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Abstract 

The dissertation addresses the design of ultra-high towers in the atmospheric boundary 

layer under the wind action and has a special application for Solar Updraft Power 

Plants (SUPPs). They represent a highly sustainable natural resource for electric power 

generation, based on a combined sun-wind energy solution.  

The object of the investigation is a 1-km tall solar updraft tower, made of reinforced 

concrete and stiffened along the height by stiffening rings. Stiffening rings are usually 

introduced in the design of solar updraft towers in order to reduce their structural 

vulnerability to the wind action by enhancing a beam-like behaviour. However, wind 

tunnel experiments – which were performed for the first time on such a structure 

within this research – showed that the presence of ring beams along the height of the 

tower modifies the aerodynamics of the flow around the circular cylinder and creates a 

bi-stable and asymmetric load condition, which does not disappear even at moderately 

high Reynolds numbers. This phenomenon is new and unknown. Similar effects were 

observed around circular cylinders (without rings) in the critical range of the Reynolds 

number and around two side-by-side cylinders, but the conditions of occurrence and 

the physical reasons were profoundly different. 

The discovery of the existence of such a bi-stable and asymmetric load condition 

induced by ring beams along the height of a finite length circular cylinder, its 

interpretation, as well as the cross-checked experimental evidence in different wind-

tunnel laboratories confirmed also by numerical simulations, are the original 

contributions of this work. Then, the effect is quantified on the structural response. 

The bi-stable asymmetric load on the structure did not result to be a prohibitive load 

condition for solar updraft towers and the magnitude of the effect depends on the 

number and/or on the size of the rings. Mitigation strategies are then proposed in the 

work. Furthermore, the dissertation evaluates the shell response to the stochastic wind 

loading process, especially in the vicinity of the ring beams, and provides to the 

designer a general unified simple tool to define design wind loads for quasi-static 

calculations of ultra-high towers in any atmospheric boundary layer flow.  
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Sommario 

La tesi riguarda il progetto di torri di altezza straordinaria nello strato limite 

atmosferico, soggette all’azione del vento. Un particolare campo di applicazione è 

quello degli impianti di torri solari ad aspirazione, "Solar Updraft Power Plants" 

(SUPPs). Questi rappresentano una nuova e sostenibile risorsa di energia rinnovabile, 

basata sullo sfruttamento combinato di energia solare ed eolica. 

L’oggetto dello studio è una torre solare ad aspirazione in calcestruzzo armato alta 1 

km e irrigidita lungo l’altezza da travi ad anello. Queste sono normalmente utilizzate 

nel progetto di torri solari per ridurre la vulnerabilità all’azione del vento, in quanto la 

loro presenza garantisce un comportamento strutturale predominante a trave. Tuttavia, 

gli esperimenti in galleria del vento – effettuati per la prima volta su una struttura di 

questo tipo nell’ambito del presente lavoro – hanno mostrato che gli anelli lungo 

l’altezza della torre modificano l’aerodinamica del flusso e creano attorno al cilindro 

una condizione di carico bistabile e non simmetrico. L'effetto non scompare a numeri 

di Reynolds moderatamente elevati ed il fenomeno è nuovo e sconosciuto. Effetti 

simili sono stati osservati attorno a cilindri circolari (senza anelli) nell'intervallo critico 

del numero di Reynolds e attorno a due cilindri affiancati. Tuttavia, le condizioni in 

cui si verificano e il principio fisico sono profondamente diversi.  

La scoperta dell’esistenza di una tale condizione di carico bistabile e non simmetrica 

indotta da anelli disposti lungo l’altezza di un cilindro circolare di altezza finita, la sua 

interpretazione, così come l’evidenza sperimentale in gallerie del vento diverse e la 

sua conferma numerica, sono i contributi originali di questo lavoro. L’effetto è poi 

quantificato in termini di risposta strutturale. La condizione di carico bistabile e non 

simmetrica non risulta proibitiva per il progetto di torri solari e la sua incidenza 

dipende dal numero e/o dalla dimensione degli anelli. Strategie di mitigazione 

dell’effetto sono proposte nel lavoro. Inoltre, la tesi studia la risposta della torre al 

carico del vento, specialmente vicino agli anelli di irrigidimento. Infine, la tesi fornisce 

al progettista uno strumento semplice e di validità generale per definire i carichi di 

progetto dell’azione del vento, utilizzabili nel calcolo quasi-statico della risposta di 

torri di altezza elevata nello strato limite atmosferico. 
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Zusammenfassung 

Die hiermit vorgelegte Doktorarbeit befasst sich mit der Einwirkung des natürlichen 

Windes auf ultra-hohe Turmbauwerke, die weit in die atmosphärische 

Grenzschichtströmung hineinreichen. Die Türme von Aufwindkraftwerken stehen 

hierbei im Vordergrund. Derartige Kraftwerke ermöglichen eine schadstofffreie 

Erzeugung elektrischer Energie. Sie stellen eine sehr nachhaltige Technologie dar, die 

thermische Energie der Sonne in Strömungsenergie umwandelt, die ihrerseits mit Hilfe 

von Turbinen als elektrische Energie nutzbar gemacht wird.  

Als Untersuchungsgegenstand der Arbeit dient beispielhaft ein 1 km hoher 

Aufwindturm. Das Tragwerk ist als Stahlbetonschale, die durch Aussteifungsringe 

verstärkt ist, konzipiert. Die Versteifung vermindert die durch die Einwirkung von 

Winddrücken erzeugten Beanspruchungen, indem sie ein stabartiges Tragverhalten 

bewirkt. Erstmalig wurden im Rahmen dieser Forschungen Windkanalversuche an 

Aufwindtürmen durchgeführt. Sie zeigten, dass die außenliegenden Versteifungsringe 

die aerodynamischen Eigenschaften des Turmes im Vergleich zu einem endlichen 

Kreiszylinder ohne Ringe erheblich verändern: Zwischen den Ringen entsteht 

abschnittsweise ein unsymmetrischer, bi-stabiler Strömungs- und Belastungszustand, 

der bis zu den höchsten untersuchten Reynoldszahlen zu beobachten ist. Ähnliche 

Effekte sind zwar auch bei einem Zylinder ohne Ringe bekannt, sie sind dort jedoch 

auf einen schmalen Bereich kritischer Reynoldszahlen beschränkt. Ebenfalls zeigen 

sich derartige Strömungszustände bei 2 nebeneinanderliegenden Zylindern bei 

bestimmten Abstandsverhältnissen. Die physikalischen Ursachen des hier bei 

Zylindern mit Ringen erstmalig beobachteten Phänomens sind jedoch grundsätzlich 

unterschiedlich.   

Originäre Beiträge der Arbeit sind die Entdeckung der abschnittsweise 

unsymmetrischen, bi-stabilen Windbelastung, die Bestätigung des experimentellen 

Befundes durch Versuche in einem zweiten Windkanallaboratorium und durch 

numerische Simulationen, sowie schließlich die Deutung des Phänomens. Weiterhin 

wird die Auswirkung der zusätzlichen Windbelastung auf die 

Strukturbeanspruchungen untersucht. Es wird gezeigt, dass Anzahl und Breite der 

Ringbalken die Größe des Lasteffekts bestimmen; Maßnahmen zu seiner Minderung 

werden entwickelt. Insgesamt bleiben die Zusatzbeanspruchungen beherrschbar. 

Abschließend befasst sich die Arbeit mit den Tragwerksbeanspruchungen infolge des 

stochastischen Windlastprozesses, insbesondere mit den Störungen des 

Membranzustands in der Umgebung der Ringsteifen. Für die Tragwerksplanung 

werden verallgemeinerte Wind-Ersatzlasten entwickelt, die geeignet sind, als 

Grundlage zur Berechnung der statischen und quasi-statischen Beanspruchungen ultra-

hoher Türme in beliebiger atmosphärischer Grenzschichtströmung zu dienen.  
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T/D   = centre-to-centre transverse pitch ratio in side-by-side cylinders 

U   = wind velocity in the along wind direction 

Ucr   = critical velocity 

UFS   = full-scale velocity 

Ug   = gradient wind, component along x-axis (reference system as specified 

in the context) 

Um   = mean along wind component 

Um,∞   = mean along wind component in the undisturbed flow 

Upra   = Prandtl velocity, i.e. wind tunnel velocity at the Prandtl tube 

Uref   = reference wind velocity 



xxx 

UWT   = wind tunnel velocity 

V   = velocity vector 

Vb   = basic wind velocity at 10 m height (code denomination) 

Vc   = flow speed in the chimney 

Vc,max   = maximum flow speed in the chimney 

Vg   = gradient wind, component along y-axis (reference system as specified 

in the context) 

 

c   = ratio between Luz and Lpz 

covD   = covariance matrix of drag force 

fc   = Coriolis parameter 

fsz   = correction factor on CD for boundary layer flow (ESDU) 

g   = gravitational acceleration 

h   = gradient height 

k   = von Karman constant (k = 0.4) 

kF   = peak factor of the force (kF = 3.5) 

ks   = thickness of ribs on the wind tunnel model 

kP   = peak factor of the velocity (kP = 3.5) 

kpw   = pressure withdrawal factor for the turbines 
•

m    = mass flow rate 

mi,e   = equivalent mass of the structure per unit length, ith vibration mode 

m11   = bending moment in the circumferential direction per unit length (m11,m, 

m11,σ, m11,peak, see n11,…) 

m22   = bending moment in the meridional direction per unit length (m22,m, 

m22,σ, m22,peak, see n11,…) 

n   = frequency 

ns   = vortex shedding frequency 

n1   = first eigenfrequency 

n11   = internal force in the circumferential direction per unit length 

n11,m   = mean value of n11 

n11,σ   = mean value of n11 

n11,peak  = peak value of n11 

n22   = internal force in the meridional direction per unit length (n22,m, n22,σ, 

n22,peak, see n11,…) 

p   = pressure 

pm   = mean pressure 



xxxi 

pσ   = standard deviation of the pressure p 

pσ,BI   = standard deviation of the pressure p, body-induced part 

pσ,TI   = standard deviation of the pressure p, turbulence-induced part 

qm   = mean velocity pressure 

qpeak   = peak velocity pressure 

t   = time 

u   = along-wind component 

u*   = friction velocity 

v   = across-wind component 

w   = 1) vertical wind component; 2) width of the ring beams 

x   = along-wind direction in the wind tunnel 

y   = across-wind direction in the wind tunnel 

z0   = roughness length 

z   = vertical coordinate 

z’   = downwards vertical coordinate with origin at z = H (tower top) 

zref   = reference height 

 

ΔCp   = pressure recovery 

Δpd   = pressure difference, dynamic component 

Δps   = pressure difference, static component 

Δptot   = pressure difference, static + dynamic 

ΔT   = temperature increase/decrease 

Ω   = angular velocity of Earth rotation, magnitude 

Ω   = angular velocity of Earth rotation, vector 

 

α   = exponent of mean wind profile by using power law 

δ   = 1) thickness of the boundary layer; 2) logarithmic decrement 

ε   = dissipation 

ξ   = modal damping ratio 

η  = 1) efficiency of the power plant (Chapter 1); 2) influence coefficient 

(Chapter 7) 

ηc   = efficiency of the chimney 

ηcoll   = efficiency of the collector 

ηturb   = efficiency of the turbines 

θ   = phase angle 

ϑ0   = maximum angle of turn due to Ekman spiral 



xxxii 

λF   = frequency scale factor (wind tunnel and full scale) 

