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Abstract

Background: Efforts to prevent and respond to heat-related illness would benefit by quantifying the impact of summer heat
on acute population mortality. We estimated years of life lost due to heat in 14 European cities during the 1990s accounting
for harvesting.

Methods: We combined the number of deaths attributable to heat estimated by the PHEWE project with life expectancy
derived from population life tables. The degree of harvesting was quantified by comparing the cumulative effect of heat up
to lagged day 30 with the immediate effect of heat, by geographical region and age. Next, an evaluation of years of life lost
adjusted for harvesting was obtained.

Results: Without accounting for harvesting, we estimated more than 23,000 years of life lost per year, 55% of which was
among individuals younger than 75. When 30 day mortality displacement was taken into account, the overall impact
reduced on average by 75%. Harvesting was more pronounced in North-continental cities than in Mediterranean cities and
was stronger among young people than among elderly.

Conclusions: High ambient temperatures during summer were responsible for many deaths in European cities during the
1990s, but a large percentage of these deaths likely involved frail persons whose demise was only briefly hastened by heat
exposure. Differences in harvesting across regions and classes of age could reflect different proportions of frail individuals in
the population or could be indicative of heterogeneous dynamics underlying the entry and exit of individuals from the
high-risk pool which is subject to mortality displacement.
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Introduction

Quantifying the impact of heat on acute population mortality

strengthens public health authorities in advocating for a coordi-

nated heat response and in arguing for heat-resilient adaptations to

housing and urban design. Relative risk measures are not adequate

for this purpose, as they do not take into account the absolute

likelihood of disease or death [1]. For example, small relative risks

translate to strong impacts at the population level if the fraction of

the exposed population is large, while large relative risks produce

negligible impacts if the exposure is rare. Methods for health

impact assessment (HIA), which combine relative risk with

prevalence and level of exposure, are needed.

The effect of heat on population mortality is usually quantified

in terms of an absolute number of deaths or of a fraction of deaths

attributable to the exposure. The calculation of years of life lost

(YLL) represents an extension of attributable deaths and

attributable fraction [2]. This indicator accounts for life expec-

tancy in the absence of the exposure of interest, providing an

estimate of premature mortality related to heat. In quantifying

years of life lost due to heat, the problem arises of whether the life

expectancy of individuals who die during periods of hot

temperature is comparable to or shorter than the life expectancy

of the general population. This is a crucial issue which is directly

related to the public health importance of heat-related mortality

[3].

It is often asserted that heat-related deaths largely involve frail

persons whose impending demise is hastened by heat exposure.

This phenomenon has been termed ‘‘mortality displacement’’ or

‘‘harvesting’’, and it is reflected by an immediate excess in

population mortality following a temperature rise, with a

subsequent compensatory reduction of mortality. Distributed lag

models on time series data have often been used to study this

phenomenon. Braga et al. (2001) found that the apparent hot

temperature effect in major US cities was primarily due to
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mortality displacement [4]. Hajat et al.(2005) compared the extent

to which short-term mortality displacement could explain excess

hot day deaths in Delhi, São Paulo and London [5]; they found

that mortality displacement was high in London where the excess

of heat-related deaths persisted for only 2 days after exposure and

was followed by a deficit, suggesting that the pool of susceptible

individuals was exhausted within days of the temperature peak.

Recently, Guo et al. (2011) measured heat harvesting in Tianjin,

China and found that heat-related excesses of deaths due to

cardiopulmonary and cardiovascular causes were followed by

deficits in mortality during the next 5–20 days [6]. Rocklov and

Forsberg (2010) showed mortality displacement in elderly persons

in Sweden, and Klenk et al. (2010) reported that the excess of

deaths after 3 months among elderly nursing home residents still

constituted more than 80% of the excess observed after the first

month [7], [8].

