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Original Article

A localization algorithm for railway
vehicles based on sensor fusion
between tachometers and inertial
measurement units

M Malvezzi1, G Vettori2, B Allotta2, L Pugi2, A Ridolfi2

and A Rindi2

Abstract

The availability of a reliable speed and travelled distance estimation is relevant for the efficiency and safety of automatic

train protection and control systems. This paper investigates the main features of an innovative localization algorithm

that integrates tachometers and inertial measurement units. Nowadays, the estimation is performed by an odometry

algorithm that relies on wheel angular speed sensors. The objective is to increase the accuracy of the odometric

estimation, especially in critical adhesion conditions, through sensor fusion techniques based on Kalman filter theory.

The Italian company ECM S.p.A. has supported the project, providing a custom inertial measurement unit based on micro

electro-mechanical system sensors for the on-track testing of the algorithm. The preliminary results show a significant

improvement of the position and speed estimation performances compared to those obtained with SCMT (Italian

acronym for ‘Sistema Controllo Marcia Treno’) algorithms, currently in use on the Italian railway network. A wide set

of simulated test results, showing the improvement of the estimation process, is presented and discussed. An accurate

train navigation that scarcely relies on information from the infrastructure will open a road map for the development of a

more and more effective and efficient exploitation of the railway infrastructure.

Keywords

Automatic train protection and control safety systems, odometry railway applications, localization algorithms, micro

electro-mechanical system inertial sensors, Kalman filter, sensor fusion
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Introduction

The importance of monitoring and control systems is
continuously growing in the modern railway network.
Automatic train protection and control (ATP-ATC)
systems are fundamental to increase the infrastructure
capacity, by maintaining a proper level of operation
safety.

Odometry is a relevant on-board module that esti-
mates instantaneously the speed and the travelled dis-
tance of a railway vehicle by dead reckoning; the
availability of a reliable speed and travelled distance
estimation is the base of a safe and efficient ATP-ATC
system, since an error on the train position may lead
to a potentially dangerous overestimation of the dis-
tance available for braking.

The European Rail Traffic Management System
(ERTMS), a project developed by the European
Union to improve the interoperability between differ-
ent countries, in particular as regards the train control
and command systems, fixes some standard values for

the odometric performance, in terms of speed and
travelled distance reliability.1–4 The reliability of the
odometric estimation has to be taken into account in
the definition of allowed speed profiles.5–7

Typically, in railway applications, the dead reckon-
ing relies on wheel angular speed sensors, but other
types of sensors can be used: radar Doppler sensors,
accelerometers, gyroscopes, etc.8,9 A novel method for
the estimation of the train is the use of traction motor
and current.10 Generally, one isolated sensor can par-
tially provide accurate data since its reliability ranges
are often limited; furthermore, the environmental
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conditions may vary during the train operation, in an
unpredictable and unquantifiable way.

The reliability of dead reckoning is then related to
the working conditions in which the sensors oper-
ate.11,12 For instance, wheel angular speed sensors
located on two independent wheels give a reliable
and accurate estimation of the train speed, but only
when good adhesion conditions between the wheel
and rail occur.13,14 In the presence of wheel sliding
(when the train is accelerating or braking), the estima-
tion error may become very high.

Sensor fusion techniques based on Kalman filter
theory have the potential to compensate the draw-
backs of a single sensor, combining information
from independent sources, each characterized by lim-
ited accuracy and reliability, in order to extract better
information. Furthermore, the use of different
types of sensors, whose information is properly
weighted according to specific operative conditions,
may significantly increase the algorithm reliability12

and reduce system vulnerability to failures of single
components.

Georeferentation of the track lines could be a pos-
sibility for accurate estimation of the position. In this
way, odometry could take advantage of global pos-
itioning systems (GPSs) to detect each point on the
track as longitude, latitude and height, and match it
to the length of the line up to that point. However, in
railway applications, the lack of georeferentation and
the outages of signals, e.g. in tunnels, discourage the
use of GPSs.

The analysis of the methods and results described
in Malvezzi et al.8 suggests that an accurate measure
of longitudinal acceleration could significantly
improve the recognition of degraded adhesion condi-
tions, and could be used to estimate the train speed
and position when wheel speed sensors fail due to slip
and slide phenomena.

A mono-axial accelerometer was used to meas-
ure the longitudinal acceleration, but the measure
was affected by systematic errors, due to the sensor
sensitivity to car body angular displacement,
mainly due to the track gradient. In Malvezzi
et al.,8 the dependency of the accelerometer meas-
ure on the train pitch and angular position error
was analysed, and an odometry algorithm was
developed in order to be not very sensitive to
such types of errors.

An estimation of the train longitudinal acceleration
less sensitive to sensor angular displacements may be
obtained by combining accelerometers and gyro-
scopes.11 Moreover, the rapid technological develop-
ment of low-cost micro electro-mechanical systems
(MEMSs) sensors made the integration of an inertial
measurement unit (IMU) into the odometric esti-
mation very interesting. Both the definition of an
innovative localization algorithm and the design of a
low-cost custom IMU meet the need of the Italian
company ECM S.p.A. to develop a competitive

industrial product able to enhance the reliability of
the odometric estimation.

The aim of the work is to provide an innovative
solution able to increase the accuracy of the odo-
metric estimation, compared to the commonly
adopted solutions, which have often lack of reliabil-
ity: SCMT (Italian acronym for ‘Sistema Controllo
Marcia Treno’) algorithms, for example, are forced
to overestimate the speed for safety scopes, so the
emergency braking occurs more than required.
The objective to keep the accuracy high, i.e. limited
estimation error, allows an increase of the perform-
ance of the ATP system and achieves a more
reliable system in terms of comfort and
consumption.

