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ABSTRACT
Although in high income countries rheumatic heart
disease is now rare, it remains a major burden in low
and middle income countries. In these world areas,
physicians and expert sonographers are rare, and
screening campaigns are usually performed by nomadic
caregivers who can only recognise patients in an
advanced phase of heart failure with high economic and
social costs. Therefore, great interest exists regarding the
possibility of developing a simple, low-cost procedure for
screening valvular heart disease. With the development
of computer science, the cardiac sound signal can be
analysed in an automatic way. More precisely, a panel of
features characterising the acoustic signal are extracted
and sent to a decision-making software able to provide
the final diagnosis. Although no system is currently
available in the market, the rapid evolution of these
technologies recently led to the activation of clinical
trials. The aim of this note is to review the state of
advancement of this technology (trends in feature
selection and automatic diagnostic strategies), data
available regarding performance of the technology in the
clinical setting and finally what obstacles still need to be
overcome before automated systems can be clinically/
commercially viable.

INTRODUCTION
Over the past few decades, the prevalence and
natural history of valvular heart disease (VHD)
have changed dramatically in developed nations
where rheumatic heart disease (RHD) is now
uncommon and residual VHD is mostly degenera-
tive.1 Conversely, in low and middle income coun-
tries (LMIC), RHD remains a major burden2 and
VHD causes most of the cardiovascular morbidity
and mortality in young people.3 In Nepal, RHD is
the second most common cause of hospital admis-
sion (21%) preceded only by coronary artery
disease (43%).4 In China, where the mortality rate
from stroke is three times than that from coronary
heart disease,5–7 one out of six cases of atrial fibril-
lation is due to RHD.8–10 The global prevalence of
VHD may even increase in the next future because
of the increasing population age and life expect-
ancy in LMIC. The diagnosis and risk stratification
of patients with VHD are nowadays mainly guided
by echocardiography. Although low-cost portable
instruments are now available, skilled physicians
and expert sonographers are rare in LMIC.
Furthermore, universal healthcare is often not avail-
able in LMIC where skilled personnel often work
in the private sector. Therefore, great interest exists
regarding the possibility of developing a simple,
low-cost diagnostic procedure for population
screening.

The function of heart valves is conventionally
explored during physical examination by using the
stethoscope and a diagnosis can be made accord-
ingly. This approach may have limitations because
it requires training11 and also because human per-
ception of the initial qualitative alterations of
heart sounds might be limited. Electronic stetho-
scopes can provide the ability to record in digital
format the sound of the patient’s heart, even fre-
quencies not audible by the human ear, with the
achievement of high levels of quality. Most import-
antly with the development of computer science,
the cardiac sound signal can now be analysed in
an automatic way. Therefore, in recent years,
special attention was paid to create a machine that
can give a trusted answer to the question: ‘does
the patient have a pathological heart murmur?’
Although no system is currently available in the
market, the rapid evolution of these technologies
recently leads to the activation of clinical trials.
Those systems follow a two-step process: in the
first step, cardiac sound is analysed and a panel of
features characterising the acoustic signal are
extracted; second, extracted features are sent to a
decision-making software which provides the final
diagnosis.
The aim of this note is to review various

approaches currently used to extract and select fea-
tures and to reach an automatic diagnosis.

CARDIAC SOUND ANALYSIS AND FEATURE
EXTRACTION
The first step in the analysis of acoustic signal is the
extraction of parameters which will be used by the
decisional system to reach the diagnosis. Parameters
may be extracted both in the time and frequency
domain. Most of researches segmented the cardiac
cycle in the time domain. When the first (S1) and the
second tone (S2) are identified, systole and diastole
can be recognised; the presence and time location of
murmurs (systolic and diastolic) can thus be used as a
diagnostic element for cardiac abnormalities.12–15

The time domain analysis showed its validation and
simplification for distinguishing the normal and
abnormal heart sounds, but its value for murmur
characterisation is limited. Murmurs are indeed char-
acterised by parameters which can be extracted in the
frequency domain. The range of frequencies of dia-
stolic murmurs is usually larger than for systolic ones.
Therefore, many researches focused on murmur
characterisation in the frequency domain and Fourier
transform (FT) or wavelet decomposition are now
commonly used tools.
Signal characteristics that are not time–frequency

related require a different non-linear approach.
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Time domain
Time related features can be extracted directly from the acoustic
signal, represented in its temporal progression. In these cases,
the signal does not undergo geometric or mathematical transfor-
mations; the phases of the cardiac cycle are still perfectly recog-
nisable and identifiable. Features extracted with this approach
are the time intervals between the various heart sounds, the
amplitude (or intensity) and heart rate (table 1).

