks, we need to calculate the power
spectrum derivative. We make use of the notation g(k) ≡ δ4̃ = 2δ(cos k − 1) and obtain
the following general expression:

dPj(k, 0)

dk
=

g′(k)

(detJ + J22g(k))3
{Bjg(k) + Cj} for j ∈ {Z, Y }, (3.46)

where Bj and Cj are defined as:

BZ = 2φ̂J 3
22, (3.47)

CZ = −2J22

(
b11J 2

22 + b22J 2
12 + φ̂J22 detJ

)
, (3.48)

BY = 2J21(−b22J12 + φ̂J21J22), (3.49)

CY = −2J21(b22J11J12 + φ̂J21 detJ + b11J22J21). (3.50)

Recall that Jij are the entries of the Jacobian matrix of system
(φi, ψi) 7→ (f1 − f2, g1 − g2) and bij are given by eqs. (3.45).

We observe that k = 0 and k = π are always stationary points of Pj . In fact g′(k) =
−2δ sin(k) is null if k = 0, π. To have additional stationary points of Pj , one should
require the quantity Bjg(k) + Cj to vanish. This implies:

cos(k) = 1− Cj
2δBj

.

As cos(k) ∈ [−1, 1], it is necessarily the case that:

0 6
Cj

2δBj
6 2. (3.51)
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Then, the derivative of Pj can be zero in k if Bj and Cj have the same sign. We indicate
as k1 and k2, the stationary wavenumbers different from π.

There are only two possible cases for the existence of k1 and k2:

(i) Existence condition of k1, k2

(a) Bj, Cj > 0 and δ >
Cj
4Bj

,

(b) Bj, Cj < 0 and δ >
|Cj |
4|Bj |

.

We are interested to know whether k1 and k2 correspond to maxima or minima of
Pj(k, 0). To achieve this goal we calculate the second derivative of Pj(k, 0):

d2

dk2
Pj(k, 0) =

g′′(k) (Bjg(k) + Cj) +Bjg
′(k)2

(detJ + J22g(k))3
− 3J22g

′(k)2 (Bjg(k) +Cj)

(detJ + J22g(k))4
. (3.52)

Remember that k1 and k2 are solution of Bjg(k) +Cj = 0. The expression of the second
order derivative is therefore cast into the form:

d2

dk2
Pj(k, 0)

∣∣∣∣
k=k1,k2

=
Bjg

′(k)2

(detJ + J22g(k))3
. (3.53)

The nature of the stationary points k1 and k2 depends on the sign of both the denominator
and Bj in (3.53). In particular, if we require that the points are maxima, or equivalently
the second derivative in k1 and k2 has a negative sign, we must check one of the two
following conditions:

(ii) Maximum conditions for points k1, k2

(a) Bj < 0 and detJ + J22g(k)∣∣
k=k1,k2

> 0,

(b) Bj > 0 and detJ + J22g(k)∣∣
k=k1,k2

< 0.

As anticipated we shall consider the case of a self-inhibitory non mobile species, which
corresponds to requiring J22 < 0. The denominator in (3.53) is then always positive,
while g(k) is by definition negative. Accordingly, the kind of stationary points k1 and k2
depend on the sign of Bj . In particular, for the condition of maximum (ii), Bj must be
negative.

To characterize whether the other stationary points 0, π are maxima or minima, we
should again turn to evaluating the second derivatives for such choices of k. As g′(0) = 0,
then equation (3.52) is:

d2

dk2
Pj(k, 0)

∣∣∣∣
k=0

=
g′′(0) (Bjg(0) + Cj)

(detJ + J22g(π))3
=

−2δCj
(detJ − 4δJ22)3

. (3.54)

Therefore k = 0 is a maximum, if one of the following conditions is true:
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(iii) Maximum condition for k = 0

(a)

{
−2δCj < 0

(detJ − 4δJ22) > 0.
(b)

{
− 2δCj > 0

(detJ − 4δJ22) < 0.

Since by assumption J22 < 0, condition (iii)(b) cannot be met. This is because the quan-
tity detJ−4δJ22 is positive, as detJ > 0 since we have assumed that (φ̂, ψ̂) is a stationary
stable fixed point. The nature of the stationary point k = 0 ultimately depends on the
sign of Cj. If Cj > 0, it is a maximum point, while, if Cj < 0, it is a minimum.

Consider now k = π and observe that g′(π) = 0. Equation (3.52) reads:

d2

dk2
Pj(k, 0)

∣∣∣∣
k=π

=
g′′(π) (Bjg(π) + Cj)

(detJ + J22g(π))3
=

2δ (−4δBj + Cj)

(detJ − 4δJ22)3
. (3.55)

For having a maximum in k = π one of the following conditions must be satisfied:

(iv) Maximum condition for k = π

(a)

{
−4δBj + Cj < 0

(detJ − 4δJ22) > 0.
(b)

{
− 4δBj + Cj > 0

(detJ − 4δJ22) < 0.

Since J22 < 0, the condition (iii)(b) is never satisfied: as already remarked, the term
detJ − 4δJ22 is in fact always positive.

Notice that, if k = π is a maximum the values k = k1 and k = k2 are minima.
Otherwise if k1 and k2 are maxima, k = π is a minimum. To show this, let us consider
two different cases, respectively Bj < 0 and Bj > 0.

If Bj < 0 and, at the same time, condition (i) is satisfied, then k1 e k2 exist. In this
case, the condition (ii)(a) guarantees that the stationary points else than π are maxima.
Indeed, Bj < 0 and (detJ + J22g(k))

∣∣
k=k1,k2

is positive. The condition for having a

maximum in k = π, namely −4δBj + Cj < 0, is in contradiction with (i). If Bj, Cj < 0,
in fact, we can write −4δBj + Cj < 0. Taking into account the signs of the quantities

involved, it results 4δ|Bj | − |Cj | < 0, which implies δ <
|Cj |
4|Bj |

, in disagreement with the

condition (i). In conclusion k = π is necessarily a minimum.

Let us now turn to considering the case Bj > 0. To have the existence of k1 and k2

one must impose Cj > 0 and δ >
Cj
4Bj

. Clearly, condition (ii) cannot be then satisfied and

the two stationary points are minima. A maximum is instead found in k = π, as dictated
by condition (iv)(b).

A summary of the above results is given in the Tables annexed below, where the
different scenarios are highlighted depending on the sign of the reference quantities. We
recall that our results have been derived under the hypothesis of discrete lattice spacing
a (set to one in the calculations). Similar Tables can be in principle obtained for the case
of a spatially continuum lattice, i.e. when a → 0 and g(k) ≡ −δk2. It can be however
shown [24, 3] that the power spectrum of fluctuations scales with an amplitude prefactor
proportional to ad, d being the dimension of the embedding space (d = 1, in our case).
Hence, in the limit a → 0, fluctuations fade away and the stochastic pattering is not
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detectable. However, as remarked in [53], another continuum limit can be performed,
starting from the same microscopic discrete formulation. One could in fact imagine to
keep patch dimension to a constant, while sending to infinity both ω and the linear
size of the physical space which hosts the system under scrutiny. This is indeed the
case considered in [56]: working under this alternative scenario, fluctuations, and so the
triggered patterns, are persistent also in the continuum limit. The choice of operating
with patches of finite size, where microscopic constituents are supposed well mixed, and
accounting for the possibility of jumping towards neighbor patches of a finite lattice,
proves useful when modeling ecological systems [55], or in cellular biology, the space
inside the membrane being partitioned in macro compartments and organelles [19], but
also for studying chemical systems as e.g. the device introduced in [57].
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J22 < 0 Cj > 0

Bj > 0 δ >
Cj

4Bj
∃ k1 and k2 and are minima. Maxima are found in k = 0, π, 2π

δ <
Cj

4Bj
6 ∃ k1 and k2. k = 0 and k = 2π are maxima. A minimum is found in k = π.

Bj < 0 6 ∃ k1 and k2. k = 0 and k = 2π are maxima. A minimum is found in k = π.
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J22 < 0 Cj < 0

Bj > 0 6 ∃ k1 and k2. k = π is always a maximum. Two minima are found in k = 0 and k = 2π

Bj < 0 δ >
Cj

4Bj
∃ k1 and k2 and are maxima. k = 0, π, 2π are minima.

δ <
Cj

4Bj
6 ∃ k1 and k2. k = 0 and k = 2π are minima. A maximum is found in k = π.
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3.6 A simple stochastic reaction–diffusion model

We have so far demonstrated that stochastic Turing patterns exist for reaction-diffusion
models, defined on a discrete lattice, in which only one species diffuses. Working in a
general context, we elaborated on the conditions which lead to Turing pattern, mediated
by demographic noise.

As an application of the results discussed above, we consider a specific stochastic
reaction-diffusion model, which can be cast in the form specified by (3.15) and (3.16). We
choose in particular:

f1

(
si
V
,
qi
V

)
= η1 (3.56)

f2

(
si
V
,
qi
V

)
= η2

(si
V

)p
+ η3

(qi
V

)n
(3.57)

g1

(
si
V
,
qi
V

)
= η4 (3.58)

g2

(
si
V
,
qi
V

)
= η5

(si
V

)p
+ η6

(qi
V

)n
, (3.59)

to define the microscopic reaction rates implicated in chemical equations (3.15). Here
ηi are positive real numbers, while p and t are integers. We will set p = 4 and n = 1.
Note that the proposed model has no specific applied interest: it is solely introduced
for demonstrative purposes, aiming at testing the validity of the mathematical analysis
developed above.

In the mean-field approximation, one gets:




∂φi
∂t

= −η2φpi − η3ψ
n
i + η1 + δ∆φi

∂ψi
∂t

= −η5φpi − η6ψ
n
i + η4 .

(3.60)

To calculate homogeneous fixed point (φ̂, ψ̂) of system (3.60) one needs needs to solve the
following equations:

{
−η2φ̂p − η3ψ̂

n + η1 = 0

−η5φ̂p − η6ψ̂
n + η4 = 0 .

(3.61)

which immediately yield:

φ̂ =

(
η1η6 − η3η4
η2η6 − η3η5

)1/p

(3.62)

ψ̂ =

(
η2η4 − η1η5
η2η6 − η3η5

)1/n

. (3.63)

The parameters are to be in turn assigned so that the above fixed point is real and
positive, a condition on which we shall return in the following. Furthermore, we require
(φ̂, ψ̂) to be a stable fixed point, so to match the theory prescriptions. The trace of the
Jacobian matrix J associated to the homogeneous (a-spatial) version of system (3.60)
reads:
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Tr(J ) = −
(
η2pφ̂

p−1 + η6nψ̂
n−1
)
. (3.64)

The trace is therefore always negative, for any choice of the parameters which returns
a physically sound (φ̂, ψ̂ > 0) homogeneous fixed point. For the fixed point to be stable,
one should further impose:

det(J ) = (η2η6 − η3η5) pnφ̂
p−1ψ̂n−1 > 0. (3.65)

This latter condition translates in:

η3 <

(
η2
η5

)
η6 ≡ γ1η6, (3.66)

where we brought into evidence the dependence on η6 and η3, since they will later on
act as control parameters. By using the above condition (3.66) into equations (3.62) the
condition for positive concentrations φ̂, ψ̂ > 0 gives:

η2 η4 − η1η5 ≡ γ2 > 0, (3.67)

η3 <

(
η1
η4

)
η6 ≡ γ3η6. (3.68)

The homogeneous fixed point (φ̂, ψ̂) determined above exists and it is stable, pro-
vided conditions (3.66) and (3.67) are simultaneously met. Moreover, and as discussed
in the first part of the chapter, the spatially extended system (3.60) cannot experience
a (deterministic) Turing instability since gψ = −nη6ψ̂n−1 is by definition negative. The
homogeneous fixed point is hence a stable, although trivial attractor of the spatial deter-
ministic model.

A different scenario holds instead when the stochastic version of the deterministic
model (3.60) is considered. As we will show, it is in fact possible to assign the model
parameters so as to generate a power spectrum of the stochastic fluctuations with two
maxima for non trivial values of k1 and k2, for ω = 0. These maxima are interpreted as
the signature of stochastic Turing patterns.

To this end we fix all parameters to nominal, arbitrarily chosen values, except for η3
and η6 which can be tuned. We will then adjust η3 and η6 so to match conditions (i) and
(ii), as outlined in the preceding section. This results in region II of the parameter plane,
as depicted in Figure 3.1. Conversely, in region I the power spectrum of fluctuations is
predicted to display an isolated maximum for k = 0.

In Figure 3.2(b) we plot a two dimensional view of the theoretical power spectrum for
a choice of the parameters (η6, η3) which falls in region II. The predicted profile is just
displayed in the interval k ∈ [0, π]: a peak is present for a value of k smaller than π. A
second, specular, peak is clearly found for k > π. The two maxima of the power spectrum
occur for ω = 0. They correspond therefore to stationary non homogeneous patterns.
To validate the theory predictions we performed direct numerical simulations, by means
of the Gillespie algorithm [28]. This is a Monte Carlo based scheme which produces
realizations of the stochastic dynamics equivalent to those obtained from the governing
master equation. The power spectrum calculated by averaging over a large collection of
independent realizations of the stochastic dynamics is depicted in Figure 3.2(a), showing



3.6 A simple stochastic reaction–diffusion model 79

Figure 3.1: The plane (η6, η3) is partitioned into two regions. In region II, the power
spectrum of fluctuations is predicted to display two peaks in, respectively, k1 and k2.
These are positions symmetric with respect to π. In region I the power spectrum has
instead a maximum in k = 0. The parameters are η1 = 15; η2 = 20; η4 = 4; η5 = 4;
δ = 42.9473. With this choice, γ1 = 4; γ3 = 20 > 0; γ3 = 3.75. The two lines which cross
the origin represent respectively the two conditions η3 = γ1η6 (blue online) and η3 = γ3η6
(red online). Region I is delimited by this latter and the thick solid line which marks the
transition to the adjacent region II. The horizontal dashed lines is drawn at η3 = 3: the
data reported in the following figures (3.2) and (3.3) refer to choices of the parameters
that fall on such a line.

a good agreement with the corresponding theoretical profile. This confirms the validity
of the analysis developed above, and summarized in the Tables presented above.