λL   = length scale factor (wind tunnel and full scale) 

λR   = roughness factor in the definition of Ree 

λT   = 1) time scale factor (wind tunnel and full scale);  2) turbulence factor in 

the definition of Ree 

λV   = velocity scale factor (wind tunnel and full scale) 

μ   = dynamic viscosity 

ν   = kinematic viscosity 

ρ   = 1) mass density of air; 2) cross-correlation coefficient 

ρ0   = mass density of air at 20° 

ρa   = mass density of air outisde the chimney 

ρc   = mass density of air inside the chimney 

ρcoll   = mass density of air inside the collector 

ρD   = correlation matrix of drag force 

ρp   = cross-correlations of p 

ρu   = cross-correlations of u 

σ   = standard deviation 

σ
2   = variance 

σB   = standard deviation of background response 

σu   = standard deviation of u 

σu,∞   = standard deviation of along wind component in the undisturbed flow 

σv   = standard deviation of v 

σw   = standard deviation of w 

τ   = shear stresses 

ϕ   = latitude 

φ   = circumferential angle 

φh   = angle of separation 

φmin   = angle of Cp,min 

ω   = circular frequency 

 
EXP

   = experimental result 
LM   = loading model 

‘   = fluctuating component 
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Chapter 1. Introduction 

 

The design of ultra-high structures in the atmospheric boundary layer is a pioneering 

field of study, where research and application complement each other. The recent 

construction of super-tall skyscrapers – more than 800 m in height – represents today 

the highest synthesis of these efforts. This thesis proposes and investigates a new 

context of application – the Solar Updraft Power Plant Technology – a highly 

sustainable natural resource for electric power generation. This chapter introduces 

the technology, the working principle and the aim of the research.  

1.1 The Solar Updraft Power Plants technology 

The Solar Updraft Power Plants technology (SUPPs) produces renewable energy by 

sun-wind energy harvesting. Solar radiation is an inexhaustible input, which is 

converted into electric power through the natural updraft of heated air in a very high 

chimney.  

Peculiar characteristics of this technology are its long lifetime (more than 100 years), 

its very low costs of operation, the no-need of water for power generation and the 

absence of pollutant emissions (if one incorporates the CO2 emissions during 

construction, one ends up with a few grams of CO2 per kWh of produced electricity 

(Backström et al., 2008)).  

A SUPP consists of three elements (Figure 1.2): the collector, the turbine(s) with 

coupled generators as power conversion unit and the solar tower. The collector is a 

large glass-covered area where the visible and the ultraviolet wavelengths of the solar 

radiation heat the ground and consequently warm up the air under the roof, through the 

mechanism of natural convection. Meanwhile, the infrared wavelengths warm up the 

energy storage layer made of the soil itself, stones or, in case, water. Such an energy 

storage allows night operation. Then, the heated, less dense air rises up into the 

chimney of the plant, thereby drawing in more air at the collector perimeter and thus 

initiating forced convection. The driving force or potential that causes air to flow 

through the solar tower is the pressure difference between a column of cold air outside 

and a column of hot air inside the chimney. The stream of warm air turns the turbines 

at the chimney foot and in the power conversion unit the kinetic energy of the flow is 

transformed into electric power.  
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Figure 1.1 View of a Solar Updraft Power 

Plant 

Figure 1.2 Working principle 

 

The production of energy is proportional to the volume of the cylinder with the height 

of the tower and the diameter of the collector (Schlaich et al., 2005). For this reason, 

provided sufficiently high solar radiation input (e.g. 2000 kWh/m2 or even more), very 

good efficiency of the power plant can be reached with extra-large dimensions of the 

tower and/or the collector.  

A map of the yearly solar radiation distribution is shown in Figure 1.3. It suggests the 

most suitable locations for SUPPs around the world (Pretorius, 2007). In those areas, a 

plant with a collector diameter of 7 km and with solar tower height of 1500 m is 

estimated to deliver a maximum (peak) electricity power of 400 MW 

(Pretorius&Kröger, 2006). This assumption has been also assessed, both 

experimentally and theoretically for a wide range of plant geometries, as a reasonable 

global assumption (Fluri, 2008). 

 
Figure 1.3 Solar radiation input (Pretorius, 2007) 

Sun

Collector Area CA

Ground

Solar Chimney SC

Power Conversion Unit PCU
Turbine plus Generator 
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1.2 Historical review 

The paternity of the SUPPs idea is commonly attributed to the Spanish army colonel I. 

Cabanyes (Cabanyes, 1903), although a patent for “an improved temperature 

differential air motor” was invented even earlier – in 1896 – by A. R. Bennett 

(Bennett, 1896), a prototype of which is shown at the Science Museum in London. 

The apparatus proposed by Cabanyes consisted of an air-heater attached to a house 

with a chimney. Inside the house, there was a wind propeller for electricity production 

(Figure 1.4). 

Another early description of the SUPP principle can be found in the work of the 

German author Hanns Günther (Günther, 1931). The idea of the author was a solar 

chimney on the slope of a mountain (Figure 1.5). The very high air speed could deliver 

an enormous amount of energy, which could be extracted by means of wind turbines. 

 

 

 

  
Figure 1.4 Article of Isidoro Cabanyes, 

published on “La Energia Electrica” 

(Cabanyes, 1903). 

Figure 1.5 A solar chimney on the slope of a 

high mountain. (Günther, 1931) 

 

Around 1975, a series of patents were granted to the US engineer R.E. Lucier in 

countries with deserts suitable for SUPPs, like Australia, Canada, Israel and the US. 

These patents concerned: "Apparatus for converting Solar to Electrical Energy", 

"Utilization of Solar Energy", "System and Apparatus for Converting Solar Heat to 

Electrical Energy", "System for converting solar heat to electrical energy". 

Jörg Schlaich, Rudolf Bergermann and their team have been very active in developing 

and spreading the Solar Updraft Power Technology. Their first idea – as reported in 

(Schlaich, 2010) – goes back to 1972, when they were invited by the power industry to 

develop a large scale cooling tower for dry cooling. A new question arose among 

them, whether the natural updraft which is produced in such chimney tubes could not 

be utilized to produce electricity, provided an additional “fire” at the base of the 

chimney tube. And why not to use solar radiation and collect solar warm air by means 
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In 1987, Pasumarthi and Sherif erected a small prototype installation in California and 

published the first thermo-mechanical plant model (Pasumarthi&Sherif, 1997).  

A recent experimental investigation of the solar collector temperature field on a 9 m 

tall prototype with sloped collector is currently being performed by Kalash et others, 

2012. A complete up-to-date bibliography of the latest worldwide studies can be found 

in the Proceedings of both the 2nd and the 3rd International Conferences on SUPPs 

(STPT2010, SUTPT 2012). 

Up to now, several projects of large SUPPs have been developed in arid zones all over 

the world, but none of them has come to realization. In 2008, the Namibian 

government approved a proposal for the construction of a 400 MW solar chimney 

called the 'Greentower'. The tower was planned to be 1.5 kilometres tall and 280 m in 

diameter, and the base consisted of a 37 square kilometres greenhouse. In recent years 

EnviroMission (Australia) proposed a 200 MW power plant in the US deserts. Such a 

power plant could provide enough electricity to power around 100000 households 

(www.enviromission.com). 

In October 2010 a so-called Solar Heated Wind Updraft Tower Power System became 

operational in the Wuhai desert, Inner Mongolia (China). It is a medium size power 

plant with a 53 m tall tower and a collector area of 6300 m2. There are 5 turbines, each 

one having a capacity of 40 kW (Wei&Wu, 2012). In October 2010 the generating 

electricity system was combined to the grid and since then monitoring devices have 

been controlling the thermodynamic behaviour. Some pictures of the power plant, 

taken during a visit in October 2012, are reported in the following (Figure 1.7, Figure 

1.8). 

 

 
Figure 1.7 Solar Heated Wind Updraft Tower Power in Wuhai desert, Inner Mongolia 

(China). Visit to the prototype in October 2012, during the 3rd Int. Conf. on Solar Updraft 

Tower Power Technology. 
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a) 

 

b) 
c) 

Figure 1.8 Solar Heated Wind Updraft Tower Power in Wuhai desert, Inner Mongolia 

(China). a) View of the tower under the glass collector, b) Tower, c) Turbine 

 

1.3 Production of energy 

The thermo- and fluid-dynamic behaviour of the power plant and the efficiency of 

energy production are crucial aspects for the development of the technology. However, 

they are not addressed in this work and only a simplified approach – resulting from 

documentation in literature – is presented now. For further details, the first wide 

studies of the multi-physics of solar updraft power plants can be found in Weinrebe 

(2000) and Bernades (2004). Then, Pretorius (2007) presents another milestone work. 

Recent studies are presented in Krätzig (2012a,b). 

A simple theory to understand the mechanism of SUPPs is outlined in Schlaich (1995) 

and briefly addressed here. According to that, the efficiency of the power plant is the 

product of the individual component efficiencies, i.e. the collector roof, the solar tower 

and the turbines:  

 

turbccoll
ηηηη **=  (1.1) 

 

The efficiency of the collector (ηcoll) describes the effectiveness with which solar 

radiation is converted into heat. The efficiency of the chimney (ηc) describes the 

effectiveness with which the quantity of heat delivered by the collector is converted 

into flow energy. ηturb is the efficiency of the wind turbines. 
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The collector 

The collector converts solar radiation G (W/m2) on the collector surface Acoll (m
2) into 

heat increase in the collector airflow 
•

Q (W). Thus, the efficiency of the collector is 

defined by the ratio: 

 

G
coll

A

Q

coll *

•

=η  (1.2) 

 

In recent publications, Krätzig (2012a,b) applies one-dimensional flow-tube theory 

and prosecutes a mass of air on its way through the collector, the turbines and the 

chimney. The efficiency of the collector is estimated successively and iteratively for 

each one-dimensional collector element with a characteristic finite volume of air. The 

thermo-fluidmechanics in the collector is described by fluid equations (conservation of 

mass, conservation of momentum and Bernoulli’s energy equation to connect the 

ambient atmosphere around the plant at the collector rim with its interior) and 

thermodynamic conditions (conservation of energy). Fluid equations and 

thermodynamic conditions are coupled by the equation of state of air, as an ideal gas.  

The heat output 
•

Q  under steady conditions is expressed as the product of the mass 

flow rate •

m (kg/s), the specific heat capacity of the air Cp,air (J/kgK) and the 

temperature difference between the collector inflow and outflow (a typical value is ΔT 

≈ 30°K): 

 

T
airp

CmQ ∆
•

=
•

,
 (1.3) 

 

According to Pretorius (2007) the efficiency of the collector collη  can be approximated 

by the following interpolation relation, in which the diameter of the collector collD  is 

measured in km: 

 






 −−= 2229.01*680.0

coll
D

coll
η  (1.4) 

 

In order to model the physical processes of transformation of solar radiation G into 

heat increase ΔT of the air flux, the specific design of the collector comes into play. In 



Chapter 1. Introduction   
 

8 

fact, the manifold exchanges of convective and radiation heat power that exist in the 

different components of the collector – single or double glass panels, air flow, water 

heat storage or soil absorber – must be considered in the heat power balance conditions 

(Krätzig, 2012a,b). 

