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Bone vasculature is essential for many processes, such as skeletal development and
growth, bone modeling and remodeling, and healing processes. Endothelium is an integral
part of bone tissue, expressing a physiological paracrine function via growth factors and
chemokines release, and interacting with several cellular lines. Alterations of the complex
biochemical interactions between vasculature and bone cells may lead to various clinical
manifestations. Two different types of pathologies result: a defect or an excess of bone
vasculature or endothelium metabolism. Starting from the molecular basis of the interac-
tions between endothelial and bone cells, the Authors present an overview of the recent
acquisitions in the physiopathology of the most important clinical patterns, and the modern
therapeutic strategies for their treatments.
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Bone is a highly vascularized tissue, characterized by an intense
turnover of neoformation and resorption. The vasculature in bone
tissue is important for skeletal development and growth, modeling
and remodeling, and healing processes. Endothelium is an integral
part of bone tissue, and has a role in the interaction with bone cells
in all the mentioned processes (1). This is based on the significa-
tive heterogeneity of endothelial cells features, as for size, tissue,
and age both in physiologic (2, 3) and in pathologic conditions
(4–6). Moreover, it is now clear that endothelium plays a role in
the local bone metabolism, acting in a paracrine fashion on other
bone stromal cells via humoral factors, such as growth factors and
chemokines (1, 3). The interaction of endothelial cells and other
bone cells has been interpreted, and fascinating hypotheses have
been proposed over the past two decades (7–12). However, the
molecular mechanisms of action that underlie this cross-talk is
not yet crystal clear.

In conditions when the mechanical stability is normal and
an adequate combination of cells, growth factors, and bone
matrix is associated to an appropriate blood supply, important
processes like bone formation, growth, and healing occur, as
hypothesized according to the “diamond concept” (13). How-
ever, there are several conditions in which bone tissue loses a
normal paracrine endothelium function, as happens in trauma,
metabolic disorders, and genetic diseases. Also, vascular accidents
may affect the integrity, affecting bone vasculature. Moreover,
there are bone segments with a terminal vascularization (prox-
imal femur, carpal scaphoid, talus) that are at high risk due
to the lack of an appropriate collateral vascular network. In
case of alterations in their unique blood supply, bone metab-
olism, and bone health are dramatically affected. More fre-
quently, bone metabolism is inhibited, resulting in decreased bone
formation.

An overview of the complex biochemical interactions between
vasculature and bone cells in normal conditions and in various
clinical manifestations follows.

ENDOTHELIAL AND BONE CELLS. THE MOLECULAR BASIS OF
THEIR INTERACTIONS
Endothelial cells in bone have several functions: maintenance of
vascular integrity, contribution to bone formation, and direct
stimulation of osteoblasts/osteoclasts cross-talk (11, 14).

In several studies carried out over the last decades, interpre-
tations were offered to understand the molecular relationship
between vasculature and bone, using both in vivo and in vitro
models (Figure 1).

One key point is represented by the communication between
endothelium and bone cells, based on the release of humoral
factors, such as growth factors. Growth factors are critical for
osteoinduction, a central process for bone repair, as occurs in
fracture healing. To ensure successful bone healing, the induc-
tion of angiogenesis is needed, and marrow stromal cells (MSCs)
are also used to induce bone formation (15–20). Mesenchymal
elements express factors like Vascular Endothelial Growth Factor
(VEGF), and it has been demonstrated that MSCs from healthy
subjects are characterized by a signature profile of VEGF expres-
sion distinct from patients affected by Osteonecrosis (ON) of the
hip and by Osteoarthritis (OA) (14). Both in animal models and
in humans, VEGF expression was evaluated in mesenchymal cells
from osteonecrotic bone with the common conclusion that VEGF
enhances bone forming activity (15, 17, 19). Indeed, the expres-
sion of VEGF, assessed in human specimens from late stage ON of
the femoral head, showed that osteoblasts from the reactive inter-
face exhibited increased VEGF expression, which the investigators
postulated to be a secondary phenomenon in an attempt to stim-
ulate the ingrowth of a reparative blood supply (21). In addition,
it was also found that osteoblasts derived from OA femoral heads
exhibited down-regulation of VEGF after 24 h of co-incubation
with glucocorticoids. Another study has suggested that there may
be a strong association of a polymorphism in the VEGF genotype
(-634G/C polymorphism) with ON of the femoral head in the
Chinese population (22).
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FIGURE 1 |The complex interaction among endothelial cells,
osteoblasts, and osteoclasts. EC, endothelial cell; OB, osteoblast; BMSC,
bone marrow stromal cell; OC, osteoclast; pre-OC, OC precursor; TEM,
transendothelial migration; MSC, mesenchymal stem cell; HSC,
hematopoietic stem cell; SDF-1, stromal cell-derived growth factor-1; IL-,
interleukin; MCP, monocyte chemoattractant protein; CK-8, a chemokine;
FKN, fractalkine; RANTES, regulated on activation of normal T cell expressed
and secreted; MIP-1, macrophage inhibitory protein-1; Col, collagen; LM,
laminin; FN, fibronectin; TSP, thrombospondin; GAGs, glycosaminoglycans;
VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth

factor; FGFs, fibroblast growth factors; OPG, osteoprotegerin; BMPs, bone
morphogenetic proteins; TGF, transforming growth factor; M-CSF,
macrophage-colony stimulating factor; G-CSF, granulocyte-colony stimulating
factor; GM-CSF, granulocyte/macrophage-colony stimulating factor; Ang II,
angiotensin-II; PGE2, prostaglandin E2; ROS, reactive oxygen species; ET-1,
endothelin-1; SHH, Sonic Hedgehog; OCN, osteocalcin; OPN, osteopontin;
ON, osteonectin; MGP, matrix Gla protein; BGP, bone Gla protein; BG,
biglycan; IGFs, insulin-like growth factors; BLC, B-lymphocyte
chemoattractant; TECK, thymus-expressed chemokine; ECF-L, eosinophil
chemotactic factor-L.

Prostaglandins are produced in bone as response to inflamma-
tion, injury, and mechanical load, and have been implicated in
the local regulation of bone metabolism. Increased production of
prostaglandins (particularly PGE2) induces in a dose-dependent
fashion the overexpression of VEGF mRNA in osteoblasts in an
animal model (study of VEGF mRNA expression in rat calvaria-
derived osteoblast-enriched cells) (23): the result is an increase
of bone turnover, as for a significant paracrine effect of VEGF,
more than a supposed autocrine action (23). Support to this
theory is provided also by a recent study that confirms the
paracrine/intracrine function of VEGF, also able to induce dif-
ferentiation both for osteoblasts and adipocytes (24). There is
also another theory about how VEGF may be important in cou-
pling bone formation and angiogenesis: some authors propose
that VEGF alone is not able to promote bone regeneration in
some processes, as fracture healing, but synergistically with BMPs
(BMP-2, BMP-4) (25).

Some authors advanced a theory that some lines of bone stro-
mal cells are a bone-specific type of microvascular pericytes, able
to interact with the endothelium, and with high multilineage
potential (26–29). This would mean that these pericytes may be

considered as a reserve for any process regarding bone tissue heal-
ing (26). However, only cells near blood capillaries may give rise to
bone forming cell lines (30). Indeed, bone vasculature is of crucial
importance during the ossification of growth plates (31). While the
growth takes place, the chondral tissue becomes thinner due to the
induced apoptosis that favors substitution of the calcified cartilage
with bone tissue. VEGF, the Hypoxia-Inducible Factor (HIF-1)
and RANK-L are highly expressed by hypertrophic chondrocytes,
to modulate local bone metabolism, angiogenesis, and osteogene-
sis (32–34). Moreover,VEGF expressed by the endothelium plays a
role in osteogenesis via the increased production of BMPs (BMP-
1, BMP-4) (35–37). In addition, factors secreted by endothelium,
such as endothelin-1 and angiotensin-II, are also able to induce
bone formation (35–41). The action of the endothelium may thus
be considered as a coordinating function in the cross-talk between
bone cells and angiogenesis. Specifically, it seems that the local
release of VEGF induces both endochondral and intramembra-
nous ossification during bone growth, bone development, bone
remodeling, and bone repair (42). Similarly, osteoclasts deriv-
ing from bone marrow or circulating precursors may migrate to
bone resorption sites through endothelium, which also releases
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cytokines able to activate the process of osteoclastogenesis (40,
43–45).