In figure 3.3, the position of the maxima of the power spectrum of species Z is plotted
as a function of the control parameter η6, while η3 is set to the value that corresponds to
the dashed horizontal line in figure 3.1. This results in a bifurcation diagram from zone
I to zone II. A similar plot can be obtained for the co-evolving species Y . The solid line
stands for the theoretical predictions, which follows the results summarized in the Tables
annexed above. A transition from zone I (one isolated peak) to zone II (two symmetric
peaks) is predicted to occur at η6 ' 2.5. The symbols in figure 3.1 refer to the position
of the power spectrum as obtained via direct simulations and confirms the correctness of
the theoretical scenario.

A final comment is mandatory at this point. Fluctuations driven patterns are stochas-
tic in nature: as such they are not stationary, unlike their deterministic analogue. Stochas-
tic patterns continuously decay, while they are recreated by the effect of the noise [58]. In
general, the noisy nature of the patterns makes them hard to detect by visual inspection.
The emergence of a length scale become often clear only via a Fourier analysis. This is
the case for the simple model here investigated for demonstrative reasons: the patterns
emerging from one single realization are indeed masked by a large amount of noise (data
not shown). Similar conclusion are reached in [59] where stochastic simulations for the
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Figure 3.2: In the above panel, the numerical power spectrum of the fluctuations for
species Z is represented, with an appropriate color code, in the plane (ω, k), for a choice
of the parameters that fall in region I of Figure 3.1. Specifically, we have set η6 = 25,
η3 = 3. The other parameters are set to the values specified in the caption of Figure 3.1.
Here V = 5000 and Ω = 32. The numerical power spectrum is obtained by averaging
over 200 independent realizations based on the Gillespie algorithm. A peak is found in
the interval [0, π]. A symmetric maximum exists in [π, 2π] (non displayed). In the below
panel the power spectrum calculated analytically is plotted and shown to agree with the
numerical result. The power spectra are normalized so to have maximum equal to unit.
The color bar applies to both panels.

Schnakenberg kinetics [60] are carried out just outside the (deterministic) region of Turing
order. On the other hand, patterns can possibly become more distinct depending on the
simulated model, the dimensionality of the system (1D vs. 2D ) and the structure (lat-
tice vs. network) of the embedding space. For the Levin-Segel model [61] studied in two
dimension [53], stochastic patterns are quite visible at the naked eye. Similarly, robust
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Figure 3.3: A bifurcation diagram is displayed, which exemplifies the transition from zone
I to zone II. More specifically, the position of the peaks of the power spectrum of species Z
is plotted as a function of the control parameter η6. Here, η3 = 3, a value that corresponds
to the horizontal dashed line in figure 3.2. The solid line stands for the theory prediction,
while the symbols refer to direct simulations of the stochastic dynamics. The simulations
are averaged over 150 independent realizations. The error in the location of the peak is
assumed as twice the spacing of the imposed wavelength mesh.

and rather distinct patterns are found when a stochastic reaction model of the Brussela-
tor type [62] is defined on a network topology [63]. Also, quasi–waves patterns found in
[56] for a modified version of the Brusselator model with long range couplings, stand out
rather clearly from one single realization of the stochastic dynamics. The search for the
necessary ingredients that make stochastic pattern accessible at visual inspection, remains
however an important and still open question that deserves to be further addressed.

3.7 Conclusion

Pattern formation is an important domain of study which finds many applications in
distinct contexts of interest, including ecology, biology and chemistry. The Turing insta-
bility is one of the mechanisms that can be invoked to explain the emergence of stationary
stable, spatially ordered patterns in reaction-diffusion models. These latter are systems
of coupled partial differential equations which govern the time and space evolution of
the continuum concentrations of constituents. As such, reaction diffusion models are de-
terministic in nature. They omit the stochastic contributions that need to be included
when dealing with finite populations and, in this respect, represent an idealized approach
to the modeling of the inspected phenomena. The classical, deterministic theory for the
Turing instability requires that at least two species diffuse in a domain in which they are
confined: the diffusion potentially leads to an instability in following a perturbation of a
stable equilibrium of the homogeneous system. Conversely, if just one species is allowed
to diffuse the Turing instability is always precluded, when the system is defined on a
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continuum support. Working on a discrete lattice, Turing patterns in principle develop,
but just for a trivial choice of the most unstable wave number and limited to models that
assume the non diffusing species to operate as a self-activator.

Beyond the deterministic viewpoint, in the last few years the concept of stochastic
Turing instability has been introduced in the literature [53, 10]: discrete systems, made
of a large though finite number of constitutive entities, can generate stochastic order on
a macroscopic scale, as follows a resonant mechanism which self-consistently amplifies
the intrinsic demographic noise. Elaborating on this concept, we have considered a gen-
eral stochastic reaction diffusion model, with just one diffusing species, and showed that
stochastic Turing patterns are indeed possible also when the non mobile species has a
self-inhibitory capability, i.e. a condition for which deterministic patterns are a priori
excluded. General analytical conditions for the existence of the stochastically driven pat-
terns are given. The predictions are tested numerically working with a simplified model
that falls in the general class of systems for which the theory has been developed. The
quantitative agreement observed between theory and simulations points to the validity of
our analysis, which, we believe, could open up novel perspectives to tackle the problem
of pattern formation beyond the classical deterministic picture.



Chapter 4

The effect of crowding in

Brussellator-type models

In the previous chapter we have introduced the classical concept of Turing instability in the
mean-field context. Then we have characterized in details, the emergence of stochastic
Turing pattern, as signalled by the power spectrum of fluctuations. Making explicit
reference to a particularly simple setting when only one species is allowed to diffuse.
In this final chapter we will elaborate on the role of molecular crowding, in relation to
the problem of pattern formation. The effect of crowding result in cross terms in the
diffusion operator. The presence of these terms can modify the classical Turing picture
and as well as the corresponding stochastic analogue. In particular, the Turing instability
can set in for all ratios of the diffusivities, also when the activator diffuses faster then
the inhibitor. This conclusion, here demonstrated for the Brussellator model, is at odds
with the classical Turing paradigm. Stochastic patterns are also studied for a generalized
version of the Brussellator model with long-range coupling.

4.1 Turing instabilities in reaction-diffusion systems with

cross diffusion

According to the classical viewpoint, in order to observe Turing patterns, the diffusion
coefficient of the inhibitor species has to be larger than that of the activator, for the
patterns to eventually develop. This is a strict mathematical constraint which is not al-
ways met in e.g. contexts of biological relevance [64, 65], and which limits the possibility
of establishing a quantitative match between theory and empirical data. Spatially ex-
tended systems made of interacting species sharing similar diffusivities can indeed display
self-organized patched patterns, an observation that still calls for a sound interpretative
scenario, beyond the classical Turing mechanisms [9].

One viable strategy to possibly reconcile theory and observations has been explored
in [53] and [10]. In these studies, the authors considered the spontaneous emergence of
persistent spatial patterns as mediated by the demographic endogenous noise, stemming
from the intimate discreteness of the scrutinized system. The intrinsic noise translates
into a systematic enlargement of the parameter region yielding the Turing order, when
compared to the corresponding domain predicted within the deterministic linear stability
analysis. It is however unclear at present whether experimentally recorded patterns bear
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the imprint of the stochasticity, a possibility that deserves to be further challenged in the
future.

Alternatively, and to bridge the gap with the experiments, the Turing instability
concept has been applied to generalized reaction–diffusion equations. These latter account
for cross diffusion terms which are hypothesized to exist on purely heuristic grounds
or by invoking the phenomenological theory of linear non–equilibrium thermodynamics
[66, 67, 68]. Diagonal and off–diagonal coefficients of the diffusion matrix are not linked
to any microscopic representation of the examined dynamics and are hence treated as free
parameters of the model. In [69] the authors quantify the impact of cross terms on the
Turing bifurcation, showing e.g that spatial order can materialize also if the inhibitor’s
diffusion ability is less pronounced than the activator’s one.

Starting from this setting, the aims of this chapter are twofold. On the one side, we
shall elaborate on a microscopic theory of multispecies diffusion, fully justified from first
principles. The theory here derived is specifically targeted to the two species case study
and extends beyond the formulation of [70]. On the other side, and with reference to
the Brusselator model, we will show that Turing patterns can take place for any ratio
of the main diffusivities. In doing so we will cast the conclusions of [69] into a descrip-
tive framework of broad applied and fundamental interest, where the key cross diffusion
ingredients are not simply guessed a priori but rigorously obtained via a self–consistent
derivation anchored to the microscopic world. Working in the context of a reference case
study, the Brusselator model, we shall also perform numerical simulations based on both
the underlying stochastic picture and the idealized mean–field formulation to elaborate
on the robustness of the observed patterns.

In the following we briefly discuss the derivation of the model, focusing on the specific
case where two species are supposed to diffuse, sharing the same spatial reservoir.

4.1.1 The Diffusion model

Consider a generic microscopic system bound to occupy a given volume of a d−dimensional
space. Assume the volume to be partitioned into a large number Ω of small hypercubic
patches, each of linear size l. Each mesoscopic cell, labelled by i, is characterized by a
finite carrying capacity: it can host up to N particles, namely nAi of type A, nBi of type
B, and ei = N − nAi − nBi vacancies, hereafter denoted by E. In general, the species will
also interact, as dictated by specific reaction terms. Let us start by solely focusing on
the diffusion part, silencing any direct interaction among elementary constituents. As we
shall remark, there exists an indirect degree of coupling that results from the competition
for the available spatial resources. In practice, the mobility of the particles is balked if the
neighbouring patches have no vacancies. Particles may jump into a nearest–neighbour
patch, only if there is a vacancy to be eventually filled. This mechanism translates into
the following chemical equation

Ai + Ej
µA−→ Ei +Aj , (4.1)

Bi + Ej
µB−→ Ei +Bj ,

where i and j label nearest–neighbour patches. Here, Ai and Bi identify the particles that
belong to cell i. Ei labels instead the empties that are hosted in patch i. The parameters
µA and µB stand for the associated reaction rates. Similar reactions control the migration
from cell j towards cell i.
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In addition, and extending beyond the scheme proposed in [70], we imagine the fol-
lowing reactions to hold:

Ai +Bj
α−→ Aj +Bi, (4.2)

Aj +Bi
α−→ Ai +Bj ,

which in practice account for the possibility that elements Ai (resp. Aj) and Bj (resp.
Bi) swap their actual positions.

The state of the system is then specified by the number of A and B particles in each
patch, the number of vacancies following from a straightforward normalization condition.
Introduce the vector n = (n1, . . . ,nΩ), where ni = (nAi , n

B
i ). The quantity T (n′|n)

represents the rate of transition from state n, to another state n′, compatible with the
former. The transition rates associated with the migration between nearest–neighbour,
see Eqs. (4.1), take the form

T (n
(a)
i − 1, n

(a)
j + 1|n(a)i , n

(a)
j ) =

µ(a)

zΩ

n
(a)
i

N

N − nAj − nBj
N

, (4.3)

with a = A,B and where we have made explicit in T (·|·) the components that are affected
by the reactions. As discussed in [70], the factor N−nAj −nBj , reflects the natural request
of a finite capacity, and will eventually yield a macroscopic modification of the Fick’s law
of diffusion. Moreover, chemical equations (4.2) result in the following transition rates:

T (nAi − 1, nAj + 1, nBi + 1, nBj − 1|nAi , nAj , nBi , nBj ) = α
zΩ

nAi
N

nBj
N ,

T (nAi + 1, nAj − 1, nBi − 1, nBj + 1|nAi , nAj , nBi , nBj ) = α
zΩ

nAj
N

nBi
N .