The chimney 

The chimney converts the heat flow 
•

Q  produced by the collector into kinetic energy.  

The pressure difference Δptot between a column of cold air outside and a column of hot 

air inside the chimney is the driving force that causes air to flow through the Solar 

Updraft Power Plant. 

 

( ) ( ){ }∫ −=∆
H

dzz
c

z
a

g
tot

p

0
ρρ  (1.5) 

 

( )zaρ  and ( )zcρ  stand for the height-depending mass density (kg/m3) of the air outside 

and inside the chimney, while g is the gravitational acceleration (m/s2). 

With the barometric pressure dependence from height, air as an ideal gas and ΔT 

constant over h, the pressure difference can be evaluated by solving analytically 

equation (1.5) over the tower height: 

 

0
T

T
H

coll
g

tot
p

∆
=∆ ρ  (1.6) 

 

being ρcoll the density of air at temperature T0+ΔT at collector outflow and T0 the 

ambient temperature at ground level. 

The pressure difference can be divided into a static and a dynamic component 

(neglecting friction losses): 

 

d
p

s
p

tot
p ∆+∆=∆  (1.7) 

 

Such a division is due to the energy taken by the turbines: the static pressure difference 

drops at the turbines, while the dynamic component describes the kinetic energy of the 

airflow. If the turbines are left out (Δps=0), the maximum flow speed Vc,max is achieved 

and the whole pressure difference is used to accelerate the air.  
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From Bernoulli’s equation we calculate the maximum air velocity at the chimney’s 

entrance: 

 

0

2
max, T

T
gH

c
V

∆
=  (1.8) 

 

The whole pressure difference is then converted into kinetic energy. Therefore, the 

total power contained in the flow is: 

2
max,2

1
max, c

Vm
c

A
c

V
tot

p
m

tot
p

tot
P

•
=∆=

•

∆=
ρ

 (1.9) 

 

Vc,max and Ac are the maximum flow speed and the cross-section of the chimney, 

respectively.  

The efficiency of the chimney can be calculated by combining equations (1.3), (1.8), 

(1.9): 

 

0,
T

airp
C

gH

Q

tot
P

c
=

•
=η  (1.10) 

 

All of that is a simplified representation, but it highlights that the efficiency of the 

chimney is fundamentally dependent on its height. Pretorius (2007) also proposes an 

approximated expression to consider the influence of the mean chimney diameter D. 

The turbines 

The turbines at the base of the chimney convert free convection flow into rotational 

energy. The pressure drop at the turbines can be expressed, in a first approximation, by 

the Bernoulli equation: 

 

2
2

1
c

V
ctot

p
s

p ρ−∆=∆  (1.11) 

 

being ρc and Vc the air density and the flow speed in the chimney, respectively. 

Thus, the theoretically useful power at the turbines becomes, in analogy to equation 

(1.9): 



Chapter 1. Introduction   
 

10 

2
2

1
c

Vm
c

A
c

V
s

p
m

s
p

tot
P

•
=∆=

•

∆=
ρ

 (1.12) 

 

By introducing ηturb for the turbine efficiency and the pressure withdrawal factor kpw 

(so that Δps = kpwΔptot)), the effective electrical power generated by the power plant 

can be finally expressed as: 

 

G
coll

A
ccollturbpw

k
el

P ηηη=     (1.13) 

 

The power is maximized if the pressure drop Δps = kpwΔptot is about two thirds of the 

total pressure difference available, i.e kpw = 2/3 (Schlaich, 1995). By substitution, it 

results: 

 

G
coll

A
T

airp
C

gH

collturbel
P

0,
3

2
ηη=     (1.14) 

 

The electrical output of the Solar Updraft Power Plant is then proportional to the 

product HAcoll, i.e. to the volume included within the chimney height and the collector 

area, as it was stated in section 1.1. Further detailed and updated studies can be found 

in Proc. SUTPT 2012. 

Electric power and electricity costs 

Despite the high initial cost of the SUPPs, the estimated leveled electricity costs LECs 

(due to IEA-guidelines) of the harvested energy are very low. 

Krätzig (2012b) estimates a maximum electric power of 75 MW for a power plant with 

a 750 m tall chimney and 3500 m collector diameter, by assuming solar radiation G = 

2.2 MWh/m2. If the capacity factor (i.e. full load hours/24*365 hours in one year) is 

considered about 34%, - it means that the full load hours in one year are around 3000 - 

then the total annual energy harvest is around 75/0.34 = 220 GWh/a. The same paper 

provides an estimation of investment costs (around 340 M€, 60% of which due to the 

collector, 20% due to the chimney and 15% due to the turbines, plus extra costs). By 

considering a depreciation period of 33 years, it results in LECs equal to 9.9 

€cent/kWh.  



  Chapter 1. Introduction 
 

11 

A similar value of LECs also resulted in other previous studies 

(Bergermann&Weinrebe, 2010). They estimated for a 200MW Solar Updraft Tower a 

total investment of 750 M€ and an average yearly production for a North African 

location of 650 GWh. It resulted, by assuming a depreciation period of 30 years, in 

LECs equal to 10.3 €cent/kWh. 

Further studies about economic aspects can be found in (Breuer&Hüwe, 2010). 

1.4 Main components of the power plant 

1.4.1 The tower 

Solar Updraft Towers (SUTs) are slender and extremely thin shells, usually made of 

reinforced concrete. In Europe, two main German schools are leading the structural 

design of Solar Updraft Towers, headed by J. Schlaich and W.B. Krätzig, respectively.  

J. Schlaich proposes tubes of cylindrical shape, usually stiffened along the height by 

spoke wheels. Various alternatives and non-linear structural analyses are reported in 

(Goldack, 2004, 2011). A double-wall tower is also presented in (Goldack, 2004). Two 

examples are shown in Figure 1.9 and Figure 1.10. 

 

 
 

Figure 1.9 1-km tower (Goldack, 2004, 2011) Figure 1.10 Double-wall tower (Goldack, 

2004) 

 

W.B. Krätzig transfers insights from designs of natural draft cooling towers’ projects 

to solar chimneys. Figure 1.11 gives an overview over these attempts, demonstrating 

the way from cooling towers to chimneys of SUPPs up to an elevation of 1500 m 

(Krätzig et al., 2008-2009a,b). 
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Figure 1.11 From cooling towers to chimneys of Solar Updraft Power Plants (Krätzig et al., 

2008-2009a,b) 

The distinctive feature is that the lower part of the tower turns into a hyperboloid. 

Thanks to the use of a double curvature surface, the structure applies the benefits of 

shape strengthening. Two recent pre-designs of a 1000 m high reinforced concrete 

solar tower are shown in Figure 1.12 and Figure 1.13 (Krätzig et al., 2008-2009a,b; 

Harte et al., 2010). With a collector size of 6000 m of diameter they shall produce a 

peak power of 200 MWp (annual work of 600 GWh). In Figure 1.12, shortly above the 

throat at 400 m of height, the shell diameter is 130 m wide, while at the upper ring it is 

145 m. Below 400 m the tower shell widens in strength-optimized hyperbolic shape up 

to a foot-diameter of 260 m. The wall thickness of high-performance reinforced 

concrete (C70/85) varies from 0.25 m to 0.65 m. In addition to the upper edge 

member, nine intermediate reinforced concrete ring-stiffeners are applied, fixed on the 

outer shell face. 16 turbo-generators deliver the mentioned plant capacity, see 

(Backström et al, 2008). In Figure 1.13 the upper part of the tower has a constant 

diameter of 150 m and the maximum shell thickness at the base is 0.60 m. This one 

drawn in Figure 1.13 is the reference structure which is always considered in this 

work. 

From the structural viewpoint it is important to construct the solar tower as thin as 

possible. This can be achieved by using high-strength concrete and/or by installing 

stiffening rings along the chimney height and on top. Stiffening rings can be realized 

in several ways, e.g. classical reinforced concrete beams (Figure 1.14), composite 

steel-concrete, spoken wheels with carbon fiber strings (Figure 1.15). In order not to 

reduce the efficiency of production, the interference between stiffening rings and 
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Figure 1.14 Reinforced concrete stiffening ring 

(Krätzig et al., 2008-2009a,b) 

Figure 1.15 Spoke wheels with carbon 

fiber strings (Krätzig et al., 2008-

2009a,b) 

 

1.4.2 The collector 

The collector area is not investigated within this work. However, the collector is one of 

the main components of the power plant. In fact, as previously mentioned, the power 

output of Solar Updraft Towers is proportional to the collector area (1.14). The 

diameter of the collector ranges from 1 up to 7 km, depending on the required energy 

output, it is usually made of glass and it could also take the secondary function of 

being a greenhouse for agricultural purposes. Its cost is a high percentage (between 

40% and 60%) of the entire power plant, as reported in several publications (e.g. 

Krätzig , 2012b; Bergermann&Weinrebe, 2010). Thus, the collector plays a key role 

and the performances of the SUPP, in terms of energy production, can be significantly 

increased by improving the collector glass quality. In particular, the optical glass 

quality is of the greatest importance. The transmittance and absorptivity of glass 

depend on the solar radiation incident angle, the refractive index of the glass, the 

thickness of the glass and its extinction coefficient. The latter determines the amount 

of radiation absorbed and consequently transmitted by the medium (Pretorius, 2007). 

Moreover, a better quality of the glass implies a better transparency, allowing more 

solar radiation to penetrate it.  
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Several studies and on-going researches about the collector can be found in literature. 

For example, numerical simulations are performed in (Pretorius, 2007), referring to a 

SUPP located in South Africa, with a 5000 m collector diameter and a 1000 m high, 

210 m diameter chimney. These simulations show that through the modification of the 

collector roof reflectance, collector roof emissivity, ground surface absorptivity and 

ground surface emissivity, major improvements on plant performance are possible. An 

improved plant performance can also be reached by introducing thermal insulation and 

double glazing of the collector roof. The better is the insulation of the warm collector 

air from the environment, the smaller are the heat losses through the roof. It is also 

predicted a notable sensitivity to the ground surface absorptivity value.  

Techniques to control the power output of a SUPP according to specific demand 

patterns are investigated in (Pretorius, 2007). Without any control, SUPPs deliver 

electricity simultaneously to sun radiation and are designed neither for base load 

power generation nor for peak load. The introduction of a secondary collector roof 

beneath the main one is a strategy proposed by Pretorius to regulate the air-flow, and 

thus the energy production, according to specific demand patterns. Another strategy to 

control the power production of SUPPs is the incorporation of water tanks under the 

collector roof, so that the energy (heat) storage capability increases significantly 

thanks to the high specific heat capacity of water. In this way, the production during 

the day-time is lower, but the night-time production is much higher. 

Recent studies about heat storage and heat transfer have been presented at the 

International conference SUTPT 2012 (e.g. Bernardes (2012) and Fasel (2012)). 

1.4.3 The turbines 

Milestones studies regarding the layout of the turbines of solar updraft towers belong 

to the University of Stellenbosch (Backström&Fluri, 2006; Fluri, 2008; 

Fluri&Backström, 2008; Backström&Fluri, 2010). 

The two typical solar tower configurations are one with vertical axis (used in a single 

turbine layout) and one with horizontal axis (used in multiple turbine layout). 