On the other hand, some studies have shown little evidence of

harvesting. Basu and Malig (2011) concluded that there was no

heat-related harvesting in California counties and Toulemon and

Barbieri (2008), focusing on the 2003 heat wave in France, found

that the level of mortality during the 10 days immediately

following did not show a dip [9], [10]. However it should be

noticed that heat waves and regular high temperatures may not

have the same pattern of mortality displacement [11].

The aim of this paper is to estimate the loss of life expectancy of

European urban populations through their exposure to summer-

time heat. Baccini et al. (2011) evaluated the number of deaths

attributable to high ambient temperatures in 15 European cities

during the 1990s, using mortality counts, temperature distributions

and relative risks generated through the PHEWE study [12], [13].

In this research it was found that high summer temperatures have

an important impact on European population health and that

heat-attributable deaths can be expected to increase markedly

under warming scenarios. Here we extended this evaluation,

estimating for the same cities YLL related to the impact of heat.

We addressed harvesting and proposed a simple evaluation of YLL

to account for it.

Data and Methods

We considered the effect of daily maximum apparent temper-

ature on mortality for all natural causes (International Classifica-

tion of Diseases-9 codes 1–799) during the warm season in the

cities enrolled in the PHEWE project: Athens, Barcelona,

Budapest, Dublin, Helsinki, Ljubljana, London, Milan, Paris,

Prague, Rome, Stockholm, Turin, Valencia, Zurich [14]. The

study period was not identical for all cities, but consisted of at least

5 consecutive years between 1990 to 2000. The warm season was

defined as the period from April 1 to September 30. Exposure was

measured by daily maximum apparent temperature, calculated

from 3-hourly air temperature and humidity data. For Barcelona,

the daily average apparent temperature was used, as 3-hourly data

was not available.

In Baccini et al. (2011), the PHEWE results were used to

calculate the number of deaths attributable to maximum apparent

temperatures exceeding the city-specific threshold [12]. Attribut-

able mortality was calculated assuming that increases of daily

maximum apparent temperature under a city-specific threshold

did not affect mortality and that the heat effect was linear (on a log

scale) above this threshold. In the present paper, we extended this

evaluation calculating loss of life expectancy associated with

maximum apparent temperatures above the threshold.

For calculating YLL attributable to heat exposure, we related

the number of attributable deaths for each age class to the average

life expectancy in that class, obtained from population life tables.

Life tables for a reference year between 1993 and 2000 (by single

year of age or five-year classes) were acquired or developed by city.

A life table was not available for Prague, which was excluded from

YLL calculation. We assumed that the age distribution of the

excess of deaths by day within each large class of age (15–64, 65–

74, 75+) was equal to that of all deaths occurring during the

reference year. We calculated YLL by multiplying the number of

attributable deaths in the hth class of age (ADh) by the average life

expectancy within that class (Lh):

YLL~
XH

h~1

ADhLh:

.

This YLL estimate is based on the assumption that the life

expectancy of the individuals who die due to heat is the same as

that of the general population. This assumes that there is no

harvesting.

Harvesting Effect
To address harvesting, we explored the lagged effect of heat by

geographical region and age class. First, for each city (including

Prague for consistency with the PHEWE study) and age class, we

investigated the lagged effect of daily maximum apparent

temperatures above the city-specific threshold up to 30 days using

unrestricted distributed lag models, which provided an unbiased

estimate of the final cumulative effect of the exposure [15].

Second, we combined these city-specific results, separately by

geographical region, in a Bayesian meta-analysis, obtaining a

posterior estimate of the overall cumulative effect for each age

class [16]. According to the PHEWE protocol, we considered the

following geographical regions: the Mediterranean region (includ-

ing Athens, Rome, Barcelona, Valencia, Turin, Milan and

Ljubljana) and the North-continental region (including Budapest,

Zurich, Paris, Prague, Helsinki, Stockholm, London and Dublin).