The role of the endocrine systems in the regulation of the inter-
action between vessels and bone is an area of great interest. Pitu-
itary hormones such as adreno-corticotropic hormone (ACTH),
thyroid-stimulating hormone (TSH), and follicle-stimulating hor-
mone (FSH) control the synthesis of VEGF by osteoblasts (46).
Particularly, ACTH induces VEGF release, TSH receptors are
expressed by osteoblasts and osteoclasts, and FSH acts via TNF-α
to favor bone resorption (46). Moreover, the uncontrolled VEGF
release by bone marrow cells in the early stages of steroids-induced
pathologic bone conditions (i.e., ON of the femoral head) may
lead to vascular insufficiency related to increased endothelial gaps
and hyperpermeability of the endothelial wall, resulting in inad-
equate bone repair (47). Functional estrogen receptors in bone
endothelial cells were found in bovine models in vitro, suggesting
a role of estrogens in bone angiogenesis and in the entire process of
bone remodeling (48). Moreover, parathyroid hormone (PTH) has
shown a vasodilating effect on bone vasculature (11). Also, local
factors, such as the RANK/RANK-L pathway, are known to play a
fundamental role in the modulation of angiogenesis and endothe-
lial cell survival (34, 49). In addition, recent acquisitions indicate
that homeobox genes are able to control the connection between
angiogenesis and osteogenesis. Indeed, the Sonic Hedgehog seems
to control the expression of several families of growth factors,
mainly VEGFs (50). The results of this action are a direct angio-
genic effect, an acceleration of the endothelial cell tube formation,
and the differentiation of local mesenchymal cells in the osteogenic
lineage. Finally, differential expression of genes encoding bone
matrix proteins and local growth factors and chemokines has been
indicated as one of the signatures in pathologic conditions, as in
ON of the femoral head (51).

CLINICAL CONDITIONS OF ALTERED BONE/VASCULATURE
COMPLEX
Several pathologies are the results of an altered relationship
between endothelium, vasculature, and bone tissue. These are:
avascular necrosis, pachydermoperiostosis, osteopetrosis, rickets,
osteoporosis, inflammatory bone loss, multiple myeloma, Paget’s
disease, metastatic bone disease, melorheostosis, Gorham–Stout
disease (GSD), Klippel–Trénaunay syndrome (KTS), and vertebral
angiomatosis (4–6, 52–79). Most of these conditions are related to
a defect of vascular supply, although a few phenotypes are caused
by an excessive vascularization (Table 1).

Table 1 | Main clinical manifestations of the altered bone/vasculature

complex.

Defect of bone vasculature Excess of bone vasculature

Idiopathic osteonecrosis Gohram–Stout disease

Trauma related osteonecrosis Klippel–Trénaunay syndrome

Sickle cell anemia Vertebral hemangioma

Thrombophilia related osteonecrosis Pachydermoperiostosis

Bisphosphonates-related osteonecrosis

of the jaws

Osteopetrosis

DEFECTS OF THE BONE VASCULATURE OR ENDOTHELIUM
METABOLISM
Idiopathic osteonecrosis
Among the diseases with a defective vasculature, the most com-
mon and studied is bone ON, also known as avascular necrosis.
The main blood supply to femoral head originates from the
basicervical extracapsular articular ring and ascending branch
of the medial femoral circumflex artery, as well as smaller sec-
ondary contributions arising from inferior and superior gluteal
arteries, and the artery of the ligamentum teres (80). A signif-
icant number of cases of ON are to be considered idiopathic.
However, proximal femoral fractures with fragment displacement
is the most represented extracapsular cause of vascular disrup-
tion, while intravascular embolic matters such as clots, lipids,
immune complexes, or sickle cells are the most common situa-
tions of occlusion of the terminal circulation of this bone segment
(81–84).

