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SUMMARY 

Protein aggregation into amyloid fibrils is the hallmark of many human pathologies, 

including Alzheimer's disease and Parkinson's disease. The aberrant assembly of 

peptides and proteins into fibrillar aggregates proceeds through oligomeric 

intermediates thought to be the primary pathogenic species in many of these protein 

deposition diseases. Since the first year of my PhD, I have been studying protein 

aggregation, focusing on misfolded protein oligomers formed by the N-terminal domain 

of the bacterial HypF protein from E. coli (HypF-N). These oligomers are a useful 

model system in the context of disease-associated protein aggregation because they 

have the same properties as the disease-related ones and are highly stable, allowing a 

detailed structural and functional investigation. Moreover, under two different 

conditions, HypF-N aggregates into two types of oligomers characterized by an 

opposite biological activity, since only one is toxic whereas the other is benign to 

cultured cells, facilitating the utilization of appropriate control nontoxic oligomers in 

our experiments. 

In Chapter 2, the first one describing results in my thesis, the toxicity of HypF-N 

oligomers, as well as the aggregates formed by the amyloid-β peptide and the islet 

amyloid polypeptide, was tested in the presence of molecular chaperones, namely αB-

crystallin, Hsp70, clusterin, α2-macroglobulin and haptoglobin. Molecular chaperones 

play a pivotal role in the regulation of the proteome homeostasis, as they facilitate 

protein folding, inhibit protein aggregation, disaggregate pre-formed assemblies and 

promote clearance of misfolded aggregates. In this chapter we show that molecular 

chaperones also affect the structure and toxicity of protein misfolded oligomers. Indeed, 

measures of the cell viability showed that all the five chaperones are effective in 

suppressing the toxicity of oligomers formed by all three proteins. Infrared spectroscopy 
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and site-directed labeling experiments using pyrene ruled out a structural reorganization 

within the discrete HypF-N oligomers, even at the amino acid residue level. By contrast, 

analysis performed using confocal microscopy, SDS-PAGE and intrinsic fluorescence 

measurements revealed binding between the oligomers and the chaperones; atomic force 

microscopy (AFM) imaging indicated that large assemblies of oligomers are formed in 

the presence of the chaperones. This suggests that the chaperones bind to the oligomers 

and promote their assembly into larger species, with consequent decrease in their 

diffusional mobility and burial of hydrophobic surface. 

In Chapter 3, with the aim of identifying the structural determinants responsible for 

the toxicity of misfolded oligomers, we created a set of HypF-N oligomeric variants by 

replacing one or more charged aminoacids with apolar aminoacids into the sequence of 

the wt protein, and allowing the mutated proteins to aggregate under different 

conditions. The resulting oligomeric species were characterized by different levels of 

cytotoxicity, as assessed by measurements of MTT reduction, tests with the apoptotic 

marker Hoechst and measurements of Ca
2+

 influx. The structural properties of the 

oligomeric variants was performed by evaluating the exposure of their hydrophobic 

surfaces to the solvent with ANS binding and by measuring their size by means of 

turbidimetry and light scattering measurements. A significant correlation was found 

between ANS binding and size of the oligomers, indicating that an increase of surface 

hydrophobicity causes an increase of the size of the oligomers. Moreover, both 

superficial hydrophobicity and size were found to influence the oligomer biological 

activity, cooperating in determining the levels of toxicity of the aggregates. 

In Chapter 4, we used HypF-N toxic misfolded oligomers to investigate their 

interactions with transthyretin (TTR). This protein is a homotetrameric protein which 

can disassemble into its monomers, misfold and aggregate into fibrils whose growth is 
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considered the cause of TTR amyloidoses. Nevertheless, an anti-amyloidogenic effect 

that prevents Aβ aggregation in vitro has recently been proposed for TTR. We have 

therefore explored the ability of three different types of TTR, human TTR (hTTR), 

mouse TTR (mTTR) and an engineered monomer of human TTR (M-TTR), to suppress 

the toxicity of HypF-N oligomers. Cell viability tests showed that hTTR, and to a 

greater extent M-TTR, can avoid the cell damage induced by protein oligomers, 

whereas mTTR does not show any protective effect. To shed light on the different 

behavior of the TTRs and on the molecular mechanism by which they can exert their 

potential protective ability, we have investigated the molecular structure of HypF-N 

oligomers after the incubation with TTRs. Thioflavin T assay and pyrene site-directed 

labeling showed that all the three types of TTR cannot structurally re-arrange toxic 

HypF-N oligomers into a nontoxic form. Intrinsic fluorescence measurements and SDS-

PAGE indicated that TTRs are able to bind to the oligomers. Following this binding, 

hTTR, and to a greater extent M-TTR, induced the formation of larger species, as 

shown by AFM and turbidimetry measurements. By contrast, the interaction with 

mTTR does not induce such formation of clusters. These data indicate that TTR 

suppresses the toxicity of HypF-N oligomers similarly to well established chaperones 

with an efficacy that correlates with its ability to disassemble into monomers. 

Finally, in Chapter 5, we tested the ability of HypF-N oligomers to induce the 

inflammatory response. In fact, increasing evidence suggests that neurodegeneration 

associated to aggregation of proteins is the result of many causes. The uncontrolled 

immune response in the brain has recently been established to play a central role in the 

onset and progression of diseases, such as Alzheimer’s disease and Parkinson’s disease. 

For this reason we explored the inflammatory response to the injury caused by HypF-N 

toxic and not toxic misfolded oligomers, with particular attention to the role of Hsps, 
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Hsp70 and αB-crystallin, as immune signals and potential suppressors of HypF-N 

oligomer-mediated inflammation. The results, obtained by the evaluation of microglia 

activation in terms of cytokine-release, showed that both the toxic and the nontoxic 

oligomers triggered a pro-inflammatory response, as assessed through ELISA 

measurements of a set of cytokines. Interestingly, at concentrations in which the two 

types of oligomers share the ability of leaving unaltered the cellular viability evaluated 

by MTT tests, the nontoxic species were found to be stronger inducers of inflammation 

with respect to the toxic oligomers. Such immune property of the nontoxic aggregates 

could be linked to their lower level of internalization in microglia cells and to the 

consequent maintenance of their stimulus from outside the cells. In addition, the 

nontoxic oligomers and the assemblies of toxic oligomers neutralized by chaperones 

were found to have the ability to induce inflammation without affecting cellular 

viability. 

In conclusion, the data presented in this thesis and collected entirely using 

misfolded protein oligomers by the model protein domain HypF-N have revealed (i) 

new structural determinants of protein oligomer toxicity, such as oligomer size and 

hydrophobic exposure and their interplay to determine toxicity, (ii) have revealed novel 

mechanisms by which molecular chaperones, including the emerging TTR, contribute to 

the maintenance of protein homeostasis and (iii) have shown how misfolded protein 

oligomers can be highly inflammatory, even in the absence of explicit toxicity. 



Chapter 1                                                                                                         Introduction 

 

5 

 

Chapter 1 

INTRODUCTION  

1.1 Protein aggregation 

1.1.1 Folding, misfolding and aggregation of proteins 

Proteins are the fundamental constituents of living organisms, since they exert essential 

functions, participating in all the different processes that take place in the cells. These 

biological macromolecules are synthetized on cellular ribosomes as unstructured 

polypeptide chains that are able, in general, to spontaneously self-assemble into a 

compact three-dimensional structure, called “native state”. The native structure of a 

protein is necessary to allow the fulfilment of its specific function and generally 

corresponds to the conformation that is most thermodynamically stable under 

physiological conditions [Dobson et al., 1998]. The process through which proteins 

reach the native structure is the folding process and consists in a stochastic search of the 

most energetically favourable conformation, passing through many conformations 

accessible to a polypeptide chain [Levinthal, 1968; Dobson et al., 1998; Fersht, 2000].  

The importance of reaching and remaining in the folded state for a protein is 

underlined by the fact that cells have evolved mechanisms of control and regulation of 

the folding process [Dobson, 2003], such as molecular chaperones [Bukau and 

Horwich, 1998; Hartl and Hayer-Hartl, 2002], the heat shock response [Voellmy and 

Boellmann, 2007], the unfolded protein response [Kapoor and Sanyal, 2009], the 

endoplasmic reticulum associated degradation [Hoseki et al., 2010], the ubiquitin-

proteasome system [Claessen et al., 2012], the autophagy [ Bejarano and Cuervo, 2010] 

and enzymes that catalyse the restructuring of proteins [Schiene and Fischer, 2000].  
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A failure in the folding process, termed misfolding, can lead to relevant 

pathological conditions afflicting the mankind and generally referred to as “protein 

misfolding diseases”. Misfolding episodes take place when a protein adopts an 

alternative conformation to the native one (Figure 1.1) and, as a consequence, it can 

appear no longer able to perform its normal function, such as in cystic fibrosis [Amaral, 

2004], or unable to be translocated in its correct functional site, as in the early 

pulmonary emphysema [Lomas and Carrel, 2002]. In other cases, protein misfolding 

can induce the aggregation of proteins into highly organized fibrillar aggregates that 

deposit into the cells or, most commonly, in the extracellular space (Figure 1.1) [Chiti 

and Dobson, 2006]. These aggregates are called “amyloid fibrils” when they accumulate 

in the extracellular space, or “intracellular inclusions” when they form inside the cell 

[Westermark et al., 2005] and are associated with a broad range of human pathologies.  

Figure 1.1. Schematic 
representation of some of the 
many conformational states that 
can be adopted by a polypeptide 
chain and of the means by which 
they can be interconverted. 
Amyloid fibrils are one of the 
possible aggregate forms. All of 
these different conformational 
states and their interconversions 
are carefully regulated in the 
biological environment, by using 
machineries such as molecular 
chaperones, degradation 
systems, and other quality 
control processes. 
Conformational diseases will 
occur when such regulatory 
systems fail. Figure taken from 
Chiti and Dobson, 2006. 
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The aggregation process leading to amyloid formation has many features of a 

“nucleated growth” mechanism. The time course of the conversion of a monomeric 

peptide or protein into its fibrillar form typically consists of a lag phase followed by a 

rapid exponential growth phase [Naiki et al., 1997; Serio et al., 2000; Pedersen et al., 

2004]. The lag phase is considered to be the time required to allow the formation of 

“nuclei” and represents the rate-limiting step [Morris et al., 2009; Orte et al., 2008]. 

Once a nucleus is formed, fibril growth is thought to proceed rapidly by further 

association of either monomers or oligomers with the nucleus [Chiti and Dobson, 2006].  

The formation of aggregates can start from any of the conformational states adopted 

by a monomeric protein (Figure 1.1), including the fully unfolded state, the folded state 

and the partially folded state, although this latter have the highest propensity to self-

assemble [Bemporad et al., 2006; Chiti and Dobson, 2006]. The partially folded 

monomeric state can be found to be in rapid equilibrium with small soluble, 

unstructured oligomeric forms (Figure 1.1), interacting through hydrophobic surfaces 

exposed to the solvent that are normally buried in the native globular state. These 

oligomers, constituted by a few molecules and typically 2-5 nm in diameter, are 

transient, unstable and with heterogeneous conformations [Chiti and Dobson, 2006; 

Stefani, 2010]. The disordered oligomers undergo a structural reorganization into a β-

sheet structure and a further association with each other to form amyloid protofibrils, 

which appear to be either isolated beads or beaded chains with the individual beads 

again having a diameter of 2-5 nm. Protofibrils can associate and act as precursor of 

longer protofilaments and mature fibrils, which represent the end product of the 

aggregation process (Figure 1.1) and are thermodynamically stable [Jahn and Radford, 

2008]. 



Chapter 1                                                                                                         Introduction 

 

8 

 

It is well recognised that proteins unrelated to any amyloid disease aggregate in vitro 

into structures indistinguishable from the amyloid fibrils produced by disease-associated 

peptides and proteins [Gujiarro et al., 1998; Litvinovich et al., 1998; Chiti et al., 1999; 

Chiti et al., 2001; Fändrich et al., 2001; Gast et al., 2003; Pedersen et al., 2006]. Hence, 

the formation of highly organized amyloid aggregates appears to be a generic property 

of polypeptide chains, rather than a characteristic of a few proteins linked to 

pathological conditions [Dobson, 1999; Chiti et al., 1999].  

 

1.1.2 Structural characteristics of amyloid fibrils 

Amyloid fibrils share morphological, structural and tinctorial properties, despite they 

originate from different peptides and proteins [Dobson, 2003; Chiti and Dobson, 2006; 

Nelson and Eisenberg, 2006]. Images acquired through transmission electron 

microscopy (TEM) or atomic force microscopy (AFM) have shown that amyloid fibrils 

are rigid, long, unbranched and usually composed by 2-6 thinner filaments, called 

“protofilaments”, each about 2-5 nm in diameter [Serpell et al., 2000]. These 

protofilaments twist together forming super-coiled fibrils generally 7-13 nm wide 

[Sunde and Blake, 1997; Serpell et al., 2000] or associate laterally to give origin to 

ribbons with a diameter ranging from 2-5 nm to 30 nm [Bauer et al., 1995; Saiki et al., 

2005; Pedersen et al., 2006]. 

From a structural point of view, amyloid fibrils are characterized by a common X-

ray diffraction pattern, typical of the cross-β structure consisting of parallel β-sheets 

whose strands are arranged perpendicularly to the long axis of the fibril [Eanes and 

Glenner, 1968; Sunde and Blake, 1997; Nelson and Eisenberg, 2006]. The β-sheet 

structure is confirmed by techniques such as circular dichroism, Fourier transform infra-

red spectroscopy, solid-state NMR spectroscopy, X-ray microcrystallography and site-
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directed spin labeling coupled to EPR [Bouchard et al., 2000; Balbach et al., 2002; 

Tycko, 2003; Jaroniec et al., 2004; Kajava et al., 2005; Ritter et al., 2005; Luca et al., 

2007; Vilar et al., 2008; Nelson et al., 2005; Sawaya et al., 2007; Török et al., 2002] 

allowing to obtain information on the cross-β architecture of amyloid fibrils at 

molecular or even atomic level (Figure 1.2). 

Amyloid fibrils also display the ability to bind specific dyes such as thioflavin T 

(ThT) and Congo red (CR) [Klunk et al., 1989; LeVine III, 1995; Nilsson, 2004]. Upon 

binding of ThT to amyloid fibrils, it is possible to observe in the ThT excitation 

spectrum a red-shift from 336 nm to 450 nm and the appearance of a new peak in its 

emission spectrum centred at around 485 nm, whose intensity is proportional to the 

extent of binding to the aggregates [LeVine III, 1995]. Fibrils stained with CR are 

characterized by a green birefringence under cross-polarized light [Missmahl and 

Hartwig, 1953].  

Figure 1.2. Molecular model of an amyloid fibril. (a) The protofilament of Aβ viewed down the 
long axis of the fibril. The segments 12-24 (red) and 30-40 (blue) are shown (Tycko, 2002). (b) 
The fibril from the C-terminal domain 218-289 of the fungal prion protein HET-s. The ribbon 
diagram shows the four β-strands (orange) (residues 226-234, 237-245, 262-270 and 273-282) 
and the long loop between β2 and β3 from one molecule. Flanking molecules along the fibril 
axis (gray) are shown (Ritter et al., 2005). 
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1.1.3 Amyloid fibrils and their relevance to human diseases 

Amyloid fibrils are the hallmark of a wide range of human diseases (Table 1.1), which 

can be divided into (i) neurodegenerative disordes, characterized by protein aggregation 

in the brain, (ii) nonneuropathic localised amyloidoses, in which aggregation involves a 

single type of tissue other than the brain, and (iii) nonneuropathic systemic 

amyloidoses, in which protein deposits are found in multiple tissues [Chiti and Dobson, 

2006]. Most of these pathologies can be either sporadic or hereditary. When they have a 

sporadic etiology, they are generally due to the age-related decline of the cellular 

machinery in charge of the maintenance of the proteome homeostasis. The familial 

forms are related to mutations that dramatically increase aggregation rates of proteins 

and are usually characterized by early onset and aggressive symptomatology [Chiti and 

Dobson, 2006]. Prion diseases can also be transmissible, since an infectious etiology has 

been found [Prusiner, 1982]. Other diseases, such as hemodialysis related amyloidosis, 

originate from medical treatment [Chiti and Dobson, 2006]. 

The peptides and proteins forming amyloid fibrils have very different structural 

properties but are usually small in size [Ramshini et al., 2011]. Some of them are 

proteins, such as lysozyme; others are peptides, such as the islet amyloid polypeptide 

(IAPP), fragments of larger proteins produced by a specific cleavage, such as the 

amyloid β peptide (Aβ), or by degradation, such as polyQ stretches [Stefani and 

Dobson, 2003; Chiti and Dobson, 2006].  

The causative relation between formation of amyloid fibrils or their precursor 

oligomers and the disease symptoms is widely accepted on the basis of numerous 

studies and of the post-mortem observation of amyloid aggregates in patients. 
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Table 1.1. Diseases associated with the formation of extracellular amyloid fibrils or intracellular 
inclusions with amyloid-like properties. 

Disease 
Aggregating protein 

or peptide 
Disease 

Aggregating protein 
or peptide 

Neurodegenerative diseases Nonneuropathic systemic amyloidoses 

  Alzheimer’s diseasea amyloid  peptide AL amyloidosisa 
immunoglobulin light 
chains or fragments 

Spongiform 
encephalopatiesa,c 

prion protein and 
fragments thereof 

AA amyloidosisa 
fragments of serum 
amyloid A protein 

Parkinson’s diseasea α-synuclein Familial Mediterranean fevera 
fragments of serum 
amyloid A protein 

Dementia with Lewy bodiesa α-synuclein Senile systemic amyloidosisa 
wild-type 

transthyretin 

Frontotemporal dementia 
with Parkinsonisma 

tau 
Familial amyloidotic 

polyneuropathyb 
mutants of 

transthyretin 

Amyotrophic lateral 
sclerosisa 

superoxide dismutase 
I 

Hemodialysis-related 
amyloidosisa 

β2-microglobulin 

Hungtington’s diseaseb 
hungtingtin with 
polyQ expansion 

ApoAI amyloidosisb 
N-terminal fragment 
of apolipoprotein AI 

Spinocerebral ataxiasb 
ataxins with polyQ 

expansion 
ApoAII amyloidosisb 

N-terminal fragment 
of apolipoprotein AII 

Spinocerebral ataxia 17b 
TATA box binding 
protein with polyQ 

expansion 
ApoAIV amyloidosisa 

N-terminal fragment 
of apolipoprotein AIV 

Spinal and bulbal muscular 
atrophyb 

androgen receptor 
with polyQ expansion 

Finnish hereditary 
amyloidosisb 

fragments of gelsolin 
mutants 

Hereditary dentatorubral-
pallidoluysian atrophyb 

athrophin-1 with 
polyQ expansion 

Lysozyme amyloidosisb mutants of lysozyme 

Familial British dementiab ABri Fibrinogen amyloidosisb 
variants of fibrinogen 

α-chain 

Familial Danish dementiab ADan 
Icelandic hereditary cerebral 

amyloid angiopathyb 
mutant of cystatin C 

Nonneuropathic localised diseases 
 

Type II diabetesa 
islet amyloid 
polypeptide 

Calcifying epithelial 
odontogenic tumorsa 

unknown 

Medullary carcinoma of 
the thyroida 

calcitonin 
Pulmonary alveolar 

proteinosisb 
lung surfactant protein C 

Atrial amyloidosisa atrial nutriuretic factor Inclusion-body myositisa amyloid  peptide 

Hereditary cerebral 
haemorrhage with 

amyloidosisb 

mutants of amyloid  
peptide 

Cutaneous lichen 
amyloidosisa 

keratins 

Pituitary prolactinoma prolactin Cataracta -crystallins 

Aortic medial 
amyloidosisa 

medin 
Corneal amyloidosis 

associated with trichiasisa 
lactoferrin 

a Predominantly sporadic although in some of these diseases hereditary forms associated with 
specific mutations are well documented 
b Predominantly hereditary although in some of these diseases sporadic cases are documented 
c 5% of cases are infectious (iatrogenic) 
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An increasing number of studies have shown that the pathogenic species in protein 

deposition diseases are not the mature fibrils, but the precursor species forming before 

the fibrils, such as oligomers and structured protofibrils [Bucciantini et al. 2002; 

Billings et al., 2005; Cleary et al., 2005; Lesnè et al., 2006; Haass and Selkoe, 2007; 

Koffie et al., 2009]. Nevertheless, in some cases amyloid fibrils are able to cause 

cellular dysfunction because they can trigger the inflammatory response, a detrimental 

phenomenon if it is chronic, and because they act as sources of more toxic and soluble 

low molecular weight aggregates [Gharibyan et al., 2007; Jan et al., 2011; Martins et 

al., 2008; Novitskaya et al., 2006; Selkoe, 2011; Wogulis et al., 2005; Stefani, 2010].  

 

1.2 Misfolded protein oligomers 

1.2.1 Oligomers and disease 

It has been shown that the severity of cognitive impairment in Alzheimer’s disease 

correlates with the levels of low-molecular-weight species of the Aβ peptide rather than 

with the amount of amyloid fibrils from the same peptide [Lue et al., 1999; McLean et 

al., 1999; Wang et al., 1999]. Soluble oligomeric forms of Aβ, including trimers and 

dimers, were found to be both necessary and sufficient to disrupt learned behavior 

[Cleary et al., 2005]. Moreover, transgenic mice show deficits in cognitive learning 

before the accumulation of significant amount of amyloid plaques [Moechars et al., 

1999; Larson et al., 1999; Billings et al., 2005; Lesné et al., 2006]. Yet, in mice models 

of Alzheimer disease, synapse loss was found to be higher near senile plaques from 

which oligomers are released [Koffie et al., 2009]. Lastly, genetic evidence provides 

support to the toxicity of the oligomers; indeed the “Artic” (E693G) mutation of the 

amyloid β precursor protein, associated with a heritable early-onset manifestation of 

Alzeimer’s disease, has been found to enhance protofibril, but no fibril, formation in 
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vitro [Nilsberth et al., 2001]. Similar arguments hold for α-synuclein and Parkinson’s 

disease [Kitada et al., 1998; Masliah et al., 2000; Winner et al., 2011], as well as TTR 

and its associated amyloidoses [Sousa et al., 2001]. 

Numerous experimental data have shown that oligomers formed by proteins 

unrelated to any disease, such as the N-terminal domain of HypF from E. coli (HypF-

N), the SH3 domain from bovine phosphatidylinositol 3′ kinase (PI3-SH3) and 

apomyoglobin from sperm whale, can be highly toxic to cultured cells, whereas the 

monomeric native states and the amyloid-like fibrils (all formed in vitro) display very 

little, if any, toxicity [Bucciantini et al., 2002; Sirangelo et al., 2004]. Therefore, 

oligomer toxicity seems to be a property linked to structural characteristics of the pre-

fibrillar aggregates and independent of the protein forming them. 

 

1.2.2 Dynamic and heterogeneous nature of oligomers 

The oligomers are characterized by a substantial instability and heterogeneity making a 

challenge to obtain molecular details at the residue level [Stefani, 2010; Bemporad and 

Chiti, 2012]. Nevertheless, a number of approaches and techniques have been recently 

introduced and allowed a deep molecular characterization of the oligomers [Bemporad 

and Chiti, 2012]. 

The aggregation process gives rise to the appearance of a wide range of oligomeric 

species structurally heterogeneous and in an ever-changing state of rearrangement. The 

description of these species is, therefore, strictly related to the time parameter and to the 

starting conditions. When aggregation starts from fully or largely unfolded monomers, 

the initial oligomers, forming during the nucleated conformational conversion, exhibit a 

large variety of conformations, with monomers still characterized by a disordered 

structure (Figure 1.3). Indeed, early aggregates with unstable β-sheet structure and a 
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poor level of order have been described for Aβ40 [Lee et al., 2011; Qi et al., 2008], α-

synuclein [Dusa et al., 2006] and the PI3-SH3 domain [Carulla et al., 2009]. If the 

aggregation process take origin from native-like state, the early aggregates are 

characterized by oligomers retaining monomers in a native-like conformation [Banci et 

al., 2005; Olofsson et al., 2004; Pagano et al., 2010]. It is therefore clear that the early 

forming species are reminiscent of the monomeric state from which they originate and 

are far from the amyloid structure, as shown also by their inability to bind amyloid 

specific dyes [Plakoutsi et al., 2005; Lee et al., 2011]. 

As the aggregation proceeds, the aggregates are subjected to a continuous structural 

reorganization and acquire amyloid-like properties, such as an extensive β-sheet content 

and ability to bind ThT and CR [Bemporad and Chiti, 2012]. Moreover, they increase in 

dimensions, compactness, stability, hydrophobic burial and order, still retaining a non 

fibrillar morphology (Figure 1.3), as it has been reported for Aβ40 and Aβ42 [Bitan et al., 

2003; Lee et al., 2011; Qi et al., 2008], α-synuclein [Kaylor et al., 2005] and the human 

muscle acylphosphatase [Calamai et al., 2005]. In addition, they decrease in dynamic 

fluctuations and oligomer surface per number of monomers [Bemporad and Chiti, 

2012]. Such conversion form unstructured or native-like oligomers into amyloid 

oligomers is inevitably accompanied by the generation of a variety of oligomeric 

species that differ in the extension of the β-sheet content, giving origin to a complex 

scenario of multiple species. 
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Figure 1.3. A schematic representation of the structural rearrangements occurring during 
oligomer formation. For simplicity, only aggregation starting from fully or largely unfolded 
monomers is considered. Amyloidogenic/hydrophobic segments are in green. The oligomer 
surface is drawn as a thin black when amyloidogenic/hydrophobic segments are buried and as a 
thick red dotted line when they are exposed to the solvent. While aggregation proceeds (left to 
right), a set of structural rearrangements take place and leads to growth of thin filaments, which 
eventually originate amyloid fibrils: the top and bottom arrows show the parameters that increase 
and decrease, respectively. Image taken from Bemporad and Chiti, 2012. 

 

The heterogeneous and dynamic nature of the oligomers is responsible for the 

differences in their structure and morphology, phenomenon called polymorphism 

[Kodali and Wetzel, 2007; Stefani, 2010]. Oligomer polymorphism concerns their size, 

shape, compactness, stability and secondary and tertiary structure content [Bemporad 

and Chiti, 2012]. In addition to these characteristics, it is important to note that different 

kind of oligomers can coexist at the same time in solution [Goldsbury et al., 2005; 

Gosal et al., 2005; Jain and Udgaonkar, 2011; Mastrangelo et al., 2006; Relini et al., 

2010] and even in vivo [Winner et al., 2011]. The importance of oligomer 

polymorphism reflects in the biological activity of the oligomers. Indeed, it has been 

shown that expression of different mutants of Aβ in Drosophila qualitatively leads to 

different pathologies [Iijima et al., 2008] and that different oligomers of α-synuclein 

and Aβ cause toxicity in cell cultures through different mechanisms [Danzer et al., 
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2007; Deshpande et al., 2006]. Finally, polymorphism is fundamental in determining 

the propagation of prion strain infectivity [Jones and Surewicz, 2005]. 

 

1.2.3 Structural determinants and mechanisms of oligomer cytotoxicity 

It has been observed that different oligomers formed by the same protein present 

different levels of cytotoxicity and that oligomers originated by different proteins are 

able to affect the cellular viability to the same extent, indicating that the toxicity of these 

species is due to their misfolded nature rather than to specific features of their amino 

acid sequences. The increasing number of studies, targeted to elucidate the fine 

oligomer structure, has allowed to shed light on the structural determinants of oligomer 

toxicity, i.e. the structural elements that are responsible for the ability of protein 

oligomers to interact with the cells and cause their dysfunction [Bemporand and Chiti, 

2012]. 