The age-specific degree of harvesting was quantified by one minus

the proportion k of the lag 30 over the lag 3 overall cumulative

effect, the lag 3 overall cumulative effect being that reported in

Baccini et al. (2008) [13]. In the presence of harvesting, k is

expected to be lower than one, being the cumulative effect up to

30 days lower than the cumulative effect up to 3 days. Values of k

close to one indicate absence of harvesting. Finally, we estimated

the years of life lost net of harvesting, by multiplying the

proportion k by the years of life lost obtained for each city before

adjusting for mortality displacement. This is an approximate

calculation, but it should provide reliable results under specific

conditions on the apparent temperature and mortality time series,

which resulted to be roughly satisfied in the present data set (see

Appendix S1 for more detail).

It should be noticed that the value of k depends on the choice of

the time window over which one evaluates the lagged effect of

exposure. On the one hand, if the time window is not wide enough

to include possible mortality rebound, k will be overestimated. On

the other, defining an excessively wide time window can likely lead

to unstable results. We selected a 30 day window on the basis of

previous PHEWE results, which indicated a strong positive effect

of heat within the first week, which declined in subsequent days,

became negative, then returned to the level of baseline mortality

after one month in the Mediterranean cities and after 20 days in

the Northern cities [13].

Years of Life Lost Due to Heat in Europe
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To have an idea of the uncertainty around the degree of

harvesting, we used a Monte Carlo approach. We assumed a

multivariate normal distribution on lag 3 and lag 30 cumulative

percent changes, we sampled 1,000 pairs of values from this

distribution and calculated the quantity 12k from each pair,

obtaining a sample from the distribution of the degree of

harvesting. We evaluated the variability of the degree of harvesting

by looking at the percentiles of this sample.

Results

In Table 1, we present demographic and climatic descriptors of

the 15 cities enrolled in the PHEWE study. A large variability in

maximum apparent temperatures was observed among cities. The

impact of summertime heat ranges from approximately 0

attributable deaths per year in Dublin to 423 in Paris [12]. The

total number of attributable deaths in the 15 cities was around

2,300 per year (2234 if we exclude Prague).

Average life expectancy ranges from 24.1 years (Budapest) to

34.2 years (Paris) for individuals belonging to the first class of age,

from 11.3 years (Budapest) to 17.7 years (Paris) for the second, and

from 4.7 (Ljubljana) to 8.8 years (London) for the oldest (Table 2).

In Table 3, we report the total and age-class specific expected

YLL per year during the study period with the associated 80%

credibility interval, by city, before accounting for harvesting. The

lower and upper bounds of the 80% credibility interval are defined

as the 10th and the 90th percentiles of the posterior distribution of

the YLL per year. On aggregate, maximum apparent temperature

above the city-specific threshold was responsible for 23,750 years

of life lost per study year, 55% of which was among individuals

younger than 75 (7,899 years of life lost in the first class of age,

5,067 in the second and 10,784 in the elderly). The largest annual

average impact in terms of absolute number of YLL was observed

in Budapest (3,891), Paris (5,483) and Rome (3,940).

Note: YLL = years of life lost per year before accounting for

harvesting; 80% CrI = 80% credibility interval for YLL.

Table 4 presents posterior means and 90% credibility intervals

of lag 3 and lag 30 cumulative percent change in total mortality

associated with a 1uC increase in maximum apparent temperature

above the threshold, by region and age class. These estimates

come from the Bayesian meta-analyses of the city-specific

distributed lag results; the lower and upper bounds of the 90%

Table 1. Study period, population size, percentage of elderly, mean of daily maximum apparent temperature during the warm
season, deaths attributable to heat per year, by city.

