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Abstract: Advanced biofuels produced from lignocellulosic biomass offer an exciting opportunity to
produce renewable liquid transportation fuels, biochemicals, and electricity from locally available agri-
culture and forest residues. The growing interest in biofuels from lignocellulosic feedstock in the United
States (US) and the European Union (EU) can provide a path forward toward replacing petroleum-based
fuels with sustainable biofuels which have the potential to lower greenhouse gas (GHG) emissions. The
selection of biomass conversion technologies along with feedstock development plays a crucial role in
the commercialization of next-generation biofuels. There has been synergy and, even with similar basic
process routes, diversity in the conversion technologies chosen for commercialization in the EU and the
US. The conversion technologies for lignocellulosic biomass to advanced biofuels can be broadly clas-
sified in three major categories: biochemical, thermochemical, and hybrid conversions. The objective

of this review is to discuss the US and EU biofuel initiatives, feedstock availability, and the state-of-art
conversion technologies that are potentially ready or are already being deployed for large-scale appli-
cations. The review covers and compares the developments in these areas in the EU and the USA and
provides a comprehensive list of the most relevant ongoing development, demonstration, and com-
mercialization activities in various companies, along with the different processing strategies adopted by
these projects. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
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Introduction on deriving fuels and chemicals from renewable plant-,
algal-, or microbial-based materials such as lignocel-
fforts are underway to transform the petroleum- lulosic biomass. The development of new processes for
E based economy to a bio-based economy.> As the fuels and chemicals from lignocellulosic feedstocks
name implies, a bio-based economy is focused represents an extremely important field for R&D and
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industrial innovation within the bioenergy sector today.
While the fundamental and applied research for technol-
ogy development is carried out in research institutions,
companies are using those technologies to actively scale
up to demonstration- and commercial-scale activities. In
general, major motivations to launch second-generation
technologies into full-scale commercial applications will
increase the sustainability of biofuel production (com-
pared to first-generation biofuels that are produced from
food-grade materials). At the same time, venture capital
and government funds are available and have been used
by innovative companies working on biotech, biochemi-
cal, and thermochemical processes to demonstrate that the
processes are reasonable at a large scale. Several companies
around the world are currently setting up state-of-the-art
technologies that produce advanced biofuels from ligno-
cellulosic biomass. Among them, companies in United
States (US) and the European Union (EU) are actively
involved, since the basic policy framework for producing
biofuels and biochemicals is favorable in these regions.

A definition for the term ‘advanced biofuels’ is not yet
clearly agreed. In the Renewable Fuels Standard of 2010,
advanced biofuels were defined as ‘non-grain’ based fuels®
(other than corn-based biofuels). In 2011, International
Energy Agency (IEA) gave the following definition for
advanced biofuel technologies:* ‘Conversion technologies
which are still in the research and development (R&D),
pilot or demonstration phase, commonly referred to as
second- or third-generation. This category includes hydro
treated vegetable oil (HVO), which is based on animal fat
and plant oil, as well as biofuels based on lignocellulosic
biomass, such as cellulosic-ethanol, biomass-to-liquids
(BtL)-diesel and bio-synthetic gas (bio-SG). The category
also includes novel technologies that are mainly in the
R&D and pilot stage, such as algae-based biofuels and the
conversion of sugar into diesel-type biofuels using biologi-
cal or chemical catalysts.’” Thus, the focus is more on the
technology rather than on selecting the feedstock.

The definition of advanced biofuels in the European
context is instead still under discussion. The European
Commission (EC), for instance, in its recent proposal
of revision of the Renewable Energy Directive (RED),’
defined advanced biofuels® as biofuels that ‘provide high
greenhouse gas savings with low risk of causing indirect
land use change (ILUC) and do not compete directly for
agricultural land for the food and feed markets’. Recently,
the leaders of Sustainable Biofuels Group, the group
merging the major EU industries working exclusively
on second-generation biofuels, proposed the following
definition”: (1) produced from lignocellulosic feedstocks
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(i.e. straw, bagasse, empty fruit bunch, forestry residues,
lignocellulosic energy crops, crude tall oil & tall oil pitch),
non-food crops (i.e. grasses, miscanthus, algae), or indus-
trial waste and residue streams or manufactured from the
biomass fraction of municipal wastes, (2) having low CO,
emission or high GHG reduction, and (3) reaching zero or
low ILUC impact.

The key element in the debate on defining advanced bio-
fuels remains their sustainability and their conflict with
food crops. In our opinion, advanced biofuels are any
fuels that use advanced technologies to deal with ligno-
cellulosic materials or other unconventional feedstocks
that are cultivated on marginal land or that use agricul-
tural/forestry residues. The efficient integration of energy
flows in the process makes the overall greenhouse gas
emissions and environmental balance of advanced biofu-
els very favorable and largely superior to most of the so-
called first-generation biofuels (excluding the sugarcane-
to-ethanol case).

Following the Energy Independence and Security Act
of 2007,% the US set a target of 36 million gallons per year
(MGPY) advanced biofuels by 2022,” thus forecasting that
non-grain-based biofuels (according to the RFS reported
above, this includes sugarcane ethanol, lignocellulosic
and algal biofuels, etc., but excludes cornstarch-based
fuels,) will enter the marketplace at a higher volume. In
February 2012, the US Department of Energy (DOE)
invested more than US$1 billion in 29 integrated biorefin-
ery projects to produce advanced biofuels, including etha-
nol, butanol, gasoline, diesel, and jet fuels; chemicals; and
power. Out of the 29 projects, the DOE supported 16 cel-
lulosic ethanol projects with US$766 million support, 11
hydrocarbon fuel projects with US$326 million support, 1
butanol project with US$30 million support, and one suc-
cinic acid production facility with US$50 million support.
Among these projects there were two R&D bench-scale
demonstration facilities, 12 pilot-scale demonstration
facilities, 9 full-scale demonstration plants, and 6 com-
mercial scale plants.

Also in 2007, the EU set its 20-20-20 targets, referring
to the goals of increasing the share of renewable energy
to 20% (with 10% contribution of renewable alternatives
in transportation fuels), improving energy efficiency by
20%, and reducing greenhouse gas (GHG) emissions by
20%, all by 2020, as well as a number of other policies that
were also developed and put in place. Among these poli-
cies, sustainability criteria where set for biofuels in the
Renewable Energy Directive (RED), which mainly address
minimum GHG saving requirements, and protection of
land with high biodiversity or carbon stock.

