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Università degli Studi di

Firenze

Cotutori

Prof. Giorgio Ottaviani
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Chapter 1

Introduction

Let X be a non singular algebraic variety of dimension n and let D be a union
of ` distinct irreducible hypersurfaces on X, which we call an arrangement on
X. We can associate to D the sheaf of differential 1-forms with logarithmic
poles on D, denoted by Ω1

X(logD). This sheaf was introduced by Deligne
in [8] for an arrangement with normal crossings. In this case, for all x ∈ X,
the space of sections of Ω1

X(logD) near x is defined by

< d log z1, . . . , d log zk, dzk+1, . . . , dzn >OX,x

where z1, . . . , zn are local coordinates such that D = {z1 · · · zk = 0}. More-
over Ω1

X(logD) turns out to be a vector bundle over X, which is simply called
logarithmic bundle. If D has not normal crossings, there is a more general
definition of Ω1

X(logD) given by Saito in [23].
Once we construct the correspondence

D −→ Ω1
X(logD) (1.1)

a natural, interesting question is whether Ω1
X(logD) contains enough infor-

mation to recover D. For this reason we can talk about the Torelli problem
for Ω1

X(logD), since the injectivity of the map in (1.1) is investigated. In
particular, if the isomorphism class of Ω1

X(logD) determines D, then D is
called a Torelli arrangement.
The first situation that has been analyzed is the case of hyperplanes in the
complex projective space Pn. Hyperplane arrangements play a central role
in geometry, topology and combinatorics ([19], [3]). In 1993 Dolgachev and
Kapranov gave an answer to the Torelli problem when H = {H1, . . . , H`} is
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an arrangement of hyperplanes with normal crossings, [10]. They proved that
if ` ≤ n+2 then two different arrangements give always the same logarithmic
bundle, moreover if ` ≥ 2n + 3 then we can reconstruct H from Ω1

Pn(logH)
unless the hyperplanes in H don’t osculate a rational normal curve Cn of
degree n in Pn, in which case Ω1

Pn(logH) is isomorphic to E`−2(C∨n ), the
Schwarzenberger bundle of degree ` − 2 associated to C∨n . In 2000 Vallès ex-
tended the latter result to ` ≥ n + 3, [30]: while Dolgachev and Kapranov
studied the set of jumping lines ([4], [16]) of Ω1

Pn(logH), Vallès characterized
H as the set of unstable hyperplanes of the logarithmic bundle, i.e.

{H ⊂ Pn hyperplane |H0(H,Ω1
Pn(logH)∨|H ) 6= {0}}.

A few years ago, hyperplane arrangements without normal crossings have
been investigated, in particular Faenzi-Matei-Vallès in [12] studied the Torelli
problem for the subsheaf Ω̃1

Pn(logH) of Ω1
Pn(logH) and proved that H is a

Torelli arrangement if and only if H1, . . . , H`, seen as point in the dual pro-
jective space, don’t belong to a Kronecker-Weierstrass variety of type (d, s),
which is essentially the union of a smooth rational curve of degree d with s
linear subspaces.
In this thesis, after recalling the fundamental definitions and the main clas-
sical results on the subject, we consider arrangements of higher degree hy-
persurfaces with normal crossings on Pn.
In chapter 4 we describe some important properties of the logarithmic bundle
Ω1

Pn(logD), in particular in theorem 4.2 is proved that Ω1
Pn(logD) admits a

resolution of lenght 1 which is a very important tool for our investigations.
Moreover, this resolution allows us to find again the Torelli type results in
the case of hyperplanes.
The main results of this thesis are collected in chapters 5, 6, 7 and 8.
Precisely, chapter 5 is devoted to arrangements of conics in P2: if ` ≥ 9,
then we can recover the conics in D as unstable conics of Ω1

P2(logD), unless
the hyperplanes in P5 corresponding to D through the quadratic Veronese
map satisfy further hypothesis (theorem 5.4). The notion of unstable conic
is inspired to the one of unstable hyperplane given for a Steiner bundle.
On the contrary, if ` = 1 or ` = 2 then we find arrangements which are
not of Torelli type (theorems 5.7 and 5.18), in particular in the second case,
by using the simultaneous diagonalization, we prove that two pairs of conics
are associated to isomorphic logarithmic bundles if and only if they have the
same four tangent lines.
In chapter 6 we extend theorem 5.4 to arrangements of a sufficiently large
number of hypersurfaces of higher degree in Pn (theorem 6.4) and in chapter
7 we generalize the methods used for one conic and pairs of conics to quadrics
in Pn (theorems 7.1 and 7.8).
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Finally, chapter 8 is devoted to arrangements made of lines and conics in P2,
in particular the cases of a conic and a line (corollary 8.4), of a conic and
two lines (corollary 8.12) and of a conic and three lines (theorem 8.15) are
investigated.
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Chapter 2

Preliminaries

2.1 Arrangements with normal crossings

Let X be a smooth algebraic variety, we give the following:

Definition 2.1. A reduced and effective divisor on X is a family

D = {D1, . . . , D`}

of irreducible hypersurfaces of X such that Di 6= Dj for all i, j ∈ {1, . . . , `},

i 6= j. D is also called arrangement on X.

Example 2.2. Let D be an arrangement on the n-dimensional complex

projective space, which we simply denote by Pn. Each hypersurface Di ∈ D

is defined as the zero locus of a homogeneous polynomial fi of degree di in

the variables x0, . . . , xn. Thus D is given by the set of zeroes of
∏̀
i=1

fi, which

is a polynomial of degree
∑̀
i=1

di. In particular, if di = 1 for all i, we talk about

a hyperplane arrangement, if all di’s are equal to 2 we have an arrangement

of quadrics and so on. In particular, when n = 2 in the two previous cases
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we have to deal, respectively, with lines and conics. Also arrangements of

hypersurfaces of different degrees are allowed.

In this setting arrangements with normal crossings play a very special
role. We have the following:

Definition 2.3. Let D be an arrangement on X. We say that D has nor-

mal crossings if it is locally isomorphic (in the sense of holomorphic local

coordinates changes) to a union of coordinate hyperplanes of Cn.

Example 2.4. Let H = {H1, . . . , H`} be a hyperplane arrangement in Pn.

H has normal crossings if and only if codim(Hi1 ∩ . . . ∩ Hik) = k for any

k ≤ n + 1 and any 1 ≤ i1 < . . . < ik ≤ `. In particular, if n = 2 a pair of

distinct lines has always normal crossings but three lines meeting in point

don’t.

Example 2.5. In the complex projective plane let D = {r, C}, where r is a

line and C is a smooth conic. Then D has normal crossings if and only if r

is not tangent to C (see figure 8.1). Moreover, if D is made of a cubic with

a node, then it has normal crossings, but if the cubic has a cusp it doesn’t.

Figure 2.1: Nodal cubic and cusp cubic

5



2.2 Logarithmic bundles

LetX be a smooth algebraic variety and letD be an arrangement with normal
crossings on X. In order to introduce the notion of sheaf of logarithmic
forms on D we will refer to Deligne ([7], [8]). This is not the unique way
to describe these sheaves, there are also other definitions for more general
divisors ([23], [24]) that are equivalent to this one for arrangements with
normal crossings. In this sense see also section 3.3.

Let’s start with some notations. Let U = X−D be the complement of D
in X and let j : U ↪→ X be the embedding of U in X. We denote by Ω1

U the
sheaf of holomorphic differential 1-forms on U and by j∗Ω

1
U its direct image

sheaf on X. We remark that, since D has normal crossings, then for all x ∈ X
there exists a neighbourhood Ix ⊂ X such that Ix∩D = {z1 · · · zk = 0}, where
{z1, . . . , zk} is a part of a system of local coordinates.

We have the following:

Definition 2.6. We call sheaf of differential 1-forms on X with logarithmic

poles on D the subsheaf of j∗Ω
1
U , denoted by Ω1

X(logD), such that, for all

x ∈ X, Γ(Ix,Ω
1
X(logD)) is given by

{s ∈ Γ(Ix, j∗Ω
1
U) | s =

k∑
i=1

uid log zi +
n∑

i=k+1

vidzi}

where ui, vi are locally holomorphic functions and d log zi =
dzi
zi

.

Remark 2.7. Every s ∈ Γ(Ix,Ω
1
X(logD)) is a meromorphic differential 1-

form with at most simple poles on D, namely

(z1 · · · zk)s = (z1 · · · zk)
k∑
i=1

uid log zi + (z1 · · · zk)
n∑

i=k+1

vidzi

is holomorphic on Ix. So we are allowed to call s a logarithmic form on D.

It’s not hard to check that also ds has this property. As we can see in [8], it

holds also that if s is a local section of j∗Ω
1
U such that s and ds have at most

simple poles on D, then s ∈ Γ(Ix,Ω
1
X(logD)).
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Remark 2.8. Let X be a smooth algebraic variety and let D be an arrange-

ment with normal crossings on X. Then Ω1
X(logD) is a locally free sheaf

of rank n = dimX, [8]. So, Ω1
X(logD) can be regarded as a rank-n vector

bundle on X and it is called logarithmic bundle attached to D.

2.3 Torelli problem for logarithmic bundles

Given a smooth algebraic variety X, we are able to map an arrangement
with normal crossings on X to a logarithmic vector bundle on X:

D 7−→ Ω1
X(logD). (2.1)

A natural question arises from this contruction: is it true that isomorphic
logarithmic bundles come from the same arrangement? If the answer is
positive, then we say that D is an arrangement of Torelli type, or a Torelli
arrangement. This is the so called Torelli problem for logarithmic bundles.

Actually this is not the “original” Torelli problem: we talk about problem
of Torelli type whenever we have to deal with the injectivity of certain map.
The history of this kind of problems goes back to 1913, when Torelli asked
wether two curves are isomorphic if they have the same periods, [27].

The mathematical literature on this topic is enormous, we will focus our
attention on the case of logarithmic bundles.

In the next chapter we will discuss the main results concerning arrange-
ments of hyperplanes in the complex projective space: a large number of
mathematicians worked and are still investigating on this subject, I will
mainly refer to Dolgachev, Kapranov ([9], [10]), Ancona, Ottaviani ([1], [2]),
Faenzi, Matei, Vallès ([12], [30]).
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Chapter 3

The case of hyperplanes in the

projective space

3.1 Logarithmic bundles of hyperplanes with

normal crossings: Steiner and Schwarzen-

berger bundles

LetH = {H1, . . . , H`} be an arrangement of ` hyperplanes with normal cross-
ings on Pn. Let’s describe the main features of the corresponding logarithmic
bundle Ω1

Pn(logH). First of all we have the following:

Proposition 3.1. Let x ∈ Pn and let Ix ⊂ X a neighbourhood of x such

that Ix ∩H = {z1 · · · zk = 0}, as in definition 2.6. We denote by

res : Ω1
Pn(logH) −→

⊕̀
i=1

OHi

the Poincaré residue morphism, that is the map defined locally by

k∑
i=1

uid log zi +
n∑

i=k+1

vidzi 7−→ (u1(x), . . . , uk(x), 0, . . . , 0).
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Then

0 −→ Ω1
Pn −→ Ω1

Pn(logH)
res−→

⊕̀
i=1

OHi −→ 0 (3.1)

is a short exact sequence of sheaves on Pn.

Proof. Every local section ω =
n∑
i=1

aidzi of Ω1
Pn can be considered as a local

section of Ω1
Pn(logH) by writing:

ω =
k∑
i=1

aizid log zi +
n∑

i=k+1

aidzi.

So the holomorphic differential 1-forms on Pn belong to the kernel of the

Poincaré residue map. It’s not hard to see that also the converse is true.

Remark 3.2. In chapter 4 we will see that also logarithmic bundles attached

to arrangements of smooth hypersurfaces with normal crossings on Pn admit

an exact sequence similar to (3.1).

If we consider an arrangement H made of a sufficiently large number of
hyperplanes, the corresponding logarithmic bundle satisfies a further condi-
tion: it is a Steiner bundle on Pn. In this sense we have the following:

Definition 3.3. Let S be a rank-n vector bundle over Pn, we say that S is

a Steiner bundle if it appears in a short exact sequence

0 −→ I ⊗OPn(−1)
τ−→ W ⊗OPn −→ S −→ 0 (3.2)

where I and W are complex vector spaces of dimension k and n+ k respec-

tively. The map τ is uniquely determined by a tensor t ∈ (Cn+1)∨⊗ I∨⊗W

in such a way that τ is injective on each fiber.

Remark 3.4. The short exact sequence (3.2) associated to a Steiner bundle

S can be also represented as

0 −→ OPn(−1)k −→ On+k
Pn −→ S −→ 0 (3.3)

9



where k is a positive integer.

We denote by Sn,k the family of Steiner bundles with parameters n and
k. The elements of Sn,k have a very important property: they are stable in
the sense of Mumford-Takemoto (slope-stability). Let’s recall this notion of
stability.

Definition 3.5. For a torsion-free coherent sheaf E over Pn let

µ(E) =
c1(E)

rk(E)

be the slope of E.

We say that E is stable (resp. semistable) if for all coherent subsheaves

F ⊂ E such that 0 < rkF < rkE we have

µ(F ) < µ(E) (resp. ≤). (3.4)

The theorem of Bohnhorst-Spindler ([5]) gives a very useful criterion in
order to check condition (3.4) in the case of rank-n vector bundles over Pn

with homological dimension equal to 1. We have the following:

Theorem 3.6. (Bohnhorst-Spindler 1992, [5])

Let E be a rank-n vector bundle on Pn with minimal resolution

0 −→
k⊕
i=1

OPn(ai) −→
n+k⊕
j=1

OPn(bj) −→ E −→ 0

where a1 ≥ . . . ≥ ak, b1 ≥ . . . ≥ bn+k and a1 < bn+1, . . . , ak < bn+k.

The following facts are equivalent:

1) E is stable (resp. semistable);

2) b1 < (resp ≤) µ(E) =
1

n

n+k∑
j=1

bj −
k∑
i=1

ai

.

Moreover, if b1 = . . . = bn then E is stable in any case.

Remark 3.7. Theorem 3.6 implies that if S ∈ Sn,k then S is stable.
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Now we are ready to state and to give a sketch of the proof of the result,
due to Dolgachev and Kapranov ([10]), that we mentioned previously.

Theorem 3.8. (Dolgachev-Kapranov 1993, [10])

Let H = {H1, . . . , H`} be an arrangement of hyperplanes with normal cross-

ings such that ` ≥ n+ 2. Then Ω1
Pn(logH) ∈ Sn,`−n−1.

Proof. We want to construct a map of sheaves τH as the one in (3.2) (with

k = `− n− 1) whose cokernel is isomorphic to Ω1
Pn(logH).

In order to do that, let f1, . . . , f` be homogeneous forms of degree 1 in

x0, . . . , xn such that Hi = {fi = 0} for all i ∈ {1, . . . , `} and let

IH = {(λ1, . . . , λ`) ∈ C` |
∑̀
i=1

λifi = 0} (3.5)

W = {(λ1, . . . , λ`) ∈ C` |
∑̀
i=1

λi = 0}. (3.6)

Since ` ≥ n+ 2 we have that IH is non trivial. By using linear algebra com-

putations we can see that, since H is an arrangement with normal crossings,

then dim(IH) = `− n− 1. Moreover we have that dim(W ) = `− 1.

Now, let tH ∈ (Cn+1)∨ ⊗ I∨H ⊗W defined by

tH(λ1, . . . , λ`, v) = (λ1f1(v), . . . , λ`f`(v)) (3.7)

for all (λ1, . . . , λ`) ∈ IH, v ∈ Cn+1 and let τH the corresponding map of

sheaves, tH is called the fundamental tensor of H. By using the hypothesis

of normal crossings, it’s not hard to prove that, for all v ∈ (C∗)n+1, the

fiber tH(v) of τH over [v] ∈ Pn is an injective map, so that dim(Im tH(v)) =

`− n− 1. We want to construct an isomorphism between the vector spaces

Coker tH(v) and Ω1
Pn(logH)[v]. So consider the map

πv : W −→ Ω1
Pn(logH)[v]

11



(λ1, . . . , λ`) 7−→
∑̀
i=1

λi(d log fi)|[v] .

