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Chromatin-associated CSF-1R binds to the promoter
of proliferation-related genes in breast cancer cells
V Barbetti1,4, A Morandi1,4,5, I Tusa1, G Digiacomo1, M Riverso1,6, I Marzi1, MG Cipolleschi1, S Bessi2, A Giannini2, A Di Leo3,
P Dello Sbarba1 and E Rovida1

The colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R physiologically regulate the monocyte/macrophage system,
trophoblast implantation and breast development. An abnormal CSF-1R expression has been documented in several human
epithelial tumors, including breast carcinomas. We recently demonstrated that CSF-1/CSF-1R signaling drives proliferation of breast
cancer cells via ‘classical’ receptor tyrosine kinase signaling, including activation of the extracellular signal-regulated kinase 1/2. In
this paper, we show that CSF-1R can also localize within the nucleus of breast cancer cells, either cell lines or tissue specimens,
irrespectively of their intrinsic molecular subtype. We found that the majority of nuclear CSF-1R is located in the chromatin-bound
subcellular compartment. Chromatin immunoprecipitation revealed that CSF-1R, once in the nucleus, binds to the promoters of the
proliferation-related genes CCND1, c-JUN and c-MYC. CSF-1R also binds the promoter of its ligand CSF-1 and positively regulates
CSF-1 expression. The existence of such a receptor/ligand regulatory loop is a novel aspect of CSF-1R signaling. Moreover, our
results provided the first evidence of a novel localization site of CSF-1R in breast cancer cells, suggesting that CSF-1R could act as a
transcriptional regulator on proliferation-related genes.
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INTRODUCTION
The colony-stimulating factor-1 (CSF-1) was first described as a
hematopoietic growth factor regulating key functions of mono-
cytes and macrophages through the activation of the class III
receptor tyrosine kinase (RTK) CSF-1R.1,2 It is well established that
the CSF-1/CSF-1R pathway has regulatory roles also outside the
hematopoietic system.3–5 The abnormal expression of CSF-1R,
with or without that of CSF-1, has been reported in several cancers
and cancer-derived cell lines.3,6,7 In particular, CSF-1/CSF-1R
overexpression is associated with poor prognosis8,9 and is
predictive of ipsilateral recurrence in breast cancer patients.10

CSF-1-induced activation of CSF-1R promotes receptor dimer-
ization and tyrosine transphosphorylation in the intracellular
kinase domain, resulting in the activation of downstream signaling
pathways.11 In addition to this ‘classical’ RTK signaling, increasing
evidences support the translocation of RTK from the plasma
membrane to the nucleus.12 In particular, epidermal growth
factor receptor family members,13–15 fibroblast growth factor
receptors 1 and 3,16–18 insulin and insulin-like growth factor-1
receptors19,20 and the vascular endothelial growth factor receptor
2,21,22 localize within the nucleus, as either full-length receptors or
cleaved fragments, with or without their ligands. Once in the
nucleus, RTK can regulate the expression of target genes, such as
CCND1,13,23 FGF2,24 COX215 and c-Jun.23

We, along with others, have previously showed that CSF-1R is
expressed in breast cancer cell lines and tissues.7,25,26 Importantly,

we demonstrated that CSF-1/CSF-1R signaling can drive cell
proliferation of breast cancer cells via the activation of
extracellular signal-regulated kinase 1/2 and the subsequent
regulation of c-Jun, cyclin D1 and c-Myc expression.7 Here we
demonstrated that in breast cancer cells (i) CSF-1R localizes in the
nucleus, (ii) nuclear CSF-1R binds to the promoter region of
proliferation-related genes and (iii) CSF-1R regulates the
transcription of its ligand CSF-1.

RESULTS AND DISCUSSION
CSF-1R localizes in the nucleus of breast cancer cells
We recently reported that CSF-1R mRNA is expressed in breast
cancer cells and this is matched by protein expression at the cell
surface.7 Among the breast cancer cell lines analyzed, SKBR3 cells
express the highest levels of membrane-bound CSF-1R and
produce CSF-1 that sustains an autocrine proliferative loop.7