In this paper, the design of a pose estimation algo-
rithm that integrates odometers and an inertial navi-
gation system (INS) based on an inertial measurement
unit (IMU) is described. The developed algorithm has
been validated with a set of simulated scenarios rea-
lized with a three-dimensional (3D) multibody
dynamic model of a railway vehicle able to reproduce
most of the conditions that may affect the reliability
of the sensors.15

The paper is organized as follows. In the next sec-
tion, the different kinds of sensors that are used for
the proposed localization algorithm are analysed:
wheel angular speed sensors and inertial sensors (tri-
axial accelerometers and gyroscopes). Then, the
sensor fusion between tachometers and the IMU is
shown, and the testing procedure and the European
train control systems (ETCS) requirements1–4 are
explained. Finally, a comparison of the proposed
localization strategy with the SCMT solution, in
terms of estimation accuracy, is presented and
discussed.

Sensors for odometry

Different types of sensors can be used in the
odometry subsystem; the main features of the sensors
used to perform the preliminary tests are briefly
described in this section. The sensors considered and
analysed by means of experimental activities and
numerical simulations are wheel angular speed sensors
and inertial sensors (triaxial accelerometers and
gyroscopes).

The analysis of other types of sensors, e.g. radar
Doppler speed sensors and mono-axial accelerom-
eters, is discussed in Malvezzi et al.,8 while a discus-
sion on sensors for railway applications is presented in
Mirabadi et al.11

Wheel angular speed sensors (tachometers)

Wheel angular speed sensors are widely diffused in
railway applications due to their robustness and reli-
ability: they are used, e.g. by the wheel slide protec-
tion (WSP) and anti-skid systems. Through this type
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of sensors, when pure rolling conditions occur, the
train speed can be simply calculated as

v ¼ R! ð1Þ

where v is the longitudinal train speed, ! is the wheel
angular speed and R is the wheel radius.

It is worth noting that the wheel radius information
sometimes may not be reliable, since railway wheels are
subject to wear and periodical mechanical returnings.
The weak point is the low reliability under degraded
adhesion conditions, which is rather common in rail-
way practice. If the wheel is not sliding, this sensor
provides a good and reliable estimation of the train
speed, but, when the wheel–rail adhesion conditions
are degraded, and the train is accelerating or braking,
pure rolling conditions between the wheel and the rail
do not hold any more and macroscopic slidings arise.
If the train is accelerating, the wheel peripheral speed
tends to overcome the train speed, while during the
braking phase, the wheel peripheral speed is lower
than the train one. The dynamics of the wheels in slid-
ing mode significantly depends on the mechanical
feature of the vehicle (masses and inertia, geometric
properties, suspension characteristics, etc.) and on
the interactions between the different on-board subsys-
tems, in particular, the braking system and the WSP,
the traction system and the anti-skid. The sensor
output is a signal proportional to the pulse counter c,
in the generic time sample i. The wheel angular speed!i

can be evaluated by finite derivatives as

!i ¼
2�

N

ci � ci�1ð Þ

�T
ð2Þ

where ci is the current sample, ci�1 is the preceding
sample, N is the number of impulses per revolution,
�T is the sampling time. SCMT, the Italian ATP
system, supports an odometry algorithm13,14 based
on the measures from two angular speed sensors.
The adhesion conditions are estimated by means of
two criteria:

. the so-called tachometric criterion states that two
wheels (or at least one of them) are sliding or skid-
ding if the absolute value of the difference between
their wheel peripheral speeds (v1, v2) overcomes a
fixed threshold (�v)

v1 � v2j j4�v ð3Þ

. the accelerometric criterion compares the wheel
peripheral accelerations: a wheel is sliding if the
absolute value of its acceleration (a1, a2) overcomes
a fixed threshold (�a)

a1j j4�a a2j j4�a ð4Þ

The detection of the condition of the adhesion shows
some weak points: in fact, if both wheels slide, the

possibility that the ‘tachometric criterion’ fails is
high, as actually happens in practical applications.
In this case, the ‘accelerometric criterion’ should be
able to recognize the sliding phase. In the worst-case
scenario of sliding of all the wheels and with low
acceleration, both the criteria may fail. The fake
detection of the adhesion condition happens fre-
quently on the railway network, so the SCMT algo-
rithm is often affected by non-negligible errors. If the
estimated adhesion conditions are judged as ‘good’,
according to the previously mentioned criteria, the
train speed can be evaluated directly from the periph-
eral speeds of the wheels. When the wheels are sliding
and the train is accelerating (or braking), the speed
can be evaluated as the minimum (maximum) between
the speeds of the two wheels, and a speed estimate
obtained by integrating a constant acceleration (decel-
eration) value, previously established, according to
the dynamical performances of the train.

IMUs

An IMU is an electronic device composed of a triaxial
accelerometer and a triaxial gyroscope. It can measure
triaxial body frame acceleration

~f b ¼ f bx f by f bz

h iT
ð5Þ

and triaxial body frame angular rate

~wb
ib ¼ wb

x w
b
y w

b
z

h iT
ð6Þ

The accelerometer provides an output proportional
to the non-gravitational force per unit mass (f) to
which the sensor is subjected along its sensitive axis
(an acceleration dimensionally). In order to calculate
the acceleration due to the movement (a), the follow-
ing operation must be performed

a ¼ f þ g ð7Þ

Gyroscopes measure angular rates corresponding
to rotations of the platform where the IMU is
mounted with respect to an i-frame inertial frame,
with non-rotating axes with respect to the fixed
stars, i.e. the invoked inertial reference frame.