Whatever the cause of ON, the reduction of the blood
supply induces a consequent decrease of the bone forming
activity. Specifically, the ischemic injury induced by multiple
possible causes upregulates tartrate-resistant acid phosphatase
(TRAP)-positive osteoclasts. These cells typically express the
TRAP protein, a glycosylated monomeric metalloenzyme, that
is thought to be involved in the osteoblast differentiation, acti-
vation, and proliferation in bone resorption sites: in patho-
logic conditions bone cells usually begin to resorb dead tra-
becule of subchondral bone of the femoral head, failing day
by day under repetitive weight-bearing loads related to com-
mon life activities (83, 84). ON finally consists in a collapse of
the bony architecture, mostly localized at the long bone epiph-
ysis leading to chondral damage and destruction of the articular
surfaces.

Early recognition of the disorder helps prevent the progres-
sion of the disease. An important symptom is acute local-
ized pain, and in cases of persistent pain, x-rays and MRI are
extremely helpful for the diagnosis. When the disease progresses,
the only way to solve the severe pain and functional limita-
tion is a joint arthroplasty (85). Several attempts were made
to understand the pathogenetic basis of bone ON. Defective
bone vascularization is the most accredited hypothesis, with
consequent reparative response that usually fails due to exces-
sive bone resorption. Bone ON may be the consequence of
a prolonged corticosteroid treatment. Even if to date it has
not been fully clarified, many hypotheses addressing ischemic
changes have been proposed. Several studies have reported a
specific relationship between plasma lipoprotein(a) [Lp(a)] con-
centration and vascular lesions such as coronary heart disease,
stroke, and carotid atherosclerosis (86). This low-density lipopro-
tein has a component of two disulfide-linked high molecu-
lar weight proteins, apolipoprotein(a) and apolipoprotein B100;
the former is able to induce arteriosclerosis and thrombogene-
sis (87).

Endothelial nitric oxide synthase (eNOS) has beneficial effects
on bone and vascular supply. A polymorphism in intron 4 of eNOS
gene was significantly associated with idiopathic AVN in Korean
patients indicating a possible protective role of nitric oxide in the
pathogenesis of the disease (88, 89).
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Osteonecrosis secondary to congenital disorders
Several congenital disorders may be complicated by ON (90).
Patients older than 35 years affected by sickle cell anemia (resulting
from homozygosis for the Glu6Val mutation in the hemoglo-
bin beta chain gene-HBB) often develop an ON (91, 92). Single
nucleotide polymorphisms (SNPs) in genes related to different
functions (vasculature, inflammation, oxidant stress, and endothe-
lial cell biology), and also involved in bone metabolism, have been
addressed as critical points in the development of ON (90). In
particular, examples are represented by: the Klotho (KL) gene
(encoding a glycosyl hydrolase that participates in a negative reg-
ulatory network of the vitamin D endocrine system); a BMPs gene
(BMP6), encoding for pleiotropic secreted proteins structurally
related to transforming growth factor β (TGFβ) and activins,
which is important for bone formation, and in association with
PTH and vitamin D appears to be involved in inducing bone devel-
opment by human bone marrow-derived mesenchymal stem cells;
and the Annexin-2 (ANXA2) gene (encoding for a member of
the calcium-dependent phospholipid binding protein family and
regulating the cell growth) (90).

Primary thrombophilia and hyperfibrinolysis appear to be
common, heritable risk factors for bone ON by leading to
an intravascular coagulation. Particularly, heterozygosity for the
thrombophilic Leiden mutation of the factor V gene is considered
a risk factor for ON of the jaws. Furthermore, alterations in the
expression of this gene associated with a treatment with exoge-
nous estrogens have been addressed as the causes of hip ON (93).
Recently, alterations of the factor V Leiden and the prothrom-
bin 20210A gene mutations have been associated with a higher
incidence of ON of the knee (94).

Bisphosphonate-related osteonecrosis of the jaws
Among secondary ON, BRONJ is a debated clinical condition
arising in case reports during the last decade, characterized by a
heterogeneous pattern of alterations including ulceration of the
oral mucosa, ON, and deep infection of the mandible and/or
maxilla persisting for more than 8 weeks (95, 96). A specific
risk factor was considered an oral surgical procedure in patients
affected by tumoral conditions treated by long-term endovenous
administration of high doses of aminobisphosphonates (97).