City Study period Population % over 75 Max AT (6C) AD per year**

Athens 1992–1996 3188305 6.4 27.6 230

Barcelona 1992–2000 1512971 10.1 23.3* 290

Budapest 1992–2001 1797222 7.3 21.8 399

Dublin 1990–2000 481854 5.3 14.7 0

Helsinki 1990–2000 955143 5 14.3 11

Ljubljana 1992–1999 263290 5.9 20.1 13

London 1992–2000 6796900 6.8 18 142

Milan 1990–2000 1304942 9.5 25.4 95

Paris 1991–1998 6161393 6.1 19.5 423

Prague 1992–2000 1183900 7 17.8 72

Rome 1992–2000 2812573 7.3 26 388

Stockholm 1900–2000 1173183 8.5 15.3 21

Turin 1991–1999 901010 9.2 23.4 121

Valencia 1995–2000 739004 7.2 29.5 72

Zurich 1990–1996 990000 7.8 19 29

Note: % over 75 = percentage of the population over 75 years of age; Max AT = mean of daily maximum apparent temperature during the warm season (April to
September); AD per year = deaths attributable to heat per year (rounded values).
*Mean of daily mean apparent temperature.
**Results from Baccini et al. (2011).
doi:10.1371/journal.pone.0069638.t001

Table 2. Average life expectancy by age class.

Life expectancy

Age class

City Reference year 15–64 65–74 75+

Athens 1991 30.0 14.8 7.8

Barcelona 1995 31.4 14.4 5.8

Budapest 1996 24.1 11.3 5.1

Dublin 1996 29.9 13.9 7.1

Helsinki 1996 29.2 13.0 5.2

Ljubljana 1995 25.6 12.2 4.7

London 1998 31.8 16.2 8.8

Milan 1998 30.2 15.2 6.7

Paris 1998 34.2 17.7 7.7

Rome 1998 29.2 13.9 6.5

Stockholm 2000 32.0 16.4 7.5

Turin 1998 29.4 14.5 6.7

Valencia 1996 30.0 13.2 5.5

Zurich 1995 31.3 14.0 5.9

doi:10.1371/journal.pone.0069638.t002

Years of Life Lost Due to Heat in Europe
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credibility interval are defined as the 5th and the 95th percentiles

of the posterior distribution of the cumulative percent change. The

percentage of mortality displacement was larger in the younger

classes of age and in the North-continental cities. When we applied

these percentages to the evaluated YLL, we found that maximum

apparent temperature above the city-specific threshold accounted

for 5,907 years of life lost per year in total: 1,051 in the first class of

age, 685 in the second and 4,171 in the third (Table 5). In

Helsinki, Dublin, Budapest, Stockholm, Paris and London the net

(0–30 day lag) mortality burden was less than 20% of the burden

obtained before accounting for harvesting. A smaller effect of

harvesting was found in Athens, Barcelona, Milan, Turin and

Rome. In these cities the net burden was more than 30% of that

obtained before accounting for harvesting (Figure 1).

The large credibility intervals we obtained for the cumulative

effect estimates in the younger classes of age (Table 4) impact

estimates of the percentage of harvesting and of the estimation of

the YLLs. For the 75+ class of age, where the cumulative effect

estimates were more stable, we tried to evaluate uncertainty

around the percentage of harvesting via a Monte Carlo approach.

Assuming a multivariate normal distribution on lag 3 and lag 30

cumulative percent changes, with correlation equal to 0.8, we

obtained a large sample of values for the percentage of mortality

displacement. We found a 50% Credibility Interval for the

percentage of harvesting ranging from 46.1 to 66.8 in the

Mediterranean region and from 46.4 to 95.1 in the North-

continental region. These results appeared robust to different

specification of the correlation level between the two cumulative

percent changes.

Table 3. Years of life lost attributable to heat per year before accounting for harvesting.