The degree of hydrophobic surface exposure seems to play an important role in 

oligomer-mediated toxicity. It has been observed that the increase of hydrophobic 

exposure in Aβ40 aggregates correlates with their ability to affect model membrane 

fluidity [Kremer et al., 2000]; such a positive correlation was also found in 

homopolymeric amino acid stretches between hydrophobicity and cytotoxicity of their 

aggregates [Oma et al., 2005]. In a recent study, two types of spherical oligomers 

formed by the HypF-N protein, similar in size, morphology and ThT binding, were 

found to have very different toxicities on cell cultures, with one species found to be 

nontoxic [Campioni et al., 2010]. Through the technique of the site-directed labeling 

with the fluorescent probe pyrene, it was found that the three most hydrophobic regions 

of the protein sequence are structured and buried in the nontoxic oligomers, whereas in 

the toxic oligomers the same regions are more solvent exposed and flexible [Campioni 



Chapter 1                                                                                                         Introduction 

 

17 

 

Figure 1.4. Toxicity versus size of Aβ40 
(filled circles) and Aβ42 (empty circles) 
aggregates. Toxicity is measured by 
determining MTT reduction by cultured 
cells following their exposure to 
oligomers added to the extracellular 
medium. Aggregate toxicity was 
expressed as percentage of MTT 
reduction relative to untreated cells, 
where 0% and 100% values are two 
extremes of full cell death and full 
viability, respectively. All data were 
obtained at a peptide concentration in the 
range of 2.0-2.7 mM and aggregate size 
was expressed as mean molecular weight. 
All data points were fitted to a hyperbolic 
function of the form y = a * x/(b + x). 
Image taken from Bemporad and Chiti, 
2012. 
 

et al., 2010]. Moreover, it has been shown that prefibrillar aggregates of the E22G 

variant of the Aβ42 peptide bind strongly to 1-anilinonaphthalene 8-sulfonate (ANS), an 

indicator of hydrophobic exposure, and that changes in this property correlate 

significantly with changes in their cytotoxicity [Bolognesi et al., 2010]. In the same 

work, investigation on other protein systems indicated that this is a shared property of 

misfolded species. Another study has demonstrated that the degree of toxicity of highly 

amyloidogenic proteins expressed intracellularly increases with the exposure to the 

solvent of hydrophobic regions on the aggregates surface [Olzscha et al., 2011]. 

Recently, it has been reported that the interaction between Aβ and antibodies grafted 

with small hydrophobic portions of Aβ itself prevents amyloid formation by converting 

monomers and/or fibrillar intermediates into small complexes that are unstructured and 

benign on cell cultures [Ladiwala et al., 2012]. 
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Lately, particular attention has been paid to the size of the oligomers as a structural 

determinant of cytotoxicity. Indeed, it was found that Aβ42 pre-fibrillar aggegates of 

different sizes give rise to an inverse correlation between oligomer size and neuronal 

toxicity, with the smallest species showing the highest ability in causing cell 

dysfunction [Cizas et al., 2010]. In addition, it was found that three classes of small 

aromatic molecules can inhibit Aβ42 oligomer toxicity by converting the small 

oligomers into large aggregates, fibrils, and monomers, respectively [Ladiwala et al., 

2011]. Interestingly, the formation of larger assemblies of toxic oligomeric species of 

Aβ induced by other molecules, such as molecular chaperones has been found to result 

in a suppression of their toxicity [Ojha et al., 2011]. Finally, through the analysis of the 

toxicity levels of many oligomeric species of Aβ it has been observed that the 

cytotoxicity decreases with the increase of oligomer size (Figure 1.4) [Bemporad and 

Chiti, 2012].  

The higher ability of small soluble oligomers to cause cellular damage may reflect 

their greater diffusion capability and higher hydrophobic surface per number of 

monomers with respect to larger assemblies. In agreement with this hypothesis, the 

fibrils forming at the end of the aggregation process are characterized by a lower level 

of toxicity with respect to their precursors, as they display hydrophobic burial and mass 

increase [Haass and Selkoe, 2007; Keshet et al., 2010]. 

The mechanisms by which oligomers exert their toxicity is not clear but a 

prominent hypothesis suggests that the aggregates may expose flexible and hydrophobic 

regions on their surface that can mediate aberrant interactions with other proteins or cell 

membranes. Indeed, the toxicity of intracellularly forming aggregates was attributed to 

their ability to interact and alter the function of a number of cellular proteins [Olzscha et 

al., 2011], whereas the ability to cause cellular damage of exogenously added oligomers 
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Figure 1.5. Schematic representation of two different types of oligomers generated incubating 
HypF-N in different conditions of aggregation. Toxic oligomers (on top) characterised by a lower 
degree of packing and higher solvent exposure of the hydrophobic regions than the ones of the 
non-toxic species (bottom) are shown. Probably, these characteristics allow the interaction 
between toxic oligomers and membrane and subsequently dysregulation of Ca2+ levels. Image 
taken from Campioni et al., 2010. 

was found to result from a disruption of cell membranes and a consequent uptake of 

calcium (Figure 1.5) [Campioni et al., 2010; Zampagni et al., 2011].  

 

 

1.3 Homeostasis of the proteome 

1.3.1 Protein homeostasis network 

Protein homeostasis, or proteostasis, is the cellular process that governs the “life of 

proteins”, as it encompasses regulation and control of the translation, folding, 

translocation to different intracellular compartments, assembly or disassembly, and 

clearance of proteins [Balch et al., 2008]. Clearly, the maintenance of the proteome in 

its functional state has a fundamental importance for living cells and, for this reason, 
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several dedicated systems have been evolved. In this section a brief description of such 

systems will be given. 

Molecular chaperones include, for example, the families of the Hsp100s, Hsp90s, 

Hsp70s, Hsp60s, Hsp40s and the small heat shock proteins (sHsps). They can act in the 

cytosol or in specific cellular compartments such as the endoplasmic reticulum (ER) or 

the mitochondria [Young et al., 2004; Bukau et al., 2006]. All molecular chaperones 

interact promiscuously with a broad range of unfolded proteins, recognizing an 

increased exposure of hydrophobic amino acids [Bukau et al., 1996; Sharma et al., 

2008; Viitanen et al., 1992; Walter and Buchner, 2002]. Generally, they do not provide 

structural information for folding, but avoid unwanted molecular interactions, through 

controlled binding and release of nonnative proteins that involves, for some of them, 

ATP hydrolysis. Molecular chaperones also prevent the aberrant aggregation of 

unfolded, partially folded and misfolded proteins [Broadley et al., 2009], are able to 

solubilize and reactivate aggregated proteins [Weibezahn et al., 2005] and mediate the 

degradation of misfolded proteins [Pickart and Cohen, 2004]. 

Recent evidence has shown that extracellular counterparts to the intracellular 

molecular chaperones exist and are referred to as extracellular chaperones (ECs). 

Indeed, a series of glycoproteins, such as clusterin [Humphreys and Carver, 1999], 

haptoglobin [Yerbury et al., 2005] and α2-macroglobulin [French et al., 2008] have 

been found to be secreted and to act in a chaperone-like manner [Wilson et al., 2008]. In 

most cases, ECs share functional similarities with the sHsps, as they are able to stabilize 

misfolded proteins preventing their aggregation, but cannot refold independently 

proteins as they lack ATPase activity [Wyatt et al., 2013]. 

A universal and ancient mechanism where molecular chaperones and other proteins 

work in an integrated process is the heat shock response (HSR), so called because it was 
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initially described as an enhanced transcription of specific genes triggered by an 

increase in the temperature [Ritossa, 1962], and later recognized to be prompted by a 

variety of stresses, including oxidative stress, heavy metals, ethanol or other toxic 

substances [Courgeon et al., 1984; Heikkila et al., 1982; Michel and Starka, 1986; Yura 

et al., 1984]. Proteins involved in the HSR exert several and different functions, but 

they are predominantly molecular chaperones [Ellis et al., 1989; Young et al., 2004]. A 

related process, originating from the accumulation of misfolded proteins in the ER, is 

the unfolded protein response (UPR) [Walter and Ron, 2011].  

Improperly folded proteins are not allowed to leave the ER and are retrotraslocated 

into the cytosol for proteasomal degradation, a process called ER-associated 

degradation (ERAD) [Smith et al., 2011]. These proteins, once in the cytosol, are 

degraded by the ubiquitin-proteasome system (UPS) [Claessen et al., 2012].  

Protein degradation through UPS is the major pathway of non-lysosomal proteolysis 

of intracellular short-lived, mislocated, misfolded, mutant or damaged proteins 

[Sherman and Goldberg, 2001]. Firstly, a series of enzyme-mediated reactions identifies 

and covalently links abnormal proteins with multiple ubiquitin molecules as a signal for 

degradation. Then, ubiquitin-protein conjugates are recognized and degraded by the 

proteasome, which is a multisubunit protease [DeMartino and Slaughter, 1999]. The 

degradation products are short peptide fragments and amino acids that can be recycled 

to produce new proteins [Pickart, 2000].  

The degradation of intracellular components occurs thanks to autophagy, that 

mediates the degradation of intracellular components, such as single macromolecules 

and organelles, inside lysosomes [Mizushima et al., 2008], guaranteeing their renewal 

and, therefore, contributing to basal homeostasis [Bejarano and Cuervo, 2010].  
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All of the systems described here are strictly connected and interdependent on each 

other, and a continuous balance among them is necessary in order to ensure the 

homeostasis of the proteome. The importance of studying these systems in the context 

of a complex network that preserves cellular functionality is now emerging. Indeed, the 

comprehension of the mechanisms that govern the co-dependence of these systems 

could help to shed light on situations in which the proteostasis machinery fails 

[Morimoto and Cuervo, 2009]. 

 

1.3.2 Protein homeostasis and protein deposition diseases 

Deficiencies in the protein homeostasis can lead to a broad variety of human 

pathologies, including those associated with misfolding and aggregation of proteins 

(Figure 1.6) [Selkoe, 2003; Chiti and Dobson, 2006; Muchowski and Wacker, 2005]. 

Upon aging a decline of the proteostatic controls naturally occurs, due to changes in the 

transcriptional levels of chaperones, post-translational modifications, increase in protein 

oxidation, decrease in the protein degradation rate, etc. [Balch et al., 2008; Martinez-

Vicente et al., 2005]. The age-related deterioration of the proteostasis can in part 

explain the reason why many diseases are age-dependent [Lu et al., 2004; Zhang et al., 

2004; Massey et al., 2006; Erickson et al., 2006; Derham and Harding, 1997].  

Numerous studies have shown that chaperones and components of the ubiquitin-

proteasome system associate with inclusion bodies or extracellular plaques 

characteristic of protein deposition diseases, suggesting a general activation of the 

cellular quality control machinery in an attempt to face the accumulation of misfolded 

species [Barral et al., 2004; Wyatt et al., 2013]. The homeostatic capacity of the cells 

can be overwhelmed by the increasing amounts of misfolded proteins [Barral et al., 

2004; Gidalevitz et al., 2006] and, concomitantly, by a progressive reduction of the 
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efficiency of the quality control network, enhancing the imbalance and allowing further 

accumulation of toxic misfolded proteins.  

Moreover, disease processes themselves might cause, or worsen, chaperone 

deficiency. Indeed, it has been suggested that aggregate deposits are able to sequester 

molecular chaperones in a non-functional state, inhibiting their essential function in 

cellular processes [Schaffar et al., 2004; Barral et al., 2004; Satyal et al., 2000]. In 

addition, studies report that several cellular models of misfolding diseases do not 

promptly activate the cytosolic stress response upon overexpression of disease proteins 

[Duennwald and Lindquist, 2008; Magrane et al., 2005; Tagawa et al., 2007; Hay et al., 

2004; Cowan et al., 2003]. Similarly, a malfunctioning of the extracellular chaperone 

machinery has been observed to inevitably affect plasma protein solubility [Poon et al., 

2002; Pavliček and Ettrich, 1999; Yerbury et al., 2005]. 

If an age-related or disease-related decrease in chaperone activity contributes to 

pathology, restoring or maintaining proteostasis process should postpone or even 

prevent disease onset [Balch et al., 2008; Broadley and Hartl, 2009]. Indeed, a great 

number of studies have been done in agreement with this idea. It has been demonstrated 

that aggregation-mediated proteotoxicity was ameliorated by delaying the ageing 

process in Caenorhabditis elegans models of Huntington’s and Alzheimer’s diseases, 

acting at the level of proteostasis regulators of chaperones [Morley et al., 2002; Parker 

et al., 2005; Cohen et al., 2006]. The overexpression of certain chaperones, including 

Hsp70s and Hsp40s, suppresses aggregation-associated damage in numerous 

neurodegenerative disease models [Auluck et al., 2002; Tam et al., 2006; Kitamura et 

al., 2006; Behrends et al., 2006]. It has been reported that in transgenic mouse models 

of Alzheimer’s diseases the sHsp αB-crystallin has a cytoprotective effect, since it 

neutralizes the toxic Aβ oligomers [Ojha et al. 2011]. Also extracellular chaperones 
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have been shown to interact with oligomeric species [Yerbury et al., 2007; Yerbury et 

al., 2009] with benefic results for cells. Indeed, cerebrospinal fluid (CSF) samples from 

patients with Alzheimer’s disease were found to be more toxic to cultured 

neuroblastoma cells than normal CSF; interestingly, the addition of extracellular 

chaperones, such as clusterin, α2-macroglobulin and haptoglobin, suppressed this 

toxicity and the effect coincided with more efficient cellular uptake of Aβ [Yerbury and 

Wilson, 2010]. 

 

 

 

1.4 Multifactorial origin of neurodegeneration 

1.4.1 Immune system in the central nervous system 

It has been suggested that neurodegeneration associated with protein deposition 

diseases, such as Alzheimer's disease and Parkinson's disease, is a multifactorial 

 
 
Figure 1.6. Interplay between protein quality control (transitions from unfolded to intermediates to native 
and to misfolded states) and clearance mechanisms in protein conformation disease. Chaperones have a 
critical role to suppress the appearance of misfolded species and to enhance protein folding. The 
imbalance of misfolded species is associated with human disease. Images taken from Morimoto, 2008. 
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phenomenon [Mangialasche et al., 2010; Roodveldt et al., 2008]. Among the factors 

that have been proposed to affect these pathologies, the uncontrolled inflammatory 

response in the brain has arisen to a central role [Amor et al., 2010]. 

The central nervous system (CNS) is considered an “immune privileged” organ 

since it has developed strategies to limit the immune activation within the tissue itself, 

probably to avoid strong inflammatory reactions that can damage delicate, non-

regenerating cells such as neurons and oligodendrocytes [Ransohoff and Brown, 2012]. 

Firstly, it lacks of antigen-presenting cells that act as messengers between the 

innate and adaptive immunity in the periphery (performing antigen uptake, migration to 

draining lymph nodes and presentation to naive T cells) [Ransohoff and Brown, 2012]; 

secondly, it is surrounded by the blood-brain barrier (BBB), that limit the entry of 

immune elements [Carson et al., 2006]; finally, it is characterized by an anti-

inflammatory environment, with a high presence of inflammation-suppressive 

cytokines, such as interleukin-10 (IL-10), and gangliosides, which can be toxic to T 

cells [Strle et al. 2001; Irani, 1998]. 

Microglia and astrocytes represent the innate immune component in the CNS 

parenchyma [Aloisi, 2001; Dong and Benveniste, 2001] and deal directly with 

pathogens and tissue damage acting as the fundamental first line of defence [Ransohoff 

and Brown, 2012]. These cells cannot directly initiate adaptive responses, but can 

recruit cells of the adaptive immune system by secreting various cytokines and 

chemokines that induce adhesion molecules on the BBB [Amor et al., 2010].  

Microglia and astrocytes constantly survey the microenvironment and produce 

factors that influence surrounding neurons. Under physiological conditions, these cells 

exhibit a deactivated phenotype that is associated with the production of anti-

inflammatory and neurotrophic factors [Streit, 2002]. They can switch to an activated 

http://en.wikipedia.org/wiki/Innate_immune_system
http://en.wikipedia.org/wiki/Adaptive_immune_system
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status when they recognize highly conserved structural motifs, either from pathogens 

(pathogen-associated molecular patterns, or PAMPs) or from damaged or stressed 

tissues (danger-associated molecular patterns, or DAMPs). PAMPs include bacterial, 

viral and protozoal products, such as protein, lipid, nucleic acid and carbohydrate 

[Ransohoff and Brown, 2012]. DAMPs are endogenous signals, encompassing HSPs, 

uric acid, chromatin, adenosine and ATP, fibrinogen and aggregated, modified or 

misfolded proteins [Amor et al., 2010]. The recognition is mediated by pattern-

recognition receptors, such as the Toll-like receptors (TLRs), which are located on the 

plasma membrane or in endosomal compartments [O’Neill, 2004]. Upon activation, 

microglia and astrocytes release a variety of immune regulators, such as cytokines and 

chemokines, promoting an inflammatory response directed to tissue repair [Glass et al., 

2010].  

In a prototypical scenario, the engagement of TLRs evokes transcriptional 

activation of genes encoding interleukin-1 (IL-1) family cytokines. Pro-forms of the 

resulting peptides, for example pro-IL-1β, remain cytoplasmic until cleaved 

enzymatically by activated caspase-1 [Martinon and Tschopp, 2004]. The release of 

biologically active IL-1β elicits production of a secondary inflammatory cytokine 

cascade by both microglia and astrocytes [Chakraborty et al., 2010]. For example, IL-1β 

can induce expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) 

[Ransohoff and Brown, 2012]. 

Microglial cells are also the resident phagocytes of the brain [Perry and Gordon, 

1988]. Phagocytosis contributes to the maintenance of the integrity of the tissue, 

through the clearance of apoptotic cells and the promotion of the damage resolution. 

This process is also exploited to remove extracellular protein aggregates [Rogers et al., 

2002; Zhang et al., 2005]. Regarding astrocytes, they act in buffering CNS potassium 
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ions, removing and recycling potentially toxic glutamate, adjusting water balance, and 

modulating synaptic activity and blood flow [Nash et al., 2011]. 

 

1.4.2 Inflammatory response and protein deposition diseases 

Inflammation has been found to be linked to certain neurodegenerative disorders 

including Alzheimer's disease, Parkinson's disease and multiple sclerosis [Raine, 1994; 

Banati et al., 1998; McGeer et al., 1988]. The inflammatory response protects the tissue, 

promoting the insult resolution. However, when chronically sustained because of a 

persistent stimulation, it may become harmful and self-damaging. An over-activation of 

microglia and astrocytes is inevitably present in brains affected by neuropathologies and 

it has been observed in Parkinson's disease [Kim and Joh, 2006], Alzheimer's disease 

[McGeer et al., 2006] and Huntington’s disease [Masters and O’Neill, 2011]. 

Following activation, microglia cells change their morphology, express MHC 

antigens and become phagocytic [Hayes et al., 1987]. They secrete pro-inflammatory 

cytokines that amplify the inflammatory response by activating and recruiting other 

cells to the lesion, express chemokines and release nitric oxide, which mediates 

apoptosis [Dickson et al., 1993; Griffin et al., 1989]. Chronic microglia activation may 

lead to the recruitment of cells of the adaptive immune system into the CNS, resulting 

in neuronal damage [Amor et al., 2010]. This process is particularly harmful in the 

brain, since neurons are generally irreplaceable [Kim and Joh, 2006].  

An increasing number of studies have reported that amyloidogenic proteins/peptides 

and misfolded aggregates are potent immunostimulatory [reviewed in Masters and 

O’Neill, 2011]. Importantly, the microglial activation and inflammatory processes are 

thought to be largely caused by the aberrant protein oligomers accumulating throughout 

the pathological aggregation process [Roodveldt et al., 2011; Amor et al., 2010]. 
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Interestingly, it has been proposed that the innate immune system universally 

recognizes hydrophobicity as a damage-associated pattern, evolving its TLRs in order to 

react with the exposed hydrophobic portions of molecules [Seong and Matzinger, 2004]. 

Indeed, the TLRs are highly promiscuous and bind to a very large number of ligands. 

These ligands are structurally different, but most of them are either normally 

hydrophobic or prone to exposing large hydrophobic areas when they are damaged or 

modified [Seong and Matzinger, 2004]. 

 

1.4.3 Heat shock proteins as immune mediators 

Many studies have documented induction of Hsps in nerve cells and glia as the result 

chronic neurodegeneration and neuroinflammation. The inducible form of Hsp70 

accumulates in astrocytes, oligodendrocytes and microglia, following a variety of 

stresses [Richter-Landsberg and Goldbaum, 2003]. The expression of Hsp60 has been 

Figure 1.7. Extracellular Hsps as 
mediators of inflammation. By 
controlled vesicular exocytosis, a 
variety of Hsps are secreted in 
response to stress by different cells. 
A growing number of surface 
receptors, including CD91, 
scavenger receptors, pattern-
recognition receptors, CD40 and the 
chemokine receptor CCR5, relay 
signals given by extracellular Hsps 
and trigger production of a range of 
molecules with diverse functions in 
innate and adaptive immune 
responses. Adapted from van Noort, 
2008. 
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observed as a consequence of inflammatory cytokine stimuli in oligodendrocytes and 

astrocytes, and of inflammatory lesions during multiple sclerosis [Bajramovic et al., 

2000]. In addition, during neuroinflammation in multiple sclerosis and Alzheimer’s 

disease, oligodendrocytes have been found to produce the sHsp αB-crystallin [van 

Noort et al., 1995; Renkawek et al., 1994]. 

Evidence is now emerging that Hsps not only accumulate in brain cells following 

stress, but are secreted and act as extracellular signals for receptor-mediated signaling in 

a similar manner to other soluble mediators of inflammation [Calderwood et al., 2007] 

(Figure 1.7). The release of Hsps in the extracellular space seems to be a physiological 

phenomenon, since it occurs even under mild forms of stress in vivo. For example, 

Hsp70 is induced as an extracellular mediator in the CNS during exercise in humans 

[Lancaster et al., 2004]. In addition, Hsp60, Hsp70 and αB-crystallin have been 

observed in the cerebrospinal fluid of patients suffering from neurodegenerative 

disorders, but also in healthy controls [Ousman et al., 2007; Lancaster et al., 2004; Lai 

et al., 2006]. In agreement with this findings, several surface receptors have been found 

to recognize extracellular Hsps, and even fragments of Hsps [Habich et al., 2006; Wang 

et al., 2005]. 

Interestingly, exogenous Hsps, including Hsp32, Hsp70, Hsp90 and αB-crystallin, 

are able to activate microglia [Calderwood et al., 2007; Kakimura et al., 2002; 

Kakimura et al., 2001; Bhat and Sharma, 1999]. In vitro treatment of microglia with 

such Hsps generally induces production of nitric oxide, several cytokines including 

TNFα, TGFβ and IL-6 and chemokines [van Noort, 2008]. The microglial activation has 

also been observed in vivo by injecting exogenous Hsp90 into the hippocampus of rats 

[Takata et al., 2003]. Moreover, in several cases, microglial activation by exogenous 
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Hsps has been demonstrated to result in increased uptake and clearance of amyloid 

peptide aggregates [Kakimura et al., 2002; Kakimura et al., 2001; Takata et al., 2003]. 

Due to their anti-inflammatory effects, Hsps have been evaluated as therapeutic 

agents in a variety of human inflammatory diseases, such as rheumatoid arthritis 

[Vanags et al., 2006; van Eden, 2008; Panayi and Corrigall, 2008], psoriasis [Williams 

et al., 2008], diabetes [Huurman et al., 2008] and multiple sclerosis [Broadley et al., 

2009]. 

 

1.5 The model protein HypF-N 

1.5.1 Structural properties of HypF-N 

HypF-N is the N-terminal domain of the prokaryotic hydrogenase maturation factor 

HypF of Escherichia coli, a large multi-domain protein of about 82 kDa that is in 

charge of assisting the folding of [NiFe]-hydrogenases, enzymes involved in the 

hydrogen metabolism of prokaryotes [Colbeau et al., 1998]. HypF is constituted by an 

N-terminal acylphosphatase-like domain (residues 1-91), a sequence motif shared with 

enzymes catalysing O-carbamoylation reactions (residues 473-479) and two zinc-finger 

motifs similar to those found in the DnaJ chaperone (residues 109-134 and 159-184) 

[Casalot and Rousset, 2001]. The N-terminal domain is homologous in the sequence 

and structure to the acylphosphatase-like structural family. Acylphosphatases (AcPs) are 

small enzymes that catalyse the hydrolysis of carboxyl-phosphate bonds in 

acylphosphates [Stefani and Ramponi, 1995]. In spite of sharing about 22% and 50% of 

its sequence with human and E. coli AcP, respectively, HypF-N does not show any 

catalytic activity typical of AcPs [Chiti et al., 2001]. 

The native structure of this domain has been resolved by X-ray crystallography 

[Rosano et al., 2002] and displays a ferredoxin-like fold with a α/β topology, consisting 
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of a βαββαβ secondary structure (Figure 1.8). The domain is about 43x28x27 Å in size 

[Rosano et al., 2002] and has a compact and globular structure, targeted to avoid 

aggregation from its native state. Indeed, in order to disfavour intermolecular 

interactions, the protein presents very short or highly twisted edge β-strands, a β-bulge 

(71-72), a proline residue (Pro78) and a cluster of charged residues (Asp72, Glu75-

Arg76-Glu77), all structural properties that prevent interactions between different 

molecules [Rosano et al., 2002]. 

 

 

 

1.5.2 Aggregation of HypF-N in vitro 

Conditions that partially destabilize the native structure of HypF-N can induce its 

aggregation in vitro, and encompass low and high pH, mutations and the presence of a 

moderate amount of trifluoroethanol (TFE) [Chiti et al., 2001; Relini et al., 2004; 

Marcon et al., 2005; Campioni et al., 2008; Calloni et al., 2008; Ahmad et al., 2010]. 

 

Figure 1.8. Ribbon representation of 
HypF-N structure. The secondary 
structure elements are displayed in blue 
(α-helices) and green (β-strands) colours. 
The putative active site is also shown with 
the conserved residues Arg23 and Asn41, 
the bound phosphate (purple sticks) and 
the bound chloride ion (light blue sphere). 
The Cys7 residue shown in figure was 
found to adopt two alternative 
conformations both able to form right-
handed disulfides with a neighbouring 
molecule in the crystal. The figure was 
taken from Rosano et al., 2002. 
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A first work reported the formation of amyloid-like fibrils by incubating the protein in 

citrate buffer at pH 3.0 or in acetate buffer at pH 5.5 with 30% (v/v) TFE [Chiti at al., 

2001]. Electron microscopy images showed the presence of 7-9 and 12-20 nm wide 

fibrils in the samples incubated for 1 month at acidic pH, whereas in TFE the majority 

of the fibrils was 3-5 nm and 7-9 nm in width [Chiti at al., 2001]. In addition to the 

fibrillar morphology, these aggregates were found to bind to ThT and CR, resembling 

the amyloid-like properties [Chiti et al., 2001]. The aggregation process in 30% TFE 

was further investigated using AFM (Figure 1.9) and resulted to be a hierarchical path 

[Relini et al., 2004]. Initially globular structures with a height of 2-3 nm consistent with 

that of a small oligomers form; after 3 days of incubation in the aggregating conditions, 

the globules self-assemble into beaded chains with crescent-like appearance; these latter 

originate large rings after 5 days; subsequently the annular structures convert into 

ribbon-like fibers by opening and reorganizing their constituent globular units; for 

further assembly, after 8 days, supercoiled fibrils formed by a different number of 

protofilaments appear, and after eleven days the large majority of the structures 

observed are tangles of fibrils having a width of 3.5, 5.0 and 8.5 nm [Relini et al., 

2004], in agreement with previously reported TEM observations [Chiti et al., 2001]. 

These fibrils show a cross-β structure in the X-ray diffraction pattern, typical of amyloid 

fibrils [Relini et al., 2004].  

Oligomeric aggregates and fibrils were also able to form in 6-12% TFE [Marcon et 

al., 2005]. In these mildly denaturing conditions, HypF-N was found to be initially in a 

predominantly native-like conformation, with the partially folded state being poorly 

populated. A kinetic analysis revealed that molecules accessing such a partially folded 

state were able to originate the aggregation process. In the context of a physiological 

environment, this finding is significantly relevant, since it underlines the need of the 
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cells to constantly fight the propensity to aggregate for even the most stable proteins 

[Marcon et al., 2005]. 

The HypF-N aggregation process under acidic pH condition was investigated from 

the structural characterization of the amyloidogenic precursor state adopted by the 

protein to the description of the resulting aggregates. At low pH, precisely pH 1.7, 

HypF-N was found to be largely unfolded but still contain significant secondary 

structure elements and hydrophobic clusters [Campioni et al., 2008]. By increasing the 

ionic strength of the solution the aggregation of this precursor state was induced and 

amyloid-like protofibrils were detected in the samples, as revealed by ThT fluorescence 

and AFM [Campioni et al., 2008; Calloni et al., 2008; Campioni et al., 2012].  

