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Abstract: One of the most common chromosomal regions

implicated in the meningiomas tumorigenesis is 22q12 where

the neurofibromatosis 2 (NF2) gene resides. The NF2 tumor-

suppressor gene encodes for the merlin/schwannomin protein,

which is responsible for the inherited disease neurofibromatosis

2. NF2 gene mutations predominantly occur in transitional and

fibroblastic meningiomas, whereas the meningothelial variant is

less affected. Secretory meningioma is an infrequent meningio-

ma subtype. Its most typical morphologic feature is the presence

of intracytoplasmic or extracytoplasmic round hyaline, eosino-

philic, and periodic acid Shiff-positive bodies in a lesion

frequently otherwise classifiable as meningothelial meningioma.

This study reviews the immunohistochemical merlin expression

in 14 consecutive secretory meningiomas. Our purpose was to

investigate if secretory meningiomas, analogous to meningothe-

lial meningiomas, follow a molecular route of pathogenesis

independent of the neurorofibromatosis 2 gene-associated

pathway. All meningiomas showed positive immunocoloration

involving the majority of the hyaline inclusions and secretory

cells; in 12 (86%) meningiomas, a positive immunoreaction was

also documented in nonsecretory tumoral cells. Our results may

indicate a molecular, besides morphologic, similarity between

secretory and meningothelial meningiomas: the almost constant

merlin immunohistochemical expression in our series gives

evidence for a possible NF2 gene-independent pathogenesis in

secretory meningiomas.
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Meningiomas are frequent primary intracranial neo-
plasms (about 25% of all primary tumors in this

site) arising from the leptomeningeal covering of the
central nervous system. They preferentially affect middle-
aged and elderly women. Radiation exposure, and
hormonal and genetic factors have been implicated in
their development and growth. Usually, meningiomas are
sporadic, but they may also be a manifestation of the
hereditary syndrome neurofibromatosis type 2 (NF2),
which is characterized, at the nervous system level, by the
development of bilateral vestibular schwannomas, me-
ningiomas, ependymomas, and, occasionally, gliomas and
neurofibromas.1–4

Meningiomas initiation is linked, both in the NF2-
associated cases and in the sporadic lesions, to the
inactivation of members of the 4.1 superfamily proteins
comprised the NF2 gene product merlin/schwannomin.
About 60% of sporadic meningiomas are caused by
mutation and/or deletion of the NF2 tumor-suppressor
gene on chromosome 22q12, whereas no causative gene is
known for the remaining 40%.2,5–11

Many studies have suggested that merlin is involved
in the regulation of cell growth and proliferation.12

Nevertheless, the alterations in the merlin functions did
not show an incontrovertible prognostic value in menin-
giomas. Indeed, despite the merlin expression level being
reported lower in more malignant meningiomas than in
benign meningiomas, the difference does not reach
significant levels.6,13,14

Meningiomas exhibit a wide range of histologic
patterns with numerous classified subtypes (the most
recent World Health Organization scheme1 recognizes
13 variants) and several uncategorized subtypes. In most
cases, histologic variants do not have prognostic
significance. However, clear cell, chordoid, papillary,
and rhabdoid meningiomas are clinically aggressive.1,15,16

Secretory meningioma is an infrequent subtype that
accounts for 3% to 5%. From a clinical point of view, its
peculiarities are the frequent insurgence in women at the
sphenoid ridge and on frontal convexity (29% and 26%,
respectively), and the tendency to evoke severe cerebral
edema (40% to 50%). At variance with the majority ofCopyright r 2007 by Lippincott Williams & Wilkins
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brain tumors where edema is usually associated with more
aggressive lesions, edema does not represent a prognostic
factor in secretory meningiomas. The most typical
morphologic feature is the presence of intracytoplasmic
or extracytoplasmic, round hyaline, eosinophilic, and
periodic acid Shiff-positive bodies in a lesion frequently
otherwise classifiable as meningothelial meningioma.
These structures, called pseudopsammoma bodies, are
contained in a variable percentage of the neoplastic cells.
Characteristically, the pseudopsammoma bodies and the
secretory cells immunostain with the carcinoembryonic
antigen and with epithelial and secretory markers
(ie, keratins, epithelial membrane antigen, IgA, IgM,
a-1-antitrypsin). In the ultrastructure, the pseudopsam-
moma bodies are composed of granular and filamentous
materials predominantly located in large intracellular
lumina lined by microvilli.1,16–24

Molecular differences between meningioma sub-
types have been reported. Several data provide convin-
cing evidence for supporting an NF2-independent
pathogenesis histotype related: the NF2 gene mutations
predominantly occur in transitional and fibroblastic
meningiomas, whereas the meningothelial variant is
significantly less affected.13,25–28

This study reviews the immunohistochemical mer-
lin/schwannomin expression of 14 consecutive secretory
meningiomas. Our purpose was to preliminarily investi-
gate if secretory meningiomas, analogous to meningothe-
lial meningiomas, follow a molecular route of
pathogenesis independent of the NF2 gene-associated
pathway.

