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A B S T R A C T

Some biological networks are designed for sequencing purposes. Others,
i.e. Protein-Protein Interaction, Metabolic, and Gene Regulatory Networks are
implicitly dynamic in the sense that not all the vertices and links are active at the
same time. In such a context, the structural analysis must take into account more
biological information, whenever this is possible, or it requires to enumerate
all the feasible structures (given some set of constraints) in order to select a
posteriori the realistic ones from a biological point of view.

Enumerating all the most and less central vertices in a network according to
their eccentricity is an example of an enumeration problem whose solutions are
polynomial and can be listed in polynomial time, very often in linear or almost
linear time in practice.

Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G
whose sources and targets belong to a predefined subset of the vertices, is on the
other hand an example of an enumeration problem with an exponential number
of solutions, that can be solved by using a non trivial brute-force approach. Given
a metabolic network, each individual story should explain how some interesting
metabolites are derived from some others through a chain of reactions, by
keeping all alternative pathways between sources and targets.

Enumerating cycles or paths in an undirected graph, such as a protein-protein
interaction undirected network, is an example of an enumeration problem in
which all the solutions can be listed through an optimal algorithm, i.e. the time
required to list all the solutions is dominated by the time to read the graph
plus the time required to print all of them. By extending this result to directed
graphs, it would be possible to deal more efficiently with feedback loops and signed
paths analysis in signed or interaction directed graphs, such as gene regulatory
networks.

Finally, enumerating mouths or bubbles with a source s in a directed graph,
that is enumerating all the two vertex-disjoint directed paths between the source
s and all the possible targets, is an example of an enumeration problem in
which all the solutions can be listed through a linear delay algorithm, meaning
that the delay between any two consecutive solutions is linear, by turning the
problem into a constrained cycle enumeration problem. Such patterns, in a de
Bruijn graph representation of the reads obtained by sequencing, are related to
polymorphisms in DNA- or RNA-seq data.
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1
I N T R O D U C T I O N

The aim of enumeration is to list all the feasible solutions of a given problem
satisfying some constraints. Enumeration algorithms are particularly useful
whenever the goal of a problem is not clear and all its solutions need to be
checked. The number of solutions of an enumeration problem usually increases
with the size of the input. Whenever this size is small, brute force algorithms
are helpful, and simple implementations can successfully solve the problem.
On the other hand, for large scale data more sophisticated approaches from
algorithm theory are required in order to guarantee a bounded increase of the
computation time when the input size increases.

Since one peculiar property of biological networks is the uncertainty, a sce-
nario in which enumeration algorithms can be helpful is biological network
analysis. Modelling biological networks indeed introduce bias: arc dependencies
are neglected and underlying hyper-graph behaviours are forced in simple
graph representations to avoid intractability. Moreover regulatory interactions
between all the biological networks are omitted, even if none of the different
biological layers is truly isolated. Last but not least, the dynamical behaviours
of biological networks are often not considered: indeed most of the currently
available biological network reconstructions are potential networks, where all
the possible connections are indicated, even if edges/arcs and vertices are hardly
present all together at the same time. We have discussed these aspects of the
biological networks in the following work, in which I was involved to under-
stand the modelling mechanism underlying biological networks and to review
the measures used to highlight vertices, such as centralities measures.

[1] Cecilia Klein, Andrea Marino, Marie-France Sagot, Paulo Vieira Milreu,
and Matteo Brilli. Structural and dynamical analysis of biological networks.
Briefings in functional genomics, August 2012.

1.1 contribution of the thesis

In this thesis we will show four examples of enumeration algorithms that can
be applied to efficiently deal with some biological problems modelled by using
biological networks: enumerating central and peripheral nodes of a network,
enumerating stories, enumerating paths or cycles, and enumerating bubbles.
Notice that the corresponding computational problems we define are of more
general interest and our results hold in the case of arbitrary networks. In order to
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4 introduction

briefly overview our results, in the following we will use the standard notations
and definitions, described in Section 1.2.

1.1.1 Enumerating Central and Peripheral vertices

Structural analysis allows the identification of important and not important
vertices within a network and for this reason has become very popular in many
disciplines. In the biological domain, the importance of a vertex can be defined
in many different ways. With neighbourhood-based centrality measures, such as
degree, the importance of the vertices is inferred from their local connectivity and
the more connections a vertex has the more central it is. Closeness, eccentricity,
and shortest path based betweenness relies on global properties of a network,
such as distance between vertices.

We will focus on the enumeration of the radial and diametral vertices, i.e.
vertices that are central and peripheral according to the eccentricity notion
of centrality, and on the computation of the radius and diameter of biological
networks and of real world graphs in general. The diameter and radius of a graph
are respectively the maximum and minimum eccentricity among all its nodes,
where the eccentricity of a node x is the distance from x to its farthest node.
Thus, intuitively, the diametral source vertices are the vertices that hardly reach
the other ones, the diametral target vertices are the vertices hardly reachable
from the other ones, and the radial vertices are the vertices that easily reach all
the vertices of the network. In order to calculate the vertices that can be easily
reached from any other vertex, it is sufficient to consider the transposed graph.

We will present the difub Algorithm, which is able to list all the diametral
sources and targets and to compute the diameter of (strongly) connected com-
ponents of a graph G = (V ,E) in time O(|E|) in practice, even if, in the worst
case, the complexity is Θ(|V ||E|). Analogously, we will present a new algorithm
to list all the central vertices and to compute the radius of (strongly) connected
components of a graph in almost O(|E|) time in practice.

The analysis of real world networks in general, such as citation, collaboration,
communication, road, social, and web networks, has attracted a lot of attention.
The fundamental analysis measures have been reviewed in [2]. Moreover the
size of these networks has been increasing rapidly, so that in order to study such
measures, algorithms able to handle huge amount of data are needed. Since the
algorithms available until now were not able to compute diameter and radius
in the case of huge real world graphs, the contribution of our algorithms is not
just limited to biological networks analysis, but extends also to the analysis of
complex networks in general. We thus have shown their effectiveness also for
several other kinds of complex networks.

Our work appeared in the following.
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[3] Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino.
On computing the diameter of real-world directed (weighted) graphs. In
SEA, pages 99–110, 2012.

This has been the generalization of the following works.

[4] P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding
the Diameter in Real-World Graphs: Experimentally Turning a Lower
Bound into an Upper Bound. In Mark de Berg and Ulrich Meyer, editor,
Algorithms - ESA 2010, 18th Annual European Symposium. Proceedings, Part
I, volume 6346 of Lecture Notes in Computer Science. Springer, 2010.

[5] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On Computing
the Diameter of Real-World Undirected Graphs. Presented at Workshop on
Graph Algorithms and Applications (Zurich–July 3, 2011) and selected for
submission to the special issue of Theoretical Computer Science in honour
of Giorgio Ausiello in the occasion of his 70th birthday, 2011.

[6] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing
the diameter of real-world undirected graphs. Theoretical Computer Science,
2012.

Our algorithm in [6], has been used to compute the diameter of Facebook
Network (721.1M vertices, 68.7G edges, and diameter 41) with just 17 bfses in a
popular work ([7, 8], divulged by New York Times on November 22, 2011).

The work in [3] has been presented also at WBA 2012 (Workshop in Bioinfor-
matics and Algorithms), held in São Paulo on April 2nd and 3rd, 2012.

In all these works my contribution has been in the design of the algorithms,
proving their correctness, and testing their effectiveness on a dataset of real
world huge graphs.

1.1.2 Enumerating Stories

The problem of enumerating stories was motivated initially by the biological
question in [9] related to Metabolic networks, in particular to compound graphs,
in which vertices are compounds and there is an arc from a compound x to
a compound y if there is a metabolic reaction that consumes x and produces
y (see Section 2.2.2). A subset B corresponds to compounds that have been
experimentally identified as having a significantly higher or lower production in
a given condition (for instance when an organism is exposed to some stress). The
aim is then to extract all the interaction dependencies among the compounds in
B which do not create cycles but at the same time involve as many compounds
as possible. These may require intermediate steps that concern compounds
not in B, but the initial and final steps must involve only compounds in B.
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A solution, that is a possible scenario of metabolic dependencies, is called a
(metabolic) story.

A metabolic story has to capture the relationship between the vertices of
interest in a way that allows us to define a flow of matter from a set of sources to
a set of target compounds. The need for this hierarchy between the compounds
led us to consider acyclic solutions. The maximality condition has been added
in order to capture all alternative paths between the sources and the targets.
The problem is then to “tell" all possible stories given as input a graph G and a
subset B of the vertices of G.

We will present a polynomial algorithm to find one story and an exact but
exponential approach for the enumeration problem [10, 11]. This definition is
a generalization of a well-known problem which is the feedback arc set problem.
However, any polynomial-delay algorithm to enumerate feedback arc sets (ex:
[12]) can only be used in some particular instances that, as we have shown
in [10, 11], correspond to graphs encoding a Metabolic network which do not
contain the so-called “bad vertices", which are any not interesting vertex v such
that for any predecessor p of v and for any successor s of v, there exists a cycle
containing the arcs (p, v) and (v, s). Moreover we will show that finding a story
with a specified set of sources or targets is NP-hard.

Our contribution appeared in the following works.

[10] Vicente AcuŻna, Etienne Birmelé, Ludovic Cottret, Pierluigi Crescenzi, Vin-
cent Lacroix, Alberto Marchetti-Spaccamela, Andrea Marino, Paulo Vieira
Milreu, Marie-France Sagot, and Leen Stougie. Telling stories. Presented at
Workshop on Graph Algorithms and Applications (Zurich–July 3, 2011).

[11] Vicente Acuña, Etienne Birmelé, Ludovic Cottret, Pierluigi Crescenzi, Fa-
bien Jourdan, Vincent Lacroix, Alberto Marchetti-Spaccamela, Andrea
Marino, Paulo Vieira Milreu, Marie-France Sagot, and Leen Stougie. Telling
stories: Enumerating maximal directed acyclic graphs with a constrained
set of sources and targets. Theor. Comput. Sci., 457:1–9, October 2012.

This latter work has been presented also at WBA 2012 (Workshop in Bioinfor-
matics and Algorithms), held in São Paulo on April 2nd and 3rd, 2012.

The open problems arising from our works have been selected and presented
in the following workshop.

[13] V. Acuña, E. Birmelé, L. Cottret, P. Crescenzi, F. Jourdan, V. Lacroix,
A. Marchetti-Spaccamela, A. Marino, P.V. Milreu, M.-F.Sagot, and
L. Stougie. Metabolic stories: uncovering all possible scenarios for in-
terpreting metabolomics data. In First RECOMB Satellite Conference on
Open Problems in Algorithmic Biology (RECOMB-AB), August 27-29, 2012,
St. Petersburg, Russia., 2012.

In these works, I contributed to the design of the algorithms (to simplify the
networks without losing solutions, to find one story, and to enumerate all the
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stories), proving their correctness, and showing that finding one story with
specified set of sources and targets is NP-hard.

1.1.3 Enumerating Cycles or Paths

Studying paths or cycles of biological networks can be useful for several
purposes. In the case of interaction graphs, such as Gene Regulatory networks,
the importance of enumeration has been shown in [14]. These networks are
directed, their vertices are genes, and their arcs are signed, where the sign or
weight of the arcs indicates the causal relationship between the vertices, such
as activation or inhibition (see Section 2.2.3). In particular cycles and paths
can be useful for studying dependencies among vertices, the steady state and
multistationarity of dynamic models. Moreover cycles and paths respectively
correspond to feedback loops [15, 16] related to robustness in cell signaling
networks [17], and signaling paths, i.e. the different positive and negative routes
along which a molecule can affect another.

We have considered the problem of enumerating paths and cycles in the case
of undirected graphs. This result can be useful for undirected Protein-Protein
Interaction networks, where nodes are proteins and edges are interactions (see
Section 2.2.1), but in the case of interaction networks in general, our approach
neglects the effects of the controls, i.e. the sign and direction of the arcs. In this
latter case, the cycles can be enumerated in the underlying undirected graph
and a posteriori filtered or ad hoc algorithms can be applied. The main question
arising from our work, is whether it is possible to extend our result to directed
graphs in order to efficiently deal also with this kind of networks.

On the other hand, our contribution is not just restricted to biological undi-
rected networks, but extends also to arbitrary undirected graphs. Listing all
the paths and cycles in a graph is a classical problem whose efficient solu-
tions date back to the early 70s. The best known solution in the literature
is given by Johnson’s algorithm [18] and takes O((|C(G)| + 1)(|E| + |V |)) and
O((|Pst(G)|+ 1)(|E|+ |V |)) time for a graph G = (V ,E), where C(G) and Pst(G)

denote respectively the set of cycles and (s, t)-paths in G. However there exists
graphs for which this algorithm is not optimal.

We will present the first optimal algorithm to list all the paths and cycles
in an undirected graph G. Our algorithm requires O(|E|+

∑
c∈C(G) |c|) time

and is asymptotically optimal: indeed, Ω(|E|) time is necessarily required to
read G as input, and Ω(

∑
c∈C(G) |c|) time is necessarily required to list the

output. Moreover, our algorithm lists all the (s, t)-paths in G optimally in
O(|E|+

∑
π∈Pst(G) |π|) time, observing that Ω(

∑
π∈Pst(G) |π|) time is necessarily

required to list the output.
Our algorithm exploits the decomposition of the graph into biconnected

components and without loss of generality restricts to study paths and cycles in



8 introduction

a same biconnected component. Thus it recursively lists the cycles or (s, t)-paths
using the classical binary partition: given an edge e in G, list all the solutions
containing e, and then all the solutions not containing e, at each time modifying
the graph. In order to avoid recursive calls (in the binary partition) that do not list
solutions, we will use a certificate, as a data structure, whose cost for dynamically
updating is constant with respect to the number of solutions produced. In order
to prove the complexity obtained, we will exploit the properties of the binary
recursion tree corresponding to the binary partition.

This work appeared in the following.

[19] E. Birmelé, R. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and
G. Sacomoto. Optimal listing of cycles and st-paths in undirected graphs.
In ACM-SIAM Symposium on Discrete Algorithms, SODA 2013.

In this work, I contributed in the first part of the paper, involving the algorithm
design and the general amortization strategy.

1.1.4 Enumerating Bubbles

A DNA fragment, that is an RNA-coding sequence, is transformed in a Pre-
mRNA sequence, through the transcription phase, in which sequences of exons
and sequences of introns alternatively occur. The removal of all the sequences
of introns and of some sequences of exons leads to the mRNA sequence, that
is a protein-coding sequence, that translated leads to a protein. Since not any
exon is transcribed in the mRNA sequence, there can be many possible mRNA
sequences. For instance, let 〈e1, i1, e2, i2, e3, i3, e4, i4〉 be a fragment of DNA,
where for any j, with 1 6 j 6 3, ej and ij are the j-th sequence of exons and
introns respectively. The possible resulting mRNA sequences containing e1
are 〈e1, e2, e3, e4〉, 〈e1, e2, e3〉, 〈e1, e2, e4〉, 〈e1, e3, e4〉, 〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉.
The underlying phenomenon is called alternative splicing and checking all the
alternative events has been shown in [20] to correspond to checking recognisable
patterns in a de Bruijn graph built from the reads provided by a sequencing
project (see Section 2.2.4). The pattern corresponds to an (s, t)-bubble: an (s, t)-
bubble is a pair of vertex-disjoint (s, t)-paths that only shares s and t.

Since the k-mers correspond to all words of length k present in the reads
(strings) of the input dataset, and only those, in relation to the classical de Bruijn
graph for all possible words of size k, the de Bruijn graph for NGS data may
then not be complete. We will ignore all the details related to the treatment
of NGS data using De Bruijn graphs, and consider instead the more general
case of finding all (s, t)-bubbles in an arbitrary directed graph. In particular we
show the first linear delay algorithm to identify all bubbles. A previous known
algorithm presented in [20] was an adaptation of Tiernan’s algorithm for cycle
enumeration [21] which does not have a polynomial delay. In the worst case the
time elapsed between the output of two solutions is proportional to the number
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of paths in the graph, i.e. exponential in the size of the graph. Our algorithm
is a non trivial adaptation of Johnson’s cycle enumeration algorithm [18] in a
directed graph with the same theoretical complexity. Notably, the method we
propose enumerates all bubbles with a given source with O(|V |+ |E|) delay. The
algorithm requires an initial transformation of the graph, for each source s, that
takes O(|V |+ |E|) time and space; this transformation reduces the enumeration
of bubbles to the enumeration of constrained cycles in a special graph.

Our algorithm is the result of the following work, in which I was involved for
the algorithm design, correctness proof, and time complexity proof.

[22] Etienne Birmelé, Pierluigi Crescenzi, Rui A. Ferreira, Roberto Grossi, Vin-
cent Lacroix, Andrea Marino, Nadia Pisanti, Gustavo Akio Tominaga Saco-
moto, and Marie-France Sagot. Efficient bubble enumeration in directed
graphs. In SPIRE, pages 118–129, 2012.

1.2 basic definitions and notations

Given a set X = {x1, . . . , xn}, the cardinality of X is denoted by |X|. The power
set 2X is the set of all subsets (including the empty set) of X. A sequence S is
an ordered set and is denoted by 〈s1, . . . , sn〉. The length of the sequence is also
denoted by |S|. The concatenation of S with an element sn+1 is the sequence
〈s1, . . . , sn, sn+1〉 and is denoted by 〈S, sn+1〉.

A graph G is a pair of sets (V ,E), where the elements of V are called vertices
and the elements of E are pairs of vertices, so that E ⊆ V × V . In the case
of undirected graphs, these pairs are not ordered, so that (x,y) ∈ E implies
(y, x) ∈ E, and we refer to them as edges, while for directed graphs, these pairs
are ordered and called arcs. In the following we will denote by n = |V | the
number of vertices and m = |E| the number of edges or arcs. For any arc (x,y),
we say that it is from x to y, or it is incoming to y and out-going from x, or
x is the out-neighbour of y and y is the in-neighbour of x, or y is a successor
of x and x is a predecessor of y. For any edge (x,y) we say that x and y are
neighbours. Any edge or arc (x, x) is called self-loop.

If E is a multi-set, then G is called multi-graph, otherwise it is called simple
graph. If not specified, we will refer to simple graphs simply as graphs.

For a vertex u ∈ V , for an undirected graph we denote by N(u) its neigh-
bourhood and by d(u) = |N(u)| its degree, while for a directed graph we
denote by N+(u) and N−(u) its out- and in- neighbourhood respectively, and
by d+(u) = |N+(u)| and d−(u) = |N−(u)| its out- and in- degree respectively.
Vertex u is called source if d+(u) = 0 and d−(u) > 0 and target if d−(u) = 0 and
d+(u) > 0.

For a directed graphG = (V ,E), we define its transposed graph asG ′ = (V ,E ′),
where E ′ = {(u, v) : (v,u) ∈ E}.
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A path π is a sequence of vertices 〈v1, . . . , vk〉, such that for any i with
1 < i 6 k, vi is neighbour or out-neighbour of vi−1. Thus we refer to a path
π by its natural sequence of vertices or arcs/edges. A path π from s to t, or
(s, t)-path, is denoted by π = s  t. Additionally, P(G) is the set of all paths
in G and Ps,t(G) is the set of all (s, t)-paths in G. When s = t we have cycles,
and C(G) denotes the set of all cycles in G. If a directed graph does not contain
cycles, then it is called Directed Acyclic graph (in short, DAG). Whenever for
any pair of vertices u, v, there is a path from u to v, we say that the graph is
connected if G is undirected, or strongly connected if G is directed.

The number of arcs or edges in a path π is called length and denoted by
|π|. Analogously the number of arcs or edges in a cycle c is called length and
denoted by |c|. In this work, we will consider just simple paths and simple cycles.

For any two vertices u, v, the length of the shortest path from u to v is called
distance and denoted by d(u, v), that is d(u, v) = minπ∈Pu,v(G)|π|. Whenever
there is no path from u to v, v is said to be not reachable from u and d(u, v) =∞.
The diameter of G is the minimum D such that for any pair of vertices u, v,
d(u, v) is less or equal than D, that is D = maxu,v∈V×V d(u, v). We define the
forward (respectively, backward) eccentricity of u and denote it by eccF(u)
(respectively, eccB(u)) the maxv∈V d(u, v) (respectively, maxv∈V d(v,u)). In the
case of undirected graphs, forward and backward eccentricities coincide and
are both called simply eccentricity and denoted by ecc(u). Thus the diameter is
defined as the maximum forward or the maximum backward eccentricity, i.e.
D = maxu∈V eccF(u) = maxu∈V eccB(u). The radius R of G is the minimum
forward eccentricity of its vertices, i.e. R = minu∈V eccF(u), or, in the case
of undirected graphs, R = minu∈V ecc(u). Notice that in general, in directed
graphs minu∈V eccF(u) 6= minu∈V eccB(u). We denote by TFu (respectively, TBu )
a forward (respectively, backward) Breadth-First Search (in short, bfs) tree rooted
at node u, so that eccF(u) (respectively, eccB(u)) is its height. In an undirected
graph for any vertex u in V , the levels of the forward breadth-first search tree
rooted at node u, TFu, coincide with a backward bfs tree rooted at the same node,
TBu : thus we refer to both trees simply by Tu.

For a vertex v ∈ V , the postorder dfs number of v is the relative time in which
v was last visited in a Depth-First Search (in short, dfs) traversal, i.e. the position
of v in the vertex list ordered by the last visiting time of each vertex in the dfs.

The subgraph induced by a set of vertices V ′ ⊆ V is a graph G ′ = (V ′,E ′),
where E ′ = {(u, v) : (u, v) ∈ E, u, v ∈ V ′}. Thus G[V ′] denotes the subgraph
induced by V ′, and G−u is the induced subgraph G[V \ {u}] for u ∈ V . Likewise
for e ∈ E, we adopt the notation G − e = (V ,E \ {e}), and, for any F ⊆ E,
G− F = (V ,E \ F).

A rooted tree T is an undirected graph such that any two vertices are connected
by a unique path and there is one special vertex r called root. The parent of a
vertex v in T is the vertex connected to it on the path to the root. A child of v
is a vertex of which v is the parent. The set of all children of v is denoted by
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N+(v). The subtree of T rooted at v is denoted by T(r). The depth of a vertex is
the length of its unique path to the root. The height of a vertex is the length of
the longest downward path to a leaf from that node.

In order to avoid confusions, we use the term node exclusively when referring
to trees. For a given recursive algorithm, in its recursion tree T , each node x ∈ T
corresponds to a call of the algorithm, each y ∈ N+(x), child of x, corresponds
to a recursive call done inside (the call corresponding to) x, and the root is the
initial call to the algorithm. We will use the terms node (of the recursion tree),
call (to the algorithm) and iteration (of the algorithm) interchangeably. Moreover,
when analysing the time complexity of recursive algorithms, we consider that
the cost of an iteration does not include the cost of its recursive calls.

1.3 structure of the thesis

The thesis is structured as follows: in Chapter 2, we overview the main kinds
of biological networks and we highlight the dynamical structure of the biological
networks: we argue the importance of enumeration algorithms for biological
network analysis; in Chapter 3, we overview the main computation issues related
to enumeration problems and the main techniques to design algorithms and
proving their complexity; in the subsequent chapters we show four examples of
enumeration algorithms related to biological problems: in Chapter 4 we discuss
the problem of enumerating central and peripheral nodes, in Chapter 5 we
discuss the problem of enumerating stories, in Chapter 6 we discuss the problem
of enumerating cycles or paths, and in Chapter 7 we discuss the problem of
enumerating bubbles; we conclude in Chapter 8, summarizing and reporting
some open problems.





2
A N A LY S I S O F B I O L O G I C A L N E T W O R K S

In this chapter we present an overview of the main kinds of biological net-
works, highlighting the neglected aspects of each model. In such a context,
when analysing biological networks, we argue the need of enumeration al-
gorithms to check all the solutions of a given problem in order to select the
realistic ones from a biological point of view.

2.1 introduction

Biological networks, are currently being studied with approaches derived
from the mathematical and physical sciences. Their structural analysis enables
to highlight vertices or structures with special properties that have sometimes
been correlated with the biological importance of a gene/protein or event.
However, the way in which the biological networks are modelled often neglects
the condition-dependencies and the relationship of their links, since a complex
behaviour is forced in a form of representation of a simple graph, instead of
a directed weighted hypergraph. Moreover biological networks are dynamic
both on the evolutionary time-scale, as well as on the much shorter time-scale
of physiological processes. There is therefore not a unique network for a given
cellular process, but potentially many realizations, each with different properties
as a consequence of regulatory mechanisms. Such realizations provide snapshots
of a same network in different conditions, enabling the study of condition-
dependent structural properties. In such a context, by defining and solving a
problem on this simplified form of representations, we need to check all its
solutions in order to select the realistic ones.

structure of the chapter The chapter is structured as follows: in Sec-
tion 2.2 we report the overview of biological networks; in Section 2.3 we highlight
the dynamical structure of the biological networks and we argue the importance
of enumeration algorithms for biological network analysis. This second part of
the chapter appeared in [1].

2.2 biological networks

High-throughput technologies have recently allowed a new perspective in
biology, where the cell is interpreted as a large and complex system composed
of highly integrated sub-systems. Interpretation of these systems as networks of

13
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interactions has spurred the application of analytical tools developed since long
by mathematicians and physicists to biological networks.

Several kind of biological networks have been defined, such as Protein-Protein
Interaction networks (see Section 2.2.1), Metabolic networks (see Section 2.2.2),
Gene Regulatory networks (see Section 2.2.3), de Bruijn graph (see Section 2.2.4).

2.2.1 Protein-Protein Interaction network

Proteins form an essential part of organisms and participate in virtually every
process within cells. They can be enzymes that catalyse biochemical reactions, or
they can have structural or mechanical functions. Moreover they can be involved
in cell signalling, immune responses, cell adhesion, and in the cell cycle.

Proteins are biochemical compounds consisting of one or more polypeptides.
A polypeptide is a single linear polymer chain of amino acids bonded together
by peptide bonds between the carboxyl (carbon double linked with oxygen) and
amino (nitrogen linked to two hidrogen) groups of adjacent amino acid residues.
The sequence of amino acids in a protein is defined by the sequence of a gene,
which is encoded in the genetic code. In general, the genetic code specifies 20

standard amino acids. In the cell, a protein is produced by applying transcription
and after translation.

Protein-protein interactions occur when two or more proteins bind together,
often to carry out their biological function.

In a Protein-Protein Interaction network (in short PPIN), vertices are proteins
and edges, that are undirected, represent physical interaction between them.
Since these interactions can be further combined among them and can happen at
different times, in a simple graph representation, whenever a protein has more
than one partner (protein complex) we do not know if the different interactions
take place together or at different times.

2.2.2 Metabolic network

Metabolism is the set of chemical reactions that happen in the cells of liv-
ing organisms to sustain life. These processes allow organisms to grow and
reproduce, maintain their structures, and respond to their environments. A
reaction transforms some chemical molecules into others. The molecules that
describe a reaction are called chemical compounds, or shortly compounds, and
in particular the chemical compounds involved in metabolism are called metabo-
lites. The input compounds of a reaction are called substrates, while the output
compounds are called products. Reactions may be reversible, meaning that it is
possible to transform its set of products into its set of substrates.

A Metabolic network (in short MN) represents the set of chemical reactions
involved in the metabolism of an organism, together performing tasks of putting
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together and breaking apart molecules in a living cell, e.g. photosynthesis,
glycolysis. These chemical reactions are organized into metabolic pathways,
in which one or more chemical are transformed through a series of steps into
other chemicals, by a sequence of reactions. Enzymes allow organisms to drive
desirable reactions that require energy and will not occur by themselves, by
coupling them to spontaneous reactions that release energy.

A Metabolic network may be interpreted and built in different ways: vertices
can be metabolites or reactions (respectively giving rise to the compound and the
reaction graphs), and arcs can be reactions or shared metabolites (see [23, 24]).

In particular a Metabolic network can be modelled as a bipartite directed
graph, whose set of vertices can be divided into a set of reactions R and a set
of compounds C, and whose set of arcs can be from a reaction to a compound
and vice versa: a reaction has an incoming arc for each one of its substrates and
one outgoing arc for each of its products. Alternatively a Metabolic network
can be modelled as a directed hypergraph, whose vertices are compounds and
hyperarcs are reactions: an hyperarc is a pair (VS(r),VP(r)), where VS(r) and
VP(r) are respectively the set of substrates and the set of products of reaction
r (see [25] for other examples of hypergraphs applied to biological questions
and the associated computational problems). The reconstruction may lead to a
loss of fundamental information, as for instance stoichiometry, that is the relative
amount produced and consumed by each reaction. The stoichiometric matrix
S ∈ R|C|×|R|, is defined for any compound c and reaction r as follows.

Sc,r =


k if r produces k units of c

−k if r consumes k units of c

0 otherwise

Since Metabolic networks describe the reactions taking place inside a cell, there
might be external compounds to the network: input (e.g. nutrients) and output
(final product of a cell) compounds.

The problems modelled by using hypergraphs (or directed bipartite graphs)
are usually hard, so that very often Metabolic networks are studied as Com-
pound graphs, in which the vertices correspond to compounds and there is
an arc between two compounds if there is a reaction where one is a substrate
and the other is a product. For the sake of completeness, we will mention also
Reaction graphs that are the graphs in which the vertices correspond to reactions
and there is an arc between two reactions if there is a compound produced by
one and consumed by the other [26].

In Figure 1 we summarize these graph models to represent Metabolic networks
by considering the reactions R1, R2, and R3 involved in the Gluconeogenesis
metabolic pathway.
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(d) Reaction network

R1 : GTP+Oxaloacetate −→ CO2 + PEP+GDP

R2 : Pyruvate+CO2 +ATP+H2O −→ Oxaloacetate+H+ + Pi+ADP

R3 : NADH+Oxaloacetate+ 2H+ −→Malate+NAD+

Figure 1: Modelling Metabolic networks
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2.2.3 Gene Regulatory network

Regulation of gene expression (or gene regulation) includes the processes that
cells and viruses use to regulate the way that the information in genes is turned
into gene products. Although a functional gene product can be an RNA, the
majority of known mechanisms regulates protein coding genes. Gene regulation
drives the processes of cellular differentiation and cell living cycle.

A Gene Regulatory network (GRN) models a collection of DNA segments in
a cell which interact with each other indirectly, through their RNA and protein
expression products, and with other substances in the cell, thereby governing
the rates at which genes in the network are transcribed into mRNA.

In a Gene Regulatory network, vertices representing transcriptional regulators
are connected by signed arcs to the nodes corresponding to their targets. The sign
or weight of such arcs indicates the effect of the control. Because of combinatorial
regulation whose output depends on the architecture of promoters which is
not encoded in a basic Gene Regulatory network, an hypergraph representation
could also be better for these networks [27, 28, 29].

Moreover the system can have as input proteins such as transcription factors,
and as output the level of gene expression. The dependencies among links can be
modelled using new vertices that correspond to functions which can be obtained
by combining basic functions upon the inputs (in a Boolean network model
these are boolean functions, typically and, or, and not). These functions have
been interpreted as performing a kind of information processing within the cell,
which determines the cellular behaviour.

In Figure 2 we summarize the main forms of representation of a Gene Regula-
tory network. A genetic circuit is a visual representation of a biological system.
The bipartite graph has vertices for proteins and different logical gates for
combinatorial regulation: and requires the presence of both regulators to have
transcription, while or means that it can be activated by one of the regulators
alone. The information on the promoter logics is lost in a simple representation,
while it is encoded in a hypergraph representation. If a regulator z is removed,
when analysing a simple network, one may infer that the auto-regulation of w
continues to take place, which is not true, as correctly predicted by the bipartite
graph.

2.2.4 De Bruijn graph

Ever since Watson and Crick elucidated the structure of the DNA molecule
in 1953, thus proving that it carried the genetic information, the challenge of
reading the DNA sequence became central for biological research. The earliest
chemical methods for DNA sequencing were extremely inefficient, laborious and
costly. Over the next few decades, sequencing became more efficient by orders of
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(a) Genetic Circuit: dark grey arrows for transcrip-
tion and translation, and light grey arrows for
transcriptional regulation.
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(c) Bipartite network

Figure 2: Modelling Gene Regulatory networks

magnitude. In the 1970s, two classical methods for sequencing DNA fragments
were developed by Sanger and Gilbert, the dominant sequencing technologies
from the late 1970s to the late 2000s used for all of the initial genome sequencing
projects (H. influenzae, Yeast, Drosophila, Arabidopsis, human, and so on). In the
1980s these methods were augmented by the advent of partial automation as
well as the cloning method.

Over the past couple of years, new sequencing technologies, called Next
Generation Sequencing, have emerged. These new techniques sequence millions
of fragments efficiently and in parallel. These fragment sequences are called
reads, and they form the input for the computational problems.

Next generation sequencing can be used for SNP (single nucleotide polymor-
phism, i.e. a variation of a single nucleotide in the genetic code of a population)
detection or even whole genome re-sequencing. In the first case, it requires the
knowledge of most of the sequence in order to identify just rare differences
among individuals. This can be used to model organisms that already have a
high-quality reference genome sequence available. There are three next genera-
tion sequencing platforms that are commercially available and in widespread
use: 454 (also known as pyrosequencing or Roche GS FLX, the first next genera-
tion method to be commercially available and the first to be applied to large-scale
sequencing projects, such as sequencing the genome of James Watson), Solexa
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(also known as Illumina, used to sequence the entire genome of one African and
one Asian human, plus the genome of a cancer patient), SOLiD (ABI).

Since all of these methods give short reads, they have mainly been used for
resequencing. In this case, it is not necessary to do a complete, independent
genome assembly, but the sequence reads can be aligned to a reference genome
sequence. For example, the sequence reads from a single person can be aligned
to the reference human genome. However, all of the above methods have been
modified to produce paired reads in which both ends of a DNA fragment of
known length are sequenced. This makes it possible to do de novo assemblies of
genomes [30].

Performing a completely independent genome assembly is still an interesting
topic of research: given h l-long reads S1, . . . ,Sh, how to find the sequence of
the full genome? In order to answer to this question the de Bruijn graph has
been used. A de Bruijn graph (DBG) is a directed graph G = (V ,E) whose set of
vertices V are labelled by k-mers, i.e. words of length k that are subsequences
of the reads. An arc in E links a vertex u to a vertex v if the suffix of length
k− 1 of u is a prefix of v. A path in this graph defines a potential contiguous
subsequence in the genome sufficiently covered by the reads. Hence a read can
be converted to its corresponding path and the full genome sequence is a long
walk in this graph.

2.3 analysis and enumeration of biological networks

Network metrics have been mainly developed for non-biological purposes, but
in some cases they provided meaningful biological information. Several topo-
logical metrics are often used to analyse biological networks, like for instance,
centrality to predict essential genes/reactions/compounds/proteins, average
distance and diameter to inspect the compactness of a network, assortativity
and dyadicity to study the modularity of a network and correlations between
the properties of the vertices.

However structural analysis are not always able to take into account regulatory
mechanisms: the activity of enzymes is often regulated by one or more effector
metabolites but since the effector metabolite is not consumed, they are not
encoded in a Metabolic network. This can have profound consequences because
these regulations have important roles in stabilizing metabolic states and in
generating complex and biologically important dynamic behaviours [31, 32, 33].
These effectors are moreover able to cross the boundaries between different
biological levels, such as metabolism and gene regulation; therefore building
integrated models taking these cross talks into account represents a major
challenge in systems biology. Modelling efforts have demonstrated that none of
the different biological layers is truly isolated [34, 35, 36] so that perturbations
propagate between them, and that enzymes also have regulatory functions,
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exerted through their control over the concentration of particular metabolites.
These considerations lead to a view of the cell as a network of networks, whose
understanding requires considering regulatory interactions not only within but
also between biological networks.

Moreover biases in the network reconstructions or manipulation can strongly
affect the results of the analysis, confounding (if there exist) the correlations of
biological and topological properties [37]. Indeed, topological measures are the
result of a partial reconstruction and a lot of measures are strongly affected by
the sampling [38, 39].

In general, biological networks are often studied as static entities, but it should
be stressed that they are instead very dynamic at widely different time-scales.
They are dynamic in evolutionary time like any other biological structure, and
even more on short time-scales, since regulatory connections and feedbacks
change the connectivity of the network depending on the physiological state.
Consequently, we should interpret most of the currently available biological net-
work reconstructions as potential networks, where all the possible connections
are indicated. By the term potential, we highlight the fact that edges/arcs and
vertices in this network will be hardly present all together in vivo. If we consider
for instance a Protein-Protein Interaction network, not all interaction partners
of a protein will be expressed in a given condition, reducing the number of
actual partners. On the converse, we may speak of network realizations when
focusing on the active subgraph of the potential network, defined on the basis
of experimental data [40, 41, 42, 43]. The dynamic nature of biological networks
is also at the basis of differential network analysis [44], which aims at capturing
the subgraphs specific of a given network realization.

These considerations are important since they affect the analysis of biological
networks. As there are many condition-specific realizations of a biological
network, they plausibly have different structural properties. It has indeed been
shown that random subgraphs of a network do not necessarily maintain the same
degree distribution as the entire network [45], suggesting that other structural
properties may also change. Similarly, it has been shown that power-law degree
distributions can be obtained through random sampling of networks with
different topology, indicating that it might be not possible to infer the true
degree distribution from partial network reconstructions [46].

Several works try to take into account realizations. Han et al. [40] estimated the
temporal connectivity of hubs in the Yeast Protein-Protein Interaction network
by using gene expression data. Luscombe et al., [41] analysed the structural
properties of the Yeast Gene Regulatory network in different conditions. Starting
from a widely validated Gene Regulatory network, they used gene expression
data to extract the subnetworks supposed to be active during environmental
stress or the cell cycle, highlighting important differences (see also [42, 40,
43]). The use of realization networks is currently limited by the need for high-
quality and high-throughput experimental data, today available only for a
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few organisms. Nevertheless, large-scale experimental data will be more easily
obtained in the future, giving the occasion to develop the algorithms required
for a similar approach.

Since biological networks are so complex, the structural analysis must take
into account more biological information, whenever this is possible, or it requires
to enumerate all the feasible structures (given some set of constraints) in order
to select a posteriori the realistic ones from a biological point of view. Thus,
in this scenario, very often enumeration algorithms can be helpful and they
have been applied for several purposes, for instance: enumerating interesting
vertices [47], central or peripheral vertices (see Chapter 4), enumerating motifs
[48, 49, 50], that are statistically overrepresented subgraphs in a network and
have been recognized as ’the simple building blocks of complex networks’, and
enumerating subgraphs [51, 52] (see Chapter 5), enumerating paths or cycles as
chains of interactions or feedback loops [14] (see Chapter 6 and 7), enumerating
functional clusters [53], dense modules [54], or cliques [55].





3
E N U M E R AT I O N A L G O R I T H M S

In this chapter we present an overview of the main computation issues
related to enumeration problems and the main techniques to design algo-
rithms and proving their complexity.

3.1 introduction

The aim of enumeration is listing all the feasible solutions of a given problem.
For instance, given a graph G = (V ,E), enumerating all the paths or the shortest
paths from a vertex s ∈ V to a vertex t ∈ V , enumerating cycles, or enumerating
all the feasible solutions of a knapsack problem, are classical examples of
enumeration problems. An enumeration algorithm solves an enumeration problem.

While an optimization problem aims to find just the best solution according
to an objective function, i.e. an extreme case, an enumeration problem aims to
find all the solutions satisfying some constraints, i.e. local extreme cases. This is
particularly useful whenever the objective function is not clear: in these cases the
best solution should be chosen among the results of the enumeration. Moreover
sometimes it can be interesting to capture local structures of the data, instead
of the global one, so that enumerating all remarkable local structures becomes
particularly helpful. This is often the case in computational biology.

In such a context a good model is the result of a tradeoff between the size and
the number of the solutions: whenever the sizes of the solutions are huge, it is
more desirable to have relatively few solutions. For these reasons, the models
usually include some parameters (such as solution size, frequency, and weight)
or unify similar solutions.

It is worth observing that the number of solutions increases with the size of
the input. Whenever this size is small, brute force algorithms are helpful, and
simple implementations can successfully solve the problem. On the other hand,
for large scale data more sophisticated approaches from algorithm theory are
required in order to guarantee a bounded increase of computation time when
the input size increases.

In this chapter we will present an overview of the main computational issues
related to enumeration problems and the main techniques to design algorithms
and to prove their complexity. These are part of the lecture notes, written together
with Gustavo A. T. Sacomoto, taken during the lectures given by Takeaki Uno
at the school on Enumeration Algorithms and Exact Methods (ENUMEX) in
Bertinoro, Italy, on September 25-26th, 2012.
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Algorithm 1: BruteForce(i,X)
Input: An integer i > 1, a sequence of values X = 〈x0, . . . , xi−1〉,

eventually empty
Output: All the feasible sequences of length n whose prefix is X

1 if no solution includes X then return
2 if i > n then
3 if X is a solution then output X
4 else
5 foreach feasible value e of xi do
6 BruteForce(i+ 1, 〈X, e〉)
7 end
8 end

structure of the chapter. The chapter is structured as follows: in Sec-
tion 3.2 we exploit the main algorithmic issues related to enumeration and we
show some brute force approaches to solve them. In Section 3.3 we report the
main technical framework to design efficient enumeration algorithms and in
Section 3.4 we show the main amortization schema. In Section 3.5, we briefly
discuss the tractability of enumeration problems in practice.

3.2 algorithmic issues and brute force approaches

The design of enumeration algorithms involves several aspects that need to be
taken into account in order to achieve correctness and effectiveness. Indeed, any
enumeration algorithm have to guarantee that each solution is output exactly
once, i.e. should avoid duplication. A straightforward way to achieve this is
to store in memory all solutions already found, and whenever a new solution
is encountered, test whether it has been already output or not. Clearly, this
approach can be memory inefficient when the solutions are large with respect
to the memory size, or there are too many of them. Dealing with this would
require dynamic memory allocation mechanism and efficient search (hash). For
these reasons, deciding whether a solution has been already output without
storing the solutions already generated is a more suitable strategy that many
enumeration algorithms try to apply.

Besides that, there are cases in which implicit forms of duplication should
also be avoided, i.e. avoid outputting isomorphic solutions. To this aim, it is
often useful to define a canonical form of encoding for the solutions allowing
easy comparisons. The canonical form should provide a one-to-one mapping
between the objects and their representation, without increasing drastically their
size. In this way the problem of enumerating certain objects is turned into the
enumeration of their canonical forms. However, in some cases, like graphs,
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Algorithm 2: BruteForce(X,D)

Input: A pattern X, a reference to a global database D
Output: All the patterns containing X not isomorphic between them and

to any pattern contained in D
1 D← D∪ {X}
2 if no solution includes X then return
3 if X is a solution then output X foreach X ′ obtained by adding an element to
X do

4 if 6 ∃Z ∈ D such that Z isomorphic to X ′ then
5 BruteForce(X ′,D)

6 end
7 end

sequence data and matrices, checking isomorphism is hard even by defining a
canonical form. Nonetheless, in these cases the isomorphism can be still checked
by using exponential algorithms that in practice turn out to be often efficient
when the number of solutions is small.

Simple structures, such as cliques and paths are generally easy to enumerate,
since cliques can be obtained by iteratively adding vertices, and the set of paths
can be easily partitioned. More complex structures, such as maximal (nothing
can be added to the solution without losing some required property) or minimal
(nothing can be subtracted from the solution without losing some required
property) structures, or constrained structures, are more difficult to enumerate.
In these cases, even if a solution can be found in polynomial time, the main
issue is designing a way to generate other solutions from a given one, i.e defining
a solution neighbourhood, in order to allow visiting all the solutions by moving
iteratively through the neighbourhoods.