While assessing CSF-1R expression in SKBR3 cells by western
blotting, we found that the composition of lysis buffer
dramatically affected CSF-1R protein yield (Figure 1a). In particular,
Laemmli buffer allowed the recovery of the highest amount of
CSF-1R, while either radioimmunoprecipitation assay buffer or
Frackelton buffers resulted in incomplete CSF-1R solubilization. In
this respect, it should be noted that Frackelton buffer, which
contains the non-ionic Triton X-100 as the only detergent, mainly
extracts integral plasma membrane proteins and is normally used
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Ospedale di Prato, Prato, Italy and 3‘Sandro Pitigliani’ Medical Oncology Unit, Department of Oncology, Hospital of Prato, IstitutoToscanoTumori, Prato, Italy. Correspondence:
Dr E Rovida, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Sezione di Patologia, Universita’ degli Studi di Firenze, Viale G.B. Morgagni 50, Firenze I-50134, Italy.
E-mail: erovida@unifi.it
4These authors equally contributed to this work.
5Current address: Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Sezione di Biochimica, Università degli Studi di Firenze, Firenze, Italy.
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for CSF-1R signaling studies. By contrast, the type of buffer did not
significantly affect CSF-1R recovery from lysates of RAW264.7 or
BAC1.2F5 murine macrophages that express high levels of CSF-1R,
or NIH/3T3 fibroblasts stably transfected (NIH/3T3-Fms cells) in
order to express human CSF-1R (Figure 1a). These results suggested
that CSF-1R solubility in SKBR3 breast cancer cells is different from
that in macrophages or fibroblasts ectopically expressing CSF-1R.

To test whether differences of solubility were due to a different
distribution of CSF-1R among cell compartments, we performed
immunofluorescence in confocal microscopy, observing that CSF-
1R localizes in the plasma membrane, cytoplasm and nucleus of
SKBR3 cells (Figure 1b). In contrast, in keeping with a previous
work,27 CSF-1R localized in the plasma membrane, cytosol and
Golgi, but not in the nucleus of fibroblasts (NIH3T3-Fms) or
macrophages (BAC1.2F5 and RAW264.7) (Figure 1b and Supple-
mentary Figure 1).28 We then carried out subcellular fractionation

of SKBR3 cells using a protocol that allows to discriminate between
the soluble and chromatin-bound nuclear fractions as well as the
plasma membrane (see figure legends for further details). The full-
length mature form of CSF-1R was the prevailing protein recovered
from the nucleus and in particular from the chromatin-bound
nuclear fraction (Figure 1c, see also Supplementary Figure 2e). The
cross-contamination between subcellular compartments was
excluded using established controls.

A possible nuclear localization of CSF-1R was suggested by
immunohistochemical studies of cervical pre-neoplastic tissues.29

Our paper is the first to report the localization of CSF-1R within the
nucleus in the chromatin-bound compartment, a phenomenon
occurring in breast cancer cells selectively (see also above).
Nuclear localization of CSF-1R was indeed undetectable in other
CSF-1R-expressing cells, such as macrophages, where, by contrast,
CSF-1R localization at the nuclear envelope has been reported.30