PATIENTS AND METHODS

Patients
Fourteen consecutive secretory meningiomas, surgi-

cally treated at the Neurosurgical Service (Careggi
Hospital, Florence, Italy) and at the Department of
Neurosurgery (University of Florence, Florence, Italy)
between January 1993 and June 2005 with available
adequate paraffin-embedded specimens entered into the
study.

One (7%) was a man and 13 (93%) were women.
The average age at the time of the surgery was 57 years
(range 33 to 97 y). More often, the tumors were frontal (3
cases, 21%) or located at the clivus region (3 cases, 21%).

Methods
The surgical specimens were fixed in 10% buffered

neutral formalin, entirely sampled, and embedded in
paraffin. Some 5-mm sections were stained with hematox-
ylin and eosin (H&E) and with periodic acid Shiff for the
morphologic evaluation. Diagnostic criteria we used were
those indicated by the most recently revised World Health
Organization classification of tumors of the nervous
system.1

Further, 5-mm sections of the most representative
specimen of each case were mounted on electrostatic
slides and used for the immunohistochemical study.

Paraffin sections were heated at 95 to 981C in a wax-
capture and antigen-retrieved solution (W-CAP TEC
buffer pH 8, Milano, Italy) for 20 minutes. The primary
antibody F2-Merlin (rabbit polyclonal-epitope mapping
at NH2 terminus, Santa Cruz Biotechnology, Inc.) was
used at a dilution of 1:50 at room temperature for 1 hour.
Successively, the sections were incubated in a reactive
rabbit amplification solution (amplification Kit Ventana
Medical System, Tucson, AZ) for 10 minutes at room
temperature. Immunoreactivity was detected using a
peroxidase-conjugated polymer (ChemMate Dako Envi-
sion Detection Kit Peroxidase DAB rabbit-mouse) for 30
minutes followed by 3,3-diaminobenzidine hydrogen as
the final indicator for 5 minutes. The nuclei were
counterstained with hematoxylin.

Positivity seen at tissue edges was considered
artifactual if no tumoral staining was also encountered
more centrally; a weak immunocoloration not exceeding
that of adjacent structures known to be negative for
merlin (ie, collagen) was considered artifactual too.

Merlin expression was evaluated separately in
hyaline inclusions/secretory cells and in nonsecretory
tumoral cells; it was considered as negative when it was
present in not more than 10% of the neoplastic cells, as
(1) when it was present in more than 10% and within
50%, and as (2) when it was diffuse to more than 50%
of the neoplastic cells. Furthermore, we graded the
immunocoloration as + or ++ on the basis of the
intensity of staining.

RESULTS
Secretory features were observed in 13 (93%)

otherwise classifiable meningothelial meningiomas and
in 1 (7%) otherwise classifiable transitional meningioma.

All meningiomas that we studied showed positive
intense immunocoloration involving the majority of
the hyaline inclusions and secretory cells (score 2++).
In 12 (86%) meningiomas, a positive immunoreaction
was also documented in nonsecretory tumoral cells (score
2+: 8 cases, 57%; score 2++: 4 cases, 29%); no merlin
immunoreaction was appreciable in the nonsecretory
tumoral cells in the remaining 2 (14%) meningiomas
(score 0).

One of the 2 cases in which the nonsecretory
tumoral cells were negative was the only 1 meningioma
showing the typical features of the transitional meningio-
ma (Table 1; Fig. 1).

DISCUSSION
Merlin is a member of the band 4.1 superfamily of

proteins.4,8,10,29,30 Within this family, merlin shares the
highest degree of homology with a group of proteins,
including ezrin, radixin, and moesin (ERM proteins) that
link the actin cytoskeleton (by an actin-binding region in
their COOH terminus) to cell membrane glycoproteins
(by their NH2 terminal residues). The NH2 and COOH
terminal halves of ERM proteins mutually interact
intramolecularly to suppress their binding activities. The

Buccoliero et al Appl Immunohistochem Mol Morphol � Volume 15, Number 3, September 2007

354 r 2007 Lippincott Williams & Wilkins



COOH terminal threonine phosphorylation maintains
ERM proteins in the active state by suppressing the
intramolecular interaction.4,8,10,31