It should be noted that using an exponential time approach to find each
neighbour or having an exponential number of neighbouring solutions, can
lead to time inefficiency. When an exponential number of possible choices have
to be applied to a solution in order to possibly obtain other solutions, the
enumeration process can take an exponential time for each solution, since there
is no guarantee that any choice leads to a solution. For example this is very often
the case concerning maximal solutions: removing some elements and adding
others to get maximality allow to move iteratively to any solution, but, when
the number of these combinations is exponential, the final cost per solution
is also exponential. In such a context, if possible, restricting the number of
neighbours of a solution or applying some pruning strategy to avoid redundant
computation, can lead to more efficiency.

More complex cases concern the problems in which even finding a solution
is NP-complete, such as SAT or Hamiltonian cycle. Nonetheless, in these cases,
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heuristics often effectively apply, specially when the problem turn out to be
usually easy, like SAT, the solutions are not huge, like maximal and minimal
structure enumeration, and the size of the solution space is bounded.

When the instance sizes are small, another approach to these problems, is to
use brute force algorithms. For example, using a divide and conquer approach to
enumerate all the candidates and selecting all feasible solutions, or by enlarging
the solutions one by one and removing the isomorphic ones. Two basic schemas
for brute force algorithms are informally described in Algorithm 1 and 2. In
Algorithm 1 every solution is seen as an ordered sequence of values: by invoking
BruteForce(1,∅, the feasible values are recursively found by enlarging the
current solution; in this case, just the test whether X is a solution or not is
required. Also Algorithm 2 tries to enlarge the current solution, but at each step
we check whether the current solution has been already considered in the past
computation: the result of the past computation is stored in a database D.

Note that for both the algorithms, it is necessary to know how to transform a
candidate X into another candidate X ′. Moreover, it is worth observing that, in
both cases, an accurate a priori checking whether X is contained in any solution
or not could save a lot of useless computation.

3.3 basic algorithms

Since the number of solutions of many enumeration problems are usually
exponential in the size of the instance, enumeration algorithms require often
at least exponential time. On the other hand, it is quite natural to ask for a
polynomial time algorithm whenever the number of solutions is polynomial.
In such a context, the complexity classes of enumeration problems are defined
depending on the number of solutions, so that if the number of solution is small,
an efficient algorithm has to terminate after short (polynomial) time, otherwise it
is allowed to spend more time. According to this idea, the following complexity
classes have been defined [56].

Definition 1. An enumeration algorithm is polynomial total time if the time required
to output all the solutions is bounded by a polynomial in the size of the input and the
number of solutions.

Definition 2. An enumeration algorithm is polynomial delay if it generates the
solutions, one after the other in some order, in such a way that the delay until the first
is output, and thereafter the delay between any two consecutive solutions, is bounded
by a polynomial in the input size.

Intuitively, the polynomial total time definition means that the delay between
any two consecutive solutions has to be polynomial on the average, while
the polynomial delay definition implies that the maximum delay has to be
polynomial. Hence, Definition 2 implies Definition 1.
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The basic technique for designing enumeration algorithms are: backtracking
(depth-first search with lexicographic ordering), binary partition (branch and
bound like recursive partition algorithm), reverse search (search on traversal tree
defined by parent-child relation). The rest of this section is devoted to exploit
the features of these schemas. It is worth observing that this categorization is
not strict, since very often these technique overlap each other.

3.3.1 Backtracking

A set F ⊆ 2U (of subsets of U) satisfies the downward closure if for any X ∈ F
and for any X ′ ⊆ X, we have X ′ ∈ F, in other words, for any X belonging
to F we have that any subset of X also belongs to F. Given a set U and an
oracle to decide whether X ⊂ U belongs to F, an unknown set of 2U satisfying
the downward closure, we consider the problem of enumerating all (maximal)
elements of F. The backtracking technique is mainly applied to these problems.
In this approach by starting from an empty set, the elements are recursively
added to a solution. The elements are usually indexed, so that in each iteration,
in order to avoid duplication, only an element whose index is greater than
the current maximum element is added. After all the examinations concerning
one element, by backtracking, all the other possibilities are exploited. The basic
schema of backtracking algorithms is shown by Algorithm 3. Note that whenever
it is possible to apply this schema, we obtain a polynomial delay algorithm,
whose space complexity is also polynomial. The technique proposed relies on
a depth-first search approach. However, it is worth observing that in some
cases of enumeration of families of subsets exhibiting the downward closure
property, arising in the mining of frequent patterns (e.g., mining of frequent
itemsets), besides the depth-first backtracking, a breadth-first approach can be
also successfully used. For instance this is the case of the Apriori algorithm for
discovering frequent itemsets [57].

Algorithm 3: Backtrack(S)

Input: S ⊆ U a set (eventually empty)
Output: All the solutions containing S

1 output S
2 Let π(x) be the index associated to an element x ∈ U
3 foreach e > maxx∈S π(x) do
4 if S∪ {e} is a solution then
5 Backtrack(S∪ {e})
6 end
7 end
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Algorithm 4: SubsetSum(S)

Input: S a set (eventually empty) of integers belonging to the collection
U = {a1, . . . ,an}

Output: All the subsets of U containing S whose sum is less than b.
1 ouput S
2 Let π(x) be the index associated to an element x
3 foreach i > maxx∈S π(x) do
4 if ai +

∑
x∈S x < b then

5 SubsetSum(S∪ {ai})
6 end
7 end

Enumerating all the subsets of a collection U = {a1, . . . ,an} whose sum is less than b.

By using the backtracking schema, it is possible to solve the problem as shown
by Algorithm 4. Each iteration outputs a solution, and take O(n) time, so that we
have O(n) time per solution. It is worth observing that if we sort the elements
of U, then each recursive call can generate a solution in O(1) time, so that we
have O(1) time per solution.

3.3.2 Binary Partition

Let X be a subset of F, the set of solutions, such that all elements of X
satisfy a property P. The binary partition method outputs X only if the set is a
singleton, otherwise, it partitions X into two sets X1 and X2, whose solutions are
characterized by the disjoint properties P1 and P2 respectively. This procedure is
repeated until the current set of solutions is a singleton. The bipartition schema
can be successfully applied to the problem of enumeration of paths of a graph
connecting two vertices s and t, of the perfect matchings of a bipartite graph [58],
of the spanning trees of a graph [59]. If every partition is non-empty, i.e. all
the internal nodes of the recursion tree are binary, we have that the number of
internal nodes is bounded by the number of leaves. In addition, if we have that
the partition oracle takes polynomial time, since every leaf outputs a solution,
we have that the resulting algorithm is polynomial total time. On the other hand,
even if there are empty partitions, i.e. internal unary nodes in the recursion
tree, if the height of tree is bounded by a polynomial in the size of the input
and the partition oracle takes polynomial time, then the resulting algorithm is
polynomial delay.
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Enumerating all the (s, t)-paths in a graph G = (V ,E).

The partition schema chooses an arc e = (s, r) incident to s, and partitions the
set of all the (s, t)-paths into the ones including e and the ones not including
e. The (s, t)-paths including e are obtained by removing all the arcs incident to
s, and enumerating the (r, t)-paths in this new graph, denoted by G− s. The
(s, t)-paths not including e are obtained by removing e and enumerating the
(s, t)-paths in the new graph, denoted by G− e. The corresponding pseudocode
is shown by Algorithm 5. It is worth observing that if the arc e is badly chosen,
a subproblem could not generate any solution; in particular, the set of the (r, t)-
paths in the graph G− s is empty if t is not reachable from r, while the set of the
(s, t)-paths in G− e is empty if t is not reachable from s. Thus before performing
the recursive call to the subproblems it could be useful to test the validity of e,
by testing the reachability of t in these modified graphs. Notice that the height
of the recursion tree is bounded by O(|V |+ |E|), since at every level the size of
the graph is reduced by one vertex or arc. The cost per iteration is O(|V |+ |E|),
the reachability test. Therefore, the algorithm has O((|V |+ |E|)2) delay or O(|E|2)
delay for connected graphs.

This problem has been studied in [60, 21, 61], and in [18], guaranteeing a linear
delay. In Chapter 7 we will modify this latter algorithm in order to enumerate
bubbles. In the particular case of undirected graphs, in Chapter 6 we will show
an algorithm based on this bipartition approach having an output sensitive
amortized complexity, as shown in [19]. In the particular case of shortest paths,
the enumeration problem has been studied in [62]. It is worth observing that
the problem of enumerating all the (s, t)-paths in a graph is equivalent to the
problem of enumerating all the cycles passing through a vertex.

3.3.3 Reverse Search

The reverse search schema defines for any solution a solution called parent
solution [63], in a way that this parent-children relationship does not induce a
cyclic graph or DAG, but induces a tree. In this way, in order to enumerate
all the solutions, it is sufficient to traverse the tree by performing a depth first
search, so that the number of iterations is equal to the number of solutions. It is
worth observing that the tree induced by the parent child relationship does not
need to be stored in memory, but it is sufficient to use an algorithm for finding
all the children of a parent. Moreover it could be preferable to have an algorithm
able to find the (i+ 1)-th child of a node, given the i-th child.

Since the number of iterations is equal to the number of solutions, we have
that the cost per solution is equal to the cost per iteration. Thus if finding the
next child of a node costs O(f(n)) time, where n is the input size, the resulting
computation time per iteration is O(f(n)). Hence the algorithm is polynomial
total time whenever f(n) is polynomial. The space complexity is given by the
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Algorithm 5: Paths(G, s, t,S)
Input: A graph G, the vertices s and t, a sequence of vertices S

(eventually empty)
Output: All the paths from s to t in G

1 if s = t then
2 output S
3 return
4 end
5 choose an arc e = (s, r)
6 if no (r, t)-path in G− s then
7 Paths(G− e, s, t,S)
8 return
9 end

10 if no (s, t)-path in G− e then
11 Paths(G− e, r, t, 〈S, s〉)
12 return
13 end
14 Paths(G− s, r, t,S)
15 Paths(G− e, s, t,S)

memory usage of an iteration and by the height of the depth first search tree.
This latter cost is not required when we have an algorithm able to find the
(i+ 1)-th child of a node, given its i-th child. The delay between two successive
solutions is also O(f(n)) by using the alternative output technique [64].

Indeed alternative output technique aims to reduce the delay, by avoiding
that the depth first search backtrack along long paths without outputting any
solution. As shown by Algorithm 7 the solutions are outputted before the
recursive calls when the current depth first search level is even, otherwise, i.e.
in the odd levels, the solutions are output after the recursive calls. In this way
for any two successive solutions we have a delay at most 2f(n), where f(n)
is the cost of an iteration. Indeed suppose that the parent child relationship
induces a path of solutions x1, . . . , xg(n) and there is a solution xg(n)+1 that
is a child of x1, where g(n) is a function of n. If the cost per iteration is
O(f(n)), by applying Algorithm 6, for any i with 1 6 i 6 g(n), the delay is

Algorithm 6: ReverseSearch(S)

1 output S
2 foreach child S ′ of S do
3 ReverseSearch(S ′)

4 end
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Algorithm 7: AlternativeOutput(S,depth)
Input: A solution S, an integer depth
Output: All the solutions descendants of S in the tree induced by the

parent-child relationship
1 if depth is even then output S foreach child S ′ of S do
2 AlternativeOutput(S,depth+ 1)

3 end
4 if depth is odd then output S
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Figure 3: A graph and the recursion tree induced by Algorithm 8.

O(f(n)), and the delay between xk and xk+1 is O(g(n)). By applying Algorithm
7, by supposing g(n) odd, the solutions are generated in the following order
x2, x4, . . . xg(n)−1, xg(n), xg(n)−2, xg(n)−4, . . . , x3, x1, xg(n)+1, so that the delay
is O(2 · f(n)) = O(f(n)).

In conclusion, by applying this technique, every time an enumeration algo-
rithm takes O(f(n)) time in each iteration and also outputs a solution on each
iteration, the delay O(f(n)) can be turned into a worst case delay O(f(n)).

Maximal Clique Enumeration.

A clique is a complete graph, i.e. a graph in which any two vertices are
connected. Finding the clique of maximum size in a graph G = (V ,E) is NP-hard
[65], while finding a maximal clique is an easy task that can be solved in O(|E|)
time: by starting with an arbitrary clique (for instance, a single vertex), grow the
current clique one vertex at a time, adding it if connected to each vertex in the
current clique, and discarding it otherwise. The clique enumeration problem
is the problem of enumerating all the complete subgraph of a given graph in
input. This problem has been widely studied by [66, 67, 68]. The bipartite clique
enumeration problem is the problem of enumerating all the complete bipartite
subgraphs of a bipartite graph and it can be efficiently reduced to a clique
enumeration problem [66].
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Algorithm 8: EnumMaximalCliques(G,K)
Input: A graph G = (V ,E), a maximal clique K ⊆ V
Output: All the maximal cliques descendants of K in the tree induced by

the parent-child relationship between maximal cliques
1 output K
2 foreach vertex v ∈ V not in K do
3 K ′ ← K[v]

4 if P(K ′) = K then
5 EnumMaximalCliques(G,K)
6 end
7 end

It is worth observing that the set of cliques is monotone, since any subset
of the vertices of a clique is also a clique. This means that the backtracking
technique can be successfully applied. Checking whether a recursive call is
going to produce at least a clique costs O(|E|) time, and has to be repeated for at
most |V | recursive calls, so that the final cost is O(|V ||E|) per clique.

When the number of solutions increase exponentially when the size of the
instance input increases linearly, it seems hard post-processing the solutions
found, so that often the simple enumeration problem is turned in enumeration
of maximal structures. In this way, the solution set becomes not redundant.
More formally, a solution X is maximal if for any X ⊂ X ′, X ′ is not a solution. In
general the problem of finding maximal solutions is more difficult, since it is
often harder to find a neighbourhood relationship between them. However there
are some exceptions, like enumerating maximal clique.

Also in real contexts it seems more promising enumerating all the maximal
cliques instead of all the cliques: it has been estimated that in real world graphs,
even if they are sparse and the size of their cliques is small, the number of
maximal cliques is between 0.1% and 0.001% the number of its cliques (see also
[69]). Moreover, restricting the enumeration to maximal cliques does not lead to
lose any information since any clique is included in at least one maximal clique.

Given a graph G = (V ,E), whose vertices are indexed, a set of vertices X ⊆ V
is said to be lexicographically greater than Y ⊆ V if the vertex whose index is
minimum in (X \ Y)∪ (Y \X) is contained in X. Moreover, for any X, Y ⊆ V , the
trichotomy property holds, i.e. exactly one of the following holds: X < Y, X = Y,
or Y > X. For any vertex set S, we define S6i as S∩ {v1, . . . , vi}.

Let C(K) be the lexicographically smallest maximal clique including a clique
K ⊆ V , C(K) can be computed by greedily adding vertices to K in lexicographic
order of the indices. Observe that for any set K, C(K) is not lexicographically
smaller than K.
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Given a maximal clique K we define the parent of K, P(K), as C(K6i−1), such
that i is the maximum index satisfying C(K6i−1) 6= K. Notice that C(K6i−1) can
be efficiently computed by removing the vertices from K by starting from the
ones whose index is greater and computing C on the remaining vertices while
C(K) = K holds. The lexicographically smallest clique, denoted as K0, has no
parent. Since for any K, P(K) is lexicographically greater than K, and P(K) is
uniquely defined, the parent-child relationship induces an acyclic graph, that is
a tree.

For any maximal clique K and any vertex vi, we define K[vi] as C((K6i ∩
N(vi))∪ {vi}), where N(vi) is the neighbourhood of vi. Thus a maximal clique
K ′ is a child of the maximal clique K, if there exists vi, with vi /∈ K, such that
K ′ = K[vi]. Hence in order to compute the children of a maximal clique K, it is
sufficient to check for any vi whether P(K[vi]) is equal to K.

Observe that for any maximal clique K, C(K) and P(K) can be computed in
O(|E|) time. All children of K can be found by at most |V | tests, so that the cost of
each iteration is bounded by O(|V ||E|) time. Thus, since the number of iterations
is equal to the number of solutions, the final cost is O(|V ||E|) per maximal clique.

Non-Isomorphic Ordered Tree Enumeration.

Several enumeration problems aim to enumerate all the substructures of a
given instance, like paths of a graph. However, applications sometimes require
solutions satisfying certain constrains, like enumerating path or cycles of a fixed
length or enumerating the cliques of a given size. Other problems instead aim
to find all the structures of a given class, like enumerating the permutations
of size n, enumerating trees, crossing lines in a plane, matroids, and binary
matrices. Enumerating non trivial structures often implies enumerating non
isomorphic structures. In general two structures are isomorphic whenever it
is defined a one-to-one correspondence between their elements. For instance a
circular sequence is isomorphic to another if and only if it can be transformed
in it by using a rotation, a matrix is isomorphic to another matrix if and only if
each one can be transformed in the other one by swapping rows and columns,
a graph is isomorphic to another graph if and only if their adjacency matrices
are isomorphic, i.e. there is a one to one mapping between their vertices that
preserves the adjacency.

Let us consider the problem of enumerating ordered trees, trees in which the
ordering of the children of each vertex is specified. The isomorphism between
two ordered trees is inductively defined as follows: two leaves are isomorphic;
two trees rooted on x and y, whose order lists of children are 〈x1, . . . , xp〉
and 〈y1, . . . ,yq〉 respectively, are isomorphic if p = q and for any i, with
1 6 i 6 p = q, the subtree rooted on xi is isomorphic to the subtree rooted on
yi. This problem has been studied in [70], and by fixing the number of leaves in
[71].
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Figure 4: Two non isomorphic ordered trees, labelled by using left-first DFS, and their
depth sequences.

Given an ordered tree, we define the indexing of its vertices as the visiting
order of a left-first DFS, i.e. a depth first search that visits the children of a vertex
following their order. This indexing procedure is unique and isomorphism
between two ordered trees, whose vertices are indexed as described, can be
checked comparing the edge sets: the two indexed trees are isomorphic if and
only if they have the same edge set.

Moreover, the left-first DFS can be used to encode the ordered trees. To this
aim, we define the depth sequence as 〈h1, . . . ,hn〉, where hi is the depth of
vertex vi in the left-first DFS tree, where vi is the i-th vertex visited by a left-first
DFS. There is a one-to-one correspondence between the ordered trees and the
depth sequences, so that isomorphism can be checked by comparing the depth
sequences, as shown by Figure 4.

By following the reverse search schema, we define the parent-child relationship
between non-isomorphic trees. In particular the parent of an ordered tree is
defined by the tree, obtained by removing the vertex having the largest index,
i.e. by removing from a depth sequence its last element (the last element visited
by a left-first DFS). Recall that the indexing induced by the left-first DFS is such
that the largest index is the leaf of the rightmost branch of the tree. Observe that
the size of the parent is smaller than the size of the children, any ordered tree
have exact one parent, except the empty tree, so that the relationship induces an
acyclic graph.

For any ordered tree T , whose depth-sequence is 〈h1, . . . ,hn〉, the children of
T according to the parent-child relationship defined before, are all the ordered
trees obtained by adding a new vertex vn+1 as the rightmost child of a vertex
belonging to the rightmost path. Let hn+1 be the depth of the new vertex vn+1.
Since hn is the rightmost leaf of T , we have that it belongs to the rightmost
path, to be precise, vn is the last vertex of this path. Thus, the depths of the
vertices of the rightmost path of T , from the root to vn, are exactly the interval
[0,hn]. Since the new vertex vn+1 is a child of a vertex in this path, the depth
hn+1 is in the interval [1,hn + 1]. Thus the children of an ordered tree T , with
depth-sequence 〈h1, . . . ,hn〉, are all the ordered trees whose depth sequence is
〈h1, . . . ,hn,hn+1〉, with 1 6 hn+1 6 hn + 1. An example is given in Figure 5.
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(a)
〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2〉

(b)
〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1〉

(c)
〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 2〉

(d)
〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 3〉

Figure 5: An ordered tree, its depth sequence (a), and its children with their depth
sequences (b), (c), and (d).

By using these observations, we can enumerate all the ordered trees of size
less than k, as shown by Algorithm 9. Notice that the inner loop takes constant
time, so that the time complexity is O(1) per solution.

Algorithm 9: EnumOrderedTree(T ,k)
Input: A tree T (eventually empty) and an integer k
Output: All the non-isomorphic trees of size at most k, whose depth

sequence contains as prefix the depth sequence of T
1 output T
2 if size of T = k then return foreach vertex v in the right most path do
3 Let T ′ be the tree obtained from T by adding a rightmost child to v
4 EnumOrderedTree(T ′,k)
5 end

Non-Isomorphic Tree Enumeration.

We now consider the problem of enumerating non-ordered trees, i.e. trees
in which the ordering of the children of each vertex is not specified. The iso-
morphism between two (non-ordered) trees is inductively defined as follows:
two leaves are isomorphic; two trees rooted on x and y, whose children lists
are X and Y respectively, are isomorphic if |X| = |Y| = p and there exist two
permutations of X and Y, 〈x1, . . . , xp〉 and 〈y1, . . . ,yp〉 respectively, such that
for any i, with 1 6 i 6 p, the subtree rooted on xi is isomorphic to the subtree
rooted on yi. This problem has been studied in [72], by fixing the diameter in
[73], and in the more general case of coloured rooted trees in [74].

The näive approach, to use the same algorithm for ordered tree enumeration
to enumerate non-ordered trees, would produce many duplicate solutions, since
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(a) 〈0, 1, 2, 3, 3, 2, 2, 1, 2, 3〉 (b) 〈0, 1, 2, 2, 3, 3, 2, 1, 2, 3〉 (c) 〈0, 1, 2, 3, 1, 2, 3, 3, 2, 2〉

Figure 6: Three isomorphic rooted tree and their depth sequences. The first one is the
left heavy embedding.

each non-ordered tree may correspond to an exponential number of ordered
trees. Which in turn, would be very inefficient.

In order to define the canonical form of representation of a rooted tree, we
use its left-heavy embedding, defined as the lexicographically maximum depth
sequence among all the ordered trees corresponding to T . Therefore, two non-
ordered rooted trees are isomorphic if and only if they have the same left-heavy
embedding.

The parent child relationship between canonical forms is defined as follows:
the parent of a left-heavy embedding is obtained by the removal of the rightmost
leaf of the corresponding tree, the same for ordered trees. Observe that the
parent t ′ of a left-heavy embedding t of T is a left-heavy embedding too,
otherwise there would be another sequence greater than t ′ such that by adding
back the rightmost leaf of T we would obtain a depth sequence for T that is
lexicographically greater than t.

Hence any child of a rooted tree T is obtained by adding a vertex as children
of the vertices belonging of the rightmost path, like for ordered trees. However,
some trees obtained by adding a vertex in this way are not children of T , since
the resulting sequence does not coincide with their left-heavy embedding. This
can happen if there exists a vertex x in the rightmost path of T , such that the
depth sequence t = 〈s1, . . . , sp〉 of T(r), where r is the rightmost child of x,
is a prefix of the depth sequence t ′ = 〈s1, . . . , sp, . . . sq〉 of T(r ′), where r ′ is
the second rightmost child of x, so that the depth sequence of T ends with t
concatenated with t ′. Indeed, in this case, by adding a vertex at depth y to T(r)
and obtaining t ′′ = 〈s1, . . . , sp,y〉 as depth sequence of T(r), the depth sequence
of T ends with t concatenated with t ′′: if sp+1 is lexicographically smaller than
y, this is not a leaf-heavy embedding, since the depth sequence ending with t ′′

concatenated with t is lexicographically greater. Thus, since sp+1 is the depth
of the rightmost leaf of T(r ′), to get all and just the children of T , we have to
consider all the possible ways to add a vertex as children of a vertex belonging
to the rightmost path, so that its depth is smaller or equal to sp+1.

The copy vertex is thus defined as the highest (lowest depth) vertex x in T with
at least two1 children, r and r ′ (the rightmost and the second rightmost child
respectively), such that the depth sequence 〈s1, . . . , sp〉 of T(r) is a prefix of the

1 If T is a path, the copy vertex is defined as the root.
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(a) 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2〉

(b) 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 1〉 (c) 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 2〉 (d) 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 3〉

Figure 7: An rooted tree, and its depth sequence (a). (b) and (c) are its children, while
(d) is not a child of (a).

depth sequence 〈s1, . . . , sp, . . . sq〉 of T(r ′). Given a tree T with copy vertex x, in
order to generate the children of T , we have to consider two cases: the prefix
of the depth sequences is proper or the depth sequences are equal. In the first
case, there exists sp+1 and by attaching a new rightmost child to a vertex v, with
depth 6 sp+1, in the rightmost path of T we obtain a new tree T ′ that is also a
left-heavy embedding. Moreover, the new copy vertex of T ′ is v, if the depth v is
not equal to the depth of x; or x, otherwise. On the other case, the subtrees T(r)
and T(r ′) are equal and by attaching a new rightmost child to a vertex v, with
depth smaller or equal to the depth of x, in the rightmost path of T we obtain a
new tree T ′ that is also a left-heavy embedding, and the new copy vertex of T ′

is v. In both cases, we are able to generate the new tree T ′ and update the copy
vertex in constant time. The algorithm is shown by Algorithm 10. Each iteration
of the loop costs O(1), so that we have a final cost of O(1) per solution.

3.4 amortized analysis

In this section, we explore techniques to analyse the running time of a certain
kind of enumeration algorithms. Specifically, enumeration algorithms with a
tree-shaped recursion structure.

Suppose a enumeration algorithm with a tree-shaped recursion structure
takes O(n) time per node. Based only on this, it is not possible to polynomially
bound the time spent to output each solution. We can have exponentially many
nodes and a small number of solutions as in, for example, the enumeration
of feasible solutions of SAT using a branch-and-bound algorithm. However, if
every node outputs a solution, then algorithm takes O(n) per solution. Now,
suppose that each leaf outputs a solution and each node takes O(n) time. Again,
this is not enough to polynomially bound time per solution, since we can have
an exponential number of internal nodes and only few leaves. In addition, we
need that either the height of the tree is bounded, in this case the number of
nodes is bounded by the number of solutions (leaves) times the height; or each
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Algorithm 10: EnumRootedTree(T , x)
Input: A tree T (eventually empty), an integer k, and a vertex x
Output: All the non-isomorphic rooted trees of size at most k, whose

depth sequence contains as prefix the depth sequence of T
1 output T
2 if size of T = k then return r← the rightmost child of x
3 r ′ ← the second rightmost child of x
4 if depth sequence of (T(r ′) 6= depth sequence of T(r) then
5 y← the vertex of T(r ′) after the prefix T(r)
6 else
7 y← x

8 end
9 foreach vertex v in the rightmost path of T , in increasing depth order do

10 add a rightmost child to v
11 if depth of v = depth of y then
12 EnumRootedTree(T , x)
13 break
14 end
15 EnumRootedTree(T , v)
16 remove the rightmost child of v
17 end
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internal node has at least two children, the number of nodes is bounded by 2

times the number of solutions.
These three scenarios: every node outputs a solution, every leaf outputs

a solution and the height of the tree is bounded, and every leaf outputs a
solution and each internal nodes has at least two children, are the typical ones
in which we can polynomially bound the time complexity. In each case, the time
complexity per solution depends on the maximum time complexity O(n) over
all nodes. In order to do better, we have to use amortized analysis. The rest of
the section is devoted to three amortized analysis techniques: basic amortization,
amortization by children and push out amortization.

3.4.1 Basic Amortization

A recursive enumeration algorithm usually solves the problem by breaking it
into subproblems, which are generally smaller, in both input and output size,
than the original problem. The recursion tree for this case has many bottom
level nodes taking a short time and a fewer nodes closer to the root taking
a long time. We call this effect in the recursion tree bottom-wideness. However,
this observation alone is not enough to provide good amortized bounds. For
instance, Fig. 8a and 8b have bottom level nodes (leaves) taking O(1), but the
amortized complexity is still O(n), the maximum cost among the nodes. In both
cases, there were a sudden decrease in the computation times.

n
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1

1
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Figure 8: Recursion trees with the cost of each node. (a) The cost of the internal nodes
decrease by 1 and the all leaves have cost 1. (b) The nodes in the same level
have the same cost, decreasing by 1 from n until n− 2. The leaves have cost 1.
(c) The nodes in the same level have the same cost, decreasing by 1 from n

until 1.

In the tree of Fig. 8c each internal node has two children, all the nodes in the
same level have the same cost, and the cost of each node decreases by a constant
at each level. It is not hard to show that the average complexity per node in this
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case is O(1). That is, there was a reduction from O(n) to O(1) when considering
the amortized complexity. Lemma 2 presents a generalization of this example,
every node has two children and the costs are proportional to the height of the
node. Technical Lemma 1 is used in the proof of the Lemma 2.

Lemma 1. For any polynomial p(x) =
∑m
k=0 akx

k, there exists δ and α < 1, such
that p(x+1)2p(x) < α, for all x > δ.

Proof. It is easy to prove that limx→∞ p(x+1)
2p(x) = 1/2. Thus, from the definition

of limit, there exist ε and δ (depending only on ε), such p(x+1)
2p(x) − 1/2 < ε for

all x > δ. Choosing ε < 1/2, we have that p(x+1)2p(x) < ε+ 1/2 = α < 1 for all
x > δ.

Lemma 2. Let T be a recursion tree with height n, such that every internal node has
degree 2; and the cost for each node is O(p(i)), where p(i) is a polynomial and i is the
height of the node. Then, the amortized cost for each node is O(1).

Proof. The number of nodes with height i is 2n−i, since the internal nodes have
degree 2. The cost of each level i of the tree is bounded by 2n−ip(i) and the
total cost of the tree is

∑n
i=1 2

n−ip(i). Let us consider the ratio of the cost of
two adjacent levels in the tree,

r(i) =
2n−(i+1)p(i+ 1)

2n−ip(i)
=
p(i+ 1)

2p(i)
.

By Lemma 1, r(i) < α < 1, for all i > δ. Implying that the cost of each level
i > δ decrease by α and the sum of the costs of all levels i > δ is bounded by
the sum of the geometric series, i.e.

∑
δ6i6n

2n−ip(i) < 2n−δp(δ)
∑
δ6i6n

αi−δ < 2n−δp(δ)

∞∑
i=0

αi =
2n−δp(δ)

1−α
.

Therefore, amortized cost of each node in the levels above δ is∑
δ6i6n 2

n−ip(i)∑
δ6i6n 2

n−i
<
2n−δp(δ)

1−α

1

2n−δ
=
p(δ)

1−α
= O(1).

The last equality follows from the fact that α and delta are constants. More-
over, the cost of the nodes with i 6 δ is also O(1).

Theorem 1 is a straightforward generalization of Lemma 2.

Theorem 1. Let T be a recursion tree with height n, such that every internal node has
degree at least 2; and the cost for each node is O(p(i)), where p(i) is a polynomial and
i is the height of the node. Then, the amortized cost for each node is O(1).
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Enumerating connectivity elimination orderings of a connected graph G.

Given a connected graph G = (V ,E), a connectivity elimination ordering is an
ordering of the vertices such that the removal of each vertex keeps the remaining
graph connected. Algorithm 11 enumerates all connectivity elimination order-
ings. Each call of the algorithm takes O(|V |3) time, since for each v ∈ V it checks
if G− v is connected. Moreover, for any connected graph there are at least two
vertices such that their removal maintain the graph connected. Therefore, the
hypothesis of Theorem 1 are satisfied, and the amortized complexity per node
is O(1). Since, in this case, the number of nodes is at most 2 times the number
of leaves, the amortized complexity per solution is also O(1).

Algorithm 11: EnumOrderings(G = (V ,E),X)
Input: A graph G and sequence X that is a prefix of a connectivity

elimination order.
Output: The set of all connectivity elimination orders of G.

1 if V = ∅ then
2 output X
3 end
4 foreach v ∈ V do
5 if G− v is connected then
6 EnumOrderings(G− v, 〈X, v〉)
7 end
8 end

3.4.2 Amortization by Children

The basic amortization strategy presented in the previous section, in the form
of Theorem 1, requires that every leaf has the same depth, and the cost of
each node depends uniformly on the height. Though there are applications for
Theorem 1, these requirements are global, they depend on the tree as whole,
imposing a very strict structure in the recursion tree. In this section, we start
developing amortization techniques with weaker hypothesis, so that they can
be applied also in the case of more biased trees. For this, we focus on local tree
structure. Theorem 2 presents a simple amortization scheme using only the
parent-children structure.

Theorem 2. Let T be a recursion tree and T(x) the cost of node x ∈ T . The amortized
cost for each node is O(maxz∈T

T(z)
|N+(z)|+1).
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Proof. We divide the cost T(x) between the node x and its children N+(x). In
this way the new cost of x is T(x)

|N+(x)|+1 plus the cost received from its parent y.
Thus,

T ′(x) = O(
T(x)

|N+(x)|+ 1
+

T(y)

|N+(y)|+ 1
)

= O( max
z∈{x,y}

T(z)

|N+(z)|+ 1
) = O(max

z∈T

T(z)

|N+(z)|+ 1
).

Enumerating all simple paths of G starting from s.

Given a graph G = (V ,E) and a vertex s ∈ V , we consider the problem of
enumerating all simple paths of G that start on s. Algorithm 12 solves this
problem. Each call outputs a solution and takes O(|N(s)|) time, since we have
to explore all edges from s. Moreover, each edge from s generates a recursive
call. Therefore, applying Theorem 2 we have that the amortized cost per node is
O(maxz∈T

|N(z)|
|N(z)|+1) = O(1).

Algorithm 12: EnumPaths(G = (V ,E), s,π)
Input: A graph G, a vertex s and a path π from s.
Output: The set of all paths from s in G with prefix π.

1 output π
2 foreach v ∈ N(s) do
3 EnumPaths(G− s, v, 〈π, s〉)
4 end

3.4.3 Push out Amortization

In Lemma 2 the key property was that the total cost on each level increases
with a constant factor, by going to the next deeper level. Intuitively, the increase
of computation time is good because it forbids a sudden decrease, as the one
of the trees in Fig. 8a and 8b. In this section, we apply the same idea locally.
Instead of comparing the total cost of two adjacent levels we compare the cost
of a node with the total cost of its children. Lemma 3 gives a precise statement
for this local increase property. Afterwards, Theorem 3 generalizes Lemma 3, by
combining it with the amortization by children of Theorem 2.

Lemma 3. Let T be a recursion tree, such that the cost of each leaf is O(T∗); and there
exist α > 1 such that every internal node x ∈ T satisfy

∑
y∈N+(x) T(y) > αT(x),

where T(x) is the cost of x. Then, the amortized cost for each node is O(T∗).



3.4 amortized analysis 43

Proof. Consider a node x ∈ T and define C(x) =
∑
y∈N+(x) T(y). We divide the

cost T(x) proportionally among the children, so that each y ∈ N+(x) receives
T(x)

T(y)
C(x) . Observe that

∑
y∈N+(x) T(x)

T(y)
C(x) = T(x), i.e. all the cost T(x) is di-

vided among the children. By doing this division recursively, starting from the
root, we have that a node z ∈ T receives from its parent at most T(z)α−1 .

Let us prove the last claim by induction on the depth of the node. Assume
that all nodes w with depth d− 1 receive at most T(w)

α−1 from its parent. The base
case is trivial, because the root receives no cost. Let z be a node with depth d,
its parent w has depth d− 1. By the induction hypothesis, the cost received by
w from its parent is T(w)

α−1 and the total cost of w is T(w) + T(w)
α−1 . Thus, the cost

received by z is:

T(z)

C(w)
(T(w) +

T(w)

α− 1
) = T(z)

T(w)

C(w)

α

α− 1
6 T(z)

1

α

α

α− 1
=
T(z)

α− 1
.

The inequality follow from T(w)
C(w) =

T(w)∑
y∈N+(w) T(y)

6 1
α . Completing the proof

of the claim.
In the end of the cost division process the only nodes that have non-zero cost

are the leaves. For any leaf the cost received from its parent is at most T∗

α−1 .
Therefore, the total cost is O(T∗ + T∗

α−1) = O(T
∗), since α is a constant.

Theorem 3 is a generalization of Lemma 3. In the theorem, for every node x
satisfying item 2 we can use the same amortization strategy of the lemma, i.e.
proportionally divide all the cost T(x) among the children. However, instead of
stopping this process only on the leaves, we stop on the first node satisfying
item 1 or 3. If the node x satisfies item 1 and its ancestrals satisfy item 2, we know
that the cost pushed to x is O( T

∗

α−1) and the total cost of x is O(T∗ + T∗

α−1) =

O(T∗). On the other hand, if a node x satisfies item 3 we can amortize T(x)
among the Ω(

T(x)
T∗ ) children or solutions. In this way, each child receives O(T∗)

(that is not passed to its grandchildren), so that the cost of x is O(T∗) and we
have the same case of item 1.

Theorem 3. Let T be a recursion tree, such that each node x ∈ T satisfy one of the
following properties:

1. T(x) = O(T∗);

2.
∑
y∈N+(x) T(y) > αT(x), where α > 1 is a constant;

3. x has Ω(
T(x)
T∗ ) children, or outputs Ω(

T(x)
T∗ ) solutions.

Then, the amortized cost for each node is O(T∗).
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Matching Enumeration

Given an undirected graph G = (V ,E), a matching M in G is a set of pairwise
non-adjacent edges, i.e. for any two edges (u, v) 6= (x,y) ∈ M, we have that
{u, v} ∩ {x,y} = ∅. The set of all matchings of G is denoted by M(G). Several
variants of matching enumeration have been studied: perfect (every vertex has
an incident edge in M) matching enumeration in bipartite graphs [75, 76, 77,
58], perfect matching in general graphs [78], maximal matchings in bipartite
graphs [77] and maximal matchings in general graphs [79]. In this section, we
consider the problem of enumerating all matchings of a graph. First, we present
a simple algorithm (Algorithm 13) that correctly enumerates all matchings. Then,
we modify it (Algorithm 14) to satisfy the hypothesis of Theorem 3, so we can
use it to improve the algorithm complexity.

Algorithm 13 uses the binary partition method, each recursive call partitions
M(G) in two sets: matchings not including the edge (u, v) and the ones including
it. In the first case (line 6), we remove (u, v) from G and leave M unchanged. In
the second case (line 7), we add (u, v) to the matching M and remove from G all
edges adjacent to (u, v). The cost of a node is bounded by, the number of edges
removed, O(|V |). Now let us analyse the structure of the recursion tree. The
conditional of line 1 ensures that only leaves output solutions. Moreover, there
is always a matching including (u, v) and one not including it, so every node
leads to a solution. Thus, in the recursion tree all internal nodes have exactly
two children and every leaf output a solution. Therefore, the number of nodes is
bounded by 2|M(G)|, and Algorithm 13 takes O(|V |) time for each matching.

Algorithm 13: EnumMatching(G = (V ,E),M)

Input: A graph G and a matching M (eventually empty)
Output: M(G), the set of matchings of G

1 if E = ∅ then
2 output M
3 return
4 end
5 choose an edge (u, v) ∈ E
6 EnumMatching(G− (u, v),M)

7 EnumMatching(G− {(x,y) ∈ E|x ∈ {u, v}},M∪ {(u, v)})

Actually, each node in the recursion tree of Algorithm 13 takes O(|N(u)|+

|N(v)|) time. Consider a node x with the input graph G = (V ,E), the input
graph of its children contain |E|− 1 and |E|− |N(u)|− |N(v)| edges. Hereafter,
for the sake of clear analysis, we bound the computation time of each node
by c|E|. In this way, the cost for x is T(x) = c|E| and, T(y1) = c(|E|− 1) and
T(y2) = c(|E|− |N(u)|− |N(v)|) for each child. Based on this costs we cannot
apply Theorem 3. The leaves take O(1) time, satisfying item 1. However, the



3.5 data-driven speed up 45

internal nodes do not satisfy item 2 or item 3. Each internal node has exactly
2 children and do not output solutions, so that item 3 is not satisfied. On
the other hand, the total computation time of the children is not increasing
by constant factor over the parent, i.e. there is no constant α > 1 such that
T(y1) + T(y2) > αT(x).

In order to satisfy item 3 of Theorem 3 we need |N(u)|+ |N(v)| to be bounded,
so that T(y2) is not too small. The key property is that for any graph either
there is an edge (u, v) such that |N(u)|+ |N(v)| < |E|/2 or there is a node u with
|N(u)| > |E|/4. Algorithm 14 is a modified version of Algorithm 13 that uses this
property. If there exists an edge (u, v) such that |N(u)|+ |N(v)| < |E|/2 (line 5),
we have that

T(y1) + T(y2) > c(|E|− 1) + c
|E|

2
>
3

2
T(x),

satisfying item 2. Alternatively, if there exists u such that |N(u)| > |E|/4 (line 8),
we create at least |E|/4 children, satisfying item 3. Therefore, applying Theorem 3

and using that the number of internal nodes is bounded by 2|M(G)|, we have
that Algorithm 14 takes O(1) time amortized for each matching enumerated.

Algorithm 14: EnumMatching(G = (V ,E),M)

Input: A graph G and a matching M (eventually empty)
Output: M(G), the set of matchings of G

1 if E = ∅ then
2 output M
3 return
4 end
5 if ∃(u, v) ∈ E s.t. |N(u)|+ |N(v)| < |E|/2 then
6 EnumMatching(G− (u, v),M)

7 EnumMatching(G− {(x,y) ∈ E|x ∈ {u, v}},M∪ {(u, v)})
8 else
9 choose u s.t. |N(u)| > |E|/4

10 EnumMatching(G− u,M)

11 foreach v ∈ N(u) do
12 EnumMatching(G− {(x,y) ∈ E|x ∈ {u, v}},M∪ {(u, v)})
13 end
14 end

3.5 data-driven speed up

Polynomial delay algorithms, especially linear delay, can be considered as
being very close to optimal algorithms in practice. Indeed since the delay is
defined as a function of the input size, it can be often considered very small or
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negligible with respect to the usual exponential number of outputted solutions.
However, there are certain applications, particularly in data mining, in which
the input data are very large (frequent pattern mining, candidate enumeration,
community mining, feasible solution enumeration). In such a context, when
the number of outputted solutions is expected to be small (polynomial in the
input size), the problem is said to be large-scale tractable. This is the case of
enumerating peripheral or central nodes in large graphs, as shown in Chapter 4.

On the other hand, when the number of solutions increases exponentially
with a linear increase in the instance size, we usually have that many solutions
are similar and therefore redundant. In these cases, a post processing step is
required to suppress the redundant solutions. Since the number of solutions is
huge, the post processing is very time consuming or even infeasible, so these
problems are considered intractable. This could be potentially the case of the
frequent itemset problem, that is the problem of enumerating all the patterns
appearing frequently in a large database, where a pattern can be a sequence
of items, a short string, or a subgraph (any subset of a frequent itemset is also
frequent). However this intractability is very often linked to the application: for
example, even if in theory the number of maximal cliques can be exponential in
the size of the graph, in practice for large sparse graphs this number is usually
polynomial in the size of the graph. On the other hand, however, the number of
independent sets in a graph is huge both in theory and in practice.



4
E N U M E R AT I N G D I A M E T R A L A N D R A D I A L V E RT I C E S
A N D C O M P U T I N G D I A M E T E R A N D R A D I U S O F A G R A P H

In this chapter we show an example of enumeration problem whose num-
ber of solutions is polynomial and for which a polynomial algorithm exists,
that is enumerating diametral vertices, i.e. vertices whose eccentricity is the
diameter, and radial vertices, i.e. vertices whose eccentricity is the radius.
Intuitively they correspond to periphery and center of a network. After
an overview on the centrality measures used in the analysis of biological
networks, we show an efficient algorithm to list such vertices. The contri-
bution of this work is not just limited to biological networks, but is even
more useful for complex huge network analysis in general. Indeed, even if
the complexity of our algorithms is theoretically O(nm), like the text-book
algorithm, we show that in practice it runs often in O(m) time. This study
implies the analysis of the diameter and radius of a network, so that we will
evaluate the effectiveness of our algorithms in finding such measures.

4.1 introduction

Structural analysis allows the identification of important and not important
vertices within a network and for this reason it has become very popular in
many disciplines. In general, the importance of a vertex can be defined in many
different ways. The effectiveness of each centrality measure depends on the
context of application.