Since the subspace of H0(Pn,Ω1
Pn(logH)) made of all sections that vanish

at [v] has dimension ` − n − 1, we have that πv is surjective; in particular

dim(Ker πv) = dim(Im tH(v)). In order to conclude the proof it suffices to

show that Im tH(v) ⊂ Ker πv. So, let (µ1, . . . , µ`) ∈ Im tH(v), that is there

exists (λ1, . . . , λ`) ∈ IH such that µi = λifi(v). We have that

∑̀
i=1

µi(d log fi)|[v] =
∑

i s.t. [v]/∈Hi

µi

(
dfi
fi

)
|[v]

is a regular 1-form in a neighbourhood of [v] and, for all tangent vectors

ξ ∈ T[v]

(⋂
i s.t. [v]∈Hi Hi

)
,

∑̀
i=1

µi(d log fi)|[v](ξ) =
∑

i s.t. [v]/∈Hi

µi
fi(ξ)

fi(v)
=

∑
i s.t. [v]/∈Hi

λifi(ξ) = 0.

These two conditions imply that
∑̀
i=1

µi(d log fi) is zero at [v], as desired.

Logarithmic bundles attached to arrangements of hyperplanes with nor-
mal crossings are strictly related to another class of vector bundles over Pn:
the family of Schwarzenberger bundles, [25] and [26].

Let’s introduce some preliminary notations: we denote by (Pn)∨ the dual
variety of Pn and by F the incidence variety point-hyperplane of Pn, that is

F = {(x, y) ∈ Pn × (Pn)∨ |x ∈ Hy}
p

↙
q

↘

Pn (Pn)∨

where Hy ⊂ Pn is the hyperplane “defined” by the point y ∈ (Pn)∨ and p, q
are the canonical projection morphisms.
Let Cn be a rational normal curve of degree n in Pn, that is the image of the
map

νn : P1 −→ Pn

[x0, x1] 7−→ [A0, . . . , An]

12



where {A0, . . . , An} is an arbitrary basis for the space of homogeneous poly-
nomials of degree n in the variables x0, x1. To give such a curve is equivalent
to make a choice of an isomorphism between the vector spaces Cn+1 and
SnC2. Moreover, denote by C∨n ⊂ (Pn)∨ the dual curve of Cn.
Consider the following diagram

q−1(C∨n ) = {(x, y) ∈ F |x ∈ Hy ∧ y ∈ C∨n}

p

↙
q

↘

Pn C∨n
where p, q are the restrictions of p, q to q−1(C∨n ) ⊂ F.
We are ready to give the following:

Definition 3.9. (Schwarzenberger 1961, [26])

Let m ∈ N, we call Schwarzenberger bundle of degree m associated to C∨n the

rank-n vector bundle over Pn given by

Em(C∨n ) = p∗q
∗OC∨n (

m

n
)

where OC∨n (m
n

) denotes the line bundle over C∨n that corresponds to OP1(m)

through the isomorphism νn between P1 and C∨n .

If the degree of the Schwarzenberger bundle is sufficiently large then we
get a Steiner bundle. In this sense we have the following:

Proposition 3.10. (Schwarzenberger 1961, [26])

If m ≥ n then Em(C∨n ) ∈ Sn,m−n+1.

Proof. It suffices to observe that, if m ≥ n, then Em(C∨n ) is defined by the

short exact sequence

0 −→ OPn(−1)m−n+1 M−→ Om+1
Pn −→ Em(C∨n ) −→ 0

13



where M is the following (m+ 1)× (m− n+ 1) matrix:

M =



0 · · · x0

... . .
. ...

x0 xn
... . .

. ...

xn · · · 0


.

Remark 3.11. We can find detailed descriptions of the previous result also

in [10] and [22]. In particular, according to definition 3.3, the vector spaces

that characterize Em(C∨n ) are, respectively, Sm−nC2 and SmC2 and the tensor

t is the multiplication map

t : SnC2 ⊗ Sm−nC2 −→ SmC2. (3.8)

The link between logarithmic bundles of hyperplanes with normal cross-
ings on Pn and Schwarzenberger bundles is described by the following result:

Theorem 3.12. (Dolgachev-Kapranov 1993, [10])

If m ≥ n then

Em(C∨n ) ∼= Ω1
Pn(logH) (3.9)

where H = {H1, . . . , H`} is an arrangement with ` = m+ 2 hyperplanes with

normal crossings such that H1, . . . , H` osculate Cn ⊂ Pn.

Proof. Let H be a hyperplane arrangement satisfying the properties listed in

the statement of the theorem; let IH and W be the vector spaces defined in

(3.5) and (3.6). In order to get (3.9), we have to construct two isomorphisms

of vector spaces

α : Sm−nC2 −→ IH
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β : SmC2 −→ W

such that the tensor t defined in (3.8) is sent to the tensor tH introduced

in (3.7). Since Hi = {fi = 0} osculates Cn for all i ∈ {1, . . . ,m + 2},

then there exists ui ∈ (C2)∗ such that fi = uni . By identifying SmC2 with

H0(P1,Ω1
P1([u1] + . . .+ [um+2])), i.e. the space of forms with simple poles at

[u1], . . . , [um+2], we get a well-defined map

β : H0(P1,Ω1
P1([u1] + . . .+ [um+2])) −→ W

ω 7−→ (res[u1](ω), . . . , res[um+2](ω)).

Now, let [v] 6= [ui] and identify Sm−nC2 with H0(P1,Ω1
P1([u1]+ . . .+[um+2]−

n[v])), the space of forms with at most simple poles at [ui] and a zero of order

≤ n at [v]. We define α as the restriction of β to this space, which concludes

the proof.
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3.2 Torelli type theorems for the normal cross-

ings case

Let H = {H1, . . . , H`} be a hyperplane arrangement with normal crossings
on Pn. If H is made of few hyperplanes then it is not a Torelli arrangement.
In this sense we have the following results:

Theorem 3.13. (Dolgachev-Kapranov 1993, [10])

If 1 ≤ ` ≤ n+ 1 then Ω1
Pn(logH) ∼= O`−1

Pn ⊕OPn(−1)n+1−`.

Proof. LetM =
⊕
i

H0(Pn,Ω1
Pn(logH)(i)) be the graded C[x0, . . . , xn]-module

associated to Ω1
Pn(logH) thanks to Serre’s theorem, [15]. It comes out that

M is the kernel of the homomorphism

C[x0, . . . , xn]` ⊕C[x0, . . . , xn]n+1−`(−1) −→ C[x0, . . . , xn]

(g1, . . . , gn+1) 7−→
∑̀
j=1

gj +
n+1∑
j=`+1

gjxj

that is M ∼= C[x0, . . . , xn]`−1 ⊕C[x0, . . . , xn](−1)n+1−`, as desired.

Proposition 3.14. If ` = n+ 2 then Ω1
Pn(logH) ∼= TPn(−1).

Proof. Theorem 3.8 implies that Ω1
Pn(logH) ∈ Sn,1, that is it admits an exact

sequence of the form

0 −→ OPn(−1) −→ On+1
Pn −→ Ω1

Pn(logH) −→ 0

which is the Euler sequence for TPn(−1).

Remark 3.15. All Steiner bundles in Sn,1 are isomorphic to TPn(−1).

If we consider arrangements with a sufficiently large number of hyper-
planes, then the Torelli correspondence defined in (2.1) is very closed to be
an injective map. The main result on this topic is the following:
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Theorem 3.16. (Vallès 2000, [30])

Let H = {H1, . . . , H`} and K = {K1, . . . , K`} be arrangements of ` ≥ n + 3

hyperplanes with normal crossings on Pn such that

Ω1
Pn(logH) ∼= Ω1

Pn(logK). (3.10)

Then we have one of these possibilities:

1) H = K;

2) there exists a rational normal curve Cn ⊂ Pn such that H1, . . . , H`,

K1, . . . , K` osculate Cn and Ω1
Pn(logH) ∼= Ω1

Pn(logK) ∼= E`−2(C∨n ).

Remark 3.17. Since one can always find a rational normal curve C∨n ⊂ (Pn)∨

of degree n passing through n + 3 points of (Pn)∨, the previous theorem

becomes important when ` ≥ n+ 4.

Remark 3.18. In 1993 Dolgachev and Kapranov in [10] proved the same result

of Vallès when ` ≥ 2n + 3, focusing their attention on the set of jumping

lines of Ω1
Pn(logH). In the following we will see a sketch of the proof of

theorem 3.16, which is based on the following idea: recover the hyperplanes

of H as unstable hyperplanes of Ω1
Pn(logH).

Definition 3.19. (Vallès 2000, [30])

Let S ∈ Sn,k be a Steiner bundle and let H ⊂ Pn be a hyperplane.

We say that H is a unstable hyperplane for S if the following condition holds:

H0(H,S∨|H ) 6= {0}.

Remark 3.20. The notion of unstable hyperplane for a Steiner bundle S ∈

Sn,k is justified from the fact that S∨ has not global sections different from the
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zero one. Indeed, S∨ is a stable bundle because of remark 3.7 and c1(S∨) =

−k < 0.

The Torelli theorem for hyperplanes proved by Vallès is a consequence of
the following result:

Theorem 3.21. (Vallès 2000, [30])

Let ` ≥ n + 2 and let S ∈ Sn,`−n−1. If S has H1, . . . , H`+1 distinct unstable

hyperplanes, then there exists a rational normal curve C∨n ⊂ (Pn)∨ such that

H1, . . . , H`+1 osculate Cn (or, equivalently, Hi ∈ C∨n for all i ∈ {1, . . . , `+ 1})

and S ∼= E`−2(C∨n ).

Remark 3.22. Theorem 3.21 asserts that a Steiner bundle in Sn,`−n−1 which is

not a Schwarzenberger bundle has at most ` different unstable hyperplanes.

The proof of this result is based on “reductions” and the main steps are the

following:

1) the kernel T1 of the homomorphism S −→ OH1 induced by a non zero

element of H0(H1, S
∨
|H1

) is a Steiner bundle in Sn,`−n−2 and the set of

unstable hyperplanes of S is contained in

{H ⊂ Pnhyperplane |H0(H,T∨1 |H ) 6= {0}} ∪H1;

2) by iterating this method, after ` − n − 3 reductions we get a Steiner

bundle T`−n−3 ∈ Sn,2 which actually is isomorphic to the Schwarzen-

berger bundle En+1(C∨n ), for certain rational normal curve C∨n ⊂ (Pn)∨,

as we can see in [10];

3) since for all m > n the set of unstable hyperplanes of Em(C∨n ) coincides

with C∨n ([30]), then H`−n−2, . . . , H`+1 are n+ 4 points of C∨n ;
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4) by changing H`−n−2 with Hi for all i ∈ {1, . . . , ` − n − 3} we get that

H1, . . . , H`−n−3 osculate Cn too, which implies that S ∼= E`−2(C∨n ) ([30]).

Remark 3.23. Further interesting results about Steiner bundles and unstable

hyperplanes have been proved by Ancona and Ottaviani in [2].

Now we have all the tools to prove theorem 3.16.

Proof. If H ∈ H then, by using the residue exact sequence (3.1), it’s not

hard to see that H is unstable for Ω1
Pn(logH).

Now, assume that H 6= K, for example let say that H1 6= K1; we want to

prove that the statement 2) of theorem 3.16 holds. From the isomorphism

(3.10) we get that also K1 is unstable for Ω1
Pn(logH). This implies that

Ω1
Pn(logH) is a Steiner bundle in Sn,`−n−1 with at least `+1 different unstable

hyperplanes. So theorem 3.21 tells us that there exists a rational normal

curve C∨n in (Pn)∨ containing all the hyperplanes in H and K and such that

Ω1
Pn(logH) ∼= Ω1

Pn(logK) ∼= E`−2(C∨n ), as desired.

Remark 3.24. The theorem proved above asserts that, if ` ≥ n + 2, then

the set of unstable hyperplanes of Ω1
Pn(logH) is equal to H = {H1, . . . , H`},

unless the hyperplanes in H osculate a rational normal curve Cn of degree

n in Pn, in which case all the hyperplanes corresponding to the points of

C∨n ⊂ (Pn)∨ are unstable for Ω1
Pn(logH). In the latter situation all the

arrangements made of ` hyperplanes with normal crossings that osculate Cn

yield logarithmic bundles in the same class of isomorphism.
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3.3 Torelli type theorems for the general case

Recently hyperplane arrangements have been investigated by removing the
hypothesis of normal crossings. In particular in this section we refer to the
papers of Dolgachev ([9]) and Faenzi-Matei-Vallès ([12]).

As we can see in section 2.2, we can’t introduce the sheaf of differential
1-forms on Pn, with logarithmic poles along a family of hypersurfaces that
not necessarily has normal crossings by using definition 2.6. So, let refer for
example to [24]. We have the following:

Definition 3.25. Let D = {D1, . . . , D`} be an arrangement of smooth hy-

persurfaces on Pn and let f =
∏̀
i=1

fi be a polynomial of degree q in x0, . . . , xn

defining D. Let T (logD) the sheaf given as the kernel of the Gauss map, i.e.

On+1
Pn

(∂0f ,...,∂n f )−→ OPn(q − 1).

We call sheaf of differential 1-forms on Pn with logarithmic poles along D

Ω1
Pn(logD) = T (logD)∨(−1).

Remark 3.26. From the previous definition we get that Ω1
Pn(logD) is a re-

flexive sheaf, that is Ω1
Pn(logD)∨∨ = Ω1

Pn(logD).

Remark 3.27. If D has normal crossings, this definition coincides with defi-

nition 2.6.

In this more general situation, Catanese-Hosten-Khetan-Sturmfels ([6])
and Dolgachev ([9]) studied a subsheaf of Ω1

Pn(logD) instead of Ω1
Pn(logD)

itself. In this sense we have the following:

Definition 3.28. We denote by Ω̃1
Pn(logD) the rank n torsion free subsheaf

of Ω1
Pn(logD) that admits the short exact sequence

0 −→ ΩPn −→ Ω̃1
Pn(logD) −→

⊕̀
i=1

ODi −→ 0

which is called residue exact sequence, just like the normal crossings case.
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Remark 3.29. If we don’t assume that all the Di’s are smooth, then the

residue exact sequence becomes

0 −→ ΩPn −→ Ω̃1
Pn(logD) −→ ν∗OD′ −→ 0

where ν : D′ −→ D is a resolution of singularities of D.

Remark 3.30. A detailed description of Ω̃1
Pn(logD) is given in [9].

In particular we stress the following facts:

1) Ω̃1
Pn(logD)∨∨ ∼= Ω1

Pn(logD);

2) if the codimension of the set where D has not normal crossings is at

least 3, then Ω̃1
Pn(logD) ∼= Ω1

Pn(logD) (in particular if D has normal

crossings, then Ω̃1
Pn(logD) is locally free);

3) if H is a hyperplane arrangement such that Ω̃1
Pn(logH) is locally free,

then H has normal crossings;

4) if H is an arrangement of ` ≥ n+ 2 hyperplanes, then Ω̃1
Pn(logD) is a

rank-n Steiner sheaf over Pn which appears in a short exact sequence

like (3.3) with k = `− n− 1.

In [9] Dolgachev studied the Torelli problem for Ω̃1
Pn(logH), where H is a

hyperplane arrangement on Pn. Statement 4) of the previous remark allowed
Dolgachev to use Vallès’ notion of unstable hyperplane also for Ω̃1

Pn(logH).
In order to state the conjecture that he formulated we recall the following:

Definition 3.31. Let E be a torsion-free coherent sheaf over Pn and let

χ(E(k)) =
∑
i

(−1)i dimH i(Pn, E(k)) the Euler characteristic of E(k). We

say that E is Gieseker-stable (resp. Gieseker-semistable) if for all coherent

subsheaves F of E such that 0 < rkF < rkE we have that

χ(F (k))

rkF
<
χ(E(k))

rkE
(resp.

χ(F (k))

rkF
≤ χ(E(k))

rkE
)
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for all integers k >> 0.

Remark 3.32. Direct computations show that
χ(E(k))

rkE
− χ(F (k))

rkF
is a poly-

nomial in k with leading term given by a positive scalar multiple of µ(E)−

µ(F ) and so, for sufficiently large k ∈ Z,
χ(E(k))

rkE
− χ(F (k))

rkF
and µ(E) −

µ(F ) have the same sign. We immediately get that the Gieseker-semistability

implies the slope-semistability and the slope-stability implies the Gieseker-

stability, [18].

Definition 3.33. Let C be a connected curve of arithmetic genus 0. We say

that C is a stable normal rational curve of degree n in Pn if C =
s⋃
i=1

Ci where

each Ci is a smooth rational curve of degree di spanning a Pdi , the degrees

satisfy
s∑
i=1

di = n and
s⋃
i=1

Pdi spans Pn.