Even if its incidence to date is considered very low (approx-
imately 0.01% for oral administration; 0.8–12% for intravenous
injection) (98), the fact that treatment with bisphosphonates in
the prevention of fragility fractures is very diffused has caused
reasonable concern and justified particular attention. The role
of bisphosphonates on this pathology has yet to be documented,
given the lack of evidence in humans, and the recent evidence that
large animals (dogs) treated by high doses of bisphosphonates,
corticosteroids, or both have demonstrated necrotic or exposed
bone after dental extraction, as shown in rats (99, 100).

Three bisphosphonates-induced mechanisms have been pro-
posed in BRONJ: remodeling suppression, disrupted angiogenesis,
and infection (99). Despite the fact that there are no data of
the effects of bisphosphonates on jaw bone turnover in humans,
information in animal models indicates a low remodeling in the
jaws in terms of intracortical metabolism after bisphosphonates
administration (101, 102). The presence of “non-viable osteocytes”

and zones of matrix necrosis observed in a population of dogs
after administration of high intravenous doses of zoledronate is
another demonstration of intracortical bone remodeling suppres-
sion (103). Regarding the effects of bisphosphonates on angiogen-
esis, there is no evidence that the necrotic regions have a reduced
vascular supply. However, high doses of bisphosphonates have
been demonstrated to significantly suppress the vessel sprouting
in cultured tissue chambers implanted subcutaneously in mice,
and the vessel density in rats and humans (104, 105). This is prob-
ably related to a slower activity of the new remodeling units and
their related vessels induced by the remodeling action of bispho-
sphonates. Finally, bisphosphonates have been shown to inhibit
T-lymphocyte activation and proliferation in vitro, and to sup-
press the production of several pro-inflammatory cytokines by
both lymphocytes and monocytes (particularly Il-1β, IL-6, TNFα)
(106–109). This may explain the insidious forms of infection
(related to the universal presence of Actinomyces) associated to
a significant amount of cases of BRONJ (106, 107). A recent dis-
covery regards the effect of BFs (alone or in combination with
cortisonics) in the direct toxicity of animal oral mucosa by higher
levels of apoptosis and lower levels of MMP-9 in the epithelial (96,
110).

EXCESSES OF BONE VASCULATURE OR ENDOTHELIUM METABOLISM
In another series of clinical manifestations, pathogenesis is related
to redundant alterations in the bone vascular supply, such as in
GSD, KTS, and vertebral hemangioma.

Gorham–Stout disease
Also called “phantom bone,”“disappearing or vanishing bone dis-
ease,”“hemangiomatosis,”and“lymphangiomatosis,”GSD belongs
to the family of the “cystic angiomatosis,” i.e., severe patho-
logic conditions characterized by disseminated multifocal vascular
lesions of the skeleton with possible visceral involvement (111,
112). GSD was described as a condition involving bones (mainly
the humerus, pelvic girdle, and skull), more frequent in men
than women, with local an aggressive tendency, a rare self-healing
behavior, and related to a marked proliferation of thin-walled cap-
illaries without clear features of ON. Often associated to trauma
(113), it is usually discovered after a pathologic fracture. The
most important feature is a hyperemia with subsequent excess
of bone destruction and osteoclastic activity (probably due to ele-
vated serum levels of IL-6, IL-1, and TNF) with respect to bone
formation (82, 114).

In our recent experience, a significant increase of serum Osteo-
pontin (OPG) and Osteoprotegerin (OPG), both of which are
bone matrix proteins acting as markers of a bone metabolism,
has been demonstrated in patients affected by GSD as a probable
incomplete compensatory self-defense mechanism (115). OPG is
able to capture the RANK-L, inhibiting the differentiation and
activation of osteoclasts, and it is also expressed by endothelial
cells acting as antiapoptotic factor: high levels of OPG and OPN
may reflect an attempt of self-defense by endothelium after aspe-
cific bone damage (1, 116). In late stages, hypervascular fibrosis
substitutes the zones of bone resorption.