The process here imagined is Markov, and the probability P (n, t) to observe the system
in state n at time t is ruled by the master equation

dP (n, t)

dt
=
∑

n′ 6=n

[
T (n|n′)P (n′, t)− T (n′|n)P (n, t)

]
, (4.4)

where the allowed transitions depend on the state of the system via the above rela-
tions. Starting from this microscopic, hence inherently stochastic picture, one can derive
a self–consistent deterministic formulation, which exactly holds in the continuum limit.
Mathematically, one needs to obtain the dynamical equations that govern the time evo-
lution of the ensemble averages 〈nAi 〉 and 〈nBi 〉. To this end, multiply first the master Eq.
(4.23) by nai , with a = A,B, and sum over all n. After an algebraic manipulation which
necessitates shifting some of the sums by ±1, one eventually gets

d

dt
〈n(a)i 〉 =

∑

j∈i

[
〈T (n(a)i + 1, n

(a)
j − 1|n(a)i , n

(a)
j )〉 − 〈T (n(a)i − 1, n

(a)
j + 1|n(a)i , n

(a)
j )〉

+ 〈T (nAi + 1, nAj − 1, nBi − 1, nBj + 1|nAi , nAj , nBi , nBj )〉

− 〈T (nAi − 1, nAj + 1, nBi + 1, nBj − 1|nAi , nAj , nBi , nBj )〉
]
, (4.5)

where the notation
∑

j∈i means that we are summing over all patches j which are nearest–
neighbours of patch i. The averages in Eq. (4.5) are performed explicitly by recalling
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the expression for the transition rates as given in Eqs. (4.3) and (4.4). Replace then
the averages of products by the products of averages, an operation that proves exact in
the continuum limit N → ∞. By introducing the continuum concentration (φA,B)i =

limN→∞
〈nA,Bi 〉
N , rescaling time by a factor of NΩ and taking the size of the patches to

zero one finally gets1

∂φA
∂t

= D11∇2φA +D12

[
φA∇2φB − φB∇2φA

]
,

∂φB
∂t

= D22∇2φB +D21

[
φB∇2φA − φA∇2φB

]
, (4.6)

where2 D11,22 → l2µA,B and D12,21 → l2(µA,B − α). The above system of partial differ-
ential equations for the concentration φA and φB is a slightly modified version of the one
derived in [70], this latter being formally recovered when setting α to zero. In the gener-
alized context here considered, the cross diffusion coefficients D12 and D21 are different,
specifically smaller, than the corresponding mean diffusivities D11 and D22. We empha-
size again that the crossed, nonlinear contributions ±(φA,B∇2φB,A − φB,A∇2φA,B) stem
directly from the imposed finite carrying capacity and, as such, have a specific, fully justi-
fied, microscopic origin. The diffusive fluxes that drive the changes in the concentrations
φA and φB can be written as:

JφA = −D11

(
1− D12

D11
φB

)
∇φA −D12φA∇φB,

JφB = −D21φB∇φA −D22

(
1− D21

D22
φA

)
∇φB. (4.7)

It is interesting to notice that relations (4.7) enable us to make contact with the field
of linear non–equilibrium thermodynamics (LNET), a branch of statistical physics which
defines the general framework for the macroscopic description of e.g. transport processes.
One of the central features of LNET is the relation between the forces, which cause the
state of the system to change, and the fluxes, which are the result of these changes [66].
Within the formalism of LNET the fluxes JφA and JφB that rule the diffusion of the
two species φA and φB are linearly related to the forces, the gradients of the respective
concentrations. The quantities that establish the formal link between forces and fluxes are
the celebrated Onsager coefficients, postulated on pure heuristic grounds. Interestingly,
Eqs. (4.7) provide a self–consistent derivation for the Onsager coefficients, that enters
the generalized Fick’s scenario here depicted.

Define Φ = (φA, φB) and J = (JφA , JφB ). Then Eqs. (4.6) can be written in the
compact form:

∂Φ

∂t
= −∇J = ∇D(Φ)∇Φ, (4.8)

where the 2× 2 matrix D reads:

D(Φ) =


 D11

(
1− D12

D11
φB

)
D12φA

D21φB D22

(
1− D21

D22
φA

)

 .

1Use has been made of the discrete Laplacian operator ∆fi = (2/z)
∑

j∈i(fj − fi), which then turns

into the continuum operator ∇ when sending to zero the size of the patch and scaling the rates µA,B and
α appropriately.

2From the above expressions, one derives the consistency conditions µA > α and µB > α.
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A stringent constraint from thermodynamics is that all eigenvalues of the diffusion
matrix D are real and positive. This in turn corresponds to requiring tr(D) > 0 and
det(D) > 0. A straightforward calculation yields:

tr(D) = D11(1− φB) +D22(1− φA) + ∆D(φA + φB),

det(D) = D11D22(1− φA − φB) + ∆D(D11φA +D22φB),

where ∆D ≡ D11 − D12 = D22 − D21. By definition ∆D > 0. Moreover, φA and φB
are both positive and smaller than one. Hence, tr(D) > 0 and det(D) > 0, a result that
points to the consistency of the proposed formulation.

4.1.2 The region of Turing order

Having derived a plausible macroscopic description for the two components diffusion pro-
cess, we can now move on by allowing the involved species to interact and consequently
consider in the mathematical model the corresponding reaction terms. As an important
remark, we notice that these latter can be also obtained as follows the above, rather
general, approach that bridges micro and macro realms. First, one need to resolve the
interactions among individual constituents, by translating into chemical equations the
microscopic processes implicated. These include cooperation and competition effects, as
well as the indirect interferences stemming from the finite carrying capacity that we have
imposed in each mesoscopic patch. Then, one can recover the deterministic equations for
the global concentrations, by operating in the continuum system size limit. In general,
Eq. (4.8) is modified into:

∂Φ

∂t
= F(Φ) +∇D∇Φ, (4.9)

where F = (fA(φA, φB), fB(φA, φB)). As we have anticipated, the interest of this gen-
eralized formulation, resides in that it allows for Turing like patterns in a region of the
parameter space that is instead forbidden when conventional reaction–diffusion systems
are considered. The novelty of the proposed formulation has to do with the presence
of specific cross diffusion terms, which follow a sound physical request, and add to the
classical Laplacians, signature of Fickean diffusion.

Let φ̂A, φ̂B be the steady state solution of the homogeneous (aspatial) system, namely
fA(φ̂A, φ̂B) = fB(φ̂A, φ̂B) = 0. The fixed point is linearly stable if the Jacobian matrix A

A =

(
∂fA
∂φA

∂fA
∂φB

∂fB
∂φA

∂fB
∂φB

)
,

has positive determinant and negative trace. It is worth stressing that the derivatives in
matrix A are evaluated at the homogeneous fixed point. Back to the complete model,
a spatial perturbation superposed to the homogeneous fixed point can get unstable if
specific conditions are met. Such conditions, inspired to the seminal work by Turing, are
hereafter derived via a linear stability analysis. Define η = Φ − Φ̂ and proceed with a
linearization of Eq. (4.9) to eventually obtain:

∂η

∂t
= A(Φ̂)η +D(Φ̂)∇2η.

Going to Fourier space one gets:
dη̃

dt
= A∗(k)η̃, (4.10)
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where A∗(k) = A(Φ̂)− k2D(Φ̂). By characterizing the eigenvalues of the matrix A∗, one
can determine whether a perturbation to the homogeneous solution can yield patterns
formation. In particular, if one of the eigenvalues admits a positive real part for some val-
ues of k, then a spatially modulated instability develops. The growth of the perturbation
as seeded by the linear instability will saturate due to the non linearities and eventually
results in a characteristic pattern associated to the unstable mode k. Steady patterns of
the Turing type require in addition that the imaginary part of the eigenvalues associated
to the unstable mode are zero. In formulae, the Turing instability sets in if there exists a
k such that tr(A∗(k)) < 0 and det(A∗(k)) < 0. These latter conditions are to be imposed,
jointly with the request of a stable homogeneous fixed point (tr(A) < 0, det(A) > 0), to
identify the parameters’ values that drive the instability. Alternatively, one can obtain a
set of explicit conditions following the procedure outlined below, and adapted from [10].
The eigenfunctions of the Laplacian operator are:

(
∇2 + k2

)
Wk(r) = 0,

and we write the solution to Eq. (4.10) in the form:

x(t, r) =
∑

k

eλt ak Wk(r). (4.11)

By substituting the ansatz (4.11) into Eq. (4.10) yields:

eλt
[
A− k2 D− λ1

]
Wk = 0.

The above system admits a solution if the matrix A− k2 D− λ1 is singular, i.e.:

det(A− k2 D− λ1) = 0. (4.12)

The solutions λ(k) of (4.12) can be interpreted as dispersion relations. If at least one
of the two solutions displays a positive real part, the mode is unstable, and the dynamics
drives the system towards a non–homogeneous configuration in response to the initial
perturbation. Introduce the auxiliary quantity Γ defined as:

Γ = D11
∂fB
∂φB

+ D22
∂fA
∂φA

− φ̂A

[
D21

∂fA
∂φA

+D12
∂fB
∂φA

]
− φ̂B

[
D12

∂fB
∂φB

+D21
∂fA
∂φB

]
,

(4.13)

Then a straightforward calculation results in the following compact conditions for the
instability to occur:

Γ > 0, (4.14)

Γ2 > 4D11D22

(
1− D12

D11
φA − D21

D22
φB

)
det(A),

together with tr(A) < 0 and det(A) > 0.
For demonstrative purposes we now specialize on a particular case study and trace

out in the parameters’ plane, the domain that corresponds to the Turing instability. Our
choice is to work with the Brusselator model3 which implies setting fA = −(b + d)φA +

3The term a(1 − φA − φB) reflects the presence of the finite carrying capacity, as discussed in [10].
Similar conclusions hold however if the diluted limit is performed, just in the reaction terms, hence
replacing a(1− φA − φB) with a.
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Figure 4.1: Panels (a) and (c): the boundaries of the region of Turing instability are
traced in the plane (b, c), for D22/D11 = 1 (panel (a)) and D22/D11 = 0.7 (panel (c)).
The calculated domains refer to the Brusselator model with non Fickean diffusion, as
explained in the main text. The solid line, which encloses regions I and II, stands for
∆D = 0, while the dashed line delimits region I, where the condition ∆D = 0.1 applies.
The other parameters are set as a = 5, d = 3. Panels (b) and (d): the time evolution of
the concentration φA, as revealed by direct numerical simulations. In both cases, a small
perturbation is superposed at t = 0 to the (non trivial) stable homogeneous fixed point of
the Brussellator, namely φ̂A = (a+

√
a2 − 4ab(a+ d)/c)/2/(a + d), φ̂B = b/c/φ̂A. Here,

D11 = 1.0, D22 = 0.7, b = 21.71, c = 139, a = 5, d = 3. The upper right figure, panel (b),
refers to ∆D = 0, the lower right, panel (d), to ∆D = 0.1. In the simulations we have
assumed a symmetric box [−L,L], with L = 10. The box is discretized in 200, uniformly
spaced, mesh points. The simulations are run by employing an explicit Euler scheme with
time step equal to 0.0001. The density in each cell of the mesh is displayed in the vertical
axis, while the horizontal axis refers to the number of iterations.
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a(1 − φA − φB) + cφ2AφB and fB = bφA − cφ2AφB . Species A plays now the role of the
activator, while B stands for the inhibitor. Results of the analysis are reported in left
panels of Fig. 4.1, where the region of interest is singled out in the plane (b, c), for
different choices of ∆D. Turing patterns are predicted to occur for D22/D11 ≤ 1, at
odd with what happens in the conventional scenario where standard Fick’s diffusion is
assumed to hold (see below). The right panels report the results of direct simulations and
confirm the presence of macroscopically organized patterns in a region of the parameters
space that is made classically inaccessible by the aforementioned, stringent condition
D22 > D11 The simulations refers to the choice D22/D11 = 0.7. These observations are
general and similar conclusions can be drawn assuming other reactions schemes of the
inhibitor/activator type, different from the Brusselator model.

It is now instructive to elaborate on a simple interpretation of the above result. Let
us start by briefly revisiting the necessary conditions for the classical Turing instability
to occur, namely:

tr(A) = ∂fA/∂φA + ∂fB/∂φB < 0, (4.15)

D11∂fB/∂φB +D22∂fA/∂φA > 0.

Both conditions can be simultaneously matched, only if the diagonal elements of the
Jacobian matrix A have opposite signs. For the sake of clarity, let us assume4 that:

∂fA
∂φA

> 0
∂fB
∂φB

< 0.

Hence, species A activates its own production, while species B has a self-inhibitory feed-
back. Requiring tr(A) < 0 implies imposing | ∂fB∂φB

| > ∂fA
∂φA

which, by making use of the
second of (4.15), readily translates into the necessary condition

D22

D11
>

|∂fB/∂φB |
∂fA/∂φA

> 1. (4.16)

As already mentioned, the inhibitor must diffuse faster than the activator (when the two
species are evolved in separate containers) for the conventional Turing pattern to occur:
the system has to accommodate for two competing processes, a short–range activation
and long–range inhibition. Starting from this setting we can adapt the above reasoning
to the generalized case study where cross diffusion terms are also present. To this end,
and to keep the notation light, we shall solely consider the limiting case with ∆D = 0.
Similar conclusions hold when ∆D 6= 0. The second of relations (4.15) is now replaced
by the condition Γ > 0 (see Eq. (4.13)), which can be cast in the form:

D11

[
∂fB
∂φB

(
1− φ̂B

)
− φ̂A

∂fB
∂φA

]
+D22

[
∂fA
∂φA

(
1− φ̂A

)
− φ̂B

∂fA
∂φB

]
> 0

when D11 = D12 and D22 = D21. To proceed in the discussion we note that the el-
ements that enter the square brackets have dimension of the inverse of time. Assume
∂fB
∂φB

(
1− φ̂B

)
− φ̂A

∂fB
∂φA

to be negative as it is reasonable to hypothesize if (i) the correc-

tion term that scales to the number densities φ̂A is sufficiently small, or conversely if (ii)

4This is indeed the case for the Brusselator model. For c sufficiently large, see also panels (a) and (c)
of Fig. 4.1, we have in fact ∂fA

∂φA
' 2cφ̂Aφ̂B > 0 and ∂fB

∂φB
= −cφ̂2

A < 0.
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we require ∂fB/∂φA > 0 (i.e. the first species stimulates with a positive feedback the
other). Under these conditions, one can then introduce the characteristic time scale τB
associated to the reaction dynamics of species B, defined as:

τB =

[
| ∂fB
∂φB

|
(
1− φ̂B

)
+ φ̂A

∂fB
∂φA

]−1

. (4.17)

Similarly, for species A, we have:

τA =

[
∂fA
∂φA

(
1− φ̂A

)
− φ̂B

∂fA
∂φB

]−1

, (4.18)

assuming ∂fA/∂φA to control the sign in the above expression, or alternatively imposing
∂fA/∂φB < 0 (i.e. the second species acts with a negative feedback on the first one). The
necessary condition (4.17) for the generalized Turing instability to occur takes the form:

l2A = τAD11 < τBD22 = l2B.

where we have introduced two characteristic length scales, respectively lA, lB, associated
to the reactive dynamics of species A and B. In practice, also when D22 < D11, spatially
organized patterns can develop in the generalized reaction diffusion scheme provided the
activator has a shorter life time, than the inhibitor. In formulae, τA = τBD22/D11 < τB
. In practical terms, the competition for the microscopic spatial resources modifies the
time scales associated to the reactions processes and induces a self–consistent long–range
effect that enlarges the region of influence of the (isolated) inhibitors, also when the
microscopic diffusion of the (isolated) activator is assumed to be faster. The crossed terms
in the diffusion matrix determine a non trivial modification of the underlying characteristic
times, which are now also sensitive to the off–diagonal elements of the Jacobian matrix. In
the diluted limit in fact, τA → τdilA = (∂fA/∂φA)

−1 and τB → τdilB = |∂fB/∂φB |−1 and one
is brought back to the standard, stringent condition (4.16). In Fig. 4.2 the ratio τB/τA is
displayed for the Brusselator model, inside the Turing region, as a function of the chemical
parameter b. Different curves refer to distinct choices of c, while the other parameters are
set to the values of Fig. 4.1a, with ∆D = 0. As expected, τB/τA > 1 a condition that
eventually yields the generalized Turing patterns as described above. Conversely, and as
pictured in the small inset, τdilB /τdilA < 1. Hence, since D22 < D11, Turing patterns cannot
manifest via the classical pathway, which applies to diluted conditions.