Backström&Fluri (2010) explain that the vertical axis layout with horizontal entrance 

is favoured for layouts where there is one turbine per chimney, while the horizontal 

layout for many turbines per chimney. In Fluri (2008) it is stated that many smaller 

generators replacing a large one weigh and cost less than a huge one. Fluri investigated 

the optimum number of turbines for solar chimney power plants of various output. He 

found that for large plans with nominal power of 200 MW the optimal number of 
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turbines is about 30, and the turbine diameter is about 30 m. Each turbine will then 

have a rating of about 6.7 MW.  

The turbine layout is not considered in this work. However, the reference structure of 

this Thesis, depicted in Figure 1.13 presents 16 turbines of 32 m in diameter. 

1.5 Aim of the research 

The dissertation investigates the Aeolian risk scenario on ultra-high structures, like 

solar updraft towers. For such structures, the wind action represents the main natural 

hazard.  

At first, the dissertation aims to revise the knowledge about the nature of strong winds 

in the atmospheric boundary layer. The usual wind engineering applications are 

limited to the lowest 200-300 m of the atmosphere, where codified wind profiles can 

be applied. The coupling between wind engineering and meteorology allows to 

investigate higher levels. The problem is addressed in the thesis on theoretical bases, 

because experimental data at large heights in strong winds are, so far, inexistent. 

Several issues still remain unsolved and their uncertainty increases the structural risk 

of ultra-high towers. However, this should not prevent the design, provided that the 

vulnerability of the structure to the wind action is low.  

The structural vulnerability of solar towers to the wind action is especially addressed 

in the dissertation. In fact, so far it was known that stiffening rings applied along the 

height of the tower reduce the vulnerability of the structure, because they enhance a 

beam-like behaviour. However, their effect on the load had never been investigated 

before. Moreover, no load model is so far available to the designer to calculate the 

structural response of a solar updraft tower to a stochastic wind loading process. 

Without that, the actual damage of such a structure due to the wind action could not be 

really estimated. 

Thus, the main purpose of this research is to investigate – by means of wind tunnel 

experiments – the aerodynamics of the flow around circular cylinders, like solar 

towers. Beside the traditional case of study, i.e. a circular cylinder with a free-end 

(which is addressed in literature but not in all its aspects) the dissertation also 

investigates the effect of rings along the height of the tower. This case is not treated in 

literature. The dissertation aims at investigating the new phenomenon created by 

spanwise rings, both from the fluid dynamic point of view – by means of wind tunnel 

experiments and numerical simulations – and from the structural point of view. 
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The experimental investigation is performed in two wind tunnels, at WiSt Ruhr-

University Bochum and at CRIACIV University of Florence. The comparative study 

aims to cross-check results. In view of that, numerical simulations represent a further 

support. However, the wind pressures depend on atmospheric boundary layer 

characteristics. Since the boundary layers in two different wind tunnels are necessarily 

different, the experiments also aim to investigate such a dependency. So, as a further 

result of this work, the designer will benefit of a quasi-static stochastic load model 

which is not referred to a pre-defined boundary layer, but it can be generalized to any 

atmospheric boundary layer flow. This tool allows to evaluate the structural damage 

even in the vicinity of the stiffening rings, where the shell-like behaviour predominates 

and no load model was available before. 

 

The tower structure which is used as reference in the dissertation is the one in Figure 

1.13. The height is 1-km, the diameter at the base is 280 m and at the top it is 150 m. 

However, the wind tunnel model has a simpler and more general shape. It is a circular 

cylinder with aspect ratio H/D = 1000/150 = 6.7. 
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Chapter 2. Risk scenario for SUPPs technology  

 

This chapter describes the risk scenario of the apparently most economic and 

sustainable technology for renewable energy harvesting, with focus on the Aeolian 

risk. The theory of the atmospheric boundary layer at large heights – resulting from 

coupling wind engineering with boundary layer meteorology – is presented as the 

basis for a deeper knowledge of the natural hazard. Moreover, so far it is known that 

the structural vulnerability of the tower to the wind action can be reduced by 

introducing stiffening rings along the height. 

2.1 Aeolian risk 

Many studies around the world (SCPT, 2010; SUTPT, 2012) proved that Solar Updraft 

Power Plants would be the most economic technology for renewable energy harvesting 

in the world, as reported in section 1.3. The leveled electricity costs of the energy 

(according to the definition in the IEA-guidelines) would be of a few €cent/kWh, 

considerably lower than those for other competitive renewable energy concepts. So, 

why have big power plants not come to realization, yet? It is not only a matter of the 

high initial cost, because it would be retrieved after the amortization period, including 

depreciation. In fact, SUPPs are considered a highly risky technology. The high risk 

concerns especially two main aspects: the production of energy and the structural 

feasibility. Some projects stopped before being completed because it was realized that 

the production of energy of the power plant would have resulted lower than 

expectations, for which investors were gained. The structural aspect is another 

challenge, since 1 km tower would be the highest structure in the world. 

The present work focuses on the structural aspect; the wind action on the tower is 

selected among all natural hazards. Thus, the focus is on the Aeolian risk scenario, 

which is first introduced in the next section within a general framework. In particular, 

the following issues are discussed in the dissertation: 

 

NATURAL HAZARD 

The state of knowledge of the nature of wind at high altitudes results from coupling 

boundary layer meteorology with wind engineering. Theoretical models like the Harris 

and Deaves (H&D) one (Harris&Deaves, 1980) describe the mean wind profile, the 

turbulence intensity and the integral length scale of turbulence in strong wind 
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conditions up to the boundary layer height, on the basis of order of magnitude analyses 

of the equations of motion. The Coriolis force is included. However, a further question 

is whether such mid-latitudes models could be applied at small latitudes, where the 

Coriolis force becomes smaller and smaller in the geostrophic balance. Moreover, to 

which extent can full-scale measurements at large heights (e.g. 1 km height) be used to 

study the turbulent properties of wind, for engineering purposes? These issues are 

addressed in section 2.3. Tropical cyclones and tornadoes are only mentioned but not 

included in this work. 

Wind tunnel experiments performed in different boundary layers (and different wind 

tunnels) allowed to study the effect of certain boundary layer properties on wind forces 

and pressures. A simplified model of wind pressures on the tower shell, with regard to 

the turbulent properties of the incoming flow, is proposed in Chapter 7. It can be 

applied by the designer in any boundary layer flow to calculate the quasi-static 

response of the tower (resonance not included). 

EXPOSURE 

The tower is considered exposed to strong wind conditions (exposure factor E = 1). 

VULNERABILITY 

The main part of the dissertation studies the effect of stiffening rings applied along the 

height of the tower, like those reported in Figure 1.14 and Figure 1.15. They were 

originally introduced in the design in order to reduce the vulnerability of the structure, 

as explained in section 2.4, but their effect on the flow had never been investigated 

before. The thesis discovers and proves that this strategy for the reduction of structural 

vulnerability might induce an even more severe load condition, if improperly used. 

 

2.2 Risk management framework 

The risk scenario of the Solar Updraft Power Plants Technology can be described 

within the general approach of the risk management framework. The latter is outlined 

as a unified methodology throughout different disciplines in Pliefke (2010). 

 

The risk management framework is organized in three main steps (see Figure 2.1), that 

are risk identification, risk assessment and risk treatment. They are performed 

sequentially and accompanied by a risk review step and a continuous risk monitoring. 
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Figure 2.1 The general risk management framework (Pliefke, 2010) 

 

As outlined in Pliefke (2010), the risk identification phase consists in the definition of 

the system under analysis and of the hazards that could endanger it. In the present 

work, the system is the solar tower and the natural hazard under investigation is the 

wind action. 

The risk assessment phase is divided in two sub-steps (Figure 2.2): the risk analysis 

and the risk evaluation. The risk analysis (Figure 2.3) consists in a quantification of the 

risk. To do that, the hazard must be defined, for a certain return period, in term of its 

intensity and frequency parameters. Then, for each element at risk (EaR) of the 

system, i.e. for each element with a non-zero exposure to the hazard, the impact of the 

hazard is converted into hazard load. Depending on the structural response of the 

element at risk to the hazard load, the damage can be identified. The relation between 

the hazard load and the resulting damage is the structural vulnerability. It indicates 

“the degree of physical susceptibility towards the impact of the hazard”. The expected 

damage per year can be interpreted as the structural risk. By definition, the structural 

risk is “the product of the annual probability of occurrence of damage multiplied by 

the potential damage that goes in line with it”. Then, direct and indirect consequences, 

both tangible and intangible, are estimated in order to calculate the total risk, i.e. the 

expected loss per year, which is “the product of the annual probability of occurrence of 

the loss and the loss that goes in line with it”. Tangible consequences are measured in 

monetary value. Intangible consequences must be converted in monetary values, 

otherwise no comparison of risks is possible. After that, the risk evaluation sub-step 

aims to find adequate risk measures, so that the risk under investigation can be 

compared to other risks for the system.  

The last phase in Figure 2.1, that is the risk treatment, creates a rational basis to handle 

the risk and, if necessary, reduce it by risk mitigation initiatives. Then, for those risks 

that have already run through the whole process at least once, a risk review process 

can be performed.  
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Figure 2.2 The risk assessment phase (Pliefke, 2010) 

 

 
Figure 2.3 The risk analysis (Pliefke, 2010) 

 

The risk management framework proposed by Pliefke is consistent with other 

definitions of risk in literature. In particular, Augusti et al., (2001) define the damage 

risk as “the risk associated with physical damage to constructed facilities”. The 

probability of a negative consequence caused by a potentially dangerous event is “the 

product of three factors, namely: 1) hazard, i.e. the probability of occurrence of a 

dangerous event (the action); 2) exposition, i.e. the probability that the action finds 

something that can be damaged; 3) vulnerability, i.e. the (conditional) probability that 

the facility is damaged when hit by the dangerous action.” The damage is associated to 

its consequences (“losses”). The latter can be considered as a measure of the damage 

itself, so that the three-factor formulation yields directly the risk as “expected cost of 

damage”. Alternatively, the “expected cost of damage” can be split up into the product 

of the “probability of damage” times the “cost of damage”. In this case, the cost of 

damage is the fourth factor to be included in the probabilistic definition of risk. 
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2.3 Natural hazard – the wind action 

Solar Towers are subjected to loads and other actions that are typical for high 

reinforced concrete towers: 

- dead load of the shell wall, the ring beams, the turbine houses, and the 

foundation ring; 

- wind loading acting both on the external and the internal surfaces of the shell 

- temperature effects, operational ones from the action of the heated air, 

axisymmetrical ones due to ambient air temperature, non-axisymmetrical ones 

due to solar irradiation on the tower shell; 

- seismic action if the location of the Solar Updraft Power Plant exhibits 

sufficiently important seismicity; 

- shrinkage effects; 

- pre-stressing if applicable; 

- construction loads, e.g. anchor forces from pre-stressed guys of the central 

crane; 

- differential soil settlements of external origin. 

Wind and seismic activity are the main natural hazards to be considered in the tower 

design. However, the very high first natural period of the tower (beam-like bending 

mode, like a soft cantilever), makes it isolated against strong earthquake excitations. 

Therefore, even in case of seismic hazard, the vulnerability of the structure to 

earthquake loading is not high. The seismic risk is thus neglected in this work. Instead, 

the main risk in the solar tower design is due to the wind action. 