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. (2013); DOI: 10.1002/bbb



Review: Development, demonstration and commercialization of lignocellulosic biofuels

More recently, the EC issued a proposal for amending
‘the directive 98/70/EC’ and ‘the directive 2009/28/EC’.°
This proposed revised directive, also known as the ILUC
directive, better specifies the conditions and the targets
for biofuel production in the EU under the light of ILUC
considerations. The key issues in the Commission’s pro-
posal are the following: (i) 5% limit to the amount of first-
generation biofuels that can count toward the RED targets,
(ii) enhanced incentives for advanced non-land using
biofuels (quadruple accounting), (iii) increase to 60% GHG
savings requirement for new installations, and (iv) ILUC
factors included in the reporting of GHG savings in both
directives.

In addition, an explicit list of feedstocks count-
ing between two and four times is given in Annex IX
of the document. The consultation with the European
Parliament, the council member states and the stakehold-
ers is ongoing, and a decision will be reached soon. The
discussion about the future policy framework in the EU
(beyond 2020) has also started, with the very recent Green
Paper by the EC.'” Here the EC calls for another consul-
tation (open until 2nd July 2013) focused on addressing
targets, the coherence of policy instruments, the competi-
tiveness of the EU economy, and the different capacity of
the member states.

The major EC programs'! supporting the development
of R&D and demonstration in the field of biofuels are the
7th Framework Program (7FP), the European Industrial
Bioenergy Initiative (EIBI) (which addresses only large-
scale industry-led projects), and the Intelligent Energy
Program (not supporting concrete implementation, but
market, barrier removal, information and dissemination
actions).

In regards to lignocellulosic ethanol production pro-
grams, the EC supported 7 industrial demonstration
projects through the 7FP for a total of more than €70
million. Recently (December 2012), the EC awarded over
€1.2 billion to 23 highly innovative renewable energy dem-
onstration projects under the first call for proposals for
the NER300 funding program. Among these, a consider-
able amount of resources (~€630 million) was allocated
to advanced biofuels, with ~€82 million for biochemical
routes and the rest (~€548 million) for thermochemical.

With respect to projected production costs of lignocel-
lulosic ethanol, recent communications by major EU
industries involved in the construction or operation of
industrial demo plant seems to converge around a cash-
cost target of 1.5-2 US$/gal.!>" This cost estimate is very
competitive with projected costs for other advanced biofu-
els production chains, as estimated by the DOE." On the

other hand, the cost of biodiesel from algae were instead
estimated at 10.66-19.89 US$/gal, (one order of magnitude
higher than the options previously reported).

It is widely believed that the biofuel process cost will
come down as the biorefining technology matures, as it
has always happened in the past for new technologies
entering the market. A good example is Brazil, where
the cost of sugarcane ethanol was substantially reduced
mainly due to (i) learning effect, (ii) large-scale operations,
and (iii) efficient system integration (including the whole
of the supply chain): this was well represented by the well
known ‘Goldemberg curve’, that reported the reduction
of ethanol costs in Brazil during the years. In the case of
highly innovative technologies, it is reasonable to expect
a significant learning factor, which will drive downwards
the production costs quite rapidly compared to more
mature/less innovative solutions.

Commercial R&D and scale-up
activities in the US and EU

The assessment of most relevant EU and US initiatives in
the field of lignocellulosic fuels was carried out though the
analysis of R&D projects, literature,'® data sources,'*™*®
other similar work," company websites and personal con-
tacts with several of the companies listed in Tables 1 and 2.

US projects

In the US, the National Advanced Biofuels Consortium
(NABC) is a major research initiative and partnership of
17 industry, national laboratory, and university members.
The goal of the NABC is the development of technolo-
gies to convert lignocellulosic biomass feedstocks to
advanced biofuels. Led by the National Renewable Energy
Laboratory (NREL) and Pacific Northwest National
Laboratory (PNNL) and supported with US$35 million
of American Recovery and Reinvestment Act (ARRA)
funding from the DOE and US$14.5 million of partner
funds, NABC is investigating six process strategies includ-
ing (i) fermentation of lignocellulosic sugars, (ii) catalysis
of lignocellulosic sugars, (iii) catalytic fast pyrolysis, (iv)
hydrothermal pyrolysis, (v) hydrothermal liquefaction,
and (vi) syngas to distillates for converting lignocellulosic
biomass feedstock to advanced biofuels.

At the industrial level, 31 US projects are currently
involved with the development of advanced biofuels from
lignocellulosic biomass (Table 1). With respect to the
different biomass conversion routes shown in Fig. 1, 17
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I. Themochemical and Hybrid Conversions

Pyrolysis/ Bio-oil/ Catalytic 5
/ Liquefaction Charcoal Up gradation

Processed

Biomass

Fuels/Chemical Produced by
Biochemical Conversion

(eg., Ethanol)

I

I

I

I

I

I

I

1 i 0
I \ Gasification —)'_VMQ Hac/ \CH
I

I

I

I

I

I

Methane H,C—CH;-OH
FT-Liquids Ethanol
H,C——OH s

5
Microbial
Fermentation

3

Dimethyl Ether Hydrogen

Upgraded Fuel

Cataly_tic 3

Conversion

Molecules
(eg., Jet Fuel )

|
|
|
1
|
|
|
Jet Fuel 1
|
|
|
|
1
|
|

Processed Chemical Enzymes/,

Biomass

Fermentable Microbes [Zu NS Distillatio Biofuel
_EI4 ofue
yst Broth m’&

Pretreatment A Cid Sugars

Pretreatment Hydrolysis

Wet Oxidation
Dilute Acid/Concentrated acid

Ammonia/Ammonium Hydroxide
Mechanical Extrusion

Hydro-thermolysis/Liquid Hot Water

Organosolv

|
I

|

|

|

|

I

|

1

|

I

|

| Steamn/Catalyzed Steam Explosion
|

|

|

i

|

i

1

|

1

I lonic Liquid
|

b
"o rEroOcCw

[
I
I
I
1
[
Fermentation, I
Catalytic Conversion Main Products [
I
w % !
Biofene !
. I
H,C—CH;-OH Bisabolene |
Ethanol Lipids [
Ho\ii; Organic Acids :

Ha e
Iso-butanol L;T:ai::'" :
\%OH Fatty Alcoholy :
I
Co-Product I
[
[ Lignin / Microbial Cell Mass 1
[

Figure 1. Different biomass conversion routes used in the industry. Here, |, Thermochemical and Hybrid Conversion; I,
Biochemical and Hybrid Conversion and lll, Hybrid conversion are given.

industrial projects have adopted biochemical conversion
methods. The biochemical route is followed mainly for
the production of bioethanol using pre-treatment of bio-
mass followed by fermentation. Some of the projects are
also pursuing other advanced biofuels such as long chain
liquid hydrocarbons (Amyris) and biobutanol (Butamax,
Cobalt, and Gevo) using their innovative and proprietary
technologies.