The remaining part of this section is devoted to discussing the robustness of the
patterns depicted in Fig. 4.1 (panels (b) and (d)), and obtained upon integration of
the governing system of partial differential equations. It should be emphasized however
that the model of multispecies diffusion here considered is stochastic in nature. It is
therefore interesting to further elaborate on the contributions played by finite size effects,
associated to the graininess of the system, and hence deliberately neglected under the
idealized deterministic representation of the dynamics. To this aim, one can carry out
stochastic simulations, based on the Gillespie algorithm [28], which produces realizations
of the dynamics formally equivalent to those obtained from the governing master equation
(4.23). We have here chosen to operate for the parameter setting of Fig. 4.1b and the
results of our analysis are reported in Fig. 4.3. If the number of elements N is sufficiently
large (N = 3000, in the left panel of Fig. 4.3) the patterns appear robust and resemble
those recorded when operating in the framework of the deterministic picture. However, if
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Figure 4.2: Main figure: the ratio τB/τA is plotted for the Brusselator model, inside the
Turing region, as a function of the chemical parameter b, for different choices of c. From
left to right, c = 139, 139.4, 139.8. The other parameters are set as in Fig. 4.1a, with
∆D = 0. τB and τA follow respectively Eqs. (4.17) and (4.18) and quantify the time
scales of the reactive processes, within the framework of the generalized reaction diffusion
scheme. As expected, the existence of a region of Turing order, as revealed in Fig 4.1a,
implies τB > τA. In the inset, the ratio of the time scales τdilB /τdilA obtained in the diluted
limit is reported and proven to be smaller than unit.

the total number of microscopic individuals is reduced (N = 300, in the right panel of Fig.
4.3) the patterns are less distinct and eventually fade away. Demographic fluctuations
ultimately destroy the self-organized spatial patterns, relic of Turing instability, and the
system evolves towards an asymptotically stable homogeneous solution. The lifetime of
the metastable non homogeneous patterns increases with the system size and formally
diverges in the thermodynamic limit N → ∞. Waiting for a sufficiently large time, also
the apparently stable density structures as displayed in Fig. 4.3a are expected to coalesce
and smear out. In other words, and intriguingly enough, the two limits for N → ∞ and
t → ∞ do not commute. If the system size limit is taken before the infinite time limit,
the dynamics is permanently frozen into a stationary non homogeneous configuration,
the spatially ordered Turing patterns. Conversely, the system is attracted towards a
stable homogeneous equilibrium, due of the microscopic mixing that is seeded by the
finite size fluctuations. Clearly the time of homogeneization can be extremely long, when
compared to the finite time window of the experimental observation. In this respect, the
metastable spatially extended patterns are possibly the solely regimes to be accessible
to direct measures. This observation shares many similarities with the phenomenon of
Quasi–Stationary States, so far associated to the long range nature of the two–body
interaction [71, 72]. These findings, as well as the analysis of [73], can possibly shed
new light onto the emergence of the Quasi–Stationary States, beyond the domain of
applications for which they have been reported to occur. As a side remark, it is worth
emphasising that similar conclusions hold when considering the diluted limit, i.e. when
neglecting the role of a finite carrying capacity and the competition for the finite spatial
resources that eventually yield the generalized cross diffusion terms here considered.
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Figure 4.3: Time evolution of the discrete concentration nA/N , as it results from a direct
integration of the stochastic Brusselator model. The simulations follows the Gillespie
algorithm [28]. Parameters refer to region II of Fig. 4.1b, namely D11 = 1.0, D22 = 0.7,
∆D = 0, a = 5, d = 3, b = 21.71, c = 139. In panel (a): N = 3000, while in panel (b)
N = 300. Demographic fluctuations destroy the deterministic patterns which are hence
interpreted as a metastable regime of the finite N stochastic dynamics.

In the next section we turn to considering a generalized version of the Brussellator
model with long range coupling and excluded volume effect. We will further elaborate
on the condition that yield Turing pattern, but also discuss the interesting regime where
travelling waves set in. The role of finite size correction will be also elucidated and shown
to drive stochastic waves and Turing patterns.

4.2 The modified Brussellator model

Travelling waves are examples of spatio temporal self-organized patterns [48, 9], which can
spontaneously emerge in a reaction diffusion scheme. A stable homogeneous fixed point
can be destabilized by imposing and external, supposedly small, perturbation. Diffusion
seeds a linear instability which enhances the aforementioned perturbation. Depending on
the specific non linear contributions, and as follows the initial instability, the system un-
der scrutiny can eventually evolve towards distinct asymptotic configurations. Beautiful
stationary patterns can for instance materialize, which display rather peculiar topologies,
from spirals to stripes. These are the celebrated Turing patterns, recurrently invoked in
chemistry [49, 50] and biology [48]. Alternatively, and among other possibilities, the den-
sity of the constituents can travel through space-time, a phenomenon that is encountered
in many contexts of broad applied and fundamental interest.

The diffusion of species sharing the same spatial reservoir is customarily assumed
to be modelled with classical Laplacian terms, as dictated by Fick’s law of diffusion.
However, when the hosting volume is densely populated, the so called crowding conditions,
mutual interferences are present, reflecting excluded volume effects and the competition
for spatial microscopic resources. Starting from a correct formulation of the microscopic
dynamics and accounting for the finite carrying capacity of the embedding volume, one
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obtains in fact a modified diffusive behaviour [70], different from that postulated a priori
on the basis of a phenomenological ansatz. Cross diffusive terms appear which links
multiple diffusing communities and which can contribute to explain the deviation from
the conventional Fick’s law as seen in crowded molecular diffusion experiments [69]. The
interplay between molecular crowding of the type derived in [70] and the Turing instability
has been discussed in [70]. According to the conventional Turing scenario, which applies
to the diluted limit, the diffusion coefficient of the inhibitor has to be larger than the
diffusion coefficient associated to the activator. In short, the system has to accommodate
for two competing processes, a short–range activation and long–range inhibition, for the
Turing patterns to eventually occur and because of the constraints on the reaction terms,
i.e. the stability of the homogeneous, a-spatial, fixed point. At variance, the competition
for the available space that materializes in the cross diffusion terms, impacts on the time
scales associated to the reactions processes and induces a self–consistent long–range effect
that enlarges the region of influence of the inhibitors, also when the diffusion coefficient
of the activator is assumed to be faster [70].

Our work is positioned in this context. We will in particular consider a Brusselator
model, with a nonlocal interaction term as hypothesized in [56]. This latter term can be
tuned as sought and controls the appearance of travelling wave solutions. Turing insta-
bilities can also develop, for specific parameters setting. At variance with the formulation
introduced in [56], we will here impose a finite carrying capacity at the microscopic level,
which builds on the general idea of [70], and extends the limit of validity of the model to
ideally embrace the regime of crowded conditions. By operating within this setting, we
will continue to elaborate on the conditions that yield to the deterministic Turing order,
quantifying the role of cross diffusion. Further, the concept of stochastic waves will be
revisited working in such a generalized descriptive scenario.

This last section is organized as follows: in the next subsection the stochastic model
is presented and the necessary mathematical concepts introduced. Then, we turn to
discussing the mean-field deterministic limit. Under specific conditions, and studying
the system in a sub-manifold of reduced dimensionality, a 2-codimensional bifurcation is
found that separates the region of deterministic Turing and wave instability. The point of
bifurcation is determined analytically, a result that casts on solid grounds the observation
that Turing order is possible when the activator diffuses faster than the inhibitor, for a
generalized reaction-diffusion scheme where cross diffusion terms are accommodated for.
Then, we turn to discussing the stochastic dynamics. By calculating the power spectrum
of fluctuations, we will show that intrinsic noise can trigger time independent Turing
patterns and travelling waves, a conclusion that naturally follows from [10, 56] and that
we here revisit, by including the effects of exclusive interference due to crowding into the
model. Finally, we sum up and conclude.

4.2.1 The stochastic model and its master equation

The system that we are going to study is a modified version of the Brusselator model,
with the inclusion of a non local interaction term. This latter contribution was postulated
in [56], inspired to previous work [74], and drives a long range correlation in the reaction
scheme, which is eventually responsible for the emergence of travelling wave solutions.
As compared to the original formulation [56], we will here introduce an additional com-
plication into the model by constraining the number of molecules that can be eventually
hosted in a given mesoscopic patch. In doing so, we will force a degree of spatial interfer-
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ence between diffusing species, which indirectly reflects the competition for the available
resources.

Imagine the physical space in which the system is embedded to be partitioned in Ω
cells (or patch), whose linear size is set to one. Each cell is denoted with a progressive
index i which runs from 1 to Ω. Label with Xi (resp. yi) a molecule of type X (resp.
Y ) hosted inside cell i. Moreover, let us call Ei the vacancies, or empty spaces, that
are available in patch i. Label with ni the number of molecules of type X in cell i.
Similarly, quantities mi and qi refer to species Y and E, respectively. Each cell can then
host a maximum of N elements, including the empties, a physical constraint on the local
maximal density, which translates into the following mathematical relation:

ni +mi + qi = N. (4.19)

N is therefore an invariant quantity of the dynamics which will prove crucial in the
forthcoming discussion. The reactions that define the backbone of the models read [56]:

Ei
a−→ Xi

Xi
b−→ Yi

2Xi + Yi
c−→ 3Xi

Xi
d−→ Ei. (4.20)

The quantities a, b, d are scalar parameters and stand for the rates of the associated reac-
tions. The third reaction assumes instead a non local interaction of the type introduced
in [56]. More specifically, one imposes a non local coupling which decays exponentially
with the distance among sites, an effect that we will make explicit in the following when
characterizing the associated transition rate.

In addition to the above reactions (4.20) we here consider the possibility for any
selected molecule to diffuse from cell i towards an adjacent cells j. This latter migration
can occur only if space allows, namely if cell j has at least one empty case Ej that can
be eventually filled. As discussed earlier, This process can be translated in the following
chemical equations [70]:

Ej +Xi
γ−→ Ei +Xj Ei +Xj

γ−→ Ej +Xi, (4.21)

Ej + Yi
β−→ Ei + Yj Ei + Yj

β−→ Ej + Yi. (4.22)

where γ and β quantify the ability to diffuse of species X and Y , respectively. We here
omit the equivalent of reaction 4.2 as introduced in the earlier part of this chapter. The
above set of chemical equations define a stochastic model which can be mathematically
investigated through the associated master equation. Let us introduce, as in the previous
section, the Ω components vectors n = (n1, ..., ni, ...nΩ) and m = (m1, ...,mi, ...mΩ). The
state of the system is therefore specified by the vector (n,m), since the number of emp-
ties qi inside each compartment i can be readily deduced by making use of the conserved
quantity (4.19). The master equation governs the evolution of the probability Pn,m(t) of
seeing the system in the state (n,m) at time t. To write down explicitly the master equa-
tion, one needs to specify the transition rates associated to the above chemical equations.
The transition rate is customarily indicated with the symbol T (nF ,mF |nI ,mI), where
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the index I stands for the initial state and F refers to the final state, compatible with the
selected chemical equation. The transition rates that follows reactions (4.20) can be cast
in the form:

T (ni + 1,mi|ni,mi) = a
N − ni −mi

N
,

T (ni − 1,mi + 1|ni,mi) = b
ni
N
,

T (ni + 1,mi − 1|ni,mi) = c
n2i
N2

Λ
Ω∑

j=1

e(−σ|i−j|)
mj

N
,

T (ni − 1,mi|ni,mi) = d
ni
N
.

where we have assumed that the molecules are uniformly distributed inside each meso-
scopic cell i. To keep the notation light, we solely keep track of the entries in n and m

that get affected by the inspected reaction. The third transition rate encapsulates the
long-range coupling to which we alluded above and follows the scheme hypothesized in
[56]. The constant σ controls the range of interaction and Λ is a proper normalization
constant, to which we will return in the following.