Now we are ready to state the following:

Conjecture 3.34. (Dolgachev 2007, [9])

Let H = {H1, . . . , H`} be an arrangement of ` ≥ n + 2 hyperplanes on Pn

such that Ω̃1
Pn(logH) is Gieseker-semistable. H is a Torelli arrangement if

and only if H1, . . . , H` don’t osculate a stable normal rational curve of degree

n in Pn.

We remark that Dolgachev proved the truth of this conjecture in the case
of n = 2 and ` ≤ 6.

Faenzi, Matei and Vallès in [12] investigated the set of unstable hyper-
planes of Ω̃1

Pn(logH) and proved Dolgachev’s conjecture by changing stable
normal rational curve of degree n with Kronecker-Weierstrass variety of type
(d; s). In this sense we have the following:

Definition 3.35. Let (d, n1, . . . , ns) ∈ Ns+1 such that 1 ≤ d ≤ n and

n = d +
s∑
i=1

ni. Y ⊂ (Pn)∨ is called a Kronecker-Weierstrass variety of type

22



(d; s) if Y = C ∪L1 ∪ . . .∪Ls, where C is a smooth rational curve of degree d

that spans a linear space L of dimension d (C is said to be the curve part of Y )

and Li is a linear subspace of dimension 1 ≤ ni ≤ n− 1 for all i ∈ {1, . . . , s},

with the following properties:

1) L ∩ Li = {pi} ∈ C for all i;

2) Li ∩ Lj = ∅ for all i 6= j.

In the case of d = 0, C reduces to a single point {p}, which is called the

distinguished point of Y and all the Li’s meet only at {p}.

Remark 3.36. The name given by Faenzi-Matei-Vallès to the varieties de-

scribed above comes from the isomorphism classes of these varieties which

are given by the Kronecker-Weierstrass form of a matrix of homogeneous

linear forms in two variables.

Example 3.37. If r1 and r2 are lines in (P2)∨, then Y = r1 ∪ r2 can be a

Kronecker-Weierstrass variety of type (1; 1) (in two ways, simply by inter-

changing the lines) or of type (0; 2) (in particular the distinguished point of

Y is the point of intersection of r1 and r2).

If C∨n is a rational normal curve of degree n in (Pn)∨, then Y = C∨n is a

Kronecker-Weierstrass variety of type (n; 0).

We have the following:

Theorem 3.38. (Faenzi-Matei-Vallès 2010, [12])

Let H = {H1, . . . , H`} be an arrangement of hyperplanes in Pn and let Z =

{z1, . . . , z`} the corresponding set of points in (Pn)∨. Then H is not a Torelli

arrangement if and only if Z ⊂ Y , where Y is a Kronecker-Weierstrass
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variety of type (d; s) in (Pn)∨. In particular, if d = 0, then the distinguished

point of Y doesn’t belong to Z.

Remark 3.39. As in the normal crossing case, all the hyperplanes of H are

unstable for Ω̃1
Pn(logH). Thus, in order to get the previous theorem the

authors proved that if H is a unstable hyperplane such that H 6= Hi for all

i ∈ {1, . . . , `}, then there exists a Kronecker-Weierstrass variety Y ⊂ (Pn)∨

of type (d; s) containing Z. Y plays the role of the rational normal curve C∨n

of degree n that appears in theorem 3.16. In particular, this theorem can be

proved also with the arguments used in [12].

Remark 3.40. As a direct consequence of theorem 3.38 we get the “only if”

implication of Dolgachev’s conjecture. The “if” implication holds only in

P2, even if Ω̃1
Pn(logH) is not Gieseker-semistable, but in the case of n ≥ 3

Faenzi-Matei-Vallès provide some counterexamples to it.
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Chapter 4

The higher degree case in the

projective space

4.1 Logarithmic bundles of hypersurfaces with

normal crossings

Let D = {D1, . . . , D`} be an arrangement of smooth hypersurfaces with
normal crossings on Pn and let Ω1

Pn(logD) be the associated logarithmic
bundle. We have the following:

Proposition 4.1. Ω1
Pn(logD) admits the residue exact sequence

0 −→ Ω1
Pn −→ Ω1

Pn(logD)
res−→

⊕̀
i=1

ODi −→ 0. (4.1)

Proof. It is a direct consequence of statement 2) of remark 3.30.

Theorem 4.2. (Ancona, [1])

Let assume that Di = {fi = 0}, where fi is a homogeneous polynomial of

degree di in the variables x0, . . . , xn, for all i ∈ {1, . . . , `}.
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Then the logarithmic bundle Ω1
Pn(logD) has the following resolution:

0 −→ Ω1
Pn(logD)∨ −→ OPn(1)n+1 ⊕O`−1

Pn
N−→

⊕̀
i=1

OPn(di) −→ 0 (4.2)

where N is the `× (n+ `) matrix

N =



∂0f1 · · · ∂nf1 f1 0 · · · 0

∂0f2 · · · ∂nf2 0 f2

...
...

...
...

. . . 0

∂0f`−1 · · · ∂nf`−1 0 · · · 0 f`−1

∂0f` · · · ∂nf` 0 · · · · · · 0


. (4.3)

Proof. As in [9], let denote by S the polynomial algebra C[x0, . . . , xn] and

let

Ω1
S =< dx0, . . . , dxn >S

∼= S(−1)n+1

DerS =<
∂

∂x0

, . . . ,
∂

∂xn
>S
∼= S(1)n+1

be, respectively, the graded S-module of differentials and the graded S-

module of derivations. The Euler derivation ξ =
n∑
i=0

xi
∂

∂xi
defines a ho-

momorphism of graded S-modules

Ω1
S −→ S ω 7−→ ω(ξ)

whose kernel corresponds to the sheaf Ω1
Pn . Moreover the cokernel of the

homomorphism

S −→ DerS p 7−→ pξ

corresponds to TPn, which is the dual sheaf of Ω1
Pn . So we have a pairing

Ω1
Pn ×TPn <·,·>−→ OPn(

n∑
i=0

hidxi,
n∑
i=0

bi
∂

∂xi

)
7−→

n∑
i=0

hibi

26



and, if U is an open subset of Pn, then Γ(U,Ω1
Pn(logD)∨) is given by

{v ∈ Γ(U,TPn) | ∀ local equation gi of Di inU < d log gi, v > is holomorphic}

where we recall that < d log gi, v >=<
dgi
gi
, v >.

Assume that x0 6= 0 and let zj =
xj
x0

for all j ∈ {1, . . . , n}. Since for all i ∈

{1, . . . , `} we have that fi(x0, . . . , xn) = xdi0 fi(1,
x1

x0

, . . . ,
xn
x0

) = xdi0 gi(z1, . . . , zn),

the chain rule implies that, for all j ∈ {1, . . . , n},

∂gi
∂zj

=
1

xdi−1
0

∂fi
∂xj

.

So we get that

dgi =
n∑
j=1

∂gi
∂zj

dzj =
n∑
j=1

1

xdi−1
0

∂fi
∂xj

(
dxj
x0

− xj
x2

0

dx0

)
=

=
1

xdi0

n∑
j=1

∂fi
∂xj

dxj −
dx0

xdi+1
0

n∑
j=1

∂fi
∂xj

xj =
1

xdi0

n∑
j=1

∂fi
∂xj

dxj −
dx0

xdi+1
0

(di)(fi).

Thus implies that v =
n∑
j=0

bj
∂

∂xj
∈ Γ(U,Ω1

Pn(logD)∨) if and only if for all

i ∈ {1, . . . , `} there exists a holomorphic function αi such that

n∑
j=1

∂fi
∂xj

bj = αifi modulo ξ = 0.

Ω1
Pn(logD)∨ turns to be the cohomology of the monad given by

0 −→ OPn
M−→ OPn(1)n+1 ⊕O`Pn

N−→
⊕̀
i=1

OPn(di) −→ 0

where M is the (n+ 1 + `)× 1 matrix

M = t (x0 · · · xn d1 · · · d` )
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and N is the `× (n+ 1 + `) matrix

N =



∂0f1 · · · ∂nf1 f1 0 · · · · · · 0

∂0f2 · · · ∂nf2 0 f2 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

∂0f` · · · ∂nf` 0 · · · f`


.

We remark that if we multiply N with the square matrix of order n+ `+ 1

x0

...

xn

In+` −d1

...

−d`−1

0 · · · 0 −d`


and we apply the Euler formula, then we can remove the last column of N so

that N takes the form of N , the matrix in (4.3). In particular Ω1
Pn(logD)∨

admits the short exact sequence (4.2), which concludes the proof.

Remark 4.3. Theorem 4.2 holds in particular when D is a hyperplane ar-

rangement, that is when di = 1 for all i. Indeed, if ` ≥ n + 2 then (4.2)

becomes the dualized sequence of the Steiner sequence (3.3) and if ` ≤ n+ 1

then (4.2) implies theorem 3.13.
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4.2 A Torelli type result for one hypersurface

According to chapter 3, the Torelli problem for hyperplane arrangements has
been completely solved, but in the higher degree case it still represents an
open question.

In [28] Ueda and Yoshinaga studied this problem for one smooth cubic D
in P2, focusing their attention on the set of jumping lines of the corresponding
logarithmic bundle. In this sense they proved the following:

Theorem 4.4. (Ueda-Yoshinaga 2008, [28])

Let D and D′ be smooth cubics in P2 with non-vanishing j-invariant. Then

the Torelli map in (2.1) is injective.

Afterwards, in [29], Ueda and Yoshinaga extended theorem 4.4 for the
case of one smooth hypersurface in Pn. In order to state this result we
introduce the following:

Definition 4.5. Let D ⊂ Pn be a smooth hypersurface of degree d such

that D = {f = 0}. We call f of Sebastiani-Thom type if we can choose

homogeneous coordinates x0, . . . , xn of Pn and k ∈ {0, . . . , n− 1} such that

f(x0, . . . , xn) = f(x0, . . . , xk) + f(xk+1, . . . , xn).

With the notations of definition 4.5 we have the following:

Theorem 4.6. (Ueda-Yoshinaga 2009, [29])

D = {D} is a Torelli arrangement if and only if f is not of Sebastiani-Thom

type.

Remark 4.7. If d = 2 then f is always of Sebastiani-Thom type, for all n.

Remark 4.8. A smooth plane cubic has a vanishing j-invariant if and only if

it is the zero locus of the Fermat polynomial x3
0 +x3

1 +x3
2 which is equivalent

to say that it is defined by a f of Sebastiani-Thom type.
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Corollary 4.9. Let D be a general hypersurface of degree d in Pn. Then

D = {D} is Torelli if and only if d ≥ 3.
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Chapter 5

Arrangements of conics in the

projective plane

5.1 Many conics

Arrangements made of a sufficiently large number of conics with normal
crossings can be studied by using the main results concerning arrangements
of hyperplanes with normal crossings ([10],[30]) that are recalled in chapter 3.

Let D = {C1, . . . , C`} be an arrangement of ` smooth conics with normal
crossings on P2 and let Ω1

P2(logD) be the corresponding logarithmic bundle.

Remark 5.1. Let ν2 : P2 −→ P5 be the quadratic Veronese map, that is

ν2([x0, x1, x2]) = [x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2]

and let V2 = ν2(P2) be its image. As we can see also in [14], conics are

exactly hyperplane sections of V2 ⊂ P5.

So we can associate to D = {C1, . . . , C`} an arrangement of hyperplanes
H = {H1, . . . , H`} on P5. Let assume that H has normal crossings and let
Ω1

P5(logH) be the logarithmic bundle attached to it. We will see in the proof
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of theorem 5.4 (focus on exact sequence in (5.3)) that the vector bundles
Ω1

P2(logD) and Ω1
P5(logH) are strictly related one to the other.

Given the logarithmic bundle Ω1
P2(logD), the key idea is to reconstruct

the conics in D as unstable conics of Ω1
P2(logD), using the fact that we

are able to deal with hyperplanes. The notion of unstable conic that we
introduce in the following is very close to the one of unstable hyperplane (see
definition 3.19).

Definition 5.2. Let C ⊂ P2 be a conic. We say that C is unstable for

Ω1
P2(logD) if the following condition holds:

H0(C,Ω1
P2(logD)

∨
|C ) 6= {0}. (5.1)

Remark 5.3. The previous definition is meaningful. Indeed, we recall that

Ω1
P2(logD) admits the short exact sequence:

0 −→ OP2(−2)` −→ OP2(−1)3 ⊕O`−1
P2 −→ Ω1

P2(logD) −→ 0. (5.2)

In particular the slope µ(Ω1
P2(logD)) =

2`− 3

2
> 0 for all ` ≥ 2, which

implies, by using Bohnhorst-Spindler criterion, that Ω1
P2(logD) is stable. So

Ω1
P2(logD)∨ is a stable bundle too ([18]). We claim that Ω1

P2(logD)∨ has

not global sections over P2 different from the zero one: if this is not the

case there is a non trivial injective map OP2 ↪→ Ω1
P2(logD)∨, OP2 can be

regarded as a subsheaf of Ω1
P2(logD)∨ with 0 < rkOP2 < rkΩ1

P2(logD)∨ and

µ(OP2) = 0 > µ(Ω1
P2(logD)∨) =

3− 2`

2
, which contradicts the stability of

Ω1
P2(logD)∨.

Now we can state and prove the main result concerning the Torelli problem
in the case of arrangements with a large number of conics.

Theorem 5.4. Let D = {C1, . . . , C`} be an arrangement of smooth conics

with normal crossings on P2 and let H = {H1, . . . , H`} be the corresponding

arrangement of hyperplanes on P5 in the sense of remark 5.1. Assume that:
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1) ` ≥ 9;

2) H = {H1, . . . , H`} is an arrangement with normal crossings;

3) H1, . . . , H` don’t osculate a rational normal curve of degree 5 in P5.

Then

D = {C ⊂ P2 smooth conic |C satisfies (5.1)}.

Proof. Let suppose that C ∈ D, then there exists j ∈ {1, . . . , `} such that

C = Cj. If we consider the residue exact sequence for Ω1
P2(logD), that is

0 −→ Ω1
P2 −→ Ω1

P2(logD)
res−→

⊕̀
i=1

OCi −→ 0

and we restrict it to Cj, we get the following exact sequence:

0→ T orP2

1 (OCj ,OCj)→ Ω1
P2|Cj

→ Ω1
P2(logD)|Cj → OCj⊕

⊕̀
i=1,i 6=j

OCi∩Cj → 0.

Since the map

Ω1
P2(logD)|Cj −→ OCj ⊕

⊕̀
i=1,i 6=j

OCi∩Cj

is surjective, we get a non zero map

Ω1
P2(logD)|Cj −→ OCj

and so

H0(Cj,Ω
1
P2(logD)

∨
|Cj

) = Hom(OCj ,Ω1
P2(logD)

∨
|Cj

) 6= {0}

that is C satisfies (5.1).

Viceversa, let assume that C is a smooth unstable conic for Ω1
P2(logD), we

want to prove that C ∈ D. It suffices to show that the hyperplane H ⊂ P5
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associated to C by means of ν2 is unstable for Ω1
P5(logH): namely, if this

is the case, since hypothesis 1), 2), 3) hold, the Torelli type result of Vallès

assures us that H ∈ H, that is H = Hi for i ∈ {1, . . . , `} and so C = Ci ∈ D.

Since V2 is a non singular subvariety of P5 which intersects transversally H,

from proposition 2.11 of [9] we get the following exact sequence:

0 −→ N ∨V2,P5 −→ Ω1
P5(logH)|V2 −→ Ω1

V2
(logH ∩ V2) −→ 0 (5.3)

where N ∨V2,P5 denotes the conormal sheaf of V2 in P5.

We remark that V2
∼= P2 and D = H ∩ V2, so (5.3) becomes

0 −→ N ∨P2,P5 −→ Ω1
P5(logH)|P2 −→ Ω1

P2(logD) −→ 0. (5.4)

Restricting (5.4) to C and then applyingHom(·, OC) we obtain the following

short exact sequence:

0 −→ Ω1
P2(logD)

∨
|C −→ Ω1

P5(logH)
∨
|C −→ (N ∨P2,P5 |C

)∨ −→ 0. (5.5)

Finally we apply Γ(C, ·) to (5.5) and we get:

0 −→ H0(C,Ω1
P2(logD)

∨
|C ) −→ H0(C,Ω1

P5(logH)
∨
|C ).

By assumption, C is unstable for Ω1
P2(logD), that is condition (5.1) holds.