Gorham–Stout disease related to congenital disorders is a diag-
nosis of exclusion, after ruling out other differential diagnoses

Frontiers in Endocrinology | Bone Research August 2013 | Volume 4 | Article 106 | 4

http://www.frontiersin.org/Bone_Research
http://www.frontiersin.org/Bone_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carulli et al. Alterations of bone vasculature

(neoplasms, infections, and metabolic or endocrine disorders,
idiopathic osteolysis) (115). The osteolytic process may be pain-
less, allowing the patient to continue full activity while bone
destruction occurs, making the patient susceptible to pathological
fractures in the affected bones.

Klippel–Trénaunay syndrome
Klippel–Trénaunay syndrome is a congenital malformation with
a low incidence (<1:10000; similar in males and females). It is
characterized by mixed vascular (capillary and venous) malforma-
tions associated with abnormal growth in the extremities, muscle
hypoplasia or hypotrophy, and intramuscular lymphatic lesions.
KTS is the most representative example of combined vascular
malformation: histologically, a triad of capillary malformation,
atypical varicose veins (also known as marginal or anomalous
lateral veins) or venous malformations, and hypertrophy of soft
tissues and/or bone, is very frequent (117).

Its origin is still debated, probably correlated to mutations of
genes encoding for angiogenic factors, such as VG5Q (AGGF1 –
angiogenic factor with G patch and FHA domains-1) and RASA1
(Ras p21 protein activator 1), both located in chromosome 5 (118,
119). Clinically, there are two types of KTS: simple and com-
plex. Simple KTS has a blotchy/segmental port-wine stain (PWS)
and a better prognosis. Complex KTS features geographic PWSs,
often includes deep venous system aplasia or hypoplasia, and has
a higher risk of lymphatic involvement and a greater number of
complications.

Vertebral hemangioma
Until MRI was made available worldwide, vertebral hemangiomas
were almost unknown. Given the high sensibility and specificity of
MRI for fat and vascular tissues, these lesions were detected mostly
as“incidentaloma,”the vertebral hemangioma being a dysembryo-
genetic (hamartomatous) mass, composed of thin-walled vessels
lined by flat, bland endothelial cells infiltrating the medullary
cavity between bone trabecule (120–123).

Very common, and frequently multiple, the prevalence of
hemangiomas seems to increase with age and is greatest after mid-
dle age, with a slight female predilection. Most hemangiomas are
seen in the thoracic and lumbar spine. They are usually confined
to the vertebral body, although they may occasionally extend into
the posterior elements. Most spinal hemangiomas are asympto-
matic (124). Occasionally, vertebral hemangiomas may increase
in size and compress the spinal cord and nerve roots. Compressive
vertebral hemangiomas can occur in patients of any age, with a
peak prevalence in young adults, preferentially occurring in the
thoracic spine (52, 122, 124).

STATE OF THE ART OF THE THERAPEUTIC APPROACHES,
AND THE FUTURE HORIZONS
Whatever the type of alteration in the bone vascular supply and
metabolism, antiresorptive drugs are considered to date the elec-
tive treatment (15, 103, 104, 109, 119, 125–130). Bisphosphonates
may allow the reduction of bone loss and resorption in high
turnover conditions, acting also for their strong antiangiogenic
activity in hypervascularization. On the other hand, bisphospho-
nates may also operate to prevent or limit bone resorption sec-
ondary to a down-regulate local vascular or bone metabolism (i.e.,

ON), by inhibiting the osteoclasts action in favor of the osteoblastic
activity. Over the decades, several types of bisphosphonates have
been proposed, and different forms of administration have been
tested. In addition, new drugs have been studied and introduced
in specific conditions, with extension of the indications.

Osteonectin of the femoral head is one of the best known
pathologies, and its treatment depends on the stage at the moment
of the diagnosis. The choice of treatment is independent frp, the
main cause of ON, either idiopathic or secondary. Early stages
may be treated by a combination of limited weight bearing on
the affected side (use of crutches), activity modification, bispho-
sphonates administration (preferably via a parenteral route), and
physical therapy (magnetic fields, hyperbaric therapy) (131, 132).
Medium-stages ON may be treated by a well-known surgical pro-
cedure, core decompression of the femoral head and neck, in
association with several elements that over the decades have been
proposed: bone grafting, acrylic cement, vascularized bone (fibu-
lar) grafts (126, 133–135). However, the best combination now
seems to be filling with a biological composite made of bone
graft enriched with a concentrate of autologous bone marrow cells
derived from an iliac crest harvest and a bioceramic, to ensure a
biomechanical support (85). Ever since the preliminary reports,
this technique has shown, both in vitro and in vivo, hystomor-
phometric, radiologic, and clinical success (136–138). Late stages
of ON may only be treated by a total hip replacement, given the
severe articular involvement.