Similarly, the transition rates associated to the diffusion equations (4.22) yield to the
following transition rates:

T (ni + 1, nj − 1|ni, nj) =
γ

z

nj
N

N − ni −mi

N
,

T (ni − 1, nj + 1|ni, nj) =
γ

z

ni
N

N − nj −mj

N
,

T (mi + 1,mj − 1|mi,mj) =
β

z

mi

N

N − nj −mj

N
,

T (mi − 1,mj + 1|mi,mj) =
β

z

mj

N

N − ni −mi

N
.

The pair of integers i and j refer to neighbors cells. The factor z stands for the number
of nearest neighbors cells: when dealing with a one dimensional system, the case to which
we are bound in the forthcoming discussion, z = 2. Given the above expression for the
transition rates, the governing master equation reads:

d

dt
Pn,m(t) =

Ω∑

i=1

[
(ε+X,iε

−
Y,i − 1)T (ni − 1,mi + 1|ni,mi)

+ (ε−X,iε
+
Y,i − 1)T (ni + 1,mi − 1|ni,mi) + (ε−X,i − 1)T (ni + 1,mi|ni,mi)

+ (ε+X,i − 1)T (ni − 1,mi|ni,mi) +
∑

j∈i−1,i+1

(
(ε+X,jε

−
X,i − 1)T (ni + 1, nj − 1|ni, nj)

+ (ε+X,iε
−
X,j − 1)T (ni − 1, nj + 1|ni, nj) + (ε+Y,iε

−
Y,j − 1)T (mi − 1,mj + 1|mi,mj)

+ (ε+Y,jε
−
Y,i − 1)T (mi + 1,mj − 1|mi,mj)

)]
Pn,m(t).

(4.23)



4.2 The modified Brussellator model 97

where ε±X,i and ε±Y,i are the step operators. Assume a generic function f(n,m). The

action of the operator ε±X,i on f(·, ·) is explicited as:

ε±X,if(n,m) = f(n1, · · ·, ni ± 1, · · ·, nΩ,m). (4.24)

In practical terms ε±X,i increments or decrements by a unit the population of type X

in site i. Similarly, ε±Y,i acts as specified by the following relation:

ε±Y,if(n,m) = f(n,m1, · · ·,mi ± 1, · · ·,mΩ, ). (4.25)

The master equation is difficult to handle analytically and one has to resort to ap-
proximate techniques of manipulation to progress in the analysis. One viable alternative
is the celebrated van Kampen system size expansion, by setting:

ni
N

= φi +
ξi√
N

mi

N
= ψi +

ηi√
N
. (4.26)

In the following sections, we shall discuss the results of the analysis, being in particular
interested in highlighting the peculiar features that relate to the imposed finite carrying
capacity. Next section is entirely devoted to discussing the mean-field limit of model
(4.23).
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Figure 4.4: The dispersion relation λ(k) is plotted as a function of the scalar wave number
k. The figure refers to a = d = 1; σ = 2; γ = 1; b=15; β = 0.6. Different curves refer
to different values of c: from top to bottom c = 138, 139, 140. A finite range of k exists
that yield to λ(k) > 0, so signaling an instability. Notice that the most unstable mode,
i.e. the peak of the profile λ(k) is located in k = π.

4.2.2 The mean field limit

By truncating the van Kampen system size expansion at the leading order 1/
√
N , one

eventually obtains the following system of partial differential equations for the determin-
istic concentrations φi and ψi:





∂φi
∂τ = a− a(φi + ψi)− (b+ d)φi + cΛφ2i

∑
j exp(−σ|i− j|)ψj

+γ (∆φi − ψi∆φi + φi∆ψi)
∂ψi
∂τ = bφi − cΛφ2i

∑
j exp(−σ|i− j|)ψj + β (∆ψi − φi∆ψi + ψi∆φi) ,

(4.27)
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where ∆fi = fi+1−2fi+fi−1 is the discrete one dimensional Laplacian and where τ = t/N .
Some details of the technicalities involved in the calculation can be found in 4.2.4. Λ is a
normalization constant. Following [56] we assign it to match the condition

Λ
∑

j

exp(−σ|j|) = 1,

which in turn implies:

Λ =
eσ − 1

eσ + 1
.

A comment is mandatory at this point. The deterministic model (4.27) follows from
the microscopic stochastic reaction scheme, discussed in the preceding section and it is
formally recovered when operating in the thermodynamic limit N → ∞. The effect of the
finite carrying capacity imposed in (4.22), reflects in the mean–field equations through the
cross diffusion terms (−φi∆ψi+ψi∆φi) which appear to modify the conventional Fickean
behaviour. These are second order contributions in the concentrations and are therefore
important in the regime of high densities. For this reason, and following the analysis in
[70], we believe that eqs (4.27) enables us to extend the analysis of [56] to the interesting
regime of crowding conditions. In the remaining part of this paragraph, we will elaborate
on the mean field instabilities that can eventually destabilize the homogeneous solution of
system (4.27). In doing so we will adapt the calculation of [56] to the present setting and
so identify the peculiarities that can be eventually traced back to the diffusive transport
here assumed.

The homogeneous fixed point (φ∗, ψ∗) of system (4.27) is:

φ∗ = (a+
√
a2 − 4ab(a+ d)/c)/2/(a + d) ψ∗ = b/c/φ∗. (4.28)

Impose now a small spatially inhomogeneous perturbation (δφi(t), δψi(t)) to perturb
the homogeneous fixed point as:

δφi(t) = φi(t)− φ∗, δψi(t) = ψi(t)− ψ∗.

We are then interested to identifying the conditions that can yield to a spontaneous
amplification of the perturbation and eventually translate in the emergence of Turing or
wave like patterns, to which we alluded in the introduction. To this end, and following the
standard approach, we solely focus on the linear contributions in δφi and δψi, dropping
out higher order corrections. In formulae:

∂δφi
∂τ

= −a(δφi + δψi)− (b+ d)δφi + cΛφ2i
∑

j exp(−σ|i− j|)δψj (4.29)

+2cΛψ∗φ∗δφi + γ (∆δφi − ψ∗∆δφi + φ∗∆δψi) ,

∂δψi
∂τ

= bδφi − cΛφ2i
∑

j exp(−σ|i− j|)δψj + 2cΛψ∗φ∗δφi (4.30)

+β (∆δψi − φ∗∆δψi + ψ∗∆δφi) .
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Operate now the spatial Fourier transform of the above system:

∂φ̃

∂τ
= −a(δφ̃+ δψ̃)− (b+ d)δφ̃ + cΛφ̃2ẽ(k)δψ̃ + 2cΛψ∗φ∗δφ̃ (4.31)

+γ
(
∆̃δφ̃ − ψ∗∆̃δφ̃+ φ∗∆̃δψ̃

)
,

∂ψ̃

∂τ
= bδφ̃− cΛφ̃2ẽ(k)δψ̃ + 2cΛψ∗φ∗δφ̃+ β

(
∆̃δψ̃ − φ∗∆̃δψ̃ + ψ∗ + ∆̃δφ̃

)
,(4.32)

where (̃·) denotes the Fourier transform and φ̃ = φ̃(k, τ). The two symbols ẽ(k) and ∆̃
respectively refer to the Fourier transform of the exponential factor in eqs. (4.32) and of
the discrete Laplacian operator ∆ and read:

∆̃f(k) = 2[cos(k)− 1] ẽ(k) =
sinh(σ)

cosh(σ)− cos(k)
.

System (4.32) can be written in a compact form as:

∂Ψ

∂τ
= J∗(k)Ψ,

where Ψ = (δφ̃, δψ̃) and

J∗(k) =

(
−(b+ d) + 2cφ∗ψ∗ − a+ γ(∆̃− ψ∗∆̃) cΛ(φ∗)2ẽ(k)− a+ γφ∗∆̃

b− 2cφ∗ψ∗ + βψ∗∆̃ −cΛ(φ∗)2ẽ(k) + β(∆̃ − ψ∗∆̃)

)
.

The eigenvalues λ1(k) and λ2(k) of matrix J∗(k) provide us with the information con-
cerning the stability of the fixed point to the externally imposed perturbation. Eigenvalues
λ1,2 take the following explicit expression:

λ1,2 =
1

2

(
trJ∗ ±

√
(trJ∗)2 − 4detJ∗

)
. (4.33)

where trJ∗ and detJ∗ stand for the trace and determinant of matrix J∗.
If the real part of both the eigenvalues is negative, for all values of k, the homoge-

neous state is stable, and the external perturbation gets damped. At variance, if one
eigenvalue admits a positive real part, within a compact, finite range of non-zero k, then
the perturbation is destabilized and the system undergoes the so–called Turing instabil-
ity. Beyond the linear regime, non linear terms do matter. Because of the complex and
highly non-linear interplay between reaction and diffusion contributions, the system can
eventually freeze in asymptotically stationary, non homogeneous configurations. Steady
patterns require in addition a null imaginary part of the eigenvalues λ1,2(k) , for all un-
stable k values. These are the celebrated Turing patterns, beautiful extended motifs that
are revealed when inspecting the spatial distribution of the interacting elements. Beyond
the prototypical Turing solution, waves can also manifest when the imaginary part of the
eigenvalues is different from zero inside the region of unstable k. In the following, we refer
to the dispersion relation λ(k) as to the eigenvalue with the largest real part. By studying
the function λ(k), when varying the parameters of the model, one can elaborate on the
conditions that drive Turing and/or waves instabilities. As an example, for demonstrative



100 The effect of crowding in Brussellator-type models

Figure 4.5: The regions of wave (labeled with I) and Turing (denoted with II) instabilities
are traced in the parameters plane (β,c). Region III identifies the domain of parameters
that corresponds to a stable homogeneous fixed point. The other parameters are set as in
figure 4.4 and, more specifically, a = d = 1, σ = 2, γ = 1, b = 15. We notice in particular
that the Turing instability can occur also when β, the diffusion of the inhibitor, is smaller
than γ = 1, the diffusion of the activator. This observation is at odd with the conventional
Turing paradigm and reflects the presence of the cross diffusion terms, in our reaction
diffusion scheme. P is positioned in (βP , cP ) and identifies the cusp like point where
regions I and II touch. The dashed line is horizontal (cP = 137.7) and passes through
P . The points A and B fall outside the domain of instability, where the homogeneous
fixed point is believed to be stable. As we shall demonstrate later, ordered structures
which are reminiscent of wave and Turing like instabilities can develop when the choice
of parameters correspond respectively to points A and B in the reference plane (β,c).

purposes, we plot in figure 4.4 the dispersion relation λ(k) vs. k, for distinct choices of
the chemical rate c, having fixed the other parameters to a set of representative values.
Interestingly, the profile of λ(k) is peaked in k = π, an important observation that will
be extensively used in the following.

To discriminate the behaviour of the system, and so classify the possible type of
instabilities as reviewed above, we make use of the following general strategy [75, 74, 56].
Clearly, when:

detJ∗(k) > 0 trJ∗(k) < 0 ∀k. (4.34)

the fixed point is stable as it can be immediately appreciated by recalling expression
(4.33). When (4.34) applies, in fact, the real part of λi(k) is necessarily negative ∀k.
To abandon the region of stability, two different pathways are possible. The transition
from stable to unstable solution takes for instance place when there exists a k̄ such
that detJ∗(k̄) = 0 and trJ∗(k̄) < 0, ∀k. In this case the system enters a region where
Turing instability is expected to occur. Another transition realizes when trJ∗(k̄) = 0
and detJ∗(k̄) > 0 ∀k, which takes the system into the region of wave instability. Using
the above criteria, we can delimit the boundaries of the regions respectively deputed to
Turing and wave instability. To favour a pictorial representation of our findings and to
make contact with the analysis of [56], we let the (positive) quantities c and β to change
freely, and assign the other involved parameters to the values specified in the caption of
figure 4.4. The result is displayed in figure 4.5 where three different regions are identified.
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Figure 4.6: Right: The trace of J∗ is plotted as a function of k, for different values of
β = 0.3, 0.42, 0.5 moving horizontally along the dashed line of figure 4.5, i.e. setting
c = 137.7. The other parameters are assigned as specified in figure 4.5. Left: The
determinant of J∗ is plotted as a function of k, for different values of β = 0.3, 0.42, 0.5.
The parameters are the same as in right panel.

In region I, waves are predicted to occur, while in region II Turing patterns are expected
to develop.When the pair (β, c) falls inside region III, the perturbation fades away and the
system relaxes back to the homogeneous solution. Notice that a cusp marks the transition
from region II to region III. This bifurcation point (labeled P in figure 4.5) corresponds
to the degenerate condition:

detJ∗(k̄) = 0 trJ∗(k̄) = 0. (4.35)

where the scalar k̄ identifies the critical wavelength. It is also very interesting to notice
that the singular cusp like point occurs at β < 1, where β measures the diffusion ability
of the inhibitor. Recalling, that γ, the diffusion coefficient of the activator, is equal to one
(see caption of figure 4.5), we conclude that Turing patterns can possibly occur within the
explored setting also if β < γ. This is at odd with the customarily agreed scenario, which,
it is worth emphasizing, assumes a conventional scheme of diffusion. The cross diffusion
terms included in the model here explored to account for the microscopic competition for
the finite spatial resources, are responsible for the observed behaviour, as outlined in [12].
The position of the cusp that separates region II and region III can be used to pinpoint
the presence of the Turing order in the classically prohibited region β < γ, or equivalently
β < 1 when γ = 1, as it is assumed in this work.

Based on the above, we aim at characterizing analytically, the point of transition
from region I and II, by operating in the reference plane (β, c). In this space of reduced
dimensionality, two parameters, both β and c, must be varied to force a direct transition
from zone I to zone II. For this reason we refer to point P , located in (βP , cP ), as to a
codimension 2 bifurcation. In figures 4.6(a) and 4.6(b) we respectively plot the trace and
the determinant of matrix J∗ as a function of k, for distinct values of β and for c = cP , a
value that we have preliminarily computed numerically. In practice, we cross horizontally
the plan (c,β), moving along the dashed line of figure 4.5, which passes from P .