Necessarily it has to be

H0(C,Ω1
P5(logH)

∨
|C ) 6= 0. (5.6)

Now, let IV2,P5 be the ideal sheaf of V2 in P5; we have this exact sequence:

0 −→ IV2,P5 −→ OP5 −→ OV2 −→ 0. (5.7)

34



Since V2 6⊂ H we have

0 −→ IV2∩H,H −→ OH −→ OV2∩H −→ 0. (5.8)

By tensor product with Ω1
P5(logH)

∨
, (5.8) becomes:

0 −→ IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H −→ Ω1

P5(logH)
∨
|H −→ Ω1

P5(logH)
∨
|C −→ 0.

(5.9)

(5.9) induces the following long exact sequence in cohomology:

0 −→ H0(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) −→ H0(H,Ω1

P5(logH)
∨
|H ) −→

−→ H0(C,Ω1
P5(logH)

∨
|C ) −→ H1(H, IV2∩H,H ⊗ Ω1

P5(logH)
∨
|H ).

To conclude the proof it suffices to show that

H1(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) = {0}. (5.10)

Indeed, if (5.10) holds, then the map

H0(H,Ω1
P5(logH)

∨
|H ) −→ H0(C,Ω1

P5(logH)
∨
|C )

is surjective and so, because of (5.6), we get

H0(H,Ω1
P5(logH)

∨
|H ) 6= {0},

that is H is unstable for Ω1
P5(logH). In order to prove (5.10), we remark

that, since ` ≥ 9, Ω1
P5(logH) is a Steiner bundle over P5, i.e.

0 −→ OP5(−1)`−6 −→ O`−1
P5 −→ Ω1

P5(logH) −→ 0

is exact. Since in the previous sequence all the terms are vector bundles,

applying Hom(·, OP5) we get

0 −→ Ω1
P5(logH)

∨ −→ O`−1
P5 −→ OP5(1)`−6 −→ 0,
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which, via tensor product with IV2,P5 |H , becomes

0 −→ IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H −→ IV2∩H,H ⊗ O

`−1
P5 |H −→ (5.11)

−→ IV2∩H,H ⊗ OP5(1)`−6
|H −→ 0.

Applying Γ(H, ·) to (5.11) we obtain the following long exact sequence:

0 −→ H0(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) −→ (5.12)

−→ H0(H, IV2∩H,H ⊗ O`−1
P5 |H ) −→ H0(H, IV2∩H,H ⊗ OP5(1)`−6

|H ) −→

−→ H1(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) −→ H1(H, IV2∩H,H ⊗ O`−1

P5 |H ).

We remark that

H i(H, IV2∩H,H ⊗ OP5(t)s|H ) = H i(H, IV2∩H,H(t))s

for all i, s, t integers such that i, s ≥ 0. We note also that, if t ≥ 0, then

H0(H, IV2∩H,H(t)) is the set of all homogeneous forms of degree t over H

which vanish at V2 ∩ H. So the second and the third term of (5.12) are

trivial. This implies also that

H0(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) = {0}.

In this way (5.12) reduces to

0 −→ H1(H, IV2∩H,H ⊗ Ω1
P5(logH)

∨
|H ) −→ H1(H, IV2∩H,H)`−1.

If we restrict (5.7) to H and we consider the induced cohomology sequence,

we get that

H1(H, IV2∩H,H) = Ck−1

where k denotes the number of connected components of V2∩H. Since V2∩H

is connected, k = 1 and so (5.10) holds.
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Since isomorphic logarithmic bundles have the same set of unstable smooth
conics, we have the following:

Corollary 5.5. If ` ≥ 9 then the map

D 7−→ Ω1
P2(logD)

is generically injective.

Remark 5.6. The hypothesis 1), 2), 3) of theorem 5.4 are necessary in order to

apply Vallès’ result for the case of P5. However we don’t know what happens

for arrangements made of ` ∈ {3, . . . , 8} conics. In the next two sections we

will describe the cases of ` = 1 and ` = 2.
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5.2 One conic

Arrangements made of one smooth conic are not of Torelli type. In this sense
we have the following:

Theorem 5.7. Let C ⊂ P2 be a smooth conic and let D = {C}. Then

Ω1
P2(logD) ∼= TP2(−2).

Proof. Let consider the short exact sequence for Ω1
P2(logD):

0 −→ OP2(−2)
M−→ OP2(−1)3 −→ Ω1

P2(logD) −→ 0. (5.13)

where M is the matrix associated to the injective map defined by the three

partial derivatives of a quadratic polynomial defining C. Without loss of

generality we can assume that

M =


x0

x1

x2


and so, by tensor product with OP2(1) (5.13) becomes the Euler sequence

for TP2(−1), which concludes the proof.

Remark 5.8. From (5.13) we immediately get that our logarithmic bundle

has Chern classes c1(Ω1
P2(logD)) = −1 and c2(Ω1

P2(logD)) = 1. Moreover,

since the slope µ(Ω1
P2(logD)) = −1

2
> −1, Bohnhorst-Spindler criterion tells

us that Ω1
P2(logD) is a stable bundle. So Ω1

P2(logD) belongs to the moduli

space MP2(−1, 1), which actually contains only the bundle TP2(−2), as we

can see in [22]. This is another way to prove theorem 5.7.

Remark 5.9. The previous theorem confirms the main result of [29] in the

case of one smooth conic. Indeed, the defining equation of a conic is always

of Sebastiani-Thom type (see definition 4.5).
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5.3 Pairs of conics

Let’s start with a classical result concerning a characterization of pairs of
conics with normal crossings.

Theorem 5.10. Let C1 and C2 be smooth conics in P2.

The following facts are equivalent:

1) D = {C1, C2} is an arrangement with normal crossings in P2;

2) the pencil of conics generated by C1 and C2 has four distinct base points

{P,Q,R, S};

3) in the pencil of conics generated by C1 and C2 there are three distinct

singular conics with singular points {E,F,G}.

Figure 5.1: Two conics with normal crossings

Proof. The equivalence between 1) and 2) is a direct consequence of the

Bézout’s theorem, for example see [17].
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So, let assume that 2) holds. Then the three pairs of lines passing through

disjoint pairs in {P,Q,R, S} are exactly the singular conics in the pencil

generated by C1 and C2, which implies 3).

The main part of the proof is to show that 3) implies 2). Let A, B ∈ GL(3,C)

be the symmetric matrices representing C1 and C2 with respect to the canon-

ical basis C of C3. By applying Sylvester’s theorem to B we get that there

exists G ∈ GL(3,C) such that

tGBG = I3. (5.14)

Let A + tB, with t ∈ C, be the symmetric matrix representing a generic

element in the pencil generated by C1 and C2, we have that

tG(A+ tB)G = tGAG+ tI3

and so

det( tGAG+ tI3) = det(G)2det(A+ tB).

Since G is not singular and 3) holds, the matrix A′ = tGAG, which is clearly

symmetric, has three distinct eigenvalues (they are the opposite of the values

giving singular conics in our pencil), that is A′ is diagonalizable. This means

that, if B = {v0, v1, v2} is a basis of C3 made of eigenvectors of A′, {λ0, λ1, λ2}

are the corresponding eigenvalues, C =MC
B(idC3), Λ = diag(λ0, λ1, λ2), then

the representation of A′ with respect to B is

C−1A′C = Λ.

We remark that we can always assume that C is an orthogonal matrix, i.e.

tCC = C tC = I3. Indeed, first of all we observe that, for i 6= j, from

< A′vi, vj >=< λivi, vj >= λi < vi, vj >
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and

< A′vi, vj >= t(A′vi)vj = tviA
′vj =< vi, A

′vj >= λj < vi, vj >

we get that

(λi − λj) < vi, vj >= 0

which implies

< vi, vj >= 0.

This means that v0, v1, v2 are orthogonal with respect to the standard bilinear

symmetric non degenerate form in C3 (< v,w >:= tvw for all v, w ∈ C3).

Moreover they are orthogonal with respect to the scalar product defined by

A′:

< vi, vj >A′ =
tviA

′vj = λj < vi, vj >= 0 (5.15)

for i 6= j. Finally these vectors satisfy < vi, vi >6= 0: if this is not the case, let

assume for instance that v0 6= 0 satisfies < v0, v0 >= 0. By doing the same

computations as in (5.15), the previous equality implies that < v0, v0 >A′ =

0. Thus v0, v1, v2 are three linearly independent elements of the orthogonal

complement [v0]⊥A′ = {v ∈ C3 | < v0, v >A′ = 0}, that is dimC[v0]⊥A′ ≥ 3.

But we also know that

dimC[v0]⊥A′ = 3− dimC < v0 >= 2

which is a contradiction.

So, if we fix a choice of square root of < vi, vi >, we obtain that B′ =

{ v0√
<v0,v0>

, v1√
<v1,v1>

, v2√
<v2,v2>

} is a basis of eigenvectors of A′ orthonormal

with respect to the standard bilinear non degenerate form in C3 and O =
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MC
B′(idC3) is an orthogonal matrix such that

tOA′O = Λ

or equivalently

t(GO)A(GO) = Λ. (5.16)

From (5.14) we get that

t(GO)B(GO) = tO( tGBG)O = tOO = I3. (5.17)

Thus, (5.16) and (5.17) tell us that A and B are simultaneously diagonalizable

by congruence in the basis B′′ of C3 made of the columns ofGO. In particular,

in this frame the equations of C1 and C2 are, respectively,

λ0x
2
0 + λ1x

2
1 + λ2x

2
2 = 0 (5.18)

x2
0 + x2

1 + x2
2 = 0. (5.19)

It’s not hard to see that, if we fix a choice of square root of λ2− λ1, then C1

and C2 intersect in four distinct points

[
√
λ2 − λ1,±

√
λ0 − λ2,±

√
λ1 − λ0]

which we denote by {P,Q,R, S}. This concludes the proof of 2).

Remark 5.11. As a consequence of the smoothness of C1 and C2 we immedi-

ately have that any three of {P,Q,R, S} are not collinear.

Remark 5.12. In order to get from 3) the simultaneous diagonalization of the

two conics we don’t need that C1 is smooth.
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Remark 5.13. We can check with direct computations that the elements of

the basis B′′ with respect to which C1 and C2 have equations (5.18) and

(5.19) are representative vectors in C3 of the points {E,F,G}. Indeed, let

{w0, w1, w2} be vectors corresponding to {E,F,G} and let {t0, t1, t2} ∈ C

such that det(A + tiB) = 0. Since wi represents the singular point of the

conic given by A+ tiB, we have that

Awi = −tiBwi;

but from (5.16) and (5.17) we know that

A = ( t(GO))−1Λ(GO)−1

B = ( t(GO))−1(GO)−1.

Thus we get that

( t(GO))−1Λ(GO)−1wi = −ti( t(GO))−1(GO)−1wi

that is

Λ(GO)−1wi = −ti(GO)−1wi.

This means that (GO)−1wi is an eigenvector of Λ corresponding to the eigen-

value λi = −ti and, being Λ a diagonal matrix, (GO)−1wi = ei, the i-th

vector of the canonical basis C of C3. In this way we get that wi = (GO)ei,

the i-th column of the matrix GO, as desired.

Corollary 5.14. Let D = {C1, C2} be an arrangement of smooth conics with

normal crossings and let {E,F,G} as in theorem 5.10. Then the matrices as-

sociated to C1 and C2 in a frame given by representative vectors of {E,F,G}
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are of the form diag(a1, b1,−1) and diag(a2, b2,−1), where a1, b1, a2, b2 ∈

C− {0}.

Now let’s come back to the Torelli problem.

Let D = {C1, C2} be an arrangement of smooth conics with normal cross-
ings and let Ω1

P2(logD) be the logarithmic bundle attached to it.

Remark 5.15. Theorem 4.2 implies that Ω1
P2(logD) is a rank 2 vector bundle

over P2 with an exact sequence of the form

0 −→ OP2(−2)2 −→ OP2(−1)3 ⊕OP2 −→ Ω1
P2(logD) −→ 0. (5.20)

Its Chern polynomial is obtained by truncating to degree 2 the expression

(1− t)3

(1− 2t)2

that is

pΩ1
P2 (logD)(t) = 1 + t+ 3t2.

In particular its Chern classes are

c1(Ω1
P2(logD)) = 1, c2(Ω1

P2(logD)) = 3. (5.21)

Moreover its normalized bundle is Ω1
P2(logD)norm = Ω1

P2(logD)(−1) with

c1(Ω1
P2(logD)norm) = −1 and c2(Ω1

P2(logD)norm) = 3. If we do the tensor

product of (5.20) with OP2(−1) and then we consider the induced long exact

cohomology sequence, we get that

H0(P2,Ω1
P2(logD)norm) = {0},

that is Ω1
P2(logD) is stable, [18]. The same is true for Ω1

P2(logD)norm.

Ω1
P2(logD)norm ∈MP2(−1, 3), the moduli space of stable rank 2 bundles on
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P2 such that c1 = −1 and c2 = 3. In general, as we can see in [18], given a

vector bundle E in the moduli space MP2(c1, c2), we have that h0(EndE) = 1

(E is simple) and h2(EndE) = 0. The Riemann-Roch theorem implies that

the Euler characteristic of EndE is χ(EndE) = c2
1(E)− 4c2(E) + 4 and so

dimMP2(c1, c2) = h1(EndE) = −c2
1(E) + 4c2(E)− 3. (5.22)

In our case, the previous formula gives us

dimMP2(−1, 3) = 8 (5.23)

but the number of parameters associated to a pair of conics is 10.

Thus we conclude that such D can’t be an arrangement of Torelli type.

In order to describe the pairs of conics giving isomorphic logarithmic
bundles we need the following:

Proposition 5.16. Let D = {C1, C2} be an arrangement of smooth conics

with normal crossings and let {E,F,G} as in theorem 5.10. Then:

1) {E,F,G} is the zero locus of the non-zero section of Ω1
P2(logD);

2) the three lines through any two of the points in {E,F,G} are exactly

the jumping lines of Ω1
P2(logD)norm (see figure 5.2).

Proof. From (5.21) we get that Ω1
P2(logD) has one non-zero section with

three zeroes; we want to prove the zeroes are {E,F,G}. So, let assume that

A = (aij) and B = (bij) are the matrices representing C1 and C2 with respect

to the canonical basis of C3. From theorem 4.2 we get that Ω1
P2(logD) admits

the exact sequence

0 −→ OP2(−2)2 M−→ OP2(−1)3 ⊕OP2 −→ Ω1
P2(logD) −→ 0 (5.24)
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Figure 5.2: Jumping lines of Ω1
P2(logD)norm

where

M =



2
∑2
i=0a0ixi 2

∑2
i=0b0ixi

2
∑2
i=0a1ixi 2

∑2
i=0b1ixi

2
∑2
i=0a2ixi 2

∑2
i=0b2ixi∑2

i,j=0aijxixj 0


.

We are searching for x = (x0, x1, x2) ∈ C3 − {0} such that the linear part of

M has rank 1, that is the solutions of

Ax = λBx

for certain λ ∈ C (λ is an eigenvalue of AB−1 and x is the corresponding

eigenvector). In other words, any such x has to be a representative vector

for the singular point of the conic associated to A− λB and this shows 1).

The jumping lines of Ω1
P2(logD)norm are the lines ` in P2 over which this

bundle doesn’t split as in the Grauert-Mulich theorem ([22]), that is like

O` ⊕O`(−1).
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Equivalently, a line ` is a jumping line if it satisfies the following condition:

H0(`,Ω1
P2(logD)norm|`(−1)) 6= {0}. (5.25)

Since c1(Ω1
P2(logD)norm) = −1, the set of jumping lines is a codimension 2

subvariety of Gr(P1,P2) with degree

c2(Ω1
P2(logD)norm)(c2(Ω1

P2(logD)norm)− 1)

2
= 3

that is Ω1
P2(logD)norm has three jumping lines, [22].