New trends in the medical and pre-prosthetic surgical treat-
ment of ON have been proposed. Autologous adipose-derived
stem cells have been employed in rabbit models for the treat-
ment of the steroid and avascular induced ON of the femoral
head obtaining a bone response with increased trabecular den-
sity and volume coupled with intense neoangiogenic phenomena
(139). Encouraging results were obtained by the use of tetram-
ethylpyrazine, a small molecule able to bind VEGF to its receptor
blocking its signaling pathway in the treatment of the steroid-
induced ON, as local intraosseous injections of discrete doses of
these experimental drugs have demonstrated efficacy in patients
at risk of bone collapse (47, 140).

As reported, bisphosphonates also represent the treatment of
choice of the redundant alterations of bone vasculature (partic-
ularly GSD), given their ability to inhibit vascular proliferation
and induce endothelial cell apoptosis (104, 127, 129, 130, 141).
Bisphosphonates effectiveness in GSD may be demonstrated by
clinical and radiologic assessment of the patients, and also by lab-
oratory study of the serum levels of bone metabolism markers.
Pamidronate given by intravenous infusion showed a dramatic
decrease of serum OPN and IL-6. Future challenges will regard the
possible indication of Denosumab, a monoclonal antibody acting
as a potent antiresorptive drug recently registered for the preven-
tion of fragility fractures (142) in the treatment of GSD (115). As
reported in literature, GSD and other forms of angiomatosis may
need a multidisciplinary approach, consisting in medical thera-
pies (bisphosphonate and interferon administration), radiation
therapy, and surgery (bone grafting with biological composites
enriched by MSCs or prostheses) (125, 128, 143, 144).

Rare conditions, such as KTS, have been treated with several
approaches, even if it is clear that a multidisciplinary involvement
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is necessary in order to manage the different alterations. A con-
servative treatment is usually proposed for dermal lesions, and
to manage any vascular or osteoporotic risk. A combination of
physical therapy, compressive bandages, stockings, low molecular
weight heparin, bisphosphonates, and anabolics (i.e., Teriparatide
and Strontium Ranelate) have also been adapted. A surgical
approach is indicated in cases of severe vascular or dermal damage
or orthopedic complications (117, 119).

Vertebral hemangiomas are to date considered frequent benign
alterations of the dorsal and lumbar spine: generally no spe-
cific treatment is proposed. However, a hemangioma may cause
radicular pain and peripheral neurologic impairment; a careful
differential diagnosis is essential to exclude any doubt of a malig-
nant condition, such as severe osteoporosis (120, 123). Standard
medical management is addressed in order to solve the symp-
toms. Rarely, a significant compression on nerve roots may need
surgery, generally with conventional procedures (vertebroplasty,
kyphoplasty) (145).

Finally, gene therapies have recently been studied to up- or
down-regulate the bone vasculature by bioactive molecules in
specific pathologic situations with promising outcomes (146).
The delivering of a “suicide gene” able to selectively eliminate

specific cells involved in neoplastic tissue vasculature could induce
a substantial inhibition of angiogenesis without systemic toxicity
(147).

Even if progress in understanding the metabolic regulation of
bone vasculature has been made during the last decades, much
more has to be understood about the actual communication
between bone vessels and their components and bone cells. Animal
models helped us to begin the comprehension of this dense signal-
ing network, but the point in question is to correlate the molecular
interactions with the various clinical patterns that nowadays affect
patients. In some cases, as for ON of femoral head or GSD, we are
now trying to apply in selected patients what we have learned from
laboratory, but these crucial steps have to be made carefully for all
other pathologies.

The above mentioned pharmacological and molecular agents
represent promising interventions of the present and future, but
for some time still, efforts will have to be made to enlarge the
therapeutic armamentarium of the clinicians.
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