The wind hazard for strong winds in “well-behaved” wind climates (i.e. excluding 

tropical cyclones and tornadoes) is related to the design wind velocity. This is the 10-

min-average velocity that has a 2% yearly probability of exceedance, which roughly 

corresponds to a 50-year-return period (Eurocode1). Tropical cyclones and tornadoes 

are not covered in this dissertation (they are only mentioned in section 2.3.4), as well 

as occurrence of low-level jets in the deserts. 

  

The height of solar updraft towers (up to 1500m) exceeds by far the main definition 

domain of up to 300 m for established and codified wind profiles and wind load 

models. In this domain, the concept of the turbulent Prandtl layer with constant shear 

is a useful approximation. Above the Prandtl layer, in the Ekman layer, the shear 

turbulence decreases while the Coriolis force increases and tends to align the flow in 

the direction of the isobars according to the Ekman spiral.  
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The knowledge of the nature of the wind is a pre-requisite for investigating the wind 

load on solar towers. However, experimental data are scarce at large heights, and 

accurate measurements of wind turbulence are currently not available above 300 m. 

This section addresses the state of knowledge of the structure of strong winds at high 

altitudes and to which extent it can be enhanced by means of field measurements. The 

modelling of the wind action with regard to turbulent properties of the flow (Chapter 

7) by means of wind tunnel experiments in different boundary layer flows is the way 

which is proposed in this work to approach the open problem concerning the nature of 

wind at large heights. 

2.3.1 The structure of strong winds in the atmospheric boundary layer 

Five equations form the foundation of boundary layer meteorology (Stull, 1988): 1) 

equation of state (ideal gas law), 2) conservation of mass (continuity equation), 3) 

conservation of momentum (Newton’s second law), 4) conservation of moisture, 5) 

conservation of heat (first law of thermodynamics). In addition, there are equations for 

conservation of scalar quantities, e.g. a tracer in the atmosphere.  

In strong winds, it can be assumed that the ambient temperature gradient is adiabatic 

(neutrally stable atmosphere), so that only the mechanical stirring and not the 

convective action of buoyancy forces will generate turbulence. Essentially, the 

conservation of momentum and the continuity equation govern the motion of strong 

atmospheric winds. The latter leads to the incompressibility approximation if typical 

velocity and length scales of the boundary layer are used. In a rotating Cartesian frame 

of reference the former equation is (Stull, 1988): 
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(2.1) 

 

where i,j = 1,2,3 and εij3 = +1 if ij3 = 123 and = -1 if ij3 = 213; εij3 = 0 if i = j 

(alternating unit tensor) and δi3 = +1 if i = 3, otherwise it is 0 (Kronecker delta). The 

terms on the left-hand side represent the time rate of change of the wind velocity (i.e. 

acceleration) following a moving fluid element: the first contribution (term I) is the 

time rate of change at a fixed point (local derivative), while the second term (term II, 

advection) is the time rate of change due to the movement of the fluid element from 

one location to another in a flow field where the flow properties are spatially different. 

The terms on the right-hand side represent the sum of forces (per unit mass) acting on 
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a fluid particle. They are body forces (term III, due to gravity and acting only 

vertically), Coriolis force (term IV, an apparent force due to the earth rotation, fc is the 

Coriolis parameter), pressure-gradient forces (term V) and viscous forces (terms VI).  

To a close approximation, air in the atmosphere behaves like a Newtonian fluid 

(viscous stresses are proportional to the velocity gradients), so that, by assuming 

incompressibility, the term VI reduces to: 
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The horizontal pressure gradient term (V) can be expressed by using the definition of 

geostrophic wind: 
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So that the horizontal equations of motion can be written as: 
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where the terms IV+V are sometimes called the geostrophic departure terms because 

they are zero when the actual winds are geostrophic. 
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Then, the wind velocity can be expanded into mean and fluctuating components. It is 

remarkable that, due to the non-linearity of the equations, unknown terms arise even in 

the equations of the mean fluid motion (equations (2.7)). They are the Reynolds 

stresses. Physically, this implication means that turbulence must be considered in 

making forecasts in the turbulent boundary layer, even if only mean quantities are of 

interest. The following forecast equation for mean wind is formally very similar to the 

basic conservation equation (2.1) except for the addition of the turbulence term at the 

end (VII): 
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(2.7) 

 

In order to solve the problem, the unknown Reynolds stresses must be somehow 

specified (closure problem). 

Mean wind profile 

Some simplifying assumptions are introduced in meteorology, in order to develop 

analytical expressions of the mean wind profile throughout the whole depth of the 

boundary layer, including the Coriolis force (Stull, 1988): 

 

- steady state (→ ( ) 0/ =∂∂ t , i.e. no time-dependence); 

- horizontal homogeneous flow, as it happens in large-scale storms, on a 

horizontal site of uniform roughness over a sufficiently large fetch (→ 

( ) 0/ =∂∂ x , ( ) 0/ =∂∂ y , i.e. no advection); 

- barotropic flow, i.e. negligible horizontal density gradient (→ constant 

geostrophic wind); 

- geostrophic approximation (→ the curvature of the isobars is negligible); 

- no subsidence (→ the mean vertical wind component is zero). 

 

In these conditions, the equations of mean motion reduce to (Stull, 1988): 
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where τx and τy are the horizontal shear stresses, including both contributions from 

viscous forces and Reynolds stresses. U  and V are the components of the mean wind. 

For convenience, it is chosen a reference system with the x-axis aligned with the 

direction of gradient wind G: 
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where: 
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The boundary conditions are: 
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(2.14) 

 

Meteorologists have attempted to solve equations (2.8) and (2.9) by introducing 

phenomenological relations to describe the shear stresses τx and τy.  

A well-known assumption (Schlichting, 1960) is that an eddy viscosity K and a mixing 

length L may be defined, so that (first-order local closure K-theory): 
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where: 
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Either the eddy viscosity K or the mixing length L must be specified. An analytical 

solution of the equations (2.8) and (2.9) can be obtained under the assumption of a 

constant eddy viscosity (Ekman, 1905). That is the Ekman spiral model: 
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(2.18) 

 

where γE = (fc/2K)1/2, and fc = 2Ωsinϕ is the Coriolis parameter (ϕ = latitude, Ω = 

angular velocity of Earth rotation). The wind speed is geostrophic at height z = π/γE. 

This height is used as an estimate of the depth of the neutral boundary layer. Hence, 

the Ekman layer depth can be defined as h = π/γE.  

 

A different type of approach, based on the asymptotic similarity theory, is developed 

in Csanady (1967). The boundary layer is divided in two regions: a surface layer and 

an outer layer. The theory is based on the attempt to express the profile of wind 

velocity as a function of height in non-dimensional form. This poses the problem of 

finding appropriate velocity and length scale parameters. It turns out that for the 

velocity, anywhere in the height range considered, the velocity scale parameter is the 

friction velocity u*. In the case of the height scale, in the lower layer, close to the 

ground, the appropriate parameter is the roughness length z0, while in the upper layer it 

is the gradient height h. The law of the wall describes the flow in the surface layer, 

while a velocity defect law applies in the outer layer.  

The key to solve the problem lies in the assumption that a region of overlap exists, in 

which both laws are valid. It results in a logarithmic solution. Out of it, the gradient 

wind velocity can be calculated (Gill, 1968; Monin&Yaglom, 1971). It depends on 

two universal constants A and B: 
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Several authors proposed values for A and B, as listed in Simiu&Scanlan (1996). It 

can be considered 0 < A < 2.8 and 4.3 < B < 5.3. 

 

A similar approach, based on a modified version of the asymptotic similarity theory, 

was developed by Harris&Deaves (1980). The peculiar feature of the so-called H&D 

model is the closure assumption to solve the equations of motion (2.8) and (2.9): the 

shear stresses are assumed to decrease parabolically with height (equation (2.20)). 

Some justification for this assumption was found by the authors in full-scale data, but 

it is also justifiable on theoretical grounds, on the basis of an order of magnitude 

analysis between production, diffusion and dissipation of turbulent energy (Deaves, 

1981).  
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This expression is adopted by the ESDU Data Items (ESDU 85020). 

Accordingly, the velocity defect law is parabolic for a substantial part of the boundary 

layer, so that: 
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where z0 is the roughness length, h is the atmospheric boundary layer thickness, *u  is 

the friction velocity and k the Von Karman constant (k = 0.4). The coefficients ai, i = 1, 

..., 4 are universal constants whose values are determined theoretically, in terms of two 

experimental parameters: β and A. From fitting a number of good quality wind 

profiles, it resulted β = 6 and A = -1 (Harris&Deaves, 1980). So that: 
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The H&D model thus extends the log-law (which fits good near the surface) through 

the Ekman layer, in order to blend into the gradient wind velocity at the gradient 

height. Indeed, if compared to both the well-known logarithmic and power laws, the 

Harris and Deaves model is the only one which recognizes the top of the atmospheric 

boundary layer.  

 

It is known that the boundary layer height (h) in neutral atmosphere is proportional to 

the ratio between the friction velocity and the Coriolis coefficient (Csanady, 1967). In 

the H&D model such proportionality is expressed by the coefficient 1/β: 
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In order to give an idea of the boundary layer height, at a latitude ϕ = 30° it results h ≈ 

4300 m, being z0 = 0.05 m, Vb = 25 m/s (at 10 m). Thus, the Deaves and Harris model 

has three scaling parameters: z0 and u* – inherited from the log-law model – and the 

additional length parameter, h, which is the atmospheric boundary layer height. It is a 

function of the wind speed, the surface roughness and also the latitude. 

Then, by evaluating the H&D wind profile at z = h, the gradient wind speed is given 

by: 
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This expression is comparable with equation (2.19), but the universal constants have 

different values. The same letter A is used in expressions (2.19) and (2.24), because 

this is the traditional nomenclature reported in the literature on this topic. This should 

not create confusion. Finally, by using the closure assumption (2.20) and by applying 

the boundary conditions to the equations of motion, the H&D model derives the 

following relationship involving 0ϑ , the total (maximum) angle of turn of the wind 

throughout the boundary layer: 
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The model also suggests to use above the Prandtl layer a linear variation with height of 

the wind rotation angle. In fact, the variation of the wind angle would result from the 

solution of partial differential equations, but a linear approximation can be accepted. 

In conclusion, relying on the closure assumption (2.20) – derived by an order-of-

magnitude analysis – on the boundary conditions, on theoretical considerations and 

two constants (A and β) determined empirically, the H&D model gives a complete 

description of the mean flow in the atmospheric boundary layer (equation (2.21))1. 

However, this is valid at mid-latitudes, where a state of dynamic equilibrium 

establishes in strong wind conditions, so that the energy subtracted by the mean flow 

exactly balances that absorbed by the work done against surface friction and dissipated 

by the viscosity of air (Harris&Deaves, 1980). At tropical latitudes, strong winds are 

associated with large scale storms, but these may contain intense components of 

thermal origin. Moreover, the geostrophic assumption is more approximated as the 

Coriolis force becomes small. To which extent the H&D model is valid at small 

latitudes is addressed in section 2.3.3.  

Standard deviation of the along-wind component σu 

The H&D model also provides an analytical expression of the standard deviation σu of 

the along-wind component of turbulence at any height in the atmospheric boundary 

layer, that is valid over uniform flat terrain. On theoretical grounds, it has been seen 

that for a flow – which is fully in equilibrium with the surface – */uuσ  starts from a 

constant value near the surface and approximately constant within the inner layer, then 

it achieves a maximum before decreasing linearly with height. At large heights, it is 

(Harris&Deaves, 1980): 
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An empirical expression proposed in the H&D model, which matched the data set 

available to the authors, is: 

                                              
1 In the following, the horizontal superscript which distinguishes the mean velocity 

component U from the total velocity in the along wind direction 'uUU += is neglected, in 

order not to burden the treatment. Therefore, in the following it is normally referred to Um as 

the mean wind velocity. 
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This expression is adopted by the ESDU Data Items (ESDU 85020). 