In this chapter, we will focus on the enumeration of the radial and diametral
vertices, i.e. central and peripheral vertices according to the eccentricity notion
of centrality, and on the computation of the radius and diameter of biological
networks and of real world graphs in general. Recall that the diameter D is the
maximum distance d(x,y) among all the pairs of vertices x,y. In other words,
the diameter of a graph is the maximum forward or backward eccentricity
of its vertices, where the forward and backward eccentricities of a vertex x
are respectively eccF(x) = maxy∈Vd(x,y) and eccB(x) = maxy∈Vd(y, x). The
radius R is instead defined as the minimum forward eccentricity of its vertices.
Diametral sources and targets are thus defined as all the vertices x such that
eccF(x) = D and eccB(x) = D respectively; the radial vertices are instead all the
vertices x such that eccF(x) = D.

In the case of an undirected graph, whenever the graph is not connected, i.e.
when at least for a pair of vertices x,y there is no path from x to y, the radius

47
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and diameter of its connected components are usually studied. In the more
general case of a directed graph, whenever the graph is not strongly connected,
i.e. at least for a pair of vertices x,y there is no path from x to y, we will consider
in this work the radius and diameter of its strongly connected components.

In the case of biological networks, for instance in metabolic networks, the
diameter indicates how many reactions have to be performed in order to produce
any metabolite from any other metabolite [80]. For several biological networks,
it has been studied in [81, 82] and for protein-protein interactions in [83]. The
radius can indicate how many reactions have to be performed at least in order
to produce all the metabolites from any other metabolite.

The analysis of real world networks in general, such as citations, collaboration,
communication, road, social, and web networks, has attracted a lot of attention,
and in [2] the fundamental analysis measures have been reviewed. Moreover the
size of these networks has been increasing rapidly, so that, in order to study such
measures, algorithms able to handle huge amount of data are needed. Hence
the contribution of our algorithms is not just limited to biological networks
analysis, but extends to complex networks analysis in general. Indeed, in the
case of the diameter, for social networks, in which every vertex is an individual
and the edges represent their friendship, the diameter has been studied for
several social networks in [84, 85, 81], for peer to peer social networks in [86],
for mobile social networks in [87], for Facebook in [7, 8]. For several scientific
collaboration networks, in which every vertex is a scientist and scientists are
linked whenever they have collaborated for a research paper, the diameter has
been studied in [88, 81]. In the case of a web network, in which every vertex
corresponds to a web page and the arcs correspond to hyper links, the diameter
indicates how quickly any page can be reached. For several web networks, this
has been estimated in [89, 81, 90]. Because of the huge size of the networks,
in almost any of those works, the diameter of the connected components of
undirected graphs or the strongly connected components of directed graphs
was just estimated. For these reasons, we have shown the effectiveness of our
algorithms not only for biological networks but also for several other kinds of
complex networks.

previous work . The Single-source Shortest Path (in short sssp) is the problem
of finding all the shortest paths from a given vertex to all the others. In general
this problem has complexityO(m) in the case of unweighted graphs by using the
traditional bfs algorithm and O((m+n) logn) in the case of weighted graphs,
by using the Dijkstra’s Algorithm.

In general algorithms for finding the exact radius or diameter solve the All
Pairs Shortest Path problem (in short apsp), that is the problem of finding the
shortest path between all pairs of vertices of the graph, so that the maximum
distance obtained is the diameter. This can be efficiently done by applying the
classical text-book algorithm, i.e. solving for any vertex the sssp problem, or by
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applying fast matrix multiplication with complexity O(n2.376)[84]. See [91] for
a survey. However in the context of huge real world networks, these approaches
are not practical and usually just estimations or bounds can be provided.

Some algorithms are able to estimate the cumulative distribution of the
shortest path lengths of any kind of graph and can be applied to obtain an
estimation of the radius and diameter with a small additive error using much
less computations with respect to the apsp. This is the case of ANF (Approximate
Neighbourhood Function) in [92], HyperANF in [93], HADI in [94], and Cohen
frameworks [95, 96, 97, 98, 99, 100].

A lower bound of the diameter, or an upper bound of the radius can be pro-
vided by using a sample of the vertices and returning respectively the maximum
and the minimum eccentricity found, as done in [101] for the diameter, or by
using other heuristics.

In the case of the radius, this sampling method has been exploited for a huge
web graph in [89], but as far as we know no other methods have been proposed.

In the case of the diameter, for undirected graphs a lower bound can be
provided by using the so called double sweep algorithm: pick the farthest vertex
from a random vertex and return its eccentricity. The idea can be iterated picking
at each step the farthest vertex from the previous one and maintaining the
highest eccentricity found as in [81]. In real world networks actually this lower
bound is very good and, in order to prove the effectiveness of this approach,
several works, like [102] and [4], propose strategies to find a matching or close
upper bound. Recent advances have shown that in real cases a matching between
a lower and upper bound for the diameter can be found by applying a very
small number of computations of sssp, even if, in the worst case, the time
complexity degenerates in the time complexity of the apsp problem. In [5], and
independently in [103], a lower and upper bound on the diameter are indeed
dynamically refined by calculating the eccentricity of vertices properly chosen, so
that also the diameter of huge real world undirected graphs has been discovered.

The algorithm shown in [5] has been integrated into the library in [104], and
has been used in order to compute the exact diameter of several quite huge
subgraphs of the Facebook graph: a highly parallel version of this method was
able to compute the diameter of the largest subgraph (approximately 149.1M of
vertices and 15.9G of edges) in twenty minutes [7, 8].

For directed graphs, in order to obtain a lower bound for the diameter, the
idea of the double sweep has been adapted by [89]: pick the farthest vertex from
a random vertex and return its backward eccentricity, i.e. its eccentricity in
the transposed graph. In [3] the effectiveness of this directed version of the
double sweep has been verified and the technique in [5] has been reviewed and
generalized in order to calculate the diameter graphs too.

contribution. As a result of our previous works [3, 4, 5, 6], we will present
the difub algorithm, which is able to calculate the diameter and to list all the
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vertices that are sources or targets of a diametral path of (strongly) connected
components of huge real world (directed) graphs in time O(m) in practice. Our
experimental results are supported by considering an extensive dataset of real
world graphs. By using the same technique, we will show an algorithm for
efficiently computing the radius and listing all the vertices that are sources of a
radial path of such graphs. For the same dataset we will show the effectiveness of
this algorithm. It is worth of noting that our algorithms extend also to weighted
graphs.

Parts of this chapter appeared in [1, 105].

structure of the chapter. This chapter is organised as follows: in Sec-
tion 4.2 we will overview the most popular centrality measures that have been
applied to biological networks to discover vertex essentiality; in Section 4.3,
respectively Section 4.4, we will show our algorithm to compute the diameter,
respectively the radius, and to list all the peripheral, respectively the central,
vertices according to the eccentricity notion of centrality; in Section 4.5 we will
show how these algorithms work through an example and in Section 4.6, we will
report some graphs in which our algorithms achieve the worst performances; in
Section 4.7 we will show that this is not the case of real world graphs. Finally in
Section 4.8 we conclude with some open problems and in Section 4.9 with some
considerations about distance analysis in general.

4.2 overview on centrality analysis for biological networks

Given a network, it is natural to wonder how important each vertex is to the
functionality of the network. A number of graph measures have been developed
for evaluating vertex centrality [106, 107, 108, 109, 110, 111] and several tools
allow to compute network metrics, such as CentiBiN [106], VisANT [112], Visone
[113], Pajek [114], CentiScaPe [111], and CentiLib [115]. Centrality measures can
be local (or neighbourhood based) or global (distance or feedback based).

local measures . With neighbourhood-based measures, such as degree, the
importance of the vertices is inferred from their local connectivity and the more
connections a vertex has the more central it is. Highly connected vertices (hubs)
were found to possess special properties in the Yeast Protein-Protein Interaction
network: they are more often essential than non-hub proteins [116, 117]). They
tend to play a central role in the modular organization of a network [118, 40]
and seem to be evolutionarily more conserved [119]. Nevertheless, since then,
several works have raised doubts on some of these associations [120, 121].

There is no consensus in the literature on how to define a hub, and different
criteria have been used: a certain fraction of the highest degree vertices [122];
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vertices with a certain fraction of the total connectivity [123]; a degree greater
than an arbitrary threshold [40, 124, 125].

In order to have an indication about the homogeneity of the vertices of a
network, it is interesting to study the degree distribution that for most biological
networks is well fitted by a power-law (P(k) ∝ k−γ) with γ ≈ 2, where k
corresponds to the degree. In these networks, a few hubs play a fundamental
role for the integrity and navigability of the network [118], while a vast majority
of the vertices has only a few connections. This degree distribution has been
associated to robustness against random vertex removal. Robustness to the
loss of a vertex in the Metabolic network indicates the presence of alternative
pathways bypassing the missing reaction; in Gene Regulatory networks it may
correspond to the presence of alternative ways of transducing and controlling
information. On the contrary, these networks are highly sensitive to directed
attacks, because removal of hubs deeply affects network functionality [126].
Even though much research has been done on the power-law distribution and
its universality in biological networks, criticisms have been raised [127].

The local connectivity of vertices can be studied in further detail by using
either assortativity or dyadicity. The first measure is the correlation between the
degree of adjacent vertices [128]. Maslov and Sneppen [129] found that hubs in
the Yeast Protein-Protein Interaction network are mostly connected to non-hubs,
and are therefore well separated from each other. Dyadicity [130] measures the
degree to which vertices of a network are connected to vertices sharing some
characteristic (functional classification, essentiality, involvement in a disease
and so on) and is therefore able to characterize the modular structure of a
network, considering the distribution of the functions over the vertices and their
connectivity [131]. A network is called heterophilic (heterophobic) when different
categories are connected more (less) often than expected following a random
model. It has been recently used to study the coupling between structure and
functionality in transcriptional and non coding (nc) RNA-protein interactions
networks [132]. The results showed that most transcriptional regulators and
ncRNAs tend to connect to genes/proteins of other functional classes, suggesting
that regulators do not really belong to a functional class and tend to coordinate
several of them [132]. On the converse, in Protein-Protein Interaction networks
connections more often involve proteins of a same functional category.

global measures. Closeness [133], eccentricity, and shortest path based
betweenness [134] are based on global properties of a network, in particular to
the shortest path length between its vertices. The closeness of a vertex depends
on its average distance from the others and is of particular interest for infor-
mation networks (such as signalling and gene regulatory networks), because it
measures how fast information flows from a vertex of interest to all the reachable
vertices on the average [135]. It has been recently integrated with biological
information in a parameter-free gene prioritization approach that measures
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the interconnectedness (ICN) between genes in a network [136]. ICN measures
closeness of each candidate gene to genes possessing the interesting property
by considering alternative paths in addition to the direct link and the shortest
path distances. The closeness can be efficiently approximated in the case of big
networks by using [137].

The eccentricity of a vertex is the length of the longest shortest path starting
from it, that is a vertex is central if its farthest vertex is not far. It has been
shown that in the metabolic network of E. coli the rank order of the vertices
based on eccentricity yields very similar rank order to the one based on the
closeness close to the central vertices, despite the fact that these measures may
disagree significantly in the case of not central vertices [138]; for the protein
network of Yeast, it has been shown that even if eccentricity is not effective to
find essential proteins because not essential proteins can have high eccentricity,
the proteins having high eccentricity can be considered not essential [138, 139].
In the following section we will exploit an algorithm to find efficiently all the
peripheral and central vertices, according to this notion of centrality.

Shortest path based betweenness depends on the number of shortest paths
crossing a vertex. In Protein-Protein Interaction networks, betweenness can be
interpreted as the relevance of a protein to be intermediary in the interaction
between other proteins, by assuming that this interaction passes through shortest
paths [111]. Bottlenecks are vertices with high betweenness centrality and have
been found to be key connectors with surprising functional and dynamical
properties, often essential [140]. Bottleneck and hub genes were identified in
coexpression networks inferred from experimental data, and found to be often
essential for virulence in Salmonella typhimurium with the role of mediators
of transitions between different cellular states or of sentinels that reflect the
dynamics of these transitions [141]. Cell cycle checkpoints were found to be
bottlenecks in a gene coexpression network of cell cycle regulated genes in the
fission Yeast [142].

Network metrics in general [143, 144, 145] and betweenness centrality in
particular are also used for the rational prediction of drug targets [146]. Essential
genes are preferred targets for drug design and central genes are more likely to
be essential. Another constraint was imposed in this particular case: the gene
must be essential for the pathogen but not for the host, to reduce side effects of
the drug.

One problem of shortest path based measures is that communication between
biological entities is assumed to pass along those paths, which is often not
plausible: from the point of view of Metabolic networks, the shortest path
might be defined on the basis of the energy/cofactor requirements instead of
the number of hops, while in Gene Regulatory networks and Protein-Protein
Interaction networks all active connections will take place and not only the
shortest ones. In the former, targets with different shortest paths to a common
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regulator may exhibit hierarchical gene expression patterns as it is the case for
flagellar genes [147].

To overcome the limitation of shortest paths, a vertex can be considered
central when it is crossed by many random walks: this is the case of the random
walk based betweenness centrality [148]. Some feedback based measures are
implicitly based on random walks, like eigenvector [149] and spectral centrality
[150]. Eigenvector centrality has been applied to several metabolic networks
[151] and has been shown to outperform other metrics for the identification
of essential proteins in the Protein-Protein Interaction network of Yeast [152],
together with subgraph centrality [153].

However since the network express just the potential links and not the real
ones, many walks are not feasible, since they traverse edges that are hardly
occur together at the same time in the network. For these reasons, very recently,
gene expression has been integrated in a centrality measure called Pec [154]
which has been used to identify essential genes in Yeast. This measure exploits
the strength of the connectivity between two adjacent vertices based on an Edge
Clustering Coefficient [155], weighted by the co-expression between genes in
experimental data.

4.3 computing the diameter and enumerating all the diametral

vertices

Let G = (V ,E) be a directed strongly connected graph and let u be any vertex
in V . Let FFi (u) be the forward fringe of u, that is, the set of vertices x such that
d(u, x) = i. Similarly, let FBi (u) be the backward fringe, that is, the set of vertices
x such that d(x,u) = i. In other words, FFi (u) (respectively, FBi (u)) includes all
vertices at level i of TFu (respectively, TBu ), where recall that TFu (respectively, TBu )
is the forward (respectively, backward) bfs tree.

Remark 1. For any two integers i, j with 1 6 i 6 eccB(u) and 1 6 j 6 eccF(u),
for any two vertices x,y such that x ∈ FBi (u) and y ∈ FFj (u), d(x,y) 6 i + j 6
2max{i, j}.

Indeed, since x ∈ FBi (u) and y ∈ FFj (u), there exists a path from x to y passing
through u that is long i+ j, so that i+ j is an upper bound for d(x,y).

Theorem 4. For any integer i with 1 < i 6 eccB(u), for any integer k with 1 6
k < i, and for any vertex x ∈ FBi−k(u) such that eccF(x) > 2(i − 1), there exists
y ∈ FFj (u), for some j > i, such that d(x,y) = eccF(x). Moreover for any y such that
d(x,y) = eccF(x), y ∈ FFj (u) for some j > i.

Proof. Since eccF(x) > 2(i− 1), there exists y such that d(x,y) > 2(i− 1). For any
y such that d(x,y) > 2(i− 1), if y was in FFj (u) with j < i, then from Remark 1 it
would follow that d(x,y) 6 2max{i− k, j} 6 2max{i− k, i− 1} = 2(i− 1), which
is a contradiction. Hence, y must be in FFj (u) with j > i.
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Similarly to the proof of Theorem 4, we can also prove the following symmet-
rical result.

Theorem 5. For any integer i with 1 < i 6 eccF(u), for any integer k with 1 6
k < i, and for any vertex x ∈ FFi−k(u) such that eccB(x) > 2(i − 1), there exists
y ∈ FBj (u), for some j > i, such that d(y, x) = eccB(x). Moreover for any y such that
d(y, x) = eccB(x), y ∈ FBj (u), for some j > i.

In order to describe the difub algorithm, we also need the following defini-
tions. Let

BFj (u) =

{
maxx∈FFj (u) eccB(x) if j 6 eccF(u),
0 otherwise

and

BBj (u) =

{
maxx∈FBj (u) eccF(x) if j 6 eccB(u),
0 otherwise.

By using these two definitions, we are now ready to introduce the difub algo-
rithm, which is shown in Algorithm 15. Intuitively, Theorems 4 and 5 suggest to
perform a forward and a backward bfs from a vertex u, and to visit TFu and TBu
in a bottom-up fashion, starting from the vertices in the last fringes. For each
level i, we compute the eccentricities of all the vertices in the corresponding
fringes: if the maximum eccentricity found lb is greater than 2(i− 1) then we
can conclude that lb is the diameter, since the eccentricities of all the vertices of
the remaining levels cannot be greater than lb.

Algorithm 15: difub to compute the diameter
Input: A strongly connected di-graph G, a vertex u, a lower bound l for

the diameter
Output: The diameter D

1 i← max{eccF(u), eccB(u)};
2 lb← max{eccF(u), eccB(u), l};
3 ub← 2i;
4 while ub− lb > 0 do
5 lb← max{lb,BBi (u),B

F
i (u)};

6 if lb > 2(i− 1) then
7 return lb;
8 end
9 ub← 2(i− 1);

10 i← i− 1;
11 end
12 return lb;

Theorem 6. Algorithm 15 correctly computes the value of the diameter of G.
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Proof. Let D ′ be the value returned by Algorithm 15. Note that the diameter
cannot be smaller than D ′ since this value is the length of a shortest path. By
contradiction assume that there exists a vertex x such that eccF(x) > D ′. Let j be
the last value of i for which Algorithm 16 has computed BBi (u) and BFi (u): thus
D ′ > 2(j− 1). For any vertex v in FBj (u) ∪ FBj+1(u) ∪ . . . ∪ FBeccB(u)

(u), we have
computed eccF(v), and for any vertex w in FFj (u)∪ FFj+1(u)∪ . . .∪ FFeccF(u)

(u), we
have computed eccB(w), lb is the maximum eccentricity found. This implies that
x have to belong to FBh(u) for some h < j. Since eccF(x) > D ′ > 2(j− 1), from
Theorem 4, there exists y ∈ FFk(u), for some k > j, such that d(x,y) = eccF(x).
In other words there exists y ∈ FFj (u) ∪ FFj+1(u) ∪ . . . ∪ FFeccF(u)

(u), such that
eccB(y) > eccF(x) > D ′. Since D ′ is the maximum eccentricity found, this is a
contradiction.

In order to present the algorithm to enumerate all the diametral sources and
targets, we define the following quantities, SFj (u), that is the set of vertices
belonging to FFj (u) whose backward eccentricity is BFj (u), and the set of their
farthest vertices in the transposed graph TFj (u).

SFj (u) =

{
{x ∈ FFj (u) : eccB(x) = BFj (u)} if j 6 eccF(u),
∅ otherwise

TFj (u) =
⋃

x∈SFj (u)

{y : d(y, x) = BFj (u)}

Analogously, we define SBj (u), that is the set of vertices belonging to FBj (u)
whose forward eccentricity is BBj (u), and the set of their farthest vertices TBj (u).

SBj (u) =

{
{x ∈ FBj (u) : eccF(x) = BBj (u)} if j 6 eccB(u),
∅ otherwise.

TBj (u) =
⋃

x∈SBj (u)

{y : d(x,y) = BBj (u)}

With respect to Algorithm 15, every time the lower bound lb is updated, because
vertices, whose forward or backward eccentricity is greater than lb are found
in the current fringe sets, Algorithm 16 empties and updates also the set of
diametral sources DS and the set of diametral targets DT . Every time vertices,
whose forward or backward eccentricity is equal to the current value of lb, these
vertices are added to the sets DS and DT , respectively. It is worth observing that
whenever the guarding condition of the loop is satisfied, because lb = ub = 2i,
for some i, the eccentricities of the vertices belonging to FFi (u) or FBi (u) have not
been checked, while some of these vertices could have still forward or backward
eccentricity equal to 2i. Thus this check is done in the last part of the algorithm
before the returning statement.
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Algorithm 16: difub to enumerate all the diametral vertices
Input: A strongly connected di-graph G, a vertex u, a lower bound l for

the diameter
Output: The diameter D, DS, that is the set of vertices x such that

eccF(x) = D, DT , that is the set of vertices x such that
eccB(x) = D.

1 i← max{eccF(u), eccB(u)};
2 lb← max{eccF(u), eccB(u), l};
3 ub← 2i;
4 DS← ∅; DT ← ∅;
5 while ub− lb > 0 do
6 if BBi (u) > lb then
7 lb← BBi (u);
8 DS← SBi (u); DT ← TBi (u);
9 else

10 if BBi (u) = lb then
11 DS← DS∪ SBi (u); DT ← DT ∪ TBi (u);
12 end
13 end
14 if BFi (u) > lb then
15 lb← BFi (u);
16 DS← TFi (u); DT ← SFi (u);
17 else
18 if BFi (u) = lb then
19 DS← DS∪ TFi (u); DT ← DT ∪ SFi (u);
20 end
21 end
22 if lb > 2(i− 1) then
23 return lb,DS,DT ;
24 end
25 ub← 2(i− 1);
26 i← i− 1;
27 end
28 if BBi (u) = lb then
29 DS← DS∪ SBi (u); DT ← DT ∪ TBi (u);
30 end
31 if BFi (u) = lb then
32 DS← DS∪ TFi (u); DT ← DT ∪ SFi (u);
33 end
34 return lb,DS,DT ;
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Theorem 7. Algorithm 16 correctly computes all the diametral sources and targets of
G.

Proof. Algorithm 16 performs at least all the visits performed by Algorithm 15

and return the maximum eccentricity found. From Theorem 6,it follows that
Algorithm 16 returns the diameter D . The following invariant holds: for any
vertex v ∈ DS, eccF(v) > lb; indeed v ∈ SBi (u) and eccF(v) = lb or v ∈ TFi (u) for
some i and eccF(v) > lb. Since lb is finally the diameter, all the vertices in DS
are diametral sources. Let us prove that all the diametral sources are in DS. By
contradiction, assume that there exists a vertex x such that x /∈ DS and eccF(x) =
D. Let j be the last value of i for which Algorithm 16 has computed BBi (u)

and BFi (u). Thus for any vertex v in FBj (u)∪ FBj+1(u)∪ . . .∪ FBeccB(u)
(u), we have

computed eccF(v), and for any vertex w in FFj (u) ∪ FFj+1(u) ∪ . . . ∪ FFeccF(u)
(u),

we have computed eccB(w). Observe that for any pair of vertices v,w such that
d(v,w) = D, Algorithm 16 is such that, if v belongs to FBh(u) for some h > j, v
is added to DS and w is added to DT , if w belongs to FFk(u) for some k > j, w
is added to DT and v is added to DS. Thus x have to belong to FBh(u) for some
h < j and any y, such that d(x,y) = D, have to belong to FFk(u) for some k < j.
By applying Theorem 4, if D = eccF(x) > 2(j− 1) then y should belong to FFz(u)
for some z > j: thus D 6 2(j− 1). There are the following two cases.

• Algorithm 16 stops and returns inside the loop. In this case, BFj (u) and
BBj (u) are the last computed and lb = D > 2(j− 1), that is a contradiction.

• Algorithm 16 stops and returns outside the loop. In this case BFj (u) and
BBj (u) are the last computed and lb = ub = D = 2j, that is a contradiction.

Analogously, it is possible to prove that DT contains all and only the diametral
targets.

Observe that in order to compute BFj (u) (respectively, BBj (u)), we need to com-
pute eccB(x) (respectively, eccF(x)) for any node node x in FFj (u) (respectively,
FBj (u)), by performing a visit.

The time complexity of difub can be in the worst case O(nm) where n
denotes the number of vertices and m denotes the number of arcs. Indeed,
observe that, at each iteration of the while loop, ub− lb decreases at least by
2: this implies that, given a starting vertex u, the algorithm executes at most
max{deccB(u)/2e, deccF(u)/2e} iterations (note that we have that the number of
iterations is bounded by D/2); in the worst case, the number of nodes in FFj (u)
for j > deccF(u)/2e or in FBi (u) for i > deccB(u)/2e is linear and for each of
these nodes a visit is required (see Section 4.6). In the case of Algorithm 16, one
iteration more could be needed.

Since the practical performance of the algorithm depends on the chosen vertex
u, the idea behind a good choice of the starting vertex is preferring vertices
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having a small quantity of vertices at distance greater than or equal to D/2. We
will consider the following heuristics to choose the starting vertex and to get a
corresponding lower bound l.

• Degree selection. A simple way of selecting u is choosing a vertex with the
highest in-degree or out-degree. We refer to the composition of difub with
these two selection strategies as difubHdOut and difubHdIn respectively.

• 2-Sweep selection. A more complex way to select u is by using the following
heuristic, called 2dSweep, which is a natural extension to directed graphs
of the 2Sweep method (in the following, the middle vertex between two
vertices s and t is defined as the vertex belonging to the shortest path from
s to t, whose distance from s is dd(s, t)/2e).

1. Run a forward bfs from a vertex r: let a1 be the farthest vertex.

2. Run a backward bfs from a1: let b1 be the farthest vertex.

3. Run a backward bfs from r: let a2 be the farthest vertex.

4. Run a forward bfs from a2: let b2 be the farthest vertex.

5. If eccB(a1) > eccF(a2), then set u equal to the middle vertex between
a1 and b1 and l equal to eccB(a1). Otherwise, set u equal to the
middle vertex between a2 and b2 and l equal to eccF(a2).

We will consider the variants in which r is the vertex with highest
out-degree or in-degree, and we will refer to them as 2dSweepHdOut
and 2dSweepHdIn respectively. Moreover we will refer to difub by
applying these two starting strategies as difub+2dSweepHdOut and
difub+2dSweepHdIn.

4.3.1 Restricting to Undirected Graphs

If G = (V ,E) is an undirected graph and u is any vertex in V , FFi (u), the
forward fringe of u, coincides with FBi (u), the backward fringe. By consequence
BBj (u) = BFj (u), and the Algorithm 15 in the case of undirected graph can be
simplified as in Algorithm 19, as shown by [156]. Analogously to Theorem 6, it
is possible to prove the following.

Theorem 8. Algorithm 19 correctly computes the value of the diameter of G.

In order to obtain a good starting vertex u in Algorithm 19, we can simplify
2dSweep Algorithm, as shown by Algorithm 18, that is the well known 2Sweep

Algorithm [157, 4].

1. Execute a forward breadth-first search starting from a vertex r: let a1 be
the farthest vertex.
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Algorithm 17: 2dSweep

Input: A strongly connected graph G, a vertex r
Output: A vertex and a lower bound for D

1 Run a forward bfs from r: let a1 be the farthest vertex;
2 Run a backward bfs from a1: let b1 be the farthest vertex.
3 Run a backward bfs from r: let a2 be the farthest vertex.
4 Run a forward bfs from a2: let b2 be the farthest vertex.
5 if eccB(a1) > eccF(a2) then
6 u← the middle vertex between a1 and b1;
7 l← eccB(a1);
8 else
9 u← the middle vertex between a2 and b2;

10 l← eccF(a2);
11 end
12 return u and l;

Algorithm 18: 2Sweep

Input: A strongly connected graph G, a vertex r
Output: A vertex and a lower bound for D

1 Run a forward bfs from r: let a1 be the farthest vertex;
2 Run a forward bfs from a1: let b1 be the farthest vertex.
3 u← the middle vertex between a1 and b1;
4 l← eccF(a1);
5 return l;

2. Execute a forward breadth-first search starting from a1: let b1 be the
farthest vertex.

3. Return the middle vertex between a1 and b1.

We will consider the variants called 2SweepHd, in which r is the vertex with
highest degree. Moreover we will refer to ifub by applying this strategy to select
the starting vertex as ifub+2SweepHd and to ifub by starting from the vertex
with the highest degree as ifubHd.

In a similar manner, Algorithm 16 can be simplified in order to deal with
undirected graphs.

4.3.2 Generalizing to Weighted Graphs

Theorem 4 and 5 can be easily extended to the case of directed weighted
graphs. Indeed, let TFu (respectively, TBu ) denote the forward (respectively, back-
ward) lightest path tree rooted at vertex u, computed, for instance, by means



60 enumerating diametral and radial vertices

Algorithm 19: ifub

Input: An undirected connected graph G, a vertex u, a lower bound l for
the diameter

Output: The diameter D
1 i← eccF(u);
2 lb← max{eccF(u), l};
3 ub← 2i;
4 while ub− lb > 0 do
5 lb← max{lb,BFi (u)};
6 if lb > 2(i− 1) then
7 return lb;
8 else
9 ub← 2(i− 1);

10 end
11 i← i− 1;
12 end
13 return lb;

Algorithm 20: difub for weighted directed graphs
Input: A weighted directed strongly connected graph G, a vertex u, a

lower bound for the diameter l
Output: The diameter D

1 Let d1 < d2 < . . . < dh be the sequence of values d such that FF
d(u) 6= ∅

or FB
d(u) 6= ∅

2 i← h;
3 lb← max{eccF(u), eccB(u), l};
4 ub← 2di;
5 while ub− lb > 0 do
6 lb← max{lb,BBdi(u),B

F
di
(u)};

7 if lb > 2di−1 then
8 return lb;
9 else

10 ub← 2di−1;
11 end
12 i← i− 1;
13 end
14 return lb;

of the Dijkstra algorithm [158] in G (respectively, in the graph transposed of
G). Moreover, let eccF(u) (respectively, eccB(u)) denote the weighted forward
(respectively, backward) eccentricity of u, that is the weight of the longest path
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from (respectively, to) u to (respectively, from) one of the leaves of TFu (respec-
tively, TBu ). Finally, let FFd(u) (respectively, FBd(u)) denote the set of vertices whose
weighted distance from (respectively, to) u is equal to d: hence, FFd(u) 6= ∅ if and
only if there exists at least one vertex x in TFu such that the weight of the path
from u to x is equal to d, and FBd(u) 6= ∅ if and only if there exists at least one
vertex x in TBu such that the weight of the path from x to u is equal to d.

Let d1,d2, . . . ,dh be the sequence of distinct values d such that FFd(u) 6= ∅
or FBd(u) 6= ∅ ordered in increasing order, that is, d1 < d2 < · · · < dh: note
that dh = max{eccF(u), eccB(u)}. We then have the following two results, whose
proofs are similar to the proofs of Theorems 4 and 5, respectively.

Theorem 9. For any integer i with 1 < i 6 h, for any integer k with 1 6 k < i, and
for any vertex x ∈ FBdi−k(u) such that eccF(x) > 2di−1, there exists y ∈ FFdj(u), for
some dj > di, such that d(x,y) = eccF(x). Moreover for any y such that d(x,y) =
eccF(x), y ∈ FFdj(u), for some dj > di.

Theorem 10. For any integer i with 1 < i 6 h, for any integer k with 1 6 k < i, and
for any vertex x ∈ FFdi−k(u) such that eccB(x) > 2di−1, there exists y ∈ FBdj(u), for
some dj > di, such that d(y, x) = eccB(x). Moreover for any y such that d(y, x) =
eccB(x), y ∈ FBdj(u), for some dj > di.

We can then appropriately modify the difub algorithm in order to deal with
directed weighted graphs. To this aim, we define

BFdi(u) =

{
maxx∈FFdi(u)

eccB(x) if FFdi(u) 6= ∅ and di 6 eccF(u),

0 otherwise

and

BBdj(u) =

{
maxx∈FBdj(u)

eccF(x) if FBdj(u) 6= ∅ and dj 6 eccB(u),

0 otherwise.

The difub algorithm for directed weighted graphs is then described in Algo-
rithm 20. Analogously to Theorem 6, it is possible to prove the following.

Theorem 11. Algorithm 20 correctly computes the value of the diameter of G.

Observe that, in order to start the execution of the algorithm, we can also
modify the 2dSweep algorithm by using single source lightest path algorithm
executions instead of bfses.

4.4 computing the radius and enumerating all the radial ver-
tices

In the following, as before, we will assume that G is connected whenever G is
undirected, or that G is strongly connected whenever G is directed. Algorithm 21
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Algorithm 21: Computing the radius and enumerating all the radial
vertices

Input: A graph G, directed or undirected, a pair of vertices x,y
Output: The radius R and C, the set of vertices whose forward

eccentricity is R
1 π← ordering of the vertices v ∈ V according to max{d(v, x),d(v,y)};
2 C = ∅;
3 ub← n;
4 for i = 1 to n do
5 v← π(i);
6 if eccF(v) < ub then
7 ub← eccF(v);
8 C← {v};
9 else

10 if eccF(v) = ub then
11 C← C∪ {v};
12 end
13 end
14 if i 6= n then
15 u← π(i+ 1);
16 if ub < max{d(u, x),d(u,y)} then
17 return ub and C;
18 end
19 end
20 end
21 return ub and C;

computes all the vertices whose eccentricity is equal to the radius. In particular,
given in input a pair of vertices x,y, Algorithm 21 orders the vertices v according
to max{d(v, x),d(v,y)} and scans their eccentricity. At each step, a lower bound
on the eccentricities of the vertices still to process can be easily retrieved.

Remark 2. For any i, let u be π(i+ 1), then

eccF(z) > max{d(z, x),d(z,y)} > max{d(u, x),d(u,y)}

for any z such that z = π(j), with j > i+ 1.

For increasing values of i, we can compute the eccentricity of the vertex
v = π(i), and maintain the minimum eccentricity found, that is an upper bound
ub for the radius. Remark 2 implies that max{d(u, x),d(u,y)} is a lower bound
of the eccentricities of the vertices to be processed. Thus if ub is less than this
lower bound, we can stop the computation because it is not possible to decrease
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ub. In particular this implies that all the vertices, whose eccentricity has not
yet been computed, have eccentricity strictly greater than R. Then the following
result holds.

Lemma 4. Algorithm 21 returns all and only the radial vertices.

While scanning the eccentricities of the vertices, a list C, of the examined
vertices whose eccentricity is equal to the current value of the upper bound, is
maintained.

The performances of Algorithm 21 are strongly affected by the choice of
the starting pair of vertices x,y. A good strategy is applying the 2dSweep

algorithm and, referring to Algorithm 17, taking a1 and b2. In particular in the
following we will consider the 2dSweepHdOut and 2dSweepHdIn. We will refer
to Algorithm 21 with starting strategies 2dSweepHdOut and 2dSweepHdIn as
rad+2dSweepHdIn and rad+2dSweepHdIn respectively.

Observe that Algorithm 21 can be applied also in the case of undirected
graphs. In this case, by applying 2SweepHd Algorithm, referring to Algorithm
17, the vertices a1 and b1 can be used as starting vertices for Algorithm 21.
In the following, we will refer to this Algorithm with this starting choice as
rad+2dSweepHd. Moreover, by using Dijkstra’s Algorithm, instead of using the
bfs Algorithm, the algorithm can be applied also in the case of weighted graphs.

4.5 enumerating diametral and radial vertices: an example

Let us consider the graph shown in the top part of Figure 9, whose all pairwise
distances, with the forward and backward eccentricities of all its vertices are
shown. If we choose u = v1, the corresponding two breadth-first search trees
TFu and TBu are shown in the bottom part of the figure. From these two trees we
can easily derive the forward and backward fringe sets, which are shown in the
bottom part of the figure, together with BFi (v1), B

B
i (v1), S

F
i (v1), T

F
i (v1), S

B
i (v1),

and TBi (v1).
If we choose i = 2, j = 3, x = v6, and y = v8, then it is easy to verify, by

inspecting the two bfses trees, that we can go from v6 to v8 by first going up
in TBv1 (by means of two arcs) and then by going down in TFv1 (by means of
three arcs). Hence, as observed in Remark 1, d(v6, v8) 6 5: indeed, d(v6, v8) = 3
(passing through v4 and v7). Moreover, if we choose i = 2, k = 1, and x = v4 ∈
FB1 (v1), then we have that eccF(v4) = 4 > 2 = 2(i− 1): Theorem 4 is in this case
witnessed by vertex y = v2 ∈ FF2(v1) (indeed, d(v4, v2) = 3).

Suppose we invoke Algorithm 16 with u = v1 and l = 0. Before the execu-
tion of the while loop starts, the two variables i and lb are both set equal to
max{eccF(v1), eccB(v1)} = 5, while variable ub is set equal to 2i = 10 and the
sets DS and DT are both empty. Since ub− lb = 5 > 0, the algorithm enters
the while loop with i = 5. Since, BB5 (v1) = 7 > lb, lb is set to 7 and DS and
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v12 v11

v2

v1

v3

v8

v10

v5

v9

v6

v13v14

v4

v7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 eccF
v1 0 2 1 3 1 3 2 3 2 4 1 2 4 5 5

v2 1 0 2 1 2 3 2 3 3 4 2 3 4 5 5

v3 2 1 0 2 3 2 1 2 4 3 3 4 3 4 4

v4 1 3 2 0 2 2 1 2 3 3 2 3 3 4 4

v5 3 2 1 2 0 3 2 2 1 3 4 5 4 5 5

v6 2 4 3 1 3 0 2 3 4 4 3 4 1 2 4

v7 3 4 3 2 2 1 0 1 3 2 4 5 2 3 5

v8 4 3 2 3 1 4 3 0 2 1 5 6 5 6 6

v9 2 4 3 1 2 3 2 1 0 2 3 4 4 5 5

v10 5 4 3 4 2 5 4 1 3 0 6 7 6 7 7

v11 2 4 3 5 3 5 4 5 4 6 0 1 6 7 7

v12 1 3 2 4 2 4 3 4 3 5 2 0 5 6 6

v13 4 6 5 3 5 2 4 5 6 6 5 6 0 1 6

v14 3 5 4 2 4 1 3 4 5 5 4 5 2 0 5

eccB 5 6 5 5 5 5 4 5 6 6 6 7 6 7

v1

v3 v11

v12

v5

v2 v7

v9

v4
v6

v8

v10
v13

v14

v1

v12

v11

v2 v4

v3 v6

v5

v7

v9

v8

v10

v14

v13

i FFi (v1) FBi (v1) BF
i (v1) BB

i (v1) SFi (v1) TFi (v1) SBi (v1) TBi (v1)

1 v3 ,v5 ,v11 v2 ,v4 ,v12 6 6 v11 v10 v12 v14

2 v2 ,v7 ,v9 ,v12 v3 ,v6 ,v9 ,v11 7 7 v12 v10 v11 v14

3 v4 ,v6 ,v8 v5 ,v7 ,v14 5 5 v4 ,v6 ,v8 v10 ,v11 ,v13 v5 ,v7 ,v14 v2 ,v9 ,v10 ,v12 ,v14

4 v10 ,v13 v8 ,v13 6 6 v10 ,v13 v10 ,v11 ,v13 v8 ,v13 v2 ,v9 ,v10 ,v12 ,v14

5 v14 v10 7 7 v14 v10 ,v11 v10 v12 ,v14

Figure 9: A strongly connected graph with the corresponding all pairwise distances,
forward and backward eccentricities and bfses trees rooted at v1, and the
fringe set properties.
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DT are respectively set to {v10} and {v12, v14}. Then since BF5(v1) = 7 is equal
to lb, DS = {v10} ∪ {v10, v11} (v11 is added to DS) and DT = {v12, v14} ∪ {v14}
(DT does not change). Since lb = 7 < 8 = 2(i− 1), the algorithm sets ub equal
to 8 and performs another iteration with i = 4. Since BF4(v1) = B

B
4 (v1) = 6 and

6 < 7 = lb the lower bound lb is not improved and the sets DS and DT are
not modified. Since lb = 7 > 2(i− 1) = 6 the algorithm returns: lb = 7 is the
diameter of the graph, DS = {v10, v11} is the set of all the diametral sources
(indeed eccF(v10) = eccF(v11) = 7), and {v12, v14} is the set of all the diametral
targets (indeed eccB(v12) = eccB(v14) = 7).

Finally suppose we invoke Algorithm 21, with input the pair of vertices v1,
v10. We define the sets Ci as {u : max{d(u, v1),d(u, v10)} = i} and for any i we
show the corresponding Ci in the following.

i Ci = {u : max{d(u, v1),d(u, v10)} = i}
1 ∅
2 v9
3 v3, v4, v5, v7
4 v1, v2, v6, v8
5 v10, v12, v14
6 v11, v13

Thus Algorithm 21 order the vertices as follows

〈v9, v3, v4, v5, v7, v1, v2, v6, v8, v10, v12, v14, v11, v13〉.

ub is set to n and C is empty. In the first iteration we have v = v9 and since
eccF(v9) = 5, ub is set to 5 and C = {v9}. Since ub = 5 > max{d(v3, v1),d(v3, v10)} =
3, where v3 is the successor of v9 in the order, the algorithm performs a new
iteration. In this latter iteration v = v3, ub is improved and set to eccF(v3) = 4
and C = {v3}. Since ub = 4 > max{d(v4, v1),d(v4, v10)} = 3, the algorithm does
not stop and considers as new v the vertex v4. Since eccF(v4) = 4, v4 is added
to C, so that C = {v3, v4}. Since ub = 4 > max{d(v5, v1),d(v5, v10)} = 3, the
algorithm performs an iteration by using v5 as v: in this case ub is not improved
and C does not change. The same happens by considering as v the vertices v7, v1,
and v2. When considering as v the vertex v6, since eccF(v6) = 4 = ub, ub is not
improved and v6 is added to C. Since ub = 4 = max{d(v8, v1),d(v8, v10)} = 4,
a new iteration is performed, where v = v8. At the end of this latter iteration,
since eccF(v8) = 6 > ub, ub is not improved and C is not changed; since
ub = 4 < max{d(v10, v1),d(v10, v10)} = 5, the algorithm stops. Indeed all the
vertices after v10 have eccF at least max{d(v10, v1),d(v10, v10)} = 5. Thus ub = 4

is the radius of the graph, and C = {v3, v4, v6} is the set of radial vertices, since
eccF(v3) = eccF(v4) = eccF(v6) = 4.
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vn+1

v1v2

v3

vn

vn−1

vn+1
2 −1

vn+1
2

vn+1
2 +1

vn+1
2 +2

Figure 10: A bad network for Algorithm 16. By replacing each edge with two opposite
arcs, this graph becomes a bad network for difub algorithm.

4.6 ad hoc bad cases

There exist graphs, such as the graph shown in Figure 10 and other graphs
available at [159], where our algorithms use Θ(n) bfses. These graphs are
characterized by an extreme regularity: the bfs trees at their vertices are very
similar, with the radius and the diameter values very close, namely, R ≈ D, and
all vertices have close eccentricity. Figure 10 show an example in which ifub

perform Θ(n) bfses even if the number of diametral vertices is constant, while
Figure 12 show an example in which Algorithm 21 performs Θ(n) bfses even if
the number of radial vertices is constant.

Whenever R is close to D, about D/2 iterations will always be executed in
the ifub algorithm, so that the number of visits performed by ifub is more
likely also close to n, even if the number of diametral vertices is constant. Thus
in the case of these graphs, the complexity of ifub is Θ(nm). For instance, a
cycle with n vertices (n odd), v1, . . . , vn, connected to a vertex vn+1 by the edge
(v1, vn+1) has diameter n+12 . Any of its vertices has the same bfs tree, whose
height is n−12 , except for vn+1, vn+1

2
, and vn+1

2 +1 whose eccentricity is n+12 , (see
Figure 10). Thus, referring to Algorithm 15 and Algorithm 16, by starting from
any vertex with eccentricity n−1

2 , ifub repeats its loop until 2(i− 1) > n−1
2 + 1,

that is i > n+5
4 , and stops the first time that 2(i− 1) < n−1

2 + 1, for a total
number of iterations equal to n−1

2 − n+5
4 + 2 = n+1

4 . Since each level has at least
two vertices, the number of bfses performed by ifub is thus linear and greater
than n+3

2 . Similar result can be found if Algorithm 15 and Algorithm 16 start
from vn+1, vn+1

2
, or vn+1

2 +1. These bad undirected graphs for ifub can be easily
adapted to build bad directed graphs for difub, by replacing each edge by two
opposite arcs.
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Figure 11: A bad network for Algorithm 15 and 21 with small diameter. By replacing
each edge with two opposite arcs, this graph becomes a bad network for the
directed versions of the algorithms.