Age class

15–64 65–74 75+ Total (15+)

City YLL 80% CrI YLL 80% CrI YLL 80% CrI YLL 80% CrI

Athens 287 (34,645) 628 (376,897) 1385 (1031,1729) 2300 (1441,3272)

Barcelona 617 (109,1195) 440 (101,792) 1401 (1024,1807) 2458 (1233,3793)

Budapest 1710 (1204,2205) 918 (703,1141) 1263 (1074,1475) 3891 (2980,4822)

Dublin 3 (0,7) 2 (0,4) 2 (0,4) 7 (1,15)

Helsinki 95 (33,157) 43 (18,72) 24 (7,41) 162 (58,270)

Ljubljana 58 (3,157) 25 (1,65) 43 (5,104) 126 (9,327)

London 674 (305,1076) 382 (157,617) 858 (571,1149) 1914 (1033,2841)

Milan 145 (29,294) 251 (149,362) 497 (361,646) 893 (539,1302)

Paris 2316 (1644,3025) 744 (465,1029) 2423 (2047,2816) 5483 (4156,6869)

Rome 1168 (812,1532) 947 (762,1131) 1825 (1589,2079) 3940 (3162,4742)

Stockholm 135 (16,284) 44 (11,80) 106 (62,153) 285 (89,516)

Turin 167 (27,337) 346 (187,525) 614 (408,852) 1127 (622,1714)

Valencia 407 (58,832) 185 (26,398) 244 (55,480) 836 (138,1710)

Zurich 117 (24,226) 112 (53,175) 99 (47,154) 328 (123,555)

doi:10.1371/journal.pone.0069638.t003

Table 4. Cumulative effect of heat on mortality up to lag 3 and up to lag 30 and harvesting quantification.

Cumulative effect

up to lag 3** up to lag 30

Region Age class % change (90% CrI) % change (90% CrI) % harvesting

Mediterranean* 15–64 0.92 (20.93, 2.81) 0.20 (21.58, 2.00) 78.2

65–74 2.13 (20.01, 4.31) 0.41 (21.31, 2.16) 80.6

75+ 4.22 (1.80, 6.70) 1.83 (0.17, 3.52) 56.1

North-continental* 15264 1.31 (20.57, 3.23) 0.11 (21.45, 1.64) 91.5

65274 1.65 (20.16, 3.49) 0.10 (21.46, 1.67) 93.9

75+ 2.07 (0.54, 3.63) 0.66 (20.86, 2.16) 67.9

Note: % change = posterior mean of cumulative percent change in total mortality associated with a 1uC increase of maximum apparent temperature above the city-
specific threshold; 90% CrI = 90% credibility interval of cumulative percent change; % harvesting = percentage of harvesting quantified by 1006(1–k),where k is the ratio
between lag 30 and lag 3 overall cumulative effect.
*Mediterranean cities: Athens, Rome, Barcelona, Valencia, Turin, Milan and Ljubljana.
North-continental cities: Budapest, Zurich, Paris, Prague, Helsinki, Stockholm, London and Dublin.
**Results from Baccini et al. (2008).
doi:10.1371/journal.pone.0069638.t004
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A relative evaluation of the mortality burden was obtained in

terms of age-specific YLL per year per 10000 inhabitants (Table 6).

With reference to the net of harvesting estimates, the largest life

expectancy reduction attributable to heat was observed in the

elderly, with more than 30 years of life lost per year per 10,000

inhabitants in four Mediterranean cities (Athens, Barcelona,

Rome, Turin) and in Budapest. Among the North-continental

cities, Paris also stands out, with 21 years of life lost per 10000

persons over 75 years of age. Regarding the first two classes of age,

before accounting for harvesting, the largest relative impact was

observed in Budapest (13 YLL per year per 10000 inhabitants in

the 15–64 class and 48 YLL per year per 10000 inhabitants in the

65–74 class); when accounting for harvesting, the larger relative

impact was observed in the Mediterranean cities.

Discussion

This is the first study which evaluated the impact of high

ambient temperatures on human health in terms of loss of life

Table 5. Years of life lost attributable to heat per year adjusted for harvesting.