Classical IMUs are very expensive and very accur-
ate, but modern accelerometers and gyroscopes are
often small MEMSs with low cost and quite high
noise. The primary sources of accelerometer and gyro-
scope errors (ea and eg, respectively) include sensor
noise, scale-factor errors, cross-axis coupling factors
and bias.11 Thus, the inertial sensor measurement equa-
tions for both the accelerometer and the gyroscope are

�f ¼ f þ ea ¼ f þ ba þ Sa f þma f þ �a

�w ¼ wþ eg ¼ wþ bg þ Sgwþmgwþ �g
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where �� denotes the measured value by the sensor and
the subscripts a and g mean the accelerometer-specific
errors the gyroscope-specific errors respectively. The
symbols in the above equations mean: f is the specific
force as previously defined, w is the angular rate, b is
the sensor bias, S is the scale-factor error, m is the
assembly error and � is the sensor random noise. The
bias is generally composed of two parts, a determin-
istic bias offset and a bias drift. The outputs of the
IMU can be processed to determine the position, vel-
ocity and attitude of a vehicle through algorithms
called the INS. The classical architecture of an INS
algorithm is shown in Figure 1.16

The following reference frames are defined: e-frame
(Earth frame) with axes fixed with respect to the
Earth, n-frame (navigation frame) with axes fixed
with respect to the east, north and up directions and
the b-frame (body frame) with axes aligned with the
vehicle. The rotation matrix Cn

b expresses the relation-
ship between the navigation and body frame, and is
used to transform the acceleration measurements
from the b-frame to the n-frame, thus

an ¼ Cn
bf

b þ gn ð8Þ

where f b is the quantity defined in equation (5) and gn

is the gravity vector equal to 0 0 � 9:81½ �
T.

It is worth noting that, for the scope of this work,
the contributions of!n

ie (Earth’s rate with respect to the
i-frame) and !n

en (turn rate of the n-frame with respect
to the Earth) are considered negligible, since they are
much less than the signal from the movement, thus

!b
ib ¼ !

b
nb ð9Þ

The attitude computation is usually quaternion
based

qðkþ 1Þ ¼ qðkÞ þ
1

2
�kqðkÞdt ð10Þ

where �k is the 4� 4 skew symmetric matrix based on
angular rates ð!b

x !
b
y !

b
zÞ. The quaternion q ¼

½� �x �y �z�, unlike the Euler angles, avoids the occur-
rence of singularities and permits calculation of Cn

b

Cn
b¼

2ð�2þ �2xÞ�1 2ð�x�y���zÞ 2ð�x�zþ��yÞ

2ð�x�yþ��zÞ 2ð�2þ �2yÞ�1 2ð�y�z���xÞ

2ð�x�z���yÞ 2ð�y�zþ��xÞ 2ð�2þ �2zÞ�1

2
64

3
75

It is then possible to estimate the velocity of the
vehicle through an integration of the transformed
acceleration and the position in a fixed reference
through a double integration.

This algorithm blindly processes the raw inertial
data affected by errors. The performed time integra-
tion introduces drift errors in the estimate. The orien-
tation error (��), from the integration of the angular
rates, causes an incorrect projection of the acceler-
ation signals onto the global axes, i.e. a tilt error
(�� ¼ egt) will cause a component of the acceleration
due to gravity with magnitude gsinð��Þ to be projected
onto the horizontal axes. This error propagates on the
velocity and position according to

�v¼ v̂� v¼

Z
�adt� v

¼

Z
adtþ

Z
ea dtþ

Z
gegtdt� v

¼ vþ eatþ
1

2
eggt

2� v¼ eatþ
1

2
eggt

2

�p¼ p̂� p¼

Z
v̂dt� p¼

Z
eatdtþ

Z
1

2
eggt

2 dt� p

¼ pþ
1

2
eat

2þ
1

6
eggt

3� p¼
1

2
eat

2þ
1

6
eggt

3

Deterministic compensation is not sufficient to
erase the error due to random white noise.
Stochastic filters such as extended Kalman filter
(EKF) can improve the estimation performances of

Figure 1. INS algorithm.
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INS algorithms. EKF equations for inertial naviga-
tion are described in Barshan and Durrant-Whyte17

and consist of a linear state transition model and a
non-linear observation model.

Stochastic filters reduce the integration error, but
cannot provide the high accuracy level required for
this application. In these cases, higher quality infor-
mation can be achieved using multiple sensors and
integrating them.

There are different methods of data fusion that
have been developed for different types of sensors
and applications. Kalman filtering has more potential
for integration of navigation sensors, where sensor
data are used as observations.

Sensor fusion between odometers
and INSs

In this section, the architecture of the innovative
localization algorithm is presented. As stated previ-
ously, the INS cannot provide the high accuracy
required for velocity and position estimates.

According to the sensor fusion techniques that
allow the integration of the measures from different
sources, attempting to choose, in each condition, the
sensor that has the maximum reliability, and to iden-
tify and compensate the sensor measurement error,
the INS estimation is fused with the tachometer meas-
urement, in order to optimize the odometric estima-
tion accuracy.

Compared to previously introduced odometry
algorithms,8,13 the proposed algorithm can take
advantage of sensor fusion techniques, through the
integration of the INS with a wheel angular speed
sensor and the reset of the position estimation when
a balise occurs along the track.

Some preliminary numerical experiments and con-
siderations have led to the idea of separating the 3D
attitude estimation and the one-dimensional (1D)

speed/travelled distance estimation. In this way, the
comparison between the speed estimated by the inte-
gration of the accelerometer and the speed measured
by the tachometer, and also the reset of the estimate
of the travelled distance corresponding to a balise, are
simply and directly available. Moreover, ETCS
requirements,1–4 which are used to test the perform-
ances of odometry algorithms, are based on the lon-
gitudinal speed error and the travelled distance error.