At first glance, from figure 4.6(a), one sees that the trace of J∗ is negatively defined
for β > βP and, importantly, presents a global maximum in kM , just before crossing the
horizontal axis. The maximum is progressively moved upward when β approaches the
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Figure 4.7: The bifurcation point (βP , cP ) as determined by solving system (4.40) is
plotted, for distinct values of σ, and by tuning the parameter b, inside a given interval.
Here, a = d = 1, γ = 1 and σ = 1, 2, 3. b belongs to the interval [10, 40]. The symbols
(star) refer to direct numerical estimates of the bifurcation points. The agreement between
the analytical line and the locations of the bifurcation points as predicted by system (4.40),
constitutes an a posteriori validation of the assumptions made.

critical value βP . Therefore, it is in k̄ = kM that the critical condition trJ∗(k̄) = 0 is first
matched. Similarly, see figure 4.6(b), the determinant of J∗(k) is positive for β < βP and
displays a rather distinct minimum in km. By increasing β, the condition detJ∗(k̄) = 0
is reached for the first time in k̄ = km. This empirical observation defines the starting
point of our analysis. Based on the above, we hypothesize in fact that the degenerate
condition yielding to the cusp like bifurcation can only occur if: (i) the maximum of the
trace and the minimum of the determinant, occur for an identical value of k̄; (ii) system
(4.35) admits a solution in k̄ = km ≡ kM . This latter condition translates in:

Dẽ(k̄)− Eẽ(k̄)∆̃ + ∆̃2F + ∆̃G+H = 0 A+ ∆̃B − cΛ(φ∗)2ẽ(k̄) = 0, (4.36)

where:





A = −b− d+ 2cφ∗ψ∗ − a

B = γ(1− ψ∗) + β(1− φ∗)

D = cλ(φ∗)2(d+ a)

E = cλ(φ∗)2(γ(1− ψ∗) + βψ∗)

F = γβ(1 − ψ∗)(1 − φ∗)− γβψ∗φ∗

G = aβψ∗ − γφ∗(b− 2cφ∗ψ∗) + β(1− φ∗)(−b− d− a+ 2cφ∗ψ∗)

H = a(b− 2cφ∗ψ∗).

(4.37)

Condition (i) requires setting to zero the derivative of eqs. (4.35) so yielding to the
following relations:

{
d∆̃
dk |k=k̄B − cΛ(φ∗)2 dẽdk |k=k̄ = 0
dẽ
dk |k=k̄

(
D − E∆̃

)
− d∆̃

dk |k=k̄
(
Eẽ(k) + 2F ∆̃ +G

)
= 0,
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Figure 4.8: The regions of wave (I) and Turing (II) instabilities are traced in the param-
eters plane (β,c), for a choice of b for which system (4.35) does not admit a solution. As
expected the regions I and II appear to be disconnected. III refers to the region of stable
homogeneous fixed point. Here, a = d = 1, γ = 1, σ = 2 and b = 43. The dashed line
sets the lower boundary of region III. No homogeneous fixed point exists in the portion
of plane below the dashed line, and outside the region of Turing and wave instability.

where:

d∆̃

dk
|k=k̄ = −2 sin(k̄) (4.38)

dẽ

dk
|k=k̄ =

− sinh(σ) sin(k̄)

(cosh(σ)− cos(k̄))2
. (4.39)

Equations (4.38) admit a trivial solution when k̄ = nπ, with n integer. In fact, both
d∆̃
dk |k=nπ and dẽ

dk |k=nπ are identically equal to zero, as it follows from relations (4.39). For

n even, ∆̃(nπ) = 0. Under this limiting condition the trace and the determinant collapse
to their homologous expressions as obtained for the homogeneous case. Recall that the
present calculation builds on a linear expansion around a stable homogeneous fixed point.
Therefore, the associated trace and determinant are bound to respectively negative and
positive values. In conclusion, conditions (4.35) cannot be met, if n is assumed to be an
even integer.

Conversely, when n is odd, one always gets ∆̃(nπ) = −4. Hence, equations (4.36)
reduce to:

{
−4B +A− cΛ(φ∗)2 sinh(σ)

cosh(σ)+1 = 0

(D + 4E) sinh(σ)
cosh(σ)+1 + 16F − 4G+H = 0.

(4.40)

System (4.40) can be solved numerically. It returns the coordinates cP and βP of the
cusp like point P , as a function of the parameters of the model that enters the defini-
tions of the coefficients implicates in the equations. To favour a pictorial representation
of our result, we perform the analysis by tuning continuously b inside a finite interval.
We therefore obtain a family of bifurcation points that define a line in the representa-
tive parameters plane (β, c). The analysis is then repeated for different choices of σ, as
illustrated in figure 4.7.
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Our analysis rests on speculative grounds: the mathematical development follows in
fact the intuitive idea that the degenerate condition (4.35) is eventually attained when the
stationary points of trace and determinant touch, simultaneously, the horizontal axis. Al-
though reasonable, this working assumption needs to be carefully evaluated. To this end,
we turned to computing the exact location of the transition point (βP , cP ), by delineating
for each choice of b the boundaries of the regions respectively deputed to Turing and
wave instabilities. The analysis is carried out by setting σ = 1, for b sampling the afore-
mentioned interval. The results are plotted, with symbols in figures 4.7. The agreement
between the (discrete) direct estimates and the (continuous) line based on the analytical
strategy implemented above returns an excellent agreement, thus providing an a poste-
riori validation of the approximations made. In figure 4.7, we also plot, as a reference,
the vertical line β = 1. When the bifurcation points fall on the left of such line, Turing
instability can set in also if the inhibitor diffuses slower than the activator, at odd with
the classical scenario which, however, applies to conventional reaction diffusion schemes,
where the cross diffusion terms are omitted. If system (4.40) admits no solutions, then
the domains of wave and Turing instabilities appear to be disconnected, as displayed in
figure 4.9(b).

As a final remark, we wish to stress that two other stationary points of the dispersion
relation can in principle exist, besides the trivial point k = π. More specifically, two
maxima can materialize in k±, positions symmetric with respect to k = π 5.

We shall return on this interesting observation in the next section when aiming at
exploring the impact on the dynamics of the finite size corrections to the idealized deter-
ministic dynamics. As discussed in [10] and [56] Turing patterns and wave can emerge
outside the region of mean field order, as follows a self-consistent resonant mechanism that
amplifies the endogenous demographic noise. This observation is made quantitative by
inspecting analytically the power spectrum of fluctuations and looking for localized peaks
both in time and space. These latter peaks testify in fact on the degree of macroscopic
organization of the system, as mediated by its granular, hence stochastic, microscopic
component.

4.2.3 The Stochastic analysis: power spectrum of fluctuations

To the next to leading order in the van Kampen system size expansion, one charac-
terizes the distribution of fluctuations. This latter, labeled Π(ξ, η, t), obeys to a Fokker
Planck equation, which can be equivalently represented in terms of its associated Langevin
stochastic equation. Working in this framework, one obtains a close analytical expression
for the power spectra of fluctuations Pi(ω, k), where the index i = 1, 2 identifies the se-
lected species and k and ω refer to the Fourier time and space frequencies. The details of
the calculation are confined into the 4.2.5, where the expressions for the power spectra are
explicitly given, see equations (4.46). In this section, we exploit this result to represent

5Consider equations (4.38) and focus on the condition d(trJ∗)/dk = 0, more easy to handle. It
can be straightforwardly seen that, under specific conditions, two other stationary points k± of the

trace J∗ exist provided
∣

∣

∣cosh(σ) −
√

cλφ∗sinh(σ)
2γ(1−ψ∗)+2β(1−φ∗)

∣

∣

∣ < 1 It can be analytically shown however that

d(detJ(k)∗)/dk|k± 6= 0. This implies that the trace maximum and the determinant minimum can simul-
taneously cross the horizontal axis for the same value of k only at k = π, the value that we considered
in the our analysis. In practice, when the above condition is met, and the trace has a maximum in k±,
the cusp like bifurcation, between Turing and wave regions, cannot realize point and a gap opens between
those regions in the parameter plane.
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the computed power spectrum outside the regions of deterministic order. Our aim is to
look for the signatures of a spatio-temporal organization, that should ultimately reflects
the graininess of the investigated stochastic model. More concretely, we will operate close
to the regions of mean field, wave and Turing instabilities, and assign the parameters so
to have the system initialized in points A and B, as highlithed in figure 4.5.

(a) (b)

Figure 4.9: Right: The power spectrum of fluctuations for species 1, near the region
of mean field wave instability, see point A in figure 4.5. Point A corresponds to the
following choice of parameters: a = d = 1, σ = 2, γ = 1, b = 15, β = 0.27, c = 141.
Left: 2D projection of the power spectrum in the plan (k, ω). A clear peak is displayed,
implying that a quasi-wave sets in outside the region of deterministic wave like instability.
The dashed line are traced in correspondence of (i) k = π the value that maximizes
the (negative) real part of the dispersion relation (horizontal line); (ii) the value of the
imaginary part of the dispersion relation as measured in k = π (vertical dashed line).

The power spectrum relative to position A in the reference plane (β,c) is reported in
figures 4.9(a) and 4.9(b). A clear peak is displayed for values of k and ω different from zero.
The maximum of the power spectrum is approximately located at k = π, where the real
part of the dispersion has its maximum. Notice that this latter is negative, implying that
no instability can develop in the mean field limit. The value that ω takes in correspondence
of the peak is very similar to the value that the imaginary part of the dispersion relation
has for k = π, see vertical dashed line in figure 4.9(b). Stochastic corrections can hence
drive the emergence of a quasi-wave, an observation which agrees with the conclusion of
[56]. The phase velocity ω/k of the wave can be approximately predicted by working with
the linearized mean field equations for the continuum concentration amount. As a simple
rule of the thumb, quasi-waves manifest when the system is sufficiently close to region I,
i.e. the region of deterministic wave instability, while still being confined in region III,
where the homogeneous fixed point is stable.

Conversely, when the parameters are assigned so to fall in the vicinity of region II,
stochastic Turing patterns [10] are expected to occur. This intuitive picture finds its
justification in figure 4.10(a) and 4.10(b). A localized peak in the power spectrum is in
fact seen at k = π (the maximum of the real part of the distribution function), along the
ω = 0 direction, when the parameters of the system are set to the values corresponding
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to point B of figure 4.5, just outside the boundaries of the classical Turing region II.
Stochastic fluctuations will materialize in a asymptotically stable pattern (ω = 0, namely
t → ∞) with a characteristic wavelength that is controlled by the dominant k number.
This latter value can be correctly anticipated based on a straightforward linear stability
analysis of the underlying deterministic equations.

(a) (b)

Figure 4.10: Right: The power spectrum of fluctuations for species 1, near the region
of mean field Turing instability, see point B in figure 4.5. Point B corresponds to the
following choice of parameters: a = d = 1, σ = 2, γ = 1, b = 15, β = 0.7, c = 143. Left:
2D projection of the power spectrum in the plan (k, ω). A peak in k is found along the
ω = 0 direction, implying that a stochastic Turing instability develops just outside the
region of deterministic Turing like instability. The horizontal dashed line is located at
k = π, the value that maximizes the (negative) real part of the dispersion relation.

Summing up, the maxima of the, negatively defined, relation of dispersion signals the
spatial location of the peaks in the power spectrum of fluctuations. As we emphasized in
the previous section, the dispersion relation can occasionally display two maxima, which
in principle should yield to two distinct peaks in the corresponding power spectrum. This
possibility is testified in figure 4.11, where the location of the peak(s) in k is plotted
(stars) as a function of c, in a region where the homogeneous fixed point is stable, and
close to the Turing domain of mean field order. The parameters are chosen so that
the dispersion relation has two bumps inside, and immediately outside the region of
deterministic instability. Then, by increasing the value of c, the two peaks in the power
spectrum approach each other and eventually merge to give rise to a localized peak in π.
This behaviour results in the bifurcation diagram reported in figure 4.11. The circles in
figure 4.11 pinpoint to the positions of the maxima of the dispersion relation. An overall
agreement is observed, thus confirming the intuition that the position of maxima of the
power spectrum should reflect very closely the location of the maxima of the (real in this
case) dispersion relation function. Discrepancies are instead detected in the vicinity of
the transition point. Similar conclusions hold, when working close to the wave instability
domain. In figures 4.12(a) and 4.12(b) the power spectrum is plotted for distinct values
of c, yielding to, respectively, two or one peaks.
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Figure 4.11: The location in k of the peaks in the power spectra as a function of c, the
region when the homogeneous fixed point is stable to spatial perturbation (stars). The
circles identify the position of the maxima of the dispersion relation. Parameters are set
as a = d = 1, σ = 1, γ = 1, b = 2, β = 0.7.

(a) (b)

Figure 4.12: Right: The power spectrum of fluctuations relative to species 1 for a = d = 1,
σ = 1, γ = 1, b = 2, β = 0.7, c = 23, which corresponds to operate before the bifurcation
point in figure.4.11. Two peaks are indeed observed. Left: The power spectrum of
fluctuations relative to species 1 for a = d = 1, σ = 1, γ = 1, b = 2, β = 0.7, c = 38,
which corresponds to working after the bifurcation point in figure.4.11. One isolated peak
in k = π is found.
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4.2.4 Details of the van Kampen expansion

In the following we briefly outline the main steps involved in the implementation of the
van Kampen system size expansion, with reference to model (4.23). As already discussed
in the main body of the chapter, the quantity 1/

√
N serves as a small parameter in

the development. First, one can expand the operator ε±X,i ε±Y,i to get the approximate
expressions:

ε±X,i = 1± 1

N1/2

∂

∂ξi
+

1

2N

∂2

∂ξ2i
± 1

3!N3/2

∂3

∂ξ3i
+ . . . .