Frequency domain
A very large number of features can be extracted by exploring
the signal in the frequency domain (table 1).16 17 27 28

Magnitude and phase characterise the frequency content; power
spectrum is useful to characterise periodic signals; and energy
spectrum is especially useful for time limited portions of the
signal.

Analyses are usually performed with the FT and the wavelet
transform (WT), often combined in the same algorithm.

1) FT: considers the signal as a sum of sinusoids. The short
time FT (STFT) is obtained by calculating the FT of sequential
portions of the time signal by applying a shifting window. The
location of the window gives the time dimension to the fre-
quency analysis. Window length is critical when using STFT
because a wide window gives complete frequency information
but does not follow the physiological signal short time variation.
On the other hand, a small window reduces the frequency reso-
lution. STFT allows distinguishing S1 and S2 because of their
different frequency extent.17 The frequency domain also allows
characterising the range of frequencies (bandwidth) of murmurs,
which is usually larger for diastolic than for systolic ones.45

The SD of the duration of intervals from S1 and the point of
maximum intensity within each cardiac cycle, the mean value of
such intensity, and the distance between S1 and the beginning of
the systolic murmur are three significant distinguishing features
identified by El-Segaier et al.24 Information obtained in the fre-
quency domain (envelopes of autocorrelation functions) may
also allow for a method that does not require heart sound seg-
mentation.30 A different approach based on cepstrum analysis
(the result of taking the FT of the logarithm of the estimated
spectrum of a signal)18 has been very successful as a feature
vector for representing the human voice and musical signals.
Unfortunately, there is too little literature on the implementation
of this type of feature analysis of heart sounds, and so it is diffi-
cult to understand the reliability of this approach.

2) WT: This method of signal analysis allows obtaining high-
resolution time and frequency information simultaneously. The
main difference with the FT is that the wavelets are localised in
both time and frequency whereas the standard FT is only loca-
lised in frequency. A WT plot is generally a 3D diagram in
which the amplitude of each frequency of the signal is related to
time.45 A high number of features can be extracted using a WT
approach. Turkoglu et al35 extracted 13 coefficients using a
wavelet decomposition method. Then, the STFT of wavelet
coefficients, performed at seven different frequency intervals,
was used to obtain 91 wavelet entropy features.35 Andrisevic
et al33 used the wavelet techniques to de-noise and prefilter
heart sounds. The WT plot of a whole cardiac cycle was then
reorganised as a vector and taken as input of the classifier.33

Choi and Zhongwei32 presented a method in which only two
features were extracted from the autoregressive spectral

Table 1 Feature selected from the acoustic signal

Domains and features Definition References

Time domain
t-start/t-end Timing (start and end) of the event within the cardiac cycle 16–21

I mean Mean intensity of the selected portion of the signal 16, 17, 21–23

I max/I min Maximum and minimum intensity of the selected portion of the signal 16, 22, 24

AR coeff Autoregressive model parameters 25

Frequency domain
Freq mean Mean frequency of a selected portion of signal 24

Freq max–min Maximum–minimum frequency of a selected portion of signal 22, 24

Freq fund Fundamental frequencies over the cardiac cycle 20, 21, 26

FFT-STFT sampling Sampling (1–3 Hz resolution) of FT spectrum in the 0–255 Hz interval 17, 23, 27–29

ENER (s) Energy or energy envelope values of the frequency spectrum 16–18, 20, 21, 30, 31

P (s) Mean spectral power 24, 26

Fmax Frequency index of the maximum peak value of normalized autoregressive power spectral density (NAR-PSD) curve 32