The NMR analysis of the pH-denatured precursor state allowed to identify the 

regions of the sequence that form hydrophobic interactions and adopt secondary 

structure. Indeed, it was found that the regions spanning residues 23-34, 56-64, and 81-

82 form hydrophobic clusters, whereas the regions spanning residues 26-30, 56-61 and 

Figure 1.9. TM-AFM images of HypF-N 
aggregates formed in the presence of 
30% (v/v) TFE at pH 5.5. (a) After few 
hours of incubation, globular aggregates 
are observed. The scale bar represents 
100 nm. Inset: STM image of globular 
aggregates. The scale bar represents 10 
nm. (b) After three days of incubation, 
crescents and rings are observed. Inset: 
observation of a ring at higher resolution. 
The scale bars represent 400 nm. (c) 
Supercoiled fibrils observed after 8 days 
of incubation. (d)Tangles of the mature 
fibrils that represent the large majority of 
the structures observed after 11 days of 
incubation. Scale bars represent 500 nm 
(c-d). Images adapted from Relini et al., 
2004. 
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46-49 form α-helical structure. These latter regions correspond largely in the native 

conformation to helix α1, helix α2 and strand β3, respectively [Calloni et al., 2008]. By 

creating a set of variants, the regions of the sequence that play key roles in the 

conversion of the pH-denatured state of HypF-N into ThT-binding and β-sheet 

containing protofibrillar species were also identified (approximately residues 9-15, 27-

35, 46-48, and 58-60). These groups of residues correspond to the regions of the 

sequence that have the highest intrinsic aggregation propensity [Calloni et al., 2008]. 

The conversion of HypF-N into amyloid-like oligomers under conditions of acidic 

pH has been recently studied under the influence of different salts [Campioni et al., 

2012]. The AFM results show that, irrespective of the salt used, the aggregation process 

lead to the formation of bead-like oligomers with similar morphologies and heights. By 

contrast, the content of secondary structure and the exposure of hydrophobic clusters of 

the monomeric precursor state is greatly affected by the anions constituting the salts 

[Campioni et al., 2012]. 

A partially folded state of HypF-N, which subsequently assembles to form stable 

soluble oligomers, has been observed in condition of alkaline pH and low 

concentrations of TFE [Ahmad et al., 2010]. These aggregates are able to CR and ThT, 

contain extensive β-sheet structure and have a morphology similar to the HypF-N 

oligomers formed at low and nearly neutral pH [Ahmad et al., 2010]. 

 

1.5.3 Aggregation of HypF-N in vivo 

The aggregation process of HypF-N was also investigated in vivo, where several 

additional factors able to affect substantially the aggregation are present. In E. coli cells, 

wild-type HypF-N does not aggregate; conversely HypF-N variants engineered in order 

to destabilize the native structure precipitate into inclusion bodies after expression 
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[Calloni et al., 2005]. The aggregation of unstable mutants can be avoided by the 

insertion of mutations that increase the net charge and therefore reduce the polypeptide 

chain propensity to aggregate. Interestingly, the aggregating variants were found to be 

less stable than the soluble variants, indicating that the aggregation of this protein in 

vivo also requires partial unfolding of the native state [Calloni et al., 2005].  

In a recent study, by expressing wild-type HypF-N and 21 folding-incompetent 

mutants in E. coli, a significant inverse correlation was found between the solubility of 

the variants and their intrinsic propensity to form amyloid fibrils, suggesting that the 

physicochemical parameters (such as hydrophobicity, β-sheet propensity and charge) 

recognized to affect amyloid formation by fully or partially unfolded proteins in vitro 

are generally valid for situations in vivo [Winkelmann et al. 2010]. 

 

1.5.4 Cytotoxicity of oligomeric species formed by HypF-N 

As described above, the oligomeric species forming during the aggregation pathway of 

HypF-N share structural properties with the diseases related ones [Chiti et al., 2001; 

Relini et al., 2004; Marcon et al., 2005; Campioni et al., 2008]. Moreover, they are 

cytotoxic to cell cultures and animal models in the same manner of the pathology-

related pre-fibrillar aggregates [Bucciantini et al., 2002; Cecchi et al., 2005; Baglioni et 

al., 2006; Campioni et al., 2010; Zampagni et al., 2011]. 

Pre-fibrillar aggregates formed in 30% TFE have been found to reduce the viability 

of cell cultures, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) reduction inhibition assay (Figure 1.10), a generic indicator of cellular stress, 

and the trypan blue internalization assay [Bucciantini et al., 2002]. The levels of cell 

impairment caused by HypF-N oligomers were very similar to those reported for the 

disease-associated proteins, such as α-synuclein, Aβ1–42 and transthyretin [Bucciantini et 
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al. 2002]. In addition, the toxic effects were not observed when the cells were exposed 

to HypF-N aggregates incubated for several days in the aggregating condition and 

containing fibrillar species (Figure 1.10). 

HypF-N oligomers were found to cause an increase of reactive oxygen species 

(ROS) and free Ca
2+

 levels inside the cells, phenomena that can lead to apoptosis or 

necrosis, as shown in several studies [Bucciantini et al., 2004; Bucciantini et al., 2005; 

Cecchi et al., 2005]. These events are triggered by the ability of oligomers to interact 

and disrupt the cell membranes; indeed, it has been found that HypF-N formed in 30% 

TFE were able to permeabilize synthetic membranes [Relini et al., 2004; Canale et al., 

2006] and even plasma membranes of cultured cells [Bucciantini et al., 2004; 

Bucciantini et al., 2005; Cecchi et al., 2005]. An important mechanism in determining 

membrane permeabilization and calcium influx was identified in the activation of the 

glutamatergic channels, NMDA and AMPA receptors, following their interaction with 

HypF-N oligomers, with unspecific membrane permeabilization occurring later 

[Pellistri et al., 2008]. Noteworthy, a loss of cholinergic neurons was observed when 

Figure 1.10. Differential 
cytotoxicity of protofibrillar and 
fibrillar HypF-N aggregates. (a) Cell 
viability was checked by the MTT 
inhibition reduction test, after 
addition to the cell medium of 
either 20 µM native protein (●) or 
different concentrations of 
aggregates formed at different 
times of incubation at pH 5.5 in the 
presence of 30% (v/v) TFE: 20 µM 
(●), 5 µM (●), 1 µM (●), 0.2 µM (●) 
and 0.04 µM (●). Values are relative 
to untreated cells. Figure adapted 
from Bucciantini et al., 2002. 
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HypF-N pre-fibrillar aggregates were injected into rat brains [Baglioni et al., 2006], 

indicating that these species are toxic also in higher organisms. 

The recent finding that different types of HypF-N oligomers have different abilities 

to cause cellular impairment, with one species being nontoxic, has provided a unique 

opportunity to study and compare the structure and activity of toxic and nontoxic 

oligomeric aggregates [Campioni et al., 2010]. The toxic HypF-N oligomeric species 

were formed in 12% TFE and termed type A oligomers, whereas the nontoxic species 

were generated at low pH and called type B.  

Type A oligomers were found to decrease cellular viability in human neuroblastoma 

cells (SH-SY5Y) and mouse endothelial cells (Hend), as detected by MTT test, whereas 

type B were benign to these cells [Campioni et al., 2010]. Furthermore, type A 

oligomers penetrated the plasma membrane, induced a calcium influx into the cytosol, 

increased intracellular ROS production and lipid peroxidation, resulting in the activation 

of the apoptotic pathway, as indicated by the substantial increase of caspase-3 level and 

by the staining with the apoptotic marker Hoechst 33342. By contrast, type B oligomers 

were unable to cause such effects [Campioni et al., 2010; Zampagni et al., 2011]. 

Lately, it has been observed that type A oligomers, unlike type B, colocalize with post-

synaptic densities in primary rat hippocampal neurons, induce impairment of long term 

potentiation in rat hippocampal slices and impair spatial learning of rats in the Morris 

Water Maze test, mimicking the synaptotoxicity of Aβ aggregates [Tatini et al., 

unpublished]. 

As described above, the interaction of the oligomers with cell membranes is a 

primary event resulting in cytotoxicity and, therefore, the prevention of such interaction 

mediated by the shielding of glycosaminoglycans bound to cell membranes [Saridaki et 

al., 2012] results in a loss of toxicity of type A oligomers. 
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Further investigations have shown that oligomer cytotoxicity depends on the 

contributions of the physicochemical properties of both the aggregates and the cell 

membrane with which they interact [Evangelisti et al., 2012]. Indeed, by increasing the 

content of cholesterol and decreasing the one of ganglioside GM1 in cell membrane, 

type A oligomers become essentially benign, whereas type B oligomers become toxic 

[Evangelisti et al., 2012]. 

 

1.5.5 Structural determinants for HypF-N oligomer cytotoxicity 

The different biological properties of HypF-N type A and type B oligomers described in 

the previous section were found to arise from differences in the structure of the two 

types of aggregates [Campioni et al., 2010]. Type A oligomers were formed by 

incubating HypF-N for 4 hours in 50 mM acetate buffer, 12% (v/v) TFE, 2 mM DTT, 

pH 5.5 (condition A), whereas type B aggregates are generated by incubating the 

protein for 4 hours in a solution of 20 mM trifluoroacetic acid (TFA), 330 mM NaCl, 

pH 1.7 (condition B).  

The two types of oligomers appeared to be indistinguishable measuring their ability 

to bind to ThT and analysing their morphology through AFM [Campioni et al., 2010]. 

In order to shed light on the structural characteristics responsible for the different 

behavior of the oligomers, 18 HypF-N variants carrying a single cysteine residue 

located at different positions along the polypeptide chain were created and labelled with 

the fluorescent probe N-(1-pyrene)maleimide (PM). PM can be used to obtain 

information on the proximity between two labelled residues located on different protein 

molecules, because of its property to originate excited-state dimers, also called excimers 

[Betcher-Lange and Lehrer, 1978; Hammarström et al., 1997; Hammarström et al., 

1999; Krishnan and Lindquist, 2005]. Excimers form when the distance between two 
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PM molecules is less than 10 Å; as a consequence, in the fluorescence emission 

spectrum, an excimer peak, indicated by the appearance of broad band at level of the 

440-470 nm region, is observed. Conversely, when the probes are distant, such a band is 

absent [Birks, 1967; Förster, 1969; Betcher-Lange and Lehrer, 1978; Hammarström et 

al., 1997; Hammarström et al., 1999; Krishnan and Lindquist, 2005].  

 

 

 

 

 

 

 

Figure 1.11. Structural differences between toxic and nontoxic oligomeric aggregates of HypF-N. 
(a) Excimer ratio of PM (related to the degree of structure formation) versus number of labeled 
residue for toxic (red lines) and nontoxic (blue lines) oligomers of HypF-N. (b) II/IIII ratio of pyrene 
(a correlate of the degree of solvent exposure) versus number of labeled residue for toxic (red lines) 
and nontoxic (blue lines) oligomers. (c) Hydropathy profile of the HypF-N sequence. The three 
panels show that in nontoxic aggregates, unlike the toxic aggregates, the three hydrophobic regions 
of the sequence are structured and buried inside the oligomers. Image adapted from Campioni et al., 
2010. 
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Each labelled mutant was then allowed to aggregate in condition A and in condition 

B and the PM fluorescence emission spectra of the resulting samples were acquired. 

From these spectra, the ratio of the excimer to monomer fluorescence intensities (FI440 

/FI375) was obtained for each labelled position (Figure 1.11). This approach revealed 

that the regions involved in the formation of the structural core of the aggregates are the 

same in the two types of oligomers and correspond to the three major hydrophobic 

regions of the HypF-N sequence (Figure 1.11). However, the excimer ratio profile 

resulting from type B oligomers was characterized by higher values with respect to the 

ones obtained for type A aggregates, indicating a more compact structure and a tight 

packing of the type B aggregates with respect to type A oligomers.  

In addition, type A aggregates were found to have a stronger affinity for the 

fluorescent probe ANS than the type B oligomers, suggesting that the degree of 

exposure to the solvent of hydrophobic surface is greater in the toxic species. In 

conclusion, the ability of the oligomers to cause cellular dysfunction was linked to the 

level of structural flexibility and solvent-exposure of the hydrophobic residues of the 

oligomers. These structural properties allow the oligomeric species to interact and 

damage cell membranes, leading ultimately to cell death [Campioni et al., 2010].  

 

1.6 Aim of the thesis 

For the experimental work presented in this thesis we took advantage of the ability of 

HypF-N to form oligomeric intermediates with structural and functional properties that 

resemble those associated with protein deposition diseases and that are, in addition, 

relatively easy to form, stable, amenable to structural analysis and producible in two 

forms, toxic and nontoxic. In the first chapter dedicated to the results (Chapter 2), we 

show that chaperones, such as αB-crystallin, Hsp70, α2-macroglobulin, clusterin and 
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haptoglobin, are able to neutralize the toxicity of the oligomers and that such behavior 

derives from their ability to interact with the oligomers and promote their further 

assembly, in the absence of any disaggregation or structural reorganization of the 

aggregates. In addition to showing a novel mechanism used by chaperones to control 

protein homeostasis and to suggesting strategies against protein depositions diseases, 

these results put forward oligomer size as a structural determinant of protein oligomer 

toxicity.  

In Chapter 3 we show that an increase of the surface hydrophobicity of the 

oligomers can have the unexpected result of lowering the toxicity of the aggregates and 

that this phenomenon arises from the ability of the hydrophobic surface to promote the 

formation of larger assemblies, resembling the mechanism used by molecular 

chaperones and described in Chapter 2. In addition, the data confirm the essential role of 

the size in determining the oligomeric ability of damaging cells. Most importantly, we 

illustrate that the level of toxicity of the aggregates is explicable on the basis of 

superficial hydrophobicity and size, only if these two parameters are considered 

together as forces that act and cooperate simultaneously. 

In Chapter 4 we present results on the ability of TTR to suppress the toxicity of 

HypF-N oligomers by binding and inducing the formation of larger clusters of 

aggregates, similarly to well established chaperones. The results confirm the efficacy of 

such mechanism detoxifier of misfolded oligomers and underline again the dimension 

as structural parameter affecting oligomer toxicity. Moreover, the chaperone-like 

activity has to be enrolled among the functions of TTR. 

Finally, in Chapter 5 results on the ability of HypF-N oligomers to trigger a pro-

inflammatory response will be presented. Interestingly, the nontoxic species were found 

to be stronger inducers of inflammation with respect to the toxic oligomers. In addition, 
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the nontoxic oligomers and the assemblies neutralized by chaperones exert the ability to 

induce inflammation without affecting cellular viability. These first results, although 

they need to be further proved, suggest that the inflammation process should not be 

underestimated in approaching to degenerative diseases. 
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Chapter 2 

MOLECULAR MECHANISMS USED BY CHAPERONES TO REDUCE THE 

TOXICITY OF ABERRANT PROTEIN OLIGOMERS 

2.1 Introduction 

The ability of living systems to maintain their peptides and proteins in soluble, native 

and functional states is the result of a wide variety of physicochemical and 

conformational characteristics of these macromolecules that have been selected by 

evolution [Dobson, 2003; Monsellier and Chiti, 2007] and it is also attributable to an 

array of dedicated biological mechanisms that together ensure protein homeostasis 

[Balch et al., 2008; Powers et al., 2009], as described in section 1.3. The cellular 

machinery dedicated to the maintenance of proteostasis includes ribosomes, molecular 

chaperones, the ubiquitin-proteasome system, the heat shock response, the unfolded 

protein response, endoplasmic reticulum associated degradation, autophagy, etc. 

[Voellmy and Boellmann, 2007; Kapoor and Sanyal, 2009; Kubota, 2009; Hoseki et al., 

2010; Bejarano and Cuervo, 2010]. The failure of this machinery to function effectively 

causes a wide variety of pathological conditions, included those associated with the 

misfolding of proteins that can lead to aggregate accumulation both in the cytosol and in 

the extracellular space [Selkoe, 2003; Chiti and Dobson, 2006]. 

Molecular chaperones are proteins that play a central role in the avoidance of 

protein misfolding and aggregation [Bejarano and Cuervo, 2010; Morimoto, 2008; 

Young et al., 2004; Weibezahn et al., 2005; Hartl et al., 2011]. Most known chaperones 

are intracellular and act in the cytosol or in specific cellular compartments such as the 

ER or the mitochondria [Young et al., 2004; Bukau et al., 2006], but some chaperones 
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are secreted and are collectively referred to as extracellular chaperones [Wilson et al., 

2008]. The variety of molecular chaperones are known to have a range of different 

functions, including assisting in the folding process of newly synthesised proteins or 

temporarily misfolded proteins [Young et al., 2004], inhibiting the aggregation of 

unfolded, partially folded and misfolded proteins [Broadley et al., 2009], causing the 

disaggregation of small aberrant protein aggragates [Weibezahn et al., 2005] and 

mediating the degradation of misfolded proteins [Pickart and Cohen, 2004]. However, 

little is known about about their ability to suppress the toxicity of aberrant protein 

oligomers, which are considered the major deleterious species in protein misfolding 

diseases. 

In this study we have examined the effects of five chaperones (human αB-crystallin 

and Hsp70 as intracellular chaperones, and human clusterin, haptoglobin and α2-

macroglobulin as extracellular chaperones) on the toxicity of extracellularly added 

oligomers formed by three different peptides/proteins A42, IAPP and HypF-N. We 

have focused our attention on small oligomers as these are highly toxic and thought to 

be the major deleterious species in a range of protein misfolding diseases [Chiti and 

Dobson, 2006; Selkoe, 2008]. We show that all five chaperones suppress completely, or 

decrease markedly, the toxicity of all oligomers examined here, with significant effects 

observed even at molar ratios of protein:chaperone as low as 500:1. In the light of these 

observations we have carried out experiments to elucidate whether the chaperones cause 

a structural modification of the oligomers at the single residue level, their gross 

disaggregation or their further assembly; we will show that the chaperones bind to the 

oligomers and promote their clustering into larger aggregates, providing an explanation 

to why they are efficient at such low concentrations. 
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2.2 Results 

The cellular biology experiments here described were acquired in collaboration with the 

group of Prof. Cristina Cecchi of the University of Florence. AFM measurements were 

performed by the group of Prof. Annalisa Relini of the University of Genoa. This work 

have been published in June 2012 by Proceedings of the National Academy of Sciences 

of the United States of America [Mannini et al., 2012]. 

 

2.2.1 Chaperones suppress the toxicity of oligomers formed by different proteins  

Toxic oligomers were generated from three different peptides/proteins, A42, IAPP and 

HypF-N, as described previously [Lambert et al., 2001; Cecchi et al., 2008; Campioni 

et al., 2010]. They were incubated in the cell culture medium for 1 hour and then added 

to SH-SY5Y cultured cells, at 12 µM monomer concentration. All three types of 

oligomers were found to decrease the MTT reduction of the SH-SY5Y cells by 30-40%, 

demonstrating their toxic nature (Figure 2.1A-C). They were then subjected to the same 

procedure but incubated for 1 hour in the cell culture medium containing either αB-

crystallin, Hsp70, clusterin, haptoglobin or α2-macroglobulin prior to addition to SH-

SY5Y cells (protein:chaperone molar ratios were 5:1, 5:1, 10:1, 15.1 and 100:1, 

respectively). In each case the cells were found to reduce MTT to levels similar to 

untreated cells or to cells treated with the native proteins (Figure 2.1A-C). By contrast, 

when the three types of oligomers were incubated in cell culture medium for 1 hour 

with hen egg white lysozyme (HEWL) or bovine serum albumin (BSA), proteins that 

are not expected to possess chaperone properties, the oligomers were found to maintain 

their toxicity (Figure 2.1A-C). 
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These results therefore indicate that all the five chaperones examined here can 

suppress or decrease markedly the toxicity of oligomers formed by three different 

peptides and proteins, with such generic suppression being specific for chaperones 

relative to other proteins. 

 

 

 

 

Figure 2.1. Suppression of protein oligomer toxicity by chaperones. Preformed oligomers of 
HypF-N (A), Aβ42 (B) and IAPP (C) were resuspended in the cell culture medium, incubated for 1 
hour at a corresponding monomer concentration of 12 µM in the absence or presence of the 
indicated chaperones and control proteins (protein:chaperone molar ratios were 5:1, 5:1, 10:1, 
15:1 and 100:1, respectively; protein:HEWL and protein:BSA molar ratio was 5:1) and then added 
to SH-SY5Y cells. Cell viability was expressed as percent of MTT reduction in treated cells with 
respect to untreated cells (taken as 100%). The values shown are means  SD of three 
independent experiments carried out in triplicate. An asterisk indicates a significant difference (p 
 0.01) relative to the experiment without chaperones. 
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2.2.2 Chaperones reduce protein oligomer toxicity even at very low concentration  

In order to investigate the means by which chaperones suppress the toxicity of protein 

oligomers and the resulting effects on the cells, we chose to focus on oligomers formed 

by one specific protein, HypF-N. Under different experimental conditions, HypF-N 

aggregates into toxic (type A) or nontoxic (type B) oligomeric forms, which are 

morphologically similar and bind ThT to similar levels, making it possible to have a 

powerful control system [Campioni et al., 2010]. In addition, differences in structure of 

toxic and nontoxic oligomers have been detected by means of fluorescence spectra of 

PM-labelled oligomers [Campioni et al., 2010], providing a valuable spectroscopic 

method for probing the conformational changes experienced by the oligomers following 

their exposure to chaperones (see below). 

The experiments described above for toxic (type A) HypF-N oligomers were 

repeated by varying the concentrations of each of the five chaperones in the 1 hour pre-

incubation solution, while maintaining constant the HypF-N concentration. The results 

show that the ability of each of the five chaperones to suppress the toxicity of HypF-N 

oligomers decreased with the chaperone concentration (Figure 2.2). However, all 

chaperones had significant effects even at HypF-N:chaperone molar ratios of 500:1, 

becoming ineffective only at molar ratios of 2000:1 (Figure 2.2). Given the size of 

HypF-N oligomers observed with atomic force microscopy (2-6 nm) it can be estimated 

that HypF-N oligomers do not contain more than 10-20 molecules [Campioni et al., 

2010], showing that chaperones are able to suppress toxicity at greatly sub-

stoichiometric concentrations, that is with far less than one chaperone molecule per 

oligomer. 
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2.2.3 Chaperones prevent the interaction of oligomers with cellular membranes  

Type A HypF-N oligomers have been shown to impair cell membrane and cause an 

influx of Ca
2+

 ions from the extracellular space into the cytosol, which triggers a 

complex cellular cascade eventually leading to apoptosis [Zampagni et al., 2011]. We 

therefore carried out experiments to identify the cellular mechanism by which the 

chaperones studied here are able to suppress oligomer-mediated toxicity. Pre-incubation 

of type A oligomers with each of the five chaperones in the culture medium for 1 hour, 

prior to addition to the cells, was found to inhibit the increase of intracellular Ca
2+

 

levels caused by the oligomers, with the degree of inhibition increasing with time of 

pre-incubation (Figure 2.3). 

 

 

Figure 2.2. Suppression of HypF-N oligomer toxicity by chaperones at different 
protein:chaperone molar ratios. HypF-N oligomers were incubated for 1 hour in the absence (о) 
or presence of the indicated chaperones and at the indicated HypF-N:chaperone molar ratio and 
then added to SH-SY5Y cells. The scale on the x axis is logarithmic. 
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Figure 2.3. Representative confocal scanning microscope images showing intracellular Ca2+ levels 
in SH-SY5Y cells. Preformed oligomers of HypF-N were resuspended in the cell culture medium, 
incubated in the absence or presence of the indicated chaperones for the indicated time lengths 
and then added to SH-SY5Y cells for 1 hour. The figure also shows top panel images obtained with 
untreated cells, cells exposed for 1 hour to the native protein, nontoxic HypF-N oligomers and 
toxic oligomers. The kinetic plots show the mean fluorescence per cell associated with 
intracellular Ca2+ versus time elapsed after oligomer pre-incubation with each chaperone. In all 
images the green fluorescence arises from the intracellular Fluo3 probe bound to Ca2+. Ca2+ influx 
from the extracellular medium to the cytosol mediated by the oligomers was inhibited by the 5 
chaperones with an effect dependent on the time of pre-incubation of the oligomers with the 
chaperones. 
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The cellular dysfunction generated by the toxic oligomers is also manifested as 

increases in the levels of intracellular ROS and in caspase-3 activity, and as a release of 

intracellular calcein from cells, with all these events following the Ca
2+

 influx 

[Zampagni et al., 2011]. Pre-incubation of preformed type A oligomers in the culture 

medium for 1 hour with each of the five chaperones, prior to addition to the cells, was 

able to abolish to a very substantial degree all the effects generated by the oligomers, 

again with the extent of inhibition again being dependent on the time of pre-incubation 

(data not shown). 

It is therefore evident that all five chaperones examined here can inhibit the initial 

biochemical events induced by toxic type A HypF-N oligomers, namely the influx of 

Ca
2+

, thus eliminating the occurrence of later effects, manifested as oxidative stress, 

membrane leakage and apoptosis. In addition, the observed dependence of the degree of 

protection on the time of pre-incubation indicates that the chaperones generically reduce 

toxicity by interacting with the oligomers, rather than through a separate protective 

pathway mediated by direct interaction of the chaperones with the cells. 

Overall, therefore, these findings reveal that the deleterious effects of adding toxic 

HypF-N oligomers to the extracellular medium of the cells can be abolished by 

chaperones only if the chaperone-oligomer interactions occur at the early stages of 

incubation, before the oligomers are able to interact with the cell membranes. 

 

2.2.4 Evaluation of chaperone-promoted oligomer endocytosis 

It is well known that extracellular chaperones interact with misfolded proteins and 

favour their clearance via endocytosis mediated by the lipoprotein receptor-related 

proteins 1 and 2 (LRP-1 and LRP-2) or CD163 [Hammad et al., 1997; Fabrizi et al., 
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2001; Kristiansen et al., 2001]. In principle, therefore, it is possible that extracellular 

chaperones suppress the toxicity of the HypF-N oligomers via interaction with them, 

endocytosis and degradation. This possibility was however excluded in our system, as 

shown by confocal microscopy and anti-HypF-N antibodies to monitor the transfer of 

HypF-N from the extracellular space to the cytosol (Figure 2.4). Indeed, we have found 

that preformed toxic oligomers of HypF-N, unlike the native protein and nontoxic 

oligomers, are internalised following pre-incubation for 1 hour in the absence of 

chaperones. The images show that the green fluorescence arising from anti-HypF-N 

antibodies appears inside the cells (coloured red) only upon treatment with the toxic 

oligomers (Figure 2.4A). Analysis of the confocal images at median planes indicated 

that many of the aggregates are present inside the cells, rather than outside or attached 

to the membrane (Figure 2.4B). 

When the experiment was repeated by pre-incubating the type A oligomers in the 

presence of each chaperone under the same conditions, little or no HypF-N entry was 

observed. The oligomers are predominantly detected, similarly to images obtained using 

nontoxic oligomers in the absence of chaperones, outside the cells or attached to the 

membrane but not within the cells (Figure 2.4A), as confirmed by analysing the 

confocal images at median planes parallel to the coverslip (Figure 2.4B). These 

observations show that the chaperones inhibit oligomer internalisation, at least under the 

conditions used here, rather than stimulating their intracellular degradation following 

endocytosis. 
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2.2.5 Chaperones do not dissolve preformed oligomers 

Three possible non-exclusive molecular mechanisms can be hypothesised to explain 

how chaperones suppress the toxicity of the oligomers: (i) the chaperones disassemble 

preformed oligomers; (ii) they bind to oligomers and promote their assembly into larger 

and innocuous aggregates, (iii) they catalyse a structural reorganisation of the toxic 

oligomers into nontoxic forms.  

To investigate whether chaperones disaggregate oligomers, we took advantage of 

the ability of the HypF-N oligomers to bind to ThT and increase its fluorescence 

[Campioni et al., 2010]. The presence of native HypF-N or free chaperones causes at 

Figure 2.4. Representative confocal microscopy images showing the internalisation of HypF-N 
oligomers within SH-SY5Y cells. Preformed oligomers of HypF-N were resuspended in the cell 
culture medium, incubated for 1 hour in the absence or presence of αB-crystallin, Hsp70, clusterin, 
haptoglobin or α2-macroglobulin and then added to SH-SY5Y cells. After plasma membrane 
permeabilisation with a 3% glycerol solution, counterstaining was performed with Alexa Fluor 
633-conjugated wheat germ agglutinin to detect the plasma membranes (red) and with 1:1000 
diluted rabbit polyclonal anti-HypF-N antibodies and 1:1000 diluted Alexa Fluor 488-conjugated 
anti-rabbit secondary antibodies (green) to detect the oligomers. (B) Quantification of the green 
fluorescence arising from HypF-N oligomers inside the cells (median planes). The values reported 
are means ± S.D. of three independent experiments. An asterisk indicates a significant difference (p 
 0.01) relative to the experiment with oligomer and without chaperones.  
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most only negligible increases in ThT fluorescence (Figure 2.5). By contrast, HypF-N 

oligomers incubated for 1 hour in a phosphate buffer at neutral pH, cause a 6/7-fold 

increase of ThT fluorescence, and pre-incubation of the oligomers in the same buffer for 

1 hour with each of the chaperones did not change the observed ThT fluorescence 

emission intensity (Figure 2.5). These results indicates that the chaperones do not 

suppress the toxicity of the oligomers by promoting their disaggregation.  