ε±Y,i = 1± 1

N1/2

∂

∂ηi
+

1

2N

∂2

∂η2i
± 1

3!N3/2

∂3

∂η3i
+ . . . .

Then we set:

Π(ξ, η, t) = Pn,m(t).

A simple manipulation yields to:

dP

dt
=
∂P

∂t
−

√
N
(
∇ξΠ

∂φi
∂t

+∇ηΠ
∂ψ

∂t

)
.

Similarly, one can act on the right hand side of Eq. (4.23) and hierarchically orga-
nize the resulting terms with respect to their respective N–dependence. Consider, as an
example the term:

T (ni + 1,mi|ni,mi) =
(
− 1√

N

∂

∂ξi
+

1

2N

∂2

∂ξ2i

)(
1− φi −

ξi√
N

− ψi −
ηi√
N

)
.

At order N−1/2, one gets:

∂

∂ξi
(−a+ aφi + ψi).

Then, at the order N−1, we obtain:

1

2

( ∂2
∂ξ2i

(a(1 − φi − ψi))
)
+

∂

∂ξi
(ξi + ηi)a.

The other terms in the right hand side of the master equation, including the diffusion
parts, can be treated in a completely analogous fashion. Combining together the leading
contribution (order 1/

√
N), one eventually recovers the mean field equations (4.27), i.e.

the partial differential equations for the local concentration amount φi and ψi. Notice
that in equations (4.27) the rescaled time τ appears. This is defined as τ = t/N .

At the next to leading order (order 1/N), one gets a Fokker-Planck equation for the
evolution of the distribution of fluctuations Π:

∂Π

∂τ
= −

Ω∑

i=1

( 2∑

r=1

∂

∂ξr,i

[
Jr,iξr,iΠ

]
+

1

2

∑

j∈i−1,i+1

2∑

r,s=1

∂

∂ξs,i

∂

∂ξr,j

[
Krs,ijΠ

])
, (4.41)
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where we have indicated with ξ1,i = ξ and ξ2,i = η. Here, the matrix J reads:

J =

(
−a− d− b+ 2cφiΛ

∑
j e

−σ|j|ψi−j + γ(1− ψi)∆i −a+ cφ2i + γφi∆i

b− 2cφiΛ
∑

j e
−σ|j|ψi−j + βψi∆i −cφ2i + β(1− φi)∆i

)
.

Since we are interested in characterizing the fluctuations at equilibrium, we shall impose
φ = φ∗ and ψ = ψ∗, ∀i and indicate with the symbol J∗ the obtained matrix. To write
in a compact form the the elements of matrix K we introduce the index h = |i − j|,
which takes values 0, 1. Element Krs,ij can be therefore mapped into Krs,h, as hereafter
specified:




K11,0 = a− aφi − aψi + dφi + bψi + c(φi)
2Λ
∑

j e
−σ|j|ψi−j + 4γ(φi − (φi)

2 − φiψi)

K11,1 = +2γ(−φi + (φi)
2 + φiψi)

K22,1 = +2γ(−ψi + (ψi)
2 + φiψi)

K22,0 = bφi + c(φi)
2Λ
∑

j e
−σ|j|ψj + 4β(ψi − (ψi)

2 − ψiφi)

K12,1 = 0

K12,0 = −bφi − c(φi)
2Λ
∑

j e
−σ|j|ψi−j .

Matrix K is also evaluated at the fixed point (φ∗, ψ∗) and transforms into K∗.

4.2.5 Details of the power spectrum calculation

The Fokker-Planck equation (4.41) yields to the following Langevin equation:

ξ̇r,i(t) =

2∑

s=1

Jrs,iηr,i(t), (4.42)

which rules the evolution of the fluctuations ξr,i(t). Here, ηr,i(t) is a random Gaussian
variable, whose statistical properties are:

< ηr,i >= 0 < ηr,i(t)ηs,j(t
′) >= K∗

rs,|i−j|δ(t − t′). (4.43)

Starting from this setting one can straightforwardly calculate the power spectrum of
fluctuations following a procedure which is for example discussed in [24, 3]. Here, we
shall detail the main steps of the derivation adapting it to the present setting. We first
take the spatial and temporal Fourier transform of (4.42), here denoted with the symbol
·̃, to obtain:

− iωξ̃r,k(ω) =
2∑

s=1

J̃rs,kξ̃s,k(ω) + η̃s,k(ω), (4.44)

where Ω and k respectively stand for the Fourier time and space frequencies. In the above
equation, J̃rs,k are just the Jrs,i terms, where we have replaced the discrete Laplacian ∆i

with the corresponding spatial Fourier transform ∆k = 2(cos(k)− 1).
By defining M̃rs,k(ω) = −iωδrs − J̃rs,k, equation (4.42) can be cast in the form:

ξ̃r,k(ω) =
2∑

s=1

M̃−1
rs,k(ω)η̃s,k(ω).
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The Power Spectrum of fluctuations of a given species s is defined as
Ps(k, ω) =< |ξ̃s(k, ω)|2 >. Making use of relation (4.43), after some calculations one
eventually comes to the final expression:

Ps(k, ω) =

2∑

r,u=1

M̃−1
sr,k(ω)W̃ru,k(M̃

†
us,k)

−1(ω), (4.45)

where:

W̃ru,k = K̃ru,0 + 2K̃ru,1 + K̃ru,1∆k.

Closed analytic expressions for the power spectra are also derived [24, 3] which read:

P1(ω, k) =
C1,k + W̃11,kω

2

(ω2 − Ω2
0)

2 + Γ2ω2
P2(ω, k) =

C2,k + W̃22,kω
2

(ω2 − Ω2
0)

2 + Γ2ω2
, (4.46)

where





Ω0 =
√
det(J∗(k)

Γ = −tr(J∗(k)

W̃11,k = a(1− φ∗ − ψ∗) + φ∗(d+ b) + c(φ∗)2ψ∗ + 2∆kγ(−φ∗ + (φ∗)2 + φ∗ψ∗)

W̃22,k = bφ∗ + c(φ∗)2ψ∗ + 2∆kβ(−ψ∗ + (ψ∗)2 + φ∗ψ∗)

C1,k = W̃22,k(J
∗
11,k)

2 − 2W̃12,kJ
∗
21,kJ

∗
11,k + W̃11,k(J

∗
21,k)

2.

(4.47)

Spatio temporal self-organized patterns [76] can spontaneously emerge in a reaction-
diffusion systems. A small perturbation of a homogeneous fixed point can for example
amplify, as follows a symmetry breaking instability seeded by diffusion, and eventually
yield to a steady state non homogeneous solution. These are the Turing patterns [9],
recurrently investigated in chemistry [49, 50] and biology [76].

The majority of studies devoted to the Turing instability consider two, mutually in-
teracting, species. More specifically, and following the customarily accepted paradigm,
one species activates the production of the other, this latter acting through an inhibitor
feedback. Systems of three [51] simultaneously diffusing species have been also considered
and shown to display a rich zoology of possible patterns and instabilities. Patterns can
also develop if only one species is allowed to diffuse in the embedding medium, provided
the system is composed of at least three coupled species [52]. In contrast, it is well known
[52] that two species systems where only one species can migrate, cannot undergo Turing
instability. Models however exist which fall within this cathegory [18]. For this reason,
it is of general interest to theoretically explore the possibility of bifurcation patterns of
such systems, beyond the classical Turing framework. This chapter aims at elaborating
along these lines, by considering the generalized concept of stocastically driven patterns.

Reaction-diffusion systems are in fact generally studied by resorting to deterministic
mathematical models. The continuum concentrations of the interacting species is hence
monitored over space and in time. As opposed to this, one can develop an individual
based description of the scrutinized dynamics, which effectively accounts for the inherent
discreteness of the system. Stochastic contributions, stemming from finite size corrections,
can thus modify the idealized mean field picture and occasionally return alternative sce-
narios to interpret available data.
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In a series of recent publications, the effect of the intrinsic noise was indeed shown
to create stochastic patterns, in a region of the parameters for which macroscopically
ordered structures do not occur. When the deterministic dynamics predicts a stable ho-
mogeneous state, the stochastic component can amplify via a resonant mechanism, giving
birth to stochastic Turing patterns [53, 10, 12]. The effect of finite size fluctuations can
be characterized with numerical simulations, but also analytically with a mathematical
technique, known as van Kampen system size expansion. This allows to expand the gov-
erning master equation, which accounts for the role of demographic fluctuations. At the
first order of the expansion, the deterministic mean-field model is obtained, while the
second order contributions form an equation for the stochastic fluctuations.

Working in this context, we will consider a simple birth and death model, with two
species, of which one can diffuse. The reaction rates are assumed to be generic non
linear functions of the concentration amount. Conditions for the emergence of stochastic
Turing patterns are derived. More concretely, stochastic Turing patterns can materialize
if the power spectrum of fluctuations has at least a peak for a non zero spatial wave
number k for ω, the Fourier time frequency, equal to zero. We will here prove that
a non trivial maximum of the power spectrum exists, if the system matches specific
conditions that we shall mathematically characterise. The validity of our conclusions are
tested for a simple non linear model, which falls in the general class of models inspected.
With reference to this specific case study, we perform stochastic simulations through the
Gillespie’s algorithm and confirm a posteriori the adequacy of the predictions.

4.3 Conclusion

In this chapter we have presented two Brusellator-type models with excluded volume
competition. Particles can migrate from one site to a neighbouring patch only if there
is at least one empty site, or vacancy, to be eventually filled. Because of this competi-
tion for the available space, a modified (deterministic) diffusive behaviour was recovered:
cross diffusive terms appear which link multiple diffusing communities and which add to
the standard Laplacian terms, relics of Fick’s law. In the first model, we have seen that
Turing patterns can develop for virtually any ratio of the main diffusivities in a multi-
species setting. This striking effect originates from the generalized diffusion theory that
has been here assumed to hold and that builds on the scheme discussed in [70]. The
fact that Turing like patterns are possible for equal diffusivities of the species involved,
as follows a sound dynamical mechanism, constitutes an intriguing observation that hold
promises to eventually reconcile theory and experimental evidences. The investigated set-
ting applies in particular to multi-species systems that evolve in a crowded environment,
as happens for instance inside the cells where different families of proteins and other
biomolecular actors are populating a densely packed medium. It is interesting to notice
that the stochastic fluctuations, endogenous to the scrutinized system in its discrete ver-
sion, eventually destroy the patterns, that are instead deemed to be stable according to
the idealized deterministic viewpoint. The lifetime of the metastable patched patterns
increases however with the size of the system, in striking analogy with what has been
observed for the so called Quasi-Stationary States, out of equilibrium regimes observed in
systems subject to long-range interactions. For large enough N , the homogenization as
seeded by fluctuations is progressively delayed and eventually prevented in the continuum
limit N → ∞.
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In the second part of this chapter we have further modified the model with the inclusion
of a long range coupling between interacting species, following the scheme introduced in
[56]. The proposed model is inherently stochastic and it was first studied in its mean field
limit. The excluded volume effect that we have imposed at the mesoscopic scale, yields
cross terms in the diffusion part, as mentioned before. These latter are believed to play a
crucial role under crowding conditions [70]. In its deterministic version, the model admits
both Turing like and wave instabilities, an observation that extends the analysis of [56]
to the present setting, where cross diffusion terms are accommodated for. Interestingly,
and as remarked in the first part of the chapter [12], the Turing instability can occur
also if the activator diffuses faster than the inhibitor. A cusp-like transition was found
between the Turing and waves instability zone. The location of the cusp was analytically
characterized. Parameters can be eventually set so as to produce a region of Turing order
which is disconnected by the domain of wave instability. In the end we have elaborated on
the role of finite size corrections showing that these can drive the emergence of stochastic
waves and Turing patterns, beyond the region of mean field instability. This observation
makes contact with the analysis of [10, 56]. Furthermore, we have here discussed the
specific form of the power spectra of fluctuations. One or two peaks are occasionally
found, reflecting the peculiar specificity of the underlying dispersion relation.



Conclusion

Microscopic system are characterized by temporal oscillations and spatial organization
that, in some cases, the standard deterministic approach fails to capture. In the last few
years, this observation has stimulated researchers to develop new theoretical frameworks
to understand better these systems. The discrete nature of the systems, not considered
commonly in literature, can drive it to a stochastic resonance, resulting in spatio-temporal
patterns.

In this thesis we have investigated crucial aspects of the dynamics of different systems
due to the finite size effects. First we have studied a stochastic intracellular calcium
oscillation model that gave us the opportunity to introduce the analytical and numerical
techniques, that we used throughout the thesis. We demonstrated [77] that the stochastic
component of the dynamics, which is generally not included in model of deterministic
inspiration, resulted in the emergence of self-sustained oscillations, named quasi-cycles.
The signature to the presence of cycles was represented by a peak in the power spectrum
of temporal fluctuations. We have characterized analytically the frequency for which the
power spectrum presents a maximum in dependence of the IP3 stimulation. IP3 in a cell
was generated by an external signal that is possible to control in the experiment. As
a possible future study along this direction, it could be interesting to verify, in direct
experiments, the existence of quasi-cycles for intracellular calcium oscillation as mediated
by finite size. In practice this amounts to verify that our theoretical prediction of the
maximum of the power spectrum is reflected in the effective dynamics of real system and
allow to see calcium oscillation also for some degree of stimulation of IP3 that are not
predicted by a mean-field model.