Fwidth Frequency elapse between the crossed points of NAR-PSD curve on THV 32

WL sampling Sampling of the wavelet transform spectrum 33, 34

Ca-Cd Wavelet decomposition approximation and detailed coefficients 15, 18, 30, 35–39

P (ws) Power values of wavelet decomposition levels 40

ENER (ws) Wavelet energy coefficients 41, 42

E (ws) Wavelet entropy from a fixed frequency interval of the spectrum 26, 35–37

CC Cepstrum coefficients 18, 23, 41

MMPs Multivariate matching pursuit coefficients 43

Non-linear and chaotic domain
Gini index An index of the statistical dispersion of a variable 36

GMM Gaussian mixture model 37

VFDs Variance fractal dimension values 37

S (i) Simplicity values of selected portions of the signal 19, 44

LLE Maximum of the Lyapunov exponents 19, 20, 41
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envelope after a wavelet-based analysis of the acoustic signal. In
this case, the manipulation of the signal was minimal and easy,
the features being simply extracted from the plot of the enve-
lope. Starting from an initial set of 83 features obtained by
decomposing a matrix of continuous WT values, Chen et al36

selected a final set of 26 features as input of the classifier by
using the sequential floating forward selection. Yuenyong et al30

based their classification system on 35 features extracted with a
WT approach (the values of the signal energy of 32 non-
overlapping windows, the number of peaks detected, the mean
distance between two consecutive peaks, and signal energy of
the whole segment). It is now recognised that WT applications
have a better performance than FT, regardless of the decisional
instrument.

Non-linear and chaotic domain
Physiological signals often vary in a complex and irregular
manner. Analysis of linear statistics such as mean values, vari-
ability measures and spectra of such signals generally does not
address directly their complexity and useful information may be
missed. Non-linear dynamics, of which Chaos Theory forms an
important part, have been used to extract signal characteristics
that are not time–frequency related. Ahlstrom et al37 combined
‘traditional’ parameters obtained in the time and frequency
domains with other non-linear and chaotic features.37 Nigam
and Priemer44 used a non-linear feature (simplicity index of the
signal) to identify S1, S2 and murmurs in the cardiac cycle. The
most used fractal parameters are the Lyapunov exponents (for-
mally the quantity that characterises the rate of separation of
infinitesimally close trajectories of a dynamical system). The
maximum of these exponents determines a notion of predict-
ability for a dynamical system. Using a database of 164 phono-
cardiographic recordings, Delgado-Trejos et al41 tested the
accuracy of the system using several combinations of time-
varying and time–frequency features, perceptual, and fractal
features. Fractal type features were the most robust family of
parameters (in the sense of accuracy vs computational load) for
the automatic detection of murmurs, providing the best contri-
bution to accuracy (97.17%), followed by time-varying and
time–frequency (95.28%), and perceptual features (88.7%).
Accuracy around 94% was reached just by using the two main
features of the fractal family.41

DECISIONAL STRATEGIES AND CLASSIFIERS
Early approaches based on statistical models were overcome by
the development of computer science and the creation of a spe-
cific branch of artificial intelligence, machine learning, with its
different approaches.46 47

Each diagnosis is the result of a sequence of decisions which
may have different complexity. When evaluating the diagnostic
performance of an automated system, the structure of the classi-
fier used is to be considered with special attention. The structure
depends on the goal of the system which may be either to
screen normal from abnormal heart sounds or to identify a spe-
cific VHD. Systems following the first approach (healthy/patho-
logical) may be useful for mass screening camps in rural health
units as a preliminary investigation tool. These systems perform
a single binary response,37 and performance characteristics are
usually high (table 2). A second group of systems are designed
to offer a more advanced diagnosis. These systems are charac-
terised by sequential decision trees in which every stage gives a
binary (YES/NO) response to a specific question: a YES answer
ends the algorithm, a NO answer activates the next stage, until
the diagnostic output is produced.32 The final performance

characteristics of a sequential decision-maker are the product of
the sensitivity/specificity of each stage. Therefore, performance
characteristics, usually high at the first step (diseased/healthy),
reduce when the number of arborisations (and the final decision
classes) increases. Diagnostic performances (sensitivity and spe-
cificity) of proposed automated systems are reported in table 2.