The region of the merlin with the greatest structural
similarity to the ERM proteins is the NH2 terminal, two-
thirds. The COOH terminus of merlin is unique and lacks
the conventional actin-binding region of the ERM
proteins (merlin interacts with F-actin through its NH2

terminus).4,8,10,30,32–34

Several experimental data demonstrated that the
merlin overexpression results in a significant decrease in
cell proliferation, reversion of Ras-induced transforma-
tion, and reduced tumor formation in nude mice.30–32,35,36

The majority of the mutations identified in the NF2
gene results in a truncated protein.27,37–39

Conflicting results have been reported with regard
to the possible prognostic value of merlin in meningio-
mas. Several data suggest that merlin loss is relatively
equally distributed among clinicopathologic subsets.
Indeed, the majority of previous studies indicated NF2
gene inactivation as an early tumorigenic event in
sporadic and in NF2-associated meningiomas.6,8,10,13,14,29

On the contrary, NF2 gene mutation rates signifi-
cantly differ between histologic subtypes of meningio-
mas.5,9,13,14,25,28 Earlier, in 1995, Wellenreuther13

demonstrated that NF2 gene mutation occurs in 83% of
transitional meningiomas and in 70% of fibroblastic
meningiomas but in only 25% of meningothelial menin-
giomas.

Merlin expression may be investigated through
several methods. Immunohistochemistry is a simple and
relatively nonexpensive method of study and diagnosis.
Several antibodies (for fresh and fixed tissue; against
COOH and NH2 terminus) are available to detect merlin.
Truncated protein lacks its COOH terminus. Conse-
quently, antibodies against the NH2 terminus should be
considered ineligible to demonstrate alterations in the
NF2 gene. Nevertheless, truncated NF2 protein, as a

consequence of accelerated degradation possibly
mediated by calpain-dependent proteolysis, is unstable.39

On this basis we used an antibody against the NH2

terminus (usable on paraffin-embedded tissues) preferring
it to the antibody against the COOH terminus (usable on
frozen sections only).

No study investigated the presence of NF2 gene
mutations or the merlin expression in secretory menin-
giomas. Our immunohistochemical results demonstrated
that secretory meningiomas, analogous to meningothelial
meningiomas, express merlin. Precisely, secretory cells
and their hyaline inclusions strongly immunostained in
each case, whereas nonsecretory tumoral cells immuno-
stained in all but 2 cases. One of the 2 secretory
meningiomas in which the nonsecretory tumoral cells
were negative was an otherwise classifiable transitional
meningioma. Consequently, we could further suppose
that meningothelial meningiomas either in their classical
form or in cases with prominent secretory propensity
(secretory meningiomas) may arise independently of NF2
gene alterations. Furthermore, the secretory propensity
could represent a stigma of the NF2 gene integrity in
consideration of the invariable positivity to merlin of
secretory tumoral cells in secretory meningiomas. More-
over, pseudopsammoma bodies strongly immunostained
in each of our cases, suggesting that merlin could
participate in their composition.

In conclusion, our results indicate a possible
molecular, besides morphologic, similarity between
secretory and meningothelial meningiomas: the almost
constant merlin immunohistochemical expression in our
series gives evidence for a possible NF2-independent
pathogenesis in secretory meningiomas. Further studies
on different and large series complete of the follow-up
are necessary to ascertain the possible consequence of
the presence or absence of merlin alterations in menin-
gothelial and secretory meningiomas and in other
meningiomas.

TABLE 1. Secretory Meningiomas

Immunohistochemistry (F2-Merlin Antibody NH2-Terminus Mapping)

Case Morphological Background Hyaline Inclusions/Secretory Cells Nonsecretory Cells

1 Meningothelial 2 + 2 +
2 Meningothelial 2 ++ 2 +
3 Transitional 2 ++ �

4 Meningothelial 2 ++ 2 ++
5 Meningothelial 2 ++ 2 +
6 Meningothelial 2 ++ 2 ++
7 Meningothelial 2 ++ 2 +
8 Meningothelial 2 ++ 2 +
9 Meningothelial 2 ++ 2 +
10 Meningothelial 2 ++ 2 ++
11 Meningothelial 2 ++ �

12 Meningothelial 2 ++ 2 +
13 Meningothelial 2 ++ 2 +
14 Meningothelial 2 ++ 2 ++

Morphology and immunohistochemistry.
Immunohistochemical score. 0: negative/not more than 10% of neoplastic cells, l: more than 10% and within 50%, 2: more than 50% of the neoplastic cells; +:

moderate immunostaining; ++: intense immunostaining.
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