Intermediate to the research and industrial initiatives,
Michigan Biotechnology Institute (MBI), which is a part
of Michigan State University (MSU), is working toward
scaling up and commercializing ammonia fiber expansion
(AFEX™") pre-treatment through a US$4.3 million grant
from the DOE. A one ton-per-day pilot AFEX reactor is

*AFEX™ is a registered trademark of MBI International, Lansing, MI.

currently being installed. In 2013 another US$2.5 million
DOE grant was awarded to Novozymes and MBI in part-
nership, to examine the use of AFEX-pre-treated biomass
as a feedstock for enzyme production.

Thermochemical routes include pyrolysis, liquefaction,
and gasification, and are used to produce long chain lig-
uid hydrocarbons (Fig. 1). Hybrid routes (i.e. combined
thermochemical and biochemical) are used for producing
both bioethanol and long chain liquid hydrocarbons. As
shown in Table 1, the thermochemical platform has been
adopted by 14 industries, 5 of which are pursuing hybrid
routes. Swedish Biofuels” approach is interesting in that it
first produces bioethanol via the conventional biochemi-
cal route and then catalytically upgrades it to ‘drop-in’
biofuels. Similarly, Zeachem’s approach is to produce lactic
acid though fermentation and subsequently upgrade it to

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. (2013); DOI: 10.1002/bbb
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bioethanol via hydrogenation. Coskata, Ineos Bio, and
Lanza Tech’s process strategies depend on syngas (CO +
H,) fermentation to bioethanol using their proprietary
micro-organisms. The projects reported in Table 1 are not
exhaustive and include only those industries whose project
details are publicly available. There are several other US
projects that are developing some innovative technologies
to produce advanced biofuels but are maintaining a very
low profile or operating in stealth mode because of their
business strategy.

In addition to the single company commercial ven-
tures listed above, technology evaluations are often done
through industrial partnerships. A number of partner-
ships currently exist between Beta/Chemtex/M&G and
Genomatica (renewable chemicals, as bio-butadiene BD
and bio-butanediol BDO), Gevo (integrated process for
bio-isobutanol production), Amyris (renewable fuels
and chemicals, as bio-farnasene/farnasano) and Codexis
(second-generation detergents from cellulosic biomass), in
which the pre-treatment process is combined with various
technologies and know-how provided by the partners.

EU projects

With regard to EU initiatives in the field of lignocellulosic
biofuels, out of the 40 EU projects reported in Table 2, 17
are based on the thermochemical process, 22 on the bio-
chemical process, and 1 is based on a chemical approach
(we identified a total of 5 projects for the chemical route,
but only one from a lignocellulosic feedstock). This
includes the new projects, either thermochemical or bio-
chemical, recently selected for support by the EC through
the NER300 program, 5 of which were for lignocellulosic
liquid fuels, and the remaining on lignocellulose-derived
biomethane/syngas or intermediate energy liquid carrier
(pyrolysis oil, so far targeting district heating). No project
was identified in EU as hybrid process technology.

In the field of biochemical conversion, several plants with
the capacity to generate thousands or tens of thousands of
tons of product per year exist or are under development
in the EU. One of the very first EU industrial demonstra-
tion initiatives (by Sekab) has been interrupted, but several
other processes have been successfully developed into dem-
onstration scale plants. Among these, the largest industrial
scale-up efforts are being carried out by Abengoa, Biogasol,
Borregaard, Chempolis, Chemtex/M&G (licensed by Beta
Renewables), Clariant, Dong Inbicon, Clariant, IMECAL,
Inbicon/Dong, Schweighofer Fiber, and UPM.

The situation for thermochemical technologies appears
to be slightly different. The largest EU projects aimed

Review: Development, demonstration and commercialization of lignocellulosic biofuels

at Fischer-Tropsch (FT) products from lignocellulosic
biomass (such as Choren or Neste StoraEnso) have been
abandoned or interrupted for various reasons. Today

the most relevant initiative is one by Metso/Fortum, a
demo project which mainly aims at producing energy
rather than a second-generation transport fuel from
lignocellulosic biomass. However, the number of initia-
tives in the thermochemical area focused on generation

of transportation fuels could significantly expand if the
BTG/Empyro, UPM/Stracel/Btl, VAPO/Ajos-Forest Btl,
Billerud/Pyrogrot, CEG plant Coswinowice/Bioagra,
BioMCN/Woodspirit, Goteborg AB/Gobigas2, Chemrec
and KIT Bioliq projects move toward demonstration-scale.
The recent NER300 decision allocated ~€457 million to
liquid biofuels produced by the thermochemical route and
~€59 million to the biochemical route, corresponding to
only three projects: two using hydrolysis and fermenta-
tion and one using anaerobic digestion. This is expected to
give a considerable jumpstart to thermochemical pathway
technologies. Other than FT-liquids (especially diesel),
DME is a major product addressed through the thermo-
chemical pathway. Conversion of biomass to other energy
sources such as gasoline (MTG), hydrogen, and natural
gas are also under investigation. Synthetic natural gas is
another area of fast growth and innovation in the EU and
was developed as a method for upgrading CO, and H, to
synthetic CH, using energy from fluctuating sources (pho-
tovoltaic PW, wind). Goteborg AB GoBiGas project is one
example of a demo SNG project of a relatively large size.

Several of the EU-based conversion processes are also going
to be implemented in the US or outside the EU, either as first
installments or as replications or extensions of an EU demo
unit. This is the case of Abengoa, M&G/Chemtex, Swedish
Biofuels, and British Airways/Solena. This confirms that
industrial development of second-generation biofuels in a
given region can have wide-ranging global impacts.

A total of 31 and 35 biofuels projects using lignocellu-
losic biomass as a feedstock are listed in Table 1 (US) and
Table 2 (EU), respectively. It appears that the biochemical
conversion platform dominates (18 projects) the com-
mercialization activities in the US and the majority (10
projects) of these projects are aimed toward commercial
production of bioethanol by the year 2015. There are seven
ongoing projects in the US that are mainly focused on pro-
ducing liquid hydrocarbon fuels. It is interesting to note
that four US projects have adopted a hybrid route whereas
there are no active projects in the EU that use this pathway
to produce biofuels from lignocellulosic biomass.