 

 

 

 

 

Figure 2.5. Chaperones do not disaggregate HypF-N oligomers. ThT fluorescence at 485nm 
(excitation 440nm) in the presence of native HypF-N, αB-crystallin, α2-macroglobulin, clusterin, 
haptoglobin, Hsp70, HypF-N oligomers after 1 hour incubation in phosphate buffer in the 
absence or in the presence of each chaperone. The ratio between the ThT fluorescence in the 
presence (F) and absence (F0) of proteins is reported; data are means ± SD of three independent 
experiments.  
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2.2.6 Chaperones bind to and assemble the oligomers into larger species 

To investigate whether chaperones bind to the oligomers and promote their further 

assembly, we first used AFM. Discrete oligomers with a height of 2–6 nm were 

observed by AFM in the absence of chaperones (Figure 2.6A), but significantly larger 

aggregates are evident with αB-crystallin (Figure 2.6B) or α2-macroglobulin (Figure 

2.6C), used here as representative chaperones. On higher magnification of these images, 

the aggregates appear as clusters of oligomers (Figure 2.6D). In some cases, more 

complex structures are observed, consisting of very large aggregates of irregular shape 

with typical heights of a few tens of nanometers, often surrounded by clusters of more 

distinct oligomers. Large assemblies are not observed in samples containing only 

chaperones (Figure 2.6E,F).  

The AFM data show that chaperones promote the assembly of the oligomers into 

larger species, but do not provide information on whether or not the chaperones remain 

bound to them. The oligomers can also be observed with confocal microscopy as, unlike 

free chaperones, they adhere to the glass coverslips (Figure 2.6G). Images obtained 

using oligomers pre-incubated for 1 hour with αB-crystallin or α2-macroglobulin show 

larger aggregates and co-localisation of the chaperones with the large oligomer clusters 

(Figure 2.6H,I). Although this technique has a resolution that enables only visualisation 

of clusters of oligomers or areas enriched with oligomers (not individual oligomers), it 

shows that the chaperones are bound to the large clusters of oligomers. 
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Figure 2.6. Assembly of oligomers induced by chaperones. (A-C) AFM images (left, height data; 
right, amplitude data) showing HypF-N oligomers pre-incubated for 1h in phosphate buffer 
without (A) or with B-crystallin (B) or α2-macroglobulin (C); control images of α2-
macroglobulin (E) and B-crystallin (F) alone; scan size, 630 nm. (D) Enlargement of a 250x250 
nm portion of (B). Z range: 10 nm (A), 13 nm (B, D), 25 nm (C), 6 nm (E), 10 nm (F). (G) 
Representative confocal microscope images showing HypF-N oligomers without chaperones and 
treated with anti- α2-macroglobulin (red), anti-B-crystallin (red) or anti-HypF-N (green) 
antibodies, as indicated. The absence of red fluorescence indicates the absence of cross-reaction. 
(H,I) Images showing HypF-N oligomers incubated with B-crystallin (H) or α2-macroglobulin 
(I) and treated with the same three antibodies, as indicated. The co-localization of oligomers and 
chaperones is shown in the merge images (yellow). 
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The binding between oligomers and the chaperones αB-crystallin or α2-

macroglobulin was also investigated through immuno-dot blot assays. Different 

quantities of αB-crystallin, α2-macroglobulin, native HypF-N, or lysozyme were bound 

to nitrocellulose membranes; the membranes were then saturated with milk, treated with 

preformed type A oligomers and then with rabbit polyclonal anti-HypF-N antibodies 

and anti-rabbit secondary antibodies conjugated with horseradish peroxidase. Dose-

dependent binding of oligomers was detected to immobilized chaperones but not to 

immobilized lysozyme (Figure 2.7A). As expected, strong binding of anti-HypF-N 

antibodies to immobilized native HypF-N treated with HypF-N oligomers was detected. 

Dot blots of membranes treated with PBS, rather than preformed oligomers, were not 

detected, confirming that antibody binding is specific for HypF-N (Figure 2.7B). 

 

 

 

 

Figure 2.7. Binding of 
chaperones to HypF-N oligomers 
detected by immuno-dot blot 
assay. Membranes with different 
quantities of immobilized B-
crystallin or α2-macroglobulin 
(0.5, 1, 2.5, 5 µg), lysozyme (1, 5 
µg) and HypF-N (1 µg) were 
treated with 50 µg/ml 
preformed HypF-N oligomers (A) 
or PBS (B). Anti-HypF-N 
antibody treatment reveals the 
presence of the oligomers bound 
to the chaperones. 
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In another experiment, type A HypF-N oligomers were incubated in the presence of 

each chaperone for 1 hour and the resulting mixture was centrifuged to separate the 

soluble (supernatant, SN) and insoluble (pellet, P) fractions. These fractions were then 

analysed separately by SDS-PAGE. In the control samples containing oligomers or αB-

crystallin alone, the HypF-N monomer (MW ~10.5 kDa) and the αB-crystallin 

monomer (MW ~20 kDa) were found only in the P and SN fractions, respectively 

(Figure 2.8A). In the sample containing both species, the HypF-N band was found only 

in the P fraction, whereas αB-crystallin was found to partition between the P and SN 

fractions (Figure 2.8A). This finding indicates that a fraction of αB-crystallin is bound 

to the oligomers. Moreover, the αB-crystallin found in the P fraction remains tightly 

associated with the oligomers after re-suspension of the pellet and further incubation 

(Figure 2.9). Similar results were obtained using α2-macroglobulin (Figure 2.8B). The 

results, therefore, confirm that binding occurs between the oligomers and all five 

chaperones studied here, making it possible to pellet the otherwise soluble chaperones 

through centrifugation. 

Fluorescence spectra of the SN fractions collected in each experiment were also 

acquired (Figure 2.8C,D). The SNs obtained from the samples where both oligomers 

and chaperones were present yielded fluorescence spectra that were less intense than the 

corresponding samples in which only the chaperone was present, confirming that a 

fraction of the chaperone population had been separated through centrifugation. 
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Figure 2.8. Binding of chaperones to HypF-N oligomers. (A) SDS-PAGE analysis of the P and SN 
fractions of samples containing HypF-N oligomers (lanes 2,3), B-crystallin (lanes 4,5) and oligomers 
with B-crystallin (lanes 6,7). The bands at ~10 and 20 kDa indicate monomeric HypF-N and B-
crystallin, respectively. The HypF-N concentration was 48 µM. (B) SDS-PAGE analysis for α2-
macroglobulin; conditions and lanes as in (A). The α2-macroglobulin bands range from ~ 60 kDa to ~ 
160 kDa. (C) Intrinsic fluorescence spectra of the SN fractions of samples containing HypF-N oligomers 
(dotted line), B-crystallin (solid line) and oligomers with B-crystallin (dashed line). The spectrum of 
HypF-N oligomers has been subtracted from that of chaperone plus oligomers to clear the contribution 
of the former. All spectra are the means of three experiments. (D) Intrinsic fluorescence analysis of α2-
macroglobulin. Conditions and spectra as in (C). 

 

Figure 2.9. The binding between B-crystallin and 
HypF-N oligomers is stable. Preformed HypF-N 
oligomers were incubated for 1 hour with B-
crystallin. The resulting mixture was then 
centrifuged and the SN and P fractions analysed 
with SDS-PAGE (lanes 2,3). A fraction of B-
crystallin remains in the SN, whereas a fraction is in 
P (lanes 2,3), due to the binding to the HypF-N 
oligomers. A P fraction of a similarly prepared 
sample was resuspended in phosphate buffer (pH 
7.0) as before, incubated for 1 hour, centrifuged 
and then analysed with SDS-PAGE (lanes 4,5). All 
the chaperone is found in the P fraction, while the 
SN fraction is empty. This result indicated that the 
binding between B-crystallin and HypF-N 
oligomers was stable because of the same amount 
of chaperone in the P fraction after washing it. The 
bands at ~ 10 and 22 kDa indicate HypF-N and B-
crystallin monomers, respectively. 
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Similar experiments of SDS-PAGE (Figure 2.10A,B,C) and intrinsic fluorescence 

measurements (Figure 2.10D,E,F) were acquired by treating the oligomers with Hsp70 

(Figure 2.10A,D), clusterin (Figure 2.10B,E) and haptoglobin (Figure 2.10C,F). The 

results obtained indicate that a binding occurs also between these chaperones and HypF-

N oligomers.  

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Binding of Hsp70 (A,D), clusterin (B,E) and haptoglobin (C,F) to HypF-N oligomers. (A) 
SDS-PAGE of the insoluble (P) and soluble (SN) fractions obtained from samples containing 
preformed HypF-N type A oligomers (lanes 2, 3), Hsp70 (lanes 4, 5) and preformed type A 
oligomers treated for 1 hour with Hsp70 (lanes 6, 7). HypF-N concentration was 48 µM (monomer 
concentration). The bands at ~ 10 and 70 kDa indicate HypF-N and Hsp70 respectively. (B) SDS-
PAGE analysis for clusterin; conditions and lanes as in (A). The bands at ~ 10 kDa and bands 
ranging from 36 to 66 kDa indicate HypF-N and clusterin, respectively. Under reducing conditions, 
the α and β subunits of Clu co-migrate to about 36 kDa and lesser amounts of unprocessed (single 
chain) and variably glycosylated clusterin are also visible at higher molecular weights. (C) SDS-
PAGE analysis for haptoglobin; conditions and lanes as in (A). The bands at ~ 10 kDa and bands 
ranging from 14 to 70 kDa indicate HypF-N and haptoglobin, respectively. Haptoglobin generates a 
wide range of bands due to its varied polymeric structure [Hooper and Peacock, (1976)]. (D) 
Intrinsic fluorescence spectra of the SN fractions obtained after centrifugation of samples 
containing preformed HypF-N type A oligomers (dotted line), Hsp70 (solid line) and HypF-N type A 
oligomers + Hsp70 (dashed line). The spectrum of HypF-N oligomers has been subtracted from that 
of Hsp70 + HypF-N oligomers to eliminate its contribution. All spectra are the means of three 
independent experiments. (E) Intrinsic fluorescence analysis of clusterin. Conditions and spectra as 
in (D). (F) Intrinsic fluorescence analysis of haptoglobin. Conditions and spectra as in (D). 
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Overall, the AFM data indicate that chaperones promote the assembly of the 

oligomers into larger species, whereas the other analyses indicate that the chaperones 

are bound to the assembled oligomers. The finding prompted by SDS-PAGE and 

intrinsic fluorescence that a small fraction of chaperones is bound to the oligomers, 

suggests that chaperones act as nucleation sites for the assembly of oligomers into larger 

species and explains why they are effective in suppressing their toxicity even at highly 

sub-stoichiometric concentrations. 

 

2.2.7 The molecular structure of the oligomers is preserved in the large complexes 

with chaperones  

As a next step we set out to assess if chaperones promote a structural reorganisation of 

the oligomers at the molecular level, in addition to inducing an assembly of the 

oligomers. First, examination with Fourier transform infra-red (FTIR) spectroscopy 

 

Figure 2.11. Lack of secondary structure reorganization of HypF-N oligomers following 
treatment with chaperones. FTIR amide I spectra of HypF-N oligomers after incubation without 
(black) and with αB-crystallin (red) or α2-macroglobulin (purple). In the table on the right the 
results of the curve fitting are reported. 
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indicates that no secondary changes appear to have occurred following the incubation 

for 1 hour of the oligomers with either B-crystallin or 2-macroglobulin, excluding 

significant changes of secondary structure (Figure 2.11). 

To address possible changes in the packing of the hydrophobic groups, we took 

advantage of the ability to discriminate between toxic and nontoxic HypF-N oligomers 

through the measurement of the fluorescence properties of oligomers labelled with PM 

at different positions in the sequence. This method consists in creating HypF-N variants 

containing a single cysteine at different positions along the sequence, label them with 

PM and allow the labelled mutants to aggregate. When two pyrene molecules are close 

to each other (within 10 Å of distance), excited state dimers called excimers form and 

can be detected because they give rise to the appearance of a peak in the emission 

spectrum of pyrene centred at 440-470 [Birks et al., 1967; Hammarström et al., 1999; 

Krishnan and Lindquist, 2005]. Monitoring the intensity of the excimer band can be 

used to obtain information on the spatial distance between labelled positions in the 

oligomers. It has been shown that toxic and non toxic HypF-N oligomers can be 

discriminated through the measurement of their PM emission spectra [Campioni et al., 

2010]. In particular, the fluorescence spectra of nontoxic oligomers labelled with PM at 

certain positions within the hydrophobic regions of the HypF-N sequence show a strong 

excimer band that is, conversely, very weak in the corresponding spectra obtained with 

PM-labelled toxic oligomers [Campioni et al., 2010]. 
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The three mutants containing a single cysteine residue at positions 25, 55 and 87, all 

located in the major hydrophobic regions, were therefore labelled with PM, allowed to 

aggregate to form type A or type B oligomers under their respective conditions, and 

then transferred to phosphate buffer at pH 7.0 for 1 hour in either the presence or the 

Figure 2.12. Lack of structural reorganization of HypF-N oligomers following treatment with 
chaperones. Fluorescence emission spectra of HypF-N oligomers labelled with PM at positions 25 
(top graphs), 55 (middle graphs) and 87 (bottom graphs). The HypF-N concentration was 12 µM. 
The spectra refer to oligomers incubated in 20 mM phosphate buffer, pH 7.0 without (black) and 
with B-crystallin (red) or 2-macroglobulin (purple). For comparison, the corresponding spectra 
of nontoxic oligomers are reported in each graph (green). The spectra are normalized to the 
intensity of the peak centred at 375 nm. The vertical lines at 440 nm indicate the position of the 
excimer band.  
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absence of chaperones. The fluorescence spectra obtained for the type A oligomers 

labelled at each position after such incubation with or without αB-crystallin or α2-

macroglobulin are very similar and all show the absence of an excimer band (Figure 

2.12). By contrast, the spectra obtained for type B oligomers labelled at each position 

after incubation in the absence of chaperones all show the presence of an excimer band 

 

 
 
 
 
Figure 2.13. Lack of structural reorganization of HypF-N oligomers following treatment with 
chaperones. (A) Fluorescence emission spectra of samples containing HypF-N oligomers labeled 
with PM at positions 25 (top), 55 (middle) and 87 (bottom). Mutants of HypF-N containing a 
single cysteine at either position 25, 55 or 87 were labeled with PM, incubated to form the toxic 
oligomers and then 4-fold diluted, to a corresponding monomer concentration of 12 µM, into 20 
mM phosphate buffer, pH 7.0, 25 °C. The spectra refer to a 1 hour incubation under these latter 
condition in the absence (black) and in the presence of Hsp70 (A), clusterin (B) or haptoglobin (C) 
(pink). The spectra have been normalized to the intensity of the peak centered at 375 nm. Spectra 
of nontoxic oligomers (green) labelled at the same positions are also reported [Campioni et al., 
2010]. 
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(Figure 2.12), indicating a tighter packing of the polypeptide chain at these sites within 

the nontoxic oligomers [Campioni et al., 2010]. Similar data were obtained with Hsp70, 

clusterin and haptoglobin (Figure 2.13A,B,C). 

These results reveal that lack of toxicity resulting from exposure to chaperones cannot 

be attributed to the conversion of type A oligomers into type B oligomers. They do not, 

however, rule out the possibility that the toxic type A oligomers convert into a different 

type of nontoxic oligomers and thus, to address this possibility, we extended our 

analysis to oligomers formed from 1:1 mixtures of HypF-N monomers labelled with PM 

at different positions. Indeed, the pattern of excimer ratio values obtained from a well 

defined oligomer type, after uniform PM labelling at various positions and in 1:1 

mixtures of differently labeled positions, is unique and represents a molecular signature 

of the oligomer type, as the intensity of the excimer band reflects in each case the 

spatial distance between labeled positions [Birks, 1967; Hammarström et al. (1999); 

Krishnan and Lindquist, (2005)]. We have labelled 5 positions in the HypF-N sequence 

Figure 2.14. Lack of structural reorganization of HypF-N oligomers following treatment with 
chaperones. Ratios between the PM fluorescence intensities measured at 440 nm (excimer 
peak) and 375 nm (PM monomer peak) for HypF-N oligomers prepared with 1:1 mixtures of 
HypF-N chains PM-labelled at positions 10, 25, 47, 55 and 87 and incubated without (left panel) 
and with B-crystallin (middle panel) or 2-macroglobulin (right panel). The total HypF-N 
concentration was 12 μM. The SD of at least two independent experiments are reported in 
brackets.  
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(residues 10, 25, 47, 55, 87) and made all possible 1:1 mixtures, therefore obtaining 

excimer ratios for a total of 15 differently labelled HypF-N type A oligomers. The 

patterns of 15 excimer ratio values obtained in the presence of αB-crystallin or α2-

macroglobulin are essentially identical to the pattern obtained in the absence of 

chaperones (Figure 2.14), indicating that the spatial distribution of residues in the 

oligomers is preserved following interaction with the chaperones. 

 

2.3 Discussion 

The data presented here show that a representative set of chaperones can inhibit 

extremely efficiently the toxicity of protein oligomers formed by very different peptides 

and proteins. This behaviour results from the ability of the chaperones to bind to 

oligomers and promote their further assembly into larger species, in the absence of any 

significant reorganisation of their internal molecular structure. This mechanism of 

action is extremely effective as it allows the chaperones to suppress toxicity at highly 

substoichiometric levels, and remain protective even at molar ratios of client 

protein:chaperone as high as 500:1. 

These data also suggest that the size of extracellular protein aggregates correlates 

inversely with their toxicity. The binding and sequestration of the misfolded proteins 

within larger clusters is very likely to cause both a reduction of the exposure of the 

hydrophobic surfaces of the oligomers and a of their diffusional mobility, both of which 

are expected to lead to the inhibition of their toxicity. In addition, this behaviour is 

reminiscent of the formation of large aggresomes and inclusion bodies in eukaryotic and 

bacterial cells, respectively [Kopito, 2000; Sabate et al., 2010], indicating such 

processes as an effective strategy to handle protein aggregates and ultimately facilitate 

their clearance. 
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The ability of molecular chaperones to suppress the toxicity of preformed protein 

oligomers in the generic manner detected in this study adds to the well established 

functions of molecular chaperones to facilitate folding of proteins, to inhibit their 

aggregation and to disaggregate or promote clearance of protein aggregates. In all the 

experiments performed in this work the oligomers are formed before addition of the 

chaperones showing that the protective action of the latter can also include the 

neutralisation of toxic oligomers after they are formed. This effect represents an 

additional protective mechanism to add to our current understanding of the concept of 

protein homeostasis.  

Proteins are soluble mainly because a number of sequence and structural 

characteristics have evolved to achieve this requirement [Dobson, 2003; Monsellier and 

Chiti, 2007]. Chaperones act to counteract the inevitable failure of proteins to remain 

soluble and their protective actions occur at multiple levels, including facilitating 

protein folding and the degradation of protein aggregates, and inhibiting both protein 

aggregation and the toxicity of protein aggregates. The levels of misfolded proteins and 

toxic aggregates are usually low enough to permit these protective mechanisms to 

neutralise their potential effects. However, once this system is overwhelmed, e.g. by 

mutation, aging and other causes, these toxic effects can lead to malfunction and 

disease. Chaperones can buffer the formation of protein aggregates and their deleterious 

effects in living systems, explaining why, for example, the accumulation of fibrillar 

aggregates and associated smaller oligomers does not lead to manifest clinical signs of 

disease until the amyloid burden becomes unsustainable [Lachmann and Hawkins, 

2006; Petersen, 2010]. The generic ability of chaperones to suppress the toxicity of 

protein aggregates formed by very different peptides and proteins, and to do so at very 
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low concentrations, indicate that they can act as efficient guardians against a 

multiplicity of protein aggregates, rather than a single species, when the protein 

homeostasis system is close to being overwhelmed. 

These data also suggest that Nature may well be instructing us how to fight against 

protein misfolding diseases: the structure, function and mechanism of action of 

molecular chaperones may serve to guide the design of therapeutic interventions against 

diseases originating from the failure of protein homeostasis. Indeed, the finding that 

natural molecular chaperones can inhibit the toxicity of aberrant protein aggregates, 

after they are formed, with broad specificity and at very low concentrations, suggests 

that therapeutics based on the same type of intervention could be effective against such 

diseases, even at stages of the disease when the populations of toxic misfolded species 

have reached significant levels. 

 

2.4 Materials and Methods 

2.4.1 Cloning of the HypF-N gene, protein expression and purification 

The gene for HypF-N was cloned by Dr. Giulia Calloni in a modified pQE30-Xa 

plasmid (Qiagen S.p.A., Milano, Italy), in which the DNA stretch coding for the factor 

Xa cleavage site was substituted by a sequence coding for the thrombin cleavage site 

(pQE30-Th). As a result of this changing, the purified protein has the N-terminal Met 

residue substituted by a Gly-Ser dipeptide attributed to positions 0 and 1, respectively.  

Cultures of E. coli XL1 Blue cells harbouring the pQE30-Th/HypF-N plasmid were 

grown overnight at 37 °C in LB medium with 100 μg/ml ampicillin (Sigma-Aldrich) 

under shaking. The cells were then diluted 1:10 in fresh medium and grown at 25°C 

until the optical density at 600 nm (OD600) reached ~ 0.6. Protein expression was 
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induced overnight at 25°C by means of 1 mM isopropyl β-Dthiogalactoside (IPTG) 

from Inalco (Milano, Italy). Cells were harvested by centrifugation, resuspended in 40 

ml of lysis buffer (50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole at pH 

8.0) and then lysed by 1 hour incubation with 1 mg/ml lysozyme in ice, followed by 

sonication at 40 kHz (five cycles of 30s each spaced by 30s in ice). The cell lysate was 

applied at 4 °C to an affinity chromatography column packed with the HIS-Select 

Nickel Affinity Gel (Sigma-Aldrich) previously equilibrated with lysis buffer at 4 °C. 

The column was washed with 50 mM phosphate buffer, 300 mM NaCl, 20 mM 

imidazole, pH 8.0, 4 °C, equilibrated in 50 mM phosphate buffer, 50 mM NaCl, pH 8.0 

and then incubated overnight at 4 °C with 50 units of human thrombin (Sigma-Aldrich). 

Fractions containing pure HypF-N separated from the His-tag were eluted at 4 °C with 

50 mM phosphate buffer, 50 mM NaCl, 10 mM imidazole, pH 8.0 and checked by 

SDS-PAGE. The purest fractions were buffer-exchanged (5 mM acetate buffer, 2 mM 

dithiothreitol (DTT), pH 5.5) and concentrated at 4 °C using an ultrafiltration cell with a 

3000 Da cut-off cellulose membrane (Millipore, Billerica, MA). Protein concentration 

was assessed by optical absorption (ε280 = 12,490 M cm
-1

) and stock solutions were 

stored at -20 °C in 5 mM acetate buffer, 2 mM DTT, pH 5.5. 

 

2.4.2 Chaperones 

Human Hsp70 was purified as described [Roodveldt et al., (2009)]. The vector 

pET24d(+) (Novagen, Madison, USA) containing the αB-crystallin gene was a gift from 

J. A. Carver (University of Adelaide, Australia). Human αB-crystallin was expressed 

and purified as described previously [Waudby et al., 2010]. Human clusterin, α2-

macroglobulin and haptoglobin were purified as described [Wilson and Easterbrook-

Smith, 1992; French et al., 2008; Yerbury et al., 2005]. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Roodveldt%20C%22%5BAuthor%5D
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2.4.3 Formation of protein oligomers 

Oligomeric aggregates of HypF-N were prepared by incubating the protein for 4 hour at 

25 °C and at a concentration of 48 µM in 50 mM acetate buffer, 12% (v/v) TFE, 2 mM 

DTT, pH 5.5 (condition A). Nontoxic oligomers used as controls were prepared by 

incubating the protein for 4 hour at 25 °C and at a concentration of 48 µM in 20 mM 

TFA, 330 mM NaCl, pH 1.7, (condition B). Oligomers were centrifuged at 16100 rcf 

for 10 min, dried under N2 and resuspended in cell culture media in the absence of cells 

(for cell biology tests) or in 20 mM potassium phosphate buffer at pH 7.0 (for 

biophysical/biochemical analysis). As reported, no significant dissolution of the 

oligomers or change in morphology/structure could be detected after this procedure 

[Campioni et al., 2010]. Native HypF-N was diluted to a final concentration of 12 µM 

into the same media. A42 and IAPP were obtained from Sigma-Aldrich (St. Louis, 

MO). Oligomers formed by Aβ42 and IAPP were prepared as previously described 

[Lambert et al., 2001; Cecchi et al., 2008 ] and resuspended in cell culture media to 

obtain a final peptide concentration of 12 µM. Native Aβ42 and IAPP were diluted to 12 

µM into the same cell culture media. All oligomers were then incubated in the 

appropriate media for 1 hour at 37°C while shaking, in the absence or presence of 

chaperones, and then added to cultured cells or subjected to biophysical/biochemical 

analysis. The HypF-N(Aβ42/IAPP):chaperone molar ratio was 5:1 (αB-crystallin), 5:1 

(Hsp70), 10:1 (clusterin), 15:1 (haptoglobin) and 100:1 (α2-macroglobulin), unless 

stated otherwise (HypF-N, Aβ42, IAPP, αB-crystallin, Hsp70 are considered as 

monomers, clusterin and haptoglobin as α dimers and α2-macroglobulin as a tetramer, 

according to the functional oligomeric state). 
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2.4.4 Cell cultures 

Human SH-SY5Y neuroblastoma cells (A.T.C.C., Manassas, VA, USA) were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) F-12 Ham with 25 mM N-2-

hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) and NaHCO3 (1:1) 

supplemented with 10% fetal bovine serum (FBS), 1.0 % glutamine and antibiotics. The 

cell culture was maintained in a 5.0% CO2 humidified atmosphere at 37 °C and grown 

until 80% confluence for a maximum of 20 passages. 

 

2.4.5 MTT reduction assay 

The effect of protein oligomers incubated in the absence or presence of the chaperones 

on cell viability was assessed using SH-SY5Y cells. Preformed oligomers of HypF-N, 

Aβ1-42 and IAPP (12 µM monomer concentration) were incubated for 1 hour in the 

absence or presence of αB-crystallin, Hsp70, clusterin, haptoglobin, α2-macroglobulin, 

HEWL or BSA (HypF-N:chaperone molar ratios as described in section 2.4.3, HypF-

N:HEWL and HypF-N:BSA molar ratios were 5:1), and then added to SH-SY5Y cells. 

The cells, seeded in 96-well plates, were treated for 24 hours at 37°C with the 

aggregates. The cell cultures were then incubated with 0.5 mg/ml MTT solution at 37°C 

for 4 hours and subsequently with cell lysis buffer (20% SDS, 50% N,N-

dimethylformamide, pH 4.7) at 37°C for 3 hours. Absorbance values of blue formazan 

were determined at 590 nm and cell viability was expressed as percent of MTT 

reduction in treated cells as compared to untreated cells (assumed as 100%).  

 



Chapter 2                                                               Chaperones suppress oligomer toxicity 

 

71 

 

2.4.6 Measurement of intracellular Ca
2+

 

Preformed HypF-N oligomers (12 µM monomer concentration) were incubated for 1 

hour in the cell culture medium without or with αB-crystallin, Hsp70, clusterin, 

haptoglobin or α2-macroglobulin (HypF-N:chaperone molar ratios were 5:1, 5:1, 10:1, 

15:1 and 100:1, respectively) and then added to SH-SY5Y cells seeded on glass 

coverslips for 60 min at 37°C. To detect intracellular Ca
2+

, cells were then loaded with 

10 µM fluo3-AM (Molecular Probes, Milan , Italy) , as described previously [Campioni 

et al., 2010; Zampagni et al., 2011]. Cells were also treated with nontoxic HypF-N 

oligomers or the native protein (12 µM monomer concentration). Cell fluorescence was 

analysed by confocal Leica TCS SP5 scanning microscope (Mannheim, Germany) 

equipped with an argon laser source for fluorescence measurements at 488 nm and 633 

nm and a Leica Plan Apo 63X oil immersion objective. A series of optical sections 

(1024X1024 pixels), 1.0 µm in thickness, were taken through the cell depth for each 

examined sample. The confocal microscope was set at optimal acquisition conditions, 

e.g. pinhole diameters, detector gain and laser powers. Settings were maintained 

constant for each analysis. 