Observe that this graph has linear diameter. However there are graphs, like
the one shown in Figure 11 and their generalizations in [159], whose diameter is
small, and for which Algorithm 15 uses a linear number of visits.

In the graph shown in Figure 12, that is composed by two cycles v1, . . . , vn
and v1,u2, . . . un, such that for any i, with 2 6 i 6 n, there is an edge between
ui and vi, every vertex have eccentricity equal to the diameter D = n+1

2 , except
for v1, whose eccentricity is equal to the radius R = D− 1. If the starting pair
of vertices for Algorithm 21 is u2, vn+1

2 +1, then v1 can be one of the last vertex
to be processed, so that the number of visits performed by Algorithm 21 is
linear. Once again, this bad undirected graph can be easily adapted to build an
example of bad directed graph, by replacing each edge by two opposite arcs.

4.7 experiments

We collected several real-world directed or undirected graphs, which have
been chosen in order to cover the largest possible set of network typologies. An
important feature is that almost all graphs in our dataset are sparse (that is,
m = O(n)). Note that, in the case of several of these graphs, the diameter value
was still unknown.

Our computing platform is a machine with a Pentium Quad-Core CPU (In-
tel(R) Xeon(R) E5405 @ 2.00GHz), with a 10GB shared memory. The operating
system is a Ubuntu GNU/Linux 12.04.1, with a Linux version 3.2.0-34 and gcc
version 4.6.3. For each network we report number of vertices and arcs/edges
in the original graph and in the biggest (strongly) connected component. For
this latter we have computed the diameter D and the radius R, together with
the diametral sources, the diametral targets, and the radial vertices.

The code and the data set are available at amici.dsi.unifi.it/lasagne/.
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In Sections 4.7.1 and 4.7.2 we will report all the details of our dataset and
experiments for directed and undirected graphs, respectively. In Section 4.7.3
we will summarize our results, in Section 4.7.4 we will show the effectiveness
in our dataset of 2dSweep and 2Sweep in finding a tight lower bound for the
diameter. Finally in Section 4.7.5 we will compare the performance of ifub with
other methods in the literature to compute the diameter of undirected graphs.

4.7.1 Directed Graphs

In the case of directed graphs, we have experimented Algorithm 16 by using
several ways of choosing the starting vertex.

• difubHdOut. difub by starting from the vertex with highest out-degree.

• difubHdIn. difub by starting from the vertex with highest in-degree.

• difub+2dSweepHdOut. Apply 2dSweepHdOut, Algorithm 17 by starting
from the vertex with highest out-degree, and obtain the vertex u; apply
difub by starting from u.

• difub+2dSweepHdIn. Apply 2dSweepHdIn, Algorithm 17 by starting from
the vertex with highest in-degree, and obtain the vertex u; apply difub by
starting from u.

v1

v2

v3

vn

vn−1

vn+1
2 −1

vn+1
2

vn+1
2 +1

vn+1
2 +2

u2

u3

un

un−1

un+1
2 −1

un+1
2

un+1
2 +1

un+1
2 +2

Figure 12: A bad network for Algorithm 21. By replacing each edge with two opposite
arcs, this graph becomes a bad network for the directed version of the
algorithm.
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Observe that each experiment is deterministic, since ties between vertices are
broken by considering the vertex whose index is minimum.1

Moreover we have experimented Algorithm 21 by considering two ways of
selecting the starting pair of vertices.

• rad+2dSweepHdOut. Apply 2dSweepHdOut, Algorithm 17 by starting
from the vertex with highest out-degree, and obtain the vertex u; apply
Algorithm 21 by starting from u.

• rad+2dSweepHdIn. Apply 2dSweepHdIn, Algorithm 17 by starting from
the vertex with highest in-degree, and obtain the vertex u; apply Algorithm
21 by starting from u.

We have reported the number of visits performed by each approach.
In the following we report the results of our experiments for metabolic net-

works, in particular bipartite networks, compound networks, and reaction net-
works, taken from [160, 24] . In particular we have considered only the biological
sources, whose number of nodes of the strongly connected component of the
bipartite network is greater than 500. In order to facilitate the correspondence
between the names of the networks in the following tables and their real names,
reported in Table 1 as they appear in [160, 24] , the networks have been listed in
alphabetical order.

1 Ties are not frequent and no substantial differences have been observed by breaking ties in
different way.
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bipartite metabolic networks.
Original Biggest Diameter Radius
Graph SCC # # visits visits

Diam. Diam. difub difub # rad rad
Network Source Target difub difub 2Sweep 2Sweep Rad. 2Sweep 2Sweep

n m n m D Nodes Nodes HdOut HdIn HdOut HdIn R Nodes HdOut HdIn
Acyr0 2272 3515 1098 2168 28 2 3 12 7 11 11 12 1 26 26

Agro0 2304 3600 988 2082 21 1 1 4 7 8 11 11 5 10 75

Arab0 2793 3121 540 765 69 1 1 43 212 46 85 35 1 26 275

Baci0 1580 2440 701 1405 24 3 1 6 6 10 10 11 1 21 21

Baci2 1763 2765 824 1665 24 1 1 4 8 8 8 12 2 26 26

Chla1 3825 10046 3076 8820 28 1 1 7 6 13 11 13 3 304 37

Cupr0 2277 3602 1046 2169 20 3 4 10 18 14 14 10 1 8 17

Esch0 4058 9853 3029 8635 18 2 6 24 17 58 62 10 4 95 45

Esch1 2826 4549 1394 2870 23 1 3 5 8 9 9 11 2 22 22

Esch2 2788 3133 569 805 73 1 1 24 17 19 7 32 3 79 79

Esch3 2749 3086 567 806 75 1 1 23 18 19 7 32 2 64 64

Esch4 2802 3154 558 791 73 1 1 24 17 19 7 32 3 79 79

Esch5 2835 3185 565 800 73 1 1 24 17 19 7 32 3 79 79

Esch6 2750 3091 563 801 75 1 1 23 18 19 7 32 2 64 64

Esch7 2821 3177 565 801 73 1 1 24 17 19 7 32 3 79 79

Esch8 2799 3147 563 799 75 1 1 23 18 19 7 32 2 64 64

Esch9 2779 3117 578 821 61 1 1 50 5 9 15 30 5 96 12

Esch10 2816 3168 594 839 81 1 1 43 8 7 7 32 3 79 79

Esch11 2394 2654 543 755 62 3 2 75 77 51 51 28 2 84 84

Esch12 2791 3131 574 819 75 1 1 23 18 19 7 32 2 64 64

Esch13 3074 3507 810 1166 78 1 2 5 44 9 9 35 2 119 119

Esch14 2795 3131 568 804 73 1 1 24 17 19 7 32 3 79 79

Esch15 2838 3197 570 808 73 1 1 24 17 19 7 32 3 79 79

Esch16 2827 3185 606 859 69 2 1 33 20 8 9 32 3 79 79

Esch17 2778 3121 567 809 75 1 1 22 18 19 7 32 2 60 60

Esch18 2810 3196 620 882 84 1 1 36 29 8 8 34 2 61 61

Esch19 2830 4545 1390 2861 23 1 4 9 9 9 9 11 2 22 22

Esch20 4354 9535 2752 7741 18 8 13 27 22 72 104 10 4 90 9

Esch21 4354 9535 2752 7741 18 8 13 27 22 72 104 10 4 90 9

Esch22 2819 3164 568 805 73 1 1 24 17 19 7 32 3 79 79

Esch23 2801 3158 608 862 69 2 1 33 20 8 9 32 3 79 79

Esch24 2884 4648 1430 2948 23 1 3 5 8 9 9 11 2 22 22

Esch25 2707 3070 590 831 75 1 1 26 17 7 9 32 1 79 79

Esch26 2689 3059 590 831 75 1 1 26 17 7 9 32 1 79 79

Esch27 2823 3189 606 851 75 1 1 26 17 7 9 32 1 79 79

Esch28 2711 3138 722 1023 79 1 1 4 25 7 7 31 2 70 70

Esch29 2864 4639 1452 2983 27 1 1 5 3 15 15 13 7 23 23

Esch30 2729 3072 580 823 77 2 1 21 17 9 9 32 2 64 64

Esch31 2716 3079 566 805 73 1 1 24 17 15 7 32 3 79 79

Esch32 2687 3039 562 798 73 1 1 24 17 15 7 32 3 79 79

Esch33 2731 3068 568 808 75 1 1 23 18 19 7 32 2 64 64

Esch34 2805 3147 569 803 79 1 1 16 11 7 7 32 3 78 78

Esch35 2789 3131 569 803 79 1 1 16 11 7 7 32 3 78 78

Esch36 2777 3120 569 803 79 1 1 16 11 7 7 32 3 78 78

Esch37 2797 3139 569 803 79 1 1 16 11 7 7 32 3 78 78

Esch38 2788 3132 572 810 73 1 1 24 17 19 7 32 3 78 78

Esch39 2781 3128 572 810 73 1 1 24 17 19 7 32 3 78 78

Esch40 2793 3137 572 810 73 1 1 24 17 19 7 32 3 78 78

Esch41 2679 3041 553 787 75 1 1 23 18 15 7 32 2 64 64

Esch42 2768 3106 562 799 75 1 1 23 18 19 7 32 2 64 64

Esch43 2841 3201 578 819 76 1 1 23 19 26 8 32 2 63 63

Esch45 2850 3208 575 817 73 1 1 24 17 19 7 32 3 79 79

Esch46 2827 3186 576 817 73 1 1 24 17 19 7 32 3 79 79

Esch47 2787 3126 564 803 75 1 1 23 18 19 7 32 2 64 64

Homo0 2840 3358 780 1073 132 2 2 68 68 683 683 69 1 37 37

Kleb0 2657 2975 680 940 72 2 2 45 52 47 47 37 2 120 120

Kleb1 2659 2982 660 912 66 1 1 57 16 50 50 35 2 23 23

Kleb2 2682 3000 684 946 65 1 1 46 11 75 75 32 1 55 14

Leis0 2277 4375 1333 3114 32 1 3 43 31 109 109 11 1 21 182

Meta0 10592 19821 6933 15397 28 3 1 25 15 67 67 16 2 22 22

Meth4 2096 3291 952 1988 21 1 1 5 10 15 15 11 1 18 18

Mus0 2275 2546 526 715 104 1 1 66 66 302 302 59 8 33 33

Plan0 3514 5144 1719 3171 32 1 1 18 6 8 8 15 2 28 28

Pseu1 2275 2470 557 742 57 1 1 208 35 72 79 27 1 7 7

Pseu2 2282 2501 574 769 60 2 1 164 27 60 60 27 1 8 8

Rals0 2325 2527 515 693 65 1 1 54 7 140 101 23 1 20 20

Rhiz0 2377 2582 529 716 104 1 1 20 35 13 13 43 1 52 6

Sacc0 2969 6681 1976 5381 22 7 2 29 14 18 18 11 4 42 42

Salm0 2253 2520 582 784 95 1 1 21 59 10 11 44 1 69 74

Shig0 2621 2939 518 731 64 1 1 35 8 38 45 31 2 90 90

Shig2 2699 3028 537 757 62 1 2 51 11 47 155 31 3 114 114

Shig3 2705 3035 540 761 62 1 2 51 11 47 155 31 3 114 114

Shig4 2707 3038 531 750 64 1 2 38 11 42 50 31 2 93 93

Shig5 2708 3049 521 731 70 1 2 17 6 10 10 31 2 93 93

Yers0 2071 3245 1008 2039 24 2 1 13 7 19 19 13 16 38 117

Yers1 2184 2389 506 683 98 1 1 33 20 8 8 34 2 58 58
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compound metabolic networks.
Original Biggest Diameter Radius
Graph SCC # # visits visits

Diam. Diam. difub difub # rad rad
Network Source Target difub difub 2Sweep 2Sweep Rad. 2Sweep 2Sweep

n m n m D Nodes Nodes HdOut HdIn HdOut HdIn R Nodes HdOut HdIn
Acyr0 1232 2444 383 1157 14 2 3 7 7 11 11 6 1 17 17

Agro0 1269 2505 329 1067 10 5 1 10 9 14 14 5 1 10 12

Arab0 1464 1772 207 383 34 1 1 26 101 27 41 17 1 16 104

Baci0 866 1732 249 779 12 3 1 6 5 10 10 6 3 17 17

Baci2 966 1991 295 932 12 1 1 4 6 8 8 6 3 17 17

Chla1 1706 7536 1148 5949 14 1 1 6 5 10 10 6 1 6 20

Cupr0 1242 2536 362 1148 10 3 4 10 15 14 14 5 1 7 12

Esch0 1805 7261 1120 5854 9 2 6 12 9 17 51 5 4 73 29

Esch1 1501 3166 497 1642 11 2 3 4 7 58 58 6 7 19 19

Esch2 1493 1801 232 438 36 1 1 13 9 22 22 16 3 36 36

Esch3 1475 1779 230 439 37 1 1 11 9 13 7 16 2 29 29

Esch4 1499 1815 227 430 36 1 1 13 9 22 22 16 3 36 36

Esch5 1518 1829 230 436 36 1 1 13 9 22 22 16 3 36 36

Esch6 1475 1781 228 435 37 1 1 11 9 13 7 16 2 29 29

Esch7 1505 1823 230 436 36 1 1 13 9 22 22 16 3 36 36

Esch8 1494 1804 229 436 37 1 1 11 9 13 7 16 2 29 29

Esch9 1482 1783 234 447 30 1 1 30 6 13 13 15 5 45 11

Esch10 1503 1822 242 455 40 1 1 21 7 8 8 16 3 36 36

Esch11 1292 1544 214 390 30 3 2 35 33 35 35 14 5 37 37

Esch12 1499 1806 233 448 37 1 1 11 9 13 7 16 2 29 29

Esch13 1631 2014 325 631 38 2 2 6 21 10 13 18 9 64 64

Esch14 1500 1798 231 438 36 1 1 13 9 22 22 16 3 36 36

Esch15 1516 1839 232 440 36 1 1 13 9 22 22 16 3 36 36

Esch16 1510 1830 247 469 34 2 1 18 10 11 11 16 3 36 36

Esch17 1490 1800 231 443 37 1 1 11 9 13 7 16 2 28 28

Esch18 1494 1839 247 472 41 1 1 18 14 7 7 17 3 32 32

Esch19 1509 3171 494 1629 11 5 4 8 8 63 63 6 6 19 19

Esch20 1972 6812 1005 5117 9 8 13 13 10 19 17 5 4 68 9

Esch21 1972 6812 1005 5117 9 8 13 13 10 19 17 5 4 68 9

Esch22 1509 1818 231 438 36 1 1 13 9 22 22 16 3 36 36

Esch23 1496 1818 248 471 34 2 1 18 10 11 11 16 3 36 36

Esch24 1534 3235 506 1669 11 2 3 4 7 59 59 6 7 19 19

Esch25 1442 1775 241 451 37 1 1 13 9 10 8 16 1 36 36

Esch26 1431 1770 241 451 37 1 1 13 9 10 8 16 1 36 36

Esch27 1503 1830 248 461 37 1 1 13 9 9 8 16 1 36 36

Esch28 1429 1843 296 589 39 1 1 3 13 7 7 15 2 32 32

Esch29 1513 3221 518 1698 13 2 1 4 3 28 28 7 10 17 17

Esch30 1462 1771 235 446 38 1 1 11 9 10 10 16 2 29 29

Esch31 1448 1780 229 437 36 1 1 13 9 19 19 16 3 36 36

Esch32 1433 1754 228 434 36 1 1 13 9 19 19 16 3 36 36

Esch33 1465 1772 230 439 37 1 1 11 9 13 7 16 2 29 29

Esch34 1506 1813 232 437 39 1 1 8 7 8 7 16 3 36 36

Esch35 1495 1801 232 437 39 1 1 8 7 8 7 16 3 36 36

Esch36 1488 1796 232 437 39 1 1 8 7 8 7 16 3 36 36

Esch37 1499 1803 232 437 39 1 1 8 7 8 7 16 3 36 36

Esch38 1495 1803 233 442 36 1 1 13 9 22 22 16 3 36 36

Esch39 1490 1801 233 442 36 1 1 13 9 22 22 16 3 36 36

Esch40 1497 1805 233 442 36 1 1 13 9 22 22 16 3 36 36

Esch41 1425 1755 224 429 37 1 1 11 9 11 7 16 2 29 29

Esch42 1487 1789 228 435 37 1 1 11 9 13 7 16 2 29 29

Esch43 1515 1837 235 446 37 1 1 11 9 13 7 16 2 33 33

Esch45 1527 1849 233 443 36 1 1 13 9 22 22 16 3 36 36

Esch46 1510 1832 234 445 36 1 1 13 9 22 22 16 3 36 36

Esch47 1496 1800 228 436 37 1 1 11 9 13 7 16 2 29 29

Homo0 1482 1945 310 583 65 2 2 28 29 278 278 34 1 20 20

Kleb0 1417 1733 276 507 35 2 2 21 24 25 25 18 2 53 53

Kleb1 1415 1734 268 489 32 1 1 32 10 29 29 17 2 15 15

Kleb2 1435 1755 276 505 32 1 1 24 8 47 47 16 2 33 15

Leis0 1165 3582 515 2045 15 1 6 23 17 43 43 5 1 21 85

Meta0 5131 13313 2423 8590 13 10 1 16 11 35 35 8 6 15 15

Meth4 1151 2339 331 1073 10 1 2 9 11 13 13 5 1 9 12

Mus0 1201 1442 212 364 51 1 1 18 16 133 133 29 5 20 20

Plan0 1791 3354 648 1761 16 1 1 5 5 8 8 8 12 20 20

Pseu1 1249 1438 234 394 28 1 1 112 26 48 48 13 1 7 7

Pseu2 1246 1452 239 405 29 1 1 77 12 27 28 13 1 8 8

Rals0 1271 1474 215 375 32 1 1 36 6 76 14 11 1 13 8

Rhiz0 1292 1482 219 382 51 1 1 11 18 10 9 21 1 28 6

Sacc0 1392 5209 733 3746 10 10 13 36 23 27 62 5 4 27 27

Salm0 1212 1496 241 422 47 1 1 11 27 9 9 22 1 35 37

Shig0 1407 1693 212 396 31 1 1 17 5 18 23 16 6 44 44

Shig2 1448 1741 219 408 30 1 2 29 9 32 32 15 1 49 49

Shig3 1451 1745 220 410 30 1 2 29 9 32 32 15 1 49 49

Shig4 1451 1746 216 405 31 1 2 18 6 20 24 16 6 45 45

Shig5 1450 1756 212 392 34 1 2 11 6 10 10 16 6 45 45

Yers0 1119 2296 371 1179 11 3 4 8 6 25 25 6 5 14 19

Yers1 1194 1398 209 365 48 1 1 19 11 8 8 17 3 28 28
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reaction metabolic networks.
Original Biggest Diameter Radius
Graph SCC # # visits visits

Diam. Diam. difub difub # rad rad
Network Source Target difub difub 2Sweep 2Sweep Rad. 2Sweep 2Sweep

n m n m D Nodes Nodes HdOut HdIn HdOut HdIn R Nodes HdOut HdIn
Acyr0 1040 53173 715 37171 13 5 13 7 33 11 11 6 80 170 170

Agro0 1035 69831 659 41591 10 1 4 18 201 15 15 5 4 68 68

Arab0 1328 2385 333 832 34 1 6 61 317 30 77 18 8 25 291

Baci0 714 33624 452 20097 11 3 1 6 38 11 11 5 1 14 14

Baci2 797 39245 529 26963 11 1 2 6 47 11 11 6 52 80 80

Chla1 2119 137620 1928 133598 13 5 3 11 6 11 11 6 2 20 20

Cupr0 1035 73018 684 49080 9 11 5 25 29 232 232 5 73 83 83

Esch0 2253 313224 1909 309348 8 14 7 34 254 96 104 5 280 337 337

Esch1 1325 74764 897 50618 11 1 5 44 4 8 8 5 2 15 9

Esch2 1295 2256 337 841 36 1 3 31 35 11 11 16 7 19 55

Esch3 1274 2203 337 847 37 1 3 19 28 7 7 16 6 16 46

Esch4 1303 2310 331 825 36 1 3 30 35 11 11 16 7 19 55

Esch5 1317 2306 335 836 36 1 3 30 35 11 11 16 7 19 55

Esch6 1275 2202 335 845 37 1 3 19 28 7 7 16 6 16 46

Esch7 1316 2330 335 838 36 1 3 31 35 11 11 16 7 19 55

Esch8 1305 2295 334 839 37 1 3 19 28 7 7 16 6 16 46

Esch9 1297 2333 344 882 30 1 3 97 37 17 17 15 30 37 37

Esch10 1313 2304 352 884 40 1 3 27 17 12 12 16 7 19 55

Esch11 1101 2025 329 765 31 3 2 44 92 36 36 14 2 54 54

Esch12 1292 2258 341 862 37 1 3 19 28 7 7 16 6 16 46

Esch13 1443 2768 485 1265 39 1 2 4 53 7 8 17 2 72 72

Esch14 1295 2266 337 841 36 1 3 30 35 11 11 16 7 19 55

Esch15 1322 2365 338 845 36 1 3 30 35 11 11 16 7 19 55

Esch16 1317 2312 359 902 34 2 3 53 45 15 15 16 7 19 55

Esch17 1288 2256 336 849 37 1 3 19 25 7 7 16 6 16 43

Esch18 1316 2428 373 889 42 1 1 8 39 8 8 17 2 36 36

Esch19 1321 75334 896 51048 11 1 6 49 4 8 8 5 2 15 15

Esch20 2382 233925 1747 227170 8 23 25 47 429 596 596 5 236 299 299

Esch21 2382 233925 1747 227170 8 23 25 47 429 596 596 5 236 299 299

Esch22 1310 2306 337 843 36 1 3 31 35 11 11 16 7 19 55

Esch23 1305 2337 360 904 34 2 3 52 45 15 15 16 7 19 55

Esch24 1350 80306 924 54488 11 1 5 47 4 8 8 5 2 15 9

Esch25 1265 2245 349 851 37 1 3 28 26 7 7 16 2 12 55

Esch26 1258 2230 349 847 37 1 3 28 26 7 7 16 2 12 55

Esch27 1320 2325 358 874 37 1 3 29 26 7 7 16 2 12 55

Esch28 1282 2456 426 1117 39 1 2 4 53 7 7 16 10 48 48

Esch29 1351 77894 934 54047 13 1 1 11 10 12 12 6 7 14 14

Esch30 1267 2214 345 861 38 2 3 27 28 11 11 16 6 16 46

Esch31 1268 2294 337 850 36 1 3 28 35 11 11 16 7 19 55

Esch32 1254 2254 334 839 36 1 3 28 35 11 11 16 7 19 55

Esch33 1266 2222 338 848 37 1 3 19 28 7 7 16 6 16 46

Esch34 1299 2261 337 831 39 1 3 31 17 7 7 16 7 19 54

Esch35 1294 2252 337 831 39 1 3 31 17 7 7 16 7 19 54

Esch36 1289 2250 337 831 39 1 3 31 17 7 7 16 7 19 54

Esch37 1298 2258 337 831 39 1 3 31 17 7 7 16 7 19 54

Esch38 1293 2267 339 847 36 1 3 30 35 11 11 16 7 19 54

Esch39 1291 2271 339 847 36 1 3 30 35 11 11 16 7 19 54

Esch40 1296 2272 339 847 36 1 3 30 35 11 11 16 7 19 54

Esch41 1254 2262 329 830 37 1 3 18 28 7 7 16 6 16 46

Esch42 1281 2224 334 840 37 1 3 19 28 7 7 16 6 16 46

Esch43 1326 2357 343 856 38 1 1 19 22 8 8 16 5 17 40

Esch45 1323 2321 342 859 36 1 3 30 35 11 11 16 7 19 55

Esch46 1317 2333 342 854 36 1 3 30 35 11 11 16 7 19 55

Esch47 1291 2232 336 847 37 1 3 19 28 7 7 16 6 16 46

Homo0 1358 3023 470 1159 66 2 2 33 32 412 412 35 1 26 26

Kleb0 1240 2311 404 1035 36 2 2 29 57 32 32 19 3 76 57

Kleb1 1244 2382 392 1009 33 1 1 7 35 30 30 18 3 17 54

Kleb2 1247 2343 408 1024 32 1 1 54 45 39 71 16 1 44 13

Leis0 1112 25523 818 23722 16 1 3 36 22 73 73 6 192 231 344

Meta0 5461 2646308 4510 2193013 14 3 1 15 29 48 48 8 3 14 14

Meth4 945 61460 621 40985 10 9 1 30 70 32 32 6 83 89 89

Mus0 1074 1837 314 735 52 1 1 25 39 192 192 29 3 18 18

Plan0 1723 75296 1071 61858 15 2 7 13 9 139 11 7 2 7 7

Pseu1 1026 1678 323 699 28 2 1 281 101 168 67 14 1 11 11

Pseu2 1036 1783 335 747 30 2 1 247 79 43 43 14 1 11 11

Rals0 1053 1860 300 672 32 1 2 48 49 101 101 12 1 14 33

Rhiz0 1084 1843 310 685 52 1 1 12 20 11 11 22 1 30 7

Sacc0 1577 97334 1243 93080 11 7 2 253 13 16 16 6 416 457 457

Salm0 1041 1790 341 750 47 1 2 14 38 9 9 22 1 41 44

Shig0 1214 2099 306 754 32 1 1 75 31 32 32 15 2 13 56

Shig2 1251 2101 318 782 31 1 2 78 38 34 34 15 2 14 70

Shig3 1254 2108 320 789 31 1 2 78 38 34 34 15 2 14 70

Shig4 1256 2102 315 780 32 1 2 78 36 36 36 15 2 13 58

Shig5 1258 2173 309 749 35 1 2 49 23 24 24 15 2 13 58

Yers0 952 52572 637 35195 12 2 1 13 9 15 15 6 11 16 16

Yers1 990 1733 297 678 49 1 1 20 20 7 7 17 5 36 36
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Name Acronym
Acyrthosiphon pisum + Buchnera BaobabCyc Acyr0

Agrobacterium tumefaciens Strain C58 MicroCyc Agro0

Arabidopsis thaliana Strain col AraCyc Arab0

Bacillus amyloliquefaciens Strain FZB42 MicroCyc Baci0
Bacillus subtilis Strain 168 MicroCyc Baci2
Chlamydomonas reinhardtii iRC1080 Chla1

Cupriavidus taiwanensis Strain LMG19424 MicroCyc Cupr0

Escherichia coli iJO1366 Esch0

Escherichia coli Strain 042 MicroCyc Esch1

Escherichia coli Strain 101-1 MicroCyc Esch2

Escherichia coli Strain 536 MicroCyc Esch3

Escherichia coli Strain 53638 MicroCyc Esch4

Escherichia coli Strain 55989 MicroCyc Esch5

Escherichia coli Strain APEC O1 MicroCyc Esch6

Escherichia coli Strain ATCC 8739 MicroCyc Esch7

Escherichia coli Strain B str REL606 MicroCyc Esch8

Escherichia coli Strain B171 MicroCyc Esch9

Escherichia coli Strain B7A MicroCyc Esch10

Escherichia coli Strain BL21-GoldDE3pLysS AG Mi-
croCyc

Esch11

Escherichia coli Strain CFT073 MicroCyc Esch12

Escherichia coli Strain DH1 MicroCyc Esch13

Escherichia coli Strain E110019 MicroCyc Esch14

Escherichia coli Strain E22 MicroCyc Esch15

Escherichia coli Strain E24377A MicroCyc Esch16

Escherichia coli Strain ED1a MicroCyc Esch17

Escherichia coli Strain ETEC H10407 MicroCyc Esch18

Escherichia coli Strain F11 MicroCyc Esch19

Escherichia coli Strain flux1 Ec iAF1260 Esch20

Escherichia coli Strain flux2 Ec iAF1260 Esch21

Escherichia coli Strain HS MicroCyc Esch22

Escherichia coli Strain IAI1 MicroCyc Esch23

Escherichia coli Strain IAI39 MicroCyc Esch24

Escherichia coli Strain K-12 BW2952 MicroCyc Esch25

Escherichia coli Strain K-12 DH10B MicroCyc Esch26

Escherichia coli Strain K-12 substr W3110 MicroCyc Esch27

Escherichia coli Strain K12 BioCyc Esch28

Escherichia coli Strain K12 MicroCyc Esch29

Escherichia coli Strain LF82 MicroCyc Esch30

Escherichia coli Strain O103H2 str 12009 MicroCyc Esch31

Escherichia coli Strain O111H- str 11128 MicroCyc Esch32

Name Acronym
Escherichia coli Strain O127H6 E2348-69 MicroCyc Esch33

Escherichia coli Strain O157H7 EC4042 MicroCyc Esch34

Escherichia coli Strain O157H7 EC4045 MicroCyc Esch35

Escherichia coli Strain O157H7 EC4115 MicroCyc Esch36

Escherichia coli Strain O157H7 EC4206 MicroCyc Esch37

Escherichia coli Strain O157H7 EDL933 MicroCyc Esch38

Escherichia coli Strain O157H7 MicroCyc Esch39

Escherichia coli Strain O157H7 TW14588 MicroCyc Esch40

Escherichia coli Strain O26H11 str 11368 MicroCyc Esch41

Escherichia coli Strain S88 MicroCyc Esch42

Escherichia coli Strain SE11 MicroCyc Esch43

Escherichia coli Strain SE15 MicroCyc Esch44

Escherichia coli Strain SMS-3-5 MicroCyc Esch45

Escherichia coli Strain UMN026 MicroCyc Esch46

Escherichia coli Strain UTI89 MicroCyc Esch47

Homo sapiens BioCyc Homo0

Klebsiella pneumoniae Strain 342 MicroCyc Kleb0

Klebsiella pneumoniae Strain NTUH-K2044 Micro-
Cyc

Kleb1

Klebsiella pneumoniae Strain subsp pneumoniae
MGH 78578 MicroCyc

Kleb2

Leishmania major iAC560 Leis0

MetaCyc Meta0

Methylobacterium radiotolerans Strain JCM 2831 Mi-
croCyc

Meth4

Mus musculus MouseCyc Mus0

PlantCyc Plan0

Pseudomonas aeruginosa Strain PAO1 MicroCyc Pseu1

Pseudomonas aeruginosa Strain UCBPP-PA14 Micro-
Cyc

Pseu2

Ralstonia eutropha Strain H16 MicroCyc Rals0

Rhizobium etli Strain CFN 42 MicroCyc Rhiz0

Saccharomyces cerevisiae iMM904 Sacc0

Salmonella enterica Strain serovar Typhi MicroCyc Salm0

Shigella boydii Strain Sb227 MicroCyc Shig0

Shigella flexneri Strain 2a 2457T MicroCyc Shig2

Shigella flexneri Strain 2a 301 MicroCyc Shig3

Shigella flexneri Strain 5 8401 MicroCyc Shig4

Shigella sonnei Strain Ss046 MicroCyc Shig5

Yersinia pestis Strain CO92 MicroCyc Yers0

Yersinia pseudotuberculosis Strain YPIII MicroCyc Yers1

Table 1: Biosources from [160, 24] and their acronyms

In Bipartite Metabolic Networks, difubHdOut, difubHdIn,
difub+2dSweepHdOut, and difub+2dSweepHdIn use a number of visits
less than 10%n for 71, 72, 70, 67 networks respectively. rad+2dSweepHdOut and
rad+2dSweepHdOut use a number of visits less than 15%n for 68 networks.

In Compound Metabolic Networks, difubHdOut, difubHdIn,
difub+2dSweepHdOut, and difub+2dSweepHdIn use a number of visits
less than 10%n for 67, 72, 62, 61 networks respectively. rad+2dSweepHdOut
and rad+2dSweepHdOut use a number of visits less than 16%n for 67 and 66

networks respectively.
In Reaction Metabolic Networks, difubHdOut, difubHdIn,

difub+2dSweepHdOut, and difub+2dSweepHdIn use a number of visits
less than 10%n for 61, 38, 62, 61 networks respectively. rad+2dSweepHdOut
and rad+2dSweepHdOut use a number of visits less than 15%n for 67 and 38

networks respectively.

directed social networks . This class of networks includes for instance
a who-trust-whom online social network of the general consumer review site
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Epinions.com, the social network of LiveJournal, that is a free on-line commu-
nity allowing members to maintain journals, individual and group blogs, and
allowing people to declare which other members are their friends, and the social
network of Slashdot, that is a technology-related news website that allows users
to tag each other as friends or foes. Moreover there is the who-votes-on-whom
network Wikipedia network: indeed Wikipedia is a free encyclopedia written
collaboratively by volunteers and in order for a user to become an administrator
a request for adminship is issued and the Wikipedia community via a public
discussion or a vote decides who to promote to adminship [161].

Original Biggest SCC
Network n m n m Source

ljournal-2008 5363260 79023142 4185423 74928066 [162]
soc-Epinions1 75888 508837 32223 443506 [161]
soc-LiveJournal1 4847571 68993773 3828682 65825429 [161]
soc-sign-epinions 131828 841372 41441 693737 [161]
soc-sign-Slashdot081106 77357 516575 26996 337351 [161]
soc-sign-Slashdot090216 81871 545671 27222 342747 [161]
soc-sign-Slashdot090221 82144 549202 27382 346652 [161]
soc-Slashdot0811 77360 905468 70355 888662 [161]
soc-Slashdot0902 82168 948464 71307 912381 [161]
wiki-Vote 8298 103689 1300 39456 [161]

Observe that in this class all the difub algorithms uses always less visits than
0.1% of the number of vertices of the largest strongly connected component,
n, except for soc-Slashdot0811 and WikiVote in which difub uses respectively
less than 1%n and 2%n. The computation of radial vertices has used always a
number of visits less than 1%n except for soc-Slashdot0902, soc-Slashdot0811,
and wiki-Vote, in which the number of visits is less than 25%n.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
ljournal-2008 49 4 2 51 49 73 73 - - - -
soc-Epinions1 16 1 1 8 11 14 14 8 99 173 173

soc-LiveJournal1 21 16 4 159 286 145 423 11 1 3638 3638

soc-sign-epinions 16 1 1 34 8 10 10 7 1 28 28

soc-sign-Slashdot081106 15 1 1 9 11 22 22 7 62 237 237

soc-sign-Slashdot090216 15 1 1 9 11 21 21 7 35 103 103

soc-sign-Slashdot090221 15 1 1 9 11 22 22 7 35 103 103

soc-Slashdot0811 12 8 26 110 110 442 442 7 7790 17331 17331

soc-Slashdot0902 13 1 1 10 10 19 19 7 7685 12732 12732

wiki-Vote 9 1 148 9 9 17 17 3 10 293 242

For the graph ljournal-2008 we were not able to complete our experiments in
the case of rad+2dSweepHdOut and rad+2dSweepHdIn(see Section 4.7.3).

web networks. Vertices represent pages and an arc represent hyperlinks
between them. The pages considered are restricted to the one belonging to
berkely.edu, and stanford.edu domains, the nd.edu domain, that is University
of Notre Dame (released by Albert Barabási), the pages considered in 2002

by Google as a part of a Google Programming Contest, the .it domain, the
Italian CNR domain, the .in and .indochina domains (crawled by the Nagaoka
University of Technology), the .eu domain (collected for the DELIS project, a
collection of web graphs by taking snapshots at a monthly rate focussing on the
.uk domain). Moreover there are the snapshots performed by UbiCrawler of the
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.uk domain in 2002 and 2005, of the the .sk domain in 2005, and one aimed at
countries whose web sites could contain pages written in Arabic in 2005. Finally
we have considered the snapshot obtained by the WebBase crawler in 2001.

Original Biggest SCC
Network n m n m Source

arabic-2005 22744080 639999458 15177163 473619298 [162]
as-caida20071105 65536 106762 26475 106762 [161]
cnr-2000 325557 3216152 112023 1646332 [162]
eu-2005 862664 19235140 752725 17933415 [162]
in-2004 1382908 16917053 593687 7827263 [162]
indochina-2004 7414866 194109311 3806327 98815195 [162]
it-2004 41291594 1150725436 29855421 938694394 [162]
uk-2002 18520486 298113762 12090163 232137936 [162]
uk-2005 39459925 936364282 25711307 704151756 [162]
uk-2007-05@100000 100000 3050615 53856 1683102 [162]
uk-2007-05@1000000 1000000 41247159 480913 22057738 [162]
web-BerkStan 685231 7600595 334857 4523232 [161]
web-Google 916428 5105039 434818 3419124 [161]
web-NotreDame 325729 1497134 53968 304685 [161]
web-Stanford 281904 2312497 150532 1576314 [161]
webbase-2001 118142155 1019903190 53891939 630006857 [162]

In this class of networks difub has used a number of visits always less than
0.1%n, except when difubHdOut and difubHdIn are applied to: in-2004, in
which the number of visits is less than 4%n, uk-2007-05@100000, in which the
number of visits is about 75%n, and uk-2007-05@1000000, in which the number
of visits is less than 0.5%n. In order to compute all the radial vertices, our
algorithm takes always less than 1%n number of visits, except for the graph
web-Stanford, in which it has used about than 10%n visits. For the biggest
graphs, i.e. the ones with more than 3.5 million of vertices, we were not able to
complete our experiments concerning the radius: indeed the time needed on
our platform for each bfs is greater than 13 seconds (as for indochina-2004), so
that, even by performing just 3%n visits, more than two weeks are needed in
order to complete one single experiment (see Section 4.7.3).

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
arabic-2005 133 1 1 81 54 58 58 - - - -
as-caida20071105 17 45 45 10 10 8 8 9 2 7 7

cnr-2000 81 1 1 122 101 17 17 25 3 551 551

eu-2005 82 1 2 18 8 9 9 31 161 6641 6641

in-2004 56 1 2 18325 1539 93 93 28 8 4713 39

indochina-2004 235 2 1 93 87 8 8 - - - -
it-2004 873 7 2 780 772 87 87 - - - -
uk-2002 218 1 11 163 151 18 18 - - - -
uk-2005 166 1 6 200 174 184 184 - - - -
uk-2007-05@100000 7 8 6991 39220 39654 14 14 3 1 401 401

uk-2007-05@1000000 40 5 30 1997 1779 41 41 7 1 4573 4573

web-BerkStan 679 1 1 244 235 7 7 249 2 255 255

web-Google 51 1 3 51 12 9 9 24 3 248 248

web-NotreDame 93 1 1 6 5 7 7 44 45 50 50

web-Stanford 210 2 1 43 5 9 9 97 16 13946 13946

webbase-2001 1342 2 1 85 76 16 16 - - - -

citation networks . Arxiv Hep-Ph (high energy physics phenomenology)
and Hep-Th (high energy physics theory) citation graphs are from the e-print
arXiv and covers all the citations from January 1993 to April 2003 in their
respective categories. If a paper i cites paper j, the graph contains an arc from i

to j.
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Original Biggest SCC
Network n m n m Source

cit-HepPh 9912554 421578 12711 139981 [161]
cit-HepTh 9912294 352807 7464 116268 [161]

In both the graphs, both difub+2dSweepHdOut and difub+2dSweepHdIn have
always used a number of visits less than 1%n. difubHdOut and difubHdIn have
used a number of visits respectively about 15%n and 75%n for cit-HepPh, and
both less than 5%n for cit-HepTh. The computation of radial vertices instead
has required always less than 1.5%n number of visits.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
cit-HepPh 49 3 1 1719 9604 9 9 15 2 7 75

cit-HepTh 35 1 1 13 361 7 7 13 1 101 101

communication networks . In this class of networks, given a set of email
messages, each vertex corresponds to an email address, and there is an arc
between vertices i and j, if i sent at least one message to j. This class of net-
works include a network generated using email data from a large European
research institution, Enron email communication network covering all the email
communication within a dataset of around half million emails (this data was
originally made public, and posted to the web, by the Federal Energy Regulatory
Commission during its investigation). Moreover in the wiki-Talk network, the
vertices represent Wikipedia users and an arc from vertex i to vertex j represents
that user i at least once edited a talk page of user j.

Original Biggest SCC
Network n m n m Source

email-EuAll 265214 420045 34203 151930 [161]
enron 69244 276143 8271 147353 [162]
wiki-Talk 2394385 5021410 111881 1477893 [161]

In all these graphs difub has used less than or about 1%n visits to list all the
diametral vertices. The computation of all the radial vertices has required always
a number of visits between 10%n and 15%n, except for wiki-Talk.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
email-EuAll 10 7 3 183 183 143 143 5 490 3752 3752

enron 10 7 18 93 58 60 97 6 203 1245 1057

wiki-Talk 10 1 19 834 159 189 311 5 6701 27051 50867

p2p networks. A sequence of snapshots of the Gnutella peer-to-peer file
sharing network from August 2002. Vertices represent hosts in the Gnutella

network topology and edges represent connections between the Gnutella hosts.
Original Biggest SCC

Network n m n m Source
p2p-Gnutella04 10879 39994 4317 18742 [161]
p2p-Gnutella05 8846 31839 3234 13453 [161]
p2p-Gnutella06 8717 31525 3226 13589 [161]
p2p-Gnutella08 6301 20777 2068 9313 [161]
p2p-Gnutella09 8114 26013 2624 10776 [161]
p2p-Gnutella24 26518 65369 6352 22928 [161]
p2p-Gnutella25 22687 54705 5153 17695 [161]
p2p-Gnutella30 36682 88328 8490 31706 [161]
p2p-Gnutella31 62586 147892 14149 50916 [161]
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In these networks difub uses less than 5%n visits, except for p2p-Gnutella09

(in which a number of visits between 5%n and 12%n are used) p2p-Gnutella30
(in which a number of visits between 3%n and 15%n are used), p2p-Gnutella08
(in which difubHdOut uses about 24%n visits), and p2p-Gnutella25, (in which
difubHdIn uses about 19%n visits). The number of visits required for the com-
putation of the radial vertices ranges between 0.4%n and about 5%n, except
when rad+2dSweepHdIn is applied to p2p-Gnutella08 and p2p-Gnutella30,
requiring about 12%n visits.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
p2p-Gnutella04 25 1 2 44 117 38 38 15 3 43 43

p2p-Gnutella05 22 3 1 79 104 69 69 14 18 131 45

p2p-Gnutella06 19 3 2 113 117 172 172 12 4 172 172

p2p-Gnutella08 19 1 2 499 51 39 58 12 16 23 242

p2p-Gnutella09 19 3 2 137 187 307 307 13 3 33 33

p2p-Gnutella24 28 1 1 18 51 27 27 15 1 25 25

p2p-Gnutella25 21 1 2 88 1003 64 64 13 10 258 160

p2p-Gnutella30 23 1 1 1281 306 516 288 15 3 438 945

p2p-Gnutella31 30 2 2 215 324 397 194 19 3 311 311

product co-purchasing networks. These networks were collected by
crawling Amazon website and are based on Customers Who Bought This Item
Also Bought feature of the Amazon website, so that if a product i is frequently
co-purchased with product j, the graph contains an arc from i to j.

Original Biggest SCC
Network n m n m Source

amazon-2008 735323 5158388 627646 4706251 [162]
amazon0302 262111 1234877 241761 1131217 [161]
amazon0312 400727 3200440 380167 3069889 [161]
amazon0505 410236 3356824 390304 3255816 [161]
amazon0601 403394 3387388 395234 3301092 [161]

For these networks difub has used almost always less than 0.05%n visits, except
for amazon0312 and amazon0302 in which the number of visits used ranges
between 0.06%n and 1.32%n. The computation of the radial vertices requires
instead a number of visits in between 0.01%n and 0.72%n.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
amazon-2008 47 3 5 623 243 85 85 23 2 474 56

amazon0302 88 10 1 293 157 705 705 48 1 289 289

amazon0312 52 5 2 4093 5002 381 381 26 1 247 247

amazon0505 55 12 1 173 194 41 24 27 8 2825 2825

amazon0601 52 1 4 1118 115 82 82 25 8 1026 1026

word association networks. The Free Word Association Norms Net-
work is a directed graph describing the results of an experiment of free word
association performed by more than 6000 participants in the United States: its
vertices correspond to words and arcs represent a cue-target pair and an arc
from x to y means that the word y was output by some of the participants based
on the stimulus x [162].
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Original Biggest SCC
Network n m n m Source

wordassociation-2011 10617 72172 4845 61567 [162]

The word association network seems to be a real world negative example for
our algorithms: difub uses between 20%n and 70%n visits in all the strategies
while the computation of the radial vertices requires about 45%n visits.