The proposed algorithm is summarized by the
block diagram in Figure 2, where R̂b

n represents the
rotation matrix from the n-frame (defined as the initial
body frame of the vehicle) to the b-frame and ~g is the
gravitational vector.

As can be seen in this diagram, two Kalman filters
are implemented:

. the orientation Kalman filter estimates the Euler
angles (roll, pitch, yaw) from the b-frame to the
n-frame, fusing the information of the angular
rate from the gyroscope with the wheel peripheral
acceleration, derived from the tachometer;

. the INS-ODOmetry Kalman filter estimates speed
and travelled distance, fusing the gravity compen-
sated body longitudinal acceleration with the wheel
peripheral speed.13

As shown in Figure 2, the algorithm provides four
diamond boxes, related to relevant working conditions
(coasting, straight, adhesion, balise). Their meaning is
explained in the subsections below.

Orientation Kalman filters

The state equation of the orientation Kalman filter in
block matrix form is

~xGiðkþ 1Þ ¼ FGi ~xGiðkÞ ð11Þ

Figure 2. Block diagram of the localization algorithm.
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where i ¼ x, y, z and

~xGx ¼  _ 
� �T

~xGy ¼ � _�
� �T

~xGz ¼ � _�
� �T

where  , � and � are, respectively, the roll,
pitch and yaw angles, _ , _� and _� are their deriva-
tives with respect to time, and the matrix FG is
defined as

FGi ¼
1 Ts

0 1

� �

with i ¼ x, y, z and Ts is the sampling time (equal to
0.1 s, in accordance with the sampling time of classical
odometry algorithms).

The process noise covariance matrix QG is
assumed as

QG ¼ diagðQGx,QGy,QGzÞ,

QGi ¼

T3
s

3
�2i

T2
s

2
�2i

T2
s

2
�2i Ts�

2
i

2
664

3
775 ð12Þ

with i ¼ x, y, z; in this equation, �i values represent
the experimentally determined standard deviations
of the components of the state vector.

The observation array is

~zG ¼

�!b
x

�!b
y

�!b
z

�abx

0

2
666666664

3
777777775

ð13Þ

The first three components are the b-frame angu-
lar rates measured by the gyroscope; the fourth is
the longitudinal component of the b-frame acceler-
ation obtained by the finite derivatives (Euler back-
ward method) of two subsequent tachometer
measures

�abxðiÞ ¼
�vbxðiÞ � �vbxði� 1Þ

Ts
ð14Þ

where i is the time sample.
The last component is the zero value for the reset

of the roll angle that can occur in the particular con-
dition of straight track.

The HG matrix, which correlates observations with
the state is

HG ¼

0 1 0 0 0 �s�

0 0 0 c 0 c�s 

0 0 0 �s 0 c�c 

0 0 gz 0 0 0

1 0 0 0 0 0

2
6666664

3
7777775

where s� ¼ sinð�Þ and c� ¼ cosð�Þ and gz ¼
�9:81m=s2.

Since pitch angles are small, the following approxi-
mation can be assumed

ax ¼ gz sinð�Þ � gz� ð15Þ

The sensor noise covariance matrix RG is
assumed as

RG ¼ diagð�2!x
, �2!y

, �2!z
, �2ab , �

2
0Þ ð16Þ

where the elements in the diagonal matrix are the
standard deviations of the sensor measures.

The RG matrix is adaptive with respect to the con-
ditions coasting and straight represented in the dia-
mond boxes in Figure 2.

Coasting is a phase where neither traction and
braking occur. Since a movement caused only by the
line gradient is compensated by the gravity term
(equation (7)), the coasting phase is related to the
fact that the longitudinal component of the acceler-
ometer is close to ‘zero’. In this case, the wheel per-
ipheral acceleration (equation (14)) is substantially
equal to the longitudinal acceleration, since in the
coasting phases, the phenomena of degraded adhesion
do not have any effect. In this way, it is possible to
retrieve a reliable estimate of the line gradient,
through the inversion of equation (15) (taken into
account in the HG matrix), from a source decoupled
from the gyroscopes

�2!y
� �2ab , if �f bx

��� ���5 �fx

�2!y
� �2ab , otherwise

8<
: ð17Þ

Equation (17) explains how the coasting phase is
handled by the orientation Kalman filter. When ‘zero’
longitudinal accelerations occur, sensor noise covari-
ance values (�2!y

and �2ab ) are set to enable the contri-
bution of the tachometer and disable the component
y of the gyroscope.

Instead, the complementary case occurs when the
longitudinal component of the accelerometer is far
from zero (traction and braking phases).

The straight condition states the reset of the roll
angle: in fact, neglecting roll variations due to the
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suspension dynamics, relevant values of this angle
occur when the track is curvilinear, in the presence
of cant angles.

The requirement of ‘zero’ lateral acceleration is not
sufficient to state the absence of curved track: in fact,
the compensation of the total lateral acceleration can
subsist when the centrifugal acceleration, due to the
train motion in curve, is compensated by the ‘gravity
lateral acceleration’, due to the presence of cant in the
curves of a railway track. Therefore, it is necessary to
include conditions on the gyroscopes, that is ‘zero’
angular rates over the x and z axes

�2!x
� �20 , if �f by

��� ���5�fy & �!b
x

�� ��5�!x
& �!b

z

�� ��5�!z

� �
�2!x
� �20 , otherwise

8<
:

ð18Þ

Condition (18) allows ‘turning on’ the contribution
of the roll reset when the three requirements explained
(‘zero’ lateral acceleration, ‘zero’ x and z angular
rates) occur at the same time.