 

2.4.7 Cell internalisation of HypF-N aggregates 

Preformed HypF-N oligomers (12 µM monomer concentration) were incubated for 1 

hour in the cell culture medium with no cells in the absence or presence of each 

chaperone (HypF-N:chaperone molar ratios as above) and then added to SH-SY5Y cells 

seeded on glass coverslips for 60 min at 37°C. Cells were also treated with nontoxic 

HypF-N oligomers or the native protein (12 µM monomer concentration). Confocal 

scanning microscope images were acquired as described [Campioni et al., 2010]. To 
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quantify the green fluorescence intensity arising from HypF-N oligomers inside the 

cells, the images were analysed at median planes parallel to the coverslip for 10-22 cells 

using ImageJ software (NIH, Bethesda, MD, USA). The intracellular fluorescence 

intensity was expressed as (Fobs/FA)•100, where Fobs and FA represent the fluorescence 

values of cells treated with the analysed sample and type A oligomers, respectively, in 

both cases after subtraction of the baseline value determined for untreated cells. 

 

2.4.8 Thioflavin T assay 

Pre-formed oligomers of HypF-N (48 µM monomer concentration) were incubated in 

the absence or presence of each chaperone for 1 hour (HypF-N:chaperone molar ratios 

as described above) and then added to a solution of 25 μM ThT dissolved in 25 mM 

phosphate buffer at pH 6.0, in order to obtain a 3.7-fold molar excess of dye. Final 

HypF-N protein concentration was 6 μM. The steady-state intensity of fluorescence 

emission at 485 nm (excitation at 440 nm) was recorded at 37 °C. Samples containing 

only native HypF-N or only chaperone, both at the corresponding concentrations, were 

also tested. 

 

2.4.9 Atomic force microscopy 

HypF-N oligomers were formed and then incubated without or with chaperones in the 

conditions detailed above. Samples were diluted from 5 to 100 times; 10 l aliquots of 

the diluted samples were deposited on freshly cleaved mica and dried under mild 

vacuum. Tapping mode AFM images were acquired in air using a Multimode SPM, 

equipped with “E” scanning head (maximum scan size 10 m) and driven by a 

Nanoscope IV controller, and a Dimension 3100 SPM, equipped with a ‘G’ scanning 
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head (maximum scan size 100 m) and driven by a Nanoscope IIIa controller (Digital 

Instruments, Bruker AXS GmbH, Karlsruhe, Germany). Single beam uncoated silicon 

cantilevers (type OMCL-AC160TS, Olympus, Tokyo, Japan) were used. The drive 

frequency was between 290 and 310 kHz, the scan rate was between 0.4 and 0.8 Hz. 

Aggregate sizes were measured from the height in cross section of the topographic 

AFM images. The heights reported in the results result from the obtained values being 

multiplied by a shrinking factor of 2.2, which was evaluated comparing the heights of 

native HypF-N under liquid and after drying. 

 

2.4.10 Confocal microscopy analysis for binding of HypF-N oligomers with 

chaperones 

Preformed oligomers of HypF-N (48 µM monomer concentration) were incubated in the 

absence or presence of αB-crystallin or α2-macroglobulin (HypF-N:chaperone molar 

ratios were 5:1 and 100:1, respectively) for 1 hour in 20 mM potassium phosphate 

buffer at pH 7.0 and then centrifuged for 10 min at 16100 rcf. The pellet (P) was 

resuspended in a solution containing 1:4000 rabbit polyclonal anti-HypF-N (Primm, 

Milan, Italy), goat polyclonal anti-αB-crystallin or goat polyclonal anti-α2-

macroglobulin antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) for 30min at 

37°C. After centrifugation for 10min at 16100 rcf, samples were washed in PBS, 

centrifuged again and incubated with 1:1000 diluted Alexa Fluor 488-conjugated anti-

rabbit secondary antibody (Molecular Probes, Milan, Italy) for 30min at 37°C. Samples 

were than washed in PBS and incubated with 1:4000 Texas red-conjugated anti-goat 

secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA) for 30 min at 37°C. 

After centrifugation, samples were washed in PBS and the P was resuspended in 20 µl 
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PBS and spotted on glass coverslips. In another series of experiments oligomers were 

incubated with 1:4000 goat polyclonal anti-αB-crystallin or anti-α2-macroglobulin 

antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) for 30min at 37°C, centrifuged, 

washed in PBS and re-incubated with 1:4000 Texas red-conjugated anti-goat secondary 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Confocal microscope images 

were acquired as described [Campioni et al., 2010]. 

 

2.4.11 Immuno-dot blot assay 

Samples of chaperones (0.5, 1, 2.5, 5 µg), lysozyme (1, 5 µg) and HypF-N (1 µg) were 

spotted onto nitrocellulose membrane (Bio-Rad, Hercules, CA) and allowed to dry. 

After blocking with a 5% (w/v) skim milk powder solution in PBS, the membranes 

were incubated for 2 h at 37°C in PBS with or without 50 µg/ml of HypF-N preformed 

oligomers, washed three times (5 min each) in PBS and incubated with rabbit 

polyclonal anti-HypF-N antibodies (Primm, Milan, Italy). The membranes were then 

incubated with secondary anti-rabbit antibodies conjugated with horseradish peroxidase, 

followed by enhanced chemiluminescence with the Immun-Star HRP 

Chemiluminescence kit (Bio-Rad, Hercules, CA). After the treatments with primary and 

secondary antibodies, the membranes were washed three times (5 min each) in PBS 

containing 0.1 % (v/v) Tween 20. 

 

2.4.12 SDS-PAGE 

Preformed HypF-N oligomers, αB-crystallin and α2-macroglobulin were incubated for 1 

hour in 20 mM potassium phosphate buffer at pH 7.0 in isolation and in combination 

(48 µM HypF-N, HypF-N:chaperone molar ratios was 5:1 for αB-crystallin and 100:1 
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for α2-macroglobulin). Samples were then centrifuged for 10 min at 16100 rcf. Aliquots 

of the P and SN fractions were subjected to SDS-PAGE analysis as described 

[Laemmli, 1970] using 15% polyacrylamide gels. 

 

2.4.13 Intrinsic fluorescence 

Intrinsic fluorescence spectra of the SN fractions collected for SDS-PAGE were 

acquired at 37°C using a Perkin-Elmer LS 55 spectrofluorimeter (Wellesley, MA) and a 

2X10 mm quartz cell, an excitation wavelength of 280 nm. The spectrum of HypF-N 

oligomers was subtracted from that of the chaperone in the presence of HypF-N 

oligomers and all the spectra were normalized to the maximum fluorescence intensity of 

the chaperone spectrum. 

 

2.4.14 FTIR spectroscopy 

Preformed HypF-N oligomers were incubated for 1 hour in 20 mM potassium 

phosphate buffer at pH 7.0 with or without αB-crystallin or α2-macroglobulin (48 µM 

HypF-N, HypF-N:chaperone molar ratios was 5:1 and 100:1 respectively) and then 

centrifuged and resuspended in D2O twice to achieve a final volume of 20 µL and a 

final protein concentration of ~15 mg mL
-1

. The 20 µL sample was deposited on a KBr 

window in a semipermanent liquid cell and the FTIR spectra were recorded at room 

temperature using an FT/IR 4200 spectrophotometer (Jasco, Tokyo, Japan). The system 

was purged with N2 starting from 15 min before spectra recording. The background 

spectra were subtracted and the resulting spectra were baseline corrected and smoothed. 

Curve fitting on the spectra was performed using the Spectra Manager software (Jasco, 

Tokyo, Japan). 
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2.4.15 Pyrene fluorescence 

HypF-N variants carrying a single cysteine residue were labelled with PM as previously 

described [Campioni et al., 2010], incubated under conditions A and B in homogeneous 

or 1:1 mixtures and then diluted 4-fold into 20 mM potassium phosphate buffer at pH 

7.0. Fluorescence emission spectra of these samples were acquired and analyzed as 

previously described [Campioni et al., 2010] before and after 1 hour incubation in the 

absence or presence of chaperones. HypF-N concentration was 12 µM (monomer 

concentration). HypF-N:chaperone molar ratios was 5:1 for αB-crystallin and 100:1 for 

α2-macroglobulin. 

 

2.4.16 Statistical analysis 

All data were expressed as mean  standard deviation (SD). Comparisons between 

different groups were performed using ANOVA followed by Bonferroni’s post-

comparison test. A p value lower than 0.05 was considered statistically significant. 
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Chapter 3 

TWO SIDES OF THE SAME COIN: HYDROPHOBICITY AND SIZE AS 

STRUCTURAL DETERMINANTS OF MISFOLDED OLIGOMER TOXICITY 

3.1 Introduction 

As described in section 1.2, it is increasingly recognized that the pathogenic species in 

protein deposition diseases are not the mature fibrils, but the early oligomeric species 

that precede their formation [Chiti and Dobson, 2006]. Oligomers formed by HypF-N 

are a widely studied system in this regard. Indeed, a number of characteristics render 

this protein domain particularly useful for the characterization of its protein misfolded 

oligomers. First, monomeric HypF-N is readily able to form spherical oligomers and 

amyloid-like fibrils in vitro, under conditions that destabilize its native state or promote 

its cooperative unfolding into partially structured species [Chiti et al., 2001; Relini et 

al., 2004; Marcon et al., 2005; Campioni et al., 2008] Second, the oligomers that form 

in the early stages of the aggregation process have the same morphological, structural 

and tinctorial features as those formed by disease-related peptides and proteins [Marcon 

et al., 2005; Campioni et al., 2008] and impair cell viability when added to the 

extracellular medium of cultured cells [Bucciantini et al., 2002; Bucciantini et al., 2004; 

Cecchi et al., 2005; Campioni et al., 2010; Zampagni et al., 2011; Evangelisti et al., 

2012] and when injected into rat brains [Baglioni et al., 2006; Zampagni et al., 2011]. 

Finally, perhaps most importantly, HypF-N oligomers are sufficiently stable to maintain 

their morphological and structural properties when transferred to conditions that are 

very different from those that promote their formation, allowing a detailed biophysical 

and biological characterisation of their structural properties and toxicity, respectively 

[Campioni et al., 2010]. 
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As reported in section 1.5.5, two protocols have been established to convert native 

HypF-N into stable oligomers, which were named type A and type B, respectively 

[Campioni et al., 2010; Zampagni et al., 2011; Evangelisti et al., 2012; Tatini et al., 

unpublished]. The two oligomeric forms share a similar morphology and size, as 

detected with AFM, consisting of small spherical species with a 2-6 nm diameter; they 

also bind the amyloid diagnostic dye ThT to a similar extent, albeit such binding is 

weaker than that commonly observed for amyloid fibrils [Campioni et al., 2010]. In 

spite of the similar size, morphology and ThT binding, only type A oligomers were 

found to be toxic to cells. When added to the extracellular medium of cultured neuronal 

and endothelial cells, type A oligomers, unlike type B, were found to decrease the 

mitochondrial MTT reduction activity, to cause an influx of extracellular calcium to the 

cytosol and to induce apoptosis [Campioni et al., 2010; Zampagni et al., 2011]. They 

were also cause cognitive impairment in animal models, with type B oligomers 

producing no effect [Tatini et al., unpublished]. 

In an attempt to elucidate the structural origin of the different toxicities of type A 

and B oligomers, it has been shown, using site directed pyrene labeling, that the three 

main hydrophobic regions of the HypF-N sequence spanning approximately residues 

22-34, 55-59 and 75-87 are structured and buried in type B oligomers, whereas the same 

regions are more flexible and solvent-exposed in type A oligomers [Campioni et al., 

2010]. In a following study, it was found that the further assembly of type A oligomers 

into large aggregates mediated by molecular chaperones can suppress their toxic activity 

[results reported in Chapter 2]. These two reports indicated that the flexibility and 

solvent exposure of hydrophobic moieties and the small size are important structural 

determinants of HypF-N oligomer toxicity. 
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Here we have increased, using site-directed mutagenesis, the hydrophobicity of the 

three main hydrophobic regions of HypF-N found to have a different solvent exposure 

in the two oligomer types, with an aim of investigating the effect of such mutations on 

the superficial hydrophobicity of the oligomers, on their size and on the toxicity of the 

resulting oligomeric species. We will show that the single or multiple substitutions of a 

charged amino acid with an apolar one affect both the solvent-exposure hydrophobicity 

of the HypF-N oligomers and their size, producing counteracting effects on the toxicity 

of the resulting species. 

 

3.2 Results 

3.2.1 Effect of hydrophobic mutations on HypF-N structure 

The following five variants have been designed replacing glutamate or arginine residues 

with leucine within the three main hydrophobic regions of the HypF-N sequence: R23L, 

E55L, E87L, R23L/E55L and R23L/E87L. These mutants contain basically the same 

 

Figure 3.1. Hydropathy profile of the wt and mutant HypF-N sequences. The graphs show the 
comparison between the hydropathy profile of three variants carrying a single mutation and the 
wt protein. The hydropathy profiles were calculated using the Roseman hydrophobicity scale 
[Roseman, 1988]. 
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three mutations, in isolation or in combination, which are individually able to increase 

the level of hydropathy of each single region involved (Figure 3.1). We decided to 

substitute charged residues with apolar residues rather than opposite replacements, 

because it has been shown that the introduction of mutations within the hydrophobic 

core of HypF-N alters drastically the protein stability and causes protein aggregation 

into the inclusion bodies following the expression in E. coli [Calloni et al., 2005]. In an 

attempt to avoid this phenomenon, we chose variants whose conformational stability 

was preliminary estimated using FoldX, an algorithm based on an empirical formula 

derived from the experimentally determined values of free energy change of the 

unfolding transition in the absence of denaturant (GU-F 
H2O

) of over 1000 single 

mutants from different proteins [Guerois et al., 2002].  

The native structure of the variants was studied using far-UV circular dichroism 

(CD). Figure 3.2 reports the native structure of wt HypF-N with the mutated residues 

Figure 3.2. (A) Structure of wt HypF-N with the residues involved in the mutations highlighted: 
Arg23, Glu55 and Glu87 all substituted with leucine. (B) Far-UV CD spectra of wt and mutants of 
HypF-N acquired under native conditions. 
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highlighted (Figure 3.2A) and the CD spectra of mutant and wt proteins (Figure 3.2 B). 

All the variants are characterized by a spectrum typical of a folded α/β protein, with a 

broad negative minimum in the region between 210 and 220 nm, and similar to the 

spectrum obtained for the wt protein and previously reported [Calloni et al., 2008; 

Campioni et al., 2008]. Hence, the introduction of the hydrophobic mutations does not 

alter significantly the native structure of the protein variants. 

 

3.2.2 Effect of the hydrophobic mutations on the aggregation kinetics of HypF-N 

Type A and type B oligomers of wt and mutant HypF-N were obtained by incubating 

HypF-N at a protein concentration of 48 µM in (i) 50 mM acetate buffer, 12% (v/v) 

TFE, 2 mM DTT, pH 5.5 (condition A) and in (ii) 20 mM TFA, 330 mM NaCl, pH 1.7 

(condition B) for 4 hours at 25 °C. Under these two conditions, the aggregation kinetics 

of every variant was measured by using ThT, a fluorescent probe able to bind the cross-

β structure typical of amyloid aggregates and to increase its fluorescence emission 

intensity upon binding [Krebs et al., 2005]. At regular time intervals, aliquots of the 

samples were mixed with a ThT solution and time-course measurements of the 

fluorescence intensity were obtained (Figure 3.3) and fitted with a single exponential 

function (equation 3.2, section 3.4.4).  

Apparent aggregation rate constants (kagg) were calculated for all aggregation kinetic 

traces and are reported in Figure 3.4 for the proteins incubated in condition A (left) and 

B (right). 

In condition A, the kagg values measured for both the wt protein and the variants are 

similar, with the exception of E87L, which presents a higher kagg value with respect to 

the wt protein. In condition B, all mutants do not have significantly different kagg values 

from that of the wt protein in the same condition. These results show that the aggregates 
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formed by the hydrophobic mutants bind the amyloid specific dye ThT indicating the 

presence of intermolecular β-sheet structure typical of amyloids. Moreover, the 

development of amyloid structure follows apparent mono-exponential kinetics in the 

absence of a lag phase, typical of the oligomers that precede fibril formation. Finally, 

Figure 3.3. Representative aggregation time-courses of wt and variants of HypF-N measured by 
ThT fluorescence under conditions A (top panels) and B (bottom panels). All data points were 
blank-subtracted and normalized to the maximum fluorescence intensity observed at the 
apparent plateau. Red lines represent the best fit to a single-exponential function (equation 3.2). 
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the rate of the aggregation process does not appear to be affected by the introduction of 

the hydrophobic mutations, which the exception of the E87L variant in condition A. 

 

 

 

3.2.3 Biological activity of the oligomers formed by the hydrophobic variants 

The biological activity of the oligomeric aggregates formed by the hydrophobic variants 

under condition A and B was assessed on human neuroblastoma SH-SY5Y cell cultures. 

For this purpose, the aggregates were transferred from the aggregation mixtures to a 

physiological medium through centrifugation and then added to the cell culture media. 

The viability of the cells treated with these aggregates was monitored by performing the 

MTT reduction inhibition assay, a generic biochemical test used to estimate the level of 

the cellular physiological stress [Mosmann, 1983]. Control experiments with the cells 

exposed to the native proteins were also carried out. Figure 3.5 shows the results 

obtained and expressed as a percentage of the value measured for the untreated cells.  

Figure 3.4. Apparent rate constants of aggregation (kagg) of wt and variants in condition A (left) 
and B (right). Aggregation time courses were fitted with a single exponential function and the kagg 
values for all experiments were determined. Data are means of, at least, 4 independent 
experiments. Error bars correspond to the standard errors of the means. 
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As previously reported, type A and B oligomers generated by wt HypF-N cause a 

30% reduction and no reduction in the viability of SH-SY5Y cells, respectively 

[Campioni et al., 2010]. Interestingly, the cells treated with oligomers formed under 

condition A by hydrophobic variants of HypF-N show higher viability levels than the 

cells treated with oligomers formed in the same condition by the wt protein. However, it 

is important to note that the introduction of a single mutation in position 55 or 87 (E55L 

and E87L) and of a double mutation in positions 23 and 87 (R23L/E87L) seems to 

revert completely, or almost completely in the latter case, the toxic effect of the wt 

oligomers; by contrast, the R23L and R23L/E55L variants keep the ability to reduce the 

cellular viability, albeit to a lower extent with respect to the wt oligomers. 

The oligomers formed by the variants in condition B maintained the MTT reduction 

unaltered, with the exception of the R23L mutant, which slightly affects the cellular 

viability. Generally, in condition B the introduction of the hydrophobic mutations taken 

Figure 3.5. MTT reduction assay on SH-SY5Y cells treated with wt and mutant proteins in their 
native state (grey bars), after aggregation in condition A (red bars) and B (blue bars). Error bars 
correspond to standard errors of the means of 10 independent experiments. Single, double and 
triple asterisks refer to p values lower than 0.05, 0.01 and 0.001, respectively, with respect to wt 
oligomers formed under corresponding conditions. 
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here in consideration does not alter significantly the biological activity of the 

aggregates. Similar experiments performed by treating the cells with native proteins 

show in all cases the inability of these proteins in their native structure to cause cellular 

dysfunction. 

 

3.2.4 Staining of the nuclei with Hoeschst 

Experiments with the apoptotic marker Hoechst 33342 were also carried out on SH-

SY5Y cells following the exposure to the various oligomeric variants and appeared to 

be in agreement with the MTT test data. This marker binds to the highly condensed 

chromatin present in the nuclei of apoptotic cells giving rise to a strong fluorescent 

signal and allowing the visualization of fragmented nuclei. After the treatment with the 

native proteins and with type A and B aggregates, the cells were stained with the dye 

and visualized by fluorescence microscopy. The images obtained are shown in Figure 

3.6. The nuclei of the cells treated with wt type A oligomers appear condensed and give 

rise to a high florescence signal, whereas such signal is generally reduced, to different 

extents, in cells treated with the mutant type A oligomers, with the R23L and the 

R23/E55L oligomers being the most effective in causing apoptosis. By contrast, the 

cells treated with the mutated type B oligomers, as well as with the wt type B oligomers 

appear to have a morphology and fluorescence intensity similar to those of untreated 

cells, with the exception of the cells treated with R23L type B oligomers. In all the 

experiments performed by exposing the cells to the native proteins no significant 

change in the morphology and in the fluorescence intensity of the treated cells is 

observed compared to the untreated ones. 
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Figure 3.6. Hoechst 33342 staining of SH-SY5Y cells treated with monomeric native proteins, 
aggregates formed by wt and hydrophobic mutants of HypF-N under conditions A and B. The upper 
image show the untreated cells.  
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3.2.5 Measurement of level of intracellular Ca
2+  

We also monitored the alteration of the membrane permeability by measuring the levels 

of intracellular Ca
2+

 ions following the exposure of the cells to the various oligomeric 

variants. Indeed, the influx of Ca
2+

 ions from the extracellular space into the cytosol
 

across the membrane has been recognized to be an early damage in cells exposed to 

harmful protein oligomers [Orrenius et al., 2003; Demuro et al., 2005; Bojarski et al., 

2008], including HypF-N wt type A oligomers [Canale et al., 2006; Zampagni et al., 

2011]. Taking advantage of the ability of the fluorescent probe fluo3-acetoxymethyl-

ester (Fluo3-AM) to bind Ca
2+

 ions and consequently give rise to a green fluorescence 

signal, we evaluated the level of intracellular Ca
2+

 in SH-SY5Y cells after 1 hour of 

incubation in presence of native proteins or oligomers formed by the variants under 

conditions A and B. Confocal microscopy images were acquired (Figure 3.7A) and the 

intensity of the fluorescence signal was expressed as a fractional change with respect to 

the fluorescence measured in cells treated with wt type A aggregates (Figure 3.7B). 

Oligomers formed in condition A by all the mutants, with the exception of the R23L 

and R23L/E55L mutants, do not induce an increase in cytosolic free Ca
2+

, unlike 

oligomers formed by the wt protein. In condition B, both the wt and mutated oligomers 

do not cause any change in the intracellular Ca
2+

 levels, again with the exception of the 

R23L variant oligomers, whose effect is, however, lower than the one provoked by the 

wt type A oligomers. In similar experiments performed treating the cells with the native 

proteins no increase in intracellular Ca
2+

 ions was detected. 
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Figure 3.7. (A) Dysregulation of 
cytosolic Ca2+ analysis on SH-
SY5Y cells treated with 
aggregates formed by wt and 
hydrophobic mutants of HypF-N. 
Confocal microscopy images of 
the intracellular free Ca2+ levels 
after 1 hour of treatment with 
monomeric native proteins, 
aggregates formed by wt and 
hydrophobic mutants of HypF-N 
in conditions A and B. The upper 
image show the untreated cells. 
The green fluorescence arises 
from the intracellular Fluo3 
probe bound to Ca2+. (B) 
Quantification of fluorescence 
arising from intracellular Ca2+ 
levels with respect to the 
fluorescence observed in cells 
treated with type A wt 
oligomers. Error bars 
correspond to standard errors of 
the means of 3 independent 
experiments The asterisks refer 
to p values lower than 0.05 with 
respect to wt oligomers formed 
under corresponding conditions.  
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3.2.6 Effect of the mutations on the superficial hydrophobicity of the oligomers  

To the purpose of shedding light on the link between the biological activity and the 

structure of the oligomeric HypF-N aggregates, we focused on structural parameters, 

such as the hydrophobic surface exposure and the size. 

The exposure to the solvent of hydrophobic surfaces of the wt and mutated 

oligomers formed in conditions A and B was tested by evaluating their ability to bind to 

the fluorescent probe 8-anilinonaphthalene-1-sulphonate (ANS). ANS binds to solvent-

exposed hydrophobic clusters, and, following this binding, a strong increase of its 

fluorescence emission intensity and a blue shift of its maximum emission wavelength 

(λmax) are observed [Semisotov et al., 1991; Cardamone and Puri, 1992]. The 

fluorescence emission spectra of ANS acquired in the presence of aggregates obtained 

in conditions A and B and their λmax values are shown in Figure 3.8. All the variant 

oligomers formed in condition A are able to bind to ANS because for all of them it was 

possible to register an increase of ANS emission intensity, even though to different 

extents. However, with respect to the wt type A oligomers, the aggregates formed by 

E55L and R23L/E55L HypF-N show an increase in the intensity of the emission 

spectrum, whereas the oligomers generated by the E87L and R23L/E87L variants give 

origin to ANS spectra characterized by a lower, but still comparable to the wt oligomer 

spectrum, intensity. A peculiar behavior is observed for the R23L variant oligomers, 

whose spectrum is markedly reduced compared to that of the wt oligomers (Figure 

3.8A). A notable blue shift of the λmax value is observed for the oligomers formed by all 

mutants compared to the wt oligomers, again with the exception of the R23L variant, 

which is characterized by a less blue-shifted λmax value (Figure 3.8C).  

Type B oligomers formed by all the variants are able to bind to ANS, and the 

spectra recorded for the single and double variants show a very weak and more 
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prominent increase of the fluorescence intensity compared to the wt type B oligomers, 

respectively (Figure 3.8B). These results are in agreement with the λmax values observed: 

the oligomers formed by the single mutants have λmax values comparable to that ones of 

the wt oligomers, whereas the aggregates formed by the double mutants show more 

blue-shifted λmax values with respect to the wt type B oligomers (Figure 3.8D). 

Figure 3.8. ANS binding to wt and hydrophobic variant type A and B oligomers (A,B). Fluorescence 
emission spectra of ANS in the presence of the aggregates of the wt protein (black) and 
hydrophobic variants formed in condition A (red) (A) and B (blue) (B). Wavelength of maximum 
emission fluorescence (λmax)registered for wt and hydrophobic oligomers of HypF-N in condition A 
(C) and B (D). Error bars correspond to standard errors from values of three different experiments.  
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These data show that the introduction of the hydrophobic mutations generates a 

strong increase in the exposure to the solvent of the hydrophobic surfaces of the 

oligomers aggregated in condition A, with the exception of the R23L mutation. An 

increase of this magnitude is not observed in the case of the mutant oligomers formed in 

condition B. 

 

3.2.7 Effect of the mutations on the size of the oligomers  

In order to qualitatively estimate the size of the type A and B mutated aggregates, 

turbidimetry and static light scattering (SLS) measurements were performed. 

Turbidimetry measures the loss of intensity of the light in the direction of propagation 

of the incident beam following the passage through a solution, and this phenomenon is 

due to light scattering caused by particles suspended in solution. Through the 

determination of the turbidity it is possible to estimate qualitatitevely the size of the 

particles in solution. Therefore, the turbidimetry at 500 nm was recorded for all the 

oligomers formed in conditions A and B, as shown in Figure 3.9A and 3.9B, 

respectively. The type A oligomers formed by the mutants are characterized by a 

similar, in the case of the E87L mutant, or higher light scattering than the wt type A 

aggregates. The only exception to this trend is represented by the R23L oligomers 

which show a lower intensity of the light scattered with respect to the wt oligomers 

(Figure 3.9A). By contrast, type B mutated oligomers are generally able to scatter the 

light to a similar extent of the wt aggregates formed under the same conditions, again 

with the exception of the R23L mutant, whose oligomers present a lower ability in 

scattering the light. 

These results were confirmed by SLS measurements, as reported in Figure 3.9C and 

3.9D, for the conditions A and B, respectively. In this technique the total amount of 
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light scattered by the sample is measured by a detector at an angle different from 0 or 

180°with respect to the incident light; hence, unlike turbidimetry, it is a direct 

measurement of the deviated light. The variants oligomerized in condition A, with the 

exception of the R23L mutant, are able to scatter the light to a greater extent with 

respect to the wt type A oligomers, whereas the values registered for the type B 

aggregates formed by the mutants are similar to those of the wt type B oligomers, with 

Figure 3.9. Measurements of turbidometry and SLS of HypF-N oligomers. The values of 
turbidimetry at 500 nm for the wt and variant oligomers formed in condition A (A) and B (B); 
error bars correspond to standard error values of three different experiments. Mean count rate 
expressed in kilocounts per second (kcps) of the type A (C) and type B (D) oligomers formed by 
wt and variants. 
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the R23L oligomers having the lowest values. Taken together these results suggest that 

the oligomers formed in condition A by the hydrophobic mutants are bigger in size than 

the wt aggregates, with the exception of the R23L oligomers, which shows smaller 

dimensions than those of the wt oligomers. Conversely, the introduction of the 

hydrophobic mutations seems to maintain generally unaltered the dimensions of the 

aggregates generated in condition B. 