Integral length scales of turbulence 

Harris and Deaves also propose an expression for the integral length scale of the 

longitudinal component of turbulence Lux, which is adopted by the ESDU Data Items 

(ESDU 85020 and 86010). The length scale increases with increasing height above the 

ground up to a maximum value. Also, for a given height, it increases with increasing 

wind speed and surface roughness. As the wind strength increases, the boundary layer 

height increases and the eddies within the boundary layer are stretched accordingly. 

Moreover, apart from low levels close to the ground, the longitudinal length scale in 

the boundary layer is generally twice the value of the lateral scale. 

The starting point to develop the H&D model of Lux is to match the well-established 

Kolmogorov and Von Karman spectrum formulas (Harris and Deaves, 1980). For 

turbulent flows in which an equilibrium range exists (i.e. at high Re), the Kolmogorov 

formula for the high frequency range of the spectrum is: 
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being Ko the Kolmogorv parameter.  

The Von Karman form of the spectrum for the longitudinal component of turbulence 

is:  
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At high frequencies, it reduces to:  
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being A = 0.115. 

By combining the Von Karman spectrum at high frequencies and the Kolmogorov 

formula, it is obtained: 
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This result is completely independent of the H&D model, which only becomes 

involved when the variation with height of the standard deviation σu (according to 

equation (2.27)) and the dissipation ε (using equation (2.32)) are introduced. The 

dissipation can be approximated by: 

 

dz

dU

ρ

τ
ε ≅        (2.32) 

 

Moreover, two further questions are discussed in the H&D model, through the 

investigation of experimental data: 

 

1. If autocorrelations and spectra are both derived from field measurements, the 

length scales derived by the integration of the autocorrelation functions are 

generally greater than the length scales required in the Von Karman formula to fit 

the measured spectral density data. It is due to the inadequacy of the Von 

Karman spectrum to represent the characteristic of turbulence closely at all 

frequencies. The disparity between length scales is a factor of around 1.4, but it 

decreases with height. A modification to the coefficient A = 0.115 in the formula 

of the spectrum is then suggested and adopted in (ESDU, 85020): 
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2. Due to anisotropy of turbulence near the ground, the Kolmogorov parameter 

should vary with height up to a constant value at sufficiently high altitude. An 

empirical relationship, based on a re-analysis of data by (Thompson, 1990), is 

defined by equation (2.34) (ESDU, 85020): 
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where Ro is the Rossby number ( 0* / zfuRo c= ). By combining equations from (2.31) 

to (2.34), the expression of the integral length scale of turbulence Lux is thus obtained.  

Even though the H&D model of Lux is adopted by the ESDU Data Items, it leads to 

values of the integral length scale which are larger than those recommended in other 

Codes of practice (e.g. Eurocodes). As a consequence, if the H&D model of Lux is 

used in the calculations in place of the expressions recommended by other Codes (in 

case extrapolated at high altitudes), it results that the quasi-static loading is slightly 

increased, while dynamic loading is decreased. 

Cross-correlation functions and cross-spectral densities of wind turbulence 

The cross-correlations functions characterize the relationship between fluctuating 

velocity components at two points in space and in the general case at different times 

(time lag τ). The zero-lag cross correlations are especially important since they 

describe how the instantaneous fluctuating component of wind velocity varies in 

space. Because changes in the gust velocity at one point are not necessarily reflected 

immediately by similar changes in the gust velocity at another point, the cross-

correlation functions are, in general, not symmetrical functions of τ. They can be 

considered to be composed of two components, the larger one being a symmetrical 

function of τ and the other being an anti-symmetrical function of τ. Once they are split 

up in the frequency domain, they are the Fourier transforms of the real (in-phase) and 

the imaginary (out-of-phase) components of the cross-spectral density. These are the 

co-spectral density and the quad-spectral density functions, respectively, and are 

related by the phase-lag angle. The latter is sometimes expressed in terms of an “eddy 

slope” (ESDU 86010). For most cases, the quad-spectra are small and often neglected, 

so that the coherence equals the co-coherence. Moreover, the out-of-phase component 

integrates to zero.  
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For points having a spatial separation Δx in the along-wind direction, if the assumption 

of frozen turbulence applies (Taylor’s hypothesis), Δx can be converted into an 

equivalent time lag Δx/U, being U the mean velocity of the flow. In this case, the 

coherence function would be 1 and the phase angle Uxn /2 ∆= πθ . In practice, Taylor’s 

hypothesis is not always strictly applicable (particularly near the ground, when U/n is 

greater than 300 m, according to an ESDU 86010 recommendation).  

The phase angle for separations normal to the wind direction can be taken as zero in 

the horizontal plane (lateral direction). Instead, for separations in the vertical 

directions the eddies are inclined with the mean wind shear, so that changes in the gust 

component higher up are followed by similar changes lower down at some time later. 

Thus, in general, the phase angles θuu and θvv (for the u- and v- wind components) are 

not zero. They are zero, no matter the value of z and Δz, only in case of isotropic 

turbulence. This applies to the high frequency range when, even near the ground, 

turbulent exhibits isotropic properties. However, θuu and θvv tend to zero as z increases 

and dU/dz tends to zero. Because of that, the ESDU 86010 provides the following 

formulas for the phase angles θuu and θvv: 
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where c is a frequency-dependent coefficient defined in the code, that varies between 2 

(low frequencies) and 1 (high frequencies). The factors 1.3Δz/zm and 3Δz/zm are 

estimations – on the basis of different sources of data up to about 80 m – of the eddy 

slope for the u and v components. 

The H&D model (ESDU Data Items) and other codes: comparison of wind profiles 

For purpose of comparison, the H&D model – adopted by the ESDU Data Items and 

applicable throughout the whole height of the boundary layer – is compared to the 

extrapolations of the log- and power- law models, adopted by Eurocode and DIN. 

Rigorously, these would be limited to 200 m and 300 m, respectively. The dependence 

on latitude is included in the H&D model.  

 

The following case studies are selected:  

- terrain category II (z0 = 0.05 m) 
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- Vb(10m) = 25 m/s 

- Latitude ϕ = 30°, 23°. 

 

In these conditions, according to the Eurocode (up to 200 m), it is: 
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According to the DIN-EN (up to 300 m), it is: 
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All the previous models neglect the variation of air density with height. In Backström 

et al. (2008) the following expression is proposed: 
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where ρ0 = 1.25 kg/m3. 

 

As shown in Figure 2.4, the profiles of mean wind and turbulence intensity 

recommended by the Codes do not differ significantly at low heights. The H&D model 

predicts much larger integral scales. This issue is further commented by Harris (1986), 

because the large values imply, from the structural point of view, an increase in the 

quasi-static response and a decrease in the dynamic response. The question about the 

representativeness of such large values is still open today. 



                                                                            Chapter 2. Risk scenario for SUPPs technology 
 

37 

 
Figure 2.4 Mean wind profile: ESDU, EN, DIN-EN 

 

 
Figure 2.5 Turbulence intensity: ESDU, EN, DIN-EN 

 

 
Figure 2.6 Integral length scale: ESDU, EN, DIN-EN 
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2.3.2 Experimental and numerical investigation of the ABL 

Up to around 300 m, wind velocities can be accurately measured at sufficiently high 

frequency resolution (for example by means of anemometers on high towers, Figure 

2.7). Therefore, the structure of wind turbulence up to that level is deeply investigated 

in literature (Peil et al., 1990, 1992, 1996; Clobes et al., 2009; Clobes&Willecke, 

2009).  

 
Figure 2.7 Gartow tower (344 m) equipped with anemometers  

(picture from http://www.is.tu-braunschweig.de/) 

 

As briefly mentioned in the previous section concerning strong wind conditions, there 

are still many open problems in the nature of wind at large heights. Recommendations 

of the Codes of practice are usually limited to 200-300 m. The ESDU Data Items 

provide profiles which are valid up to the boundary layer height, but there is 

considerable uncertainty in many parameters, for example the integral length scales of 

turbulence. Moreover, in light wind conditions the mean wind profile can assume 

different shapes and no information is currently codified for the designer of super-tall 

structures. Further investigation in the Ekman layer is thus needed. This section aims 

at providing an overview of the technologies which are available nowadays to 

investigate the atmospheric boundary layer at large heights. 
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Field experiments at large heights 

Above 300 m, no experimental evidence is currently available for the purpose of 

structural wind engineering. It does not mean that no experimental evidence is 

available at all. In fact, measurements are usually performed at large heights (1000-

1500 m) by meteorologists. However, for structural design, specific requirements 

should be fulfilled: 

 

- sufficiently high frequency resolution, in order to measure turbulence 

fluctuations;  

- spatial averages over big volumes should be avoided;  

- relatively small distance between simultaneous measuring points, to calculate 

cross-correlations. 

 

With regard to the design in the ultimate limit state, only the shear production of 

turbulence (due to surface friction) and not the buoyancy forces arising from 

convective motions and thermal stratification of the atmosphere should be considered. 

It corresponds to neutral stratification of the atmosphere. In these conditions, the 

scatter of data due to the thermal effects is much reduced, so that a more defined 

pattern can be evaluated (e.g. power- or log- law for the mean wind profile). 

Moreover, in the ideal condition of neutral atmosphere, wind is a stationary random 

process, in the sense that statistics are invariant with time. Instead, thermal effects, 

convective motions of the atmosphere and buoyancy production of turbulence play a 

role in light wind conditions. This is a wide field of research in meteorology. For this 

reason, the instruments that have been used since long time ago to measure wind at 

large heights are normally required to work only in light wind conditions.  

For example, measurements with balloons and aircrafts are possible even at high 

altitudes. Examples of airborne measurements are reported in Figure 2.8 and Figure 

2.9. Such aircrafts do not fly if the wind speed is higher than 10 m/s. In fact, accuracy 

of these measurements depends on the relative velocity of the aircraft and the wind 

speed, and it is much affected if they are of the same order. 

Balloons represent a less expensive technique than aircrafts for atmospheric 

investigation. They can be tethered or free balloons. Measurements can be performed 

either along the vertical while the balloons are flying up, at a fixed point if they are 

tethered or in the mean wind direction, as they are transported by the flow. Kites are 

another choice. Again, the use of these instruments by meteorologists is only limited to 

light wind speeds. 
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Figure 2.8 Aircraft measurement 

during the field campaign in Emden, 

Germany, 2008 (Kroonenberg v.d., 

2009) 

Figure 2.9 Turbulence probe Helipod, field campaign 

in the Baltic sea (Bange, 2007) 

 

The type of measurements described above fall in the broad category of in-situ 

sensors, because the sensing instrument (mounted either on towers, aircraft or 

balloons) lies in the probe volume. Another category is that one of remote sensing 

instruments. They can be mounted at ground level, on aircrafts or even on satellites. 