The thresholds �fx , �fy , �!x
, �!z

have been experi-
mentally tuned (see the subsection on simulated
sensor masks).

INS/ODO Kalman filters

The state equations of the INS/ODO Kalman filter,
expressed in block matrix form, are

pbxðkþ 1Þ

vbxðkþ 1Þ

abxðkþ 1Þ

2
64

3
75 ¼ 1 Ts

1

2
T2
s

0 1 Ts

0 0 1

2
664

3
775

pbxðkÞ

vbxðkÞ

abxðkÞ

2
64

3
75

where pbx is the distance travelled by the train, vbx is the
train speed and abx is the b-frame acceleration.

The process noise covariance matrix QA is
assumed as

QA ¼

T5
s

20
�2a

T4
s

8
�2a

T3
s

6
�2a

T4
s

8
�2a

T3
s

3
�2a

T2
s

2
�2a

T3
s

6
�2a

T2
s

2
�2a Ts�

2
a

2
6666664

3
7777775

where �a represents the experimentally determined
standard deviation of the components of the state
vector.

The observation array is

~zA ¼

f bx þ Rb
ng

n

vbx
0

2
64

3
75 ð19Þ

The first component is the compensated longitudinal
gravity acceleration, the second is the speed of the
train measured by the tachometer and the third is
the zero point of the position reset sent by the
balise, which is supposed to occur each 1000m.

The Ha matrix, which correlates the observations
with the state, is

Ha ¼ I3x3 ð20Þ

The sensor noise covariance matrix RA is
assumed as

RA ¼ diagð�2ax , �
2
vx
, �2pxÞ ð21Þ

where the elements in the diagonal are the standard
deviation values of the sensor measures.

The RA matrix is adaptive with respect to the con-
ditions adhesion and balise represented in the diamond
boxes in Figure 2.

The adhesion condition is determined through the
condition reported in equation (22). The master cri-
terion is the ‘accelerometric criterion’: if the difference
between the wheel peripheral acceleration (abx) and the
gravity compensated body longitudinal acceleration
(f bx � R̂b

ng
n) is less than a threshold (�ad), the adhesion

is considered good. In order to avoid that ‘fake’ good
adhesion conditions are considered, a slave ‘tacho-
metric criterion’ has been implemented: it allows the
speed to be reset only if the difference between the
actual estimated speed (v̂b) and the wheel peripheral
speed (vbx) is lower than a threshold (�v). It is worth
noting that, with respect to the classical SCMT solu-
tions, only one tachometer is sufficient for the detec-
tion of the wheel–rail adhesion condition

�2ax � �2vx , if f bx � R̂b
ng

n � abx

��� ���5�ad & v̂b � vbx
�� ��5�v

� �
�2ax � �2vx , otherwise

8<
:

ð22Þ

Equation (22) states that, when good adhesion
between the wheel and the rail occurs, the measure-
ment update of the Kalman filter can rely on the con-
tribution of the speed measures provided by the
tachometer. Moreover, although degraded adhesion
conditions occur, the longitudinal acceleration signal
provides an estimate of speed and travelled distance.

The thresholds �ad and �v have been experimentally
tuned in the testing phase.

The balise condition (23) allows the travelled dis-
tance estimate to be reset, through a recognition of
the occurrence of a balise. During the operative con-
ditions a logic signal reveals the presence of a balise.
In a simulated scenario, it was hypothesized that a
balise occurred every 1000m, assuming a 5m bidirec-
tional error (expressed by �ba) on its positioning along
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the track. This value of uncertainty is obtained con-
sidering empirical knowledge about the tolerances
linked to the balise positioning along the line

�2ax � �2rx , if pbx � 1000
�� ��5 �ba

�2ax � �2rx , otherwise

(
ð23Þ

Testing

In this section, the testing procedure, sketched in
Figure 3, is described in detail.

Multibody model of the railway vehicle

The development and calibration of the odometric
algorithm, described in the section on sensor fusion
between odometers and INSs, involves the availability
of coherent kinematical inputs (wheel angular speed,
acceleration and angular orientation) and the simula-
tion of a wide range of working conditions, whose
realization by means of experimental test runs is dif-
ficult and expensive.

On the other hand, for this type of application, the
use of commercial multibody software is quite

difficult, since the simulation of degraded adhesion
conditions involves the co-simulation of on-board
mechatronic devices, such as WSP, anti-skid, etc.

In order to overcome all these problems a complete
3D multibody model of a railway vehicle has
been developed using Matlab-SimulinkTM (see
Figure 4),18,15 which is able to reproduce different
working conditions, with arbitrary tracks, including
ones that may stress the behaviour of the sensors, in
order to investigate their critical aspects.15

In particular, the 3D multibody model of a high-
speed train was implemented. A single unit, composed
of a coach connected to two bogies, was modelled.
Using a multibody approach, the system is divided
into one coach, two bogie frames, eight axle boxes
and four wheelsets. The coach is held by a rear and
front bogie with a two-stage suspension system
(Figure 5). The railway vehicle has a B0 � B0 wheel-
and-axle set (each bogie has two mechanically inde-
pendent engine axles).

The railway vehicle is provided with a double sus-
pension stage (first and second stages in both vertical
and lateral directions) between the coach, the bogies
and the axles, damping devices (vertical, lateral, anti-
yaw dampers) with non-linear characteristics, anti-roll
bar and bump-stop plugs (to reduce the carbody roll
motion, and other coach motions, respecting the vehi-
cle loading gauge).

Force elements (e.g. the two suspension stages and
the bump stops) have been modelled by means of
springs and dampers, with opportunely defined non-
linear characteristics reproducing the real component

Figure 4. Simulink schema of the multibody model.