The EU projects are almost equally distributed
between thermochemical (17 projects) and biochemical

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. (2013); DOI: 10.1002/bbb
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(18 projects) conversion platforms. This shows that the countries in North America with an area of 3.79 million
biochemical pathway and bioethanol production may be square miles. (9.83 million km?), or nearly 2263 million
the preferred route in the US, but EU commercialization acres of which the composition is 33% forest land, 26%
activities do not show an obvious preference. pasture grassland, 20% crop land, 8% parks and recrea-

tion area used by public, and 13% urban areas, swamp and
Lignoce"UlOSiC feedstock desert. Of the .total availabl‘e land, n?arly 60% of th'e land
for the biore finery has th.e poten.tl.al to grow different biomass depending on

the soil conditions. Both the DOE and the US Department
of Agriculture (USDA) are developing and funding
biomass-to-energy programs. By doing this, it is widely
North America is comprised of 23 countries with roughly believed that the twenty-first century will see several
16.5% of the global land area. The USA is one of the biggest biorefineries that produce a variety of fuels and chemicals

Available biomass in the US
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Figure 2. Current and future biomass available in the US Here, (A) breakdown of total
available forest residue by 2030 based on 2005 study;?' (B) breakdown of total available
Agricultural residue by 2030;2" and (C) summary of current use and future total potential
biomass based on baseline assumptions and high yield assumptions based on 2011
study.?? There are subtle differences in the assumptions between the 2005 Billion Ton
Study and 2011 Son of Billion Ton Study. The 2011 study did include county-level analysis
with aggregation to state, regional, and national levels that include 2009 USDA agricultural
projections and 2007 forestry RPA/TPO 2012-2030 timeline. Biomass annual projections
are based on a continuation of baseline trends (USDA projections) and changes in crop
productivity, tillage, and land use.

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. (2013); DOI: 10.1002/bbb



V Balan, D Chiaramonti, S Kumar Review: Development, demonstration and commercialization of lignocellulosic biofuels

using biomass from agricultural and forest residues. including: (i) fuel wood harvested from forest (52 million),
Development of clean, reliable, and affordable energy tech- (ii) wood process mill residues and pulp and paper mill
nologies will strengthen the nation’s energy security (less waste (145 million), (iii) urban wood waste from construc-
dependence on foreign oil), have positive environmental tion and demolition debris (47 million), (iv) residues from
benefits (reduced GHGs) and strengthen the economy (by logging and site cleaning operations (64 million), and (v)
generating jobs in the rural sector).> biomass that could be harvested to reduce fire (60 mil-
The Energy Independence and Security Act (EISA) of lion) (Fig. 2(a)). The remaining 998 million tons will come
2007 set up a mandatory Renewable Fuels Standard (REFS) from agricultural resources that include: (i) annual group
to achieve 36 billion gallons per year (BGY) of biofuels by residues (428 million), (ii) perennial crops (377 million),
2022. Only 15 billion gallons can come from corn ethanol (iii) grains used for biofuels (87 million), and (iv) animal
and the remaining 21 billion gallons of advanced biofuels manure, process residues and other feedstock’s (106 mil-
should come from non-corn starch based feed stocks (e.g. lion) (Fig. 2(b)). In order to estimate the amount of bio-
sugars or cellulose). To meet the targets set by the man- mass that will be available in 2030, we need to consider
date, not only do sufficient production facilities need to two different assumptions: (i) with moderate crop yields
be constructed, but also sufficient quantities of biomass and (ii) with high crop yields (Fig. 3(c)). In both assump-
need to be generated and available. The DOE Office of the tions, energy crops that are currently being developed by
Biomass Program and Oak Ridge National Laboratory several biotech companies in the US (Ceres, Thousand
attempted to answer the question of how much biomass Oaks, CA; Mendel, Hayward, CA; Monsanto, St Louis,
was available and where was it located with a report in MO) will play an important role in meeting the projected
2005,%" often called the Billion Ton Study, and later with estimates. Energy crops will be made available only if the
an update report in 2011.%* These reports estimated that state or federal government give incentives to farmers to
there is ~1.3 billion tons of biomass/year available in US grow them or the companies have a buy back guarantee
alone by 2030 based on reasonable assumptions. Of this, contract with the farmers or group of farmers (co-op). The
368 million dry tons will come from forest resources biomass residues coming from the agriculture sector are
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Current and 2020-2030 potential for reference scenario.?*
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about three-quarters of the total available resources in the
US. These have high potential for improvement by using
advanced farm management technologies, using superior
plant breeds, and by adopting best agricultural practices
(growing cover crops, crop rotation, growing perennial
crops on marginal land, etc). Removal of agricultural
residues from the field could vary depending on the soil
condition, as the removal rate must maintain soil quality.
Agricultural residue availability has been calculated based
on five different scenarios, each with a different assump-
tion (low/high crop yield and with/without land use
change).22 These scenarios include: (i) currently available
from agricultural lands, (ii) under moderate crop yield
increase without land use change, (iii) under high crop
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yield increase without land-use change; (iv) under moder-
ate crop yield increase with land-use change, and (v) under
high crop yield increases with land-use change (Table 3).
Dedicated energy crops (switchgrass, Miscanthus, energy
cane, forage sorghum, Erianthus, Napier grass, etc.,) will
contribute significantly to satisfy the growing demand of
agricultural residues. Many companies are taking a lead-
ing role in establishing businesses in these sectors.

Biomass available in Europe

Based on Fig. 3(a), from the 27 EU member states National
Renewable Energy Action Plans (NREAPs), biomass is
expected to play a major role in achieving EU targets on
renewable energies. It has been projected that 12% of total

Table 3. Breakdown of agricultural residue availability in the US based on five different scenarios.??