Statistical model
The decision algorithm proposed by El-Segaier et al24 using a
stepwise logistic regression analysis has 95% sensitivity and 72%
specificity in distinguishing normal from pathological sounds.
Other systems are based on fuzzy clustering, a process of assign-
ing membership levels to assign data elements to one or more
class. The system by Nigam and Priemer,44 based on a fuzzy
clustering technique, had 73% sensitivity and 100% specificity
in detection of presence of systolic murmur.44

Machine learning
The three main machine learning based algorithms used to clas-
sify heart sounds are K-nearest neighbour (K-nn), artificial
neural network (ANN) and support vector machine (SVM).

These systems require a learning phase. The learning phase
for K-nn and SVMs is a single step process where systems are
fed with a set of known normal and pathological heart sounds
(training set) to train the system to screen pathological (training
phase). ANN requires a further step (test phase) on a different
data set (test set) to verify that the training is unbiased and that
the selected set of features is solid and fitting. When the data set
is limited, the test phase can be iteratively performed by recruit-
ing one observation each time for testing the ANN trained with
the remaining set of data ( Jack-Knifing method).27 28 At the
end of the learning phase, the performance of the system can be
assessed on the field.

1) K-nn classifier: The k-nn algorithm is one of the simplest
machine learning algorithms—an object is assigned to the class
most common among its k-nn values already correctly labelled
(k is a positive integer, typically small). These classifiers are typ-
ically computationally simple. Performance (accuracy) of a K-nn
classifier in the screening of cardiac valve disease (healthy/dis-
eased) was 86% when the system was fed with WT features18

and 97% with non-linear features.41

2) ANN: ANN emulates the architecture and property of
learning which characterise biological information systems,
being a network of interconnected processing nodes (neurones)
able to perform simple mathematical computation. A typical
neurone receives inputs from the neurones feeding into it from
which it generates an output. Its output is then disseminated to
the neurones that it feeds into. The interconnections are
weighted and modulate the inter-neuronal interactions. An
ANN derives its property of emergent learning from the malle-
ability of interconnection strengths.

ANN is the most used classifier in the automatic diagnosis of
heart sounds. The system developed by DeGroff et al27 misclas-
sified pathological cases (a case with pulmonary stenosis and a
case with an atrial septal defect) belonging to pathological
classes that were grossly under-represented in the training data.
These results show that ANN generalisation would improve
with better representation of all classes in the training data for
which more data would have to be collected.

Bhatikar et al28 developed a classifier with 252 neurones
input layer (corresponding to 252 bins in the discrete energy
spectrum with a range of 0–252 Hz and a bin size of 1 Hz), 15
neurones hidden layer and one binary output neurone (0,
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Table 2 Clinical evaluations of intelligent diagnostic systems for the detection of heart murmurs

Study Year
Data set (n=)
(controls/pts) Source Feature domain Classifier Sensitivity (%) Specificity (%) Accuracy (%) Diagnostic option

33 2005 5/14 ES WT ANN 65 71 – Healthy/diseased
44 2008 5/15 ES NL Statistical model 73 100 Healthy/diseased
25 2010 34/28 Self Time ANN 82 88 – Healthy/diseased
28 2005 88/153 Self FT ANN 88 83 – Healthy/diseased
16 2009 38/160 ES Time; freq SVM 88 95 – Healthy/diseased
22 2007 75/50 Self FT Statistical model 91 90 – Healthy/diseased
17 2010 147/234 Self FT ANN 91 94 – Healthy/diseased
36 2011 15/28 ES WT Statistical model 94 83 Healthy/diseased
24 2007 69/188 Self Time; FT Statistical model 95 72 – Healthy/diseased
35 2002 95/120 Self WT; FT ANN 96 94 – Healthy/diseased
20 2010 5/21 Self+ES Time; freq; NL SVM 96 96 – Healthy/diseased
42 2007 113/50 Self WT ANN 99 99 – Healthy/diseased
32 2010 196/293 Self+ES WT SVM 100 100 – Healthy/diseased
39 2004 1/4 ES WT ANN – – 100 Healthy/diseased
40 2007 110*/230* Self WT ANN – – 98 Healthy/diseased
23 2008 20/21 Self Time; FT Statistical model – – 96 Healthy/diseased
41 2009 50/98 Self NL K-nn – – 97 Healthy/diseased