Figure 1. CSF-1R localizes in the nucleus of SKBR3 breast cancer cells. (a) Effects of the composition of lysis buffer on CSF-1R protein yield.
BAC1.2F5 and RAW264.7 (RAW264) murine macrophages,41 NIH/3T3 murine fibroblasts expressing or not ectopic human Fms (NIH/3T3-Fms;
kind gift of MF Roussel, St. Jude Children’s Research Hospital, Memphis, TN, USA)42 and the breast cancer cell lines SKBR3 (HER2 positive),
MDAMB468 (triple negative, basal-like 1; see below) and MDAMB231 (triple negative, mesenchymal stem like; see below)43,44 were cultured in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. L-cell conditioned medium was added (15%) to BAC1.2F5
cells as a source of CSF-1.45 Cells were lysed in Laemmli,7 complete radioimmunoprecipitation assay buffer (RIPA)46 or Frackelton47 lysis buffer.
Proteins were subjected to immunoblotting using rabbit a-CSF-1R (C-20, raised against the C terminus of CSF-1R, Santa Cruz, Santa Cruz
Biotechnology, Inc., Heidelberg, Germany, sc-692) or mouse a-vinculin (Sigma, Sigma-Aldrich, S.r.l. Milano, Italy, V9131) antibodies. (b)
Determination of CSF-1R intracellular localization by immunofluorescence (IF). Routinely cultured cells were subjected to IF using a rabbit
a-CSF-1R antibody48 and nuclei stained with the Hoechst dye. Scale bars: 20 mm. (c) CSF-1R localization in SKBR3 cells by cell fractionation.
Gene silencing was performed with 50 nM SMART-pool small interfering RNA (siRNA) targeting CSF-1R mRNA (NM_005211 mRNA,
Dharmacon, Thermo Fisher Scientific Inc., Rockford, IL, USA, number M-003109-03) or 50 nM siCONTROL non-targeting pool (siNT, Dharmacon,
number D-001206-13) as previously described.48 Three days after transfection, cell fractionation was performed according to the
manufacturer’s instructions using the Subcellular Protein Fractionation Kit for Cultured Cells (Pierce, Thermo Fisher Scientific Inc., Rockford, IL,
USA, number 78840), which allows the subsequent separation of the cytosol, membrane, soluble and chromatin-bound nuclear fractions and
cytoskeleton. Extracted proteins were subjected to immunoblotting with a rabbit a-CSF-1R antibody. Cell fractionation accuracy for
membrane (ME), nuclear soluble (NE) and chromatin-bound (CBE) extracts was assessed by immunoblotting with a-fibrillarin (chromatin-
bound marker; Santa Cruz, D-14, number sc-11336), a-HER2 (membrane marker; Cell Signaling, Technology, Danvers, MA, USA, number 2242),
a-HSP90 (membrane/cytosol marker; Santa Cruz, number sc-13199) or a-HDAC2 (nuclear marker; Santa Cruz C-19, number sc-6296) antibodies.
Immunoblotting with a marker for cytoskeleton (vimentin) did not produce any significant signal within nuclear compartments (not shown).
(d) Effects of CSF-1R silencing in SKBR3 cells on nuclear CSF-1R. Gene silencing was performed as reported above using siGLO red (Cy3-labeled
siGLO RISC-free siRNA, Dharmacon, number D-001600-01) as a transfection efficiency read-out following the manufacturer’s instructions.
Three days after transfection, IF was performed with a rabbit a-CSF-1R antibody; fluorescence in the cytosol (cyto) or the nucleus (nuc) was
quantified using ImageJ (graph) (http://rsb.info.nih.gov/ij/). Histograms represent means±s.e.m.; Student’s t-test: ***Po0.001 (n¼ 2, 20 cells
were quantified). Scale bars: 20 mm. Migration of molecular weight markers is indicated on the left.
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CSF-1R silencing using small interfering RNA in SKBR3 cells
(Figures 1c and d) reduced CSF-1R protein levels in the nuclear
fractions, as assessed by western blotting or immunofluorescence.
CSF-1R silencing efficiency shown in Figures 1c and d was at least
50%, as previously reported.7 The fact that the data obtained by
western blotting were confirmed by immunofluorescence
(Figure 1d) highlights the reliability of confocal imaging in studies
of CSF-1R subcellular localization.

The mechanism of RTK trafficking to the nucleus has not been
fully clarified yet. A mechanism involving cognate ligand binding
and signaling proteins such as PI3K and Rab5 has been
described31 and could explain CSF-1R translocation to the
nuclear envelope.30 However, the steps required for CSF-1R to
enter into the nucleus are still unknown. Nuclear localization
signals (NLS) have been identified in RTK.32 To determine whether
CSF-1R contains putative NLS, we used the online database
NucPred (http://www.sbc.su.se/Bmaccallr/nucpred).33 NucPred
assigns a score equal to 1 to an amino-acid sequence that is
recognized as a bona fide NLS. When the sequence of c-erb3,
which localizes within the nucleus,34 was run as a control, a score
of 0.58 was obtained. When CSF-1R was run, no NLS was identified
(score 0.15). By contrast, when CSF-1 (Gene ID: 1435; isoform 1)
was run, the NLS score obtained (0.63) was similar to that found
for c-erb3. In CSF-1, indeed, a cluster of three basic amino acids
(arginine residues 521–524) showed NLS properties. This cluster
was also present in CSF-1 isoforms 2 (438 amino acids) and 3 (256
amino acids), alternative splicing variants of the 554 amino acid-
long proteoglycan precursor. No NLS was predicted (score 0.22) in

interleukin-34, a recently described CSF-1R ligand.35 Previous
studies indicated that CSF-1 is produced by breast cancer cell
lines7 and may be located in the nucleus in breast cancer tissues.9

Thus, the high NLS score of CSF-1 led us to speculate that CSF-1R
could translocate into the nucleus together with CSF-1. This
hypothesis was strengthened by confocal immunofluorescence
showing nuclear colocalization of CSF-1 and CSF-1R
(Supplementary Figures 2a–c). Interestingly, biochemical fractio-
nation revealed that an B32 kDa CSF-1 form, which may well
correspond to membrane CSF-1, was the prevailing form in the
cytosol/membrane fraction. In contrast, the B45 kDa form
enriched in the nuclear fraction may represent different CSF-1
forms36 (Supplementary Figure 2d). Therefore, it is difficult to
predict which form of CSF-1 is involved in CSF-1R nuclear
trafficking. It should be noted that the cluster of arginine residues
responsible for NLS is in the C-terminal domain of CSF-1 so that it
would be relevant only in membrane-spanning CSF-1 precursor
but not in the secreted mature forms.37 Nevertheless, CSF-1R
nuclear translocation seems to be CSF-1 dependent, as nuclear
CSF-1R increased following CSF-1 administration to serum-starved
SKBR3 cells (Supplementary Figure 2e). The CSF-1-dependent,
NLS-mediated nuclear translocation of CSF-1R may be only one of
the mechanisms driving CSF-1R nuclear trafficking. For instance,
Fms-interacting protein, which includes a NLS, binds transiently to
the cytoplasmic domain of, and is phosphorylated on tyrosine by,
activated CSF-1R.38 This may result in CSF-1R nuclear translocation.
Further experiments are needed to address the mechanism of
CSF-1R entry into the nucleus.