Age class

15–64 65–74 75+ Total (15+)

City YLL 80% CrI YLL 80% CrI YLL 80% CrI YLL 80% CrI

Athens 63 (7,141) 122 (73,174) 608 (453,759) 792 (533,1074)

Barcelona 135 (24,261) 85 (20,154) 615 (450,793) 835 (493,1207)

Budapest 145 (102,187) 56 (43,70) 405 (345,473) 607 (490,731)

Dublin 0 (0,1) 0 (0,0) 1 (0,1) 1 (0,2)

Helsinki 8 (3,13) 3 (1,4) 8 (2,13) 18 (6,31)

Ljubljana 13 (1,34) 5 (0,13) 19 (2,46) 36 (3,92)

London 57 (26,91) 23 (10,38) 275 (183,369) 356 (219,498)

Milan 32 (6,64) 49 (29,70) 218 (158,284) 298 (194,418)

Paris 197 (140,257) 45 (28,63) 778 (657,904) 1020 (825,1224)

Rome 255 (177,334) 184 (148,219) 801 (698,913) 1240 (1022,1466)

Stockholm 11 (1,24) 3 (1,5) 34 (20,49) 48 (22,78)

Turin 36 (6,73) 67 (36,102) 270 (179,374) 373 (221,549)

Valencia 89 (13,181) 36 (5,77) 107 (24,211) 232 (42,469)

Zurich 10 (2,19) 7 (3,11) 32 (15,49) 49 (21,80)

Note: YLL = years of life lost per year adjusted for harvesting; 80% CrI = 80% credibility interval for YLL.
doi:10.1371/journal.pone.0069638.t005

Figure 1. Proportional reduction in years of life lost when accounting for harvesting.
doi:10.1371/journal.pone.0069638.g001
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expectancy. We considered the period before the 2003 heat waves,

which brought the risks of heat exposure to the attention of the

media and the general public, encouraging the adoption of

mitigation measures and public health interventions. During the

1990s, summer heat was responsible for more than 2,200 deaths

per year in the 14 European cities considered in the analysis [12].

We estimated that, if the persons who die due to heat were not

more frail than the general population, the years of life lost

attributable to heat would have exceeded 23,000 per year in the

14 European cities, of which 55% were accounted for by the

deaths of persons younger than 75. Deriving life expectancy from

general population life tables however leads to overestimating YLL

if the life expectancy of individuals who die due to heat is lower

than that of the general population.

As in previous studies, our analysis indicated that many of the

attributable deaths are one-month-displaced deaths, suggesting

that the population of decedents is characterized by the presence

of subgroups of very susceptible individuals for whom heat

precipitates death by a few days up to few weeks [4–6]. We found

that when these one-month-displaced deaths are removed, the

overall impact in terms of YLL reduces by 75% for the cities

assessed. The percentages of harvesting we found are consistent

with Guo et al. (2011) who report for Tianjin a 2.03% increase in

mortality associated with a 1uC increase of temperature above a

24.9uC threshold at lag0–2 and a 0.31% increase in mortality at

lag0–27 [6].

The idea underlying harvesting is that, under steady-state

conditions, there is equilibrium between the number of deaths

each day and the daily net recruitment into the high-risk pool. If

the exposure to the transient environmental factor (i.e. heat)

increases mortality among these frail individuals, but does not

increase their recruitment, the high-risk pool becomes temporary

smaller, with fewer people who die [17]. The time needed to

replenish the high-risk pool is related to the life expectancy of the

frail individuals [18]. Our procedure attributed zero life expec-

tancy to one-month displaced deaths; a more conservative

approach would attribute one month of life lost to these deaths.

In theory, we would not observe harvesting when the life

expectancy of the people who die due to heat is longer than a

few weeks or when heat affects frail individuals by briefly hastening

their death, but at the same time increases recruitment into the

high-risk pool. Given this last consideration, it is possible that we

underestimated the real effect of harvesting, with an overestima-

tion of YLL attributable to heat.