We want to show that the lines through any two of the points in {E,F,G}

verify (5.25). In order to do that, we can always assume that the base points

of the pencil generated by C1 and C2 are

P = [1, 0, 0], Q = [0, 1, 0], R = [0, 0, 1], S = [1, 1, 1]. (5.26)

Indeed, there’s a unique projective transformation τ : P2 → P2 sending four

points in general position to the points in (5.26). In this case the equations

of C1 and C2 are, respectively,

x0x1 + ax0x2 + bx1x2 = 0 (5.27)

x0x1 + cx0x2 + dx1x2 = 0 (5.28)

where a, b, c, d ∈ C− {0} satisfy

1 + a+ b = 1 + c+ d = 0, a 6= c, b 6= d (5.29)

and we have that

E = [1, 1, 0], F = [1, 0, 1], G = [0, 1, 1]. (5.30)
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The equations of the lines `0, `1, `2 through E and F , E and G, F and G are,

respectively,

x0 = x1 + x2 (5.31)

x1 = x0 + x2 (5.32)

x2 = x0 + x1. (5.33)

Applying Hom(·,OP2) to (5.24) we get the following exact sequence:

0 −→ Ω1
P2(logD)∨ −→ OP2(1)3 ⊕OP2

N−→ OP2(2)2 −→ 0 (5.34)

where

N = tM =

x1 + ax2 x0 + bx2 ax0 + bx1 x0x1 + ax0x2 + bx1x2

x1 + cx2 x0 + dx2 cx0 + dx1 0

 .
Restricting (5.34) to `i we obtain

0 −→ Ω1
P2(logD)∨|`i −→ OP2(1)3

|`i ⊕OP2 |`i
Ni−→ OP2(2)2

|`i −→ 0 (5.35)

where

N0 = N|`0 =

x1 + ax2 x1 + (1 + b)x2 x1(a+ b) + ax2 x2
1 + ax2

2

x1 + cx2 x1 + (1 + d)x2 x1(c+ d) + cx2 0



N1 = N|`1 =

x0 + (1 + a)x2 x0 + bx2 x0(a+ b) + bx2 x2
0 + bx2

2

x0 + (1 + c)x2 x0 + dx2 x0(c+ d) + dx2 0


N2 = N|`2 =

 ax0 + x1(1 + a) x0(1 + b) + bx1 ax0 + bx1 ax2
0 + bx2

1

cx0 + x1(1 + c) x0(1 + d) + dx1 cx0 + dx1 0

 .
Now, the induced cohomology exact sequence of (5.35) is

0→ H0(`i,Ω
1
P2(logD)∨|`i)→ H0(`i,OP2(1)|`i)

3 ⊕H0(`i,OP2 |`i)
Ni→

→ H0(`i,OP2(2)|`i)
2 → H1(`i,Ω

1
P2(logD)∨|`i) −→ 0

48



where N0,N1,N2 are the following 6× 7 matrices:

N0 =



1 0 1 0 a+ b 0 1

a 1 1 + b 1 a a+ b 0

0 a 0 1 + b 0 a a

1 0 1 0 c+ d 0 0

c 1 1 + d 1 c c+ d 0

0 c 0 1 + d 0 c 0



N1 =



1 0 1 0 a+ b 0 1

1 + a 1 b 1 b a+ b 0

0 1 + a 0 b 0 b b

1 0 1 0 c+ d 0 0

1 + c 1 d 1 d c+ d 0

0 1 + c 0 d 0 d 0



N2 =



a 0 1 + b 0 a 0 a

1 + a a b 1 + b b a 0

0 1 + a 0 b 0 b b

c 0 1 + d 0 c 0 0

1 + c c d 1 + d d c 0

0 1 + c 0 d 0 d 0


.

By using Serre duality we have that

H1(`i,Ω
1
P2(logD)∨|`i) = H0(`i,Ω

1
P2(logD)|`i(−2))∨ =

= H0(`i,Ω
1
P2(logD)norm|`i(−1))∨.

Thus it suffices to show that N0,N1,N2 have not maximal rank. Since (5.29)

holds, it’s not hard to see that N0,N1,N2 have rank 5 and this concludes the

proof.
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Remark 5.17. The previous proposition tells us that there are two ways to

make a correspondence between the logarithmic bundle Ω1
P2(logD) and the

points {E,F,G}.
The main theorem concerning pairs of conics is the following:

Theorem 5.18. Let D1 = {C1, C2} and D2 = {C ′1, C ′2} be arrangements of

smooth conics with normal crossings. Then

Ω1
P2(logD1) ∼= Ω1

P2(logD2). (5.36)

if and only if D1 and D2 have the same four tangent lines.

Figure 5.3: Four tangent lines of a pair of conics

Proof. Let assume that (5.36) holds, by using proposition 5.16 we can asso-

ciate to each bundle the same set of points {E,F,G}. From corollary 5.14

we get that there’s a frame of C3 made of representative vectors of {E,F,G}

in which C1, C2, C
′
1, C

′
2 have equations, respectively,

a1x
2
0 + b1x

2
1 − x2

2 = 0

a2x
2
0 + b2x

2
1 − x2

2 = 0
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c1x
2
0 + d1x

2
1 − x2

2 = 0

c2x
2
0 + d2x

2
1 − x2

2 = 0

where a1, b1, a2, b2, c1, d1, c2, d2 ∈ C − {0} and a1 6= a2, b1 6= b2, c1 6= c2,

d1 6= d2,
b1

a1

6= b2

a2

,
d1

c1

6= d2

c2

(these properties assure, respectively, that we

have two smooth conics with normal crossings). Our aim is to find relations

between the coefficients of the previous equations in order to have (5.36).

We recall the two exact sequences

0 −→ Ω1
P2(logD1)∨ −→ OP2(1)3 ⊕OP2

N1−→ OP2(2)2 −→ 0

0 −→ Ω1
P2(logD2)∨ −→ OP2(1)3 ⊕OP2

N2−→ OP2(2)2 −→ 0

where

N1 =

 2a1x0 2b1x1 −2x2 a1x
2
0 + b1x

2
1 − x2

2

2a2x0 2b2x1 −2x2 0


N2 =

 2c1x0 2d1x1 −2x2 c1x
2
0 + d1x

2
1 − x2

2

2c2x0 2d2x1 −2x2 0

 .
(5.36) is equivalent to the fact that there exist two invertible matrices

M ′ =

α β

γ δ

 (5.37)

M ′′ =



E F G f1

H I L f2

M N O f3

0 0 0 θ


(5.38)

with α, . . . , δ, E, . . . , O, θ ∈ C and fj = f 0
j x0 + f 1

j x1 + f 2
j x2, j ∈ {1, 2, 3},

complex linear forms, such that the following diagram commutes:
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OP2(1)3 ⊕OP2
N1−→ OP2(2)2

M ′′ ↓ ↓M ′

OP2(1)3 ⊕OP2
N2−→ OP2(2)2

First, let’s equate the coefficients of the matrices M ′N1 and N2M
′′ that don’t

belong to the fourth column. We get the following conditions:

αa1 + βa2 = c1E

H = M = 0

αb1 + βb2 = d1I

F = N = 0

α + β = O

G = L = 0

γa1 + δa2 = c2E

γb1 + δb2 = d2I

γ + δ = O.

These relations reduce to:

E =
a1

c1

α +
a2

c1

β =
a1

c2

γ +
a2

c2

δ (5.39)

I =
b1

d1

α +
b2

d1

β =
b1

d2

γ +
b2

d2

δ (5.40)

O = α + β = γ + δ. (5.41)
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If we compute γ from (5.41) and then we substitute its expression in (5.39)

we get

δ =
a1(c2 − c1)

c1(a2 − a1)
α +

(a2c2 − a1c1)

c1(a2 − a1)
β. (5.42)

Thus, (5.41) and (5.42) imply that

γ =
(a2c1 − a1c2)

c1(a2 − a1)
α +

a2(c1 − c2)

c1(a2 − a1)
β. (5.43)

Now, by equating the corresponding coefficients of the last column of M ′N1

and N2M
′′ we obtain:

αa1 = 2c1f
0
1 + c1θ (5.44)

αb1 = 2d1f
1
2 + d1θ (5.45)

α = 2f 2
3 + θ (5.46)

c1f
1
1 + d1f

0
2 = 0 (5.47)

c1f
2
1 − f 0

3 = 0 (5.48)

d1f
2
2 − f 1

3 = 0 (5.49)

γa1 = 2c2f
0
1 (5.50)

γb1 = 2d2f
1
2 (5.51)

γ = 2f 2
3 (5.52)

c2f
1
1 + d2f

0
2 = 0 (5.53)

c2f
2
1 − f 0

3 = 0 (5.54)

d2f
2
2 − f 1

3 = 0. (5.55)
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First of all, since
d1

c1

6= d2

c2

, by using (5.47) and (5.53) we immediately get

that

f 0
2 = f 1

1 = 0.

Similarly, equations (5.48), (5.54) and (5.49), (5.55) imply, respectively, that

f 2
1 = f 0

3 = 0

f 2
2 = f 1

3 = 0.

By computing θ from (5.46), equations (5.44) and (5.45) become, respectively

f 2
3 =

c1 − a1

2c1

α + f 0
1

f 2
3 =

d1 − b1

2d1

α + f 1
2 . (5.56)

In particular we have

f 0
1 =

(
d1 − b1

2d1

+
a1 − c1

2c1

)
α + f 1

2 . (5.57)

Moreover, from (5.50), (5.51), (5.52) we get, respectively,

f 0
1 =

a1

2c2

γ (5.58)

f 1
2 =

b1

2d2

γ (5.59)

f 2
3 =

γ

2
. (5.60)

If we put together (5.56), (5.60), (5.59) and we use (5.43), we obtain the

following well defined expression for β:

β =
a2b1c1(d2 − d1) + a1b1(c2d1 − c1d2) + a1d1d2(c1 − c2)

a2d1(b1 − d2)(c1 − c2)
α. (5.61)
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In this way (5.43) and (5.42) become, respectively,

γ =
d2(b1 − d1)

d1(b1 − d2)
α (5.62)

δ =
b1d2(a2c2 − a1c1) + b1c2d1(a1 − a2)− a1d1d2(c2 − c1)

a2d1(b1 − d2)(c1 − c2)
α. (5.63)

Thus, if we choose α ∈ C− {0} and if the condition

(b1 − d2)c2d1 + (d1 − b1)c1d2 6= 0 (5.64)

is satisfied, then the matrix M ′ in (5.37) is invertible.

By using (5.57), (5.58), (5.59) and (5.62) we get the first resolubility condition

for our system of equations:

a1b1(c2d1 − c1d2) + b1c1c2(d2 − d1) + a1d1d2(c1 − c2) = 0. (5.65)

With (5.62) we are able to compute final expressions for f 0
1 , f

1
2 , f

2
3 , θ; in par-

ticular we have

θ =
b1(d1 − d2)

d1(b1 − d2)
α. (5.66)

Moreover, (5.39) and (5.41) become, respectively,

E =
b1(d1 − d2)(a1 − a2)

d1(b1 − d2)(c1 − c2)
α (5.67)

O =
(a1 − a2)[c2d1(b1 − d2) + c1d2(d1 − b1)]

a2d1(b1 − d2)(c1 − c2)
α. (5.68)

We observe that θ, E,O ∈ C− {0} (for O see condition (5.64)).

By using (5.40) with (5.61), (5.62), (5.63) we get the second resolubility

condition:

b1b2(a2 − a1)(c1d2 − c2d1) + d1d2(c1 − c2)(a1b2 − a2b1) = 0. (5.69)
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Finally, from (5.40) we get

I =
d1(a2b1 − a1b2)[d2(c2 − c1)− b1c2] + b1c1[a2d1(b1 − b2) + b2d2(a2 − a1)]

a2d2
1(b1 − d2)(c1 − c2)

α.

(5.70)

If also I is different from 0, that is if

d1(a2b1−a1b2)[d2(c2−c1)−b1c2]+b1c1[a2d1(b1−b2)+b2d2(a2−a1)] 6= 0 (5.71)

is satisfied, then the matrix M ′′ in (5.38) is invertible.

Thus, Ω1
P2(logD1) ∼= Ω1

P2(logD2) if and only if (5.65), (5.69), (5.64), (5.71)

are verified. Let’s start by solving (5.65) and (5.69): if we fix a1, b1, a2, b2, c1, c2,

for the remaining coefficients we get

d1 =
b1b2c1(a2 − a1)

a1b2(a2 − c1) + a2b1(c1 − a1)
(5.72)

d2 =
b1b2c2(a2 − a1)

a1b2(a2 − c2) + a2b1(c2 − a1)
. (5.73)

So, the the matrix associated to C ′i, i ∈ {1, 2}, is of the form
ci 0 0

0
b1b2ci(a2 − a1)

a1b2(a2 − ci) + a2b1(ci − a1)
0

0 0 −1

 . (5.74)

If we put ti =
a2(a1 − ci)
a1(ci − a2)

, then (5.74) becomes


a1a2(1 + ti)

a2 + tia1

0 0

0
b1b2(1 + ti)

b2 + tib1

0

0 0 −1

 . (5.75)

(5.75) is equivalent (up to scalar multiplication) to the diagonal matrix

C(ti) = (A−1 + tiB
−1)−1 (5.76)
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where A = diag(a1, b1,−1), B = diag(a2, b2,−1) are the matrices associated

to C1 and C2. As we can see in [13], if C ⊂ P2 is a smooth conic represented

by a matrix M , then the dual conic C∨ ⊂ P2∨ is defined by the inverse

matrix M−1. So, the four tangent lines to C1 and C2 become, in (P2)∨, the

base points for the pencil of conics generated by A−1 and B−1. Coming back

to P2, these points correspond to the four tangent lines to C ′1 and C ′2, as

desired. We remark that this implication is true when the elements of (5.75)

satisfy the open condition (5.71) ((5.64) is always true).

Viceversa, let assume that D1 and D2 have the same tangent lines, we want

to prove that the corresponding logarithmic bundles are isomorphic. Since

C1 and C2 have normal crossings, we can suppose that they are represented,

respectively, by A = diag(a1, b1,−1) and B = diag(a2, b2,−1), as above. If

the two pairs of conics have the same tangent lines, C ′1
∨ and C ′2

∨ live in the

pencil generated by C1
∨ and C2

∨, that is C ′1 and C ′2 are represented by matri-

ces as in (5.76) (or, equivalently, as in (5.75)). Clearly these matrices satisfy

(5.65), (5.69), (5.64). If also (5.71) holds, then Ω1
P2(logD1) ∼= Ω1

P2(logD2),

which concludes the proof.

Remark 5.19. The previous theorem asserts that the isomorphism class of

Ω1
P2(logD) is determined by the four tangent lines to D. It is confirmed also

by dimensional computations: indeed, as we can see in (5.23), Ω1
P2(logD)norm

lives in the 8-dimensional moduli space MP2(−1, 3) and four lines in P2 are

determined exactly by 8 parameters. In particular, all the vector bundles in

MP2(−1, 3) are logarithmic.

Remark 5.20. In the proof of theorem 5.18 we use the fact that isomorphic
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logarithmic bundles correspond to the same set of points {E,F,G}. This

condition is necessary but not sufficient. Indeed, if D1 and D2 are made of

conics in the same pencil, then the zero locus of the section of Ω1
P2(logD1)

coincides with the zero locus of the section of Ω1
P2(logD2) but these bundles

are not isomorphic, since D1 and D2 have not the same tangent lines.
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Chapter 6

Many higher degree

hypersurfaces in the projective

space

6.1 A generalization of conic arrangements

case

The arguments used for arrangements of at least 9 conics can be extended
in a natural way to families with a large number of higher degree smooth
codimension 1 objects with normal crossings on the complex projective space.
Let D = {D1, . . . , D`} be an arrangement of smooth hypersurfaces of the
same degree d ≥ 2 with normal crossings on Pn, with n ≥ 2. If n = 2
each Di reduces to a curve and we can assume that d ≥ 3. We denote by
Ω1

Pn(logD) the corresponding logarithmic bundle.

Remark 6.1. According to [14], the Veronese map of degree d, that is

νd : Pn −→ PN−1

[x0, . . . , xn] 7−→ [. . . xI . . .]
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where N =
(
n+d
d

)
and xI ranges over all monomials of degree d in x0, . . . , xn,

allows us to associate to D a hyperplane arrangement H = {H1, . . . , H`} on

PN−1. As in the case of conics, we want to recover the elements of D through

this link with hyperplanes.

Remark 6.2. Theorem 4.2 implies that Ω1
Pn(logD) admits this short exact

sequence

0 −→ OPn(−d)` −→ OPn(−1)n+1 ⊕O`−1
Pn −→ Ω1

Pn(logD) −→ 0;

we get that Ω1
Pn(logD)

∨
is stable if and only if c1(Ω1

Pn(logD)
∨
) < 0 which is

equivalent to say that

` ≥ n+ 1

d
. (6.1)

Thus, as in remark 5.3, if ` satisfies the previous inequality then Ω1
Pn(logD)

∨

has no global sections on Pn different from the zero one. For this reason

we are allowed to introduce the notion of unstable hypersurface as in defini-

tion 5.2.

Definition 6.3. Let D ⊂ Pn be a hypersurface of degree d.