Diameter Radius
visits visits

# Diametral # Diametral difub difub rad rad
Network Source Target difub difub 2dSweep 2dSweep # Radial 2dSweep 2Sweep

D Vertices Vertices HdOut HdIn HdOut HdIn R Vertices HdOut HdIn
wordassociation-2011 10 1 6 1055 1481 3371 3371 7 107 2050 2269

4.7.2 Undirected Graphs

The effectiveness of Algorithm 19 has been experimentally proved in [5, 6, 156]
by using several ways of choosing the starting vertex.

• Random selection. By picking it uniformly at random.

• Degree selection. By choosing a vertex with the highest degree.

• 4-Sweep selection. By using the 4Sweep method, that is an evolution of
2Sweep method using four bfses. Let r1 be a vertex in V , let a1 be one
of the farthest vertices from r1, and let b1 be one of the farthest vertices
from a1. If r2 is the vertex halfway between a1 and b1, then we define
analogously a2 and b2. The vertex u is then defined as the middle vertex of
the path between a2 and b2. In particular, two different ways of selecting
vertex r1 have been considered: one method chooses r1 uniformly at
random, while the other method chooses r1 as a vertex with the highest
degree.

By using these latter two selection strategies, it has been shown that in almost
any graph with more than 10000 vertices of the considered dataset, the number
of visits is always much less than 0.1% of the number of all vertices in the largest
connected component, except for the road networks (in which the number of
executions of the shortest path algorithm performed is less than 10%) and Erdős-
Rényi graphs. Instead it has been shown that it is not convenient to run ifub by
starting from random vertices, since sometimes the number of performed visits
is high with respect to the number of vertices.

In the following we will report the experimental evaluation of the perfor-
mances of ifubHd and ifub+2SweepHd when used not just to compute the
diameter but also to enumerate the diametral vertices.

Thus we have experimented Algorithm 16, simplified as shown by Algorithm
19 for undirected graphs, by using the following ways of choosing the starting
vertex.

• ifubHd. ifub by starting from the vertex with highest degree.
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• ifub+2SweepHd. Apply 2SweepHd, Algorithm 18 by starting from the
vertex with highest degree, and obtain the vertex u; apply ifub by starting
from u.

Moreover we have experimented Algorithm 21 by using:

• rad+2dSweepHd. Apply 2SweepHd, Algorithm 18, by starting from the
vertex with highest degree, and obtain the vertex u; apply Algorithm 21

by starting from u.

Once again, we have reported the number of visit performed by each approach.
Observe that several networks that we will report are not really naturally

undirected since the relationship that they represent is implicitly not symmet-
rical. However since they are released by the owner companies or the owner
universities in undirected format, we have catalogued them in this section.

protein-protein interaction networks.
Original Biggest CC

Network n m n m Source
dip20090126_MAX 19928 82404 19928 82404 [163]
HC-BIOGRID 4039 20642 4039 20642 [163]
hprd_pp 9617 74078 9219 73800 [164]
interdom 1760 157966 1654 157832 [165]
iPfam 1541 24004 513 18740 [166]
Mus_musculus 4696 11494 3745 10340 [167]
ppi_dip_swiss 3839 23916 3766 23844 [168]
ppi_gcc 37333 271236 37333 271236 [168]
psimap 1178 23230 526 19048 [169]
Rattus_norvegicus 1970 4220 1415 3570 [167]
string 2658 53610 2575 53514 [168]

In these networks ifub has almost always used a number of visits in between
0.1%n and 1%n. In the graph iPfam it has used about 6%n visits. For the
computation of the radial vertices the number of visits has been always less than
3%n except for psimap (6%n), string (35%n), interdom (43%n).

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
dip20090126_MAX 30 2 56 19 15 1 7

HC-BIOGRID 23 3 5 12 12 17 81

hprd_pp 14 4 7 10 8 133 266

interdom 8 4 12 16 4 33 713

iPfam 12 22 34 27 6 1 4

Mus_musculus 20 2 17 21 10 2 31

ppi_dip_swiss 12 4 6 32 6 2 15

ppi_gcc 27 4 24 7 14 8 11

psimap 11 7 13 8 6 27 32

Rattus_norvegicus 19 5 17 8 10 7 14

string 9 7 20 43 5 54 898

collaboration networks . This class includes the graph of movie actors
using data from IMDB (Internet Movies DataBase), whose vertices are actors,
and two actors are linked by an edge whenever they collaborated in a movie.
Moreover there are the graphs of co-authorship (if an author i co-authored a
paper with author j, the graph contains an edge from i to j), based on DBLP,
MathSciNet [170], Arxiv Astro Physics, Arxiv Condensed Matter, Arxiv General
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Relativity, Arxiv High Energy Physics, Arxiv High Energy Physics Theory e-print
categories arXiv, and the original Condensed Matter section of arXiv E-Print
Archive between 1995 and 1999 used by Newman in [88]. More peculiar are the
networks Eva, in which there is an edge (x,y) from company x to company y
whether the company x is an owner of company y or vice versa [171], Advogato,
a research testbed for testing attack-resistant trust metrics [172], the network of
the collaborations among Jazz musicians [173], and the network of users of the
Pretty-Good-Privacy algorithm for secure information interchange [174]. Observe
that if the collaboration involves k collaborators, this generates a completely
connected subgraph on k vertices.

Original Biggest CC
Network n m n m Source

advogato 7418 90929 5272 88719 [172]
alr20–wCoAuNw–MathSciNet 391529 1747550 332689 1641288 [175]
ca-AstroPh 18771 396100 17903 393944 [161]
ca-CondMat 23133 186878 21363 182572 [161]
ca-GrQc 5241 28968 4158 26844 [161]
ca-HepPh 12006 236978 11204 235238 [161]
ca-HepTh 9875 51946 8638 49612 [161]
dblp20080824_MAX 511163 3742140 511163 3742140 [163]
eva 7253 13422 4475 9304 [176]
geom 6158 23796 3621 18922 [176]
jazz 198 5484 198 5484 [177]
imdb 908830 75177226 880455 74989272 [168]
Newman-Cond_mat_95-99-two_mode 22016 117156 22015 117156 [178]
PGPgiantcompo 10680 48632 10680 48632 [177]

In these networks ifub has used less than or about 1%n visits except for the
smallest networks, jazz, eva, geom, Newman-Cond_mat, and PGPgiantcompo. The
number of visits required for the computation of the radial vertices is always
less tha 5%n, except for jazz, advogato, and Newman-Cond_mat.

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
advogato 9 2 2 6 5 488 491

alr20–wCoAuNw–MathSciNet 24 9 23 56 13 317 972

ca-AstroPh 14 12 32 57 8 139 445

ca-CondMat 15 11 6 14 8 6 24

ca-GrQc 17 8 11 56 9 13 71

ca-HepPh 13 17 10 51 7 12 101

ca-HepTh 18 4 30 29 10 74 340

dblp20080824_MAX 22 9 42 43 12 72 1554

eva 18 22 807 257 10 15 72

geom 14 20 50 48 7 1 7

jazz 6 9 9 27 4 56 70

imdb 14 24 104 272 8 19751 40929

Newman-Cond_mat_95-99-two_mode 12 4 2405 5126 8 1306 10078

PGPgiantcompo 24 3 8 23 12 2 8

undirected social networks. These networks include MySpace and
Flickr friendship, the membership of Yahoo! users to Yahoo! groups, and one
network used to test trust metrics.

Original Biggest CC
Network n m n m Source

flickr 62572 491276 52295 479008 [168]
myspace 13746 131958 13723 131930 [168]
trust 49288 762253 49288 762253 [172]
ydata-ygroups-user-group-membership-graph-v1_0 1637868 30410032 1637868 30410032 [179]
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The number of visits required to compute all the diametral and radial vertices is
less than 0.06%n, except for myspace in which the diametral and radial vertices
are computed with less than 2.2%n visits.

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
flickr 20 2 7 10 10 1 7

myspace 11 11 22 282 6 2 298

trust 14 2 4 7 7 1 4

ydata-ygroups-user-group-membership-graph-v1_0 22 9 33 100 12 342 1008

undirected communication networks. These networks are mainly
provided by [179] and [180] . There is an edge between two vertices whether
there has been a communication between them.

Original Biggest CC
Network n m n m Source

allB 1014336 6674992 983526 6634502 [180]
d00.txt 50576 159256 27517 85992 [179]
d01.txt 52015 164380 29388 91843 [179]
d02.txt 52120 164281 27373 82736 [179]
d03.txt 51913 162590 29231 89401 [179]
d04.txt 50547 157249 29278 90459 [179]
d05.txt 34042 90984 22975 69791 [179]
d06.txt 36379 101726 25930 80616 [179]
d07.txt 60088 197153 40156 129336 [179]
d08.txt 100000 362595 84914 293123 [179]
d09.txt 60928 198589 37548 116889 [179]
d10.txt 56526 179382 34538 107276 [179]
d11.txt 52249 161357 28001 84907 [179]
d12.txt 34583 90569 23425 69552 [179]
d13.txt 35375 97124 24837 76824 [179]
d14.txt 52201 161734 27820 83308 [179]
d15.txt 51811 161589 30091 93435 [179]
d16.txt 50419 155664 25727 76774 [179]
d17.txt 49610 151714 25111 73562 [179]
d18.txt 46765 136773 22466 64497 [179]
d19.txt 30380 75887 19299 55890 [179]
d20.txt 31499 78802 19769 56699 [179]
d21.txt 48992 148154 27375 82304 [179]
d22.txt 49437 150464 26604 78063 [179]
d23.txt 48087 146933 23283 68218 [179]
d24.txt 47394 143962 25411 77817 [179]
d25.txt 44485 130120 23097 68649 [179]
d26.txt 28938 70833 17926 51006 [179]
d27.txt 29760 75428 19133 56466 [179]
halfyearA 936445 5293466 906148 5256018 [180]
halfyearB 840485 4884628 805787 4838434 [180]
onemonthA 430149 1401384 379500 1338248 [180]
onemonthB 450264 1588592 401050 1524102 [180]
oneyearA 1160625 8837202 1138557 8809978 [180]
oneyearB 967896 6470798 936831 6429882 [180]

In these networks ifub+2SweepHd uses always less than 1%n visits, while
ifubHd uses almost always less than 5%n visits, except for d21.txt and d02.txt.
The computation of the radial vertices has required always less than 1%n visits
except for halfyearA and oneyearA (at most 7%n visits).
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Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
allB 22 3 54 47 12 1432 1573

d00.txt 69 4 1362 6 35 2 5

d01.txt 60 23 91 36 31 9 33

d02.txt 43 10 110 72 22 3 8

d03.txt 65 19 757 191 35 1 33

d04.txt 54 3 1127 8 27 1 4

d05.txt 39 10 94 20 20 9 31

d06.txt 52 3 60 10 27 15 18

d07.txt 57 4 1737 85 32 3 414

d08.txt 48 17 1517 593 26 2 370

d09.txt 42 3 36 49 22 57 440

d10.txt 61 4 2235 6 31 3 6

d11.txt 43 5 132 15 22 1 6

d12.txt 44 4 12 9 22 1 4

d13.txt 38 11 181 20 20 8 73

d14.txt 47 7 92 16 24 8 18

d15.txt 60 8 591 102 31 100 151

d16.txt 46 4 46 12 24 3 41

d17.txt 44 13 63 50 23 19 67

d18.txt 39 8 23 84 21 27 137

d19.txt 46 3 69 12 23 3 6

d20.txt 46 2 42 7 23 2 5

d21.txt 74 2 2333 7 37 1 4

d22.txt 50 6 1352 11 25 5 8

d23.txt 64 4 98 9 32 1 4

d24.txt 57 2 561 6 29 5 9

d25.txt 75 2 591 6 38 3 6

d26.txt 38 9 248 115 20 1 18

d27.txt 42 6 67 21 22 2 32

halfyearA 19 24 51 67 11 4470 65991

halfyearB 23 3 9 53 12 3 46

onemonthA 24 2 30 322 13 317 2365

onemonthB 28 9 30 83 14 1 17

oneyearA 18 15 66 141 10 600 23709

oneyearB 22 3 47 79 12 1153 1266

autonomous systems networks. itdk0304_rlinks_undirected and
as-skitter are Internet topology graphs from traceroutes run respectively in
2004 and in 2005.

Original Biggest CC
Network n m n m Source

as-skitter 1696415 22190596 1694616 22188418 [161]
itdk0304_rlinks_undirected 192244 1218132 190914 1215220 [163]

The number of visits required by ifub is always less than 0.02%n, while the
radial vertices can be computed with at most 0.36%n visits.

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
as-skitter 31 2 12 7 16 5 26

itdk0304_rlinks_undirected 26 7 32 16 14 155 689

road networks. These graphs are the road networks of California, Penn-
sylvania, and Texas. Intersections and endpoints are represented by vertices and
the roads connecting these intersections or road endpoints are represented by
edges [161].

Original Biggest CC
Network n m n m Source

roadNet-CA 1965206 5533214 1957027 5520776 [161]
roadNet-PA 1088092 3083796 1087562 3083028 [161]
roadNet-TX 1379917 3843320 1351137 3758402 [161]
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The completed experiments are about rad+2dSweepHd: for roadNet-PA and
roadNet-TX the number of visits has been less than 0.2%n, while for roadNet-CA
the number of visits has been less than 15%n. The values of the diameters have
been computed by applying Algorithm 15 (see [6]).

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
roadNet-CA 865 - - - 494 2 219765

roadNet-PA 794 - - - 402 2 2070

roadNet-TX 1064 - - - 540 3 988

word adjacency networks. In these networks, the vertices are words
and there is an edge between x and y whether x appears close to y in at least
one phrase of the considered book or web pages.

Original Biggest CC
Network n m n m Source

darwinBookInter_st 7381 88414 7377 88410 [181]
eatRS 23219 609874 23219 609874 [176]
eatSR 23218 609868 23218 609868 [176]
frenchBookInter_st 8325 47682 8308 47664 [181]
japaneseBookInter_st 2704 15996 2698 15990 [181]
spanishBookInter_st 11586 86130 11558 86100 [181]
ydata-ysm-advertiser-phrase-graph-v1_0 653260 4556896 653260 4556896 [179]

The computation of the diametral and radial vertices requires almost al-
ways at most 1.5%n, except for the networks eatRS and eatSR, and when
rad+2dSweepHd is applied to japaneseBookInter_st.

Diameter Radius
visits visits
ifub rad

Network # Diametral ifub 2Sweep # Radial 2Sweep

D Vertices Hd Hd R Vertices Hd
darwinBookInter_st 8 16 26 248 4 1 15

eatRS 6 280 9670 18244 4 7446 20610

eatSR 6 280 9669 15171 4 7446 17285

frenchBookInter_st 9 25 6 24 5 19 57

japaneseBookInter_st 8 9 24 38 5 569 786

spanishBookInter_st 10 8 4 13 5 1 4

ydata-ysm-advertiser-phrase-graph-v1_0 24 3 14 43 12 4 31

4.7.3 Overall results

In the following we resume the results of our experiments, grouping them
by number of visits v, and showing for any method the number of networks in
which it has performed v visits.

In the case of directed graphs, difub+2dSweepHdOut and
difub+2dSweepHdIn seems to be the more promising strategies in order
to compute the diametral vertices. No substantial differences have been
observed between the methods rad+2dSweepHdOut and rad+2dSweepHdIn.
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# Networks in which the method
performs v visits

Methods
Diameter Radius

difub difub rad rad
difub difub 2dSweep 2dSweep 2dSweep 2dSweep

v HdOut HdIn HdOut HdIn HdOut HdIn
v 6 0.01%n 10 13 14 14 1 3

0.01%n < v 6 0.1%n 13 13 16 16 9 7

0.1%n < v 6 1%n 10 8 8 7 14 14

1%n < v 6 10%n 9 9 7 8 9 7

10%n < v 5 4 2 2 6 8

In Figure 13 we report the number of visits performed by difubHdOut,
difubHdIn, difub+2dSweepHdOut, difub+2dSweepHdIn to compute the di-
ameter and the diametral vertices, as a function of the number of vertices.
Analogously in Figure 14 we report the number of visits performed by
rad+2dSweepHdOut, rad+2dSweepHdIn to compute the radius and the radial
vertices, as a function of the number of vertices. In particular for each one of
the directed graphs presented, having x vertices, in which a method performs y
visits, we draw in position (x,y) the symbol corresponding to the method.

Observe that in the case of Figure 13, when the number of vertices increases,
no increase can be detected in the number of visits. We argue that our methods
perform a constant number of visits in practice. It is worth observing that
the maximum number of visits correspond to the application of difubHdOut
and difubHdIn to uk-2007-05@100000: we argue that the in-degree and the out-
degree are not good centrality measures for this graph: indeed for the same
graph, difub is effective by starting from other vertices.

In the case of Figure 14, when the number of vertices increases, the number of
visits slightly increases, so that whenever a graph have more than 3.5 millions of
vertices, it seems that 100 thousands of visits (i.e. 2.8%n) are required and if each
visit takes more than 13 seconds, at least 15 days are required to conclude one ex-
periment. This is the case of the following 7 Networks: uk-2002, indochina-2004,
it-2004, arabic-2005, uk-2005, webbase-2001, and ljournal-2008, for which
we were not able to conclude our experiments concerning radius and radial ver-
tices. Observe that according to our statistics, whenever the exhaustive method
would be applied, for these graphs at least 526 days would be required to
conclude one experiment. In these cases, the methods using external memory
seem to be a promising alternative [182, 183].

In the case of undirected graphs, ifub+2SweepHd seems to be more stable than
ifubHd in order to compute the diametral vertices. Indeed even if there are some
networks in which ifubHd performs less than 0.01%n visits and ifub+2SweepHd
performs slightly more than 0.01%n visits, there are networks in which ifubHd
performs more than 1%n visits and ifub+2SweepHd performs much less visits.



4.7 experiments 85

 1

 10

 100

 1000

 10000

 100000

 100  1000  10000  100000  1e+006  1e+007  1e+008

vi
si

ts

nodes

diFUBHdOut
diFUBHdIn

diFUB+2dSweepHdOut
diFUB+2SweepHdIn

Figure 13: Visits performed by difubHdOut, difubHdIn, difub+2dSweepHdOut,
difub+2dSweepHdIn to compute the diameter and the diametral vertices, as
a function of the number of vertices. For each one of the directed graphs
presented, with x vertices, in which a method performs y visits, we draw in
position (x,y) the symbol corresponding to the method.

# Networks in which the method
performs v visits

Methods
Diameter Radius

ifub rad
ifub 2Sweep 2Sweep

v Hd Hd Hd
v 6 0.01%n 13 9 5

0.01%n < v 6 0.1%n 13 27 21

0.1%n < v 6 1%n 26 24 26

1%n < v 6 10%n 17 9 14

10%n < v 4 4 7

In Figure 15 we report the number of visits performed by ifubHd and
ifub+2SweepHd to compute the diameter and the diametral vertices, as a func-
tion of the number of vertices. Analogously in Figure 16 we report the number
of visits performed by rad+2dSweepHd to compute the radius and the radial
vertices, as a function of the number of vertices. In particular for each one of the
undirected graphs presented, having x vertices, in which a method performs y
visits, we draw in position (x,y) the symbol corresponding to the method.

Observe that once again in the case of Figure 15, when the number of vertices
increases, no increase can be detected in the number of visits. We argue that our
methods perform a constant number of visits in practice. We conjecture that the
impossibility of concluding our experiments in the case of ifub for roadNet-CA,
roadNet-PA and roadNet-TX is due to unidentified special topological properties
of these graphs.
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Figure 14: Visits performed by rad+2dSweepHdOut, rad+2dSweepHdIn to compute the
radius and the radial vertices, as a function of the number of vertices. For
each one of the directed graphs presented, with x vertices, in which a method
performs y visits, we draw in position (x,y) the symbol corresponding to the
method.

Once again in the case of Figure 16, when the number of vertices increases,
the number of visits very slightly increases, but in this case this does not hinder
the central vertex computations.

4.7.4 Computing tight lower bounds of the diameter by 2dSweep or 2Sweep

In the following we show for the directed graphs of our dataset the effec-
tiveness of 2dSweepHdOut, that is the 2dSweep by starting from the highest
out-degree vertex, and 2dSweepHdIn, that is the 2dSweep by starting from the
highest in-degree vertex, in order to find tight lower bounds of the diameter.
In the following table we report for each category of networks, the number of
networks in which 2dSweepHdOut and 2dSweepHdIn return a tight lower bound,
and the maximum absolute error achieved among all the networks belonging to
that category.
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Figure 15: Visits performed by ifubHd and ifub+2SweepHd to compute the diameter
and the diametral vertices, as a function of the number of vertices. For each
one of the directed graphs presented, with x vertices, in which a method
performs y visits, we draw in position (x,y) the symbol corresponding to the
method.

2dSweepHdOut 2dSweepHdIn

Category # of
Networks

# of
Networks
in which
lb is tight

Maximum
error

# of
Networks
in which
lb is tight

Maximum
error

Metabolic Bipartite 76 73 19 75 19

Metabolic Compound 76 73 9 75 9

Metabolic Reaction 76 73 10 75 10

Directed Social 10 10 0 10 0

Web 16 16 0 16 0

Citation 2 2 0 2 0

Communication 3 3 0 2 1

P2P 9 8 1 7 1

Product co-Purchasing 5 5 0 5 0

Word-association 1 1 0 1 0

In almost all the networks we have considered the lower bound achieved
by 2dSweep is tight. In the cases in which this lower bound is not tight, the
maximum absolute error achieved is 1, except for the Metabolic Bipartite, Com-
pound, and Reaction networks of the bio-sources arab0 (where the maximum
error is 13), of homo0 (where the maximum error is 19), and of kleb2 (where the
maximum error is 3).

In the case of the undirected graphs, we show the effectiveness of 2SweepHd,
that is the 2Sweep by starting from the highest degree vertex. In the following
table we report for each category of networks, the number of networks in
which 2SweepHd returns a tight lower bound, and the maximum absolute error
achieved among all the networks belonging to that category.
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Figure 16: Visits performed by rad+2dSweepHd to compute the radius and the radial
vertices, as a function of the number of vertices. For each one of the directed
graphs presented, with x vertices, in which a rad+2dSweepHd performs y vis-
its, we draw in position (x,y) the symbol corresponding to rad+2dSweepHd.

2SweepHd

Category # of
Networks

# of
Networks
in which
lb is tight

Maximum
error

Protein-Protein Interaction 14 11 1

Collaboration 14 12 1

Undirected Social 4 4 0

Undirected Communication 36 34 2

Autonomous System 2 1 1

Road 3 1 14

Word Adjacency 7 4 1

In almost every undirected network we considered, the lower bound computed
by 2SweepHd is tight. Whenever this lower bound is not tight, the maximum
absolute error is 1, except for the communication network d09.txt, where the
absolute error is 2.

See [6, 156] for the effectiveness of the natural generalization of 2Sweep,
4Sweep, in the case of undirected graphs.

4.7.5 Comparing ifub with other methods to compute the diameter

In the following we will focus our attention on the subset of naturally undi-
rected real-world networks included in our dataset, in order to run a fair compar-
ison with other algorithms. Indeed these other algorithms have been designed
to be applied just to undirected networks and just to compute the diameter. The
categories involved are biological networks (in particular, protein interaction
networks), collaboration networks, words adjacency networks, and autonomous
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systems graphs. We have chosen to use in the experiments the ifubHd strategy.
Observe that all the networks included in this restricted dataset have one vertex
of maximum degree, apart from iPfam (with 5 vertices of maximum degree)
and interdom (with 8 vertices of maximum degree): in the case of these two
networks, we have experimentally verified that the performances of ifubHd are
independent of the choice of the starting vertex.

comparing ifub with upper bound computation methods. The
lower bounds provided by the 2Sweep or the 4Sweep methods turn out to be, in
practice, almost always tight: however, there is, in theory, no guarantee about
the quality of the approximation. For this reason, some methods have been
proposed in [4, 157] in order to find an upper bound on the diameter which
bounds the absolute error or even validates the tightness of the lower bound.
All these methods return the diameter of the bfs tree of a vertex r, i.e. Tr. In
particular, two methods, called rtub and htub respectively, have been presented
in [157]: rtub selects r as a random vertex, while htub chooses r as one vertex
with the highest degree. Thus, both rtub and htub execute two bfses: one bfs

from r is used to create Tr and one bfs is used to compute the diameter of Tr.
The other two methods, called mtub and mtubhd respectively, are evolutions
of a method proposed in [4]: in the case of mtub, r is the vertex returned by
4Sweep starting from a random vertex, while in the case of mtubhd , r is the
vertex returned by 4Sweep from the vertex with highest degree. Hence, both
mtub and mtubhd execute six bfses: four bfses are used to execute 4Sweep and
to select r, one bfs from r is used to create Tr, and one bfs is used to compute
the diameter of Tr.

Table 2 shows the upper bounds found by using htub and mtubhd, and the
randomized methods mtub and rtub: in order to run a fair comparison, we
have applied the following schema in the case of the randomized methods. Let
v be the number of bfses performed by ifub in order to calculate the diameter:
in each experiment, we have repeated at least dv/6e times the mtub and rtub

methods. Specifically, we have executed ten experiments: we report the best
upper bound over all these experiments in Table 2, along with the number of
runs out of ten in which the returned upper bound is tight. Consistently with
[4], mtub and mtubhd seem to be more effective in finding better upper bounds
rather than rtub and htub. However in the great majority of the networks, all
these methods are not able to find a tight upper bound (see the rightmost part
of Table 2). Finally, it is worth observing that the 2Sweep or 4Sweep methods
return the height of a bfs tree and that, in any graph, there is always at least one
vertex such that the height of its bfs tree is equal to the diameter. On the other
hand, the upper bound based methods return the diameter of a bfs tree, and
there are infinite graphs such that no vertex have a bfs tree whose diameter is
equal to the diameter of the graph (note that this is the case of the graph shown
in Figure 10).
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Exact Algorithms Upper Bound Algorithms

ifubHd tk mtub mtubhd rtub htub

# Runs # Runs
(out of 10) (out of 10)

Best s.t. Best Best s.t. Best
Name D bfses bfses UB UB=D UB UB UB=D UB
jazz 6 3 7 7 0 7 8 0 8

iPfam 12 4 4 12 10 12 12 3 13

psimap 11 13 6 12 0 12 12 0 12

Rattus_norvegicus 19 17 4 20 0 20 20 0 23

interdom 8 3 7 8 6 9 8 1 8

string 9 20 15 10 0 12 11 0 10

japaneseBookInter_st 8 4 13 9 0 10 10 0 9

geom 14 7 6 14 1 15 14 1 16

Mus_musculus 20 3 6 20 4 21 21 0 22

ppi_dip_swiss 12 3 4 13 0 13 13 0 14

HC-BIOGRID 23 5 5 24 0 25 23 1 25

ca-GrQc 17 11 14 20 0 20 19 0 19

darwinBookInter_st 8 3 4 9 0 8 9 0 8

frenchBookInter_st 9 6 12 10 0 11 10 0 11

ca-HepTh 18 9 17 20 0 20 20 0 21

hprd_pp 14 3 8 16 0 16 16 0 16

ca-HepPh 13 10 20 15 0 15 15 0 15

spanishBookInter_st 10 2 4 10 10 10 11 0 11

ca-AstroPh 14 12 19 15 0 15 17 0 16

dip20090126_MAX 30 33 7 30 10 31 30 3 34

ca-CondMat 15 6 14 16 0 18 17 0 17

Cond_mat_95-99 12 78 577 15 0 16 15 0 15

ppi_gcc 27 24 7 27 10 27 28 0 30

itdk0304_rlinks 26 11 11 28 0 28 28 0 29

dblp20080824_MAX 22 13 30 25 0 26 24 0 25

imdb 14 19 33 16 0 16 16 0 16

as-skitter 31 12 5 32 0 32 34 0 40

Table 2: Comparing ifub with other methods.

comparing ifub with takes-kosters algorithm . Recently and inde-
pendently from this work, a new algorithm to compute the diameter of large
real-world networks has been proposed in [103]. The algorithm, which we refer
to as tk, maintains a lower bound ∆L and an upper bound ∆U of the diameter
D and, for each vertex w, it maintains a lower bound εL[w] and an upper bound
εU[w] of its eccentricity ecc(w). Moreover, it maintains a set W of vertices, at the
beginning initialized with V , that are candidate extremes of a path whose length
is the diameter. At the beginning all the lower and upper bounds are respectively
initialized with 0 and n. At each step the vertex u, with minimum lower bound
or with maximum upper bound, is selected from set W: ∆L is updated with
max{∆L, ecc(v)}, ∆U is updated with min{∆U, 2ecc(v)}, and, for any vertex w,
εL[w] is updated with max{εL[w], ecc(v)−d(v,w),d(v,w)} and εU[w] is updated
with min{εU[w], ecc(v) +d(v,w)}. Then, the vertices v ∈W such that εU[v] 6 ∆L
and εL[v] > ∆U/2 are removed from W, since a selection of v cannot improve
the bounds ∆L and ∆U. The algorithm terminates and returns ∆L when ∆L
is equal to ∆U or the set W is empty. In Table 2, we report for each network
the number of bfses performed by tk to compute the diameter, by applying
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the implementation given by the authors. In the case of the 27 networks in our
dataset, the more effective approach is ifubHd: it requires less bfses than tk in
the case of 17 networks, and more bfses than tk in the case of just 7 networks
(while the two methods require the same number of bfses in the remaining 3

networks).2

4.8 conclusion and open problems

In the previous sections we have described and experimented new algorithms
for computing the diameter and radius of directed and undirected (weighted)
graphs, together with all the diametral and radial vertices. Even though these
algorithms have O(nm) time complexity in the worst case, our experiments
suggest that their execution for real-world networks requires time O(m) in the
case of the diameter and almost O(m) in the case of the radius.

The computation of the radius with our algorithm is affected by the choice of
the starting vertices x,y so that the best performances are achieved whenever
x and y are both diametral targets. The performance of difub depends on the
choice of the starting vertex u (indeed, it could be interesting to experimentally
analyse its behaviour depending on this choice). Ideally, u should be such that
the maximum between the forward and the backward eccentricity of u should
be close to the minv∈V {max{eccF(v), eccB(v)}}. Surprisingly, we have observed
that in the case of real-world graphs, this value is close to the minimum possible,
that is D/2. This peculiar structural property affects the performance of our
algorithm: in these cases, the upper bound on the iterations is minimum and
equal to R−D/2+ 1.

The main fundamental questions are now the following. Why the double
sweep, both in the directed and in the undirected version, is so effective in finding
tight lower bounds for the diameter and vertices with low eccentricity? Which
one is the topological underlying property that can lead us to these results?
Why real world graphs exhibit this property? Some progress has been done by
[184], but still a lot has to be done. Finally, it could be interesting to analyse a
parallel implementation of the difub algorithm. Indeed, the eccentricities of the
vertices belonging to the same fringe set can be computed in parallel. Moreover,
a variety of parallel bfs algorithms have been explored in the literature and can
be integrated in the implementation of our algorithm.

2 A comment is in order on the parallelization of ifub and of tk to speed up the computation:
indeed, while the selection process in tk seems to be inherently sequential, the bfses of the
vertices at the same level i required by ifub to compute Bi(u) can be performed in parallel.
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4.9 more about distance analysis

In other works, the diameter is also referred to as the average distance among
all the pairs of vertices, as in [185, 186], but as shown by [187], diameter and
average distance can provide together an overall indication of the structure of a
network, in particular showing how much the network is cohesive. For instance,
a network with large diameter and small average distance may indicate that
there are branches or spurs to the network that are mostly inaccessible to other
vertices.

The small average distance commonly observed in biological networks per-
tains to the so called small-world effect [188]. The average distance ranged be-
tween 3 and 5 in 43 metabolic networks of 200 to 800 vertices [189], showing that
all vertices are quite close to each other. Although several groups confirmed the
small-world property of the MN in different organisms [190, 191, 192, 193, 194],
Arita [195] heavily criticized the way the pathways are computed in those works,
since they do not conserve their structural moieties. When this problem is ac-
counted for correctly, the analysis revealed that the average shortest path length
of the E. coli metabolism is much longer than previously thought [195, 196]. In
[197] it has been shown that with respect to some models, the average shortest
path length of biological networks is bigger than the expected one, whenever
the degree distribution or the modularity is fixed.

Moreover it is important to underline that the small world phenomenon is
based on shortest paths. Most of those in metabolic networks are irrelevant
short-cuts that use the so called pool metabolites, so that for instance water
can be transformed directly into ethanol violating the mass conservation law:
in such a context these irrelevant short-cuts induce artificially the small world
effect. In gene regulatory networks, a shortest path in the potential network may
not correspond to a real path, that is a path included in at least one realization,
i.e. the genes in the considered paths could be not expressed at the same time.
Notice that such observations are valid also for interpreting the results of the
centrality analysis according to the different definitions. The robustness of some
of the centrality measures described before with respect to the sampling has been
shown in [38]. Even if the realization of a network is not a random subgraph,
this work shows that in general the role of a vertex inferred in the potential
graph not necessarily coincides with his role in a subgraph of the network,
i.e. a realization. Indeed for instance a gene can be essential in one or more
growth conditions but possibly not in all. In such a context, it is interesting to
distinguish between the static and dynamic hubs, like was done in the case of
the protein-protein interaction network of Saccharomyces cerevisiae in [124] and
integrating more biological information in these measurements in order to to
improve our ability to predict biologically important vertices in a network.

Other variants of diameter have been proposed: the effective diameter is defined
as the 90-th percentile of the cumulative distribution of the shortest path lengths
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and can be computed by using [92, 93]. Even if this measure may appear more
robust, it is known that the diameter and the effective diameter tend to exhibit
qualitatively similar behavior [198].

However in general a high diameter does not necessarily imply a low com-
pactness (the great majority of the vertices could be still close). In such a context,
it could be interesting to inspect the distance distribution, also called distance
histogram. The distribution of distances may be more informative than the aver-
age distance and the diameter about the global properties of a network [197]. To
this aim, several tools have been proposed [93, 92, 95, 96, 97, 98, 99, 100].

If G is directed and strongly connected or undirected and connected, the
distance distribution is defined as the set of values Nh (1 6 h < n), where
Nh is the normalized number of ordered pairs of vertices having distance h,
that is Nh = |{(u, v) ∈ V × V : d(u, v) = h}|/(n(n− 1)). For example, if G is an
undirected path with n vertices then, for any 1 6 h < n, there are 2(n− h)

ordered pairs of vertices at distance h: hence, in this case, Nh =
2(n−h)
n(n−1) . (Note

that, as expected,
∑n−1
h=1Nh = 1). For any G, observe that Nh = 0 for D < h < n.

On the other hand, N1 is related to the number of edges: namely, N1 = 2m
n(n−1)

when G is undirected and N1 = m
n(n−1) when G is directed.

Whenever the network is strongly connected or undirected, like for PPNs, a
logarithmic amount of vertices can be sampled and the distribution of distances
of all the vertices from the vertices in the sample can provide a good approxi-
mation for the exact distribution or for the average distance, as we have shown
in

[105] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A Comparison of Three
Algorithms for Approximating the Distance Distribution in Real-World
Graphs. In Proceedings of the 1st International ICST Conference on Theory and
Practice of Algorithms in (Computer) Systems, TAPAS 2011, volume 6595 of
Lecture Notes in Computer Science, 2011.

Let us define the quantityNh(U) = |{(u, v) ∈ U×V : d(u, v) = h}|/(|U| (n−1)),
where U ⊆ V . By performing a random sample of k vertices from V obtaining
the multiset U = {u1,u2, . . . ,uk} ⊆ V and by executing a bfs of G starting from
vertex ui, Nh(U) is an approximation of Nh whose effectiveness, whenever
k = Θ(ε−2 logn), is given by the following theorem, whose proof follows from
the Hoeffding Bound [199].

Theorem 12. Let G be a (strongly) connected graph with n vertices and m edges. For
any arbitrarily small ε > 0, the algorithm with k = Θ(ε−2 logn) computes in time
O(km) an approximation of the distance distribution Nh of G whose absolute error is
bounded by ε, with high probability.

In the case of directed networks not strongly connected, the effectiveness of
the sampling method, i.e. the size of the sample, depends on the fraction of
pairs of vertices (x,y), such that there is no path from x to y.
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Let r be the number of reachable pairs, that is n(n− 1)(1−N∞)
Rh =

|{(u, v) ∈ V × V : d(u, v) = h}|
r

=
Nh

1−N∞ Rh(U) =
Nh(U)

1−N∞ .

Nh(U) = Nh + ε =⇒ |Rh(U) − Rh| =

∣∣∣∣Nh(U)1−N∞ −
Nh

1−N∞
∣∣∣∣ 6 |ε|

1−N∞
Thus the error is big whenever N∞ is close to 1, which means that in order to
capture the very few pairs of connected vertices we have to increase the size
of the sample. By applying the Hoeffding bound, we have that if the size of
the sample is Θ

(
logn

γ2(1−N∞)2

)
, then the error is such that |Rh(U) − Rh| 6 γ with

high probability. It is worth observing that 1−N∞ could be estimated a priori
by using sampling again.

Anyway, in both directed and undirected cases the HyperANF tools, seems to
be a promising alternative to approximate the distance distribution [93].



5
T E L L I N G S T O R I E S : E N U M E R AT I N G M A X I M A L D I R E C T E D
A C Y C L I C G R A P H S W I T H C O N S T R A I N E D S E T O F
S O U R C E S A N D TA R G E T S

In this chapter we propose an example of enumeration problem with a po-
tentially exponential number of solutions that we solve by using a non-
trivial brute force approach. The problem is a constrained version of the
problem of enumerating all maximal directed acyclic subgraphs (DAG) of
a graph G. In this version, we enumerate maximal DAGs whose sources
and targets belong to a predefined subset of the vertices. We call such DAGs
stories. Given a Metabolic network, each individual story should explain
how some interesting metabolites are derived from some other through a
chain of reactions, by keeping alternative pathways. We first show how
to compute one story in polynomial-time, and then describe two different
algorithms to “tell” all possible stories.

5.1 introduction

A classical goal of metabolic studies is to try to understand which are the
metabolic processes involved in the adaptation to an environmental change.
Although it is possible to keep track of some monitored metabolites, the internal
mechanisms that lead to the observed variation are not clear. For “genome
scale" networks, the metabolism of a whole organism is taken into account,
while a metabolic perturbation may impact only a small portion of this complex
network.

Recently, metabolomic techniques gained the spotlight by providing a way
to monitor metabolism by measuring the concentration of metabolites in dif-
ferent conditions or time points. Typical results from these experiments are
lists of metabolites whose concentrations significantly changed when the cell
was exposed to stress. How to interpret this list of metabolites became then a
new research topic, consisting in identifying the metabolic processes that link
the metabolites of interest, possibly explaining the observed variations in their
concentrations. Some examples of approaches to deal with this kind of data may
be found in [200, 201, 51].

Informally, we call a set of metabolic reactions linking all the metabolites of
interest a metabolic story. For instance, a metabolomics study analysis compared
a Yeast cell under two conditions, with and without exposition to cadmium [9].
The Metabolic network reconstruction of Yeast has about 1300 metabolites and

95
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Figure 17: Compound Metabolic Network of Yeast

the experiment identified a list of 22 metabolites whose concentrations changed.
Figure 17 presents the Yeast network, and the highlight vertices, i.e. the light
grey and the dark grey vertices, correspond to the metabolites identified in the
experiment. The light grey vertices are those whose concentrations increased
while the dark grey ones are the ones whose concentrations decreased. The
concentrations of the other metabolites did not change significantly. Figure 18

presents a metabolic story that gives one possible explanation for the change in
the concentration of the metabolites in the network. This particular story was
found as one of the top scores using a score function that assigns a value to a
story, after the enumeration process, based on the concentration data from the
metabolomic experiment. The chain of reactions present in this story is very
close to the conclusions found in [9], since the order in which metabolites are
transformed is almost the same. There are several other possible scenarios with
a score close to the one of this story that could be considered and could provide
new insights on the biology of the underlying metabolic process. Finding and
enumerating all those alternatives is the metabolic stories problem.
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Figure 18: A story of the Compound Metabolic Network of Yeast

Hence, a metabolic story should capture the relationship between the vertices
of interest. Each individual story should explain how some metabolites are
derived from others through a chain of reactions. In this sense, only light
grey and dark grey vertices are allowed to be sources and targets in a story,
even if they can appear as intermediate vertices in some stories. In order to
enumerate all scenarios in which only dark grey or light grey vertices play
the role of sources and/or targets, we introduce the acyclicity constraint. On
the other hand, alternative pathways between these vertices that do not create
cycles should always be included since they give additional explanations on the
interconnection between them, and for this reason we introduce a maximality
condition.

contribution. In this chapter we define the new problem of enumerating
stories, that is a constrained version of the problem of enumerating all maximal
directed acyclic subgraphs (DAG) of a graph G [12]. In our version, only a given
subset B of the vertices are allowed to be sources or targets of the DAGs to be
enumerated. For the computational problem, we will not distinguish dark and
light grey metabolites, modelling them in the same way as black vertices.

The problem seems to be related to a Steiner tree/network problem, since the
goal is to connect a distinguished set of vertices. Although the problem was
originally motivated by biology where Steiner tree approaches have been widely
explored[202], it is surprising that, as far as we know, such a constraint on
sources and targets was never considered before. In this chapter, we show that
introducing this constraint is enough to change the nature of the enumeration
problem. Enumerating DAGs without the constraint is equivalent to enumerating
feedback arc sets (FASs). A feedback arc set is a set of arcs that break all the
cycles, i.e. it is the complement of a DAG. In this sense enumerating stories is a
generalisation of enumerating minimal FASs, since the complement of a story is
a minimal set of arcs that breaks all the cycles and also avoids sources or targets
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that are not in B. A sets of arcs that breaks all the cycles and also avoids sources
or targets that are not in B is called story arc sets (SASs). Hence every SAS is a
FAS. We show that not every minimal FAS is a minimal SAS, and give evidence
that telling stories is possibly harder than enumerating minimal feedback arc
sets.

In this chapter we will show a polynomial algorithm to compute one story,
and then describe two different algorithms to enumerate all possible stories.

The contents of this chapter appeared in [10, 11, 203]. Moreover, the open
problems we propose appeared in [13].

structure of the chapter. The chapter is organised in the following
way. After introducing the main definitions and notations in Section 5.2, Section
5.3 presents some operations to simplify the graph without losing solutions.
Section 5.4 shows a polynomial time algorithm for finding one story and also
a proof that the problem of finding stories with a specific set of sources and
targets is NP-complete. Sections 5.5.1 and 5.5.2 propose two different approaches
to enumerate stories: the first one makes use of a minimal feedback-arc-set
enumerator but can only be applied to a specific class of graphs while the
second one is an extension of our algorithm to enumerate one story based on an
initial permutation of the vertices and can be used for any graph; the example
in Section 5.6 shows how this latter enumerator works. Section 5.7 provides
complexity results for an alternative definition of stories and, finally, Section 5.8
conclude with some open problems.

5.2 preliminaries

Let G = (B ∪W,E) be a directed graph such that B∩W = ∅. We write
V = B ∪W. Vertices in B are said to be black while those in W are said to be
white.