WT K-nn – – 95 Healthy/diseased
18 2009 45/85 ES FT K-nn – – 73 Healthy/diseased

FT SVM – – 78 Healthy/diseased
WT SVM – – 81 Healthy/diseased
FT ANN – – 82 Healthy/diseased
WT K-nn – – 86 Healthy/diseased
WT ANN – – 86 Healthy/diseased
FT ANN – – 93 Healthy/diseased
FT K-nn – – 94 Healthy/diseased
FT SVM – – 95 Healthy/diseased

43 2011 35/35 Self NL ANN – – 93 Healthy/diseased
31 2011 9/35 ES FT SVM – – 95 Healthy/diseased
26 2005 159/47 Self FT; WT Statistical model 89 94 – Healthy/AS
34 2007 – Self WT ANN 93 98 – Healthy/MR
16 2009 38/160 ES Time; freq SVM 88 95 – Healthy/diseased

89 93 – Systolic vs diastolic

90 93 – AS vs MR
95 92 – AR vs MS

29 2012 40/80 Self FT Statistical model 100 98 – PS/MS or healthy
ANN 90 95 – PS/MS or healthy
K-nn 90 93 – PS/MS or healthy
Statistical model 90 100 – MS/PS or healthy
ANN 90 95 – MS/PS or healthy
K-nn 80 98 – MS/PS or healthy

32 2010 196/293 Self+ES WT SVM 100 100 – Healthy/diseased
– – 93 AR
– – 87 AS
– – 87 AF
– – 81 SPLIT
– – 90 MS
– – 82 MR

21 2004 84 Pts ES WT Statistical model – – 90 MR/AS
37 2006 7/29 Self WT; NL ANN – – 86 AS, MR, innocent
19 2008 5/21 Self+ES NL Statistical model 91 95 – Diagnosis (3 dec. steps)
38 2010 24/40 Self+ES WT SVM – – 94 Diagnosis (3 dec. steps)
40 2008 10*/130* Self+ES WT ANN – – 95 Diagnosis (2 dec. steps)

*Heart cycles.
AF, atrial fibrillation; ANN, artificial neural network; AR, aortic regurgitation; AS, aortic stenosis; dec. steps, decisional steps; ES, external source (training CD or online database); Freq,
frequency domain features; FT, Fourier transform; k-nn, K-nearest neighbour algorithm; MR, mitral regurgitation; MS, mitral stenosis; NL, non-linear features; PS, pulmonary stenosis; Pts,
patients; Self, self-recorded cases; SPLIT, split of second heart sound; SVM, support vector machine; Time, time domain features; WT, wavelet transform.
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innocent; 1, pathological),28 and high performance in the diag-
nosis of ventricular septal defect (88% sensitivity; 83%
specificity).

Pretorius et al17 combined the results of a series of six ANNs.
Each one of the six ANNs was designed to recognise the pres-
ence or the absence of a specific VHD (0, NO; 1, YES). The
average sensitivity at the four auscultation sites was 60%. When
using a subset of ANN combining registrations performed at the
four auscultation sites, 91% sensitivity and 94% specificity were
reached. Therefore, the number of auscultation sites is also
important.

3) SVM: SVMs are supervised learning models with associated
learning algorithms that analyse data and recognise patterns.
Given a set of training examples, each marked as belonging to
one of two categories, a training algorithm builds a model that
predicts whether a new example falls into one category or the
other. Multi-class classification follows a hierarchical structure.
Choi and Zhongwei32 created a decision-making tree composed
of six binary SVM modules classifiers having a set of the three
features named above as input. The system recognised abnormal
cardiac sound with 99.9% sensitivity and 99.5% specificity. As
observed with other classifiers, performance reduces when the
number of final decision classes increases so that these high per-
formance standards were not reached in the diagnosis of the
single valve disease (89.9% for aortic valve disorders, regurgita-
tion or stenosis; 88% for mitral valve disorders, regurgitation or
stenosis). Likewise, diagnostic performance of a sequential
SVM-based decision tree16 using a wide feature set (100 fea-
tures) was high at the first decisional step (healthy vs patho-
logical) (sensitivity 87.5%; specificity 94.7%), and at each single
decisional step (systolic vs diastolic 89.3% and 93.4%; aortic
stenosis vs mitral regurgitation 91% and 93%; aortic regurgita-
tion vs mitral regurgitation 94.7%, and 92.1%, respectively).
However, the four steps were sequential so that the total accur-
acy of the system was 77% and 78% for systolic and diastolic
murmurs, respectively.