D is said to be unstable for Ω1
Pn(logD) if

H0(D,Ω1
Pn(logD)

∨
|D) 6= {0}. (6.2)

We have the following:

Theorem 6.4. Let D = {D1, . . . , D`} be an arrangement of smooth hyper-

surfaces of degree d ≥ 2 with normal crossings on Pn, with n ≥ 2. Let

H = {H1, . . . , H`} be the corresponding hyperplane arrangement in PN−1,

with N =
(
n+d
d

)
. Assume that:

60



1) ` ≥ N + 3;

2) H is an arrangement of hyperplanes with normal crossings;

3) H1, . . . , H` don’t osculate a rational normal curve of degree N − 1 in

PN−1.

Then D is equal to the following set:

{D ⊂ Pn smooth irreducible hypersurface of degree d |D satisfies (6.2)}.

Proof. We can apply the same double-inclusion argument of theorem 5.4. In

particular, the first part follows from the residue exact sequence (4.1) for

Ω1
Pn(logD) and the second part is a consequence of the short exact sequence

given in proposition 2.11 of [9]

0 −→ N ∨νd(Pn),PN−1 −→ Ω1
Pn(logH)|νd(Pn)

−→ Ω1
νd(Pn)(logH ∩ νd(Pn)) −→ 0.

Remark 6.5. It’s not hard to see that the first hypothesis of theorem 6.4

implies condition (6.1).

Corollary 6.6. If ` ≥
(
n+d
d

)
+ 3 then the map

D 7−→ Ω1
Pn(logD)

is generically injective.
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Chapter 7

Arrangements of quadrics in

the projective space

7.1 One quadric

Theorem 5.7 that holds for one smooth conic in P2 can be generalized to
n ≥ 3. In this sense we have the following result:

Theorem 7.1. Let Q ⊂ Pn be a smooth quadric and let D = {Q}. Then

Ω1
Pn(logD) ∼= TPn(−2). (7.1)

Proof. The isomorphism (7.1) is a direct consequence of the exact sequence

0 −→ OPn(−2) −→ OP2(−1)n+1 −→ Ω1
Pn(logD) −→ 0.

Remark 7.2. Theorem 7.1 points out that D and an arrangement H made

of n + 2 hyperplanes with normal crossings on Pn behave in a similar way.

Indeed, as we can see in proposition 3.14, Ω1
Pn(logD) ∼= Ω1

Pn(logH)(−1).
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7.2 Pairs of quadrics

The case of pair of conics in P2 can be extended to the case of pairs of
quadrics in Pn, with n ≥ 3.

Theorem 7.3. Let Q1 and Q2 be smooth quadrics in Pn.

The following facts are equivalent:

1) D = {Q1, Q2} is an arrangement with normal crossings in Pn, that is

Q1 ∩Q2 is a smooth codimension two subvariety;

2) in the pencil of quadrics generated by Q1 and Q2 there are n+1 distinct

singular quadrics with singular points {v0, . . . , vn}.

Proof. Let assume that 2) holds. Then, by using the same arguments of

the proof of theorem 5.10 we get that there’s a basis B′′ of Cn+1 made of

representative vectors of the points {v0, . . . , vn} with respect to which Q1

and Q2 have equations

λ0x
2
0 + . . .+ λnx

2
n = 0 (7.2)

x2
0 + . . .+ x2

n = 0. (7.3)

where λi ∈ C − {0}, λi 6= λj, are the opposite values of the parameters

giving the singular quadrics in the pencil of Q1 and Q2. Now, let P =

(x0, . . . , xn) ∈ Q1∩Q2, let say x0 6= 0; we want to prove that Q1 and Q2 have

normal crossings at P. It’s not hard to see that the tangent spaces TPQ1 and

TPQ2 are given by, respectively,

λ0x0x0 + . . .+ λnxnxn = 0 (7.4)

x0x0 + . . .+ xnxn = 0. (7.5)
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The matrix associated to the system of equations (7.4) and (7.5) isλ0x0 . . . λnxn

x0 . . . xn


and it is clearly of rank 2. Indeed, we can always find i ∈ {1, . . . , n} such

that ∣∣∣∣∣∣
λ0x0 λixi

x0 xi

∣∣∣∣∣∣ = x0xi(λ0 − λi) 6= 0.

If this is not the case, since by hypothesis λ0 6= λi and x0 6= 0, we get

xi = 0 for all i ∈ {1, . . . , n}, that is P = (x0, 0, . . . , 0). This leads to a

contradiction because the coordinates of P have to satisfy (7.2) and (7.3).

So dimC(TPQ1 ∩ TPQ2) = n+ 1− 2 = n− 1, that is Q1 and Q2 have normal

crossings in P.

Now we want to prove 2) from 1). Let A = {aij} and B = {bij} be symmetric

elements of GL(n+1,C) representing Q1 and Q2 and let A+tB be the matrix

of a generic quadric in the pencil generated by Q1 and Q2. Suppose that 2)

is not true, that is the equation

det(A+ tB) = 0 (7.6)

has a root with multiplicity at least 2. Let consider the multilinear map

φ : C2 ×Cn+1 ×Cn+1 −→ C

defined by

φ((t0, t1), (x0, . . . , xn), (y0, . . . , yn)) =
n∑

i,j=0

yi(t0aij + t1bij)xj.

φ corresponds to the 3-dimensional matrix A = {αi0i1i2} of format (2, n +

1, n+ 1) with A in the first vertical slice and B in the second one.
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Figure 7.1: The 3-dimensional matrix A

By using Schläfli’s method (for more details see [13], [21] and [20]), we

can associate to A a family of (n + 1)× (n + 1) ordinary matrices A(τ0, τ1)

with entries

A(τ0, τ1)i1i2 = α0i1i2τ0 + α1i1i2τ1 = ai1i2τ0 + bi1i2τ1

that is we have a linear operator

A : C2 −→ Cn+1 ×Cn+1.

Since the 3-dimensional hyperdeterminant of format (2, n + 1, n + 1) is non

trivial, we can associate to A a polynomial function defined by

FA(τ0, τ1) = detA(τ0, τ1)

which is a homogenous form in τ0, τ1 of degree n+ 1. Denote by ∆(FA) the

discriminant of FA: it is a polynomial in αi0i1i2 of degree

deg(∆(FA)) = 2n(n+ 1)

65



and it is divisible by the hyperdeterminant Det(A), which has the same

degree. So there exists k ∈ C− {0} such that

∆(FA) = kDet(A). (7.7)

We remark that

∆(FA) = (−1)
(n+1)n

2 γ2n
n+1

∏
i<j

(ti − tj)2

where γn+1 is the leading coefficient of (7.6) and t0, . . . , tn are its roots. By

assumption, ∆(FA) reduces to 0 and, since (7.7) holds, the same is true

for Det(A). This implies that the 3-dimensional matrix A is degenerate, i.e.

there exists a non zero (t0, t1)⊗(x0, . . . , xn)⊗(y0, . . . , yn) ∈ C2⊗Cn+1⊗Cn+1

such that

φ(C2, (x0, . . . , xn), (y0, . . . , yn)) = 0

φ((t0, t1),Cn+1, (y0, . . . , yn)) = 0

φ((t0, t1), (x0, . . . , xn),Cn+1) = 0.

After a linear change of coordinates we may assume that (t0, t1) = (1, 0),

(x0, . . . , xn) = (1, 0, . . . , 0) and (y0, . . . , yn) = (1, 0, . . . , 0). We immediately

get that a0j = 0 for all j ∈ {0, . . . , n} and b00 = 0, i.e. A becomes as in figure

7.2. Thus Q1 is not smooth and D = {Q1, Q2} has not normal crossings at

the point P = (1, 0, . . . , 0), which is a contradiction.

Remark 7.4. If in the pencil of quadrics generated by Q1 and Q2 there are

n + 1 distinct singular quadrics Q0, . . . , Qn, then rank(Qi) = n, that is Qi

is a cone, say with vertex vi, for all i ∈ {0, . . . , n}. Indeed, let A and B be
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Figure 7.2: A after the linear change of coordinates

symmetric matrices in GL(n+ 1,C) representing Q1 and Q2. By hypothesis,

the equation

det(AB−1 + tIn+1) = 0

has n+ 1 non zero distinct solutions, which implies that the matrix −AB−1

has n+ 1 distinct eigenvalues t0, . . . , tn. So

rank(Qi) = rank(A+ tiB) = rank(−AB−1 − tiIn+1) = n.

In particular, the singular point vi of Qi is an eigenvector of −AB−1 corre-

sponding to the eigenvalue ti.

Remark 7.5. Let Q1 and Q2 be smooth quadrics with normal crossings

and let {v0, . . . , vn} as in theorem 7.3. Then the matrices associated to

Q1 and Q2 with respect to a basis of Cn+1 made of representative vec-

tors of the points {v0, . . . , vn} are of the form diag(a0, a1, . . . , an−1,−1) and

diag(b0, b1, . . . , bn−1,−1), where ai, bi ∈ C − {0}, ai 6= bi and
ai
aj
6= bi
bj

, for

all i, j ∈ {0, . . . , n− 1} (we remark that our quadrics are smooth and in the
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pencil generated by them there are n+ 1 singular quadrics).

Remark 7.6. Let Ω1
Pn(logD) the logarithmic bundle attached to an arrange-

ment of smooth quadrics with normal crossings D = {Q1, Q2}. Theorem 4.2

asserts that it is a rank n vector bundle over Pn such that

0 −→ OPn(−2)2 −→ OPn(−1)n+1 ⊕OPn −→ Ω1
Pn(logD) −→ 0 (7.8)

is exact. So the Chern polynomial p(t) of Ω1
Pn(logD) is obtained by truncat-

ing to degree n the expression

(1− t)n+1

(1− 2t)2
=

[
n+1∑
i=0

(
n+ 1

i

)
(−1)iti

] ∑
k≥0

2k(k + 1)tk


that is

pΩ1
Pn

(logD)(t) =
n∑

m=0

[
m∑
h=0

(
n+ 1

h

)
(−1)h2m−h(m− h+ 1)

]
tm.

In particular the n-th Chern class of Ω1
Pn(logD) is

cn(Ω1
Pn(logD)) =

n∑
h=0

(
n+ 1

h

)
(−1)h2n−h(n− h+ 1) =

= (n+ 1)
n∑
h=0

(
n

h

)
(−1)h2n−h = n+ 1.

Moreover, (7.8) tells us that

H0(Pn,Ω1
Pn(logD)) = C.

Thus Ω1
Pn(logD) has one non-zero section with n+ 1 zeroes.

The arguments used for the proof of proposition 5.16 part 1) naturally
extend to the case of Pn, n ≥ 3. The key idea is that the singular points
{v0, . . . , vn} of the cones Q0, . . . , Qn are the eigenvectors of AB−1. In this
sense we have the following:
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Proposition 7.7. Let D = {Q1, Q2} be an arrangement of smooth quadrics

in Pn with normal crossings. Then {v0, . . . , vn} is the zero locus of the non-

zero section of Ω1
Pn(logD).

In order to state and prove the main result concerning pairs of quadrics in
the complex projective space, we recall that, given a smooth quadric Q ⊂ Pn,
the dual quadric of Q is Q∨ ⊂ (Pn)∨ given by the tangent hyperplanes to Q.
In particular, if Q is represented by a symmetric n×n matrix G, then Q∨ is
associated to G−1. The set of tangent hyperplanes to two smooth quadrics
with normal crossings in Pn, Q1 and Q2, is the base locus of the pencil of
quadrics in (Pn)∨ generated by Q∨1 and Q∨2 , that is Q∨1 ∩Q∨2 .
We have the following:

Theorem 7.8. Let D1 = {Q1, Q2} and D2 = {Q′1, Q′2} be arrangements of

smooth quadrics with normal crossings in Pn, with n ≥ 3. Then

Ω1
Pn(logD1) ∼= Ω1

Pn(logD2) (7.9)

if and only if D1 and D2 have the same n+ 1 tangent hyperplanes, that is

Q∨1 ∩Q∨2 = Q
′∨
1 ∩Q

′∨
2 .

Proof. Suppose that (7.9) holds. Then, by using proposition 7.7 and remark

7.5, we can assume that Q1, Q2, Q′1, Q′2 have equations, respectively,

a0x
2
0 + a1x

2
1 + . . .+ an−1x

2
n−1 − x2

n = 0

b0x
2
0 + b1x

2
1 + . . .+ bn−1x

2
n−1 − x2

n = 0

c0x
2
0 + c1x

2
1 + . . .+ cn−1x

2
n−1 − x2

n = 0

d0x
2
0 + d1x

2
1 + . . .+ dn−1x

2
n−1 − x2

n = 0

where the coefficients satisfy the properties stated in remark 7.5. Saying that

the two logarithmic bundles are isomorphic is equivalent to the fact that we
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can find two invertible matrices

M ′ =

α β

γ δ

 (7.10)

M ′′ =



E1,1 . . . E1,n+1 f1

E2,1 . . . E2,n+1 f2

...
...

...

En+1,1 . . . En+1,n+1 fn+1

0 . . . 0 θ


(7.11)

with α, β, γ, δ, Ei,j, θ ∈ C and fj =
n∑
j=0

f ijxi complex linear forms, such that

the following diagram commutes:

OPn(1)n+1 ⊕OPn
N1−→ OPn(2)2

M ′′ ↓ ↓M ′

OPn(1)n+1 ⊕OPn
N2−→ OPn(2)2

where

N1 =

 2a0x0 . . . 2an−1xn−1 −2xn a0x
2
0 + . . .+ an−1x

2
n−1 − x2

n

2b0x0 . . . 2bn−1xn−1 −2xn 0



N2 =

 2c0x0 . . . 2cn−1xn−1 −2xn c0x
2
0 + . . .+ cn−1x

2
n−1 − x2

n

2d0x0 . . . 2dn−1xn−1 −2xn 0

 .
Let’s equate the entries of the 2 × (n + 2) matrices M ′N1 and N2M

′′; we

immediately get that if i 6= j then Ei,j = 0. The first non trivial conditions

are:

E1,1 =
a0

c0

α +
b0

c0

β =
a0

d0

γ +
b0

d0

δ (7.12)

E2,2 =
a1

c1

α +
b1

c1

β =
a1

d1

γ +
b1

d1

δ (7.13)
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E3,3 =
a2

c2

α +
b2

c2

β =
a2

d2

γ +
b2

d2

δ (7.14)

...

En,n =
an−1

cn−1

α +
bn−1

cn−1

β =
an−1

dn−1

γ +
bn−1

dn−1

δ (7.15)

En+1,n+1 = α + β = γ + δ (7.16)

For the moment we don’t care about equations from (7.13) to (7.15), we

will use them afterwards in order to get n− 1 resolubility conditions for our

system. From equations (7.12) and (7.16) we find

δ =
a0(d0 − c0)

c0(b0 − a0)
α +

(b0d0 − a0c0)

c0(b0 − a0)
β (7.17)

and

γ =
(b0c0 − a0d0)

c0(b0 − a0)
α +

b0(c0 − d0)

c0(b0 − a0)
β. (7.18)

If we consider the last column of M ′N1 and N2M
′′ we obtain, for the first

entry

αa0 = 2c0f
0
1 + θc0 (7.19)

αa1 = 2c1f
1
2 + θc1 (7.20)

αa2 = 2c2f
2
3 + θc2 (7.21)

...

αan−1 = 2cn−1f
n−1
n + θcn−1 (7.22)

α = 2fnn+1 + θ (7.23)

c0f
1
1 + c1f

0
2 = 0 (7.24)

...
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c0f
n−1
1 + cn−1f

0
n = 0 (7.25)

c0f
n
1 − f 0

n+1 = 0 (7.26)

c1f
2
2 + c2f

1
3 = 0 (7.27)

...

c1f
n−1
2 + cn−1f

1
n = 0 (7.28)

c1f
n
2 − f 1

n+1 = 0 (7.29)

...

cn−1f
n
n − fn−1

n+1 = 0 (7.30)

and for the second entry

γa0 = 2d0f
0
1 (7.31)

γa1 = 2d1f
1
2 (7.32)

γa2 = 2d2f
2
3 (7.33)

...