Figure 3. Testing procedure.
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behaviour (the data reproduce, in a quite realistic
way, the typical properties of a high-speed train).

In Table 1, the main properties of the rail vehicle
are shown. In Table 2, the elastic characteristics of the
connection elements are displayed.

Vertical and lateral damping devices ensure a rela-
tively high damping of the modes of vibration of the
system: these elements are modelled with non-linear
characteristics to reproduce the real behaviour. The
wheel profile used for the simulations is the standard
International Organization for Standardization (ISO)
Office de Recherches et d’Essais de l’Union
Internationale des Chemins de fer (ORE) S1002,
while the rail profile is a International Union of
Railways (UIC)60 with a 1/20 cant.19

For the motion resistance and the possible presence
of the towed vehicles, the authors considered resistant
contributions, such as the cushion friction and the
aerodynamic resistance, applying a longitudinal
force to the centre of mass of the coach; the overall
resistance is modelled according to a second-order
polynomial function of the longitudinal speed whose

coefficients are estimated in accordance with the data
available in the literature.20,21

The simulated tests have the following
characteristics:

. long time running: in order to have high INS inte-
gration errors;

. degraded adhesion: in order to stress tachometer
measures;

. line gradient: it significantly affects the accelerom-
eter error, see equation (15);

. curves and cant angles: a good estimation of the line
gradient in the orientation Kalman filter is influ-
enced by a good estimation of yaw and roll angles;

. patterns of irregularities of the rail line (rail gauge
irregularities, cant, etc.).

In order to guarantee the robustness and the safety of
the proposed solution, the odometric algorithm has to
be tested with a huge number of long paths, so that a
strong computational effort is involved. In order
to avoid it, some basic modules with a great variability
of features have been simulated. Longer tracks can be
then created settling these basic modules the one with
the other; in this way, the computational effort is dis-
tributed on a limited set of short simulations.

Simulated sensor masks

The accelerations and angular rates reproduced by the
Matlab-SimulinkTM model have been processed by a
mask that simulates the sensor errors described in the
section on sensors for odometry. The quantification of
the errors was carried out by the experimentation of a
custom IMU designed by ECM S.p.A. based on low-
cost MEMS inertial sensors (Figure 6).

Figure 5. Two-stage suspension bogie model.

Table 1. Main characteristics of the vehicle model.

Parameter Units Value

Total mass kg �56, 000

Wheel-and-axle set – B0 � B0

Bogie wheelbase m 2.42

Bogie distance m 16.9

Wheel diameter m 0.92

Primary suspended masses own frequency Hz � 4:5

Secondary suspended masses Hz � 0:8

(carbody) own frequency
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The following assumptions have been checked by
the IMU testing:

. random noise has been simulated, both for the
accelerometer and for the gyroscope, as a
Gaussian white noise with zero mean and standard
deviation, �a and �g, as in Table 3;

. deterministic biases have not been simulated, since
they are supposed to be removed during the cali-
bration phase;

. random biases, ba and bg, have been simulated with
the values given in Table 3;

. scale-factor errors have not been simulated, since
they do not influence the results: in fact, since the
range of interest for the measurements is very lim-
ited, its influence in the output is not relevant, and
no error of this kind appeared during the tests;

. a thermal analysis, performed in the climate cham-
ber of Figure 7, has shown the presence of a rele-
vant error related to the temperature in the range
[�20	 to 55	]. In Figure 8, the ‘error versus tem-
perature’ graph is reported for an axis of both the
accelerometer and the gyroscope;

. no linear drifts have been detected during the
experimentation;

. a 2	 assembly error has been simulated for each
Euler angle, which was obtained from the experi-
ence of the manufacturers. This error could be
removed for roll and pitch angles through an initial
gravity calibration. The inaccuracy that persists
after this procedure has been simulated with a
zero-mean Gaussian noise with standard deviation
�m, as in Table 3.

The values �a, ba and �g, bg are obtained, respect-
ively, from the data sheet of the accelerometer and
the gyroscope used in the custom IMU board.

Post-processing and evaluation of the performances
of the algorithm

Since the inertial sensors are affected by stochastic
noise, the efficiency of the algorithm cannot be eval-
uated analytically. Monte Carlo runs are made to

Figure 6. Custom IMU board.

Table 2. Elastic characteristics of the two-stage suspension.

Translational Translational Translational Rotational Rotational Rotational

Stiffness x Stiffness y Stiffness z Stiffness x Stiffness y Stiffness z

Element (N/m) (N/m) (N/m) (Nm/rad) (Nm/rad) (Nm/rad)

Primary suspension 844,000 844,000 790,000 10,700 10,700 0

Secondary suspension 124,000 124,000 340,000 0 0 0

Axlebox bushing 4,0000,000 6,500,000 4,0000,000 45,000 9700 45,000

Anti-roll bar 0 0 0 2,506,400 0 0

Table 3. Errors of sensors.

Parameter Units Value

�a m=s2 2:2� 10�3

�g rad/s 7:8� 10�4

ba m=s2 4:1� 10�3

bg rad/s 2:5� 10�5

�m rad 2:2� 10�4
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obtain an estimation of the expected value of the per-
formance from a sample average of independent real-
izations.22 A large number of runs increases the power
of the hypothesis testing. The performance estimation
relative to N independent runs is the mean of the
N cost values

�C ¼
1

N

XN
i¼1

Ci ð24Þ

where the ith cost value Ci is the error between
the true and the estimated travelled distance
( ~pbx ¼ pbx � p̂bx) or speed ( ~vbx ¼ vbx � v̂bx).