Crop Biomass Sustainably Removable Biomass Logistically Removable Biomass Total Residues Produced
Residues (Million dry tons/year) (Million dry tons/year) (Million dry tons/year)

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
Corn 74.8 169.7 256.1 169.7 256.1 90.0 187.9 281.8 187.9 281.8 225.0 313.1 375.7 313.1 375.7
Sorghum 0.0 2.8 4.0 158 4.0 5.0 6.8 9.7 6.8 9.7 124 114 129 114 12.8
Barley 0.7 0.0 4.7 2.8 4.7 3t 5.0 7.2 5.0 7.2 7.7 8.3 9.6 8.3 9.6
Oats 0.1 0.7 1.2 0.7 1.2 1.3 1.8 2.5 1.8 2.5 3.2 3.0 3.3 3.0 3.3
Wheat 88 274 449 274 409 240 46.0 66.6 46.0 60.6 60.1 76.7 88.8 76.7 80.8
(winter)
Wheat 2.2 74 122 7.4 10.9 8.0 157 227 157 203 201 26.2 303 26.2 27.1
(spring)
Soybean 0.0 0.0 0.0 127 479 46.3 76.8 1045 1024 123.7 115.8 128.0 139.3 170.6 164.9
Rice 0.0 103 147 103 147 57 103 147 104 147 142 171 19.6 17.1 19.6
Cotton 2.7 8.5 8.9 8.5 8.9 2.7 8.5 8.9 55 149 133 138 149 1338 19.9
Other 181 208 235 208 235 181 20.8 235 208 235 201 231 235 23.1 26.1
Crops
Double 0.0 0.0 0.0 10.0 15.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
crop
Grasses 0.0 0.0 0.0 154 154 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(CRP)
Trees 0.0 2.2 2.2 2.2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
(CRP)
Wood 0.0 0.0 0.0 9.2 9.2 0.0 0.2 0.2 9.2 9.2 0.2 0.2 0.2 9.2 10.2
fiber
Perennial 0.0 0.0 0.0 146.5 368.3 0.2 0.0 0.0 146.5 368.3 0.0 0.0 0.0 146.5 409.2
grasses
Total 107.4 246.8 372.4 4419 8229 204.4 386.8 542.3 558.0 936.4 492.1 620.9 718.1 819.0 1159.2

S1 - Current availability of biomass from agricultural lands.

S2 - Biomass from agricultural lands under moderate crop yield in crease without land use change.
S3 - Biomass from agricultural lands under high crop yield in crease without land use change.

S4 - Biomass from agricultural lands under moderate crop yield in crease with land use change.
S5 - Biomass from agricultural lands under high crop yield increases with land use change.
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gross energy demand in the EU will be met using renew-
able energy in 2020, rising from a total of 85 million tons
of oil equivalents (MTOE) in 2010 to 134 MTOE in 2020.
The estimation of EU biomass availability in 2012 was
around 314 MTOE, expected to grow to 429 MTOE and
then set at 411 MTOE in 2020 and 2030, respectively.24 The
different biomass resources that are available in EU are
shown in Fig. 3(b).

The analysis of biomass availability shows that both
in the EU and US the potential for the most sustainable
biomass (i.e. wastes and residues), is considerable and
represents the largest amount of the total. The EC defines
residues as ‘no land using crop’, to indicate that their sus-
tainable use ensures no additional pressure on land use.
Nevertheless, it is always necessary to evaluate case by case
the amount of residue that can be removed from the field
without impoverishing the land. In the US, the potential
for agricultural residues at 2030 is more than the double
that of forest residues. In the EU, agricultural residues,
wastes, and forestry residues also cover the largest share of
the potential. Thus, from a sustainability point of view, the
focus in the coming years will be on sustainably managed
forestry, agricultural, and agro-industrial lignocellulosic
residues, where the ILUC factor is less important than in
the case of forestry/agricultural products.

The EU Intelligent Energy Biomass Futures project
(www.biomassfutures.org) reported that the share of EU
biodiesel on global demand will rise from 42% in 2010 to
74% in 2020, while bioethanol share will also rise to 13%
in 2030. It must also be observed that meeting 2020 and
2030 EU biomass targets will require a significant import
of feedstock from different parts of the world. Implications
on direct and ILUC are currently under evaluation and
discussion in Europe.

Biomass logistics

The bulk density of biomass is relatively low and occupies
a larger volume compared to other solid materials used for
energy such as corn grain or coal. As such, the bulk den-
sity significantly influences the transportation and storage
of biofuel feedstocks, and becomes a major limiting factor
with regard to the size of the biorefinery. A common esti-
mate for feedstock consumption by the biorefinery is 2000
tons of lignocellulosic biomass/day or 7 to 8 million tons of
biomass/year. In order to satisfy the biomass demand, yet
limit transportation costs and associated GHG emissions,
the transportation radius for the biorefinery is commonly
set at 50 miles. Development of the biomass supply chain
(harvest, collection, storage, preprocessing, handling, and
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transportation) is of critical importance if lignocellulosic
biofuels are ever to be successfully produced.

Biomass processing

Biomass has low bulk densities, 80-150 kg/m? (for her-
baceous) and 150-200 kg/m3 (woody biomass). Current
biomass harvesting and bailing machinery produce
either rectangular (130-200 kg/m’) or round bales
(60-100 kg/m3). These materials should be densified to
increase the bulk density and that will help in storage,
loading, and transportation. A detailed study conducted
by the Idaho National Laboratory (INL) transformed
biomass bales into pellets (560-640 kg/m’ with 8-10%
moisture) or briquettes (320-545 kg/m? with 10-12%
moisture) through a combination of milling and grind-
ing followed by extrusion based densification. Binding
agents (proteins or lignosulfonates) are usually used to
hold biomass together. Pre-treatment processes (steam
explosion, AFEX, and pre-heating) can relocate lignin
to the biomass surface and improve the binding charac-
teristics. Though there are several advantages of biomass
densification, it comes with added capital for machinery/
energy cost (milling, briquetting, and cooling units)
and requires additional safety measures including dust
control systems and spark detection and fire protection
systems.?*%¢

Biomass transportation and storage

For transportation purposes, both unit density (kg/m?)
and bulk density (kg/m?) are important parameters.
Biomass pellets and briquettes are preferred for biomass
conversion due to high energy content per unit volume.
Average pellet size (1/4 to 5/16 inches in diameter and

up to 11/2 inch long) can be handled just like corn grain
(45 Ib/ft’) by truck and railroad, using the existing infra-
structure.”” On the other hand, special infrastructure is
needed to handle and transport briquettes depending on
their shape (pucks, logs of varying diameter and thick-
ness). Moisture content of the biomass needs to be less
than 10% moisture if they are to be stored for long periods
of time without microbial degradation of biomass sugars.
Another approach to reduce the biomass transportation
and storage costs is to deploy Regional Biomass Processing
Depots (RBPD) that can pre-treat and densify 100-200
tons of biomass per day that can then be transported to a
centralized biorefinery.”®* Several thousand RBPDs can
be set up around the country in a co-op fashion (involving
several farmers) establishing a sustainable biomass supply
chain.
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Thermochemical and hybrid routes

The production of liquid and gaseous fuels from lignocel-
lulosic feedstocks can also be carried out through thermo-
chemical (or hybrid) approaches (Fig. 1). Thermochemical
processes convert the organic matter into a mixture of
liquid, gaseous, and solid products whose characteristics
depend on the pre-treatment conditions, types of feed-
stocks, and downstream processing conditions.