 

3.2.8 Correlation between superficial hydrophobicity, size and toxicity 

Interestingly, the surface hydrophobicity of all the studied oligomers determined by the 

ANS λmax value significantly correlates with the size of the oligomers, as indicated by 

the SLS intensity. In Figure 3.10A the λmax value and the intensity of scattered light of 

the twelve oligomeric species studied here, i.e. wt and five mutant of type A oligomers 

(shown in red) and wt and five mutant of type B oligomers (shown in blue), were 

plotted and fitted to a linear equation of the form: 

  

          (Eq. 3.1) 

 

where q and m represent the intercept and the slope of the straight line, respectively. 

The linear correlation coefficient (R) is 0.88842, corresponding to a p value lower than 

0.001, therefore indicating that the correlation is statistically significant. This point out 

that an increase in the of exposure of hydrophobic surfaces causes an increase of the 

size of the oligomers. Since these two factors increase and decrease, respectively, the 

oligomer toxicity, no correlation is observed between either parameter and toxicity. 
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In Figure 3.10B the same plot was reported highlighting the oligomeric species that 

do not cause cellular damage (in green) and those affecting the cell viability to different 

extents (in pink), as determined by the MTT test results. It is worthy to note that the 

nontoxic oligomers are located above the straight line representing the best fit to 

equation 3.1, whereas the toxic aggregates are below this line. This partitioning of the 

data points in the two regions of the graph indicates that a combination of high 

hydrophobicity and small size contributes to a high toxicity, whereas a combination of 

low hydrophobicity and high size determined no toxicity. This result shows that the 

toxicity of the oligomers is influenced by both their superficial hydrophobicity and their 

size and, most importantly, is finely modulated according to specific levels of these two 

Figure 3.10. (A) Light scattering intensity expressed in kilocounts per second (kcps) versus the 
wavelength of the ANS maximum emission fluorescence (λmax) of the type A (red) and type B 
(blue) oligomers formed by wt and mutants. All the values were analysed with a procedure of 
best fitting and the solid line represents the best fit to equation 3.1. (B) Same plot as in (A): the 
green dots correspond to aggregates characterized by MTT reduction values > 97%; the pink dots 
correspond to oligomers showing values of MTT reduction ranging from 70% to 90%. 
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structural determinants, which cooperate simultaneously in determining the biological 

activity of the aggregates. 

 

3.3 Discussion 

3.3.1 The introduction of hydrophobic mutations generates oligomers displaying 

different levels of toxicity 

Increasing evidence suggests that oligomers, rather than mature amyloid fibrils, are 

the pathogenic species in protein deposition diseases [Chiti and Dobson, 2006; Jhan and 

Radford, 2008]. For this reason, it is essential to investigate at a structural level which 

determinants are responsible for the toxicity of such species. Efforts in this direction can 

help to identify new therapeutical targets for the treatment of these pathologies.  

In this study the importance of hydrophobic surface exposure and size as structural 

determinants of the biological activity of the aggregates has been taken into account 

through the study of a set of HypF-N variants characterized by mutations replacing 

hydrophilic residues with hydrophobic ones. We found that the introduction of the 

hydrophobic mutations studied here in the sequence of HypF-N alters neither the native 

structure of the proteins, as reported by far-UV CD measurements, nor the aggregation 

process promoting the oligomer formation under conditions A and B as shown by ThT 

fluorescence kinetics. By contrast, the biological activity is significantly affected by the 

insertion of the hydrophobic mutations. It seems, therefore, that the introduction of the 

mutations originates a pool of oligomeric variants characterized by different degrees of 

toxicity and these functional differences have to be related to differences in the 

structures and/or morphology of the aggregates.  
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3.3.2 Structural determinants of the oligomer toxicity: the double role of the 

superficial hydrophobicity  

The structural analysis of the oligomers was based on two parameters, both recognized 

to play important roles as determinants of aggregate toxicity: the surface hydrophobic 

exposure and the size. An increase in the exposure of hydrophobic oligomeric surface is 

associated with a greater ability of the aggregates to cause cellular dysfunction [Kremer 

et al., 2000, Oma et al., 2005, Bolognesi et al., 2010, Olzscha et al., 2011; Krishnan et 

al., 2012] and this phenomenon is also observed in the case of the wt type A and B 

HypF-N oligomers, as described previously [Campioni et al., 2010]. By contrast, it is 

recognized that there is an inverse correlation between toxicity and oligomer size [Cizas 

et al., 2010; Ladiwala et al., 2011; Ojha et al., 2011; Bemporad and Chiti, 2012; 

Chapter 2] and, again, this is also observed for wt type A oligomers [Chapter 2].  

According to the condition of aggregation and to the site of the mutation, the 

introduction of hydrophobic mutations affects, to various extents, the superficial 

hydrophobicity, causing consequently changes in the size of the type A and B 

aggregates. The explanation to these data can be found considering that the increase of 

hydrophobicity is accompanied by the increase in the dimensions of the aggregates. The 

increase in the exposure of hydrophobic surface seems to make the oligomers more 

sticky, facilitating their interaction and giving rise to the formation of bigger species 

unable to exert their toxic effects. Hence, it is reasonable to hypothesize that the 

increase of the solvent-exposed hydrophobic surface of a misfolded protein oligomer 

can have, according to its extension, a double counteracting effect on the oligomeric 

ability to cause cellular dysfunction, being responsible for toxicity or benignity. 
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3.3.3 Structural determinants of the oligomer toxicity: the importance of the size  

The reduction in the ability of causing cellular dysfunction mediated by the increase in 

the dimensions observed in the cases of type A E55L, E87L, R23L/E55L and 

R23L/E87L oligomers confirms that the size is a pivotal determinant of the oligomer 

toxicity. It has long been known that the fibrils, bigger in dimensions than the oligomers 

preceding their formation, have, unlike the latter, a lower, if any, toxicity [Chiti and 

Dobson, 2006]. Moreover, recent studies show that oligomer size plays a key role in 

causing oligomer toxicity. The ability of Aβ40 and Aβ42 oligomers to decrease the MTT 

reduction in cultured cells was found to correlate inversely with the molecular weight of 

the oligomers, with the small species having the highest toxicity [Bemporad and Chiti, 

2012]. It was also found that Aβ42 oligomers of different sizes give rise to an inverse 

correlation between oligomer size and neuronal toxicity, again with the smallest species 

exhibiting the highest ability in causing cell damage [Cizas et al., 2010]. In addition, 

agents able to cause the further assembly of toxic oligomers into larger species, such as 

aromatic small molecules [Ladiwala et al., 2011] or molecular chaperones [Chapter 2; 

Ojha et al., 2011], suppress the toxicity of these aggregates. Larger assemblies are 

harmless because they have a lower diffusional mobility, which prevent them from 

interacting and disrupting cell membranes, and because they have a lower 

surface/volume ratio. 

 

3.3.4 Cooperation of structural oligomeric characteristics in determining the 

ability to cause cell dysfunction 

Although this study recognizes the importance of the superficial hydrophobicity and of 

the size as determinants of oligomer toxicity, the data on the biological effects presented 

here cannot be explained solely on the basis of either parameter considered individually. 
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To make an example, the increase in the size observed in type A E55L and R23L/E55L 

oligomers is similar, but their ability in affecting the cell viability is different, even if in 

both cases it is lower than that of wt type A oligomers. Type A E55L oligomers are not 

toxic at all, whereas type A R23L/E55L aggregates are able to cause a 20% reduction of 

the viability. In order to explain these differences in toxic behaviour, both size and 

hydrophobicity have to be taken into account. Indeed, type A R23L/E55L oligomers 

maintain a higher degree of superficial hydrophobicity with respect to type A E55L 

oligomers, which can be responsible of its higher degree of toxicity.  

In Figure 3.10B, all the twelve oligomeric species studied here were reported in a 

graph plotting their light scattering against their ANS λmax value, indicating the size and 

the superficial hydrophobicity, respectively, and highlighted according to their ability to 

reduce the cellular viability. It is interesting to note that specific combinations of the 

values of these two parameters determine the biological activity of the aggregates. They 

indeed seem to cooperate and contribute with their extent to the resulting biological 

activity of the oligomers. In aggregates having similar sizes, differences in toxicity are 

due to differences in the hydrophobic surface exposure, and this is the case for type A 

E55L and type A R23L /E55L oligomers described above, but also the case for wt type 

A and wt type B oligomers [Campioni et al., 2010]. Conversely, in aggregates having 

the same level of hydrophobicity, the ability to provoke cell damage is associated with a 

reduction in the dimension, and this is the case for wt type B and type A R23L 

oligomers.  

In conclusion, the biological activity of the oligomeric species studied here is not 

explainable on the basis of the superficial hydrophobicity or the size if these two 

parameters are considered separately. Oligomer toxicity results from the combination of 

several structural and morphological determinants. Understanding the contribution of 
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each of these determinants can help to clarify the pathogenesis of protein deposition 

diseases and the molecular mechanism by which oligomers are harmful to cells. 

 

3.4 Materials and methods 

3.4.1 Site-directed mutagenesis 

Mutations in the HypF-N gene were generated by using the QuikChange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA). The three single variants R23L, E55L and 

E87L were created and then used as templates to obtain the double variants R23L/E55L 

and R23L/E87L. The entire genes were sequenced to ensure the presence of the desired 

mutation.  

 

3.4.2 Preparation of HypF-N oligomers 

HypF-N was expressed and purified as described in section 2.4.1. The expression and 

purification protocol of the mutants was similar to the one described for the wt protein. 

After purification, these mutants were buffer-exchanged by ultrafiltration in 20 mM 

phosphate buffer, 2 mM DTT at pH 8.0 and stored at -20°C. 

Oligomeric aggregates of HypF-N were prepared by incubating the protein, wt or 

mutated, for 4 hour at 25 °C and at a concentration of 48 µM in two different 

experimental conditions: (i) 50 mM acetate buffer, 12% (v/v) TFE, 2 mM DTT, pH 5.5 

(condition A) and (ii) 20 mM TFA, 330 mM NaCl, pH 1.7, (condition B). For cellular 

biology experiments, the oligomers were centrifuged at 16100 rcf for 10 min, dried 

under N2 and resuspended in cell culture media to a final concentration equal to the 

initial one. In order to check the concentration, aliquots of these samples were taken and 

diluted 1:5 in a solution of 8 M guanidine chloride and incubated under vigorous 

shaking for 1 hour at 37 °C. Protein concentration was then assessed by optical 
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absorption. The remaining samples were diluted in DMEM to a final protein 

concentration of 12 µM concentration. 

 

3.4.3 Far-UV CD measurements 

Far-UV CD measurements were performed using a Jasco J-810 spectropolarimeter 

(Tokyo, Japan) equipped with a thermostated cell holder attached to a Thermo Haake 

C25P water bath (Karlsruhe, Germany). In all cases a 1 mm path length quartz cell was 

used. The spectra were acquired at 19 M final protein concentration, 25 °C in the 

following conditions: (i) 5 mM acetate, 2 mM DTT, pH 5.5 for wt, (ii) 20 mM 

phosphate buffer, 2 mM DTT, pH 8.0 for the variants. In all cases, the spectra were 

blank-subtracted and converted to molar ellipticity per residue units.  

 

3.4.4 Thioflavin T kinetics assay  

Samples of wt HypF-N or mutated were incubated at a protein concentration of 48 μM 

in condition A and B. At different time points, aliquots of each sample were added to a 

solution of 25 μM ThT (Sigma-Aldrich) dissolved in 25 mM phosphate buffer at pH 

6.0, in order to keep a 3.7-fold molar excess of dye. The final protein concentration was 

6 µM. The steady-state intensity of fluorescence emission at 485 nm (excitation at 440 

nm) was recorded at 25 °C using 2x10 mm path-length cell and a Pelkin-Elmer LS 55 

spectrofluorimeter (Wellesley, MA, USA), equipped with a thermostated cell holder 

attached to a Thermo Haake C25P water bath (Karlsruhe, Germany). The ratio between 

the ThT emission in the presence (F) and absence (F0) of HypF-N is reported as a 

function of time and fitted to the following monoexponential function: 

 

                                     F/F0(t) = a + b·e 
– k agg· t          (Eq. 3.2) 
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where a is the plateau value, b is the amplitude of the exponential phase and kagg is the 

apparent rate of the protein aggregation process. For comparison, the data reported in 

the Figure 3.3 were normalised to their plateau values and fitted again to Eq. 3.2.  

 

3.4.5 Cell cultures 

Human SH-SY5Y neuroblastoma cells (A.T.C.C., Manassas, VA, USA) were cultured 

as described in section 2.4.4. 

 

3.4.6 MTT assay 

The toxic effect of the aggregates formed in conditions A and B by hydrophobic 

mutants and wt HypF-N was assessed by the MTT assay. SH-SY5Y cells were plated in 

a 96-well plate and treated for 24 hours at 37°C with 12 μM of the aggregates or native 

proteins either wt or variants of HypF-N. The cell cultures were then incubated with 0.5 

mg/ml MTT solution at 37°C for 4 hours and subsequently with cell lysis buffer (20% 

SDS, 50% N,N-dimethylformamide, pH 4.7) at 37°C for 3 hours. Absorbance values of 

blue formazan were determined at 590 nm and cell viability was expressed as percent of 

MTT reduction in treated cells as compared to untreated cells (assumed as 100%). 

Native HypF-N and its hydrophobic variants was tested as describe above. Data are 

expressed as mean  standard error of the mean (SEM). Comparisons between the 

different groups were performed by ANOVA followed by Bonferroni’s t-test. P values 

< 0.05, 0.01 and 0.001 are indicated by single, double and triple asterisks, respectively. 
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3.4.7 Hoeschst staining test 

The apoptotic effect of aggregate treatments on SH-SY5Y cells was evaluated using 2'-

[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole trihydrochloride 

trihydrate (Hoeschst 33342) dye staining assay. 

Briefly, SH-SY5Y cells were plated on glass cover slips and treated for 24 hours with 

12 µM of the aggregates formed by either wt protein of HypF-N or its hydrophobic 

variants. Subsequently, the cells were incubated with 20 µg/ml Hoechst 33342 dye for 

15 minutes at 37 °C and then were fixed in 2.0% buffered paraformaldehyde for 10 min 

at room temperature. Blue fluorescence micrographs of cells were obtained under UV 

illumination in an epifluorescence inverted microscope (Nikon, Diaphot TMD-EF) with 

an appropriate filter set. Furthermore, native HypF-N and its native hydrophobic 

variants was tested as described above.  

 

3.4.8 Analysis of cytosolic Ca
2+ 

dyshomeostasis  

Ca
2+

 dyshomeostasis was evaluated on SH-SY5Y cells cultured on glass cover slip 

using Fluo3-AM (Molecular Probes, Eugene, OR). The cell cultures were exposed to 12 

µM of HypF-N aggregates prepared as described above for 60 minutes at 37°C. The 

cells were then treated for 30 minutes at 37 °C with 10 μM Fluo3-AM, 0.01% (w/v) 

pluronic acid F-127 (Sigma-Aldrich). The fluorescence was detected with an excitation 

of 488 nm by collecting the emitted fluorescence with the confocal scanning system 

(confocal Leica TCS SP5 scanning microscope, Mannheim, Germany). 

To quantify the signal intensity of each fluorescent probe, a variable number of cells 

(10 to 22) were analyzed in each experiment using the ImageJ software (NIH, Bethesda, 

MD, USA), and the fluorescence intensities expressed as fractional changes above the 

resting baseline, ΔF/F, where F is the average baseline fluorescence in control cells 
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(assumed as 100%) and ΔF represents the fluorescence changes over the baseline in 

cells exposed to different treatments. Comparisons between the different groups were 

performed by ANOVA followed by Bonferroni’s t-test. A p value < 0.05 was 

considered statistically significant. 

 

3.4.9 ANS fluorescence 

Oligomeric aggregates of wt and mutated HypF-N were prepared by incubating the 

proteins for 4 hours at 25 °C at a concentration of 48 µM in conditions A and B. 

Aliquots of ANS (Sigma-Aldrich) dissolved in 50 mM acetate, 12% (v/v) TFE, pH 5.5 

or in 20 mM TFA, 330 mM NaCl, pH 1.7 were added to type A and type B aggregates, 

respectively, in order to obtain a final 3:1 molar excess of dye. Fluorescence spectra 

were acquired at 25 °C, immediately after addition of ANS, using a 10 x 2 mm quartz 

cell and the equipment described in section 3.4.4, with an excitation wavelength of 380 

nm. Optical absorption spectra were acquired for all the samples using a Jasco V630 

spectrophotometer (Tokyo, Japan) and a 1 mm quartz cell and the fluorescence 

intensities of the spectra were corrected for inner filter effects with the formula reported 

by Lakowicz: 

 

                                F  Fe p  10 
(Abs      Abs    /2

    (Eq. 3.3) 

 

where F is the corrected fluorescence, Fexp is the experimentally observed fluorescence, 

Absex corresponds to the value of absorbance at the ANS excitation wavelength and 

Absem are the values of absorbance recorded at the same wavelengths of the 

fluorescence emission spectrum [Lakowicz, 1999]. 

 



Chapter 3                                                      Structural determinants for oligomer toxicity 

 

104 

 

3.4.10 Turbidimetry 

Oligomers of wt and mutated HypF-N were prepared by incubating the proteins in 

conditions A and B. Subsequently, the absorbance of the samples at 500 nm was 

measured using a Jasco V-630 spectrophotometer (Tokyo, Japan) and a cell path of 1 

mm. All the values were blank-subtracted. 

 

3.4.11 Static light scattering 

Oligomeric aggregates of wt and mutated HypF-N were prepared by incubating the 

proteins for 4 hours at 25 °C at a concentration of 48 µM in conditions A and B. SLS 

measurements were performed at 25 °C using the Malvern Zetasizer Nano S instrument 

(Malvern, Worcestershire, UK) with fixed parameters, equipped with a Peltier 

temperature controller. Disposable polystyrene cells having a 1 cm path length were 

used. 
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Chapter 4 

TRANSTHYRETIN SUPPRESSES THE TOXICITY OF PROTEIN MISFOLDED 

OLIGOMERS  

4.1 Introduction 

Transthyretin (TTR) is a homotetrameric protein with a total molecular mass of 55 kDa, 

that is synthesized in the liver, choroid plexus of the brain, and retina of the eye 

[Soprano et al., 1985; Stauder et al., 1986]. In the plasma TTR transports thyroxine (T4) 

and the retinol binding protein (RBP), whereas in the cerebrospinal fluid TTR is the 

primary transporter of T4 [Reixach et al., 2008; Buxbaum and Reixach, 2009]. TTR is 

also one of 30 human proteins associated with amyloidosis [Westermark et al., 2007]. 

Amiloidogenesis of wild-type TTR occurs in the heart of 10-25% of human older than 

80 years, resulting in senile systemic amyloidosis (SSA), often leading to congestive 

heart failure [Tanskanen et al. 2008; Lie et al., 1988]. TTR fibrillogenesis is accelerated 

by the presence of any of the approximately 100 different amyloidogenic mutations 

responsible for early-onset TTR amyloidoses [Sekijima et al., 2005; Connors et al., 

2003; Jacobson et al., 1997a; Jacobson et al., 1997b]. These mutations are responsible 

for the impairment of thermodynamic and/or kinetic stability of native tetrameric TTR 

[Sekijima et al., 2005], leading to autosomal dominant disorders, including familial 

amyloid neuropathy (FAP), familial amyloid cardiomyopathy (FAC) and the rare 

central nervous system amyloidoses [Garzuly et al., 1996; Connors et al., 2003].  

In spite of its link to human pathology, an anti-amyloidogenic effect that prevents 

fibril formation of A disease has been proposed for TTR. In 1982 it was first found 

that TTR is bound to A plaques in Alzheimer’s disease (AD) brains [Shirahama et al., 



Chapter 4                                                                        TTR suppresess oligomer toxicity 

 

106 
 

1982]. This parallels TTR to all known extracellular chaperones, which are known to be 

associated with A deposits [Powers et al., 1981; Bauer et al., 1991; Kida et al., 1995]. 

11 years later, it was found that amyloid fibril formation of A40 is inhibited in vitro by 

the human cerebrospinal fluid (CSF) [Wisniewski et al., 1993]. The protein of the CSF 

responsible for such inhibition was found to be TTR, through the formation of stable 

complexes between A40 and TTR, either as a dimer of a monomer [Schwarzman et al., 

1994]. In the same study it was also found that purified human TTR inhibited A28 fibril 

formation in vitro [Schwarzman et al., 1994]. Overexpression of human TTR in 

transgenic C. elegans models of AD expressing human A42 led to a lower amount of 

A deposits positive to the amyloid-specific dye Thioflavin S in the muscle cells of the 

nematodes [Link, 1995]. Similarly, overexpression of human TTR or gene knockout of 

murine TTR in mice overexpressing human A led to a decrease and increase of the A 

deposits in the mice brains, respectively [Choi et al., 2007; Buxbaum et al., 2008]. 

Importantly, reduction of amyloid deposition following overepxression of human TTR 

also led to significant cognitive improvement of the AD mice [Buxbaum et al., 2008]. 

Analyses of the interaction between human TTR and Aβ have showed that TTR 

binds to all forms of Aβ: monomers, oligomers and fibrils [Buxbaum et al., 2008; Costa 

et al., 2008; Liu and Murphy, 2006; Du and Murphy, 2010]. The binding is highly 

dependent on the quaternary structure of TTR with monomeric TTR binding Aβ with 

higher affinity than tetrameric TTR [Du and Murphy, 2010]. Moreover, the binding 

occurs with higher affinity for A oligomers, aggregates and fibrils with respect to A 

monomers [Liu and Murphy, 2006; Buxbaum et al., 2008; Du and Murphy, 2010]. In 

addition to inhibiting A fibril formation by monomeric A, TTR was shown to bind to 

preformed A oligomers and fibrils and reduce their toxicity to murine primary neurons 

and human neuroblastoma SH-SY5Y cells [Li et al., 2011].  
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In the light of the results obtained so far, one can hypothesise that TTR can act as an 

endogenous detoxifier of protein oligomers with potential pathological effects, in 

addition to inhibiting amyloid fibril formation. However, it is not clear if such an effect 

occurs only on A oligomers or more generically on protein misfolded oligomers. In 

addition, previous data do not offer any insight into the mechanism by which TTR 

inhibit oligomer toxicity and on the TTR form responsible for such an effect. We have 

previously shown that the cytotoxicity of protein oligomers formed by A, IAPP and 

HypF-N can be suppressed by molecular chaperones, with three of the five tested 

chaperones being extracellular [Chapter 2]. In particular, it was shown that the 

chaperones inhibit the toxicity of the oligomers by binding to them and promoting their 

clustering into large aggregates, in the absence of any disaggregation and structural 

reorganisation within the individual oligomers. In this study we have examined the 

ability of three types of TTR having different tetramer stability, i.e. human TTR 

(hTTR), mouse TTR (mTTR) and an engineered monomer of human TTR carrying the 

V30M substitution with the additional F87M and L110M mutations (M-TTR), to 

suppress the toxicity of extracellularly added oligomers formed by three different 

peptides/proteins, i.e. A42, IAPP and HypF-N. mTTR is the most stable homotetramer 

that cannot dissociate into partially unfolded monomers [Reixach et al., 2008]; hTTR 

also forms stable tetramers but has the ability to dissociate into monomers [Colon and 

Kelly, 1992], whereas M-TTR basically exists as a stable monomer [Jiang et al., 2001; 

Du and Murphy, 2010; Bourgault et al., 2011]. We will show that the three types of 

TTR display different protective effects against oligomer-induced cytotoxicity. 

Following this observation we have gained molecular insight into the underlying 

mechanism by which suppression occurs, showing that TTR-mediated protection 

correlates with the capability of this protein to adopt a monomeric state, to bind to the 
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oligomers and promote their clustering into larger aggregates in the absence of any 

structural reorganisation. 

 

4.2 Results 

The cellular biology experiments were acquired in collaboration with the group of Prof. 

Cristina Cecchi of the University of Florence. AFM measurements were performed by 

Bruno Tiribilli of the Consiglio Nazionale delle Ricerche (CNR) in Florence. 

 

4.2.1 TTRs prevent oligomer-induced cytotoxicity and apoptosis in SH-SY5Y cells  

We incubated oligomers formed from A42, IAPP and HypF-N in the cell culture 

medium in the absence or presence of hTTR, mTTR or M-TTR for 1 hour, then added 

the resulting samples to SH-SY5Y cells and measured the resulting cell viability using 

the MTT reduction assay. All three types of oligomers confirmed their toxic action (Fig. 

1A-C), as previously demonstrated [Chapter 2]. The cells treated with oligomers 

preincubated with hTTR and M-TTR were found to reduce MTT to levels similar to 

untreated cells, to cells treated with the native proteins or to cells treated with oligomers 

preincubated with haptoglobin, a known extracellular chaperone used here as a positive 

control of oligomer toxicity inhibitor (Figure 4.1A-C). Conversely, mTTR only shows a 

small and non-significant protective effect (Figure 4.1A-C). In addition, when the three 

oligomer types were incubated in the cell culture medium for 1 hour with proteins that 

are not expected to possess chaperone properties, such as hen egg white lysozyme 

(HEWL) or bovine serum albumin (BSA), the oligomers were found to maintain their 

toxicity (Figure 4.1A-C). 
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These results indicate that hTTR and M-TTR can suppress or decrease markedly the 

toxicity of oligomers formed by three different peptides and proteins, with a suppression 

that is specific for TTRs with respect to other proteins. 

 

 

 

 

 

 

Figure. 4.1. Suppression of protein oligomer toxicity by TTRs. Preformed oligomers of HypF-N 
(A), Aβ42 (B) and IAPP (C) were resuspended in the cell culture medium, incubated for 1 hour at 
a corresponding monomer concentration of 12 µM in the absence or presence of the indicated 
TTRs (protein:TTR molar ratio was 10:1), human haptoglobin (protein:haptoglobin molar ratio 
was 15:1), HEWL (protein:HEWL molar ratio was 5:1), or BSA (protein:BSA molar ratio was 5:1) 
and then added to SH-SY5Y cells. Cell viability was expressed as percent of MTT reduction in 
treated cells with respect to untreated cells (taken as 100%). The values shown are means  SD 
of three independent experiments carried out in quadruplicate. The double asterisk indicates a 
significant difference (p  0.01) relative to the experiment with oligomers only. 
 

A 

B 
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4.2.2 Monomeric TTR reduces protein oligomer toxicity even at very low 

concentration  

To the aim of understanding the origin of the different ability of TTRs in suppressing 

the toxicity of protein oligomers and the resulting effects on the cells, we have decided 

to concentrate our effort on the toxic oligomers of HypF-N. This protein represents a 

useful model system since it forms morphologically similar oligomers but 

distinguishable on the basis of their biological activity in toxic (type A, the same used in 

the present work) and non toxic (type B) and, consequently, on the basis of the their fine 

structure [Campioni et al., 2010]. Both the two types of oligomers possess their own 

and well characterized structural profile, as highlighted by the fluorescent probe PM 

[Campioni et al., 2010], making possible to probe structural changes experienced by the 

aggregates following their exposure to TTRs. Finally, HypF-N oligomers appear to be 

highly stable, making them easy to handle in our experiments [Campioni et al., 2010].  

The different abilities of TTRs to prevent cell death detected by MTT tests were 

confirmed by the analysis of the chromatin condensation with the apoptotic marker 

Hoechst 33342 and by the measurements of caspase-3 activity, another indicator of 

apoptosis (data not shown). In addition, the MTT test was repeated by varying the 

concentration of each TTR in the 1 hour preincubation solution, while maintaining 

constant that of HypF-N. M-TTR was found to suppress the toxicity of HypF-N 

oligomers even at low concentration with an efficacy similar to haptoglobin and α2-

macroglobulin, two well known extracellular chaperones (Figure 4.2). M-TTR remained 

significantly efficient even at an HypF-N:TTR molar ratio of 400:1, becoming 

ineffective only at a molar ratio of 1000:1 (Figure 4.2). hTTR is also effective, but only 

at higher concentrations; indeed, hTTR was significantly efficient until an HypF-N:TTR 
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molar ratio of 40:1, becoming ineffective at molar ratios of 100:1 or higher. Conversely, 

mTTR did not show any protective effect, even at low molar ratios (Figure 4.2). 