Figure 2. Nuclear localization of CSF-1R in breast cancer cell lines and tissue samples. (a) Immunofluorescence (IF) of CSF-1R in breast cancer
cell lines. SKBR3, MDAMB231 and MDAMB468 cells were subjected to IF using rabbit a-CSF-1R and a-nucleolin (Santa Cruz, number sc-8031)
antibodies. (b) Immunohistochemistry of CSF-1R in invasive breast cancers. Antigen retrieval was induced with sodium citrate buffer (pH 6.0)
for 20min at 971C, rabbit a-CSF-1R antibody applied at 1:500 dilution and detection performed with labeled polymer (EnVision, DAKO Italia
S.p.A., Milano, Italy). Examples of nuclear (arrowheads), cytosolic (dashed-line arrows) or cytosolic and nuclear (arrows) are indicated. Scale
bars: 20mm. Case (#) details are reported in Supplementary Table 1. The Research Ethics Committee of the Prato Hospital approved the use of
breast cancer samples for this study (Protocol number 7741, 10 April 2012).
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CSF-1R localizes in the nucleus of breast cancer cell lines and
tissue irrespective of the intrinsic molecular subtypes
The nuclear localization of CSF-1R is not restricted to SKBR3 cells,
as it was confirmed in other breast cancer cell lines, such as
MDAMB231 and MDAMB468 (Figure 2a). Moreover, the colocaliza-
tion of CSF-1R with nucleolin seems to indicate that, once in the
nucleus, CSF-1R may localize also within the nucleolus (Figure 2a).
Notably, the same subcellular distribution of CSF-1R was observed
using two different antibodies raised against the C- or N terminus
of CSF-1R (Supplementary Figure 3). These results are also in
keeping with the presence of full-length CSF-1R within the
nucleus (Figure 1c and Supplementary Figure 2c) and with what
was observed for CSF-1R at the nuclear envelope.30 However, we
sequenced CSF1R mRNA in SKBR3 cells in order to exclude
nucleotide changes that could justify different properties of CSF-
1R protein, including acquisition of NLS. CSF1R mRNA in SKBR3
cells, when compared with wild-type CSF1R sequence
(ENSG00000182578.9), exhibited two single nucleotide changes
(83A4G; 726G4A) that are conservative (Supplementary
Figure 4). Next, the rabbit a-CSF-1R antibody was optimized for
immunohistochemical staining (Supplementary Figure 1) and used
to stain samples of invasive breast cancers. Figure 2b shows
representative images of the nuclear and/or cytoplasmic immu-
nohistochemical staining for CSF-1R in tissue specimens derived
from breast cancer patients with different intrinsic molecular
subtypes. We found that 40 out of 42 samples of breast cancers
expressed CSF-1R; of these, 9 out of 40 expressed CSF-1R in both
the nucleus and the cytosol, 3 out of 40 in the nucleus only and 28
out of 40 in the cytosol only (Supplementary Table 1). Notably,
despite the limited number and heterogeneity of tissue specimens

studied, we found that the nuclear expression of CSF-1R
negatively correlates with progesterone receptor expression (rs¼
� 0.37, P¼ 0.018). The size of our cohort of patients could not
provide the statistical power to establish the prognostic and/or
predictive value of nuclear CSF-1R in breast cancer. However, as
progesterone receptor expression correlates with a favorable
prognosis in breast cancer, our data support previous reports
where CSF-1R expression was related to poor prognosis.8–10