Their peculiarity is that they do not have a sensing element within or around the 

volume of interest. They infer atmospheric properties through their effects on acoustic, 

microwave and optical signals propagation through the air. They can be classified into 

three main groups:  

 

- acoustic waves are used by SODARs (Sonic Detecting And Ranging) 

- light waves are used by LIDARs (Light Detecting and Ranging) 

- radio waves are used by RADARs (RAdio Detecting And Ranging) 

 

The wind speed is measured through the doppler effects (in fact, the proper names of 

the instruments would be doppler-SODAR, doppler-LIDAR, doppler-RADAR). The 

doppler effect consists in the change of frequency between the emitted signal (known 

and fixed) and the returned signal. The latter depends on the velocity of the air 

particles which scatter the signal back. This shift in phase is the necessary information 

to calculate the velocity of air particles, that is the wind velocity. 
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Figure 2.10. Movable mono-static Doppler SODAR with three antennas for the measurements 

of mean wind and turbulence profiles (Emeis, 2010) 

 

Some SODAR campaigns have been recently performed (e.g. Tamura et al., 2007), but 

results are only available for the mean wind up to 500 m. In fact, the main limit of 

SODARs is that they measure over an averaging time of several minutes (e.g. 30) and 

the resolution of measurements decreases with height. Thus, it is not possible to have 

good results above 400-600 m. This height decreases as the wind speed increases, 

because the backscattered signal tends to be displaced away from the receiver by the 

wind itself. 

RADARs are not addressed in this context since their resolution of wind 

measurements is low for the scopes of structural engineers. The reason is that the radio 

wave is not so well aligned. Instead, conceptually similar but much more focused and 

precise is the light wave used by LIDARs. High frequency measurements are possible 

with these instruments, thanks to the high speed of light. Moreover, atmosphere can be 

investigated up to some kilometers, even if with a decreasing resolution as height 

increases.  

Turbulence measurements using lidars are still a subject of research and the method of 

analysis of data is not fully established, yet. An attempt to answer the question “Can 

the available wind lidars measure turbulence?” has been recently presented in Sathe et 

al. (2011).  

Conical scanning is the usual mode of operation of a wind LIDAR (see Figure 2.11), 

in order to measure vertical profiles of the three-dimensional wind vector. In fact, as 

the signal sweeps around the conical surface, at each altitude several measurements 

around the circumference are available. They are all needed to provide information 

about the wind speed at the circumference centre. However, as the height increases, 

the radius of the circumference increases, so that big horizontal distances are swept at 

high altitudes, providing information for wind speed only at the circumference centre.  
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Figure 2.11 Conical scanning pattern of a wind LIDAR in order to measure profiles of the 

three-dimensional wind vector (Emeis, 2010) 

 

Usually, the signal is transmitted in pulses (Range-resolved remote sensing systems), 

which are then scattered by atmospheric inhomogeneities or suspensions (e.g., aerosol, 

droplets), sending a small fraction of the transmitted energy back to the receiver. 

Distance to the measurement volume is determined by the time of flight of the signal 

pulse. The state of the art of LIDAR techniques for wind and turbulence measurements 

by using signal delay for range determination is given by Hardesty & Darby (2005) 

and Davies et al. (2003). An important point is the spatial resolution, i.e. the volume 

on which the measured wind speed is averaged. If the signal is sent in pulses in a 

certain direction, the spatial resolution is related to the distance swept by the pulse in 

the time interval. Due to the high speed of light, it is in the order of tens of meters (see 

Figure 2.12). Such a spatial average over big volumes is sometimes useful, for 

example for applications in the field of wind turbines (Emeis et al., 2007; Mikkelsen et 

al., 2008). In fact, the average volume is in the order of the volume swept by a blade of 

a wind turbine, thus it is some good information to design the rotor. 

 

 
Figure 2.12 Sketch of the operation principle of the Leosphere Windcube  

(Waechter et al., 2009) 
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A transportable continuous-wave wind LIDAR (Figure 2.14) has been recently 

designed and built (Emeis, 2010). The system emits a continuous-wave beam, so that 

detection of the wind speed at a given range is achieved by focusing, rather than by the 

time-of-flight method of pulsed systems (range determination by beam focusing). The 

system cannot distinguish between air motion towards and away from the LIDAR, and 

this leads to an ambiguity of 180° in the derived value of wind direction. This is easily 

resolved, however, by making reference to a simple wind direction measurement at a 

height of a few meters. The profile of the three-dimensional wind vector is yielded by 

scanning a cone with a 30° half angle once per second (Banakh et al. 1995, Emeis et 

al. 2007a, Kindler et al. 2007). Hence the diameter of the measured volume is 173 m at 

a height of 150 m. The probe length increases roughly as the square of the height. As 

an example, the vertical resolution is ~ ± 10 m at a height of 100 m. Strong reflections 

from particles and other moving objects outside the focal range (e.g. due to smoke, fog 

or birds) can lead to spurious Doppler returns (Harris et al. 2001), but these effects can 

be recognized and mitigated by signal processing techniques. 

 

  
Figure 2.13 Small pulsed Doppler wind LIDAR for 

measurement of wind profiles in a height range 

between 40 and 200 m. Distance determination by 

pulse travel time (Emeis, 2010) 

Figure 2.14 Small continuous-wave 

Doppler wind LIDAR for 

measurement of wind profiles in a 

height range between 10 and 200 m. 

Distance determination by beam 

focusing (Emeis, 2010) 

 

Within the context of this dissertation, field measurements have not been available. 

Moreover, the concern in the Thesis is mainly on strong wind conditions, which so far 

have never been investigated in any experiment. However, the field of research on 

full-scale wind measurements at large heights is currently very active and in rapid 

development. For example, sophisticated mathematical models are being developed to 
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manage the major and unavoidable problem of spatial average as the height increases 

(see Emeis, 2010).  

Numerical simulations of the atmospheric boundary layer 

Numerical simulations of the atmospheric boundary layer are an alternative and a 

support to field measurements. For example, Canadillas (2010) presents the 

investigation of the marine boundary layer by means of a PArallelized Large eddy 

simulation Model (PALM Code), developed at the Institute of Meteorology and 

Climatology of the Leibniz University of Hannover (Raasch&Etling 1991, 1998 and 

Raasch&Schröter, 2001). Examples of results achievable with LES are reported in 

Figure 2.15 and compared to field data (Canadillas, 2010). In this case, the simulation 

is performed in neutrally stratified conditions of atmosphere. Such conditions are often 

achieved in the marine boundary layer even at low wind speeds (the ocean surface and 

the air flowing above it nearly have the same temperature), so that a comparison with 

field data can be made. However, these well-defined meteorological conditions (no 

large-scale advection, homogeneous surface, stationary conditions), like over the sea, 

should not be easily expected over land on heterogeneous terrain, so that such a 

comparison with observations is generally extremely difficult.  

 

 
 

Figure 2.15 Normalized one-dimensional 

spectra of the horizontal wind velocity 

fluctuations: comparison between LES 

simulation of the marine boundary layer 

(red) and field data (blue) (Canadillas, 

2010) 

Figure 2.16 Autocorrelation function for the 

horizontal wind velocity fluctuations: 

comparison between LES simulation of the 

marine boundary layer (red) and field data 

(blue) 

 (Canadillas, 2010) 

 

2.3.3 The Coriolis force 

An analytical expression of the Ekman spiral was previously described (equation 

(2.17)) and a useful approximation to define angle of turn of the mean wind profile is 
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included in the H&D model (equation (2.25)). However, two further questions need 

some attention:  

1) which is the effect of the Coriolis force on turbulence;  

2) which model should be used in tropical regions, where the Coriolis force is 

small (and becomes zero at the equator). In fact, the H&D model is a mid-

latitude model.  

These questions are addressed in the following. 

The Coriolis force in the equations for turbulent departures 

Equations for mean variables in turbulent flow have been previously introduced. In 

particular, equation (2.7) expresses the conservation of momentum. Turbulent 

departures of the variables are the deviations from their respective means. The 

equations for the variance of the wind speed are obtained by expansion of the 

momentum conservation equation and subtraction of the mean part. Such equations 

contain the local storage of variance, the advection of variance by the mean wind, the 

buoyancy production, the shear production, the turbulent transport term describing 

how variance is moved around by the turbulent eddies, the pressure redistribution term 

describing how variance is redistributed by pressure perturbations and the viscous 

dissipation term. The Coriolis term, instead, is identically zero for velocity variances 

(Stull, 1988).  

Phisically, this means that Coriolis force cannot generate turbulence kinetic energy. 

The Coriolis term merely redistributes energy from one horizontal direction to another. 

Furthermore, the magnitude of the redistribution term is about three orders of 

magnitude smaller than other terms. For this reason, the Coriolis terms can be 

neglected in the turbulence equations, even for the cases where they are not identically 

zero (Stull, 1988). 

The Coriolis force in tropical regions 

The equations of motion, which describe all types and scales of atmospheric motions, 

are derived by the second Newton’s law: “the rate of change of momentum of an 

object referred to coordinates fixed in space equals the sum of all the forces acting”. 

Such forces are: the pressure gradient force, the gravitational force and friction. 

Moreover, since the motion in the atmosphere is usually referred to a coordinate 

system rotating with the Earth, the Newton’s second law can still be applied provided 

certain apparent forces: the centrifugal force and the Coriolis force. 

The centrifugal force is the force that an object at rest experiences in a rotating system. 

Usually, its effects are combined with those of the gravitational force, by defining a 
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gravity force which is everywhere directed normal to the local level. The Coriolis 

force is the force that a moving object (e.g. an air particle) experiences in a rotating 

system. Therefore, the Newton’s second law for motions relative to a rotating 

coordinate frame – written in the notation used by Holton (1979) – is: 
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The left-hand side represents the substantial derivative of wind flow (local + advective 

acceleration), while the terms on the right-hand side represent the Coriolis force, the 

pressure gradient force and the friction force. This is consistent with what has been 

described before. However, a deeper analysis is required to better understand the flow 

movements even at low latitudes. 

If such an equation is written in spherical coordinates, being x the westward direction, 

y the northward direction and z the upward direction, it is (Holton, 1979): 
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where ϕ is the latitude and a the radius of Earth. 

They are the complete equations for all motions in the atmosphere. Now, let us 

consider the synoptic scale motions, i.e. those systems of typically several hundred 

kilometers in horizontal direction. Characteristic scales of the field variables based on 

observed values for mid-latitude synoptic systems are (Holton, 1979):  

 

- U ~ 10 m/s = horizontal velocity scale 

- W ~ 10-2 m/s = vertical velocity scale 

- L ~ 106 m = length scale 

- D ~ 104 m = depth scale 
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- Δp/ρ ~ 103 m2/s2 = horizontal pressure fluctuation scale 

- L/U ~ 105 s = time scale 

 

In the free atmosphere, i.e. by neglecting friction, an order-of-magnitude analysis of 

the equations shows that at mid-latitude the pressure gradient force and the Coriolis 

force are of the same order of magnitude (10-3 m/s2) and approximately in balance, 

while all the other terms are one or more orders of magnitude smaller. Thus, the 

geostrophic approximation – which describes the familiar situation in which the wind 

blows parallel to the isobars and the Coriolis force balances the pressure gradient force 

– turns to be confirmed. In other words, being Ug and Vg the horizontal components of 

the gradient wind, it is: 
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At lower altitudes, i.e. within the atmospheric boundary layer (ABL), the equations of 

motion are approximately a tree-way balance between the pressure gradient force, the 

Coriolis force and friction (see Figure 2.17 and Figure 2.18). 