In the second chapter we have introduced the Kaneko model [6], that involves a closed
scheme of auto-catalytic reactions. From a numerical observation we revealed that, for
low concentration, the distribution of fluctuations was no longer Gaussian. We wanted
to characterize analytically this non-Gaussian behaviour. In order to achieve this goal,
we used the van Kampen expansion beyond the classical Gaussian approximation and
calculated the corresponding generalized Fokker-Planck equation. Then, it was possible
to write a system of ordinary differential equation for the moments of the distribution.
From the knowledge of the moments it was possible to rebuild the profile of the distribution
of fluctuations.

Motivated by the good agreement between theoretical and numerical distributions,
we wanted to extended this preliminary result. To this end we made use of a simple one
dimensional model, known as the voter model [7]. For this model it became possible to
derive explicitly all the moments for any order of the development. The ODE for the
moments resulted in a closed system, that allowed us to rebuild the profile of distribution
for any time and close to the absorbing barrier. The agreement between theory and
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numerical simulations represented an a posteriori demonstration of the validity of the
van Kampen expansion beyond the Gaussian approximation which was classically being
employed. Expanding along this direction it could be interesting to test the generalized
van Kampen expansion for spatially extended system.

At the end of this second chapter of the thesis we wanted to compare the accuracy of
the van Kampen expansion and the WKB method, both used beyond the classical order
of approximation, for a microscopic logistic model. The WKB techniques was developed
to study rare events from one metastable state to another one. We focused on extinction
phenomenon, and for this reason, we considered the van Kampen expansion beyond the
classical order of approximation.

In the last two chapters we used the van Kampen expansion in order to study self-
organized dynamics due to the intrinsic fluctuations in spatially extended systems. Work-
ing in this context, we were particularly interested in studying the Turing patterns for-
mation, from a microscopic point of view.

First we presented a reaction diffusion model in one spatial dimension in which only
one species could diffuse [11]. For such system, the classical Turing instability could not
take place. However considering the finite size corrections, Turing like patterns could
develop. General conditions were derived for the stochastic Turing patterns to occur.
The observable that allowed us to conclude that stochastic Turing pattern occur in the
system was a peak in the spatial Fourier variable k for the power spectrum of fluctuations.

In the fourth chapter we investigated the roles of crowding in relation to the Turing
instability. Starting from a microscopic formulation of the dynamics and accounting
for the finite carrying capacity of the hosting volume, we recovered a modified diffusive
behaviour in the mean-field limit. Cross diffusive terms appeared, which could contribute
to explain the deviation from the conventional Fick’s law, as seen in crowded diffusion
experiments. Working in this generalized setting of diffusion, the Turing instability could
take place for some parameters for which in the classical approach is mathematically
prohibited. We derived analytically the new conditions for having Turing instability in
this generalized context. We concluded that Turing instability could set in for all ratios of
the main diffusivities, also when the (isolated) activator diffuses faster then the (isolated)
inhibitor. The numerical results, that supported our conclusion was carried out for the
Brussellator model.

The second model, studied in the fourth chapter, was a modified version of the Brus-
sellator model, that accounted for a long range coupling among constituents [13]. The
mean-field limit of the model was studied and the condition for Turing and wave insta-
bility obtained. A degenerate, cusp-like transition, was found analytically, that separates
the domains of Turing and wave order. We also elaborated on the role of stochastic
corrections. Stochastic waves or Turing patterns could set in as signalled by the power
spectrum of fluctuations. To complete our study about stochastic patterns it could be in-
teresting to extend the previous results to a 2D model that presents spiral waves patterns
in a mean-field context. In particular it could be interesting to look for the emergence of
stochastic spiral waves and elaborate on their analytical description.



Appendix A

A technique to simulate the full

stochastic process: The Gillespie

algorithm

In 1976 Daniel T. Gillespie proposed an algorithm to exactly simulate the stochastic
dynamics of chemical reactions [28],[39]. To describe this method, let us consider a volume
V which contains molecules of N chemically active species Si for i = 1, . . . , N , and denote
byXi the current number of molecules of species Si in V . The molecules interact according
to M chemical reactions Rµ for µ = 1, . . . ,M , each characterized by a reaction parameter
cµ. The quantity cµδt represents the first order approximation1 of the average probability
that a particular combination of Rµ reactant molecules will react accordingly in the next
time interval δt, as it follows by a chemical kinetics theory derived into details in the
original paper [28].

To illustrate the relationship between cµ and the more familiar “reaction rate constant”
kµ used in the deterministic formulation of chemical kinetics, let us consider as example
the reaction S1+S2 −→ 2S3. In this case, X1X2 · cµdt is the probability that the reaction
will occur inside V in the next time interval dt, where X1X2 represents the distinct
combinations of reactant molecules in V . Averaging over a set of stochastically identical
system, and diving by V , we obtain the average reaction rate per unit time 〈X1X2〉cµ/V
or, in terms of molecular concentrations xi = Xi/V , 〈x1x2〉cµV . If we divide this latter
quantity by the product of the average densities of the reactants, we obtain the expression
for kµ, namely

kµ =
〈x1x2〉cµV
〈x1〉〈x2〉

(A.1)

In the deterministic formulation the average of a product is equivalent to the product of
the averages, thus 〈x1x2〉 = 〈x1〉〈x2〉 and (A.1) simplifies to

kµ = V cµ

The factor V in this relation is due to the type of reaction considered. In reactions with
only one reactant molecule, indeed, the factor V would be absent, while in those with
three reactants, a V 2 would instead appear.

1More precisely, the first order in δt means that the average probability is cµδt + o(δt) with
limδt−→0 o(δt)/δt = 0.
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The aim of the method is to simulate the time evolution of the N variables Xi knowing
their initial values Xi(0), the M reactions Rµ and the associated reaction parameters cµ.
The standard stochastic approach to this problem focuses on the master equation, namely
the time evolution of the probability function P (X1, . . . ,XN ; t) to have Xi molecules of Si
(for i = 1, . . . , N) at time t. In most cases this approach turns out to be intractable, both
analytically and numerically. To overcome this problem, Gillespie proposed a method
based on what he called the reaction probability density function P (τ, µ). He defined this
quantity as the probability at time t that the next reaction in V will occur in the time
interval (t+ τ, t+ τ + δτ) and that the selected reaction was of the type Rµ.

The first step for deriving an analytical expression for P (τ, µ), consists in associating
to every chemical reaction, a state variable hµ defined as the distinct molecular reactant
combinations for reaction Rµ within the volume V at time t. Table ?? shows the state
variables for a selection of reactions. In this way hµcµδt is the probability, to first order
in δt, that an Rµ reaction occurs in V , in the next time interval δt.

The second step requires decomposing P (τ, µ) as

P (τ, µ)dτ = P0(τ) · hµcµdτ (A.2)

where P0(τ) is the probability at time t that no reaction will occur in the time inter-
val (t, t + τ), and hµcµdτ is the probability that an Rµ reaction will occur in the next
differential time interval (t+ τ, t+ τ + dτ).

To calculate P0(τ) one can divide the interval (t, t + τ) in K subintervals of equal
length ε = τ/K. In each subinterval, the probability that none of the reactions occurs is
given by

M∏

ν=1

[1− hνcνε+ o(ε)] = 1−
M∑

ν=1

hνcνε+ o(ε) (A.3)

In this way, P0(τ) is just the product of K times equation (A.3)

P0(τ) =

[
1−

M∑

ν=1

hνcνε+ o(ε)

]K

=

[
1−

M∑

ν=1

hνcν
τ

K
+ o(K−1)

]K

This relation holds for any K > 1, and therefore it is true for infinitely large value of K:

P0(τ) = lim
K→∞

[
1−∑M

ν=1 hνcντ + o(K−1)K

K

]K

= exp

[
−

M∑

ν=1

hνcντ

]
(A.4)

Putting together equation (A.2) with equation (A.4) one obtains the exact expression for
the probability density function

P (τ, µ) = hµcµ exp

[
−

M∑

ν=1

hνcντ

]
(A.5)
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for 0 6 τ <∞ and 1 6 µ 6M with τ ∈ R and µ ∈ N.
Before moving to the description of the algorithm, we recall the main ideas of a Monte

Carlo method. This latter constitutes a crucial step in the Gillespie implementation, pro-
viding a method to generate two random numbers τ (real) and µ (integer) according to
the joint probability density function in (A.5). The trick consists in splitting the prob-
ability density function P (τ, µ) into the product of two one–variable probability density
functions. This procedure is called conditioning and leads to

P (τ, µ) = P1(τ) · P2(µ|τ) (A.6)

where P1(τ)dτ is the probability that the next reaction will occur between times t+τ and
t+ τ + dτ , and P2(µ|τ) is the probability that the next reaction will be an Rµ type, given
that it happens at time t+ τ . Invoking the addition theorem for probabilities, P1(τ)dτ is
obtained by summing P (τ, µ)dτ over all µ, and thus

P1(τ) =

M∑

µ=1

P (τ, µ)

Putting this into (A.6) and solving for P2(µ|τ) it gives

P2(µ|τ) = P (τ, µ)/
M∑

ν=1

P (τ, ν)

Substituting P (τ, µ) with (A.5) in the previous two equations, we obtain

P1(τ) =

{
a exp [−aτ ] for 0 6 τ <∞
0 otherwise

(A.7)

and

P2(µ|τ) =
{
aµ/

∑M
ν=1 aν for ν = 1, . . . ,M

0 otherwise
(A.8)

where

a =
M∑

µ=1

aµ

with
aµ = hµcmu for µ = 1, . . . ,M (A.9)

In this way the problem of finding two random numbers according to P (τ, µ) may be
recast as the problem of drawing a real random number from the P1 distribution, and an
integer random number according to P2.

Let us first focus on the former case. We wish to generate a real number x according to
a probability density function P (x). The corresponding probability distribution function

F (x0) =

∫ x0

−∞
P (x)dx (A.10)

quantifies the probability that x will be less than x0. The inversion method for generating
a random value x according to P (x) is to draw a random number r from the uniform
distribution in the unit interval, and than take

x = F−1(r) (A.11)
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To prove that this procedure is correct, we have to show that the probability that the x
value so generated will lie between x′ and x′ + dx′, is P (x′)dx′. By construction, this is
equivalent to calculating the probability that r will lie between F (x′) and F (x′ + dx′).
Since r is a random number drawn from the uniform distribution in the unit interval, this
probability is just the length of the interval [F (x′), F (x′ + dx′)], namely F (x′ + dx′) −
F (x′) = F ′(x′)dx′. Applying the definition (A.10), we get

F (x′ + dx′)− F (x′) = F ′(x′)dx′ = P (x′)dx′

and this prove that the probability density function for the random number x generated
according to (A.11) is indeed P (x).

For the specific case at hand, we wish to generate a random number τ according to the
probability density function (A.7). In this case F (τ) = 1 − exp[−aτ ]. Putting F (τ) = r
and inverting the function F , we obtain

τ =
1

a
ln

(
1

r

)
(A.12)

where, for simplicity, we have replaced the random variable 1 − r by the statistically
equivalent random variable r.

We have seen how to generate a random number according to a specific probability
density distribution for a continuous variable. Now we consider the discrete case and
we look for a method which enables us to obtain a random integer i according to the
probability density function P (j), where now P (j) is the probability that i = j. The
corresponding distribution function F (i) is defined by

F (i) =

i∑

j=−∞

P (j)

and F (i0) represents the probability that i 6 i0. With analogy to the continuous case, the
inversion method consists in drawing a random number r from the uniform distribution
in the unit interval and take for i that value which satisfies

F (i− 1) < r 6 F (i) (A.13)

To show that the procedure is correct also in this case, we use the fact the resulting integer
i will equal j is equivalent to the probability that r will lie between F (j − 1) and F (j).
So we have

F (j)− F (j − 1) =

j∑

k=−∞

P (k)−
j−1∑

k=−∞

P (k) = P (j)

This proves that P (i) is indeed the probability density function for the random integer i
generated according to (A.13).

As an example, we consider again our specific case, and make it explicit the expression
of the random integer µ with respect to the density function (A.8). Applying (A.13) we
see that we have to select the integer µ so that

µ−1∑

ν=1

P2(ν|τ) < r 6

µ∑

ν=1

P2(ν|τ)
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or
µ−1∑

ν=1

aν < r

M∑

ν=1

aν 6

µ∑

ν=1

aν (A.14)

Now we have all the ingredients to describe the details of the simulation methods.
The steps of the algorithm are the following:

Step 0 Assign values to the M reaction constants c1, . . . , cM and initialize the N molec-
ular population numbers X1, . . . ,XN . Set the time variable t = 0, and specify a
stopping time tstop.

Step 1 Calculate the quantities aν = hνcν for ν = 1, . . . ,M for the current molecular
population numbers, and the quantity a0 =

∑M
ν=1 aν .

Step 2 Use the Monte Carlo technique to generate a random pair (τ, µ) according to
(A.12) and (A.14).

Step 3 According to the numbers τ and µ generated in the previous step, advance time
by τ (t = t+ τ) and update the values of Xi for every species involved in reaction
Rµ.

Step 4 If t < tstop go to step 1, otherwise terminate the calculation.

It is important to stress that the time series generated with this algorithm recover the
exact probability distribution function given by the master equation. It can be shown,
in fact, that the two approaches, the master equation and the Gillespie’s method, are
equivalent at the first order approximation grounded on the kinetic theory argument
mentioned before.
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