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Polymer Supported Metal Nanoparticles for the Green Synthesis of Fine Chemicals 

 

 

 

The development of greener and more economical routes for chemicals 

production is one of the major current concerns at industrial level. This is 

particularly true in the fine chemicals sector, where the large amount of waste 

produced contribute to the characteristic high E-factor (Kg waste/Kg product). 

Catalysis may be the key to solve the problem provided that active and selective 

catalysts are elaborated. These are the distinctive features of homogeneous phase 

catalysts, which indeed dominate the sector. However, they show severe 

drawbacks in terms of recovery and reuse of the precious catalysts. The 

immobilization of chemical catalysts onto solid insoluble supports offers 

significant benefits to this regard. 

The present Thesis reports a simple one-pot strategy for the synthesis of solid-

supported metal catalysts based on ion-exchange resins, and in-situ formed 

metal nanoparticles under mild catalytic hydrogenation conditions (room 

temperature, 1 bar H2). The so-formed heterogeneous palladium system was 

carefully characterized and tested in hydrogenations processes for the synthesis 

of high added value chemicals. The catalyst showed high activity and selectivity 

and could be readily reused several times with neither detectable metal leaching 

in solution nor significant efficiency decay under batch conditions. Application to 

the synthesis of the leaf alcohol cis-3-hexen-1-ol was explored both under batch 

and continuous mode showing significant advantages compared to established 

industrial process. 
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Introduction  

 

 

1.1 OVERVIEW 

This chapter outlines the principles of green chemistry and explains the 

connection between green chemistry, sustainable technology and catalysis. It 

covers the concepts of atom economy and E factor and focuses in the synthesis 

of fine chemicals, pointing out the drawbacks and the role that catalysis can play 

to improve the processes. Next, a general outlook of the different types of 

catalysis is given paying special attention to heterogeneous systems and, in 

particular, to supported metal nanoparticles in its catalytic role. Among the vast 

variety of supported catalytic systems (organic, inorganic supports), the special 

case of ion exchange resins is explained in detail, summarizing the state of art in 

the field. In the last section, a brief introduction of continuous flow processes is 

given. The reader will arrive at the end of this chapter with all the required 

information to understand the aim of this work and evaluate the relevance of the 

goal itself. 



Chapter 1 

2 

 

1.2. SUSTAINABLE CHEMISTRY 

The increasingly severe environmental legislation has generated an urgent 

need for cleaner methods of chemical production.1 The trend towards what is 

known as “Green Chemistry” or “Sustainable Technology”2 necessitates a 

paradigm shift from traditional concepts of process efficiency, that focus largely 

in chemical yield, to one that assigns economic value to eliminating waste at 

source and avoiding the use of toxic and/or hazardous reagents and solvents.3 

The Organization for Economic Cooperation and Development (OECD) 

defines sustainable chemistry as the design, manufacture and use of efficient, 

effective, safe and more environmentally benign chemical products and 

processes.4 Within the broad framework of sustainable development, 

government, academia and industry should strive to maximize resource 

efficiency through activities such as energy and non-renewable resource 

conservation, risk minimization, pollution prevention, minimization of waste at 

all stages of a product life-cycle, and the development of products that are 

durable and can be reused and recycled. Essentially, sustainable chemistry is 

about doing more and better with less.5 

Sustainable Chemistry is a concept sometimes opposed and sometimes 

confused with Green Chemistry. However, there is a key difference between 

these two concepts, as shown in Fig. 1.1. 

Sustainability…

Meeting the needs of the present generation without compromising the needs 

of future generations

Green Chemistry…

Technologies that are energy efficient,minimise or preferably eliminate the 

formation of waste,avoid the use of toxic and/or hazardous solvents and 

reagents and, where possible,utilise renewable raw materials.

… is the goal

… is the means  

Fig. 1.1. Difference between Sustainability and Green Chemistry. 
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As Anastas and Warner2a have pointed out, the guiding principle of Green 

Chemistry is the design of environmentally benign products and processes. In 

order to illustrate what this definition means in practice, the 12 Principles of 

Green Chemistry were formulated. The principles provide the guidelines to lower 

the ecological footprint of the chemicals produced and the processes by which 

such chemicals are made: 

1. Prevention: It is better to prevent waste than to treat or clean up waste 

after it has been created. 

2. Atom economy: Synthetic methods should be designed to maximize the 

incorporation of all materials used in the process into the final product. 

3. Less hazardous chemical synthesis: Wherever practicable, synthetic 

methods should be designed to use and generate substances that 

possess little or no toxicity to human health and the environment. 

4. Designing safer chemicals: Chemical products should be designed to 

effect their desired function while minimizing their toxicity. 

5. Safer solvents and auxiliaries: The use of auxiliary substances (e.g., 

solvents, separation agents, etc.) should be made unnecessary wherever 

possible and innocuous when used. 

6. Design for energy efficiency: Energy requirements of chemical 

processes should be recognized for their environmental and economic 

impacts and should be minimized. If possible, synthetic methods should 

be conducted at ambient temperature and pressure. 

7. Use of renewable feedstocks: A raw material or feedstock should be 

renewable rather than depleting whenever technically and economically 

practicable. 
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8. Reduced derivatives: Unnecessary derivatization (use of blocking groups, 

protection / deprotection, temporary modification of physical / chemical 

processes) should be minimized or avoided if possible, because such 

steps require additional reagents and can generate waste. 

9. Catalysis: Catalytic reagents (as selective as possible) are superior to 

stoichiometric reagents. 

10. Design for degradation: Chemical products should be designed so that 

at the end of their function they break down into innocuous degradation 

products and do not persist on the environment. 