 

  
 

Figure 2.17 Balance of forces within the ABL 

at mid-latitudes 

 

Figure 2.18 Balance of forces in the free 

atmosphere at mid-latitudes 

 

If the same scale analysis of momentum equations is repeated in tropical regions, it 

turns out that it is not appropriate to assume that the Coriolis force term balances the 

pressure gradient. As the Coriolis force becomes smaller, the pressure gradient must be 
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balanced by the inertial acceleration term. As a consequence, in order to satisfy such a 

balance, for synoptic scale systems in tropical regions characterized by the same 

horizontal length and velocity scales as in mid-latitudes, the pressure gradient force is 

an order of magnitude smaller than at mid-latitudes (Holton, 1979). 

Although it is only a rough calculation, it is apparent that large scale motions on the 

so-called equatorial beta-plane, i.e. in the tropical region including the effect of 

variation of the Coriolis force with latitude, are much more complicated and result in 

wave motions involving the balance between pressure gradient forces, inertial forces 

and a varying Coriolis force (latitude-dependent). Unfortunately, there is not as yet a 

single unifying theory for tropical motions comparable to the quasi-geostrophic theory 

for mid-latitude motions. This matter, which was firstly posed by Matsuno in 1966 (“is 

there quasi-geostrophic motion even at the equator?”), is still of relevance even today 

in Physics of the Atmosphere (e.g. Verkley&Velde, 2010). 

Therefore, for wind engineering purposes, there is no other theory available which 

includes the effect of the Coriolis force on the mean wind by solving the equations of 

motion, apart from those proposed for mid-latitude models (e.g. Ekman, 1905 or 

Harris and Deaves, 1980) and addressed in section 2.3.1. They assume the geostrophic 

approximation in the free atmosphere, i.e. the balance between the Coriolis and the 

pressure gradient force. Therefore, the question is: to which extent, in terms of 

latitude, can we assume that these theories are approximately valid? The answer to this 

question is as follows: the horizontal frictionless flow can be approximated like 

geostrophic flow if the inertial acceleration term is sufficiently smaller than the 

Coriolis force. A convenient measure of the acceleration magnitude compared to the 

Coriolis force may be obtained by forming the ratio of the characteristic scales for the 

acceleration and the Coriolis force terms: 
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This ratio is a non-dimensional number called the Rossby number (Ro). Thus, the 

smallness of the Rossby number is a measure of the validity of the geostrophic 

approximation. At mid-latitudes (being U ≈ 10 m/s, f = 2Ωsinφ ≈ 10-4 m/s, L = 106 m), 

it results Ro ≈ 0.1. At lower latitude, e.g. 10°, Ro ≈ 0.4, but only at 4° Ro changes its 

order of magnitude (≈ 1.0). For this reason, it can be assumed that the geostrophic 

approximation can be accepted up to a latitude of about 4°. Being on the safe side, the 

lower limit for latitude can be set at 10° (Houghton, 1977). In view of the solar updraft 
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tower design, such a limit encloses most of the possible locations for solar towers (see 

Figure 1.3). It means that the models based on the (frictionless) geostrophic balance 

can be applied, within an acceptable range of approximation.  

However, even if the H&D model approximation is still acceptable at relatively low 

latitudes, the failure of the model is physically motivated by the different type of 

storms creating strong winds near the equator, which should be reflected in the design. 

This issue is addressed by Irwin (2009). The types of storms near the equator tend to 

be local, e.g. thunderstorms, and in these storms the boundary layer depth is limited by 

the small scale of the storm and not by Coriolis effects. 

2.3.4 Tropical cyclones and tornadoes 

Tropical cyclones and tornadoes are not included in this work. In these motions the 

Coriolis force is always of secondary importance with respect to the acceleration term 

in the equations of motion.  

Tropical cyclones (called hurricanes in the Atlantic and typhoons in the Pacific) are 

intense vertical storms which develop over tropical oceans in regions of very warm 

surface water. They are characterized by a horizontal scale of the region where 

convection is strong of about 100 km in radius. Maximum tangential wind speeds in 

these storms range typically from 50 to 100 m/s. For such high velocities and 

relatively small scales, the centrifugal force term cannot be neglected compared to the 

Coriolis force. It means that, to a first approximation, the radial force balance in a 

steady-state hurricane satisfies the gradient wind relationship (equation (2.49)), but not 

the geostrophic balance. 
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Anyway, tropical cyclones rapidly degenerate when they move on land and, as can be 

seen in Figure 2.19, they do not affect possible locations for solar towers. 

Besides tropical cyclones, tornadoes are not considered in this Thesis as well. In fact, a 

methodology to design structures against tornadoes does not exist. Haan et al. (2008) 

designed a large tornado simulator for wind engineering applications, but physical 

model testing in wind tunnels is still in need of further development (Irwin, 2009). 

Usually, tornadoes are only treated in terms of their probability of occurrence 

(Goliger&Milford, 1998) and the great majority of structures (with exclusion of 

nuclear reactors and other critical facilities) is not designed to withstand them. 
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Figure 2.19 Principle tracks and intensities of tropical cyclonic storms 

 

 

2.4 Structural vulnerability of the tower to the wind action 

So far, it is known that the structural vulnerability of the solar tower to the wind action 

can be significantly reduced by applying stiffening rings along the height (Figure 1.9, 

Figure 1.12, Figure 1.13). As explained in several publications about solar towers 

(Goldack, 2004; Backström et al., 2008; Krätzig et al., 2008-2009a,b; Lupi, 2009, 

2011; Niemann et al., 2009; Harte et al. 2010; Borri et al., 2010), the stiffening rings 

guarantee a beam like behaviour at the first eigenmode, reduce ovalling deformations 

of the shell, increase buckling safety and improve the distribution of internal forces. 

This is the same concept as for steel chimneys, which was first investigated by 

Peil&Nölle (1988) and constitutes the basis of the rule in the German Standard DIN 

4133. 

 

Figure 2.20 shows the natural vibration modes of the tower depicted in Figure 1.13, 

that is the reference structure in the Dissertation. The calculation on the left-hand side 

is done in absence of stiffening rings. The shell-like behaviour (modes with three and 

two waves, respectively) definitely predominates. Instead, in case of ten stiffening 
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However, even if the predominant behaviour of the solar tower is a beam-like bending 

mode, relevant shell stresses still arise, especially in the vicinity of the stiffening rings 

and in the tip region. The local effects in the vicinity of the stiffening rings are 

evaluated in Chapter 7. In the tip region, the ovalization of the shell is evident in 

Figure 7.57, where at high levels compressive forces arise at stagnation and lateral 

tension is present at the flanges. Therefore, even if the beam-like calculation of the 

structure provides a good estimation of global effects, it would not be sufficiently 

representative in view of the design. This is confirmed by Peil&Nölle (1988), who 

investigated the stress distribution in steel chimneys and proposed a simple formula 

(introduced in the Eurocodes) to identify the admissible shell geometries, i.e. those 

geometries that can be calculated by the beam theory. It depends on geometric 

parameters like H/R and R/t, being H, R and t the height of the tower, the radius and 

the wall thickness, respectively. The equation for allowable shell geometries is given 

by Peil&Nölle (1988): 
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In the case of the solar tower, it results (measures are in m): 
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It is then clear that the enhancement of the beam-like behaviour by introducing 

stiffening rings is a strategy of risk mitigation, because it reduces the structural 

vulnerability (especially to the wind action), but the design cannot neglect the shell-

like behaviour.  

 

In addition, the presence of rings is crucial in order to reduce the structural 

vulnerability to vortex shedding. The frequency of shedding (ns) is conveniently 

represented in non-dimensional form by the Strouhal number: 
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where D is the diameter of the cylinder and U is the wind speed. For circular cylinders, 

St is of the order of 0.18-0.2 (but it varies with the Reynolds number). As wind speed 

increases, the dominant frequency of vortex shedding ns increases, until the critical 

flow velocity Ucr is reached. It happens when ns is close to a natural frequency of 

vibration of the body. At the critical flow speed, a significant amplification of the 

across-flow forces occurs and large amplitude of across-flow oscillations can result.  

The amplitude of the induced oscillations depends on the Scruton number: 
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where mi,e is the equivalent mass of the structure per unit length corresponding to the 

i
th mode of vibration and ξi is the damping ratio corresponding to the i

th mode of 

vibration. If the Scruton number is large, the motion induced by the vortex shedding 

will not exceed a few per cent of the diameter, although fluctuating forces induced by 

vortex shedding will still be present. Instead, if the Scruton number is small, the 

motion of the body has a significant influence on the strength of the vortices shed and 

the forces induced by them, which in turn affect the oscillation amplitude. It is an 

aeroelastic effect. 

When the amplitudes of oscillation are small, the fluctuating forces are generally 

random in nature, with significant energy distributed over a relatively broad band of 

frequencies centered on ns. In this case, the distribution of the vortex-induced 

fluctuating forces along the length of the cylinder is also disorganized, which means 

that the maximum value of the fluctuating force does not occur simultaneously at all 

positions along the cylinder. The resulting response is a broad-band response of 

random amplitude nature at approximately the body frequency. For larger amplitudes 

of oscillation, the local forces due to vortex shedding are amplified. In such cases, the 

motion of the structure tends to cause the shedding frequency ns to “lock-in” to the 

body frequency nj over a range of local flow velocities. The fluctuating forces at 

various sections along the structure in the lock-in region are in phase with the body 

motion and thus completely correlated with each other, further enhancing the response. 

These forces are nearly periodic in nature, with significant energy confined to a 

relatively narrow band of frequencies centered on the body frequency nj. The resulting 

response is a narrow-band response of an almost constant amplitude of sinusoidal 

nature at approximately the frequency nj. 
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Solar towers are characterized by small Scruton numbers, therefore the lock-in 

phenomenon may be dangerous. However, the critical wind speed at which it would 

occur is so high that, in practice, it cannot be reached. It is primarily due to the aspect 

ratio of solar towers, which is generally not too high. It reduces the sensitivity to 

vortex-induced oscillations. In addition, the presence of the ring beams along the 

height is very important, because the beam-like behaviour at the first eigenmode 

increases the critical velocity, as calculated in the following. 

The critical wind speed for 1-kilometer tall tower with ten stiffening rings (n1 = 0.17 

Hz), corresponding to a beam-like bending mode, is calculated as (by assuming D = 

150 m, like in Figure 1.13 at the tower top): 

 

5.127
20.0

150*17.01 ===

t
S

Dn

cr
U  m/s (2.54) 

 

As regards the ovalling modes of vibration, the critical wind speed corresponding to 

the second mode, characterized by two waves around the cross-section (n1 = 0.31 Hz), 

can be calculated as: 

 

25.116
20.0*2

150*31.0

2
2 ===

t
S

Dn

cr
U  m/s (2.55) 

 

The Codes require that the critical wind speed is at least 25% higher than the design 

wind speed, assumed for a period of 50 years. Such requests are largely satisfied. 

However, in absence of rings (or with a few rings, like one or two, see Lupi (2009)), 

the critical velocity would be much lower. For example, if n1 = 0.073 Hz and there are 

three waves, like in Figure 2.20, the critical velocity would have been only 18 m/s. In 

this case, the amount of steel reinforcement and width of cracks are secondary aspects, 

because the collapse of the structure would likely be produced by aeroelastic effects 

due to the lock-in. 

 

 