γan−1 = 2dn−1f
n−1
n (7.34)

γ = 2fnn+1 (7.35)

d0f
1
1 + d1f

0
2 = 0 (7.36)

...

d0f
n−1
1 + dn−1f

0
n = 0 (7.37)

d0f
n
1 − f 0

n+1 = 0 (7.38)

d1f
2
2 + d2f

1
3 = 0 (7.39)
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...

d1f
n−1
2 + dn−1f

1
n = 0 (7.40)

d1f
n
2 − f 1

n+1 = 0 (7.41)

...

dn−1f
n
n − fn−1

n+1 = 0. (7.42)

By using equations (7.24),. . ., (7.30) and (7.36), . . ., (7.42) (that is conditions

coming from coefficients of xixj with i 6= j) and remembering the properties

of c0, . . . , cn−1, d0, . . . , dn−1, we get that if j − i 6= 1 then f ij = 0. So each

linear form reduces to fj = f j−1
j xj−1. In order to determine these coefficients

we consider equations from (7.19) to (7.23) (actually these are n+1 relations)

and we get

f 0
1 =

α

2

(
a0

c0

− a1

c1

)
+ f 1

2 (7.43)

f 2
3 =

α

2

(
a2

c2

− a1

c1

)
+ f 1

2 (7.44)

...

fn−1
n =

α

2

(
an−1

cn−1

− a1

c1

)
+ f 1

2 (7.45)

fnn+1 =
α

2

(
1− a1

c1

)
+ f 1

2 (7.46)

θ =
a1

c1

α− 2f 1
2 . (7.47)

Moreover equations from (7.31) to (7.35) tell us that

f 0
1 =

a0

2d0

γ (7.48)

f 1
2 =

a1

2d1

γ (7.49)
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f 2
3 =

a2

2d2

γ (7.50)

...

fn−1
n =

an−1

2dn−1

γ (7.51)

fnn+1 =
γ

2
(7.52)

By using (7.46), (7.52), (7.49) and the expression for γ given by (7.18) we

get

β =
a1b0c0(c1 − d1) + a0c1d1(d0 − c0) + a0a1(c0d1 − c1d0)

b0c1(c0 − d0)(d1 − a1)
α. (7.53)

This implies that (7.18) and (7.17) become, respectively,

γ =
d1(a1 − c1)

c1(a1 − d1)
α (7.54)

and

δ =
a1d1(b0d0 − a0c0) + a1c1d0(a0 − b0)− a0c1d1(d0 − c0)

b0c1(c0 − d0)(a1 − d1)
α. (7.55)

We remark that (7.53), (7.54) and (7.55) are the same formulas that we found

in the case of two conics in P2 (indeed only the coefficients of x2
0 and x2

1 of

the four quadrics are involved). As in that case, if we choose α ∈ C − {0}

and the following property holds

a1(c1d0 − c0d1) + c1d1(c0 − d0) 6= 0 (7.56)

then the matrixM ′ introduced in (7.10) is invertible. Moreover, if we consider

(7.54) together with equations from (7.47) to (7.52) we get

f j−1
j =

aj−1d1(a1 − c1)

2dj−1c1(a1 − d1)
α ∀ j ∈ {1, . . . , n} (7.57)
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fnn+1 =
d1(a1 − c1)

2c1(a1 − d1)
α (7.58)

θ =
a1(c1 − d1)

c1(a1 − d1)
α. (7.59)

Since we have two ways to compute f 0
1 , f

2
3 , . . . , f

n−1
n , we get n−1 resolubility

conditions for our system involving the coefficients of the quadrics. In this

sense, let consider equations (7.43) and (7.57) for j = 1, j = 2, we have

a0a1(c1d0 − c0d1) + a1c0d0(d1 − c1) + a0c1d1(c0 − d0) = 0. (7.60)

Similarly, if we consider equations (7.44) with (7.57) for j = 2, j = 3 we get

a1a2(c1d2 − c2d1) + a1c2d2(d1 − c1) + a2c1d1(c2 − d2) = 0 (7.61)

and so on. Finally, equations (7.45) and (7.57) for j = 2, j = n give us

a1an−1(c1dn−1 − cn−1d1) + a1cn−1dn−1(d1 − c1) + an−1c1d1(cn−1 − dn−1) = 0

(7.62)

(in order to get all these relations it suffices to find (7.60) and then to change

the index 0 with j ∈ {2, 3, . . . , n − 1}). Now, let come back to equations

from (7.13) to (7.15). If we substitute in these equations final expressions for

β, γ, δ we get, respectively,

a1b1(b0 − a0)(c0d1 − c1d0) + c1d1(c0 − d0)(a0b1 − a1b0) = 0 (7.63)

a1a2b0(c0 − d0)(c2d1 − c1d2) + a1b0b2(d1 − c1)(c2d0 − c0d2)+ (7.64)

+a0a1b2(c2 − d2)(c1d0 − c0d1) + c1d1(c2 − d2)(c0 − d0)(a0b2 − a2b0) = 0

a1a3b0(c0 − d0)(c3d1 − c1d3) + a1b0b3(d1 − c1)(c3d0 − c0d3)+ (7.65)

+a0a1b3(c3 − d3)(c1d0 − c0d1) + c1d1(c3 − d3)(c0 − d0)(a0b3 − a3b0) = 0

...
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a1an−1b0(c0 − d0)(cn−1d1 − c1dn−1)+ (7.66)

+a1b0bn−1(d1 − c1)(cn−1d0 − c0dn−1)+

+a0a1bn−1(cn−1 − dn−1)(c1d0 − c0d1)+

+c1d1(cn−1 − dn−1)(c0 − d0)(a0bn−1 − an−1b0) = 0.

We remark that (7.63) is exactly condition (5.69) that we got in the case of

conics. Moreover, in order to get the other relations it suffices to find (7.64)

and then to write 3, 4, . . . , n − 1 instead of the index 2 (namely β, γ and δ

depend only on the coefficients of the quadrics indexed by 0 and 1). By using

equations from (7.13) to (7.15) we can find expressions for Ei,i:

E1,1 =
a1(c1 − d1)(a0 − b0)

c1(a1 − d1)(c0 − d0)
α (7.67)

Ei,i =

=
c1(aib0 − a0bi−1)[d1(d0 − c0)− a1d0] + a1c0[b0c1(ai−1 − bi−1) + bi−1d1(b0 − a0)]

b0c1ci−1(c0 − d0)(a1 − d1)
α

(7.68)

for all i ∈ {2, 3, . . . , n} and

En+1,n+1 =
(a0 − b0)[a1(c1d0 − c0d1) + c1d1(c0 − d0)]

b0c1(c0 − d0)(a1 − d1)
α. (7.69)

If n = 2 these coefficients reduce to E, I,O of the proof of theorem 5.18.

Thus the matrix M ′′ introduced in (7.11) is invertible if and only if, fixed

α ∈ C− {0}, besides (7.56), for all i ∈ {2, 3, . . . , n} hold

c1(ai−1b0−a0bi−1)[d1(d0−c0)−a1d0]+a1c0[b0c1(ai−1−bi−1)+bi−1d1(b0−a0)] 6= 0.

(7.70)
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In this way we have that Ω1
Pn(logD1) ∼= Ω1

Pn(logD2) if and only if relations

from (7.60) to (7.66) hold (they are 2n− 2), with the open conditions (7.56)

and (7.70) (they are n). So, let fix a0, . . . , an−1, b0, . . . , bn−1, c0, d0 and let

consider equations (7.60) and (7.63): with the same computations of the

case of conics we immediately get that

c1 =
a1b1c0(b0 − a0)

a0b1(b0 − c0) + a1b0(c0 − a0)
(7.71)

d1 =
a1b1d0(b0 − a0)

a0b1(b0 − d0) + a1b0(d0 − a0)
. (7.72)

Now, let substitute these expressions of c1 and d1 in (7.61) and (7.64): these

equations become, respectively, quadratic and linear with respect to c2 and

d2. With some computations we get

c2 =
a2b2c0(b0 − a0)

a0b2(b0 − c0) + a2b0(c0 − a0)
(7.73)

d2 =
a2b2d0(b0 − a0)

a0b2(b0 − d0) + a2b0(d0 − a0)
(7.74)

and so on. Finally the pair of equations (7.62) and (7.66) gives us

cn−1 =
an−1bn−1c0(b0 − a0)

a0bn−1(b0 − c0) + an−1b0(c0 − a0)
(7.75)

dn−1 =
an−1bn−1d0(b0 − a0)

a0bn−1(b0 − d0) + an−1b0(d0 − a0)
. (7.76)

Thus the matrices representing Q′1 and Q′2 are, respectively,

c0 0 . . . 0

0
a1b1c0(b0 − a0)

a0b1(b0 − c0) + a1b0(c0 − a0)
0 . . . 0

...
. . .

...

0 . . . 0
an−1bn−1c0(b0 − a0)

a0bn−1(b0 − c0) + an−1b0(c0 − a0)
0

0 . . . 0 −1
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d0 0 . . . 0

0
a1b1d0(b0 − a0)

a0b1(b0 − d0) + a1b0(d0 − a0)
0 . . . 0

...
. . .

...

0 . . . 0
an−1bn−1d0(b0 − a0)

a0bn−1(b0 − d0) + an−1b0(d0 − a0)
0

0 . . . 0 −1


.

If we introduce t =
b0(a0 − c0)

a0(c0 − b0)
and s =

b0(a0 − d0)

a0(d0 − b0)
the previous matrices

become, respectively,

a0b0(1 + t)

b0 + ta0

0 . . . 0

0
a1b1(1 + t)

b1 + ta1

0 . . . 0

...
. . .

...

0 . . . 0
an−1bn−1(1 + t)

bn−1 + tan−1

0

0 . . . 0 −1


(7.77)



a0b0(1 + s)

b0 + sa0

0 . . . 0

0
a1b1(1 + s)

b1 + sa1

0 . . . 0

...
. . .

...

0 . . . 0
an−1bn−1(1 + s)

bn−1 + san−1

0

0 . . . 0 −1


(7.78)

that is they are equivalent (up to scalar multiplication) to (A−1 + tB−1)−1

and (A−1 + sB−1)−1, where A and B are the diagonal matrices associated to

Q1 and Q2. By applying the same duality argument of the case of pairs of

conics we get that D1 and D2 have the same tangent hyperplanes. We remark

that the entries of (7.77) and (7.78) have to verify the open conditions given

in (7.70) ((7.56) is always satisfied). For the other direction, we can work as

in the last part of the proof of theorem 5.18.
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Chapter 8

Arrangements of lines and

conics in the projective plane

8.1 The case of a conic and a line

Let D = {r, C} be an arrangement with normal crossings in P2 made of a
line r and a smooth conic C. Assume that r = {αx0 + βx1 + γx2 = 0} and

C = {f = 0} where f =
2∑

i,j=0

aijxixj. As usual, we denote by Ω1
P2(logD) the

associated logarithmic bundle.

Figure 8.1: A line and a smooth conic with normal crossings
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Theorem 4.2 assures us that Ω1
P2(logD) admits the short exact sequence

0 −→ OP2(−1)⊕OP2(−2)
M−→ OP2(−1)3⊕OP2 −→ Ω1

P2(logD) −→ 0 (8.1)

where M is the 4× 2 matrix given by

M =



α 2
2∑
j=0

a0jxj

β 2
2∑
j=0

a1jxj

γ 2
2∑
j=0

a2jxj

αx0 + βx1 + γx2 0


.

We remark that (8.1) is not a minimal resolution since α, β, γ are three
elements of degree 0 such that (α, β, γ) ∈ C3 − (0, 0, 0). Without loss of
generality we can assume that r = {x0 = 0}, in particular we have

M =



1 2
2∑
j=0

a0jxj

0 2
2∑
j=0

a1jxj

0 2
2∑
j=0

a2jxj

x0 0


.

By applying Gaussian elimination to M we obtain the minimal resolution for
Ω1

P2(logD):

0 −→ OP2(−2)
M−→ OP2(−1)2 ⊕OP2 −→ Ω1

P2(logD) −→ 0 (8.2)

with

M =



2
2∑
j=0

a1jxj

2
2∑
j=0

a2jxj

−2
2∑
j=0

a0jxjx0


.

We observe that the entries of M are, respectively, two linear forms (∂x1f
and ∂x2f) and one quadratic form (the product of −x0 with ∂x0f). From
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(8.2) we get that c1(Ω1
P2(logD)) = 0 and c2(Ω1

P2(logD)) = 1. Moreover
theorem 3.6 implies that Ω1

P2(logD) is a semistable vector bundle over P2.
As we can see also in [22], the following holds:

Theorem 8.1. Let Mss
P2(0, 1) be the family of semistable rank-2 vector bun-

dles E over P2 with minimal resolution

0 −→ OP2(−2)
t(f1 f2 f3 )

−→ OP2(−1)2 ⊕OP2 −→ E −→ 0

where f1, f2 are linear forms and f3 is a quadratic form. Then the map

Mss
P2(0, 1)

π2−→ P2

E 7−→ {f1 = 0} ∩ {f2 = 0}

is an isomorphism.

Proof. Let E and E ′ be two elements of Mss
P2(0, 1). We want to prove that

the intersection point of f1 and f2 coincides with the one of f ′1 and f ′2 if

and only if E ∼= E ′. If the intersection point is the same, without loss of

generality we can assume that f1 = f ′1 = x0 and f2 = f ′2 = x1. Moreover, Ex

and E ′x are the cokernels of two rank-1 maps for all x ∈ P2, in particular if

x = [0, 0, 1] we get that f3 and f ′3 have to contain the term x2
2. In order to

prove that E ∼= E ′ it suffices to find g1, g2 linear forms such that the following

diagram commutes:

OP2(−2)
t(x0 x1 f3 )

−→ OP2(−1)2 ⊕OP2

1 ↓ ↓ L

OP2(−2)
t(x0 x1 f ′3 )

−→ OP2(−1)2 ⊕OP2
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where

L =


1 0 0

0 1 0

g1 g2 1

 .
In particular we have to solve

g1x0 + g2x1 + f3 = f ′3. (8.3)

Assume that

f3 = b00x
2
0 + b01x0x1 + b02x0x2 + b11x

2
1 + b12x1x2 + x2

2,

f ′3 = c00x
2
0 + c01x0x1 + c02x0x2 + c11x

2
1 + c12x1x2 + x2

2;

we immediately get that

g1 = (c00 − b00)x0 + (c01 − b01 − 1)x1 + (c02 − b02)x2

g2 = x0 + (c11 − b11)x1 + (c12 − b12)x2

solve (8.3), which concludes the proof.

Remark 8.2. The previous result asserts that the vector bundle Ω1
P2(logD)

lives in a space of dimension 2, while the number of parameters associated

to a line and a conic with normal crossings is 7. So in this case the map in

(2.1) can’t be injective.

With the same notations of the beginning of this section we have the
following:

Proposition 8.3. Let D = {r, C} be an arrangement with normal crossings.

Then the pole of the line r with respect to the conic C describes the isomor-

phism class of Ω1
P2(logD), that is π2(Ω1

P2(logD)) is the pole of r with respect

to C.
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Proof. Applying Cramer’s rule we get that the point in P2 satisfying

2∑
j=0

a1jxj =
2∑
j=0

a2jxj = 0

is P = [a2
12−a11a22, a22a01−a02a12, a02a11−a12a01]. The polar line of P with

respect to C is given by

(a2
12 − a11a22, a22a01 − a02a12, a02a11 − a12a01)


a00 a01 a02

a01 a11 a12

a02 a12 a22



x0

x1

x2

 = 0

which reduces to x0 = 0, that is to r, as desired.

Figure 8.2: r is the polar line of P with respect to C

We immediately get the following:

Corollary 8.4. Let D = {r, C} and D′ = {r′, C ′} be two arrangements with

normal crossings in P2 given by a line and a smooth conic. Then

Ω1
P2(logD) ∼= Ω1

P2(logD′)

if and only if the pole of r with respect to C coincides with the pole of r′ with

respect to C ′ (see figure 8.3).

The previous results can be extended to Pn, for all n ≥ 3.
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Figure 8.3: Line-conic arrangements with isomorphic logarithmic bundles

Let D = {H,Q} be an arrangement with normal crossings in Pn made of
a hyperlane H = {α0x0 + · · ·+αnxn = 0} and a smooth quadric Q = {f = 0}

with f =
n∑

i,j=0

aijxixj.

From theorem 4.2 we get that the corresponding logarithmic bundle Ω1
Pn(logD)

admits the short exact sequence

0 −→ OPn(−1)⊕OPn(−2)
M−→ OPn(−1)n+1 ⊕OPn −→ Ω1

Pn(logD) −→ 0

where M is the (n+ 2)× 2 matrix given by

M =



α0 2
n∑
j=0

a0jxj

...
...

αn 2
n∑
j=0

anjxj

α0x0 + · · ·+ αnxn 0


.