 

 

 

 

 

 

 

4.2.3 The molecular structure of HypF-N oligomers is preserved in the complexes 

with TTRs  

To shed light on the different behaviour of the TTRs and on the molecular mechanism 

by which they exert their protection against HypF-N oligomers we investigated the 

oligomeric state and the molecular structure of HypF-N oligomers after the 

preincubation with TTRs. To assess whether the oligomers can be dissolved by the 

different types of TTR, we exploited the ability of the HypF-N oligomers, unlike native 

HypF-N, to bind to ThT and increase its fluorescence [Campioni et al., 2010] (Figure 

4.3). HypF-N oligomers incubated for 1 hour in a phosphate buffer at neutral pH cause a 

7/8-fold increase of ThT fluorescence, and the same increase was observed when the 

oligomers were preincubated in the same buffer for 1 hour with the different TTRs 

Figure 4.2. Dose-dependent suppression of HypF-N oligomer toxicity by TTRs. Preformed 
oligomers of HypF-N were resuspended in the cell culture medium, incubated for 1 hour in the 
absence (●) or presence of the indicated TTRs/chaperones and HypF-N:TTR/chaperone molar 
ratios and then added to SH-SY5Y cells. TTRs were always considered as tetramers in all HypF-
N:TTR molar ratio values. The scale on the x axis is logarithmic. Cell viability was expressed as 
percent of MTT reduction in treated cells with respect to untreated cells (taken as 100%). The 
values shown are means  SD of three independent experiments carried out in triplicate. 
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(Figure 4.3). To exclude the possibility that TTRs bind ThT, we also analysed samples 

containing only TTRs under identical conditions, detecting no increase of ThT 

fluorescence in these cases (Figure 4.3). Overall, these results show that HypF-N 

oligomers remain stable and do not undergo disaggregation after TTR treatment. 

 

 

 

 

 

 

Subsequently, we verified if the oligomers are structurally re-organised at the 

molecular level by TTRs (Figure 4.4). To this aim we took advantage of the possibility 

to determine the degree of packing of the oligomers through the acquisition of 

fluorescence spectra of oligomers labelled with PM. In particular, the fluorescence 

spectra of nontoxic type B oligomers formed by HypF-N labelled with PM at position 

25, 55 or 87 show an excimer band that is very weak in the corresponding spectra 

obtained with PM-labelled toxic type A oligomers [Campioni et al., 2010]. Three 

variants of HypF-N containing a single cysteine residue at position 25, 55 and 87 were 

therefore labelled with PM, allowed to aggregate and then transferred to phosphate 

Figure 4.3. TTRs do not dissolve HypF-N oligomers. ThT fluorescence at 485 nm (excitation 440 
nm) in the presence of the indicated protein components following preincubation for 1 hour in 
20 mM phosphate buffer at pH 7.0 in the absence or presence of different types of TTR. The ratio 
between the ThT fluorescence in the presence (F) and absence (F0) of proteins is reported; data 
are means ± SD of three independent experiments. The HypF-N concentration was 48 µM (in 
monomer units) and the HypF-N:TTR molar ratio was 10:1. 
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buffer at neutral pH for 1 hour with or without the different types of TTR. The 

fluorescence spectra acquired for the oligomers in either the presence or absence of the 

TTRs were very similar and none of them showed an excimer band (Figure 4.4). 

Moreover, the ratio of the exicimer-to-monomer fluorescence intensity (FI440nm/FI375nm) 

did not change for following preincubation with any TTR, remaining lower in all cases 

than the corresponding value measured for the nontoxic oligomers (Figure 4.4). These 

results therefore reveal that none of the TTRs studied here is able to promote a 

structural re-organization of the toxic HypF-N oligomers. 

 

 

 

 

 

 

Figure 4.4. TTRs do not remodel HypF-N oligomers. Fluorescence emission spectra of samples 
containing HypF-N oligomers labeled with PM at positions 25 (top), 55 (middle) and 87 
(bottom) were acquired at 12 μM HypF-N concentration following 1 hour of incubation in the 
absence (green) or in the presence (pink) of hTTR (left panels), mTTR (middle panels) or M-TTR 
(right panels). The molar ratio of HypF-N:TTR was 10:1. For comparison, the corresponding 
spectra of nontoxic oligomers are reported in each graph (black). The spectra have been 
normalized to the intensity of the peak centered at 375 nm. On the right, the exicimer-to-
monomer fluorescence intensity (FI440nm/FI375nm) of each sample and of the nontoxic oligomers 
[Campioni et al., 2010] is reported. 
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4.2.4 TTRs bind to the oligomers 

To determine whether TTRs bind to the oligomers we used TTR-derived intrinsic 

fluorescence and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-

PAGE). HypF-N oligomers sediment at a relatively low centrifugal force; therefore, if 

the TTRs are able to bind to the oligomers and the interaction between them is stable, 

the concentration of the TTRs in the supernatant will decrease following centrifugation, 

depending on the strength of the interaction. HypF-N oligomers and TTRs were 

incubated in isolation or in combination for 1 hour in phosphate buffer at pH 7.0 and 

each resulting sample was centrifuged to separate the pellet fraction (P), which contains 

the TTR bound to the oligomers, from the supernatant (SN), which contains the soluble 

unbound TTR. The amount of TTR in the SN was measured by its intrinsic fluorescence 

(Figure 4.5A-C). The fluorescence spectra of the SNs collected from the samples where 

oligomers and hTTR or M-TTR were present were less intense than the corresponding 

ones in which only the TTRs were present, indicating that a fraction of hTTR, and to a 

greater extent M-TTR, is bound to the oligomers. In contrast, the fluorescence spectrum 

of the SN collected from the sample containing oligomers and mTTR was similar to the 

corresponding one in which only mTTR was present. 

As a further evidence of the binding, the P and SN fractions collected in each 

experiments were also analysed by SDS-PAGE. In the samples containing oligomers or 

TTR alone, the HypF-N monomer (MW ~10.5 kDa) and the TTR monomer (MW ~15 

kDa) were found only in the P and SN fractions, respectively (Figure 4.5D-F). In the 

sample containing both HypF-N oligomers and M-TTR, the HypF-N band was present 

only in the P fraction, whereas M-TTR was found to partition between the P and SN 

fractions (Figure 4.5F). This result confirms that a small fraction of M-TTR is bound to 

the oligomers. Similar results, but to a lower extent, were obtained with hTTR (Figure 
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4.5D). In contrast, we found mTTR only in the SN fraction, suggesting that mTTR did 

not bind to HypF-N oligomers (Figure 4.5E). These results show that TTRs have a 

different ability to bind to the oligomers. Interestingly, such ability correlates with the 

capability of TTR to adopt the monomeric state.  

 

 

 

 

 

 

 

 

 

 
 
Figure 4.5. TTRs binds to HypF-N oligomers. (A-C) Intrinsic fluorescence spectra of the SN 
fractions obtained after centrifugation of samples containing preformed HypF-N oligomers (blue), 
TTR (red) and HypF-N oligomers + TTR (purple). For hTTR (A), mTTR (B) and M-TTR (C) the 
fluorescence emission spectra (excitation at 280 nm) were acquired at 37°C. The spectrum of 
HypF-N oligomers has been subtracted from that of TTR + HypF-N oligomers to eliminate its 
contribution. (D-F) SDS-PAGE analysis of the insoluble (P) and soluble (SN) fractions obtained 
from samples containing preformed HypF-N oligomers (lanes 2, 3), TTR (lanes 4, 5) and 
preformed oligomers treated for 1 hour with TTR (lanes 6, 7) for hTTR (D), mTTR (E) and M-TTR 
(F). The HypF-N concentration was 48 µM (in monomer units) and the molar ratio of HypF-N:TTR 
was 10:1. 
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4.2.5 The binding of TTRs to the oligomers promotes their assembly into larger 

species 

To investigate whether the binding of TTRs to the oligomers promotes their further 

assembly, we first used AFM. Discrete HypF-N oligomers with a height of 1–4 nm 

were observed by AFM in the absence of TTR (Figure 4.6A), but significantly larger 

aggregates were evident in the presence of M-TTR and, to a lower extent, of hTTR 

(Figure 4.6A). More complex structures were observed in the presence of M-TTR, 

consisting of very large aggregates of irregular shape with typical heights of a few tens 

of nanometers. Large assemblies were not observed in samples containing oligomers 

with mTTR (Figure 4.6A), or in samples containing only TTR (data not shown). 

As an additional evidence of the ability of TTRs to promote oligomer assembly, we 

took advantage of turbidimetry measurements at 500 nm, which revealed a similar 

trend. As reported in Figure 4.6B the oligomers incubated in the presence of h-TTR and 

to a greater extent the ones incubated in presence of M-TTR show a higher light 

scattering than the aggregates incubated in absence of TTR or in the presence of m-

TTR. 

The AFM and turbidity results show that M-TTR and hTTR promote the assembly 

of the HypF-N oligomers into larger species. 
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4.3 Discussion 

4.3.1 TTR inhibits the cellular dysfunction caused by protein misfolded oligomers  

TTR was shown to inhibit aggregation and amyloid plaque formation of A, the peptide 

associated with AD. Such inhibition was observed in vitro, using SDS-PAGE, 

transmission electron microscopy, laser light scattering and measurements of ThT 

Figure 4.6. Assembly of HypF-N oligomers induced by TTRs. (A) AFM images and corresponding 
height analysis of HypF-N oligomers preincubated with or without TTRs. Preformed oligomers 
of HypF-N were resuspended in phosphate buffer pH 7.0, incubated for 1 h at a corresponding 
monomer concentration of 48 µM in the absence or presence of the indicated TTRs (HypF-
N:TTR molar ratio was 10:1) and then deposited on mica; the scan size is 1 µm. Z range: 5 nm 
(oligomers), 24 nm (oligomers + hTTR), 6 nm (oligomers + mTTR), 36 nm (oligomers + M-TTR). 
(B) Measurements of turbidimetry at 500 nm of HypF-N oligomers incubated with or without 
TTRs and TTRs alone. Conditions as in (b) of HypF-N oligomers preincubated with or without 
TTRs and TTRs alone. Absorbance at 500 nm was measured at 48 μM HypF-N and at a HypF-
N:TTR molar ratio of 10:1. Error bars correspond to standard error values of at least six 
indipendent experiments. 
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fluorescence and Congo red birefringence under cross-polarised light [Schwarzman et 

al., 1994; Liu and Murphy, 2006; Du and Murphy, 2010]. It was also observed in vivo, 

using nematode and mouse models genetically modified to overexpress human TTR or 

to have the endogenous TTR gene knocked out; indeed, these transgenic animals were 

found to accumulate a lower and greater amount of A plaques, respectively [Link, 

1995; Choi et al., 2007; Buxbaum et al., 2008]. 

Analyses carried out in vitro on the interaction between TTR and Aβ have shown 

that TTR binds monomeric A, explaining its ability to prevent aggregation of the 

peptide [Schwarzman et al., 1994; Costa et al., 2008; Du and Murphy, 2010]. However, 

TTR-A binding occurs with higher affinity for aggregated A, such as oligomers and 

fibrils, relative to monomeric A, with monomeric TTR exhibiting stronger binding 

than tetrameric TTR [Liu and Murphy, 2006; Buxbaum et al., 2008; Du and Murphy, 

2010]. The high affinity between monomeric TTR and aggregated A suggests an 

important role for such an interaction. Indeed, TTR was shown to bind to preformed A 

oligomers and reduce their toxicity to murine primary neurons and human 

neuroblastoma SH-SY5Y cells [Li et al., 2011]. In such studies, TTR-mediated toxicity 

suppression was not due to the ability of TTR to inhibit A aggregation, but to act on 

preformed oligomers. 

Here, we found that TTR is able to suppress the toxicity of extracellularly added 

oligomers formed by three different peptides/proteins, namely A42, IAPP and HypF-N, 

adding two proteins to the preliminary observation obtained with A42 [Li et al., 2011]. 

TTR was found to inhibit the influx of Ca
2+

 caused by the oligomers, thus eliminating 

the occurrence of later effects, manifested as oxidative stress, membrane leakage and 

apoptosis. In addition, the observed dependence of the degree of protection on the time 

of preincubation indicates that TTR suppresses oligomer toxicity by interacting with the 
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oligomers, rather than through a separate protective pathway mediated by direct 

interaction of TTR with the cells. Overall, therefore, these findings reveal that the 

interaction of misfolded protein oligomers with cell membrane and the following 

deleterious effects, can be abolished by the presence of TTR. 

The three types of TTR examined here, namely hTTR, mTTR and M-TTR, were 

found to display different protective effects against oligomer-induced cytotoxicity. 

Indeed, monomeric M-TTR was able to protect SH-SY5Y neuroblastoma cells and rat 

primary neurons against oligomer-induced cytotoxicity; the highly stable tetrameric 

mTTR only showed a small and non significant protective effect, whereas the less stable 

tetrameric hTTR had intermediate rescuing effects between the two forms, or displayed 

a protective action slower or at higher concentrations than M-TTR. Hence, the ability of 

TTR to protect neuronal cells and neurons against misfolded protein oligomers 

correlates with the ability of the protein to adopt a monomeric state. 

 

4.3.2 TTR promotes the formation of larger assemblies of oligomers  

To shed light on the molecular mechanism by which TTR exerts its protection, we 

focused on HypF-N oligomers, probing their oligomeric state and molecular structure 

after the incubation with TTRs in vitro. Using ThT fluorescence we found that TTR 

does not disaggregate the preformed oligomers. Nor does it appear to promote a 

structural re-organization of the discrete oligomers, as shown by site-directed pyrene 

labelling. Rather, TTR was found to bind to the oligomers, as determined with SDS-

PAGE and intrinsic fluorescence, and promote their further assembly into larger 

aggregates, as shown by AFM and turbidimetry. The ability of TTR to bind to and 

further assemble preformed HypF-N oligomers correlated again with its ability to adopt 

a monomeric state, as the efficiency of such process followed the same order as that 
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found for toxicity suppression, i.e. M-TTR > hTTR > mTTR. These data also suggest 

that the size of extracellular protein aggregates is an inverse correlate of their toxicity. 

The TTR-induced oligomer clusters are characterized by a reduction in their exposed 

hydrophobic surface and diffusional mobility, both of which are expected to reduce 

their toxicity to cells, in agreement with previous findings [Chapter 2; Chapter 3; Ojha 

et al., 2011; Ahmed et al., 2010; Cizas et al., 2010; Bemporad and Chiti, 2012]. 

Overall, the molecular mechanism through which monomeric TTR protects the cells 

against the deleterious effects of protein aggregation seems to involve two different 

levels of intervention, that is inhibition of protein aggregation and fibril formation, as 

previously demonstrated [Schwarzman et al., 1994; Liu and Murphy, 2006; Du and 

Murphy, 2010; Link, 1995; Choi et al., 2007; Buxbaum et al., 2008], and neutralisation 

of protein oligomer toxicity once the oligomers are formed, as shown here. Such a dual 

protective behaviour has also been demonstrated for a number of proteins that have 

been widely recognised as molecular chaperones, such as B-crystallin, Hsp70 (both 

with and without ATP), clusterin, 2-macroglobulin and haptoglobin [Chapter 2], 

suggesting that TTR can also act as an ATP-independent, extracellular chaperone. The 

early observation that TTR is tightly bound to A plaques in AD patients, which 

remained without significant follow-up for years, [Shirahama et al., 1982], is also 

reminiscent of the behaviour of extracellular chaperones, as they all have been found 

associated with extracellular A deposits in such patients [Powers et al., 1981; Bauer et 

al., 1991; Kida et al., 1995].  
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4.4 Materials and methods 

4.4.1 Formation of protein oligomers 

HypF-N was expressed and purified as described in section 2.4.1. Toxic HypF-N 

oligomers were generated by incubating the protein for 4 hour at 25 °C and at a 

concentration of 48 µM in 50 mM acetate buffer, 12% (v/v) TFE, 2 mM DTT, pH 5.5. 

Aβ42 and IAPP oligomers were produced as reported [Lambert et al., 2001; Cecchi et 

al., 2008] and resuspended in the cell culture medium to 12 μM. HypF-N oligomers 

were centrifuged at 16100 rcf for 10 min, dried under N2 and resuspended in cell culture 

media in the absence of cells (for cell biology tests) or in 20 mM potassium phosphate 

buffer at pH 7.0 (for biophysical/biochemical analysis). Native proteins were diluted to 

a final concentration of 12 µM into the same media. Oligomers were then incubated in 

the appropriate media for 1 hour at 37 °C while shaking, in the absence or presence of 

each TTR, and then added to cultured cells or subjected to biophysical/biochemical 

analysis. The protein:TTR molar ratio was 10:1, unless stated otherwise (hTTR, mTTR 

and M-TTR are considered as tetramers).  

 

4.4.2 Preparation of TTRs 

hTTR, mTTR and M-TTR were prepared and purified in an Escherichia Coli expression 

system as described elsewhere [White and Kelly, 2001; Jiang et al., 2001; 

Hammarstrom et al., 2003]. The three protein variants were purified by gel filtration on 

a Superdex 75 column (Amersham Biosciences) in 10 mM phosphate buffer, 100 mM 

KCl, 1 mM EDTA pH 7.6 before each experiment to ensure that no aggregates were 

present in the starting material. Liquid chromatography-electrospray ionization mass 

spectrometry was used to confirm the molecular weight of the proteins. 
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4.4.3 Cell cultures  

Human SH-SY5Y neuroblastoma cells (A.T.C.C., Manassas, VA) were cultured as 

described in section 2.4.4. 

 

4.4.4 MTT reduction assay 

The effect of protein oligomers on cell viability was assessed using SH-SY5Y cells 

seeded in 96-well plates, and using the MTT assay as described in section 2.4.5. 

Preformed oligomers of HypF-N, Aβ42 and IAPP (12 µM monomer concentration) were 

incubated for 1 hour in the absence or presence of hTTR, mTTR, M-TTR, haptoglobin, 

HEWL or BSA (protein:TTR molar ratio was 10:1 unless otherwise stated; 

protein:haptoglobin, protein:HEWL and protein:BSA molar ratio was 5:1), and then 

added to the cells. Each TTR (1.2 µM tetramer concentration) or 12 µM native HypF-N, 

Aβ42 and IAPP were also used as controls.  

 

4.4.5 Thioflavin T assay 

Preformed HypF-N oligomers (12 µM monomer concentration) were incubated for 1 

hour at 37 °C under shaking in the presence or absence of each TTR (HypF-N:TTR 

molar ratio as described above). Aliquots of these samples were added to a solution of 

25 μM ThT dissolved in 25 mM phosphate buffer at pH 6.0, in order to obtain a 3.7-fold 

molar excess of dye. Final protein concentration was 6 μM. The steady-state intensity of 

fluorescence emission at 485 nm (excitation at 440 nm) was recorded at 37 °C using a 

Perkin-Elmer LS 55 spectrofluorimeter (Wellesley, MA) equipped with a thermostated 

cell holder attached to a Haake F8 water bath (Karlsruhe, Germany). Each TTR (1.2 µM 

tetramer concentration) and 12 µM native HypF-N were also used as controls. 
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4.4.6 Pyrene fluorescence emission spectra 

HypF-N variants carrying a single cysteine residue were labeled with PM as previously 

described [Campioni et al., 2010], converted into toxic aggregates as previously 

reported [Campioni et al., 2010] and then 4-fold diluted into 20 mM potassium 

phosphate buffer at pH 7.0. Fluorescence emission spectra of these samples were 

measured after 1 h of incubation at 37 °C under shaking in the absence and presence of 

each TTR. The spectra were acquired at 12 μM HypF-N concentration, 37 °C, with an 

excitation of 344 nm using a Perkin-Elmer LS 55 spectrofluorimeter (Wellesley, MA) 

equipped with a thermostated cell holder attached to a Haake F8 water bath (Karlsruhe, 

Germany), and a 1.5 × 1.5 mm quartz cell. The spectra have then been normalized to the 

intensity of the peak centered at 375 nm. 

 

4.4.7 Intrinsic fluorescence 

HypF-N oligomers and each TTR incubated in isolation and in combination as 

described before were centrifuged for 10 min at 16100 rcf. The intrinsic fluorescence of 

the SNs were measured at 37 °C with excitation at 280 nm using a Perkin-Elmer LS 55 

spectrofluorimeter (Wellesley, MA) equipped with a thermostated cell holder attached 

to a Haake F8 water bath (Karlsruhe, Germany), and a 2  10 mm quartz cell. The 

spectrum of HypF-N oligomers has been subtracted from that of TTR+HypF-N 

oligomers.  

 

4.4.8 SDS-PAGE 

HypF-N oligomers and each TTR incubated in isolation and in combination as 

described before were centrifuged for 10 min at 16100 rcf. P and SN aliquotes were 

collected and mixed with 4× sample buffer with 20 % 2-mercaptoethanol. SDS-PAGE 
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analysis was performed in accordance with Laemmli [Laemmli, 1970] using a 16% 

polyacrylamide gels. Proteins were visualized by Coomassie Blue staining (0.1% 

Coomassie Blue, 10% acetic acid, 40% methanol). 

 

4.4.9 Atomic force microscopy 

HypF-N oligomers were incubated for 1 hour at 37 °C under shaking in 20 mM 

potassium phosphate buffer at pH 7.0, in the presence or absence of each TTR. Samples 

were diluted 1000-fold and immediately deposited on a freshly cleaved mica substrate 

and dried under a gentle nitrogen flux. Non-contact AC mode atomic force microscopy 

(AFM) images were acquired in air using a PicoSPM microscope equipped with an AC-

mode controller (Molecular Imaging, Phoenix, AZ). Rectangular non-contact cantilever 

(model NSG01, NT-MDT Moscow, Russia), with typical resonance frequency of 150 

Khz, were used. Oligomer sizes were measured from the height in cross section of the 

topographic AFM images. The reported heights result from the obtained values 

multiplied by a shrinking factor of 2.2, which was evaluated comparing the heights of 

native HypF-N under liquid and after drying. 

 

4.4.10 Turbidimetry 

HypF-N oligomers (12 µM monomer concentration) were incubated for 1 hour at 37 °C 

under shaking in 20 mM potassium phosphate buffer at pH 7.0 in the absence or 

presence of each TTR. Samples containing TTRs were also used as controls. 

Subsequently, the absorbance of the samples at 500 nm was measured using a Jasco V-

630 UV-Vis Spectrophotometer (Tokyo, Japan) and a cell path of 0.1 cm. All the 

measurements were blank-subtracted.  
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4.4.11 Statistical analysis 

Data was expressed as mean  standard deviation (SD). Comparisons between different 

groups were performed using ANOVA followed by Bonferroni’s post-comparison test. 

A p value lower than 0.05 was considered statistically significant. 
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Chapter 5 

GLIAL INFLAMMATORY RESPONSE TRIGGERED BY MISFOLDED PROTEIN 

OLIGOMERS AND THE ROLE OF HSPS AS IMMUNE MEDIATORS 

5.1 Introduction 

Increasing evidence suggests that the neurodegeneration associated with protein 

deposition diseases, such as Alzheimer's disease, Parkinson's disease, Hungtington’s 

disease and spongiform encephalopathies, is the result of many causes. Indeed, these 

neurodegenerative pathologies are characterized by such a complex nature that the 

scientific community has begun to consider targeting single molecules or processes as 

ineffective for therapeutic purposes [Mangialasche et al., 2010]. Recently, the chronic 

inflammatory response, caused by a massive activation of microglial cells in the brain, 

has been established as a central process in the onset and progression of these 

pathologies. In fact, it has been observed in brains affected by Parkinson's disease [Kim 

and Joh, 2006], Alzheimer's disease [McGeer et al., 2006] and Huntington’s disease 

[Masters and O’Neill, 2011]. 

It has been suggested that the trigger factor of the innate response is the exposure of 

hydrophobic surfaces [Seong and Matzinger, 2004]. Such an exposure is a property 

shared by amyloidogenic proteins/peptides and misfolded aggregates, which are strong 

inducers of inflammation in agreement with this hypothesis [Masters and O’Neill, 

2011]. In particular, the early forming oligomers, that are thought to be the major 

pathogenic species in protein deposition diseases, having a high degree of superficial 

hydrophobicity, are believed to be highly responsible for the activation of the 

inflammatory process [Roodveldt et al., 2011; Amor et al., 2010]. 
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Following these considerations, we have investigated the inflammatory response 

triggered by misfolded oligomers, taking advantage of the well-known property of the 

HypF-N aberrant oligomers to be toxic or benign according to the conditions in which 

they form [Campioni et al., 2010]. Moreover, we also investigated the role of two Hsps, 

αB-crystallin and Hsp70, as immune mediators in the CNS, since they are released in 

the extracellular space and act as signal molecules for the immune system in a cytokine- 

of chemokine- manner [van Noort, 2008; Chen and Cao, 2010]. This aspect is 

particularly interesting in the contest of the injury caused by aberrant oligomers; indeed, 

Hsps have also been found to interact with misfolded oligomers, clustering them and 

making them harmless [Ojha et al., 2011; Chapter 2]. 

The results presented in this chapter show that the toxic and the nontoxic HypF-N 

oligomers are able to activate microglia in a different manner, even though they both 

trigger a pro-inflammatory response. In addition, the nontoxic oligomers and the 

assemblies of the toxic oligomers neutralized by chaperones have an ability to induce 

inflammation without affecting cellular viability.  

 

5.2 Results 

5.2.1 The viability of microglia cells is affected by HypF-N oligomers 

The ability of type A and type B oligomers to cause cell death has been assessed by 

means of the MTT assay on a variety of cell lines, including the neuroblastoma cells 

(SH-SY5Y) [Campioni et al., 2010; Chapter 2], mouse endothelial cells (Hend) 

[Campioni et al., 2010], chinese hamster ovarian cells (CHO) [Saridaki et al., 2012] and 

human embryonic kidney 293 cells (HEK293) [Mannini et al., 2012]. In all these 

experiments, the cells were treated with a 12 µM concentration of HypF-N aggregated 
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either in condition A or in condition B and the biological activity of the resulting 

oligomers was found to be different: whereas type B oligomers did not affect the 

cellular viability, type A aggregates reduced the viability by 30-40% with respect to the 

untreated cells.  

We first checked the response of microglia cells to the administration of type A and 

type B oligomers, using the same MTT reduction inhibition assay. The oligomers 

aggregated under the two distinct conditions were centrifuged, resuspended in the cell 

culture medium and then added to murine N13 microglia cells. The results, displayed in 

Figure 5.1 as a percentage of the value measured for the untreated cells, show that at the 

HypF-N concentration of 12 µM, the two types of oligomers presented a difference in 

the biological activity, with the type A aggregates being able to cause a 40% decrease in 

the viability and the type B ones maintaining unaltered the mitochondrial ability to 

reduce MTT. This result confirms the different ability of the two oligomers to cause cell 

dysfunction, even in the case of murine N13 microglia cells. 

In order to enable the direct comparison of the inflammatory response triggered by 

type A and type B oligomers, we looked for conditions in which both types of 

aggregates do not affect the cellular viability. Therefore, MTT tests were repeated by 

decreasing the concentration of the aggregates (Figure 5.1). Lower concentrations of 

type B oligomers did not alter the viability, whereas type A aggregates showed a dose-

dependent effect, reaching very low levels of cytotoxicity and not significantly different 

from the ones of untreated cells at the concentration of 0.7 µM (Figure 5.1). These 

viability data allow to study the immunological properties of type A and B aggregates in 

conditions in which they display different biological activities, i.e. at concentrations 
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ranging from 12 to 3 µM and in conditions in which they are both unable to cause 

cellular damage (0.7 µM). 

 

 

 

 

 

 

 

 

5.2.2 HypF-N oligomers trigger a pro-inflammatory response 

The inflammatory response to type A and B oligomers was evaluated by measuring the 

release of a series of key cytokines in N13 cells by means of ELISA assays. We 

measured the release of three pro-inflammatory cytokines, i.e. IL-6, TNF-α and IL-1β, 

and the release of IL-10, recognized as an anti-inflammatory cytokine. The cells were 

incubated with exogenously added type A and B oligomers at a concentration in which 

they maintain their different biological activity (3 or 4 µM, as stated). As shown in 

Figure 5.1. MTT reduction assay on murine N13 cells treated with different concentrations of 
type A (red bars) and B (blue bars) oligomers. Error bars correspond to standard errors of the 
means of 2 independent experiments. Single, double and triple asterisks refer to p values lower 
than 0.05, 0.01 and 0.001, respectively with respect to untreated cells. 
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Figure 5.2, both types of oligomers were able to induce the release of the three pro-

inflammatory cytokines to a different extent.  