In literature, the main biomass thermochemical conver-
sion processes are often classified as torrefaction, (fast-
intermediate-slow) pyrolysis, hydrothermal liquefaction
and gasification. Torrefaction® is a biomass upgrad-
ing and energy-densifying pre-treatment step in which
the lignocellulosic biomass is kept for sufficient time at
temperatures between approximately 200 and 300 °C in
the absence of oxygen. Biomass is thus converted into a
hydrophobic product with an increased energy density and
more favorable grind-ability (i.e. less energy is necessary to
grind the biomass into small particles).

Pyrolysis®! is a process that decomposes biomass in
the absence of oxygen at temperatures between 300 to
550-600 °C. Lower process temperatures and longer vapor
residence times increase the production of charcoal, the
pyrolysis solid product, while higher temperatures and
longer residence times favor the gas phase production.
Thus, depending on the process conditions (including the
downstream steps such as vapor condensation), the rela-
tive amount of solid (char), liquid (pyrolysis oil) and gase-
ous products can vary considerably, as well as the pyrolysis
oil properties. Also, the feedstock characteristics play an
important role in the process. Fast pyrolysis maximizes
the oil yield, a highly oxygenated acidic and viscous liquid,
while slow pyrolysis, also named carbonization, has char
is the main product. Both torrefaction and pyrolysis are
more and more seen as possible pre-treatment steps before
further conversion into liquid products or energy. In case
of pyrolysis, it is also possible to upgrade the fuel through
catalytic or hydro-de-oxygenation steps into a transport
fuel.

Hydrothermal liquefaction is a thermochemical conver-
sion process in which organic material is fed in a wet form
to a high pressure (order of hundred bars) and tempera-
ture (typically 300-400 °C) reactor. The product contains
less oxygen than pyrolysis oil and shows more favorable
characteristics for downstream processing and use either
as fuel or chemicals, but process conditions are very severe
and represent a technological challenge.

Gasification occurs when, at higher temperature than
pyrolysis or HTL, i.e. around 800-1500 °C or above), the

biomass is converted into a CO and H, rich gaseous prod-
uct. The producer gas composition depends on the reactor
configuration, process conditions and gasification agent:
different reactors should be chosen depending on the final
destination. Depending on the final application, it can

be necessary to convert the producer gas into a syngas
fuel whose composition (e.g. H,—CO ratio) is suitable for
downstream processing (as FT reactions): this is always
needed in the case of synthetic liquid production. The pro-
duction of liquid fuels from biomass is possible based on
the above mentioned processes.

Thermochemical conversion can effectively be used.

For instance, catalytic reactors, as Fischer-Tropsch reac-
tors, are used to convert a synthesis gas (syngas) consist-
ing of a mixture of CO and H, into hydrocarbons over a
catalyst. Other possible process routes convert syngas to
methanol, DME, hydrogen, and gasoline. Since, these are
mostly catalytic processes, the removal of tar from syngas
is a fundamental condition to allow proper operation and
avoid catalyst poisoning.

Finally, regarding the hybrid process, some companies
like Lanzatech and Coskata are first thermo chemically
converting biomass to syngas via gasification and then
converting them into liquid fuels by means of a microbial
conversion process. Now several industrial initiatives,
especially in the US, are testing this process route at demo
scale. The other possible hybrid route includes companies
like Byogy, CA, that converts ethanol produced using the
biochemical route into jet fuel using a proprietary catalyst.
Other companies, like Zeachem, produce acetic acid using
fermentation route and hydrogenate them into ethanol
using a catalytic route.

Biochemical and hybrid routes

Three different conversion scenarios are possible in a
biorefinery (Fig. 1). They are:

(i) Biological conversion, where biomass will be pre-
processed by size reducing using milling, followed
by chemical pre-treatment. Then, hydrolyzed to
fermentable sugars both using acids or commercial
enzymes and fermented to fuel molecules of different
choices either using bacteria or yeast. In a few cases,
the sugars producers are catalytically transformed
to fuel molecules. Fuels molecules produced using
fermentation or through a catalytic route are further
distilled or separated to biofuels.

(ii) Thermochemical conversion, where the processed
biomass is either pyrolyzed to bio-oil/charcoal and
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catalytically upgraded to different fuel molecules or
gasified to syngas/ash and processed through FT syn-
thesis or microbial fermentation.

(iii) Hybrid route, where fuels are chemically produced
using a biological route and then further transformed
by thermochemical/catalytic conversion (hybrid
route) to another fuel molecule.

Biomass pre-treatment

In the biochemical conversion route, pre-treatment is one
of the important processing steps, where different indus-
tries adopt different technologies. Pre-treatment can be
classified into (i) physical pre-treatment (e.g. extrusion),
(ii) chemical pre-treatment (e.g. using acid or base as a
catalyst), (iii) physiochemical pre-treatment (e.g. wet oxi-
dation, steam explosion), and (iv) biological pre-treatment
(e.g. using microbes). Except for the biological pre-treat-
ment process, which is time consuming, all are used in the
industry. Several excellent review articles have been pub-
lished in the past which provide more detailed informa-
tion about these pre-treatment processes.**>> Some details
about six well-established pre-treatment technologies that
are used in the pilot plants in US and EU are given below.

Wet oxidation

Wet oxidation is an oxidative pre-treatment process
where the biomass is wetted with water followed by
passing oxygen/air (10-12 bar) at elevated temperatures
(170-200 °C).*® Since this reaction is an exothermic reac-
tion, the energy needed to heat up the reactor is relatively
lower. Though this process solubilizes hemicellulose, most
of them are present in an oligomeric form. Phenolic acids
are the major degradation products produced during this
pre-treatment, which are then degraded into other small
organic acids like formic acid. Carbonates (Na,COs3) are
usually added during the process, which elevate the pH to
an alkaline condition. Several degradation products that
are produced during wet oxidation are toxic for down-
stream processing. However, highly toxic compounds like
hydroxyl methyl furfural (HMF) and furfural are pro-
duced in lower amounts. The high costs of carbonate and
oxygen are the main bottleneck for this process.