The mean error between true and estimated speed
(or travelled distance) can be compared with the same
cost obtained with the SCMT algorithm, described in
the subsection on wheel angular speed sensors
(tachometers).

The performance parameter used to evaluate the
advantages of the localization algorithm in terms of

reliability is the percentage of time the signal error
does not meet the ETCS requirements (blue line in
Figure 9),1,2,3,4 i.e. the maximum acceptable error of
speed (position) as a function of the current train
speed (travelled distance).

As will be detailed in the following section, the
proposed localization algorithm allows speed and tra-
velled distance errors much lower than the values
imposed by the ETCS requirements to be obtained,
and the results are compared with error limits stricter
than the ETCS values, equal, respectively, to one half,
one quarter and one eighth of the ETCS limit.
These reduced performance thresholds are shown in
Figure 9.

Results

The testing procedure has been applied to ten worst-
case-design paths, whose features are summarized in
Table 4. Every path consists of three phases of

(a) (b)

Accelerometer Gyroscope

Figure 8. Error versus temperature graph.

(a)

Outside view

(b)

Inside view

Figure 7. Thermal analysis performed on the climate chamber at ECM.
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traction and braking, affected by degraded adhesion
and interspersed by a phase of coasting. For the adhe-
sion, the railway paths have some sections character-
ized by good adhesion conditions, with a static
adhesion coefficient equal to 0.3 (no slidings between
the wheel and the rail), and some sections under
degraded adhesion conditions, with a static adhesion
coefficient equal to 0.1 (slidings between the wheel and
the rail occur).

A degree of criticality (high or very high) is
assigned to each testing path, in relation to the fea-
tures that highlight the weaknesses of the sensors. The
first five are characterized by a high degree of critic-
ality, since the changes of slopes and the curves are
faced at such a speed that the angular rates are greater

than the noise of the gyroscope. The last five paths are
characterized by a very high degree of criticality due
to the high level of stress imposed on the sensors, in
particular, it is checked if the gyroscopes are able to
detect the angular rate in very extreme conditions due
to very low train speeds and very limited slope tran-
sients of the line gradient.

For instance, the simulated data from the inertial
sensors, related to path # 3, are reported in Figure 10.

Tables 5–7 show a quantitative description of each
path, in terms of length, percentage of degraded adhe-
sion, range of speeds, distribution of the slopes of the
track and rate of curvature of the path.

To be short, the following graphs (the ‘true speed
of the train’ always refers to the longitudinal speed of

(a) (b)

Position Speed

Figure 9. ETCS requirements: reference (blue line) and reduced values.

Table 4. Testing paths: characteristics.

ID Degree of criticality Characteristics

1 High Articulated altimetry, with uphills and downhills up to 30%o, without any curves

2 High Curved track with a radius of curvature of 1800 m, but level (there are no uphills or downhills)

3 High Combination of curves (radius of curvature of 1800 m) and slopes (uphills and downhills

up to 30%o)

4 High Curves (radius of curvature of 1800 m) and uphills (downhills) with mixed slopes (10, 20, 30%o)

5 High Very similar to the previous ones, but the curves are faced at such a speed and with a radius of

curvature that the lateral acceleration is zero (testing of the criticality of the roll reset)

6 Very high Very long (nearly 30 km) with slopes in the coasting phase

7 Very high The first uphill, with slope of 30%o, is faced at a speed of about 15 km/h (testing if the gyroscope

can read the angular rates over the y axis)

8 Very high The first uphill, with a slope of 10%o, is faced at a speed of 35 km/h (same objective as the previous)

9 Very high Very similar to the 7th, but the facing speed is about 8 km/h

10 Very high The first curve (radius of curvature of 10000 m) is faced at speeds below 40 km/h (testing if the

gyroscope can read the angular rates over the z axis)
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the railway vehicle during the simulations) are
reported only for path # 1.

The comparison between the true speed of
the train and the speed estimated by SCMT and
INS/ODO algorithms (Figure 11), with a zoom
on the traction phase and on the braking phase
(Figure 12).

In Figure 12, the accuracy enhancement provided
by the innovative algorithm, compared to the SCMT
solution, is manifest: although the braking conditions
imposed in the simulation are critical, in terms of
adhesion, the wheel peripheral speed is very far from
the ‘true’ one, and the contribution of the INS algo-
rithm allows a good estimation with a very low drift.

Figure 10. Simulated data from the inertial sensors, related to path # 3 (longitudinal and lateral accelerations and triaxial angular

rates).
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However, the contribution of the tachometer is
fundamental when the system detects a good adhesion
condition.

. The comparison of the travelled distance error with
the ETCS requirements, Figure 13a.

. The comparison of the speed error with the ETCS
requirements, Figure 13b.

In order to show the different performances of the
algorithm, the speed errors of the 10 paths are shown
in Figures 14–16.

The results show that the localization algorithm
estimates are good, since the speed and the position
errors are always much smaller than the speed and
position requirement thresholds.

It is worth noting that the ETCS requirement
thresholds should be a function of the longitudinal
speed (i.e. each path has its own ETCS requirement),
but, in order to have clearer graphs, the ETCS thresh-
old used is the stricter one (to be cautious).

Figure 16 shows particulars of the critical starting
phase: in fact, since the train speed is low, the angular
rate measured over the y axis, although the line slope
is changing, may be so small as to be incorporated
into the noise.

From the picture, it is obvious that paths #7, #8
and #9, which are characterized by a slow initial

Table 5. Testing paths: length and percentage of degraded adhesion and distribution of speed

(v1 ¼ 50 km=h, v2 ¼ 150 km=h).