We found that harvesting is more pronounced in the North-

continental than in the Mediterranean cities. This result may

indicate that the percentage of deaths which are only briefly

displaced by heat, over the total number of deaths attributable to

heat, is larger in the former. This difference could be a reflection of

varying proportions of frail individuals in the two regions, as

related to specific socio-economic and demographic factors. An

alternative explanation could be that in the North-continental

region, where the level of exposure is lower, high temperatures

hasten deaths of individuals belonging to the high-risk pool, but do

not cause the recruitment of new individuals in the pool, so that

high harvesting is observed. On the contrary, the exit/entry flows

from/to the high-risk pool are more balanced in the Mediterra-

nean region, so that harvesting appears lower. In other words, in

the Mediterranean cities heat could not only act as a precipitating

factor for mortality in high-risk individuals, but could also induce

morbidity or exacerbate pre-existing non-severe diseases, so that

new individuals become part of the high-risk pool. Similar

reasoning could explain why we observed higher levels of

harvesting among the younger population than among the elderly:

in the younger classes of age, heat could precipitate deaths of high-

risk individuals, but not increase at the same rate the recruitment

of new individuals into the high-risk pool, because of the general

robustness of this segment of the population.

However, in interpreting differences across regions and classes

of age, one should consider that our harvesting evaluation could be

sensitive to the threshold definition and to the choice of the model

for the exposure-response relationship. In the North-continental

region the threshold was around 23.3uC, so that the linear term

captured the effect of relatively low apparent temperatures. These

temperatures were not considered in the health impact evaluation

for the Mediterranean region, where attributable deaths were

referenced to apparent temperatures above a 29.4uC threshold.

This consideration, coupled with the assumption that frail persons

may be susceptible to apparent temperatures much lower than

individual average, indicates that we could have underestimated

harvesting in the Mediterranean region. Similarly, the same

threshold was used for the three classes of age, because estimating

age-specific thresholds provided very unstable results [13], [19].

With this choice we could have underestimated the harvesting in

the over 65 class, where a lower apparent temperature threshold

could in principle be more appropriate. Methods which simulta-

neously model mortality displacement and shape of the exposure-

response curve could be used to better explore these points.

Finally, we note that our study did not consider long term

mortality displacement. In fact, even when heat does not

precipitate imminent death, the individuals who die due to heat

could have a shorter life expectancy than the general population,

because underlying medical conditions may make individuals

more susceptible to hot weather, or, simply, because their age

distribution within the broad classes defined for the analysis could

be different from that present in the general population [20–23].

In our evaluation we did not take this into account and estimated

Table 6. Age-specific years of life lost attributable to heat per
year per 10,000 population before accounting for harvesting,
and adjusted for harvesting.

YLL per year per 10,000 population

before accounting
for harvesting adjusted for harvesting

Age class Age class

City 15–64 65–74 75+ 15–64 65–74 75+

Athens 1.35 26.97 84.90 0.29 5.23 37.27

Barcelona 5.96 24.31 107.42 1.30 4.72 47.16

Budapest 13.36 48.33 97.40 1.14 2.95 31.27

Dublin 0.10 0.47 0.72 0.01 0.03 0.23

Helsinki 1.48 7.41 5.35 0.13 0.45 1.72

Ljubljana 3.08 10.67 34.23 0.67 2.07 15.03

London 1.39 7.95 19.40 0.12 0.48 6.23

Milan 1.63 16.00 41.33 0.36 3.10 18.14

Paris 5.48 17.06 65.82 0.47 1.04 21.13

Rome 6.35 34.39 97.00 1.38 6.67 42.58

Stockholm 1.71 5.41 10.60 0.15 0.33 3.40

Turin 2.67 31.91 78.28 0.58 6.19 34.36

Valencia 7.80 25.83 50.48 1.70 5.01 22.16

Zurich 1.45 11.81 12.70 0.12 0.76 4.08

doi:10.1371/journal.pone.0069638.t006
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YLL using life expectancy from current general population life

tables. Alternative life expectancy assumptions, for example

considering life expectancy among persons with pre-existing

cardiac or respiratory disease, would have led to lower estimates

of YLL.