Dilute acid

Cellulose present in biomass is more inert to acid when
compared to hemicellulose and lignin. Almost 70-85% of
hemicellulose in biomass could be solubilized depending
on the pre-treatment conditions, which helps to hydrolyze
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cellulose to glucose more efficiently when commercial
enzymes are added. Acids are usually used either in dilute
or concentrated forms. Companies like Virdia (Dansville,
Virginia) use concentrated HCI (1-40%), as they have
developed a patented process of efficient recovery and
re-use of the catalyst. There is no need to add enzyme to
hydrolyze the cellulose to monomeric sugars. However,
the hydrolyzed sugars need to undergo a detoxification
step prior to fermentation. Most other processes use dilute
sulfuric acid (0.22-0.98%). Pre-treatment conditions
include 140-180 °C, 15-60 minutes resident time. Most of
the hemicellulose is hydrolyzed to xylose®” which has to
be either fermented separately or catalytically converted
to other high value chemicals. Even at controlled condi-
tions, xylose is further degraded into toxic inhibitory
compounds like furfural. In addition to these compounds,
several other phenolic degradation compounds are pro-
duced.®® These degradation products have higher inhibi-
tory effects when compared to alkaline pre-treatment
processes and have a much lower inhibitory effect when
compared to concentrated acids. NREL (Golden, CO) has
pioneered this technology and has commissioned a pilot
plant to study this process.

Steam explosion

This technology has been in existence since 1920, where

it was used to make wood particle board. High pressure
stream (280 °C, 1000 psi) was used in those processes.

In a biorefinery process, biomass is subjected to a typi-

cal temperature range (160-260 °C) for several seconds
and then discharged to a cyclone and collected in a dif-
ferent vessel.”” During the pre-treatment, the fibers are
mechanically disrupted, thereby increasing the surface
area for easy enzyme access and producing a high sugar
yield during hydrolysis. Several degradation products,
like acetic, formic and levulinic acids, are produced in the
process and are inhibitory to the microbes that are used
in fermentation. Lignin melts at elevated temperatures
and is re-polymerized and re-distributed to different parts
of the plant cell wall. Recently dilute sulfuric acid or SO,
impregnated hardwoods are used which reduces the pre-
treatment temperature and time to produce fewer degra-
dation products.*

Ammonia based

Most of the alkali (KOH, NaOH, Ca(OH)) solvents avail-
able in the market are strong in nature and are soluble
in water. Ammonia is a weak alkali and is volatile which
provides an opportunity to recover and reuse it in the
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pre-treatment process. It can be used as a gas, liquid
ammonia®! or as ammonium hydroxide. MBI and MSU
together have developed a pre-treatment process called
AFEX that uses either gaseous or anhydrous ammonia in
the process. The pre-treatment is done at 100-140 °C using
1:1-3:1 ammonia to biomass ratio for a residence time (of
10-60 min).*! Only 3% of ammonia equivalent to biomass
is consumed during pre-treatment, producing various
nitrogenous compounds like amides (acetamide, feruloyl
amide, cumaryl amide),’® and the remaining ammonia
can recovered and reused. DuPont uses dilute ammonium
hydroxide, which does not need an expensive recovery
step. However, the residence time is longer and the proc-
ess requires a neutralization step prior to hydrolysis and
fermentation.

Mechanical extrusion

Almost all the pre-treatment processes required size
reduced biomass. Size reduction includes chipping, mill-
ing (Hammer and knife) and grinding. Moisture content,
rate of feeding and physical properties of biomass (hard
wood or grasses) will influence the energy requirement
for size reduction. For particle size reduction to 3-6 mm
require about 11 kWh/ton of biomass (agricultural resi-
dues).*> However, switch grass, which has a higher silica
content, requires about 30 kWh/ton, which corresponds
to ~1% of the total energy content in biomass. For hard
woods, size reduction to 0.2-0.6 mm requires require
kWh/tonne and to 0.15-0.3 mm requires 100-200 kWh/
tonne. Other methods used for size reduction include
mechanical extrusion process,*’ which helps to disrupt
the biomass structure, causing defibrillation and reduced
fiber length. Typical conditions used for this process
include: screw speed 350 rpm, maximum barrel tempera-
ture 80 °C and in-barrel moisture content 40% (wet basis).
Though this process is environmentally friendly when
compared to thermochemical pre-treatment processes,
dust pollution and high energy requirements are major
concerns.

Hydrothermolysis/liquid hot water (LHW)

At super critical conditions (>320 °C), water loses its
hydrogen bonding and becomes a weakly polar solvent
that produces H" and OH™ ions. When biomass is sub-
jected to a super critical pre-treatment process, it gets solu-
bilized and hydrolyzed.** The high energy requirements
needed for this process was one of the discouraging factors
for this technology to become commercialized. However,
some companies have started using this technology at pilot
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scale with improved process development. Other research-
ers have demonstrated that LHW at controlled pH and
milder conditions (190 °C, 15 min) efficiently pre-treats
biomass that could provide a 90% sugar yield using 15
FPU of enzymes.*’

Other pre-treatments

In addition to the above-mentioned well-established
pre-treatment processes, other pre-treatments like lime,
ionic liquids and organic solvents (e.g. ethanol) are also
being used in commercial scale; their process details are
reported elsewhere.* In particular, the successes of ionic
liquid pre-treatment processes developed by companies
like SuGanit and Hyrax (US) depend on the efliciency at
which the ionic liquid can be recovered and re-used in the
subsequent cycles due to high cost of catalyst.

After the biomass is subjected to pre-treatment using
one of the above-mentioned process technologies, they
undergo enzyme hydrolysis using commercial enzymes
and are then subjected to microbial fermentation to pro-
duce biofuels. The details about the downstream process-
ing steps are given below.

Enzyme Hydrolysis

For carrying out enzyme hydrolysis a commercial enzyme
cocktail is used which consists of 40-50 enzymes with
specific activities that are broadly classified into two
classes of enzymes: (i) cellulase (that degrade cellulose)
and (ii) hemicellulase (that degrade hemicellulose).*®
Companies like Novozyme, Genencore, Dyadic, DSM, and
Togen are commercial producers of these enzymes using
different fungal strains. In the beginning, one cocktail of
enzymes (comprising of cellululases and hemicellulases)
was sold for hydrolyzing biomass. However, due to vari-
ation in the composition of the pre-treated biomass (e.g.
dilute acid pre-treatment results is biomass comprising of
higher cellulose content and lower hemicellulose content
when compared to native feed stock, while ammonia pre-
treatment like AFEX does not change any composition
after pre-treatment) the companies now sell two cocktails
of enzymes to hydrolyze cellulose and hemicellulose.
These enzymes can be mixed in different ratios depend-
ing on the feedstock composition. Most of the enzymes
operate at 50 °C, while some of them originated from
thermophile microbes and can operate between 60-65 °C.
Many biofuel companies team up with enzyme producers
to supply enzymes from centralized production facilities,
or in some cases enzymes are produced on the site of a
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biorefinery to overcome the cost issues (associated with
concentrating the enzymes three-fold) and logistical
issues (related to enzyme transportation cot).”” Cost of
enzymes is one of the key factors that significantly influ-
ence the biofuel processing cost and companies are look-
ing at innovative ideas to reduce the enzyme loading and
recycle the enzymes over several batches of hydrolysis.
After biomass is hydrolyzed into fermentable sugars it is
fermented to different fuel molecules using microbes like
bacteria or yeast, or in some cases chemically modified
using catalysts.