CURRENT AND FUTURE CLINICAL IMPLICATIONS
Skilled physicians may reach a high sensitivity in the diagnosis
of cardiac valve diseases with heart auscultation, an operation-
ally simple, low-cost and non-invasive method. Automated diag-
nostic tools may enhance preventive care in cardiology
facilitating screening of heart diseases especially in low resource
settings where skilled personnel are rare. The financial cost of
the systems for heart sound assessment is well below US$1000.
However, notwithstanding the good performance characteristics
no instrument is at the moment commercially available (table 3).
Probably the wide diffusion of echocardiogram and the search
for low-cost portable echocardiographs might have limited
investment toward the development of an automated system for
cardiac auscultation. In the current era, where the debated issue
is ‘Is physical examination dead?’, the mind seems to be more
oriented in the favour of imaging technology.48 For some
patients in low resource settings the possibility to reach technol-
ogy however may remain a dream. Likewise, in these areas,
skilled doctors cannot be dedicated to screening purposes and
probably for a patient the possibility of meeting a skilled phys-
ician is also a dream. Therefore, automated systems might be
particularly useful in LMIC.

Although preliminary data are encouraging, available systems
still have limitations. Almost all studies have been performed ‘in
the laboratory,’ testing a limited set of data whereas the method-
ology requires trials on the field. Second, current studies trained
and tested the classifier systems on patients with moderate to
severe classes of VHD. These patients have surgery as the only
high cost option whereas the goal should be to detect asymp-
tomatic patients with minor alterations (mainly of mitral
valve).49 These subjects are the ideal target for the low-cost
option of secondary penicillin prophylaxis, an approach recom-
mended since the 1980s by WHO and the World Heart
Federation. Although the screening of these patients is expected
to be difficult,3 the low performance of clinical detection50

could be improved by the high acoustic sensitivity of new

Table 3 Clinical trials with electronic stethoscope included in the ClinicalTrials.gov registry

ClinicalTrials.gov
identifier Study design Title Status

NCT00564122 Observational model:
case-crossover
Time perspective:
prospective

A comparison of the accuracy of an artificially-intelligent stethoscope vs pediatric cardiologists in the
assessment of pediatric patients referred to a cardiologist for the assessment of a heart murmur

Completed

NCT01138592 Observational model:
cohort
Time perspective:
prospective

Pilot study to evaluate the clinical utility of 3M Littmann scope-to-scope software for real-time
assessment of patients at remote clinic locations by centrally-located medical providers

Completed

NCT01512927 Observational model:
cohort
Time perspective:
prospective

Electro stethoscope in detect arteriovenous fistula (AVF) stenosis Recruiting

NCT01605669 Observational model:
cohort
Time perspective:
prospective

Correlation of auscultatory severity of aortic stenosis with trans thoracic echocardiography Recruiting

NCT01665820 Observational model:
cohort
Time perspective:
prospective

Study EM-05-012530 benefit of auscultation with 3M Littmann 3200 electronic stethoscope to
diagnose murmurs and heart pathologies in overweight and obese patients with increased layers of
adipose tissue

Not yet
recruiting

NCT00767195 Observational model:
case control
Time perspective:
prospective

Power spectral analysis of lung sounds detected at bilateral lung bases in patients with cardiogenic
and non-cardiogenic pulmonary edema

Unknown
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electronic stethoscopes. Systems have to be trained in this popu-
lation. The problem is crucial because the possibility to miss a
large number of young patients who might be treated with anti-
biotics can be expected with current systems. The possibility
that even unskilled personnel may use the device for screening
purposes in remote areas of LMIC might be of high interest for
world areas at early stages of epidemiological transition.
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