As in the case of n = 2, we can assume that H = {x0 = 0} so that the
minimal resolution of Ω1

Pn(logD) takes the form

0 −→ OPn(−2)
M−→ OPn(−1)n ⊕OPn −→ Ω1

Pn(logD) −→ 0 (8.4)

with

M =



2
n∑
j=0

a1jxj

...

2
n∑
j=0

anjxj

−2
n∑
j=0

a0jxjx0


.
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Bohnhorst-Spindler criterion implies that Ω1
Pn(logD) is not a semistable bun-

dle over Pn unless n = 2. Nevertheless we can extend in a natural way
theorem 8.1 also to n ≥ 3:

Theorem 8.5. All the vector bundles E over Pn having a minimal resolution

0 −→ OPn(−2)
t(f1 · · · fn+1 )

−→ OPn(−1)n ⊕OPn −→ E −→ 0

where f1, . . . , fn ∈ H0(Pn,OPn(1)) and fn+1 ∈ H0(Pn,OPn(2)) are parametrized

by Pn. In particular the correspondence is defined by

E
πn7−→

n⋂
i=1

{fi = 0}.

Remark 8.6. Since Ω1
Pn(logD) belongs to a n-dimensional family and D =

{H,Q} is described by
(
n+2

2

)
+n parameters, then D can’t be a Torelli type

arrangement.

Proposition 8.7. Let D = {H,Q} be an arrangement with normal crossings.

Then the pole of the hyperplane H with respect to the quadric Q describes

the isomorphism class of Ω1
Pn(logD), that is πn(Ω1

Pn(logD)) is the pole of H

with respect to Q.

Proof. The solution of the linear system

a01x0 + · · ·+ a1nxn = 0

...

a0nx0 + · · ·+ annxn = 0

is

P = [detA00,−detA01, detA02, . . . , (−1)ndetA0n]
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where A0j denotes the submatrix of A = {aij} that we get by canceling the

0-th row and the j-th column, for all j ∈ {0, . . . , n}. So the polar hyperplane

of P with respect to Q is

(detA00,−detA01, detA02, . . . , (−1)ndetA0n)


a00 · · · a0n

...
...

a0n · · · ann



x0

...

xn

 = 0

that is x0 = 0.

Corollary 8.8. Two arrangements with normal crossings D = {H,Q} and

D′ = {H ′, Q′} made of a hyperplane and a smooth quadric in Pn have iso-

morphic logarithmic bundles if and only if the pole of H with respect to Q

coincides the pole of H ′ with respect to Q′.
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8.2 The case of a conic and two lines

Let D = {r1, r2, C} be an arrangement with normal crossings in P2, where
r1 and r2 are lines and C is a smooth conic. We suppose that r1 = {α0x0 +
α1x1 + α2x2 = 0}, r2 = {β0x0 + β1x1 + β2x2 = 0} and C = {f = 0} where

f =
2∑

i,j=0

aijxixj.

Figure 8.4: A smooth conic and two lines with normal crossings

In this case theorem 4.2 says that Ω1
P2(logD) verifies

0 −→ OP2(−1)2 ⊕OP2(−2)
M−→ OP2(−1)3 ⊕O2

P2 −→ Ω1
P2(logD) −→ 0

and

M =



α0 β0 2
2∑
j=0

a0jxj

α1 β1 2
2∑
j=0

a1jxj

α2 β2 2
2∑
j=0

a2jxj

α0x0 + α1x1 + α2x2 0 0
0 β0x0 + β1x1 + β2x2 0


.

In order to simplify our computations, we can assume that r1 = {x0 = 0}
and r2 = {x1 = 0}; we denote with aij the coefficients of a quadratic form
describing C also in this new frame. Thus the logarithmic bundle admits as
minimal resolution

0 −→ OP2(−2)
M−→ OP2(−1)⊕O2

P2 −→ Ω1
P2(logD) −→ 0 (8.5)
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where

M =



2
2∑
j=0

a2jxj

−2
2∑
j=0

a0jxjx0

−2
2∑
j=0

a1jxjx1


.

In particular c1(Ω1
P2(logD)) = 1 and c2(Ω1

P2(logD)) = 2. So its normalized
bundle, that is Ω1

P2(logD)(−1), belongs to MP2(−1, 2), the moduli space of
rank-2 stable vector bundles over P2 with c1 = −1 and c2 = 2. An interesting
description of this moduli space is given in the following result, of which we
will see a sketch of the proof (see also [22]). In order to state it we recall
that σ2(ν2(P2)) is the notation for the 2-secant variety of the image of the
quadratic Veronese map ν2(P2), [14].

Theorem 8.9. MP2(−1, 2) is isomorphic to σ2(ν2(P2)) − ν2(P2), the pro-

jective space of symmetric 3× 3 rank-2 matrices.

Proof. A vector bundle E lives in MP2(−1, 2) if and only if it is endowed

with a short exact sequence like

0 −→ OP2(−3)
t(f1 f2 f3 )

−→ OP2(−2)⊕O2
P2(−1) −→ E −→ 0

where f1 is a linear form and f2, f3 are quadratic forms.

On the unique jumping line of E, which is {f1 = 0}, the linear series given

by f2 and f3 has two distinct double points, which we denote by P1 and P2.

Then the map given by

MP2(−1, 2) −→ σ2(ν2(P2))− ν2(P2)

E 7−→ {P1, P2}

is an isomorphism, which concludes the proof.
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Remark 8.10. The previous theorem implies that an element in E ∈MP2(−1, 2)

is characterized by 4 parameters, while a conic and two lines in the projective

plane need 9 parameters to be described. So D = {r1, r2, C} as above is not

a Torelli arrangement.

Remark 8.11. The jumping line of Ω1
P2(logD) is {∂2f = 0} and it is the polar

line with respect to C of r1 ∩ r2 = [0, 0, 1]: indeed, the equation

(0, 0, 1)


a00 a01 a02

a01 a11 a12

a02 a12 a22



x0

x1

x2

 = 0

reduces to {∂2f = 0}. Moreover, the linear series on this line is given by r1∪s2

and r2 ∪ s1, where s2 is the polar line with respect to C of {∂2f = 0} ∩ r2 =

[a22, 0,−a02] and s1 is the polar line with respect to C of {∂2f = 0} ∩ r1 =

[0, a22,−a2], that is s2 = {a22∂0f −a02∂2f = 0} and s1 = {a22∂1f −a12∂2f =

0}. The logarithmic bundle Ω1
P2(logD) corresponds to the two intersection

points {P1, P2} of C and {∂2f = 0} (see the figure below).

Figure 8.5: Ω1
P2(logD) corresponds to {P1, P2}
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Corollary 8.12. Let D = {r1, r2, C} and D′ = {r′1, r′2, C ′} be arrangements

with normal crossings in P2 made of a smooth conic and two lines.

Then Ω1
P2(logD) ∼= Ω1

P2(logD′) if and only if {P1, P2} = {P ′1, P ′2}.

Figure 8.6: D and D′ with isomorphic logarithmic bundles
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8.3 Some remarks about the case of a conic

and three lines

Let D = {r1, r2, r3, C} be an arrangement with normal crossings in P2 made
of three lines and a smooth conic, let say r1 = {α0x0 + α1x1 + α2x2 = 0},
r2 = {β0x0+β1x1+β2x2 = 0}, r3 = {γ0x0+γ1x1+γ2x2 = 0} and C = {f = 0}

where f =
2∑

i,j=0

dijxixj.

Figure 8.7: A smooth conic and three lines with normal crossings

Ancona’s theorem implies that the corresponding logarithmic bunlde Ω1
P2(logD)

has the following exact sequence:

0 −→ OP2(−1)3 ⊕OP2(−2)
M−→ OP2(−1)3 ⊕O3

P2 −→ Ω1
P2(logD) −→ 0

with

M =



α0 β0 γ0 2
2∑
j=0

d0jxj

α1 β1 γ1 2
2∑
j=0

d1jxj

α2 β2 γ2 2
2∑
j=0

d2jxj

α0x0 + α1x1 + α2x2 0 0 0
0 β0x0 + β1x1 + β2x2 0 0
0 0 γ0x0 + γ1x1 + γ2x2 0



.
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In order to get a minimal resolution for Ω1
P2(logD), we can make a change

of coordinates such that r1 = {x0 = 0}, r2 = {x1 = 0}, r3 = {x2 = 0} (we
still denote with f a quadratic form defining C). By using linear algebra
computations we get the minimal resolution

0 −→ OP2(−2)
M−→ O3

P2 −→ Ω1
P2(logD) −→ 0 (8.6)

where

M =

−x0∂0f
−x1∂1f
−x2∂2f

 .
From (8.6) it’s not hard to prove that Ω1

P2(logD) is a stable bundle
with Chern classes c1 = 2 and c2 = 4. In particular, its normalized bun-
dle Ω1

P2(logD)(−1) belongs to the moduli space MP2(0, 3), which, according
to (5.22), has dimension 9. Thus, since the number of parameters associated
to three lines and a conic is 11, such arrangement can’t be of Torelli type.

Remark 8.13. From a geometrical point of view, each quadratic form in M

represent the union of ri with the polar line with respect to C of the inter-

section point of rj and rk, for different i, j, k ∈ {1, 2, 3}.

Remark 8.14. If we do the tensor product of (8.6) with OP2(−1) we get that

Ω1
P2(logD)(−1) has the following short exact sequence:

0 −→ OP2(−3)
M−→ OP2(−1)3 −→ Ω1

P2(logD)(−1) −→ 0

where M is the matrix introduced above. Theorem 4.2 asserts that, if D′ =

{D} is an arrangement made of one smooth cubic curve in P2, then the

associated logarithmic bundle Ω1
P2(logD′) admits an exact sequence like the

one for Ω1
P2(logD)(−1), which is given by the three partial derivatives of a

cubic polynomial defining D. So an interesting problem is to understand if

there is a smooth cubic curve in the projective plane corresponding to three

lines and a smooth conic.

We have the following:

92



Theorem 8.15. Let D be the arrangement with normal crossings given by

{x0x1x2f = 0}, where f =
2∑

i,j=0

dijxixj. Then there exists D′ = {D}, where

D ⊂ P2 is a smooth cubic curve, such that

Ω1
P2(logD) ∼= Ω1

P2(logD′)(1).

Proof. We want to prove that there exists a homogeneous polynomial g of

degree 3 in the variables x0, x1, x2 such that

< ∂0g, ∂1g, ∂2g >=< −x0∂0f,−x1∂1f,−x2∂2f >

holds. This is equivalent to say that the partial derivatives of g have to

satisfy

∂0g = a0(−x0∂0f) + a1(−x1∂1f) + a2(−x2∂2f) (8.7)

∂1g = b0(−x0∂0f) + b1(−x1∂1f) + b2(−x2∂2f) (8.8)

∂2g = c0(−x0∂0f) + c1(−x1∂1f) + c2(−x2∂2f) (8.9)

for certain complex coefficients a0, a1, a2, b0, b1, b2, c0, c1, c2. Since, by Schwarz’s

theorem, ∂i∂jg = ∂j∂ig for all i, j ∈ {0, 1, 2}, the previous conditions become

a0∂1(x0∂0f)+a1∂1(x1∂1f)+a2∂1(x2∂2f) = b0∂0(x0∂0f)+b1∂0(x1∂1f)+b2∂0(x2∂2f)

a0∂2(x0∂0f)+a1∂2(x1∂1f)+a2∂2(x2∂2f) = c0∂0(x0∂0f)+c1∂0(x1∂1f)+c2∂0(x2∂2f)

b0∂2(x0∂0f)+b1∂2(x1∂1f)+b2∂2(x2∂2f) = c0∂1(x0∂0f)+c1∂1(x1∂1f)+c2∂1(x2∂2f).

Let denote by {aij}, {bij}, {cij} the coefficients of xk∂kf for k ∈ {0, 1, 2}; by

using the identity principle for polynomials we get the following system of

nine equations with variables a0, a1, a2, b0, b1, b2, c0, c1, c2:
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a01a0 + b01a1 + c01a2 = a00b0 + b00b1 + c00b2

a11a0 + b11a1 + c11a2 = a01b0 + b01b1 + c01b2

a12a0 + b12a1 + c12a2 = a02b0 + b02b1 + c02b2

a02a0 + b02a1 + c02a2 = a00c0 + b00c1 + c00c2

a12a0 + b12a1 + c12a2 = a01c0 + b01c1 + c01c2

a22a0 + b22a1 + c22a2 = a02c0 + b02c1 + c02c2

a02b0 + b02b1 + c02b2 = a01c0 + b01c1 + c01c2

a12b0 + b12b1 + c12b2 = a11c0 + b11c1 + c11c2

a22b0 + b22b1 + c22b2 = a12c0 + b12c1 + c12c2.

We remark that aij, bij, cij depend on the coefficients dij of the conic in our

arrangement. In this sense the 9 by 9 matrix associated to the system turns

to be the following:

d01 d01 0 −2d00 0 0 0 0 0

0 2d11 0 −d01 −d01 0 0 0 0

0 d12 d12 −d02 0 −d02 0 0 0

d02 0 d02 0 0 0 −2d00 0 0

0 d12 d12 0 0 0 −d01 −d01 0

0 0 2d22 0 0 0 −d02 0 −d02

0 0 0 d02 0 d02 −d01 −d01 0

0 0 0 0 d12 d12 0 −2d11 0

0 0 0 0 0 2d22 0 −d12 −d12



.
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It’s not hard to prove that the rank of this matrix is 8, that is the dimension

of the space of solutions of the aforementioned system is∞1. So assume that

a0, a1, a2, b0, b1, b2, c0, c1, c2 solve our system, we want to find a cubic poly-

nomial g such that conditions (8.7), (8.8), (8.9) are satisfied. Let integrate

(8.7) with respect to x0, we get

g(x0, x1, x2) = −2a0

(
x3

0

3
a00 +

x2
0x1

2
a01 +

x2
0x2

2
a02

)
+ (8.10)

−2a1

(
x2

0x1

2
a01 + x2

1x0a11 + x0x1x2a12

)
+

−2a2

(
x2

0x2

2
a02 + x0x1x2a12 + x0x

2
2a22

)
+ h(x1, x2)

where h is a function of x1, x2 to be determined. If we equate the expression

of the partial derivative of g with respect to x1 coming from (8.10) with the

one in (8.8) and then we integrate with respect to x1 we get the following

expression for h:

h(x1, x2) = a0x
2
0x1a01+2a1

(
x2

0x1

2
a01 + x0x

2
1a11 + x0x1x2a12

)
+2a2x0x1x2a12+

−b0

(
2x2

0x1a00 + x0x
2
1a01 + 2x0x1x2a02

)
−b1

(
x0x

2
1a01 + 2

x3
1

3
a11 + x2

1x2a12

)
+

−b2

(
2x0x1x2a02 + x2

1x2a12 + 2x1x
2
2a22

)
+ i(x2) (8.11)

where we have to determine the function i(x2). Finally, if we compare the

partial derivative of (8.10) with respect to x2 with (8.9), using also (8.11)

and then we integrate with respect to x2, we can find explicitly i, so that

g(x0, x1, x2) = −2

3
a0a00x

3
0−2b0a00x

2
0x1−2a1a11x0x

2
1−

2

3
b1a11x

3
1−2a2a22x0x

2
2+

−2c0a00x
2
0x2 − 2(a1 + a2)a12x0x1x2 − 2c1a11x

2
1x2 − 2b2a22x1x

2
2 −

2

3
c2a22x

3
2

is the required polynomial.
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Remark 8.16. From the proof of theorem 8.15 it follows also Hermite’s theo-

rem (1868), which asserts that a net of conics can be regarded as the net of

the polar conics with respect to a given cubic curve, [11].

Remark 8.17. If we require that

∂ig = xi∂if

for all i ∈ {0, 1, 2}, then necessarily it has to be

g(x0, x1, x2) =
2

3
a00x

3
0 +

2

3
a11x

3
1 +

2

3
a22x

3
2, (8.12)

provided that the conic is given in diagonal form by

f(x0, x1, x2) = a00x
2
0 + a11x

2
1 + a22x

2
2.

So, let {x0x1x2f = 0} and {x0x1x2f
′ = 0} be two arrangements with normal

crossings in P2 each of which made of three lines and a smooth conic defined

by a diagonalized quadratic form. Each arrangement corresponds to a log-

arithmic bundle which is isomorphic to the logarithmic bundle of a smooth

cubic like the one in (8.12). As we can see in remark 4.8, two cubics which

are both Fermat yield isomorphic logarithmic bundles. Thus our line-conic

arrangements have isomorphic logarithmic bundles too.
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