A pitch of G is an acyclic subgraph G ′ = (B∪W ′,E ′) of G with W ′ ⊆W and
E ′ ⊆ E and, for each vertex w ∈W ′, d+(w) > 0 and d−(w) > 0. A trivial pitch
is G ′ = (B∪ ∅, ∅): the subgraph containing all the black vertices and no arc. We
define a story as a maximal pitch. We denote by Σ(G) the set of stories of G.
Thus, given G = (B∪W,E), we want to enumerate Σ(G).

For independent reading, we define a feedback arc set (FAS) of a directed graph
G = (V ,E), which is a subset F of E such that G− F = (V ,E \ F) is acyclic. A FAS
is said to be minimal if there exists no f ∈ F such that F \ {f} is a FAS. We notice
that, if V = B∪W, the complement of a FAS is not always a story since G− F

may contain white sources or targets. Indeed, the FAS enumeration problem is a
particular instance of our problem in which every vertex is black, i.e., W = ∅.
We define a story arc set (SAS) as a FAS S with the extra property that no white
vertex in G− S is a source or a target. A SAS is said to be minimal if there exists
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b

a

x

c y

Figure 19: In this case, B = {a,b, c} and W = {x,y}. There are 4 possible minimal FASs:
{(a, x)}, {(x, c)}, {(c,y)}, and {(y,a)}. Only one of these minimal FASs (that is,
the first one) is also a minimal SAS. For example, the second one is not a
SAS since G− (x, c) contains a white target (that is, vertex x). On the other
hand, another minimal SAS is {(c,y), (y,a)}, which is not a minimal FAS
(even though it is a FAS).

no subset S ′ of S such that S \ S ′ is a SAS. This implies that if S is minimal, then
for every s ∈ S, the graph G = (B ∪W, (E \ S)∪ {s}) either contains a cycle or
contains a white source or target. If S is a minimal SAS, then G− S is a story. A
SAS is also a FAS. However, the example in Figure 19 shows that, as expected,
not every minimal FAS is a minimal SAS and, more surprisingly, that not every
minimal SAS is a minimal FAS. For this reason, the use of a polynomial-time-
delay enumeration algorithm for minimal FAS as the one proposed in [12] to
enumerate stories is limited, since some minimal SASs may not be detected. We
shall see in a later section that this is not the case when we restrict ourselves to
a particular class of graphs.

5.3 preprocessing the graph

In this section, we show how a graph may be simplified without essentially
changing the set of its stories. The simplifications allow shorter proofs of our
results.

The simplified graphs turn out to be interesting from a biological point
of view since they correspond to a more compact representation of graphs
that is equivalent in terms of story sets. We applied the preprocessing steps
described in this section on a collection of 107 Metabolic networks obtained
from MetExplore[160, 24], randomly choosing sets of black vertices with sizes
varying from 5% to 15%. The compression ratio on the number of vertices goes
from 65% to 98% with an average reduction of 83%, while the compression ratio
on the number of arcs goes from 56% to 99% with an average reduction of 77%.
This more compact representation of the interaction between the black vertices
greatly facilitates the visualisation and analysis of the input data.

We now define the following four simplification operations:
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• A white source and target removal consists in removing iteratively a white
vertex from the graph that is either a source or a target. Clearly such
vertices cannot appear in any story. Let de(G) be the graph resulting of
such removals.

• A self-loop removal consists in removing all arcs of the form (u,u). Since
stories are acyclic, such arcs do not appear in any story. Let sl(G) be the
resulting graph of such removals.

• A forward bottleneck removal consists in removing a white vertex v whose
out-degree is equal to 1, and directly connecting any predecessor of v to
the unique successor of v (without creating multi-arcs). Let fb(G, v) be the
resulting graph.

• A backward bottleneck removal consists in removing a white vertex whose
in-degree is equal to 1, and directly connecting the unique predecessor of
v to the successors of v (without creating multi-arcs). Let bb(G, v) be the
resulting graph.

We prove that the last two operations leave the set of stories essentially
unaltered. First an observation:

Observation 1. Let v, p, and s be three vertices such that (p, v), (v, s), (p, s) ∈ E
and v is a (white) bottleneck. Then, for any story S, (p, v), (v, s) ∈ S if and only if
(p, s) ∈ S.

Given three vertices v,p, s ∈ V with (p, v), (v, s) ∈ E and (p, s) 6∈ E, let
ab(G, v,p, s) denote the graph obtained by adding to G the arc (p, s).

Lemma 5. Let v ∈ W be a forward bottleneck and let p, s ∈ V be such that
(p, v), (v, s) ∈ E and (p, s) 6∈ E. Then there exists a bijection from Σ(G) to
Σ(ab(G, v,p, s)).

Proof. For any story S ∈ Σ(G), we define f(S) = S ∪ {(p, s)} if (p, v) ∈ S (and
hence, (v, s) ∈ S since v is a forward bottleneck), otherwise f(S) = S. To prove
that f(S) ∈ Σ(ab(G, v,p, s)), we use Observation 1 to show that f(S) is acyclic if
and only if S is acyclic. We now show that f(S) is maximal. Indeed, if (p, s) ∈ f(S),
then no set of arcs could be added to f(S) since otherwise it could also be added
to S. Otherwise, if (p, s) could be added to f(S), then, from Observation 1 also
(p, v) and (v, s) could be added to f(S) and, hence, these two arcs could be
added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 6= S2, then
f(S1) 6= f(S2). If (p, v) 6∈ S1 ∪ S2, then f(S1) = S1 6= S2 = f(S2). Otherwise,
if (p, v) ∈ S1 ∩ S2, then f(S1) = S1 ∪ {(p, s)} 6= S2 ∪ {(p, s)} = f(S2). Finally, if
(p, v) ∈ S1 \ S2 (the other case can be dealt with similarly), then (p, s) ∈ f(S1)
while (p, s) 6∈ f(S2) and, hence, f(S1) 6= f(S2).
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It remains to show that, for any S ′ ∈ Σ(ab(G, v,p, s)), there exists a S ∈ Σ(G)
such that f(S) = S ′. Define S = S ′ \ {(p, s)}. Since S ′ is acyclic, so is S. If
(p, s) 6∈ S ′, then S = S ′ and S ∈ Σ(G), since the only difference between G and
ab(G, v,p, s) is the arc (p, s). Otherwise, from Observation 1, it follows that
(p, v), (v, s) ∈ S ′ and, hence, (p, v), (v, s) ∈ S: the maximality of S then follows
from the maximality of S ′, since any set of arcs that could be added to S could
also be added to S ′.

By this lemma we may assume that, for any forward bottleneck v ∈W whose
unique successor is s, and for any predecessor p of v, the graph contains the arc
(p, s). To complete the forward bottleneck removal operation, we then need to
delete the vertex v without changing the stories set of the graph. Consider now
the following operation: given a graph G with a forward bottleneck v, dp(G, v)
denote the graph obtained by deleting from G the vertex v and all incident arcs.

Lemma 6. Let v ∈W be a forward bottleneck and s its unique successor. Suppose that
for any predecessor p of v, the graph contains the arc (p, s). Then there is a bijection
from Σ(G) to Σ(dp(G, v)).

Proof. For any S ∈ Σ(G), we define f(S) = S \ {v}, that is the subgraph obtained
by removing v and all incident arcs from S if v ∈ S. Since S is acyclic, so is
f(S). Moreover, from Observation 1, it follows that if (p, v), (v, s) ∈ S, then
(p, s) ∈ S and, hence, (p, s) ∈ f(S). The maximality of f(S) then follows from the
maximality of S, since any set of arcs that could be added to f(S) could also be
added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 6= S2, then
f(S1) 6= f(S2). If (p, s) 6∈ S1 ∪ S2, then (p, v), (v, s) 6∈ S1 ∪ S2 and f(S1) = S1 6=
S2 = f(S2). Otherwise, if (p, s) ∈ S1 ∩ S2, then (p, v), (v, s) ∈ S1 ∩ S2 and f(S1) =
S1 \ {(p, v), (v, s)} 6= S2 \ {(p, v), (v, s)} = f(S2). Finally, if (p, s) ∈ S1 \ S2 (the
other case can be dealt with similarly), then (p, s) ∈ f(S1) while (p, s) 6∈ f(S2)
and, hence, f(S1) 6= f(S2).

Finally, let S ′ be a story of dp(G, v). Then S obtained by adding to S ′ the path
(p, v), (v, s) for every predecessor p of v such that (p, s) ∈ S ′ is clearly a story
and f(S) = S ′.

Using the two previous lemmas, we obtain a justification for the third simpli-
fication operation.

Theorem 13. For any forward bottleneck v ∈W, Σ(G) = Σ(fb(G, v)).

Analogously, we can justify the fourth operation.

Theorem 14. For any backward bottleneck v ∈W, Σ(G) = Σ(bb(G, v)).

For any graph G, let fb(G) (respectively bb(G)) denote the graph obtained
by applying as many times as possible the forward (respectively backward)



102 enumerating stories

bottleneck removal operation. Notice that, even if G does not contain self-loops,
it might happen that fb(G) (respectively bb(G)) contains self-loops created by
one bottleneck removal. Remember also that sl(G) denotes the graph obtained
by the removal of all self-loops from G and de(G) denotes the graph obtained by
the iterative removal of all white sources and targets from G. Our simplification
procedure can now be described as follows.

(1) Let G0 = sl(de(G)) and let i = 0.

(2) Let Gi+1 = sl(bb(sl(fb(Gi)))).

(3) If Gi+1 = Gi then return Gi, otherwise let i = i+ 1 and go to Step 2.

As a consequence of the previous results, we have that if H is the graph
returned by this procedure, then there is a bijection between Σ(G) and Σ(H),
and we may enumerate Σ(H) instead. Hence from now on, we assume that
any v ∈ W has d+(v) > 1 and d−(v) > 1. Notice that this avoids graphs like
the one shown in Figure 19. Indeed, in this case, the two arcs (c,y) and (y,a)
would disappear and the arc (c,a) would be inserted. Furthermore, also x will
disappear and we get arcs (b, c) and (a, c). Observe also that this simplification
procedure does not guarantee that a minimal FAS enumerator would produce
all possible minimal SAS as we shall see in the next section.

5.4 finding single stories

Let us first consider the case of finding some story. We show that this can be
done in polynomial time. Our algorithm basically starts with a pitch and grows
it into a story by adding paths between black vertices while avoiding cycles.
We can start with a trivial pitch such as the subgraph containing all the black
vertices and no arcs.

Theorem 15. A story can be determined in polynomial time.

Proof. The algorithm complete_pitch determines a story by completing a start-
ing pitch P. It chooses a topological order π of the vertices consistent with the
pitch. Starting in u, which can be any of the first vertices in this order that has
not been scanned yet, a breadth-first search (BFS) is performed using only arcs
not in E(P). Any branch of the BFS tree is pruned as soon as it hits a vertex
v ∈ V(P). If v has π(u) < π(v) or u and v are incomparable, then the path u v

is added to P and the topological order is updated. This addition creates no cycle
since there was no path v u in P due to the fact that π(u) < π(v) or u and v
were incomparable, which can be checked in polynomial time. Moreover, since
P contained no white source nor target before the addition of the path, then it
does not contain any after adding the path because u and v, which are the only



5.4 finding single stories 103

Algorithm 22: complete_pitch(G,P)
Input: A graph G = (B∪W,E)) with B∩W = ∅ and an initial pitch P;
Output: A story completing P

1 i← 1;
2 π← any topological order of P;
3 while i 6 |V(P)|) do
4 u← i-th element according to π with u ∈ V(P);
5 Apply BFS(u,G \ E(P)) until reach a vertex v ∈ V(P);
6 if π(u) < π(v)∨ (u and v are incomparable) then
7 include the path u v in P and update π;
8 i← 1;
9 else

10 if no such vertex v exists then
11 i← i+ 1;
12 end
13 end
14 end
15 return P;

candidates to become source or target, were already present in P. Hence, the
addition of u v to P creates a new pitch.

This procedure is repeated until no new path starting from u can be found. At
this point, we continue with the next vertex in the updated order π. Every time a
new path is found, π is updated and the procedure is started from the minimum
vertex according to the new order. Since at each updating of the topological
order, we add at least one arc, the algorithm terminates in polynomial time. The
final pitch produced by this procedure is maximal and, therefore, a story.

We proceed by showing that the problem becomes NP-complete if we wish to
identify a specific single story, i.e., one having a particular set of sources and/or
targets.

Theorem 16. Deciding whether there exists a story with a given set of sources and
targets is NP-complete.

Proof. In order to prove this theorem, we show how the 3-SAT problem[204] is
reducible to the problem of deciding whether, given a directed graph G = (V ,E)
and two subsets S and T of V , G contains a maximal DAG with its set of sources
equal to S, and its set of targets equal to T . If this is true for maximal DAGs, it
is also true for stories since any story is also a maximal DAG.

Consider a 3-CNF Boolean formula ϕ with clauses Ci, i = 1, . . . ,m, over a set
Boolean variables xj, j = 1, . . . ,n. We define a directed graph G as follows (see
also Figure 20).
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Figure 20: The subgraph corresponding to the clause C7 = ¬x2 ∨ x5 ∨ x9

• For each variable xj, we create a set of six vertices, pj,psj ,p
t
j ,nj,n

s
j ,n

t
j , and

for each clause Ci, two vertices si and ti. We define the set S = {psj ,n
s
j |

j = 1, . . . ,n}∪ {si | i = 1, . . . ,m} and the set T = {ptj ,n
t
j | j = 1, . . . ,n}∪ {ti |

i = 1, . . . ,m}.

• The set of arcs of G includes the six arcs

(psj ,pj), (pj,p
t
j), (pj,nj), (nj,pj), (n

s
j ,nj), (nj,n

t
j)

related to each variable xj and the arc (ti, si) for each clause Ci.

• For each clause Ci = l1i ∨ l
2
i ∨ l

3
i , we introduce for each literal two arcs:

if lhi = xj then we create the arcs (si,pj) and (nj, ti), and if lhi = ¬xj the
arcs (si,nj) and (pj, ti), h = 1, 2, 3.

We prove that ϕ is satisfiable if and only if G includes a maximal DAG whose
sets of sources and targets are, respectively, S and T .

Suppose ϕ is satisfiable and let τ be a satisfying truth-assignment. In the FAS
F we include the arc (nj,pj) if τ(xj) = true and the arc (pj,nj) if τ(xj) = false.
Moreover, for each clause Ci, we include in F the arc (ti, si) (see Figure 21).
Clearly, the resulting subgraph G− F is a DAG whose set of sources (respectively,
targets) is equal to S (respectively, T ). Moreover, G− F is maximal since removing
any arc from F would create either a two-vertex variable cycle or, for some clause
Ci, at least one six-vertex cycle corresponding to a true literal in Ci.

Now suppose that G ′ is a maximal DAG with sources S and targets T . Clearly,
for each clause Ci, the arc (ti, si) is not in G ′. Maximality of G ′ implies that for
each variable xj, exactly one of (pj,nj) and (nj,pj) is in G ′. All other arcs are
included in G ′. Let τ be a truth-assignment defined as follows: for each variable
xj, τ(xj) = true if and only if (pj,nj) is in G ′. We prove that this assignment
satisfies ϕ. Suppose, to the contrary, that there exists an unsatisfied clause Ci.
Wlog we may assume that Ci = x1 ∨ x2 ∨ x3 (see Figure 22). Then the three
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Figure 21: The directed acyclic subgraph corresponding to the truth assignment τ(x2) =
true, τ(x5) = false, and τ(x9) = true that satisfies the clause C7 = ¬x2 ∨

x5 ∨ x9: the dashed arcs are in the FAS

p1 n1 p2 n2 p3 n3
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nt1

pt2
ps2

ns2
nt2

pt3
ps3

ns3
nt9

si ti

Figure 22: A directed acyclic subgraph (the dashed arcs are in the FAS) corresponding
to the truth assignment τ(x2) = true, τ(x5) = false, and τ(x9) = false that
does not satisfy the clause C7 = ¬x2∨ x5∨ x9: the DAG is not maximal since
the arc (t7, s7) can be taken out from the FAS.

cycles containing the arc (ti, si) are broken both by this arc and by the three arcs
(nj,pj), j = 1, 2, 3 not in G ′. Hence, G ′ is not maximal since the arc (ti, si) can
be added to G ′ without creating any new cycle. This contradicts the hypothesis
on G ′.

It is easy to modify the previous reduction in order to prove that the same
result holds even if we specify only the set of sources or only the set of targets.
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5.5 enumerating stories

5.5.1 Enumerating stories by enumerating FASs

We already noticed that there exist graphs for which the set S(G) of minimal
SASs and the set F(G) of minimal FASs are not comparable in terms of the
inclusion relation. In this section, we show that, for some particular cases, S(G)
is contained in F(G).

A white vertex v ∈W is called bad if, for any predecessor p of v and for any
successor s of v, there exists a cycle containing the arcs (p, v) and (v, s) (see
Figure 23).

a
b

c
d

x

Figure 23: Example of a bad vertex. The minimal SAS {(a, x), (b, x), (x, c), (x,d)} is not a
minimal FAS.

Proposition 1. Any v ∈W, which is not bad, belongs to every story.

Proof. Consider a pitch P not containing v. As v is not bad, it has a predecessor
p and a successor s such that there exists no cycle containing the arcs (p, v)
and (v, s). By simplification rule 2, there exists a path pk,pk−1, . . . ,p1 = p with
k > 1 such that pk ∈ B and pi ∈W, for any i with i < k. Let j be the minimum
i < k such that pi ∈ P: if no such j exists, then we define j = k. Similarly a path
s = s1, . . . , s`−1, s` ending in a black vertex exists, and let sj ′ be the first vertex
on that path belonging to P, or sj ′ = s` if no such vertex exists.

Then P ′ = P ∪ {(pj,pj−1), . . . , (p, v), (v, s), . . . , (sj ′−1, sj ′)} has no white source
nor target as pj and sj ′ are not white sources or targets in P. Moreover, P ′

is acyclic as P is acyclic and any cycle containing the additional path would
contradict the fact that v is not a bad vertex. Thus any pitch not containing v is
not maximal, hence not a story.

Corollary 1. If G does not include any bad vertex, then any minimal SAS is a minimal
FAS.

Proof. By absurdum, assume that A is a minimal SAS which is not a minimal
FAS. Then, there exists an arc e = (u, v) ∈ A such that A \ {e} is a FAS but not a
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SAS. This implies that in G− (A \ {e}), either u is a white target or v is a white
source. We restrict ourselves to consider the latter case, since the former one can
be dealt with similarly. Since v is a white source in G− (A \ {e}), and it is not in
G−A, all arcs incident to v are in A. In other words, the story corresponding to
A does not contain v, which contradicts Proposition 1.

The previous proposition and its corollary state that, in a graph with no bad
vertices, each story corresponds to a minimal FAS. This suggests that for such
graphs, we could enumerate all stories by enumerating all the minimal FASs
and by checking for each of them whether the resulting graph is a story (which
can be done by checking that no white vertex is source or target). Unfortunately,
there are graphs with no bad vertices in which the number of minimal FASs is
exponentially larger than the number of minimal SASs. An example is given in
Figure 24.

· · ·

Figure 24: Graph with no bad vertex and in which the number of minimal FASs is 2n

and the number of minimal SASs is 2.

5.5.2 Enumerating stories by enumerating permutations

In the previous section, we suggested a method for enumerating all stories
in the case of graphs with no bad vertices. Unfortunately, many graphs arising
from the biological application briefly described in Section 5.1 contain a huge
number of bad vertices. We thus need a method for enumerating stories which
is able to deal with these cases.

Remember how we can find a single story as explained in the proof of Theorem
15. Consider the following two simple operations, clean and consistent_arcs.
For any graph G(B∪W,E), and for any total order π of the vertices:

G ′(B ∪W,E ′) ≡ consistent_arcs(G,π): for each arc (u, v) ∈ E, (u, v) ∈
E ′ if π(u) < π(v);

G ′(B ∪W ′,E ′) ≡ clean(G): recursively remove white vertices that are
sources, targets or isolated in G.

We can thus define the composed operation

pitch(G,π) = clean(consistent_arcs(G,π)).
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pitch produces a pitch since the resulting graph G ′ contains only arcs that
respect the order π and therefore is acyclic. Moreover, due to the cleaning step,
G ′ is guaranteed to have neither white sources nor white targets.

Theorem 17. For any story S, there exists a permutation π such that pitch(G,π)
= S.

Proof. It is enough to show that, for any story S of G = (B∪W,E) and for any
topological order π of V(S), pitch(G,π) = S. Because of the maximality of a
story, it suffices to show that S ⊆ pitch(G,π). Given an arc (u, v) of S, we have
π(u) < π(v). Therefore (u, v) is in consistent_arcs(G,π). Since (u, v) is an arc
of S, there exists a path p in S between two black vertices containing u and
v. Then p is also in consistent_arcs(G,π), and thus u and v are both black
or, if one or both of them is white, then they are neither source nor target in
consistent_arcs(G,π). Since clean(consistent_arcs(G,π)) removes neither
black nor white vertices that are neither source nor target, we conclude that
(u, v) is also in clean(consistent_arcs(G,π)) = pitch(G,π).

This theorem together with Theorem 15 suggest an approach to enumerate
stories which simply consists in generating all permutations π of the vertices of G
and computing P = pitch(G,π): if P is not a story, then we use complete_pitch

to grow it into a story.
In order to avoid to output several times the same story, we store in memory

the previous solutions and every time we check whether the current story has
been already generated.

It is worth observing that, in order to enumerate all the stories, all the possible
permutations should be inspected. Thus the resulting total complexity is Ω(n!),
even in the case of a graph with a constant number of stories, like the one shown
in Figure 24.

5.6 enumerating stories: an example

Referring to the graph G = (B∪W,E) shown in Figure 25a, the subgraph of
G, G ′ = (B ∪W, {(a,b), (c,d), (e, f), (f, c)}) is a pitch. Let π = 〈a,b, e, f, c,d〉 be
an ordering of its vertices. In order to complete this pitch in a story, Algorithm
22 consider in the first iteration the vertex b and a BFS from b until the vertices
belonging to the pitch c and f are reached: the corresponding paths are simply
the arcs out-going from b, (b, c) and (b, f); since b is not comparable with c
and f, both the arcs are added. The next vertex to be considered is f: the BFS
from f gives the arcs (f,a) and (f,d); the arc (f,a) cannot be added since a > f,
while the arc (f,d) is added since f < d. The next vertex considered is thus d,
and the BFS from d until the vertices belonging to the pitch are reached: the
corresponding path is the arc (d, e) and, since d > e, this arc is not added to
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the pitch. The subgraph of G, shown in Figure 25b, G ′′ = (B∪W,E ′′), where
E ′′ = {(a,b), (b, c), (b, f), (c,d), (e, f), (f, c), (f,d)}, is thus a story.

a

b

cd

e

f

(a)

a

b

cd

e

f

(b)

Figure 25: An example of network and story

Given a new ordering of the vertices π = 〈f,d, e,a,b, c〉, the operation consis-
tent_arcs activates the following set of arcs:

{(a,b), (b, c), (d, e), (f,a), (f, c), (f,d)}

that are the arcs compatible with the given order. Indeed the arcs (b, f), (c,d),
(e, f) are not compatible with π. Since f is a white source, the operation clean

deletes the arcs (f,a), (f, c), (f,d). The resulting set of arcs {(a,b), (b, c), (d, e)}
induces a pitch. By applying Algorithm 22, it is thus possible to complete the
pitch in order to get a story.

Observe that in the graph shown in Figure 25a, it is possible to verify the
Theorem 17: for any story S there exists an order π of its vertices such that
pitch(G,π) = S. Considering the story G ′′, shown in Figure 25b, the ordering of
the vertices π = 〈a,b, e, f, c,d〉 is such that pitch(G,π) = G ′′. Indeed by starting
from this order, the operation consistent_arcs activates all the arcs in E ′′, that
are the arcs compatible with the given order. The arcs (d, e) and (f,a) are indeed
not compatible with π. The operation clean does not affect the solution, since
no white source or target is present. Thus E ′′ induces a pitch that is also a story.

5.7 alternative definition of a story

It is clear that, according to our definition of a story, no white vertex can
be either source or target in the original graph, since otherwise such a white
vertex would not belong to any story. This implies that the original graph can
be seen as the union of a finite set P of directed paths between black vertices: in
particular, if P includes all paths between every pair of black vertices, then it is
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a b

dc

Figure 26: Graph obtained by two paths (a,b,d, c) and (b,a, c,d). According to the
alternative definition, this graph clearly contains only two stories, which
correspond to the two paths. According to the original definition, instead, the
graph contains the following four minimal SAS: {(a,b), (c,d)}, {(a,b), (d, c)},
{(b,a), (c,d)}, and {(b,a), (d, c)}. Note that these four minimal SAS originated
four stories which are all different from the two stories obtained according to
the second definition.

easy to verify that a story is a maximal subset S of P such that the graph defined
as the union of the paths in S is acyclic and there exists no path p in P− S that
can be added to S without disturbing the acyclicity. Let us call this alternative
definition of story a path-story. A minimal number of paths to be removed from
P such that the union of the remaining paths is a path-story is called a feedback
path set.

A natural question is whether the problem changes when a set P is given as
input, and the graph GP is defined by the union of the paths of P, where the
endpoints of the paths in P form the set of black vertices of GP. Clearly, since
P may not contain all paths between every pair of the black vertices in GP, the
set of path-stories of GP is different from the set of stories of GP (see for an
example Figure 26). We will prove that enumerating path-stories is at least as
hard as enumerating hitting sets, which is a well-known enumeration problem
(for a survey, we refer to [205]) with its computational complexity still open,
after more than 28 years.

Theorem 18. Enumerating path-stories is at least as hard as enumerating minimal
hitting sets.

Proof. Let C be a collection of subsets of a domain set X. H ⊂ X is a hitting set of
C if for any C ∈ C, H∩C 6= ∅.

We reduce C to a collection P of paths, such that there is a bijective correspon-
dence between (minimal) hitting sets of C and (minimal) feedback path sets of P
and, hence, between hitting sets of C and path-stories of P.

We order all sets of C and all elements of X. Within any set of C the elements
are ordered. For each element in each set we create a vertex of the graph GP.
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Figure 27: An example of reduction: C1 = {A,B,C,D}, C2 = {C,D,E}, C3 = {A,B,E},
and C4 = {A,D, F,G}.

For each set Ci ∈ C with Ci = {xi1 , . . . , xiki }, create a cycle by introducing the
arcs (xi` , xi`+1), ` = 1, . . . ,ki and (xiki , xi1). We call this cycle also Ci. Moreover,
suppose that xi` = xj is the h-th occurrence of xj and xrt the next occurrence,
then we introduce an arc (xi`+1 , xrt), i.e., there is a path of two arcs between any
two consecutive occurrences of the same element. Let us call the latter set of
arcs the element-arcs and the set of arcs on the cycles the set-arcs. Notice that the
element arcs are not in any cycle.

Now for each element xj we define a path Pj ∈ P, by starting in the vertex of
the first occurrence of xj, and every time selecting the two arcs connecting it to
the next occurrence vertex, until we arrive at the last occurrence vertex.

The graph induced by P contains all the arcs just introduced. In particular
it contains all the cycles corresponding to the sets in C. An example of the
reduction is shown in Figure 27.

It is easy to see that a path Pj cuts cycle Ci if and only if xj hits the set Ci.
Hence there is a one-to-one correspondence between a minimal path set of P
and a minimal hitting set of C. This proves the theorem.

In this chapter we have mainly focused our attention on the first definition
of stories, since this definition seems to fit better with the informal subnetwork
definition the biologists are looking for.
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5.8 conclusion and open problems

In this chapter, we have introduced the new notion of a story, which is a maxi-
mal acyclic subgraph of a directed graph in which only specified vertices can be
sources or targets. We have proved some complexity results and designed some
algorithms for enumerating all possible stories of a graph. From a theoretical
point of view, the main question left open is to establish the complexity of the
enumeration problem. Indeed the enumeration algorithm presented, even if
it works well in practice, as shown by [203], gives no guarantee on the delay
between the output of two consecutive solutions. Notice that any changes in the
definition will imply a revision of the formal results, and may even imply that
finding one story can not be polynomial-solvable. We address as a future work,
exploiting the relationship between stories and subset feedback vertex sets, that
has been studied in [206] by applying a Measure and Conquer approach [207].

From a practical point of view, for some graphs the number of solutions found
is extremely large and therefore the analysis of the results is compromised.
Adding more constraints to the model could be a way to filter a priori the set of
solutions.

This observation on the size of the output leads us to consider the problem
from a modeling point of view. For instance, the acyclicity constraint could
be relaxed allowing cycles between white vertices. Moreover, the model could
be enriched by exploring the information on the concentrations given by the
metabolomics experiment. Notice that in this case the nature of the problem
changes into an optimization problem. Another alternative is to consider inte-
grated models, adding to the Metabolic network other layers of information
such as regulation, or taking the stoichiometry of the reactions into account.
Finally, in metabolomics a current challenge is to correctly predict which are the
metabolites corresponding to the peaks in the spectrum and whether the changes
in concentration are actually significant, which suggests that the model should
also account for noisy data corresponding to on incertitude on the interesting or
not interesting labels assigned to the vertices.



6
E N U M E R AT I N G C Y C L E S A N D ( S , T ) - PAT H S I N
U N D I R E C T E D G R A P H S

We present the first optimal solution to list all the simple cycles in an
undirected graph G with n vertices and m edges. Specifically, let C(G)

denote the set of all these cycles. For a cycle c ∈ C(G), let |c| denote the
number of edges in c. Our algorithm requires O(m+

∑
c∈C(G) |c|) time

and is asymptotically optimal: Ω(m) time is necessarily required to read
G as input, and Ω(

∑
c∈C(G) |c|) time is required to list the output.

We also present the first optimal solution to list all the simple paths from
s to t (shortly, (s, t)-paths) in an undirected graph G. Let Pst(G) denote
the set of (s, t)-paths in G and, for an (s, t)-path π ∈ Pst(G), let |π| be
the number of edges in π. Our algorithm lists all the (s, t)-paths in G
optimally in O(m+

∑
π∈Pst(G) |π|) time.

This result can be useful for undirected Protein-Protein Interaction net-
works. The main question arising from our work, is whether it is possible
to extend our result to directed graphs in order to efficiently deal also with
interaction networks in general, as signalling and gene regulatory net-
works.

6.1 introduction

Listing all the simple cycles (hereafter just called cycles) in a graph is a classical
problem whose efficient solutions date back to the early 70s. For a graph with
n vertices and m edges, containing η cycles, the best known solution in the
literature is given by Johnson’s algorithm [18] and takes O((η+ 1)(m+n)) time.
In the case of biological networks, studying paths or cycles can be useful for
several purposes. In the case of interaction graphs, such as gene regulatory
networks, the importance of enumeration has been shown in [14], and two
algorithms for this problem have been proposed in [28, 14]. As shown in Chapter
2, these networks are directed and their arcs are signed, where the sign or
weight of the arcs indicates the causal relationship between the vertices, such as
activation or inhibition. In particular, as summarized by [14], cycles and paths
can be useful for studying:

• dependencies among vertices: a vertex x activates another vertex y when
at least one positive path from x to y exists but no negative one [28].

• the steady state and multistationarity of dynamic models [208, 15, 16].
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• monotonicity with respect to changes in the initial conditions [209].

In particular the enumeration of cycles and paths can be useful for investigating:

• feedback loops, that are claimed to be sources of complex dynamics [15,
16]. Moreover feedback loops are related to robustness in cell signalling
networks [17].

• signalling paths, by analysing the different positive and negative routes
along which a molecule can affect another.

• (Minimal) cut sets: for a given set of feedback loops or signalling paths
one may compute a set of interventions interrupting the signal flow in
them [28].

In the following we will consider the problem of enumerating paths and
cycles in the case of undirected graphs. Our contribution is not just restricted to
biological networks, but extends also to arbitrary graph. This result can be useful
for undirected Protein-Protein Interaction networks, but in the case of interaction
networks in general, our approach neglects the effects of the controls, i.e. the
sign and direction of the arcs. In this latter case, the cycles can be enumerated in
the underlying undirected graph and a posteriori filtered or ad hoc algorithms can
be applied. The main question arising from our work, is whether it is possible
to extend it to directed graphs in order to efficiently deal also with this kind of
networks.

previous work . The classical problem of listing all the cycles of a graph has
been extensively studied for its many applications in several fields, ranging from
the mechanical analysis of chemical structures [210] to the design and analysis
of reliable communication networks, and the graph isomorphism problem [211].
In particular, at the turn of the seventies several algorithms for enumerating all
cycles of an undirected graph have been proposed. There is a vast body of work,
and the majority of the algorithms listing all the cycles can be divided into the
following three classes (see [212, 213] for excellent surveys).

1. Search space algorithms. According to this approach, cycles are looked for
in an appropriate search space. In the case of undirected graphs, the cycle
vector space [214] turned out to be the most promising choice: from a basis
for this space, all vectors are computed and it is tested whether they are a
cycle. Since the algorithm introduced in [211], many algorithms have been
proposed: however, the complexity of these algorithms turns out to be
exponential in the dimension of the vector space, and thus in n. For planar
graphs, an algorithm listing cycles in O((η+ 1)n) time was presented in
[215].
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2. Backtrack algorithms. By this approach, all paths are generated by backtrack
and, for each path, it is tested whether it is a cycle. One of the first al-
gorithms is the one proposed in [21], which is however exponential in
η. By adding a simple pruning strategy, this algorithm has been succes-
sively modified in [60]: it lists all the cycles in O(nm(η+ 1)) time. Further
improvements were proposed in [18, 216, 61], leading to O((η+ 1)(m+n))-
time algorithms that work for both directed and undirected graphs.

3. Using the powers of the adjacency matrix. This approach uses the so-called
variable adjacency matrix, that is, the formal sum of edges joining two
vertices. A non-zero element of the p-th power of this matrix is the sum
of all walks of length p: hence, to compute all cycles, we compute the nth
power of the variable adjacency matrix. This approach is not very efficient
because of the non-simple walks. Algorithms based on this approach (e.g.
[217, 218]) basically differ only on the way they avoid to consider walks
that are neither paths nor cycles.

Almost 40 years after Johnson’s algorithm [18], the problem of efficiently
listing all cycles of a graph is still an active area of research (e.g. [22, 219,
220, 221, 222, 223, 224]). Nevertheless, no significant improvement has been
obtained from the theory standpoint: in particular, Johnson’s algorithm is still
the theoretically most efficient. His O((η + 1)(m + n))-time solution and its
linear delay guarantee is surprisingly not optimal for undirected graphs as we
show in this chapter.

contribution. We present the first optimal solution to list all the cycles
in an undirected graph G. Specifically, let C(G) denote the set of all these
cycles (|C(G)| = η). Our algorithm requires O(m +

∑
c∈C(G) |c|) time and is

asymptotically optimal: indeed, Ω(m) time is necessarily required to read G
as input, and Ω(

∑
c∈C(G) |c|) time is necessarily required to list the output.

Since the length of a cycle |c| 6 n, the cost of our algorithm never exceeds
O(m+ (η+ 1)n) time.

Along the same lines, we also present the first optimal solution to list all the
simple paths from s to t (shortly, (s, t)-paths) in an undirected graph G. Let
Pst(G) denote the set of (s, t)-paths in G. Our algorithm lists all the (s, t)-paths
in G optimally in O(m+

∑
π∈Pst(G) |π|) time, observing that Ω(

∑
π∈Pst(G) |π|)

time is necessarily required to list the output.
We prove the following reduction to relate C(G) and Pst(G) for some suitable

choices of vertices s, t: if there exists an optimal algorithm to list the (s, t)-paths
in G, then there exists an optimal algorithm to list the cycles in G. Hence, we
can focus on listing (s, t)-paths.

Our work appeared in [19].
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Figure 28: Diamond graph.

difficult graphs for johnson’s algorithm. It is worth observing
that the analysis of the time complexity of Johnson’s algorithm is not pes-
simistic and cannot match the one of our algorithm for listing cycles. For
example, consider the sparse “diamond” graph Dn = (V ,E) in Fig. 28 with
n = 2k+ 3 vertices in V = {a,b, c, v1, . . . , vk,u1, . . . ,uk}. There are m = Θ(n)

edges in E = {(a, c), (a, vi), (vi,b), (b,ui), (ui, c), for 1 6 i 6 k}, and three
kinds of (simple) cycles: (1) (a, vi), (vi,b), (b,uj), (uj, c), (c,a) for 1 6 i, j 6 k;
(2) (a, vi), (vi,b), (b, vj), (vj,a) for 1 6 i < j 6 k; (3) (b,ui), (ui, c), (c,uj), (uj,b)
for 1 6 i < j 6 k, totalizing η = Θ(n2) cycles. Our algorithm takes
Θ(n+k2) = Θ(η) = Θ(n2) time to list these cycles. On the other hand, Johnson’s
algorithm takes Θ(n3) time, and the discovery of the Θ(n2) cycles in (1) costs
Θ(k) = Θ(n) time each: the backtracking procedure in Johnson’s algorithm
starting at a, and passing through vi, b and uj for some i, j, arrives at c: at that
point, it explores all the vertices ul (l 6= i) even if they do not lead to cycles
when coupled with a, vi, b, uj, and c.

structure of the chapter. This chapter is organised as follows: after
introducing the main definitions and notations in Section 6.2, in Section 6.3 we
show the main ideas of our algorithm; in Section 6.4 the general amortization
strategy of our analysis is reported and in Section 6.5 the maintenance of the
certificate, a data structure used by the algorithm, is described; in Section 6.6
we show how the algorithm works through an example and in Section 6.7 we
explain in detail the operations performed by the algorithm and its analysis;
finally, we conclude in Section 6.8.

6.2 preliminaries

Let G = (V ,E) be an undirected connected graph with n = |V | vertices and
m = |E| edges, without self-loops or parallel edges. Recall that P(G) is the set
of all paths in G and Ps,t(G) is the set of all (s, t)-paths in G. When s = t we
have cycles, and C(G) denotes the set of all cycles in G. In this chapter, given an
undirected graph G = (V ,E) we consider the problems of listing all the cycles
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s

t

Figure 29: Block tree of G with bead string Bs,t in gray.

c ∈ C(G) (listing Cycles) and all the paths π ∈ Ps,t(G) between two given distinct
vertices s, t ∈ V (listing (s,t)-Paths).

Our algorithms assume without loss of generality that the input graph G is
connected, hence m > n− 1, and use the decomposition of G into biconnected
components. Recall that an articulation point (or cut-vertex) is a vertex u ∈ V such
that the number of connected components in G increases when u is removed.
G is biconnected if it has no articulation points. Otherwise, G can always be
decomposed into a tree of biconnected components, called the block tree, where
each biconnected component is a maximal biconnected subgraph of G (see
Fig. 29), and two biconnected components are adjacent if and only if they share
an articulation point.

6.3 overview and main ideas

While the basic approach is simple (see the binary partition in point 3), we use
a number of non-trivial ideas to obtain our optimal algorithm for an undirected
(connected) graph G as summarized in the steps below.

1. Prove the following reduction. If there exists an optimal algorithm to list
the (s, t)-paths in G, there exists an optimal algorithm to list the cycles in
G. This relates C(G) and Pst(G) for some choices s, t.

2. Focus on listing the (s, t)-paths. Consider the decomposition of the graph
into biconnected components (bccs), thus forming a tree T where two
bccs are adjacent in T iff they share an articulation point. Exploit (and
prove) the property that if s and t belong to distinct bccs, then (i) there is
a unique sequence Bs,t of adjacent bccs in T through which each (s, t)-path
must necessarily pass, and (ii) each (s, t)-path is the concatenation of
paths connecting the articulation points of these bccs in Bs,t.

3. Recursively list the (s, t)-paths in Bs,t using the classical binary partition
(i.e. given an edge e in G, list all the cycles containing e, and then all the
cycles not containing e): now it suffices to work on the first bcc in Bs,t,
and efficiently maintain it when deleting an edge e, as required by the
binary partition.
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4. Use a notion of certificate to avoid recursive calls (in the binary partition)
that do not list new (s, t)-paths. This certificate is maintained dynamically
as a data structure representing the first bcc in Bs,t, which guarantees that
there exists at least one new solution in the current Bs,t.

5. Consider the binary recursion tree corresponding to the binary partition.
Divide this tree into spines: a spine corresponds to the recursive calls
generated by the edges e belonging to the same adjacency list in Bs,t.
The amortized cost for each listed (s, t)-path π is O(|π|) when there is
a guarantee that the amortized cost in each spine S is O(µ), where µ
is a lower bound on the number of (s, t)-paths that will be listed from
the recursive calls belonging to S. The (unknown) parameter µ, which is
different for each spine S, and the corresponding cost O(µ), will drive the
design of the proposed algorithms.

6.3.1 Reduction to (s, t)-paths

We now show that listing cycles reduces to listing (s, t)-paths while preserving
the optimal complexity.

Lemma 7. Given an algorithm that solves the problem of listing (s,t)-Paths in opti-
mal O(m+

∑
π∈Ps,t(G) |π|) time, there exists an algorithm that solves the problem of

listing Cycles in optimal O(m+
∑
c∈C(G) |c|) time.

Proof. Compute the biconnected components of G and keep them in a list L.
Each (simple) cycle is contained in one of the biconnected components and
therefore we can treat each biconnected component individually as follows.
While L is not empty, extract a biconnected component B = (VB,EB) from L

and repeat the following three steps: (i) compute a DFS traversal of B and take
any back edge b = (s, t) in B; (ii) list all (s, t)-paths in B− b, i.e. the cycles in B
that include edge b; (iii) remove edge b from B, compute the new biconnected
components thus created by removing edge b, and append them to L. When L
becomes empty, all the cycles in G have been listed.

Creating L takes O(m) time. For every B ∈ L, steps (i) and (iii) take O(|EB|)
time. Note that step (ii) always outputs distinct cycles in B (i.e. (s, t)-paths in
B− b) in O(|EB|+

∑
π∈Ps,t(B−b)

|π|) time. However, B− b is then decomposed
into biconnected components whose edges are traversed again. We can pay
for the latter cost: for any edge e 6= b in a biconnected component B, there is
always a cycle in B that contains both b and e (i.e. it is an (s, t)-path in B− b),
hence

∑
π∈Ps,t(B−b)

|π| dominates the term |EB|, i.e.
∑
π∈Ps,t(B−b)

|π| = Ω(|EB|).
Therefore steps (i)–(iii) take O(

∑
π∈Ps,t(B−b)

|π|) time. When L becomes empty,
the whole task has taken O(m+

∑
c∈C(G) |c|) time.
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6.3.2 Decomposition in biconnected components

We now focus on listing (s, t)-paths. We use the decomposition of G into a
block tree of biconnected components. Given vertices s, t, define its bead string,
denoted by Bs,t, as the unique sequence of one or more adjacent biconnected
components (the beads) in the block tree, such that the first one contains s and
the last one contains t (see Fig. 29): these biconnected components are connected
through articulation points, which must belong to all the paths to be listed.

Lemma 8. All the (s, t)-paths in Ps,t(G) are contained in the induced subgraph
G[Bs,t] for the bead string Bs,t. Moreover, all the articulation points in G[Bs,t] are
traversed by each of these paths.

Proof. Consider an edge e = (u, v) in G such that u ∈ Bs,t and v /∈ Bs,t. Since
the biconnected components of a graph form a tree and the bead string Bs,t

is a path in this tree, there are no paths v  w in G − e for any w ∈ Bs,t

because the biconnected components in G are maximal and there would be
a larger one (a contradiction). Moreover, let B1,B2, . . . ,Br be the biconnected
components composing Bs,t, where s ∈ B1 and t ∈ Br. If there is only one
biconnected component in the path (i.e. r = 1), there are no articulation points in
Bs,t. Otherwise, all of the r− 1 articulation points in Bs,t are traversed by each
path π ∈ Ps,t(G): indeed, the articulation point between adjacent biconnected
components Bi and Bi+1 is their only vertex in common and there are no edges
linking Bi and Bi+1.