Microbial fermentation

In some processes, the glucose and xylose stream are
found together after hydrolysis (e.g. AFEX). While in
others, the clean xylose sugar streams that are generated
during pre-treatment (dilute acid or steam explosion)
can either be combined with the glucose/xylose stream
after hydrolysis or processed into chemicals using a
biochemical or catalytic route. Separate hydrolysis and
fermentation (SHF) is a time-consuming process (3-5
day hydrolysis and 3-day fermentation). However, SHF
has some advantages: the microbes can be recycled for
the subsequent fermentation cycles or can be processed
and sold in the market as animal feed supplements. To
overcome the processing time, simultaneous sacchari-
fication and co-fermentation (SSF/SSCF) is an option.*®
Here, the hydrolysis is kick-started at 50 °C for a period
of 6 to 12 h. Then, the temperature is brought down to

30 °C and microbe seed cultures are added. Though the
efficiency of enzymes (operating at low temperature) is
sacrificed, there is some significant time savings. Also,
there is some capital cost savings by performing hydroly-
sis and fermentation in one tank when compared to
doing in two separate tanks. Some companies like Virent,
Madison are catalytically converting these sugars into
long chain alkanes (hybrid route). The process strategy of
Mascoma Corporation is based on an innovative consoli-
dated bioprocessing (CBP) approach. The CBP platform
utilizes genetically modified yeast or bacteria to convert
cellulosic biomass into bioethanol in a single step that
combines enzyme production, enzymatic hydrolysis and

fermentation.*®

Biofuel processing

Biofuel processing is dependent on the type of biofuels
produced in the industry.’ For example, in the case of
ethanol (which is miscible in water) distillation is the
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preferred option, followed by passage through molecular
sieves (to remove residual water). In some cases per-
evaporation technology (separation of mixtures of
liquids by partial vaporization through a non-porous

or porous membrane) is also followed. If the biofuel is
immiscible in water (such as long chain alkanes and
lipids), they separate out on the surface of the water and
can be siphoned away. In the few cases where the biofuel
produced is toxic to the microbes (e.g. butanol/iosbuta-
nol), they are separated using affinity based separation
techniques and further purified. In some cases (e.g.
fatty alcohols) reactive distillation during fermentation
is also used.

Comparing the Policy Framework
in the EU and the US

After the current demonstration phase, the deployment of
second-generation technologies in the EU and the US will
probably move forward differently according to the Policy
frameworks that is in place in each region. In the EU,
major EU industries investing in the development of these
processes and technologies clearly stated that:” (i) second-
generation advanced biofuel technologies are ready to
compete with conventional biofuels, with EU companies
keen to invest in commercial projects given appropriate
conditions; and (ii) a stable long-term investment condi-
tion is needed, which will encourage investment while
at the same time promote true advanced biofuels. This
will have a positive economic as well as ecological impact
on the EU. Other recent statements from the EU indus-
try were given at the Third International Conference on
Lignocellulosic Ethanol held in Madrid (June 2013).>°

Companies are asking for mandates for advanced bio-
fuels, a clear growing pathway to 2030 and sustainability
as reference criteria to evaluate any biofuel production.
However, given the peculiarities of lignocellulosic fuels,
certification schemes should also be further developed,
harmonized among Member States and adapted to
respond to the specific characteristics of lignocellulosic
fuel chains, particularly when produced from agricultural
and forestry residues and wastes (so-called ‘no land-
consuming feedstocks’). The current certification system
in place in the EU is in fact very complex when applied
to lignocellulosic residues from agriculture, and difficult
to be implemented on an industrial scale on agricultural
wastes.

Thus, the main concern from a technological and indus-
trial point of view is the policy framework (including the
agricultural policy) in place and its long term stability,
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which is needed to secure investments and make projects
become bankable in order to make them a reality.
According to the EU industries, another urgent need is
the development of suitable financing schemes to cover
risks and provide guarantees for these very innovative
technologies. The situation in the US (and Brazil, even if
not discussed here) looks instead very different, with the
industrial activities on advanced biofuels and biorefineries
supported by the DOE (and BNDES, in Brazil) not only
through various forms of grants but also risk covering
measures. A number of demo plants are being built in the
US, as reported in this work, as the proposed projects gets
implemented, conditions could be even more favorable for
further commercialization and large scale deployment.

As of today, the EU is in a well-advanced stage of tech-
nology development when compared to the US. Given
the existing policy framework in the US, it is most
likely that the commercial deployment of advanced
biofuel generation technology will take place at a faster
rate in the US, if no specific measures are taken in
Europe. The result of this unclear policy and financial
framework is that the EU industries, leading today the
technological global competition on advanced biofuels,
after having developed their demo plant in the EU, will
invest abroad due to less complex and more stable and
favorable conditions. This is the case of M&G, partner-
ing with Graalbio in Brazil, where a plant similar to the
demo plant in Crescentino is already under construc-
tion and new ones will follow, or Abengoa, which is
constructing a large industrial demo plant in Hugoton
(KS), USA.

Conclusion

A complete summary of biofuels demonstration and
commercialization activity in the US and in the EU are
presented in this review. A majority of the projects in the
US and the EU are either at pilot/demonstration scale

or under advance stages of construction of commercial
plants. Presently, bioethanol via a biochemical route is
the leading process strategy in the US and in EU. The

US EISA, 2007 mandates 36 billion gallons of advanced
biofuels production per year by 2022 from non-corn-
starch-based biomass (sugars or cellulose); whereas the
EU’s initiative is guided by its 2007 climate and energy
20-20-20 targets with 10% contribution of renewable
fuels in transport. With respect to biomass availability, it
is projected that about 1.3 billion tons of lignocellulosic
biomass per year can be available in the US to meet the
advanced biofuels objectives. The biomass resources in the

EU may not be adequate for meeting the 2020 and 2030
EU biofuels targets and it may require a significant import
of biomass feedstock from different parts of the world. In
view of upcoming processing strategies, thermochemical
and hybrid routes provide potential to produce ‘drop in’
biofuels that are compatible with the existing transporta-
tion infrastructure.
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