In conclusion, our study indicates that while high ambient

temperatures during summer have been responsible for many

deaths in European cities in the 1990s, a large percentage involved

frail persons whose life expectancy ranged from one week to one

month. In these cases heat possibly acted as a precipitating factor

for near-term mortality. As a consequence, loss of life expectancy

was lower than that expected in the absence of harvesting. This

suggests that the impact of heat in terms of YLL is strongly related

to the presence of highly susceptible individuals in the population.

We observed some differences in harvesting across regions and

classes of age. These differences may reflect the presence of

different proportions of frail individuals or could be indicative of

heterogeneous dynamics influencing the entry and exit of

individuals from the high-risk pool which is subject to mortality

displacement.
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7. Rocklöv J, Forsberg B (2010) The effect of high ambient temperature on the
elderly population in three regions of Sweden. Int J Environ Res Public Health

7: 2607–2619.
8. Klenk J, Becker C, Rapp K (2010) Heat-related mortality in residents of nursing

homes. Age Ageing 39: 245–252.
9. Basu R, Malig B (2011) High ambient temperature and mortality in California:

exploring the roles of age, disease, and mortality displacement. Environ Res 111:

1286–1292.
10. Toulemon L, Barbieri M (2008) The mortality impact of the August 2003 heat

wave in France: investigating the ’harvesting’ effect and other long-term
consequences. Popul Stud (Camb) 62: 39–53.

11. Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, et al (2006) Impact of

high temperatures on mortality: is there an added heat wave effect?
Epidemiology 17: 632–638.

12. Baccini M, Kosatsky T, Analitis A, Anderson HR, D’Ovidio M, et al (2011)
Impact of heat on mortality in 15 European cities: attributable deaths under

different weather scenarios. J Epidemiol Community Health 65: 64–70.

13. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, et al (2008). Heat

effects on mortality in 15 European cities. Epidemiology 19: 711–719.

14. Michelozzi P, Kirchmayer U, Katsouyanni K, Biggeri A, McGregor G, et al

(2007) Assessment and prevention of acute health effects of weather conditions in

Europe, the PHEWE project: background, objectives, design. Environ Health 6:

12.

15. Zanobetti A, Wand MP, Schwartz J, Ryan L (2000) Generalized additive

distributed lag models: quantifying mortality displacement. Biostatistics 13: 279–

292.

16. Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence

synthesis. Stat Methods Med Res 10: 277–303.

17. Schwartz J (2003) Daily Deaths Associated with Air Pollution in Six US Cities

and Short-Term Mortality Displacement in Boston. In Revised Analyses of

Time-series Studies of Air Pollution and Health. Health Effects Institute, Boston

MA: 219–226.

18. Rabl A, Thach TQ, Chau PY, Wong CM (2011) How to determine life

expectancy change of air pollution mortality: a time series study. Environ Health

10: 25.

19. Muggeo VMR (2003) Estimating regression models with unknown breakpoint.

Statist Med 22: 3055–3071.

20. Khalaj B, Lloyd G, Sheppeard V, Dear K (2010) The health impacts of heat

waves in five regions of New South Wales, Australia: a case-only analysis. Int

Arch Occup Environ Health 83: 833–842.

21. Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, et al (2006)

Vulnerability to heat-related mortality: a multicity, population-based, case-

crossover analysis. Epidemiology 17: 315–323.

22. Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, et al.

(2006) August 2003 heat wave in France: risk factors for death of elderly people

living at home. Eur J Public Health 16: 583–591.

23. Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, et al. (2007)

Prognostic factors in heat wave related deaths: a meta-analysis. Arch Intern Med

167: 2170–2176.

Years of Life Lost Due to Heat in Europe

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e69638