We thus restrict the problem of listing the paths in Ps,t(G) to the induced
subgraph G[Bs,t], conceptually isolating it from the rest of G. For the sake
of description, we will use interchangeably Bs,t and G[Bs,t] in the rest of the
chapter.

6.3.3 Binary partition scheme

We list the set of (s, t)-paths in Bs,t, denoted by Ps,t(Bs,t), by applying the
binary partition method (where Ps,t(G) = Ps,t(Bs,t) by Lemma 8): we choose
an edge e = (s, v) incident to s and then list all the (s, t)-paths that include e
and then all the (s, t)-paths that do not include e. Since we delete some vertices
and some edges during the recursive calls, we proceed as follows.

Invariant: At a generic recursive step on vertex u (initially, u := s), let πs = s u

be the path discovered so far (initially, πs is empty {}). Let Bu,t be the current
bead string (initially, Bu,t := Bs,t). More precisely, Bu,t is defined as follows:
(i) remove from Bs,t all the vertices in πs but u, and the edges incident to u and
discarded so far; (ii) recompute the block tree on the resulting graph; (iii) Bu,t

is the unique bead string that connects u to t in the recomputed block tree.
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Base case: When u = t, output the (s, t)-path πs.

Recursive rule: Let P(πs,u,Bu,t) denote the set of (s, t)-paths to be listed by the
current recursive call. Then, it is the union of the following two disjoint sets, for
an edge e = (u, v) incident to u:

• Left branching: the (s, t)-paths in P(πs · e, v,Bv,t) that use e, where Bv,t is
the unique bead string connecting v to t in the block tree resulting from
the deletion of vertex u from Bu,t.

• Right branching: the (s, t)-paths in P(πs,u,B ′u,t) that do not use e, where
B ′u,t is the unique bead string connecting u to t in the block tree resulting
from the deletion of edge e from Bu,t.

Hence, Ps,t(Bs,t) (and so Ps,t(G)) can be computed by invoking P({}, s,Bs,t). The
correctness and completeness of the above approach is discussed in Section 6.3.4.

At this point, it should be clear why we introduce the notion of bead strings
in the binary partition. The existence of the partial path πs and the bead string
Bu,t guarantees that there surely exists at least one (s, t)-path. But there are two
sides of the coin when using Bu,t.

1. One advantage is that we can avoid useless recursive calls: If vertex u has
only one incident edge e, we just perform the left branching; otherwise,
we can safely perform both the left and right branching since the first bead
in Bu,t is always a biconnected component by definition (thus there exists
both an (s, t)-path that traverses e and one that does not).

2. The other side of the coin is that we have to maintain the bead string Bu,t

as Bv,t in the left branching and as B ′u,t in the right branching by Lemma 8.
Note that these bead strings are surely non-empty since Bu,t is non-empty
by induction (we only perform either left or left/right branching when
there are solutions by item 1).

To efficiently address point 2, we need to introduce the notion of certificate as
described next.

6.3.4 Introducing the certificate

Given the bead string Bu,t, we call the head of Bu,t, denoted by Hu, the first
biconnected component in Bu,t, where u ∈ Hu. Consider a DFS tree of Bu,t

rooted at u that changes along with Bu,t, and classify the edges in Bu,t as tree
edges or back edges (there are no cross edges since the graph is undirected).

To maintain Bu,t (and so Hu) during the recursive calls, we introduce a certifi-
cate C (see Fig. 30): It is a suitable data structure that uses the above classification
of the edges in Bu,t, and supports the following operations, required by the
binary partition scheme.
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Figure 30: Example certificate of Bu,t

• choose(C,u): returns an edge e = (u, v) with v ∈ Hu such that πs · (u, v) ·
u t is an (s, t)-path such that u t is inside Bu,t. Note that e always
exists since Hu is biconnected. Also, the chosen v is the last one in DFS
postorder among the neighbours of u: in this way, the (only) tree edge
e is returned when there are no back edges leaving from u. (As it will
be clear in Sections 6.4 and 6.5, this order facilitates the analysis and the
implementation of the certificate.)

• left_update(C, e): for the given e = (u, v), it obtains Bv,t from Bu,t as
discussed in Section 6.3.3. This implies updating also Hu, C, and the block
tree, since the recursion continues on v. It returns bookkeeping information
I for what is updated, so that it is possible to revert to Bu,t, Hu, C, and the
block tree, to their status before this operation.

• right_update(C, e): for the given e = (u, v), it obtains B ′u,t from Bu,t

as discussed in Section 6.3.3, which implies updating also Hu, C, and
the block tree. It returns bookkeeping information I as in the case of
left_update(C, e).

• restore(C, I): reverts the bead string to Bu,t, the head Hu, the certificate C,
and the block tree, to their status before operation I := left_update(C, e)
or I := right_update(C, e) was issued (in the same recursive call).

Note that a notion of certificate in listing problems has been introduced
in [225], but it cannot be directly applied to our case due to the different nature
of the problems and our use of more complex structures such as biconnected
components.
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Algorithm 23: list_pathss,t(πs, u, C)

1 if u = t then
2 output(πs) ;
3 return ;
4 end
5 e = (u, v)← choose(C,u) ;
6 if e is back edge then
7 I← right_update(C, e) ;
8 list_pathss,t(πs, u, C) ;
9 restore(C, I) ;

10 end
11 I← left_update(C, e) ;
12 list_pathss,t(πs · (u, v), v, C) ;
13 restore(C, I) ;

Using our certificate and its operations, we can now formalize the binary
partition and its recursive calls P(πs,u,Bu,t) described in Section 6.3.3 as Algo-
rithm 23, where Bu,t is replaced by its certificate C.

The base case (u = t) corresponds to lines 1–4 of Algorithm 23. During
recursion, the left branching corresponds to lines 5 and 11-13, while the right
branching to lines 5–10. Note that we perform only the left branching when
there is only one incident edge in u, which is a tree edge by definition of choose.
Also, lines 9 and 13 are needed to restore the parameters to their values when
returning from the recursive calls.

Lemma 9. Algorithm 23 correctly lists all the (s, t)-paths in Ps,t(G).

Proof. For a given vertex u the function choose(C,u) returns an edge e incident
to u. We maintain the invariant that πs is a path s  u, since at the point of
the recursive call in line 12: (i) is connected as we append edge (u, v) to πs
and; (ii) it is simple as vertex u is removed from the graph G in the call to
left_update(C, e) in line 11. In the case of recursive call in line 8 the invariant
is trivially maintained as πs does not change. The algorithm only outputs (s, t)-
paths since πs is a s  u path and u = t when the algorithm outputs, in
line 2.

The paths with prefix πs that do not use e are listed by the recursive call in
line 8. This is done by removing e from the graph (line 7) and thus no path can
include e. Paths that use e are listed in line 12 since in the recursive call e is
added to πs. Given that the tree edge incident to u is the last one to be returned
by choose(C,u), there is no path that does not use this edge, therefore it is not
necessary to call line 8 for this edge.
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A natural question is what is the time complexity: we must account for the
cost of maintaining C and for the cost of the recursive calls of Algorithm 23.
Since we cannot always maintain the certificate in O(1) time, the ideal situation
for attaining an optimal cost is taking O(µ) time if at least µ (s, t)-paths are listed
in the current call (and its nested calls). Unfortunately, we cannot estimate µ
efficiently and cannot design Algorithm 23 so that it takes O(µ) adaptively. We
circumvent this by using a different cost scheme in Section 6.3.5 that is based
on the recursion tree induced by Algorithm 23. Section 6.5 is devoted to the
efficient implementation of the above certificate operations according to the cost
scheme that we discuss next.

6.3.5 Recursion tree and cost amortization

We now show how to distribute the costs among the several recursive calls of
Algorithm 23 so that optimality is achieved. Consider a generic execution on
the bead string Bu,t. We trace this execution by using a binary recursion tree
R. The nodes of R are labelled by the arguments of Algorithm 23: specifically,
we denote a node in R by the triple x = 〈πs,u,C〉 iff it represents the call with
arguments πs, u, and C.1 The left branching is represented by the left child, and
the right branching (if any) by the right child of the current node.

Lemma 10. The binary recursion tree R for Bu,t has the following properties:

1. There is a one-to-one correspondence between the paths in Ps,t(Bu,t) and the
leaves in the recursion tree rooted at node 〈πs,u,C〉.

2. Consider any leaf and its corresponding (s, t)-path π: there are |π| left branches
in the corresponding root-to-leaf trace.

3. Consider the instruction e := choose(C,u) in Algorithm 23: unary (i.e. single-
child) nodes correspond to left branches (e is a tree edge) while binary nodes
correspond to left and right branches (e is a back edge).

4. The number of binary nodes is |Ps,t(Bu,t)|− 1.

Proof. We proceed in order as follows.

1. We only output a solution in a leaf and we only do recursive calls that lead
us to a solution. Moreover every node partitions the set of solutions in the
ones that use an edge and the ones that do not use it. This guarantees that
the leaves in the left subtree of the node corresponding to the recursive
call and the leaves in the right subtree do not intersect. This implies that
different leaves correspond to different paths from s to t, and that for each
path there is a corresponding leaf.

2. Each left branch corresponds to the inclusion of an edge in the path π.

1 For clarity, we use “nodes” when referring to R and “vertices” when referring to Bu,t.
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Figure 31: Spine of the recursion tree

3. Since we are in a biconnected component, there is always a left branch.
There can be no unary node as a right branch: indeed for any edge of Bu,t

there exists always a path from s to t passing through that edge. Since
the tree edge is always the last one to be chosen, unary nodes cannot
correspond to back edges and binary nodes are always back edges.

4. It follows from point 1 and from the fact that the recursion tree is a binary
tree. (In any binary tree, the number of binary nodes is equal to the number
of leaves minus 1.)

We define a spine of R to be a subset of R’s nodes linked as follows: the first
node is a node x that is either the left child of its parent or the root of R, and the
other nodes are those reachable from x by right branching in R. Let x = 〈πs,u,C〉
be the first node in a spine S. The nodes in S correspond to the edges that are
incident to vertex u in Bu,t: hence their number equals the degree d(u) of u in
Bu,t, and the deepest (last) node in S is always a tree edge in Bu,t while the
others are back edges. Fig. 31 shows the spine corresponding to Bu,t in Fig. 30.
Summing up, R can be seen as composed by spines, unary nodes, and leaves
where each spine has a unary node as deepest node. This gives a global picture
of R that we now exploit for the analysis.

We define the compact head, denoted by HX = (VX,EX), as the (multi)graph
obtained by compacting the maximal chains of degree-2 vertices, except u, t,
and the vertices that are the leaves of its DFS tree rooted at u.

The rationale behind the above definition is that the costs defined in terms
of HX amortize well, as the size of HX and the number of (s, t)-paths in the
subtree of R rooted at node x = 〈πs,u,C〉 are intimately related (see Lemma 12

in Section 6.4) while this is not necessarily true for Hu.
Recall that each leaf corresponds to a path π and each spine corresponds to

a compact head HX = (VX,EX). We now define the following abstract cost for
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spines, unary nodes, and leaves of R, for a sufficiently large constant c0 > 0, that
Algorithm 23 must fulfill:

T(r) =

{
c0 if r is unary
c0|π| if r is a leaf
c0(|VX|+ |EX|) if r is a spine

(6.1)

Lemma 11. The sum of the costs in the nodes of the recursion tree
∑
r∈R T(r) =

O(
∑
π∈Ps,t(Bu,t)

|π|).

Section 6.4 contains the proof of Lemma 11 and related properties. Setting
u := s, we obtain that the cost in Lemma 11 is optimal, by Lemma 8.

Theorem 19. Algorithm 23 lists all the (s,t)-paths in optimal O(m+
∑
π∈Ps,t(G) |π|)

time.

By Lemma 7, we obtain an optimal result for listing cycles.

Theorem 20. The cycles of an undirected graph can be optimally listed in
O(m+

∑
c∈C(G) |c|) time.

6.4 amortization strategy

We devote this section to prove Lemma 11. Let us split the sum in Eq. (6.1) in
three parts, and bound each part individually, as∑

r∈R
T(r) 6

∑
r:unary

T(r) +
∑
r: leaf

T(r) +
∑
r: spine

T(r). (6.2)

We have that
∑
r:unary T(r) = O(

∑
π∈Ps,t(G) |π|), since there are |Ps,t(G)| leaves,

and the root-to-leaf trace leading to the leaf for π contains at most |π| unary
nodes by Lemma 10, where each unary node has cost O(1) by Eq. (6.1).

Also,
∑
r: leaf T(r) = O(

∑
π∈Ps,t(G) |π|), since the leaf r for π has cost O(|π|) by

Eq. (6.1).
It remains to bound

∑
r spine T(r). By Eq. (6.1), we can rewrite this cost as∑

HX
c0(|VX|+ |EX|), where the sum ranges over the compacted heads HX asso-

ciated with the spines r. We use the following lemma to provide a lower bound
on the number of (s, t)-paths descending from r.

Lemma 12. Given a spine r, and its bead string Bu,t with head Hu, there are at least
|EX|− |VX|+ 1 (s, t)-paths in G that have prefix πs = s u and suffix u t internal
to Bu,t, where the compacted head is HX = (VX,EX).

Proof. HX is biconnected. In any biconnected graph B = (VB,EB) there are at
least |EB|− |VB|+ 1 xy-paths for any x,y ∈ VB. Find an ear decomposition [214]
of B and consider the process of forming B by adding ears one at the time,
starting from a single cycle including x and y. Initially |VB| = |EB| and there are
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2 xy-paths. Each new ear forms a path connecting two vertices that are part of a
xy-path, increasing the number of paths by at least 1. If the ear has k edges, its
addition increases V by k− 1, E by k, and the number of xy-paths by at least 1.
The result follows by induction.

The implication of Lemma 12 is that there are at least |EX|− |VX|+ 1 leaves
descending from the given spine r. Hence, we can charge to each of them a cost
of c0(|VX|+|EX|)

|EX|−|VX|+1
. Lemma 13 allows us to prove that the latter cost is O(1) when

Hu is different from a single edge or a cycle. (If Hu is a single edge or a cycle,
HX is a single or double edge, and the cost is trivially a constant.)

Lemma 13. For a compacted head HX = (VX,EX), its density is |EX|
|VX|
> 11
10 .

Proof. Consider the following partition VX = {r}∪ V2 ∪ V3 where: r is the root;
V2 is the set of vertices with degree 2 and; V3, the vertices with degree > 3. Since
HX is compacted DFS tree of a biconnected graph, we have that V2 is a subset of
the leaves and V3 contains the set of internal vertices (except r). There are no
vertices with degree 1 and d(r) > 2. Let x =

∑
v∈V3 d(v) and y =

∑
v∈V2 d(v).

We can write the density as a function of x and y, namely,

|EX|

|VX|
=

x+ y+ d(r)

2(|V3|+ |V2|+ 1)

Note that |V3| 6 x
3 as the vertices in V3 have at least degree 3, |V2| =

y
2 as

vertices in V2 have degree exactly 2. Since d(r) > 2, we derive the following
bound

|EX|

|VX|
>
x+ y+ 2
2
3x+ y+ 2

Consider any graph with |VX| > 3 and its DFS tree rooted at r. Note that: (i)
there are no tree edges between any two leaves, (ii) every vertex in V2 is a leaf
and (iii) no leaf is a child of r. Therefore, every tree edge incident in a vertex of
V2 is also incident in a vertex of V3. Since exactly half the incident edges to V2
are tree edges (the other half are back edges) we get that y 6 2x.

With |VX| > 3 there exists at least one internal vertex in the DFS tree and
therefore x > 3.

minimize
x+ y+ 2
2
3x+ y+ 2

subject to 0 6 y 6 2x,

x > 3.

Since for any x the function is minimized by the maximum y s.t. y 6 2x and
for any y by the minimum x, we get

|EX|

|VX|
>
9x+ 6

8x+ 6
>
11

10
.
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Specifically, let α = 11
10 and write α = 1+ 2/β for a constant β: we have that

|EX|+ |VX| = (|EX|− |VX|) + 2|VX| 6 (|EX|− |VX|) + β(|EX|− |VX|) =
α+1
α−1(|EX|−

|VX|). Thus, we can charge each leaf with a cost of c0(|VX|+|EX|)
|EX|−|VX|+1

6 c0
α+1
α−1 = O(1).

This motivates the definition of HX, since Lemma 13 does not necessarily hold
for the head Hu (due to the unary nodes in its DFS tree).

One last step to bound
∑
HX
c0(|VX|+ |EX|): as noted before, a root-to-leaf

trace for the string storing π has |π| left branches by Lemma 10, and as many
spines, each spine charging c0α+1α−1 = O(1) to the leaf at hand. This means that
each of the |Ps,t(G)| leaves is charged for a cost of O(|π|), thus bounding the
sum as

∑
r spine T(r) =

∑
HX
c0(|VX|+ |EX|) = O(

∑
π∈Ps,t(G) |π|). This completes

the proof of Lemma 11. As a corollary, we obtain the following result.

Lemma 14. The recursion tree R with cost as in Eq. (6.1) induces an O(|π|) amortized
cost for each (s, t)-path π.

6.5 certificate implementation and maintenance

The certificate C associated with a node 〈πs,u,C〉 in the recursion tree is a
compacted and augmented DFS tree of bead string Bu,t, rooted at vertex u. The
DFS tree changes over time along with Bu,t, and is maintained in such a way
that t is in the leftmost path of the tree. We compact the DFS tree by contracting
the vertices that have degree 2, except u, t, and the leaves (the latter surely
have incident back edges). Maintaining this compacted representation is not a
difficult data-structure problem. From now on we can assume w.l.o.g. that C is
an augmented DFS tree rooted at u where internal nodes of the DFS tree have
degree > 3, and each vertex v has associated the following information.

1. A doubly-linked list lb(v) of back edges linking v to its descendants w
sorted by postorder DFS numbering.

2. A doubly-linked list ab(v) of back edges linking v to its ancestors w sorted
by preorder DFS numbering.

3. An integer γ(v), such that if v is an ancestor of w then γ(v) < γ(w).

4. The smallest γ(w) over all w, such that (h,w) is a back edge and h is in
the subtree of v, denoted by lowpoint(v).

Given three vertices v,w, x ∈ C such that v is the parent of w and x is not
in the subtree2 of w, we can efficiently test if v is an articulation point, i.e.
lowpoint(w) 6 γ(v). (Note that we adopt a variant of lowpoint using γ(v) in place

2 The second condition is always satisfied when w is not in the leftmost path, since t is not in the
subtree of w.
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of the preorder numbering [226]: it has the same effect whereas using γ(v) is
preferable since it is easier to dynamically maintain.)

Lemma 15. The certificate associated with the root of the recursion can be computed
in O(m) time.

Proof. In order to set t to be in the leftmost path, we perform a DFS traversal
of graph G starting from s and stop when we reach vertex t. We then compute
the DFS tree, traversing the path s  t first. When visiting vertex v, we set
γ(v) to depth of v in the DFS. Before going up on the traversal, we compute
the lowpoints using the lowpoints of the children. Let z be the parent of v. If
lowpoint(v) 6 γ(z) and v is not in the leftmost path in the DFS, we cut the subtree
of v as it does not belong to Bs,t. When first exploring the neighbourhood of v,
if w was already visited, i.e. e = (u,w) is a back edge, and w is a descendant
of v; we add e to ab(w). This maintains the DFS preordering in the ancestor
back edge list. Now, after the first scan of N(v) is over and all the recursive calls
returned (all the children were explored), we re-scan the neighbourhood of v.
If e = (v,w) is a back edge and w is an ancestor of v, we add e to lb(w). This
maintains the DFS postorder in the descendant back edge list. This procedure
takes at most two DFS traversals in O(m) time. This DFS tree can be compacted
in the same time bound.

Lemma 16. Operation choose(C,u) can be implemented in O(1) time.

Proof. If the list lb(v) is empty, return the tree edge e = (u, v) linking u to its
only child v (there are no other children). Else, return the last edge in lb(v).

We analyse the cost of updating and restoring the certificate C. We can reuse
parts of C, namely, those corresponding to the vertices that are not in the
compacted head HX = (VX,EX) as defined in Section 6.3.5. We prove that, given
a unary node u and its tree edge e = (u, v), the subtree of v in C can be easily
made a certificate for the left branch of the recursion.

Lemma 17. On a unary node, left_update(C, e) takes O(1) time.

Proof. Take edge e = (u, v). Remove edge e and set v as the root of the certificate.
Since e is the only edge incident in v, the subtree v is still a DFS tree. Cut the list
of children of v keeping only the first child. (The other children are no longer in
the bead string and become part of I.) There is no need to update γ(v).

We now devote the rest of this section to show how to efficiently maintain
C on a spine. Consider removing a back edge e from u: the compacted head
HX = (VX,EX) of the bead string can be divided into smaller biconnected
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components. Many of those can be excluded from the certificate (i.e. they are no
longer in the new bead string, and so they are bookkept in I) and additionally
we have to update the lowpoints that change. We prove that this operation can
be performed in O(|VX|) total time on a spine of the recursion tree.

Lemma 18. The total cost of all the operations right_update(C, e) in a spine is
O(|VX|) time.

Proof. In the right branches along a spine, we remove all back edges in lb(u).
This is done by starting from the last edge in lb(u), i.e. proceeding in reverse
DFS postorder. For back edge bi = (zi,u), we traverse the vertices in the path
from zi towards the root u, as these are the only lowpoints that can change.
While moving upwards on the tree, on each vertex w, we update lowpoint(w).
This is done by taking the endpoint y of the first edge in ab(w) (the back edge
that goes the topmost in the tree) and choosing the minimum between γ(y) and
the lowpoint of each child3 of w. We stop when the updated lowpoint(w) = γ(u)
since it implies that the lowpoint of the vertex can not be further reduced. Note
that we stop before u, except when removing the last back edge in lb(u).

To prune the branches of the DFS tree that are no longer in Bu,t, consider
again each vertex w in the path from zi towards the root u and its parent y. We
check if the updated lowpoint(w) 6 γ(y) and w is not in the leftmost path of the
DFS. If both conditions are satisfied, we have that w /∈ Bu,t, and therefore we
cut the subtree of w and keep it in I to restore later. We use the same halting
criterion as in the previous paragraph.

The cost of removing all back edges in the spine is O(|VX|): there are O(|VX|)
tree edges and, in the paths from zi to u, we do not traverse the same tree
edge twice since the process described stops at the first common ancestor of
endpoints of back edges bi. Additionally, we take O(1) time to cut a subtree of
an articulation point in the DFS tree.

To compute left_update(C, e) in the binary nodes of a spine, we use the fact
that in every left branching from that spine, the graph is the same (in a spine
we only remove edges incident to u and on a left branch from the spine we
remove the vertex u) and therefore its block tree is also the same. However,
the certificates on these nodes are not the same, as they are rooted at different
vertices. Using the reverse DFS postorder of the edges, we are able to traverse
each edge in HX only a constant number of times in the spine.

Lemma 19. The total cost of all operations left_update(C, e) in a spine is amortized
O(|EX|).

3 If lowpoint(w) does not change we cannot pay to explore its children. For each vertex we dynami-
cally maintain a list l(w) of its children that have lowpoint equal to γ(u). Then, we can test in
constant time if l(w) 6= ∅ and y is not the root u. If both conditions are true lowpoint(w) changes,
otherwise it remains equal to γ(u) and we stop.
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Proof. Let t ′ be the last vertex in the path u  t s.t. t ′ ∈ VX. Since t ′ is an
articulation point, the subtree of the DFS tree rooted in t ′ is maintained in
the case of removal of vertex u. Therefore the only modifications of the DFS
tree occur in the compacted head HX of Bu,t. Let us compute the certificate Ci:
this is the certificate of the left branch of the ith node of the spine where we
augment the path with the back edge bi = (zi,u) of lb(u) in the order defined
by choose(C,u).

For the case of C1, we remove u and rebuild the certificate starting form z1
(the last edge in lb(u)) using the algorithm from Lemma 15 restricted to HX and
using t ′ as target and γ(t ′) as a baseline to γ (instead of the depth). This takes
O(|EX|) time.

For the general case of Ci with i > 1 we also rebuild (part) of the certificate
starting from zi using the procedure from Lemma 15 but we use information
gathered in Ci−1 to avoid exploring useless branches of the DFS tree. The key
point is that, when we reach the first bead in common to both Bzi,t and Bzi−1,t,
we only explore edges internal to this bead. If an edge e leaving the bead leads
to t, we can reuse a subtree of Ci−1. If e does not lead to t, then it has already
been explored (and cut) in Ci−1 and there is no need to explore it again since
it will be discarded. Given the order we take bi, each bead is not added more
than once, and the total cost over the spine is O(|EX|).

Nevertheless, the internal edges E ′X of the first bead in common between Bzi,t
and Bzi−1,t can be explored several times during this procedure.4 We can charge
the cost O(|E ′X|) of exploring those edges to another node in the recursion tree,
since this common bead is the head of at least one certificate in the recursion
subtree of the left child of the ith node of the spine. Specifically, we charge the
first node in the leftmost path of the ith node of the spine that has exactly the
edges E ′X as head of its bead string: (i) if |E ′X| 6 1 it corresponds to a unary
node or a leaf in the recursion tree and therefore we can charge it with O(1)
cost; (ii) otherwise it corresponds to a first node of a spine and therefore we can
also charge it with O(|E ′X|). We use this charging scheme when i 6= 1 and the
cost is always charged in the leftmost recursion path of ith node of the spine.
Consequently, we never charge a node in the recursion tree more than once.

Lemma 20. On each node of the recursion tree, restore(C, I) takes time proportional
to the size of the modifications kept in I.

Proof. We use standard data structures (i.e. linked lists) for the representation of
certificate C. Persistent versions of these data structures exist that maintain a
stack of modifications applied to them and that can restore its contents to their

4 Consider the case where zi, . . . , zj are all in the same bead after the removal of u. The bead strings
are the same, but the roots zi, . . . , zj are different, so we have to compute the corresponding DFS
of the first component |j− i| times.
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previous states. Given the modifications in I, these data structures take O(|I|)
time to restore the previous version of C.

Let us consider the case of performing left_update(C, e). We cut at most
O(|VX|) edges from C. Note that, although we conceptually remove whole
branches of the DFS tree, we only remove edges that attach those branches to
the DFS tree. The other vertices and edges are left in the certificate but, as they
no longer remain attached to Bu,t, they will never be reached or explored. In
the case of right_update(C, e), we have a similar situation, with at most O(|EX|)
edges being modified along the spine of the recursion tree.

From Lemmas 16 and 18–20, it follows that on a spine of the recursion tree
we have the costs: choose(u) on each node which is bounded by O(|VX|) time as
there are at most |VX| back edges in u; right_update(C, e), restore(C, I) take
O(|VX|) time; left_update(C, e) and restore(C, I) are charged O(|VX|+ |EX|)

time. We thus have the following result, completing the proof of Theorem 19.

Lemma 21. Algorithm 23 can be implemented with a cost fulfilling Eq. (6.1), thus it
takes total O(m+

∑
r∈R T(r)) = O(m+

∑
π∈Ps,t(Bu,t)

|π|) time.
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Figure 32: An undirected graph, whose biconnected components are B1, that is the
graph induced by {s,a,b, c,d, e, f,g,h, i}, and B2, that is the graph induced
by {h, l,m, t}.

6.6 enumerating paths: an example

Let us consider the graph in Figure 32. In this case Lemma 8 is witnessed by
vertex h: indeed the bead string Bs,t is B1,B2, where B1 is the graph induced
by {s,a,b, c,d, e, f,g,h, i} and B2 is the graph induced by {h, l,m, t}, and h is an
articulation point; all the paths between s and t pass through h.
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s
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Post-order Pre-order
Vertex γ Number Number lb ab lowpoint
s 0 1 13 (s,a),(s,g) ∅ γ(s) = 0

a 5 11 7 ∅ (a,s) γ(s) = 0

b 4 5 8 (b,c) ∅ γ(s) = 0

c 2 12 6 ∅ (c,b) γ(b) = 4

d 3 4 10 (d,h),(d,i) ∅ γ(s) = 0

e 2 3 11 (e,g) ∅ γ(s) = 0

f 1 2 12 (f,g) ∅ γ(s) = 0

g 4 13 9 ∅ (g,s),(g,f),(g,e) γ(s) = 0

h 6 7 4 (h,m) (h,d) γ(d) = 3

i 5 8 5 ∅ (i,d) γ(d) = 3

l 7 8 3 (l,t) ∅ γ(h) = 6

m 8 9 2 ∅ (m,h) γ(h) = 6

t 9 10 1 ∅ (t,l) γ(l) = 7

Figure 33: DFS tree starting from s, of the graph in Figure 32, with t in the leftmost
path. Each biconnected component is enclosed in a circle. For any vertex the
properties included by the certificate are reported in the table.

By considering as VX and EX respectively the vertices and edges in B1, Lemma
12 with u = s states that there are at least |EX|− |VX|+ 1 = 16− 10+ 1 = 7 paths
between s and t. Indeed observe that in the DFS in Figure 33, B1 is already
compacted since the unique vertex with degree two is c, that is a leaf. Moreover,
observe that |EX|/|VX| = 16/10 > 11/10, as stated by Lemma 13.

Lemma 15 builds the certificate shown in Figure 33. Observe that for any
vertex v, whose children are z1, . . . , zk,

lowpoint(v) = min{lowpoint(z1), . . . , lowpoint(zk), min
(v,w)∈ab(v)

{γ(w)}}.

Moreover the elements in any set lb are put in the ascending order defined by
the post-order DFS numbering of their extremes. The elements in any set ab
are put in the ascending order defined by the pre-order DFS numbering of their
extremes.

The first bipartition is applied by considering the edge (s,g), that is the last
edge in the list lb(s). The right branch operation simply deletes this edge, and
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Bs,t, (see Figure 33)

Bs,t−(s,g)

Bs,t−(s,g)− (s,a)

Bg,t, (see Figure 35a)

Ba,t, (see Figure 35b)

Bf,t, (see Figure 35c)

Figure 34: Spine of the recursion tree starting from s

modifies the certificate by applying the method described in Section 6.7.1. In
general by deleting an edge, some vertices could not reach t, but this is not the
case. Moreover this edge has to be removed also from the ab lists and this can
be easily done when removing the edge from lb; finally the lowpoints have to be
updated. The unique vertices, whose lowpoints change, are on the path of tree
edges from g to the root s. Lemma 23, in the following section, states that the
sum of these costs along the entire spine of s is O(|VX|), where VX is the set of
vertices in the bead of s and g.

The left branch operation removes the vertex s and performs a DFS from g,
as shown by Figure 35a. Observe that, since the entry point of the component
h, l,m, and t remains h, it is sufficient to perform the visit just inside the
biconnected component of s and g. In particular, since this is the first back edge
of a spine, i.e. we are computing C1 referring to Lemma 19, we have to rebuild
the certificate from scratch by applying Lemma 15 (see Lemma 26). Observe that
the component a,b, c is cut since it does not lead to t and b is compacted.

The second bipartition along the same spine considers the paths from s to t
in the graph induced by Bs,t − (s,g) and the edge (s,a), that is the remaining
edge in lb(s). Once again, the right update operation simply deletes the edge
(s,a), removes (s,a) from both lb and ab, updates the lowpoints along the path
of tree edges from s to a, and checks whether branches have to be compressed
or cut. In this case, by removing the edge (s,a), the vertices a,b, c do not belong
anymore to the same biconnected component of s and each path from s to t in
Bs,t − (s,g) − (s,a), using a or c, should pass more than once through b. This
implies that a and c have to be cut (see also Lemma 24). By considering the
vertices w along the path of tree edges from a to s, that are a,b,d, e, f, s, a vertex
y along this path is an articulation point if the updated child w is such that
lowpoint(w) 6 γ(y) (and there exists at least another vertex not descendant of y).
Once again Lemma 24 states that the sum of these costs along the entire spine
of s is O(|VX|), where VX is the set of vertices in the bead of s and a. Moreover,
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(c) Bf,t

Figure 35: Certificates in the spine of s

the vertex b has to be compressed, since by cutting its right subtree, its degree is
just two. This operation takes constant time.

By following Lemma 19, the left update operation builds the certificate C2
shown in Figure 35b, by reusing information from C1. Indeed observe that the
certificates C1, in Figure 35a (plus the cut component a,b, c), and C2, in Figure
35b, are DFSs defined on the same graph but with different roots. The first
bead in common between these two certificates is d,b, i,h. In order to build the
certificate in Figure 35b, the information about the components after d,b, i,h
in the path of beads from s to t, can be inherited by C1. However, as stated
by Lemma 19, the visit of the bead intersection has to be performed, since the
entry points, i.e. respectively d and b, are different: this implies that the visit
of the component d,b, i,h has to be performed more than once along the spine.
Lemma 19 (and 27) says that these extra costs can be amortized in the cost of
the spines of d and b, since, when performing the recursion in d and b, the cost
along their spine is at least the size of this component.

The third and last bipartition of the spine considers the tree edge (s, f), by
looking for paths from s to t in Bs,t − (s,g) − (s,a). Observe that, by deleting
(s,g) and (s,a), all the paths from s to t have to pass through f. This implies
that the set of paths in Bs,t − (s,g) − (s,a) not using the edge (s, f) is empty
and the right update operation does not have to be performed. The left update
operation shown in Lemma 17 takes constant time, since the certificate shown
in Figure 35c is simply obtained by Bs,t − (s,g) − (s,a) by removing the vertex
s and the edge (s, f). If f has two or more children, we should consider just the
first child, since it is the unique one leading to t, and cut all the other children;
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but since f has just one child this operation is not performed. The lb, ab, γ and
lowpoint do not need to be updated.

6.7 extended analysis of operations

In this section, we present all details and illustrate with figures the operations
right_update(C, e) and left_update(C, e) that are performed along a spine of
the recursion tree. In order to better detail the procedures in Lemma 18 and
Lemma 19, we divide them in smaller parts. We use bead string Bu,t from Fig. 30

and the respective spine from Fig. 31 as the base for the examples. This spine
contains four binary nodes corresponding to the back edges in lb(u) and an
unary node corresponding to the tree edge (u, v). Note that edges are taken in
order of the endpoints z1, z2, z3, z4, v as defined in operation choose(C,u).

By Lemma 8, the impact of operations right_update(C, e) and
left_update(C, e) in the certificate is restricted to the biconnected component
of u. Thus we mainly focus on maintaining the compacted head HX = (VX,EX)
of the bead string Bu,t.

6.7.1 Operation right_update(C,e)

s
u
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t

πs
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z3

z2

(a) Step 1
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(b) Step 2
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Figure 36: Example application of right_update(C, e) on a spine of the recursion tree

Lemma 22. (Lemma 18 restated) In a spine of the recursion tree, operations
right_update(C, e) can be implemented in O(|VX|) total time.

In the right branches along a spine, we remove all back edges in lb(u). This is
done by starting from the last edge in lb(u), i.e. proceeding in reverse DFS pos-
torder. In the example from Fig. 30, we remove the back edges (z1,u) . . . (z4,u).
To update the certificate corresponding to Bu,t, we have to (i) update the low-
points in each vertex of HX; (ii) prune vertices that cease to be in Bu,t after
removing a back edge. For a vertex w in the tree, there is no need to update γ(w).
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Consider the update of lowpoints in the DFS tree. For a back edge bi = (zi,u),
we traverse the vertices in the path from zi towards the root u. By definition of
lowpoint, these are the only lowpoints that can change. Suppose that we remove
back edge (z4,u) in the example from Fig. 30, only the lowpoints of the vertices
in the path from z4 towards the root u change. Furthermore, consider a vertex
w in the tree that is an ancestor of at least two endpoints zi, zj of back edges bi,
bj. The lowpoint of w does not change when we remove bi. These observations
lead us to the following lemma.

Lemma 23. In a spine of the recursion tree, the update of lowpoints in the certificate
by operation right_update(C, e) can be done in O(|VX|) total time.

Proof. Take each back edge bi = (zi,u) in the order defined by choose(C,u).
Remove bi from lb(u) and ab(zi). Starting from zi, consider each vertex w
in the path from zi towards the root u. On vertex w, we update lowpoint(w)
using the standard procedure: take the endpoint y of the first edge in ab(w)
(the back edge that goes the nearest to the root of the tree) and choosing the
minimum between γ(y) and the lowpoint of each child of w. When the updated
lowpoint(w) = γ(u), we stop examining the path from zi to u since it implies
that the lowpoint of the vertex can not be further reduced (i.e. w is both an
ancestor to both zi and zi+1).

If lowpoint(w) does not change we cannot pay to explore its children. In order
to get around this, for each vertex we dynamically maintain, throughout the
spine, a list l(w) of its children that have lowpoint equal to γ(u). Then, we can
test in constant time if l(w) 6= ∅ and y (the endpoint of the first edge in ab(w))
is not the root u. If both conditions are satisfied lowpoint(w) changes, otherwise
it remains equal to γ(u) and we stop. The total time to create the lists is O(|VX|)
and the time to update is bounded by the number of tree edges traversed, shown
to be O(|VX|) in the next paragraph.

The cost of updating the lowpoints when removing all back edges bi isO(|VX|):
there are O(|VX|) tree edges and we do not traverse the same tree edge twice
since the process described stops at the first common ancestor of endpoints of
back edges bi and bi+1. By contradiction: if a tree edge (x,y) would be traversed
twice when removing back edges bi and bi+1, it would imply that both x and y
are ancestors of zi and zi+1 (as edge (x,y) is both in the path zi to u and the
path zi+1 to u) but we stop at the first ancestor of zi and zi+1.

Let us now consider the removal of vertices that are no longer in Bu,t as
consequence of operation right_update(C, e) in a spine of the recursion tree. By
removing a back edge bi = (zi,u), it is possible that a vertex w previously in
HX is no longer in the bead string Bu,t (e.g. w is no longer biconnected to u and
thus there is no simple path u w t).
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Lemma 24. In a spine of the recursion tree, the branches of the DFS that are no longer
in Bu,t due to operation right_update(C, e) can be removed from the certificate in
O(|VX|) total time.

Proof. To prune the branches of the DFS tree that are no longer in HX, consider
again each vertex w in the path from zi towards the root u and the vertex y,
parent of w. It is easy to check if y is an articulation point by verifying if the
updated lowpoint(w) 6 γ(y) and there exists x not in the subtree of w. If w is
not in the leftmost path, then t is not in the subtree of w. If that is the case,
we have that w /∈ Bu,t, and therefore we cut the subtree of w and bookkeep it
in I to restore later. Like in the update the lowpoints, we stop examining the
path zi towards u in a vertex w when lowpoint(w) = γ(u) (the lowpoints and
biconnected components in the path from w to u do not change). When cutting
the subtree of w, note that there are no back edges connecting it to Bu,t (w is
an articulation point) and therefore there are no updates to the lists lb and ab
of the vertices in Bu,t. Like in the case of updating the lowpoints, we do not
traverse the same tree edge twice (we use the same halting criterion).

With Lemma 23 and Lemma 24 we finalize the proof of Lemma 18. Fig. 36

shows the changes the bead string Bu,t from Fig. 30 goes through in the corre-
sponding spine of the recursion tree.

6.7.2 Operation left_update(C,e)

In the binary nodes of a spine, we use the fact that in every left branching
from that spine the graph is the same (in a spine we only remove edges incident
to u and on a left branch from the spine we remove the vertex u) and therefore
its block tree is also the same. In Fig. 37, we show the resulting block tree of the
graph from Fig. 30 after having removed vertex u. However, the certificates on
these left branches are not the same, as they are rooted at different vertices. In
the example we must compute the certificates C1 . . . C4 corresponding to bead
strings Bz1,t . . . Bz4,t. We do not account for the cost of the left branch on the last
node of spine (corresponding to Bv,t) as the node is unary and we have shown
in Lemma 17 how to maintain the certificate in O(1) time.

By using the reverse DFS postorder of the back edges, we are able to traverse
each edge in HX only an amortized constant number of times in the spine.

Lemma 25. (Lemma 19 restated) The calls to operation left_update(C, e) in a
spine of the recursion tree can be charged with a time cost of O(|EX|) to that spine.

To achieve this time cost, for each back edge bi = (zi,u), we compute the
certificate corresponding to Bzi,t based on the certificate of Bzi−1,t. Consider the
compacted head HX = (VX,EX) of the bead string Bu,t. We use O(|EX|) time to
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compute the first certificate C1 corresponding to bead string Bz1,t. Fig. 38 shows
bead string Bz1,t from the example of Fig. 30.

Lemma 26. The certificate C1, corresponding to bead string Bz1,t, can be computed in
O(|EX|) time.

Proof. Let t ′ be the last vertex in the path u  t s.t. t ′ ∈ VX. Since t ′ is an
articulation point, the subtree of the DFS tree rooted in t ′ is maintained in the
case of removal vertex u. Therefore the only modifications of the DFS tree occur
in head HX of Bu,t.

To compute C1, we remove u and rebuild the certificate starting form z1
using the algorithm from Lemma 15 restricted to HX and using t ′ as target and
γ(t ′) as a baseline to γ (instead of the depth). In particular we do the following.
To set t ′ to be in the leftmost path, we perform a DFS traversal of graph HX
starting from z1 and stop when we reach vertex t ′. Then compute the DFS tree,
traversing the path z1  t ′ first.

Update of γ. For each tree edge (v,w) in the t ′  z1 path, we set γ(v) =

γ(w)− 1, using γ(t ′) as a baseline. During the rest of the traversal, when visiting
vertex v, let w be the parent of v in the DFS tree. We set γ(v) = γ(w) + 1. This
maintains the property that γ(v) > γ(w) for any w ancestor of v.

Lowpoints and pruning the tree. Bottom-up in the DFS-tree, compute the
lowpoints using the lowpoints of the children. For z the parent of v, if
lowpoint(v) 6 γ(z) and v is not in the leftmost path in the DFS, cut the subtree
of v as it does not belong to Bz1,t.

Computing lb and ab. In the traversal, when finding a back edge e = (v,w), if
w is a descendant of v we append e to ab(w). This maintains the DFS preorder
in the ancestor back edge list. After the first scan of N(v) is over and all the
recursive calls returned, re-scan the neighbourhood of v. If e = (v,w) is a back
edge and w is an ancestor of v, we add e to lb(w). This maintains the DFS
postorder in the descendant back edge list. This procedure takes O(|EX|) time.

To compute each certificate Ci, corresponding to bead string Bzi,t, we are
able to avoid visiting most of the edges that belong Bzi−1,t. Since we take zi in
reverse DFS postorder, on the spine of the recursion we visit O(|EX|) edges plus
a term that can be amortized.

Lemma 27. For each back edge bi = (zi,u) with i > 1, let EX ′i be the edges in the first
bead in common between Bzi,t and Bzi−1,t. The total cost of computing all certificates
Bzi,t in a spine of the recursion tree is: O(|EX|+

∑
i>1 |EX

′
i|).

Proof. Let us compute the certificate Ci: the certificate of the left branch of the
ith node of the spine where we augment the path with back edge bi = (zi,u) of
lb(u).
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Figure 37: Block tree after removing vertex u

For the general case of Ci with i > 1 we also rebuild (part) of the certificate
starting from zi using the procedure from Lemma 15 but we use information
gathered in Ci−1 to avoid exploring useless branches of the DFS tree. The key
point is that, when we reach the first bead in common to both Bzi,t and Bzi−1,t,
we only explore edges internal to this bead. If an edge e that leaves the bead
leads to t, we can reuse a subtree of Ci−1. If e does not lead to t, then it has
already been explored (and cut) in Ci−1 and there is no need to explore it again
since it is going to be discarded.

In detail, we start computing a DFS from zi in Bu,t until we reach a vertex
t ′ ∈ Bzi−1,t. Note that the bead of t ′ has one entry point and one exit point in
Ci−1. After reaching t ′ we proceed with the traversal using only edges already
in Ci−1. When arriving at a vertex w that is not in the same bead of t ′, we stop
the traversal. If w is in a bead towards t, we reuse the subtree of w and use γ(w)
as a baseline of the numbering γ. Otherwise w is in a bead towards zi−1 and we
cut this branch of the certificate. When all edges in the bead of t ′ are traversed,
we proceed with visit in the standard way.