The release of IL-6 was moderately induced by type A and B oligomers but it was 

substantially lower than the release stimulated by lipopolysaccharide (LPS), used here 

as a positive control (Figure 5.2A). Indeed, LPS is a major constituent of the outer cell 

membrane of Gram-negative bacteria and it is recognized to induce the secretion of pro-

inflammatory cytokines in microglia [Kettermann et al., 2011]. In addition, type A and 

type B aggregates were found to trigger the release of not significantly different 

amounts of IL-6 (Figure 5.2A). The TNF-α response observed for HypF-N type A and 

type B oligomers was found to be greater than that induced by LPS (Figure 5.2B). 

Moreover, as observed in the case of IL-6 release measurement, type A and type B 

oligomers were able to induce the TNF-α release to a similar extent (Figure 5.2B). The 

treatment of the microglial cells with HypF-N oligomers cause a significant rise in IL-

1β levels relative to the untreated cells only in the case of type A oligomers (Figure 

5.2C). By contrast, the amount of this cytokine in the culture supernatants of cells 

treated with the medium alone was found to be not significantly different from the 

amount detected after type B oligomers treatment (Figure 5.2C). In addition, the release 

of IL-1β was found to be higher in cells stimulated by type A oligomers with respect to 

cells incubated with type B oligomers (p value < 0.05) (Figure 5.2C). Finally, the 

release of IL-10 was also tested on N13 cells, but no amount of this cytokine was 

detected after the incubation of the cells with both types of HypF-N aggregates (data not 

shown). 

http://en.wikipedia.org/wiki/Gram-negative_bacteria
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The release of pro-inflammatory mediators, such as IL-6, TNF-α and IL-1β, 

indicates that HypF-N oligomers trigger a pro-inflammatory response. Conversely, the 

lack of stimulation of the IL-10 secretion suggests that they are not able to induce the 

release of this anti-inflammatory signal. Moreover, at a concentration in which the 

oligomers have different abilities to damage the cells, type A and type B oligomers 

stimulate the release of IL-6 and TNF-α to a similar extent. Only in the case of IL-1β, 

type A oligomers were found to be stronger inducers than type B aggregates. 

 

5.2.3 Differences between type A and type B oligomers in stimulating the 

inflammatory response 

In order to better understand the biological mechanism of the pro-inflammatory 

response triggered by type A and type B oligomers, we performed ELISA tests in 

Figure 5.2. Interleukin profile of microglia cells stimulated by type A and B oligomers. IL-6 (A), 
TNF-α (B) and IL-1β (C) release measured by ELISA assays in culture supernatants of murine N13 
cells treated with 3 µM (A and B) or 4 µM (C) type A and type B oligomers. In every experiment 
LPS at a concentration of 1 µg/ml and culture medium alone were used as positive and negative 
controls, respectively. Non detectable amounts of cytokines were indicated with ND. Error bars 
correspond to standard errors of the means of 6 (A), 5 (B) or 2 (C) independent experiments.  
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conditions in which both types of aggregates do not display significant levels of 

cytotoxicity, as indicated by the MTT results shown in Figure 5.1. Therefore, N13 cells 

were treated with different concentrations of oligomers and the release of IL-6 and 

TNF-α was measured. The results reported in Figure 5.3 show that type A oligomers 

stimulated the release of IL-6 in a dose-dependent manner (Figure 5.3A), whereas such 

a release was found to be less affected by the different concentrations of type B 

oligomers (Figure 5.3A). A similar trend was also revealed in the measurement of TNF-

α levels, where the release of this mediator induced by type A oligomers rose by 

increasing the HypF-N concentration, whereas type B aggregates triggered a secretion 

of TNF-α in a dose-independent manner (Figure 5.3B).  

In addition, type B oligomers were able to stimulate a considerable release of both IL-6 

and TNF-α even when they were added at the low concentration of 0.7 µM. By contrast, 

the same concentration of type A oligomers is not sufficient to induce such a release of 

Figure 5.3. Pro-inflammatory interleukin profile of microglia cells stimulated by type A and B 
oligomers. IL-6 (A) and TNF-α (B) release measured by ELISA assays in culture supernatants of 
murine N13 cells treated with the indicated concentrations of type A (red dots) and B (blue dots) 
oligomers.  
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these mediators. Therefore, it is interesting to notice that at very low concentration of 

oligomeric protein, in which the two types of oligomers do not affect the cellular 

viability to any detectable extent, type B aggregates differ significantly with respect to 

type A oligomers in releasing both IL-6 (p value < 0.001) and TNF-α (p value < 0.05), 

with type B oligomers being stronger inducers of the inflammatory response than type 

A oligomers. 

 

5.2.4 Differences in cell internalisation between type A and B oligomers 

The difference in stimulating the cytokine secretion observed following a treatment with 

type A and B oligomers at the concentration in which they do not alter the cellular 

viability was further investigated. 

As described in section 1.4.1, cytokine release can be triggered following the 

recognition of DAMPs, such as misfolded oligomers, by pattern-recognition receptors 

located on membranes [Glass et al., 2010; Amor et al., 2010; O’Neill, 2004]. 

The different ability of the extracellularly added type A and B oligomers in interacting 

with such receptors may be responsible of their differences in stimulating the cytokine 

secretion. The interaction with the receptors can be related to differences in the affinity 

of the two types of oligomers for the receptors, or to differences in penetrating into the 

cells. Since now, only the second hypothesis has been investigated. 

We posited that the entrance of the oligomers in the cells could be responsible for the 

reduction of the ability to induce cytokine release, whereas the permanence outside the 

cells makes the oligomers able to maintain their stimulus. 

Therefore, microglia N13 cells were incubated for 24 hours in the presence of either 

type A or type B oligomers. The cells were washed accurately, permeabilized and 
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treated with anti-HypF-N primary antibodies and then with Alexa Fluor 633-conjugated 

anti-rabbit secondary antibodies. Other cell samples, after the incubation with of the 

oligomers and the intensive washing step, were treated with the antibodies without 

being permeabilized. Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI). 

The two sets of samples were then compared through the acquisition of confocal 

microscopy images (Figure 5.4). In the cell samples not subjected to permeabilization, 

the antibodies were prevented from entering and detecting the oligomers inside the 

cells. Therefore, the red fluorescence signal indicating the presence of HypF-N 

oligomers arises from aggregates that are stuck on the membrane. By contrast, in the 

permeabilized samples the red fluorescence derives from both the oligomers stuck on 

membranes and the oligomers that are inside the cells. 

The comparison of the two sets of images obtained after the treatment of the cells with 

type A oligomers revealed that numerous red dots are present in the permeabilized 

samples (Figure 5.4A and magnification in Figure 5.4E), whereas such dots are hardly 

detectable in the samples not permeabilized (Figure 5.4B). This result suggests that 

most of the type A oligomers are inside the cells and very few remain outside on the cell 

surfaces.  

Regarding the cells incubated with type B oligomers, the amounts of oligomers in the 

permeabilized (Figure 5.4C and magnification in Figure 5.4F) and not permeabilized 

(Figure 5.4D) samples are similar, indicating that the net number of oligomers 

internalized into the cells is very low and the majority remains outside. 

Moreover, type B oligomers seem to be more tightly bound to membranes than type A 

oligomers, since it is more difficult to remove them in the washing step, as indicated by 

the higher amount of type B oligomers in the cell samples not permeabilized (Figure 



Chapter 5                                                   Inflammatory response triggered by oligomers 

 

135 

 

5.4D) with respect to the amount of type A aggregates detected in cell samples similarly 

treated (Figure 5.4B).  

No red fluorescence signals were observed in the cells incubated in absence of the 

oligomers (Figure 5.4G) 

 

 

 

Figure 5.4. Representative confocal microscopy images showing the internalization of type A 
and B oligomers in N13 cells. Microglia cells were seeded on glass coverslips and incubated with 
preformed type A (A and B) and B (C and D) oligomers resuspended in the cell culture medium 
at the final concentration of 0.7 µM. After 24 hours treatment, the cells were washed with 
phosphate-buffered saline and fixed. Half of the coverslips were treated with a PBS solution 
containing 3% BSA (w/v) and 0.5% (v/v) triton in order to allow plasma membrane 
permeabilization (A and C); the remaining coverslips were not permeabilized and treated with a 
PBS solution containing 3% BSA only (B and D). The coverslips were incubated with rabbit 
polyclonal anti-HypF-N antibodies and then with Alexa Fluor 633-conjugated anti-rabbit 
secondary antibodies (red). In (E) enlarged detail of (A); in (F) enlarged detail of (D). In (G) 
untreated cells. The nuclei were stained with DAPI (blue). Confocal scanning microscope images 
of the median planes were reported in all cases.  
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Overall, these data suggest that in N13 cells there is a preferential internalization of 

type A oligomers with respect to type B aggregates, which, in addition, seem to be 

prone to adhere to cell membranes. Hence, the results obtained confirm the hypothesis 

according to which type A oligomers are internalized and consequently prevented to 

exert their cytokine release stimulation; whereas type B aggregates remain outside on 

the surface membrane where they can realize their induction. 

 

5.2.5 Hsps protect microglia cells from toxic HypF-N oligomers 

Since Hsp70 and αB-crystallin are able to protect SH-SY5Y and HEK293 cells from the 

damage of type A aggregates, provided the oligomers are incubated in the presence of 

the chaperones before they are added to the cells [Chapter 2], we performed a 

preliminary analysis to verify the ability of the chaperones to prevent the toxic effects 

caused by type A oligomers in N13 microglia cells. The final goal was to reveal the 

potency of Hsps as immune mediators. As a further indication in this regard, it has been 

demonstrated that extracellular Hsp70 can act as an autocrine or paracrine signal 

[Henderson and Pockley, 2010]. 

Hence, type A oligomers were incubated in the absence or in the presence of Hsp70 

or αB-crystallin for 1 hour at 37 °C and then added to N13 cells at the corresponding 

monomer concentration of 3 µM. Viability measurements of untreated cells and of cells 

incubated in the presence of the chaperones alone were also acquired. As a control, cells 

were also treated with 3 µM type B oligomers incubated with or without the two 

chaperones. The cellular viability was assessed by means of the MTT reduction test and 

the results are reported in Figure 5.5. N13 microglial cells, treated with type A 

oligomers pre-incubated with the chaperones, were found to reduce MTT to levels 
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comparable to untreated cells or to cells treated with the chaperones alone or with type 

B oligomers, pre-incubated in isolation or in combination with the chaperones. Hence, 

the ability of Hsp70 and of αB-crystallin to protect SH-SY5Y and HEK293 cells from 

oligomer mediated damage was confirmed with N13 microglia cells. 

 

5.2.6 Hsp70 as an immune mediator  

The role of Hsp70 as an immune mediator in the extracellular space was investigated 

through the evaluation of the activation of the microglial cells in terms of secretion of 

IL-6 and TNF-α, pro-inflammatory cytokines, and IL-10, anti-inflammatory cytokine. 

Firstly, N13 cells were treated by adding different concentrations of Hsp70 to their 

extracellular medium and, after incubation, the culture supernatants were collected. 

Figure 5.6 shows the data obtained from ELISA assays of these samples. Hsp70 was 

Figure 5.5. MTT reduction assay on murine N13 cells treated with Hsp70, αB-crystallin, type A 
oligomers incubated in isolation or in combination with Hsp70 or αB-crystallin and type B 
oligomers incubated with or without Hsp70 or αB-crystallin. Oligomers were added at a 
corresponding monomer concentration of 3 µM in the absence or presence of the indicated 
chaperones; protein:chaperone molar ratio was 5:1. Error bars correspond to standard errors. 
Single, double and triple asterisks refer to p values lower than 0.05, 0.01 and 0.001, respectively 
with respect to the experiment with type A oligomers. 
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found to trigger the release of IL-6 (Figure 5.6A) and TNF-α (Figure 5.6B) in a dose 

dependent manner, in agreement with previous findings [Kakimura et al., 2002]; by 

contrast IL-10 was not detected in the samples, even in those treated with the highest 

concentration of Hsp70 (data not shown). 

For comparison, Figure 5.7 reports, in the same graph, the release of IL-6 (Figure 

5.7A) and TNF-α (Figure 5.7B) stimulated by Hsp70 and type A and B oligomers, all 

added to the cells at the concentration of 0.7 µM. As described in section 5.2.3, at this 

concentration type B oligomers are stronger inducers of both IL-6 and TNF-α than type 

A oligomers. Hsp70 was found to induce a higher and comparable secretion of IL-6 

with respect to type A and type B aggregates, respectively (Figure 5.7A). By contrast, a 

similar and significantly lower amount of TNF-α was detected after the treatment with 

Hsp70, with respect to type A and type B oligomers, respectively (Figure 5.7B). These 

data suggest that different pathways of microglial activation might be used by Hsp70 

and by the aggregates.  

 

 Figure 5.6. Pro-inflammatory interleukin profile of microglia cells stimulated by Hsp70. IL-6 (A) 
and TNF-α (B) release in culture supernatants of murine N13 cells treated with different 
concentrations Hsp70 measured by ELISA assays. Error bars correspond to standard errors.  
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In order to assess if Hsp70 affects the inflammatory response mediated by HypF-N 

oligomers, this chaperone was incubated in isolation or in combination with type A and 

B oligomers at different HypF-N:Hsp70 molar ratios, and the resulting mixtures were 

added to N13 cells. After proper incubation, culture supernatants were recovered and 

analyzed by means of ELISA tests. Since an inflammatory response is observed also in 

the presence of Hsp70 alone, it is necessary to consider the specific contribution of type 

A and B oligomers to the stimulation of IL-6 and TNF-α secretion, as opposed to that of 

Hsp70 itself.  

In Figure 5.8, the amount of cytokine (IL-6 or TNF-α), detected in supernatants of 

cells treated with the oligomers (type A, indicated in red; type B, indicated in blue) pre-

incubated with Hsp70, has been divided by the sum of the amounts of cytokine released 

after the treatment with Hsp70 and HypF-N oligomers. This ratio is indicated as 

Figure 5.7. Comparison between the ability of Hsp70 and type A and B aggregates, all added to N13 
cells at 0.7 µM, in stimulating the secretion of IL-6 (A) and TNF-α (B) measured by ELISA assays. 
Error bars correspond to standard errors. Double and triple asterisks refer to p values lower than 
0.01 and 0.001, respectively with respect to the experiment with Hsp70. 
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cytolig+chap / (cytchap + cytolig) and it allows to point out three scenarios: (i) cytolig+chap / 

(cytchap + cytolig) = 1, in which the amount of cytokine secretion stimulated by the 

mixture Hsp70+oligomers simply corresponds to the sum of the contributes of Hsp70 

and oligomers; (ii) cytolig+chap / (cytchap + cytolig) < 1, in which the mixture 

Hsp70+oligomers has a lower ability in triggering the cytokine release with respect to 

Hsp70 and the oligomers, both added to the cells in isolation; (iii) cytolig+chap / (cytchap + 

cytolig) > 1, in which the mixture Hsp70+oligomers is a stronger inducer of the cytokine 

release with respect to Hsp70 and the oligomers both added on the cells in isolation. 

The HypF-N:Hsp70 molar ratios were 5:1 (Figure 5.8A), 10:1 (Figure 5.8B) and 20:1 

(Figure 5.8C), while HypF-N aggregates were at a corresponding monomer 

concentration of 3 µM in all cases. 

When Hsp70 was incubated with HypF-N oligomers at the HypF-N:Hsp70 molar 

 

Figure 5.8. Effect of Hsp70 and type A and B oligomers in triggering the release of IL-6 or TNF-α. 
The ratio cytolig+chap / (cytchap + cytolig) is repored, where cytolig+chap corresponds to the amount of 
cytokine (IL-6 or TNF-α) detected in supernatants of N13 cells treated with the oligomers (type A, 
red dots; type B, blue dots) pre-incubated with Hsp70; cytchap is the amount of cytokine released 
after the treatment with Hsp70; cytolig represents the amount of cytokine secreted after the 
treatment with HypF-N oligomers. The HypF-N:Hsp70 molar ratios were 5:1 (A), 10:1 (B) and 20:1 
(C). In all cases HypF-N aggregates were at a corresponding monomer concentration of 3 µM. Error 
bars correspond to standard error.  
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ratio of 5:1, the cytolig+chap / (cytchap + cytolig) values were found to be similar or slightly 

lower than 1, indicating that the oligomers, after the incubation with Hsp70, maintain 

unaltered or slightly decrease the ability in triggering the cytokine release (Figure 5.8A). 

By decreasing the HypF-N:Hsp70 molar ratio to 10:1 (Figure 5.8B), the cytolig+chap / 

(cytchap + cytolig) values were generally similar to 1. At the 20:1 HypF-N:Hsp70 molar 

ratio (Figure 5.8C), the cytolig+chap / (cytchap + cytolig) values resulted to be similar to or 

higher than 1. Although this trend suggests an ability of high concentration of Hsp70 to 

lower the cytokine secretion induced by the type A and B oligomers, this anti-

inflammatory effect of Hsp70 is not evident at HypF-N:Hsp70 molar ratio of 10:1 and 

20:1, and the effect is weak even at a molar ratio of 5:1. 

 

5.2.7 αB-crystallin an as immune mediator  

In order to study the role of αB-crystallin as an immune mediator, we estimated its 

ability to activate microglial cells, by means of ELISA measurements of the release of 

IL-6, TNF-α and IL-10. To this purpose, αB-crystallin was incubated in isolation or in 

combination with the two types of HypF-N oligomers and then added to N13 cells. In 

Figure 5.9 four representative experiments are reported. When αB-crystallin was added 

to microglial cells, neither IL-6 (Figure 5.9A,B) nor TNF-α (Figure 5.9C,D) were 

detected in cell culture supernatants, indicating that this protein is not able to activate 

N13 microglial cells. Following the incubation of αB-crystallin with type A and B 

oligomers at a corresponding monomer concentration of 3 µM (Figure 5.9A,C) and 0.7 

µM (Figure 5.9B,D), no significant changes in either IL-6 (Figure 5.9A,B) or TNF-α 

(Figure 5.9C,D) secretion were found with respect to the release stimulated by HypF-N 

aggregates alone. The cytolig+chap / (cytchap + cytolig) values reported in Figure 5.9E,F are  
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Figure 5.9. Effect of αB-crystallin and type A and B oligomers in triggering the release of IL-6 or 
TNF-α. IL-6 (A,B) and TNF-α (C,D) release measured by ELISA assays in culture supernatants of 
murine N13 cells treated with αB-crystallin and 3 µM (A,C) or 0.7 µM (B,D) type A and type B 
oligomers incubated in isolation or in combination. The HypF-N:αB-crystallin molar ratio was 5:1 
in all cases. (E,F) The ratio cytolig+chap / (cytchap + cytolig) is repored, where cytolig+chap corresponds to 
the amount of cytokine (IL-6 or TNF-α) detected in supernatants of N13 cells treated with the 
oligomers (type A, red dots; type B, blue dots) pre-incubated with αB-crystallin; cytchap is the 
amount of cytokine released after the treatment with αB-crystallin; cytolig represents the amount of 
cytokine secreted after the treatment with HypF-N oligomers. HypF-N aggregates were at a 
corresponding monomer concentration of 3 µM (E) or 0.7 µM (F). The HypF-N:αB-crystallin molar 
ratio was 5:1 in all cases. Error bars correspond to standard errors of the means of two 
independent experiments. 
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close to 1 and confirm that HypF-N oligomers, after the incubation with αB-crystallin, 

maintain unaltered their ability to trigger the cytokine release. The cytokine IL-10 was 

not detected (data not shown), indicating that both αB-crystallin and the mixture αB-

crystallin+HypF-N aggregates are not able to induce this anti-inflammatory signal. 

 

5.3 Discussion 

5.3.1 Type A and B oligomers: a useful tool to investigate inflammation in protein 

deposition disease 

The study of the mechanisms of neurodegeneration has led to the evidence that a single 

scientific perspective might not be sufficient to understand the multifactorial nature of 

neuropathologies. The inflammatory process, inevitably associated with 

neurodegeneration, has been recognized to give an important contribution to the onset 

and progression of neuropathologies. For this reason, the activation of microglia has 

been studied following the treatment with type A and type B HypF-N oligomers. 

Type A and B oligomers were found to stimulate the release of pro-inflammatory 

cytokines, in agreement with previous results obtained for disease-related misfolded 

oligomers [Masters and O’Neill, 2011]. Interestingly, when the activity of type A and B 

oligomers was evaluated at a concentration in which neither type is toxic, type B 

oligomers were found to be stronger inducers of the cytokine release. Such a release is 

not coupled to alterations in cellular viability and therefore represents a specific 

oligomer mediated-response. 

An explanation to this phenomenon possibly resides in the differences of 

internalization of the two oligomer types into the cells. Indeed, through the analysis of 

confocal microscopy images and in agreement with previous analysis performed on 
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neuroblastoma cells [Campioni et al., 2010; Zampagni et al., 2011], type B oligomers 

were found to remain outside and stuck on the membranes, where they can produce a 

prolonged stimulation responsible for the stronger cytokine response detected in our 

experiments. By contrast, type A oligomers were found inside the cells and therefore 

not able to act on the membrane receptors. In addition, microglia cells are the resident 

phagocytes of the CNS [Perry and Gordon, 1988]. Hence, the entrance of the oligomers 

into the cells can be an active or a passive mechanism that deserves further 

investigation. 

Most importantly, it is worthwhile to study other aspects for which type A and B 

oligomers can be useful tools, such as differences of affinity for pattern-recognition 

receptors and differences in the ability to induce the transcription of such receptors. 

The similar morphology and diverse fine structure of type A and B oligomers 

[Campioni et al., 2010] could shed light on the structural determinants responsible for 

the immune properties of misfolded oligomers and, importantly, offer the opportunity to 

understand if a persistent inflammatory stimulus can damage the cells on the long 

timescale, to an extent similar to that by which toxic aggregates kill the cells on the 

short timescale. 

 

5.3.2 Inflammation induction in the absence of toxicity and the role of Hsps 

Type B oligomers and type A oligomers neutralized by Hsp70 and αB-crystallin are not 

toxic to N13 microglial cells, confirming previously reported data [Campioni et al., 

2010; Zampagni et al., 2011; Chapter 2], but they were found to be able to trigger the 

inflammatory response. This could be a beneficial mechanism adopted by the cells in 

order to repair the insult given by the presence of exogenous material. Indeed, in the 
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acute phase, inflammation is targeted to the damage resolution and to the protection of 

the tissue from the insult.  

In agreement with this hypothesis, Hsp70 itself has been found to trigger the release 

of IL-6 and TNF-α, as previously reported [Kakimura et al., 2002], suggesting that the 

microglia activation is a protective mechanism. Interestingly, it has been reported that 

the activation of microglia by Hsp70 correlates with an increase in the uptake and 

clearance of Aβ aggregates [Kakimura et al., 2002; Kakimura et al., 2001; Takata et al., 

2003]. 

It would be of much interest to evaluate the oligomer uptake capacity in microglia 

following the stimulation by Hsp70, and if this ability is affected by the different type A 

and B oligomers. Indeed, the results obtained with neuroblastoma cells and reported in 

Chapter 2 indicated that neither Hsp70 nor αB-crystallin were able to promote the 

uptake of the HypF-N oligomers in this cell types (Figure 2.4). In addition, it is 

important to investigate if a detrimental effect occurs when the molecular machinery 

dedicated to the clearance of the extracellular material is overwhelmed and the release 

of inflammatory mediators is sustained for long periods. 

Noteworthy, Hsps seems to have a double role in the context of neurodegenerative 

diseases associated with protein misfolding: the well established studied traditional 

function of molecular chaperones [Hartl et al., 2011] and the function of immune 

regulators [van Noort, 2008; Henderson and Pockley, 2010]. With particular regard to 

misfolded oligomers, Hsps were found to abolish the oligomer toxicity [Chapter 2; Ojha 

et al.,2011] and both Hsp70 and the neutralised type A oligomers+Hsps were found to 

trigger inflammation, indicating the participation of Hsps in different processes as 
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diverse as protein oligomer-induced cell dysfunction and inflammation in 

neurodegeneration. 

Assessing the importance, the contribute and the balance of such processes could 

led to a multiple approach in the treatment of protein deposition diseases, examining 

neurodegeneration from different perspectives. 

 

5.4 Materials and Methods 

5.4.1 LAL assay and preparation of HypF-N oligomers 

The content of endotoxins in HypF-N protein solution samples, purified as described in 

section 2.4.1 (Chapter 2), was determined by toxin sensor Limulus Amebocyte Lysate 

(LAL) assay kit (Genscript, Piscataway, NJ, USA) and resulted to be ~ 0.02 EU/ml. 

Oligomeric aggregates of HypF-N were prepared by incubating the protein for 4 hour at 25 

°C and at a concentration of 48 µM in two different experimental conditions: (i) 50 mM acetate 

buffer, 12% (v/v) TFE, 2 mM DTT, pH 5.5 (condition A) and (ii) 20 mM TFA, 330 mM NaCl, 

pH 1.7, (condition B) [Campioni et al., 2010]. The oligomers were centrifuged at 16100 

rcf for 10 min, resuspended in cell culture media at a corresponding monomer 

concentration ranging from 12 µM to 0.7 µM and used for treatments of the cells. In a 

set of experiments the preformed oligomers, after resuspension in the cell culture media, 

were incubated at a corresponding monomer concentration of 12 µM in isolation or in 

combination with αB-crystallin or Hsp70 for 1 hour at 37 °C under shaking, then diluted 

to a final concentration of 3 µM or 0.7 µM and finally added to cell cultures. In these 

experiments, the molar ratio of HypF-N:αB-crystallin used was 5:1; whereas the molar 

ratios of HypF-N:Hsp70 were 5:1, 10:1 or 20:1, as stated. The molecular chaperones 

αB-crystallin and Hsp70 were obtained as described in section 2.4.2 (Chapter 2). 
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5.4.2 Cell cultures 

Murine N13 microglia cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) F12 supplemented with 10% fetal bovine serum (FBS), 1.0% non-essential 

amino acids, glutamine and antibiotics. The cell culture was maintained in a 5.0% CO2 

humidified atmosphere at 37 °C and grown until 80% confluence for a maximum of 20 

passages. 

 

5.4.3 MTT reduction assay 

The cytotoxic effect of type A and type B oligomers on N13 cell cultures was assessed 

performing the MTT assay by using the Cell Proliferation Kit I (MTT) (Roche, 

Mannheim, Germany). In a set of experiments, type A and type B oligomers and the 

molecular chaperones αB-crystallin or Hsp70 were incubated in isolation or 

combination and then added to cell culture media. Absorbance values of blue formazan 

were determined at 575 nm and cell viability was expressed as percent of MTT 

reduction in treated cells as compared to untreated cells (assumed as 100%).  

 

5.4.4 Cytokine release measurements  

Murine N13 mcroglia cell cultures were stimulated with type A and type B oligomers 

and, in a set of experiments, with type A and type B oligomers and the molecular 

chaperones αB-crystallin or Hsp70 incubated in isolation or combination. LPS at a 

concentration of 1 µg/ml, and culture medium alone were used as positive and negative 

controls, respectively. The stimulation lasted 6 hours and 24 hours for TNF-α and for 

IL-6, IL-1β and IL-10 release measurements, respectively. Culture supernatants were 

harvested and centrifuged at 400 rcf for 5 min and cell-cleared supernatants were 
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recovered and stored at –20 °C before cytokine measurement. IL-6, IL-1β, TNF-α and 

IL-10 levels were assayed through ELISA tests using Mouse IL-6/IL-1β/TNF-α/IL-10 

BD OptEIA ELISA set (BD Biosciences, Madrid, Spain) according to the 

manufacturer’s protocol. 

 

5.4.5 Cell internalisation of HypF-N oligomers 

N13 cells were seeded on glass coverslips and incubated for 24 hours by adding to the 

culture medium type A and type B oligomers at a corresponding monomer 

concentration of 0.7 μM. Cells were also treated with culture medium alone for control. 

The cells were washed with phosphate-buffered saline and fixed in 2% (w/v) buffered 

paraformaldehyde for 15 min at 4 °C. Half of the coverslips were treated for 1 hour at 4 

°C with a PBS solution containing 3% BSA (w/v) and 0.5% (v/v) Triton X-100 in order 

to allow plasma membrane permeabilization; the remaining coverslips were not 

permeabilized and therefore treated with a PBS solution containing 3% BSA only for 1 

hour at 4 °C. The coverslips were incubated over night with 1:1000 diluted rabbit 

polyclonal anti-HypF-N antibodies (Primm srl) and then for 1 hour at room temperature 

in the dark with 1:800 diluted Alexa Fluor 633-conjugated anti-rabbit secondary 

antibodies. The nuclei were stained with 1 µg/ml DAPI for 5 minutes at room 

temperature. Confocal scanning microscope images were acquired using a Leica TCS 

SP5 confocal scanning microscope (Mannheim, Germany). 
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