ID Length (km)

% of degree

adhesion

% of speed

v 5 v1

% of speed

v1 5 v 5 v2

% of speed

v 4 v2

1 20.91 40.14 7.28 51.56 41.15

2 20.71 41.84 7.15 50.48 42.36

3 20.63 49.51 7.24 47.92 44.84

4 26.59 40.25 6.61 49.16 44.23

5 31.40 33.07 4.92 52.48 42.60

6 36.76 43.59 4.22 51.87 43.91

7 21.31 39.26 8.85 50.40 40.76

8 21.03 39.70 8.22 49.88 41.89

9 21.31 39.27 9.28 50.21 40.52

10 21.16 42.63 7.99 48.60 43.41

Figure 11. Comparison between true and estimated speeds.

Table 6. Testing paths: distribution of curved track

(�1

:
¼ 1� 10�4 rad/s, �2

:
¼ 0:005 rad/s).

ID

% of yaw rate
_�5 �1

:
% of yaw rate

�1

:
5 _�5 �2

:
% of yaw rate
_�4 �2

:

1 100 0 0

2 71.18 5.36 23.46

3 71.86 5.21 22.94

4 73.48 4.39 22.13

5 57.12 6.48 36.40

6 72.13 5.14 22.74

7 100 0 0

8 100 0 0

9 100 0 0

10 71.52 13.28 15.20

Table 7. Testing paths: distribution of sloped track.

ID

% of slopes

�5 5%o

% of slopes

55 �5 15%o

% of slopes

�4 15%o

1 86.96 1.37 11.67

2 100 0 0

3 73.10 2.46 24.45

4 84.22 3.21 12.58

5 83.85 4.66 11.49

6 62.91 6.95 30.15

7 83.75 2.01 14.23

8 85.82 8.15 6.03

9 82.92 2.04 15.04

10 81.07 1.74 17.19

444 Proc IMechE Part F: J Rail and Rapid Transit 228(4)

 by guest on May 2, 2014pif.sagepub.comDownloaded from 

http://pif.sagepub.com/


acceleration ramp, have worse performances in terms
of accuracy, even though the error meets the ETCS
requirements.

Finally, the histograms in Figure 17 summarize the
performance parameters explained in the subsection
on post-processing and evaluation of the perform-
ances of the algorithm, where the mean errors of
speed and travelled distance are obtained after 100
Monte Carlo runs.

The results are subdivided into four sets: one with
performances of speed estimation for paths with high
degrees of criticality (Figure 17a), one with perfor-
mances of speed estimation for paths with very high

degrees of criticality (Figure 17b), one with perfor-
mances of travelled distance estimation for paths
with high degrees of criticality (Figure 17c) and the
last with performances of travelled distance estima-
tion for paths with very high degrees of criticality
(Figure 17d).

Each figure shows, on the first planar axis, the
requirement used (ETCS or its subdivisions), on the
second planar axis, the ID of the path and, on the ver-
tical axis, the value of the calculated performance
parameter.

Since the results for the SCMT algorithm (blue
histograms) are significant just considering the

(a) (b)

Traction phase Braking phase

Figure 12. Comparison between true and estimated speeds – particulars.

(a) (b)

Travelled distance Speed

ds

Figure 13. Errors with respect to ETCS requirements.
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ETCS requirements, the comparison with its subdiv-
isions has been performed only for the INS/ODO
algorithm (green histograms).

The histograms point out some relevant results:

. although the tuning of Q and R matrices is a tricky
activity (EKFs are not reliable with non-stationary
signals), a suboptimal set of parameters provide
good results for a wide range of heterogeneous
tests;

. the innovative algorithm has a much better per-
formance than the SCMT algorithms;

. the ETCS requirements should be kept to one
eighth of its value, in order to be able to see a
significant error of estimate;

. two paths (# 7 and # 8) show worse behaviour,
since their performance parameter with respect to
the ‘official’ ETCS requirements is not zero (i.e. the
limit thresholds are overcome).

Conclusions

This paper describes an innovative localization algo-
rithm that fuses the information from an odometer
and an IMU, owing to the Kalman filter theory.

The main features of the localization algorithm
have been summarized and the sensor output signals
have been simulated through a 3D multibody model
of a railway vehicle. A huge number of simulated
paths with a wide range of working conditions and

Figure 15. Paths 6–10: comparison between the speed errors and the ETCS requirements.

Figure 14. Paths 1–5: comparison between the speed errors and the ETCS requirements.
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Figure 17. Percentage of time errors that do not meet ETCS requirements.

Figure 16. Paths 1–10: speed errors in the starting phase.
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track configurations have been used to test the
algorithm.

The preliminary results show a significant improve-
ment of the position and the speed estimation, com-
pared to the classical SCMT algorithm, using the
percentage of time the error signal does not meet
the ETCS requirements as performance parameter.

This paper shows the achievement of many rele-
vant objectives, and the drawbacks of exploiting the
accelerometer to detect degraded adhesion conditions
have been overcome, owing to the use of a complete
inertial platform that can provide a reliable estimation
of the orientation of the vehicle, and of the track line.
An efficient accelerometric criterion is the base for a
reliable speed estimation also under degraded adhe-
sion conditions.

Another relevant achievement is the possibility to
provide only one tachometer for the odometry appli-
cation; classical applications need two of them, as the
minimum setting of sensors for the estimation of the
sliding state (adhesion level) of the wheels. The omis-
sion of one tachometer has a relevant and positive
impact on the system, since these sensors have many
mechanical and maintenance problems.

Further activities will be carried out to test the
algorithm performances through a wide set of experi-
mental train runs, using a hardware-in-the-loop test
rig composed of an industrial robot used as a dynamic
simulator to test the custom IMU board designed by
ECM S.p.A. On-track tests are scheduled for next
summer.
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