Feedback regulation of CSF-1/CSF-1R signaling in SKBR3 cells: CSF-
1R regulates the transcription of CSF-1 and proliferation genes
We previously showed that ‘classical’ RTK signaling exists in breast
cancer cells where CSF-1R is activated by its ligand CSF-1, leading
to CSF-1-induced proliferation and expression of genes involved in
cell growth such as CCND1, c-MYC and c-JUN.7 Previous reports
demonstrated that CCND1 and c-JUN promoters are targets of
other nuclear RTK.31 Consequently, we investigated whether
CSF-1R could bind the promoter of CCND1, c-JUN and c-MYC by
chromatin immunoprecipitation. Chromatin immunoprecipitation
was performed in SKBR3 cells using two different a-CSF-1R
antibodies. As revealed by reverse transcriptase–PCR (Figure 3a)
and quantified by quantitative PCR (Figures 3b and d), CSF-1R
bound the promoter regions of CCND1, c-MYC and c-JUN. The
reliability of chromatin immunoprecipitation procedure was
supported by the absence of CSF-1R binding to GADPH promoter
region (which is constitutively open and prone to transcription) or
to an inaccessible region used as a negative control (Figures 3e
and f). CSF-1R binding to gene promoters is a novel finding
and may represent an additional mechanism of regulation of

Figure 3. CSF-1R binds to the promoters of proliferation-related genes in SKBR3 cells. Chromatin immunoprecipitation (ChIP) was performed as
previously described.49–51 Immunoprecipitation (IP) was performed with the indicated antibodies: rabbit a-C-terminal-CSF-1R (Ct-CSF-1R; 0.4mg
per sample), mouse a-N-terminal-CSF-1R (Nt-CSF-1R; B-8, Santa Cruz, number sc-46662, 4mg per sample), control rabbit IgG (rIgG; 0.4mg per
sample, Sigma number G5518), control mouse IgG (mIgG; 4mg per sample, number M7023). Input and a negative control for the IP procedure
(that is, without antibody; C-(IP)) are shown. The primers used were as follows: CCND1prom fw 50-GAGGGGACTAATATTTCCAGCAA-30, rev
50-TAAAGGGATTTCAGCTTAGCA-30; c-Myc prom fw 50-agggcttctcagaggcttg-30, rev 50-cctattcgctccggatctc-30; c-JUN prom fw 50-AAAGCTAT
GTATGTATGTGCTGCAT-30, rev 50-AACCGAGAGAACCTTCCTTTTTAT-30; GAPDH prom fw 50-TACTAGCGGTTTTACGGGCG-30, rev 50-TCGAACAGGAGG
AGCAGAGAGCGA-30; negative ChIP control fw 50-ATGGTTGCCACTGGGGATCT-30, rev 50-TGCCAAAGCCTAGGGGAAGA-30. Reverse transcriptase–
PCR (a) and quantitative PCR (b–f ) for the promoter regions of the indicated genes were performed as previously described.7,51 Histograms
represent the relative quantification of DNA recovered from IP with the indicated antibodies. Values were intra-experimentally normalized for
input DNA and expressed as fold-change with respect to control IgG. Values are means±s.e.m. of data from three independent experiments.
Student’s t-test comparing CSF-1R IP with the relative IgG: ***Po0.001.
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well-known targets downstream CSF-1R.39 Of note, the increased
nuclear localization of epidermal growth factor receptor in tumors
is associated with treatment resistance and poor prognosis.40

The expression of CSF-1R together with CSF-1 has been
reported in several cancers and cancer-derived cell lines.3,6,7 On
the other hand, nuclear RTK may regulate the expression of
cognate ligands by binding to their promoters.31 As revealed by
reverse transcriptase–PCR (Figure 4a) and quantified by quantita-
tive PCR (Figure 4b) in chromatin immunoprecipitation experi-
ments, CSF-1R bound the promoter region of CSF1 in SKBR3 cells.
CSF-1R silencing (Figure 4c) reduced significantly the amount of
CSF-1R bound to the CSF1 promoter region (Figure 4d), supporting
our finding. Furthermore, CSF-1R silencing resulted in a ‘more
closed’ conformation of CSF1 promoter, as indicated by the
reduction of acetylated H4 and RNA-polymerase-II bound to the
CSF1 promoter region and the increase of bound DNA-methyl-
transferase-1 (Figure 4e). Accordingly, CSF1 expression decreased
after CSF-1R silencing (Figure 4f). These data indicated that CSF-1R
drives a ‘self-sustaining’ loop of CSF-1R signaling in breast cancer
cells by regulating CSF-1 expression. Further experiments,
however, need to address how CSF-1R work as a transcriptional
regulator. In this respect, it should be noted that transcriptional
activity has been found for other RTK.31

In conclusion, our data highlighted a novel aspect of CSF-1R
function. Nuclear CSF-1R could work in parallel, and synergizes
with, the classical RTK activity of CSF-1R. Further investigations
have to be directed to determine whether nuclear CSF-1R is a
druggable target and/or is suitable as a prognostic or predictive
factor in breast cancer.
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