Given the order we take bi, each bead is not added more than once to a
certificate Ci, therefore the total cost over the spine is O(|EX|). Nevertheless, the
internal edges EX ′i of the first bead in common between Bzi,t and Bzi−1,t are
explored for each back edge bi.

Although the edges in EX ′i are in a common bead between Bzi,t and Bzi−1,t,
these edges must be visited. The entry point in the common bead can be different
for zi and zi−1, the DFS tree of that bead can also be different. For an example,
consider the case where zi, . . . , zj are all in the same bead after the removal
of u. The bead strings Bzi,t . . . Bzj,t are the same, but the roots zi, . . . , zj of the
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Figure 38: Certificates of the left branches of a spine

certificate are different, so we have to compute the corresponding DFS of the first
bead |j− i| times. Note that this is not the case for the other beads in common:
the entry point is always the same.

Lemma 28. The cost O(|EX| +
∑
i>1 |EX

′
i|) on a spine of the recursion tree can be

amortized to O(|EX|).

Proof. We can charge the cost O(|EX ′i|) of exploring the edges in the first bead in
common between Bzi,t and Bzi−1,t to another node in the recursion tree. Since
this common bead is the head of at least one certificate in the recursion subtree
of the left child of the ith node of the spine. Specifically, we charge the first and
only node in the leftmost path of the ith child of the spine that has exactly the
edges EX ′i as head of its bead string: (i) if |EX ′i| 6 1 it corresponds to a unary
node or a leaf in the recursion tree and therefore we can charge it with O(1)
cost; (ii) otherwise it corresponds to a first node of a spine and therefore we can
also charge it with O(|EX ′i|). We use this charging scheme when i 6= 1 and the
cost is always charged in the leftmost recursion path of ith node of the spine,
consequently we never charge a node in the recursion tree more than once.

Lemmas 27 and 28 finalize the proof of Lemma 19. Fig. 38 shows the certificates
of bead strings Bzi,t on the left branches of the spine from Figure 31.
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6.8 conclusion and open problems

We showed in this chapter the first optimal solution to list all the cycles of an
undirected graph and all the paths from a given source to a given target. This
result improves the Johnson’s algorithm, that was still the theoretically most
efficient in the case of undirected graphs. The main question arising from our
work is whether it is possible to obtain an optimal algorithm to list all the paths
and cycles in a directed graph.





7
E N U M E R AT I N G B U B B L E S : L I S T I N G PA I R S O F V E RT E X
D I S J O I N T PAT H S

Polymorphisms in DNA- or RNA-seq data lead to recognisable patterns in
a de Bruijn graph representation of the reads obtained by sequencing. Such
patterns have been called mouths, or bubbles in the literature. They corre-
spond to two vertex-disjoint directed paths between a source s and a target
t. Due to the high number of such bubbles that may be present in real data,
their enumeration is a major issue concerning the efficiency of dedicated
algorithms. We propose the first linear delay algorithm to enumerate all
bubbles with a given source, by properly transforming the graph in input
and enumerating special cycles.

7.1 introduction

In recent papers [20, 227], algorithms for identifying two types of polymor-
phism, respectively SNPs (Single Nucleotide Polymorphisms) in DNA, and
alternative splicing in RNA-seq data were introduced. Both correspond to recog-
nisable patterns in a de Bruijn graph (DBG) built from the reads provided by a
sequencing project. In both cases, the pattern corresponds to two vertex-disjoint
paths between a pair of source and target vertices s and t. Properties on the
lengths or sequence similarity of the paths then enable to differentiate between
different types of polymorphism.

Such patterns have been studied before in the context of genome assembly
where they have been called bulges [228] or bubbles [229, 230, 231]. However, the
purpose in these works was not to enumerate all these patterns, but “only” to
remove them from the graph, in order to provide longer contigs for the genome
assembly. More recently, ad-hoc enumeration methods have been proposed but
are restricted to non-branching bubbles [232], i.e., each vertex from the bubble
has in-degree and out-degree 1, except for s and t. Furthermore, in all these
applications [229, 230, 232, 228, 231] since the patterns correspond to SNPs or
sequencing errors, the authors only considered paths of length smaller than a
constant. On the other hand, bubbles of arbitrary length have been considered in
the context of splicing graphs [233]. However, in this context, a notable difference
is that the graph is a DAG. Additionally, vertices are coloured and only unicolour
paths are then considered for forming bubbles. Finally, the concept of bubble
also applies to the area of phylogenetic networks [234], where it corresponds to
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the notion of a recombination cycle. Again for this application, the graph is a
DAG.

In this chapter, we adopt the term bubble, which is being most used in the
community, and this will denote two vertex-disjoint paths between a pair of
source and target vertices with no condition on the path length or the degrees of
the internal vertices. We then consider the more general problem of enumerating
all bubbles in a arbitrary directed graph. That is, our solution is not restricted to
acyclic or de Bruijn graphs. This problem is quite general but it was still an open
question whether a polynomial-delay algorithm could be proposed for solving
it. The algorithm presented in [20] was an adaptation of Tiernan’s algorithm for
cycle enumeration [21] which does not have a polynomial delay, in the worst
case the time elapsed between the output of two solutions is proportional to the
number of paths in the graph, i.e. exponential in the size of the graph. It was not
clear at the time if more efficient cycle enumeration methods in directed graphs
such as Tarjan’s [60] or Johnson’s [18] could be adapted to efficiently enumerate
bubbles in directed graphs.

contribution. The aim of this chapter is to show a non trivial adaptation
of Johnson’s cycle (what he called elementary circuit) enumeration algorithm
to identify all bubbles in a directed graph in the same theoretical complexity.
Notably, the method we propose enumerates all bubbles with a given source with
O(|V |+ |E|) delay. The algorithm requires an initial transformation, described in
Section 7.3, of the graph for each source s that takes O(|V |+ |E|) time and space.
Our work appeared in [22].

structure of the chapter . The chapter is organised as follows. We start
by recalling in Section 7.2 what is a de Bruijn graph representation of a set
of reads, and how polymorphisms in DNA- and RNA-seq data correspond to
bubbles in this graph. We then explain in Section 7.3 how to transform the
original graph into a new graph where bubbles will correspond to cycles with
some properties. We present in Section 7.4 the algorithm for enumerating all
cycles corresponding to bubbles in the initial graph and we provide an example
in Section 7.5. We prove in Section 7.6 that this algorithm is correct and has
linear delay; in Section 7.7 we explain how to avoid duplicate bubbles with no
additional cost. Finally in Section 7.8 we conclude with some open problems.

7.2 preliminaries

Recall that a de Bruijn graph (DBG) is a directed graph G = (V ,E) whose set
of vertices V are labelled by k-mers, i.e. words of length k. An arc in E links
a vertex u to a vertex v if the suffix of length k− 1 of u is a prefix of v. By an
(s, t)-bubble, we mean two vertex-disjoint (s, t)-paths that only shares s and t.
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CATCT

ATCTA TCTAC CTACG GCGTA ACGCA

CGCAG

ATCTC TCTCC CTCCG TCCGC CCGCA

Figure 39: Bubble due to a substitution (gray letter).

In the case of next generation sequencing (NGS) data, the k-mers correspond
to all words of length k present in the reads (strings) of the input dataset, and
only those. In relation to the classical de Bruijn graph for all possible words of
size k, the DBG for NGS data may then not be complete. Vertices may also be
labelled by the number of times each k-mer is present in the reads. In general
a vertex will be labelled by both a k-mer and its reverse complement, and the
DBG used in practice will thus be a bi-directed multigraph. Figure 39 gives an
example of a portion of a DBG that corresponds to a bubble generated by a SNP
or a sequencing error.

In this chapter, we ignore all details related to the treatment of NGS data
using De Bruijn graphs that are not essential for the algorithm described, and
consider instead the more general case of finding all (s, t)-bubbles in an arbitrary
directed graph.

7.3 turning bubbles into cycles

Let G = (V ,E) be a directed graph, and let s ∈ V . We want to find all (s, t)-
bubbles for all possible target vertices t. We transform G into a new graph
G ′s = (V ′s,E ′s) where |V ′s| = 2|V | and |E ′s| = O(|V |+ |E|). Namely,

V ′s = {v, v | v ∈ V}

E ′s = {(u, v), (v,u) | (u, v) ∈ E and v 6= s}∪ {(v, v) | v ∈ V and v 6= s}∪ {(s, s)}

Let us denote by V the set of vertices of G ′s that were not already in G, that
is V = V ′s \ V . The two vertices x ∈ V and x ∈ V are said to be twin vertices.
Observe that the graph G ′s is thus built by adding to G a reversed copy of itself,
where the copy of each vertex is referred to as its twin. The arcs incoming to s
(and outgoing from s) are not included so that the only cycles in G ′s that contain
s also contain s. New arcs are also created between each pair of twins: the new
arcs are the ones leading from a vertex u to its twin ū for all u except for s where
the arc goes from s to s. An example of a transformation is given in Figure 40.

We define a cycle of G ′s as being bipolar if it contains vertices of both V and
V . As the only arc from V to V is (s, s), then every bipolar cycle C contains also
only one arc from V to V . This arc, which is the arc (t, t) for some t ∈ V , is
called the swap arc of C. Moreover, since (s̄, s) is the only incoming arc of s, all
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Figure 40: Graph G and its transformation G ′s. We have that 〈s, e, e,b,a, s, s〉 is a bubble-
cycle with swap arc (e, e) that has a correspondence to the (s, e)-bubble
composed by the two vertex-disjoint paths 〈s, e〉 and 〈s,a,b, e〉.

the cycles containing s are bipolar. We say that C is twin-free if it contains no
pair of twins except for (s, s) and (t, t).

Definition 3 (Bubble-cycle). A bubble-cycle in G ′s is a twin-free cycle of size greater
than four1.

Proposition 2. Given a vertex s in G, there is a one-to-two correspondence between
the set of (s, t)-bubbles in G for all t ∈ V , and the set of bubble-cycles of G ′s.

Proof. Let us consider an (s, t)-bubble in G formed by two vertex-disjoint (s, t)-
paths P and Q. Consider the cycle of G ′s obtained by concatenating P (resp. Q),
the arc (t, t), the inverted copy of Q (resp. P), and the arc (s, s). Both cycles are
bipolar, twin-free, and have (t, t) as swap arc. Therefore both are bubble-cycles.

Conversely, consider any bubble-cycle C and let (t, t) be its swap arc. C is
composed by a first subpath P from s to t that traverses vertices of V and a
second subpath Q from t to s composed of vertices of V only. By definition of
G ′s, the arcs of the subpath P form a path from s to t in the original graph G;
given that the vertices in the subpath Q from t to s are in V and use arcs that
are those of E inverted, then Q corresponds to another path from s to t of the
original graph G. As no internal vertex of Q is a twin of a vertex in P, these two
paths from s to t are vertex-disjoint, and hence they form an (s, t)-bubble.

Notice that there is a cycle s, v, v, s for each v in the out-neighbourhood of s.
Such cycles do not correspond to any bubble in G, and the condition on the size
of C allows us to rule them out.

1 The only twin-free cycles in of size four in G ′s are generated by the outgoing arcs of s. There are
O(|V |) of such cycles.
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7.4 the algorithm

In the previous chapter we have seen several techniques to enumerate cycles,
and in particular the Johnson’s Algorithm [18], that is a polynomial delay
algorithm for the cycle enumeration problem that works also in the case of
directed graphs. We propose to adapt the principle of this latter algorithm
because, since the graphs in which we are interested in are directed, we cannot
apply the algorithm presented in Chapter 6 .

In particular we will use the idea of the pruned backtracking, to enumerate
bubble-cycles in G ′s, modified to take into account the twin vertices. Proposition 2

then ensures that running our algorithm on G ′s for every s ∈ V is equivalent
to the enumeration of (twice) all the bubbles of G. To do so, we explore G ′s by
recursively traversing it while maintaining the following three variables. We
denote by N+(v) the set of out-neighbours and N−(v) as the set of in-neighbours
of v.

1. A variable stack which contains the vertices of a path (with no repeated
vertices) from s to the current vertex. Each time it is possible to reach s from
the current vertex by satisfying all the conditions to have a bubble-cycle,
this stack is completed into a bubble-cycle and its content output.

2. A variable status(v) for each vertex v which can take three possible values:

• free: v should be explored during the traversal of G ′s;

• blocked: v should not be explored because it is already in the stack
or because it is not possible to complete the current stack into a cycle
by going through v – notice that the key idea of the algorithm is that
a vertex may be blocked without being on the stack, avoiding thus
useless explorations;

• twinned: v ∈ V and its twin is already in the stack, so that v should
not be explored.

3. A set B(v) of in-neighbours of v where vertex v is blocked and for each
vertex w ∈ B(v) there exists an arc (w, v) in G ′s (that is, w ∈ N−(v)). If
a modification in the stack causes that v is unblocked and it is possible
to go from v to s̄ using free vertices, then w should be unblocked if it is
currently blocked.

Algorithm 24 enumerates all the bubble-cycles in G by fixing the source s
of the (s, t)-bubble, computing the transformed graph G ′s and then listing all
bubble-cycles with source s in G ′s. This procedure is repeated for each vertex
s ∈ V . To list the bubble-cycles with source s, procedure CYCLE(s) is called. As a
general approach, Algorithm 26 uses classical backtracking with a pruned search
tree. The root of the recursion corresponds to the enumeration of all bubble-
cycles in G ′s with starting point s. The algorithm then proceeds recursively:
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for each free out-neighbour w of v the algorithm enumerates all bubble-cycles
that have the vertices in the current stack plus w as a prefix. If v ∈ V and v is
twinned, the recursion is also applied to the current stack plus v, (v, v) becoming
the current swap arc. A base case of the recursion happens when s is reached
and the call to CYCLE(s) completed. In this case, the path in stack is a twin-free
cycle and, if this cycle has more than 4 vertices, it is a bubble-cycle to output.

The key idea that enables to make this pruned backtracking efficient is the
block-unblock strategy. Observe that when CYCLE(v) is called, v is pushed in the
stack and to ensure twin-free extensions, v is blocked and v̄ is twinned if v ∈ V .
Later, when backtracking, v is popped from the stack but it is not necessarily
marked as free. If there were no twin-free cycles with the vertices in the current
stack as a prefix, the vertex v would remain blocked and its status would be set
to free only at a later stage. The intuition is that either v is a dead-end or there
remain vertices in the stack that block all twin-free paths from v to s. In order
to manage the status of the vertices, the sets B(w) are used. When a vertex v
remains blocked while backtracking, it implies that every out-neighbour w of v
has been previously blocked or twinned. To indicate that each out-neighbour
w ∈ N+(v) (also, v ∈ N−(w) is an in-neighbour of w) blocks vertex v, we add v to
each B(w). When, at a later point in the recursion, a vertex w ∈ N+(v) becomes
unblocked, v must also be unblocked as possibly there are now bubble-cycles
that include v. Algorithm 25 implements this recursive unblocking strategy.

Algorithm 24: Main algorithm
Input: A graph G = (V ,E)
Output: All the bubbles in G

1 for s ∈ V do
2 stack← ∅;
3 for v ∈ G ′s do
4 status← free;
5 B(v) = ∅;
6 end
7 CYCLE(s);
8 end

An important difference between the algorithm introduced here and Johnson’s
is that we now have three possible states for any vertex, i.e. free, blocked and
twinned, instead of only the first two. The twinned state is necessary to ensure
that the two paths of the bubble share no internal vertex. Whenever v is twinned,
it can only be explored from v. On the other hand, a blocked vertex should
never be explored. A twin vertex v can be already blocked when the algorithm is
exploring v, since it could have been unsuccessfully explored by some other call.
In this case, it is necessary to verify the status of v, as it is shown in the graph of
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Algorithm 25: Procedure UNBLOCK(v)
Input: A vertex v ∈ V
/* recursive unblocking of vertices for which popping v creates

a path to s */

1 status(v)← free;
2 for w ∈ B(v) do
3 delete w from B(v);
4 if status(w)= blocked then
5 UNBLOCK(w);
6 end
7 end

s a b c

s a b c

(a)

s a b c

s a b c

(b)

Figure 41: (a) Example where the twin v is already blocked when the algorithm starts
exploring v. By starting in s and visiting first (s,a) and (a,b), the vertex c is
already blocked when the algorithm starts exploring c. (b) Counterexample
for the variant of the algorithm visiting first the twin and then the regular
neighbours. By starting in s and visiting first (s,a) and (a,b), the algorithm
misses the bubble-cycle 〈s,a, c, c,b, s〉.

Figure 41a. Indeed, consider the algorithm starting from s with (s,a) and (a,b)
being the first two arcs visited in the lower part. Later, when the calls CYCLE(c̄)
and CYCLE(b̄) are made, since ā is twinned, both b̄ and c̄ remain blocked.
When the algorithm backtracks to a and explores (a, c), the call CYCLE(c) is
made and c̄ is already blocked.

Another important difference with respect to Johnson’s algorithm is that
there is a specific order in which the out-neighbourhood of a vertex should be
explored. In particular, notice that the order in which Algorithm 26 explores
the neighbours of a vertex v is: first the vertices in N+(v) \ {v̄} and then v̄. A
variant of the algorithm where this order would be reversed, visiting first v̄ and
then the vertices in N+(v) \ {v̄}, would fail to enumerate all the bubbles. Indeed,
intuitively a vertex can be blocked because the only way to reach s̄ is through a
twinned vertex and when that vertex is untwinned the first one is not unblocked.
Indeed, consider the graph in Figure 41b and the twin-first variant starting in
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Algorithm 26: Procedure CYCLE(v)
Input: A vertex v ∈ V
Output: All the bubbles in G starting from v

1 f← false;
2 push v;
3 status(v)← blocked;
/* Exploring forward the arcs going out from v ∈ V */

4 if v ∈ V then
5 if status(v) = free then status(v)← twinned
6 for w ∈ N+(v)∩ V do
7 if status(w) = free then
8 if CYCLE(w) then f← true
9 end

10 end
11 if status(v) = twinned then
12 if CYCLE(v) then f← true
13 end
14

/* Exploring forward the arcs going out from v ∈ V */

15 else
16 for w ∈ N+(v) do
17 if w = s then
18 output the cycle composed by the stack followed by s and s;
19 f← true;
20 else if status(w) = free then
21 if CYCLE(w) then f← true
22 end
23 end
24 end
25 if f then UNBLOCK(v) else
26 for w ∈ N+(v) do
27 if v /∈ B(w) then B(w) = B(w)∪ {v}
28 end
29 end
30 pop v;
31 return f;
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s with (s,a) and (a,b) being the first two arcs explored in the lower part of
the graph. When the algorithm starts exploring b the stack contains 〈s,a,b〉.
After, the call CYCLE(b̄) returns true and CYCLE(c) returns false because ā
and b̄ are twinned. After finishing exploring b, the blocked list B(b) is empty.
Thus, the only vertex unblocked is b, c (and c̄) remaining blocked. Finally, the
algorithm backtracks to a and explores the arc (a, c), but c is blocked, and it
fails to enumerate 〈s,a, c, c,b, s〉.

One way to address the problem above would be to modify the algorithm so
that every time a vertex v̄ is untwinned, a call to UNBLOCK(v̄) is made. All
the bubble-cycles would be correctly enumerated. However, in this case, it is
not hard to find an example where the delay would then no longer be linear.
Intuitively, visiting first N+(v) \ {v̄} and, then v̄, works because every vertex u
that was blocked (during the exploration of N+(v) \ {v̄}) should remain blocked
when the algorithm explores v̄. Indeed, a bubble would be missed only if there
existed a path starting from v, going to s through u and avoiding the twinned
vertices. This is not possible if no path from N+(v) \ {v̄} to u could be completed
into a bubble-cycle by avoiding the twinned vertices, as we will show later on.

7.5 enumerating bubbles: an example

Consider the graph in Figure 40a and its transformation in Figure 40b. We
want to enumerate all the bubble-cycles of the graph in Figure 40b by using
Algorithm 24 and thus Algorithms 25 and 26. At the beginning every vertex
has a status that is free, the stack is empty and Algorithm 26 is called with
input s. At this point s is put on the stack, its status is now blocked and the
status of s̄ is now twinned. Then CYCLE(a), CYCLE(b), CYCLE(c), CYCLE(d)
are called in this order, blocking and putting on the stack the vertices a, b, c, d,
respectively, and twinning the vertices ā, b̄, c̄, d̄, respectively. Observe that, since
s is already blocked, CYCLE(c) does not call again CYCLE(s). At this point the
stack is s,a,b, c,d. Since the unique neighbour of d is d̄, CYCLE(d̄) is called and
d̄ is blocked and put on the stack. This corresponds to the code after line 15 in
Algorithm 26. Since c̄ is twinned, CYCLE(c̄) is not called, while, since ē is free,
CYCLE(ē) is called and ē is thus blocked and put on the stack. Once again, since
b̄ is twinned, CYCLE(b̄) is not called, and s̄ is reached: the cycle containing the
vertex on the stack plus s̄, s,a,b, c,d, d̄, ē, s̄, is output.

After the output, the call CYCLE(ē) returns and ē is unblocked and removed
from the stack. The same happens for the calls CYCLE(d̄) and CYCLE(d). At
this point the stack is s,a,b, c and CYCLE(c̄) is called: c̄ is thus blocked and put
on the stack. Since b̄ is twinned, CYCLE(b̄) is not called, while since ē is free,
CYCLE(ē) is called and ē is thus blocked and put on the stack. Once again, since
b̄ is twinned, CYCLE(b̄) is not called, and s̄ is reached: the cycle containing the
vertex on the stack plus s̄, s,a,b, c, c̄, ē, s̄, is output.
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After this latter output, the call CYCLE(ē), and after CYCLE(c̄) and CYCLE(c),
return, so that ē, c̄, and c are unblocked and removed from the stack. Now the
stack is s,a,b and we are exploiting other feasible neighbours of b: in particular
CYCLE(e) is called. We have that e is now blocked and put on the stack. Since c
is free, CYCLE(c) is called; this latter calls CYCLE(d), that calls CYCLE(d̄). At
this point the stack is s,a,b, e, c,d, d̄ and it is not possible to complete the stack
in order to get a bubble-cycle. Thus f is false, and for any out-neighbour w of
d̄, v is added to B(w), so that d̄ is added to B(c̄) and to B(ē). Hence CYCLE(d̄)
returns and, also in CYCLE(d), f remains false, so that d̄ is added to B(d). At this
point CYCLE(d) returns, we are in CYCLE(c) and we have to finish to exploit the
neighbours of c. The stack is s,a,b, e, c, the vertices s,a,b, c,d, e, d̄ are blocked,
the vertices s̄, ā, b̄, c̄, ē are twinned. With this settings, CYCLE(c) calls CYCLE(c̄)
that returns false; c̄ is thus added to B(b̄) and B(ē). Also CYCLE(c) returns false,
so that c is added to B(d) and B(c̄). We are thus in CYCLE(e): c has been already
considered and d is blocked, CYCLE(ē) is thus called. Observe that CYCLE(e)
never calls directly CYCLE(d) because it is known that it would return false,
thanks to the previous calls from CYCLE(c). This avoids useless computation
by realizing the so-called pruning strategy. At this point CYCLE(ē) reaches s̄
and a bubble-cycle is output: s,a,b, e, ē, s̄. Summarizing, s,a,b, c,d, e, c̄, d̄ are
blocked, s̄, ā, b̄, ē are twinned. In particular B(d) = {c}, B(b̄) = {c̄}, B(c̄) = {d̄, c},
B(d̄) = {d}, B(ē) = {d̄, c̄}, and the other B sets are empty.

After the output, vertex ē is removed from the stack, unblocked, and any
vertex w ∈ B(ē) is recursively unblocked, so that d̄ and c̄ are unblocked, and
successively also d and c are unblocked. Thus B(x) is empty for any vertex x
except for B(b̄) = {c̄}. CYCLE(ē) returns inside CYCLE(e), also e is removed
from the stack and unblocked and CYCLE(e) returns inside CYCLE(b). Now the
unique blocked vertices are s,a,b and s̄, ā, c̄ are the unique twinned vertices: the
algorithm continues by calling CYCLE(b̄) and after CYCLE(ā). Then it returns
inside CYCLE(s̄), where, with empty stack, no blocked vertices, empty B sets,
and no twinned vertices, CYCLE(e) is called.

By proceeding in the same way, also the bubble-cycles:

• s, e, c, c̄, b̄, ā, s̄,

• s, e,d, d̄, c̄, b̄, ā, s̄, and

• s, e, ē, b̄, ā, s̄

are outputted.

7.6 proof of correctness and complexity analysis

The first part of this section is devoted to prove that Algorithm 26 enumerates
all bubbles with source s.
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Lemma 29. Let v be a vertex of G ′s such that status(v) = blocked, S the set of
vertices currently in the stack, and T the set of vertices whose status is equal to twinned.
Then S∪ T is a (v, s) separator, that is, each path, if any exists, from v to s contains at
least one vertex in S∪ T .

Proof. The result is obvious for the vertices in S∪ T . Let v be a vertex of G ′s such
that status(v) = blocked and v /∈ S∪ T . This means that when v was popped
for the last time, CYCLE(v) was equal to false since v remained blocked.

Let us prove by induction on k that each path to s of length k from a blocked
vertex not in S∪ T contains at least one vertex in S∪ T .

We first consider the base case k = 1. Suppose that v is a counter-example for
k = 1. This means that there is an arc from v to s (s is an out-neighbour of v).
However, in that case the output of CYCLE(v) is true, a contradiction because v
would then be unblocked.

Suppose that the result is true for k− 1 and, by contradiction, that there exists
a blocked vertex v /∈ S ∪ T and a path (v,w, . . . , s) of length k avoiding S ∪ T .
Since (w, . . . , s) is a path of length k− 1, we can then assume that w is free.
Otherwise, if w were blocked, by induction, the path (w, . . . , s) would contain
at least one vertex in S∪ T , and so would the path (v,w, . . . , s).

Since the call to CYCLE(v) returned false (v remained blocked), either w was
already blocked or twinned, or the call to CYCLE(w) made inside CYCLE(v)
gave an output equal to false. In any case, after the call to CYCLE(v), w was
blocked or twinned and v put in B(w).

The conditional at line 11 of the CYCLE procedure ensures that when un-
twinned, a vertex immediately becomes blocked. Thus, since w is now free, a
call to UNBLOCK(w) was made in any case, yielding a call to UNBLOCK(v).
This contradicts the fact that v is blocked.

Theorem 21. The algorithm returns only bubble-cycles. Moreover, each of those cycles
is returned exactly once.

Proof. Let us first prove that only bubble-cycles are output. As any call to UN-
BLOCK (either inside the procedure CYCLE or inside the procedure UNBLOCK
itself) is immediately followed by the popping of the considered vertex, no
vertex can appear twice in the stack. Thus, the algorithm returns only cycles.
They are trivially bipolar as they have to contain s and s to be output.

Consider now a cycle C output by the algorithm with swap arc (t, t). Let
(v,w) in C with v 6= s and v 6= t. If v is free when v is put on the stack, then v is
twinned before w is put on the stack and cannot be explored until w is popped.
If v is blocked when v is put on the stack, then by Lemma 29 it remains blocked
at least until v is popped. Thus, v cannot be in C, and consequently the output
cycles are twin-free.
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So far we have proven that the output produces bubble-cycles. Let us now
show that all cycles C = {v0 = s, v1, . . . , vl−1, vl = s, v0} satisfying those condi-
tions are output by the algorithm, and each is output exactly once.

The fact that C is not returned twice is a direct consequence of the fact that
the stack is different in all the leaves of a backtracking procedure. To show that
C is output, let us prove by induction that the stack is equal to {v0, . . . , vi} at
some point of the algorithm, for every 0 6 i 6 l− 1. Indeed, it is true for i = 0.
Moreover, suppose that at some point, the stack is {v0, . . . , vi−1}.

Suppose that vi−1 is different from t. As the cycle contains no pair of twins
except for those composing the arcs (s, s) and (t, t), the path {vi, vi+1, . . . , vl}
contains no twin of {v0, . . . , vi−1} and therefore no twinned vertex. Thus, it is
a path from vi to s avoiding S ∪ T . Lemma 29 then ensures that at this point
vi is not blocked. As it is also not twinned, its status is free. Therefore, it will
be explored by the backtracking procedure and the stack at some point will be
{v0, . . . , vi}. If vi−1 = t, vi = t is not blocked using the same arguments. Thus it
was twinned by the call to CYCLE(t) and is therefore explored at Line 12 of this
procedure. Again, the stack at some point will be {v0, . . . , vi}.

As in [18], we show that Algorithm 26 has delay O(|V |+ |E|) by proving that a
cycle has to be output between two successive unblockings of the same vertex
and that with linear delay some vertex has to be unblocked again. To do so, let
us first prove the following lemmas.

Lemma 30. Let v be a vertex such that CYCLE(v) returns true. Then a cycle is output
after that call and before any call to UNBLOCK.

Proof. Let y be the first vertex such that UNBLOCK(y) is called inside CYCLE(v).
Since CYCLE(v) returns true, there is a call to UNBLOCK(v) before it returns,
so that y exists. Certainly, UNBLOCK(y) was called before UNBLOCK(v) if
y 6= v. Moreover, the call UNBLOCK(y) was done inside CYCLE(y), from line 25,
otherwise it would contradict the choice of y. So, the call to CYCLE(y) was
done within the recursive calls inside the call to CYCLE(v). CYCLE(y) must then
return true as y was unblocked from it.

All the recursive calls CYCLE(z) made inside CYCLE(y) must return false,
otherwise there would be a call to UNBLOCK(z) before UNBLOCK(y), contra-
dicting the choice of y. Since CYCLE(y) must return true and the calls to all the
neighbours returned false, the only possibility is that s ∈ N+(y). Therefore, a
cycle is output before UNBLOCK(y).

Lemma 31. Let v be a vertex such that there is a (v, s)-path P avoiding S ∪ T at the
moment a call to CYCLE(v) is made. Then the return value of CYCLE(v) is true.

Proof. First notice that if there is such a path P, then v belongs to a cycle in G ′s.
This cycle may however not be a bubble-cycle in the sense that it may not be
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twin-free, that is, it may contain more than two pairs of twin vertices. Indeed,
since the only constraint that we have on P is that it avoids all vertices that are
in S and T when v is reached, then if v ∈ V , it could be that the path P from v to
s contains, besides s and s, at least two more pairs of twin vertices. An example
is given in Figure 40b. It is however always possible, by construction of G ′s from
G, to find a vertex y ∈ V such that y is the first vertex in P with y also in P. Let
P ′ be the path that is a concatenation of the subpath s y of P, the arc (y,y),
and the subpath y s in P. This path is twin-free, and a call to CYCLE(v) will,
by correctness of the algorithm, return true.

Theorem 22. Algorithm 26 has linear delay.

Proof. Let us first prove that between two successive unblockings of any vertex
v, a cycle is output. Let w be the vertex such that a call to UNBLOCK(w) at
line 25 of Algorithm 26 unblocks v for the first time. Let S and T be, respectively,
the current sets of stack and twinned vertices after popping w. The recursive
structure of the unblocking procedure then ensures that there exists a (v,w)-path
avoiding S∪ T . Moreover, as the call to UNBLOCK(w) was made at line 25, the
answer to CYCLE(w) is true so there exists also a (w, s)-path avoiding S∪ T . The
concatenation of both paths is a again a (v, s̄)-path avoiding S∪ T . Let x be the
first vertex of this path to be visited again. Note that, if no vertex in this path
is visited again there is nothing to prove, since v is free, CYCLE(v) needs to
be called before any UNBLOCK(v) call. When CYCLE(x) is called, there is a
(x, s)-path avoiding the current S∪ T . vertices. Thus, applying Lemma 31 and
then Lemma 30, we know that a cycle is output before any call to UNBLOCK.
As no call to UNBLOCK(v) can be made before the call to CYCLE(x), a cycle is
output before the second call to UNBLOCK(v).

Let us now consider the delay of the algorithm. In both its exploration and
unblocking phases, the algorithm follows the arcs of the graph and transforms
the status or the B lists of their endpoints, which overall require constant time.
Thus, the delay only depends on the number of arcs which are considered
during two successive outputs. An arc (u, v) is considered once by the algorithm
in the three following situations: the exploration part of a call to CYCLE(u); an
insertion of u in B(v); a call to UNBLOCK(v). As shown before, UNBLOCK(v) is
called only once between two successive outputs. CYCLE(u) cannot be called
more than twice. Thus the arc (u, v) is considered at most 5 times between two
outputs. This ensures that the delay of the algorithm is O(|V |+ |E|).

7.7 avoiding duplicate bubbles.

The one-to-two correspondence between cycles in G ′s and bubbles starting
from s in G, claimed by Proposition 2, can be reduced to a one-to-one corre-
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spondence in the following way. Consider an arbitrary order on the vertices of
V , and assign to each vertex of V the order of its twin. Let C be a cycle of G ′s
that passes through s and contains exactly two pairs of twin vertices. Denote
again by t the vertex such that (t, t) is the arc through which C swaps from V to
V . Denote by swap predecessor the vertex before t in C and by swap successor the
vertex after t in C.

Proposition 3. There is a one-to-one correspondence between the set of (s, t)-bubbles
in G for all t ∈ V , and the set of cycles of G ′s that pass through s, contain exactly
two pairs of twin vertices and such that the swap predecessor is greater than the swap
successor.

Proof. The proof follows the one of Proposition 2. The only difference is that, if
we consider a bubble composed of the paths P1 and P2, one of these two paths,
say P1, has a next to last vertex greater than the next to last vertex of P2. Then
the cycle of G ′s made of P1 and P2 is still considered by the algorithm whereas
the cycle made of P2 and P1 is not. Moreover, the cycles of length four which
are of the type {s, t, t, s} are ruled out as s is of the same order as s.

7.8 conclusion and open problems

We showed in this chapter that it is possible (Algorithm 26) to enumerate all
bubbles with a given source in a directed graph with linear delay. Moreover,
it is possible to enumerate all bubbles, for all possible sources (Algorithm 24),
in O((|E|+ |V |)(|C|+ |V |)) total time, where |C| is the number of bubbles. This
required a non trivial adaptation of Johnson’s algorithm [18]. The main question
arising from our work is whether it is possible to generalize our result, by
finding a linear delay algorithm enumerating k-tuple of vertex disjoint paths.
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C O N C L U S I O N S

Biological networks models introduce several biases: arc dependencies are
neglected and underlying hyper-graph behaviours are forced in simple graph
representations to avoid intractability. Moreover regulatory interactions between
all the biological networks are omitted, even if none of the different biological
layers is truly isolated. Last but not least, the dynamical behaviours of biological
networks are often not considered: indeed most of the currently available bio-
logical network reconstructions are potential networks, where all the possible
connections are indicated, even if edges/arcs and vertices are hardly present
all together at the same time. In this scenario, we have seen that very often
enumeration algorithms can be helpful so that the solutions can be checked
a posteriori, and in Chapter 3 we have resumed the main schemas to design
enumeration algorithms.

In Chapter 4 we have described and experimented new algorithms for enu-
merating all the diametral and radial vertices and computing the diameter
and radius of directed and undirected (weighted) graphs. Even though these
algorithms have O(nm) time complexity in the worst case, our experiments
suggest that their execution for real-world networks requires time O(m) in the
case of the diameter and almost O(m) in the case of the radius. The computa-
tion of the radius with our algorithm is affected by the choice of the starting
vertices x,y so that the best performances are achieved whenever x and y are
both diametral targets. The performance of difub depends on the choice of the
starting vertex u (indeed, it could be interesting to experimentally analyse its
behaviour depending on this choice). The main fundamental questions are now
the followings. Why the double sweep heuristic, both in the directed and in the
undirected version, is so effective in finding tight lower bounds for the diameter
and vertices with low eccentricity? Which one is the topological underlying
property that can lead us to these results? Why real world graphs exhibit this
property? Some progress has been done by [184], but still a lot has to be done.
Finally, it could be interesting to analyse a parallel implementation of the difub

algorithm. Indeed, the eccentricities of the vertices belonging to the same fringe
set can be computed in parallel. Moreover, a variety of parallel bfs algorithms
have been explored in the literature and can be integrated in the implementation
of our algorithm.

In Chapter 5 we have introduced the new notion of a story, which is a maximal
acyclic subgraph of a directed graph in which only specified vertices can be
sources or targets. We have proved some complexity results and designed some
algorithms for enumerating all possible stories of a graph. From a theoretical
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point of view the main question left open is to establish the complexity of the
enumeration problem. Indeed the enumeration algorithm presented, even if it
works well in practice, gives no guarantee on the delay between the output of two
consecutive solutions. We address as a future work, exploiting the relationship
between stories and subset feedback vertex sets, that has been studied in [206] by
applying Measure and Conquer approach [207]. From a practical point of view, for
some graphs the number of solutions found is extremely large and therefore the
analysis of the results is compromised. Adding more constraints to the model
could be a way to filter a priori the set of solutions. This observation on the
size of the output leads us to consider the problem from a modelling point of
view. For instance, the acyclicity constraint could be relaxed allowing cycles
between white vertices. Moreover, the model could be enriched by exploring
the information on the concentrations given by the metabolomics experiment.
Notice that in this case the nature of the problem changes into an optimization
problem. Another alternative is to consider integrated models, adding to the
Metabolic network other layers of information such as regulation, or taking the
stoichiometry of the reactions into account.

In Chapter 6 we showed the first optimal solution to list all the cycles of an
undirected graph and all the paths from a given source to a given target. This
result improves the Johnson’s algorithm, that was still the theoretically most
efficient in the case of undirected graphs. The main question arising from our
work is whether it is possible to obtain an optimal algorithm to list all the paths
and cycles in a directed graph in order to deal more efficiently with directed
biological interaction networks, like gene regulatory networks, where the cycle
enumeration have been discovered to be useful for several purposes.

In Chapter 7 we showed that it is possible to enumerate all the bubbles, i.e.
pairs of vertex disjoint paths, with a given source in a directed graph with linear
delay. Moreover, it is possible to enumerate all bubbles, for all possible sources,
in O((|E|+ |V |)(|C|+ |V |)) total time, where |C| is the number of bubbles. This
has required a non trivial adaptation of Johnson’s algorithm [18]. The main
question arising from our work is whether it is possible to generalize our result,
by finding a linear delay algorithm enumerating k-tuple of vertex disjoint paths,
or finding an algorithm to enumerate efficiently bubbles of a given size.
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Briefings in Functional Genomics & Proteomics, 7(2):147–156, March 2008.
(Cited on page 21.)



164 Bibliography

[50] Joshua A. Grochow and Manolis Kellis. M: Network motif discovery using
subgraph enumeration and symmetry breaking. In In Proceedings of the
11th International Conference on Research in Computational Molecular Biology
(RECOMB, pages 21–25. Springer, 2007. (Cited on page 21.)

[51] Karoline Faust, Pierre Dupont, Jérôme Callut, and Jacques van Helden.
Pathway discovery in metabolic networks by subgraph extraction. Bioin-
formatics, 26(9):1211–1218, May 2010. (Cited on pages 21 and 95.)

[52] Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski. An effi-
cient algorithm for detecting frequent subgraphs in biological networks.
Bioinformatics, 20(1):200–207, January 2004. (Cited on page 21.)

[53] Shi-Hua Zhang, Xue-Mei Ning, and Xiang-Sun Zhang. Identification of
functional modules in a ppi network by clique percolation clustering.
Computers & Chemistry, 30(6):445–451, 2006. (Cited on page 21.)

[54] Elisabeth Georgii, Sabine Dietmann, Takeaki Uno, Philipp Pagel, and Koji
Tsuda. Enumeration of condition-dependent dense modules in protein
interaction networks. Bioinformatics, 25(7):933–940, April 2009. (Cited on
page 21.)

[55] John D. Eblen, Charles A. Phillips, Gary L. Rogers, and Michael A.
Langston. The maximum clique enumeration problem: Algorithms, appli-
cations and implementations. In Jianer Chen, Jianxin Wang, and Alexander
Zelikovsky, editors, Bioinformatics Research and Applications - 7th Interna-
tional Symposium, ISBRA 2011, Changsha, China, May 27-29, 2011. Proceed-
ings, volume 6674 of Lecture Notes in Computer Science, pages 306–319.
Springer, 2011. (Cited on page 21.)

[56] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On
generating all maximal independent sets. Inf. Process. Lett., 27(3):119–123,
1988. (Cited on page 26.)

[57] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005. (Cited on page 27.)

[58] Takeaki Uno. A fast algorithm for enumerating bipartite perfect matchings.
In ISAAC, pages 367–379, 2001. (Cited on pages 28 and 44.)

[59] Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal al-
gorithm for scanning all spanning trees of undirected graphs. SIAM J.
Comput., 26(3):678–692, 1997. (Cited on page 28.)

[60] R. E. Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM Journal on Computing, 2(3):211–216, 1973. (Cited on pages 29, 115,
and 144.)



Bibliography 165

[61] R C Read and Robert E Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5(3):237–252, 1975. (Cited on
pages 29 and 115.)

[62] David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–
673, February 1999. (Cited on page 29.)

[63] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65:21–46, 1993. (Cited on page 29.)

[64] Takeaki Uno. Two general methods to reduce delay and change of enu-
meration algorithms. NII Technical Report., 2003. (Cited on page 30.)

[65] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–103, 1972. (Cited on page 31.)

[66] Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all
maximal cliques. In SWAT, pages 260–272, 2004. (Cited on page 31.)

[67] Toshinobu Kashiwabara, Sumio Masuda, Kazuo Nakajima, and Toshio
Fujisawa. Generation of maximum independent sets of a bipartite graph
and maximum cliques of a circular-arc graph. J. Algorithms, 13(1):161–174,
1992. (Cited on page 31.)

[68] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs.
SIAM J. Comput., 2(1):1–6, 1973. (Cited on page 31.)

[69] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational
experiments. Theor. Comput. Sci., 363(1):28–42, October 2006. (Cited on
page 32.)

[70] Tatsuya Asai, Hiroki Arimura, Takeaki Uno, and Shin-Ichi Nakano. Dis-
covering frequent substructures in large unordered trees. In Discovery
Science, pages 47–61, 2003. (Cited on page 33.)

[71] Katsuhisa Yamanaka, Yota Otachi, and Shin-Ichi Nakano. Efficient enu-
meration of ordered trees with kleaves (extended abstract). In WALCOM,
pages 141–150, 2009. (Cited on page 33.)

[72] Takeaki Uno and Shin-Ichi Nakano. Efficient generation of rooted trees.
NII Technical Report., 2003. (Cited on page 35.)

[73] Shin-Ichi Nakano and Takeaki Uno. Constant time generation of trees
with specified diameter. In WG, pages 33–45, 2004. (Cited on page 35.)

[74] Shin-Ichi Nakano and Takeaki Uno. Generating colored trees. In WG,
pages 249–260, 2005. (Cited on page 35.)



166 Bibliography

[75] Komei Fukuda and Tomomi Matsui. Finding all the perfect matchings in
bipartite graphs. Appl. Math. Lett, 7:15–18, 1989. (Cited on page 44.)

[76] Komei Fukuda and Tomomi Matsui. Finding all minimum-cost perfect
matchings in bipartite graphs. Networks, 22(5):461–468, 1992. (Cited on
page 44.)

[77] Takeaki Uno. Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. In ISAAC, pages 92–101, 1997.
(Cited on page 44.)

[78] Chandra R. Chegireddy and Horst W. Hamacher. Algorithms for finding
k-best perfect matchings. Discrete Applied Mathematics, 18(2):155 – 165,
1987. (Cited on page 44.)

[79] T. Uno. A fast algorithm for enumerating non-bipartite maximal matchings.
J. National Institute of Informatics, 3:89–97, 2001. (Cited on page 44.)
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