11. Real-time analysis for pollution prevention: Analytical methodologies 

need to be further developed to allow for real-time in-process monitoring 

and control prior to the formation of hazardous substances. 

12. Inherently safer chemistry for accident prevention: Substances and the 

form of a substance used in a chemical process should be chosen to 

minimize the potential for chemical incidents, including releases, 

explosions and fires. 

However, quantifying the improvement of a chemical process in terms of 

Green Chemistry is not as easy as calculating yield improvements and/or 

selectivity increases of a chemical reaction, where simple percentages are 

suitable. Among the different metrics formulated to this purpose, there are two 

useful measures6 that give an idea about the potential environment acceptability 

of chemical processes: 

 E factor: It is the actual amount of waste produced in the process, defined 

as everything but the desired product. It is calculated by dividing the 

amount of waste generated by the amount of product obtained (kg waste 

/ kg product). It takes the chemical yield into account and includes 
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reagents, solvents losses, all process aids. There is one exception, water is 

excluded from the calculation, otherwise this would lead to exceptionally 

high E factors that can make meaningful processes comparisons.  

 Atom efficiency: extremely useful tool for rapid evaluation of the amounts 

of waste that will be generated by alternative processes. It is calculated by 

dividing the molecular weight of the product by the total amount of the 

molecular weights of all substances formed in the stoichiometric equation. 

The theoretical E factor is readily derived from the atom efficiency. A higher E 

factor means more waste and, consequently, greater negative environmental 

impact. The ideal E factor is 0 with no waste generated, but it can reach values 

up to 100 as it can be seen in the Table 1.1., adapted from Sheldon.7 

Table 1.1. Estimation of the E factor in various segments of the chemical industry. 
      

Industry segment Product tonnage per year Kg waste / Kg product 

Oil refining 10
6
-10

8
 < 0.1 

Bulk chemicals 10
4
-10

6
 1 - 5 

Fine chemicals  10
2
-10

4
 5 - 50 

Pharmaceuticals 10-10
3
 25 - 100 

 

In addition, to precisely evaluate the environmental impact of a chemical 

process it must be consider, not only the amount of waste but also, the nature of 

this waste. 

The work developed in this Thesis is placed in a sector with one of the highest 

E-factor, the Fine Chemicals synthesis. In the next sections an overview about the 

synthesis of these kind of products is given, as well as some of the potential 

tools that can decrease the E-factor when synthesizing these chemicals. 
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1.3. SYNTHESIS OF FINE CHEMICALS 

Although there are not universally accepted definitions, chemicals can be 

classified on the basis of product volume and product value into four 

categories,8 as is shown in the diagram of Fig. 1.2. 

P
ro

d
u

ct
 v

o
lu

m
e

Product value / specificity

Commodities

Specialties

Bulk 

chemicals 

Fine 

Chemicals

 

Fig. 1.2. Segmentation within the chemical industry. 

Bulk chemicals and commodities are large-volume, low-price, and 

standardized chemicals produced in dedicated plants and used for a large 

variety of applications. Petrochemicals, basic chemicals, heavy organic and 

inorganic chemicals (large-volume) monomers, commodity fibers, and plastics, 

are all part them. While bulk chemicals are sold on the basis of industry 

specification (e.g. acetone, ethylene, phenol) and there is essentially no 

difference in the product from different suppliers, commodities are sold on the 

basis of their performance (e.g. polymers, surfactant, paints), the product is 

formulated and its properties can differ from one supplier to another. 

Fine chemicals are products of high and well-defined purity, which are 

manufactured in relatively small amounts and sold at relatively high price.9 They 

can be divided in two basic groups; those that are used as intermediates for 

other products and those that, by their nature, have a specific activity and are 



Introduction 

7 

 

used based on their performance characteristics. The latter are called specialty 

chemicals. 

Fine chemicals and specialties are complex, multifunctional molecules, single, 

pure chemical substances produced in limited quantities. The former are 

produced in multipurpose plants by multistep batch chemical or biotech 

processes. They are sold on the basis of exact specifications (what they are), for 

further processing within the chemical industry, e.g. pharmaceutical and 

agrochemical intermediates. The latter are formulations of chemicals containing 

one or more fine chemicals as active ingredients. They are identified according 

to performance properties (what they can do). Pharmaceuticals, pesticides, 

flavours and fragrances or specialty polymers are some examples. In the life 

science industry, the active ingredients of drugs are fine chemicals and the 

formulated drugs are specialties. 

Bulk and fine chemicals are identified according to specifications;10 some of 

them are summarized in Table 1.2. 

Table 1.2. Characteristics of bulk and fine chemicals manufacture. 
      

  Bulk Fine Chemicals  

Volume (t/a) > 10000 < 10000 

Price ($/Kg) < 10 10-25 

Lifecycle long relatively short 

Added value low high 

Molecules simple complex, several functionalities 

Applications   many limited (often one) 

Synthesis few steps, one or few routes multi steps, various routes 

Catalysis often rarely 

Processing 
continuous, mostly gas phase, 

fixed bed 

batch, multi-step, mostly liquid 

phase 

Plan type Dedicated Multipurpose 

E-factor 0-5 5 - 50 
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In general, expensive raw materials are processed to obtain fine chemicals 

which possess relatively complicated structure, being in general polyfunctional 

molecules that require multistep, highly selective (chemo-, regio-, diastereo-, 

and/or enantioselective) synthetic methods. In this regard, the required 

selectivity has been traditionally provided by highly selective reagents used in 

stoichiometric, or even over-stoichiometric, amounts. As a consequence, the 

waste generated per kg of product, the so-called E factor, in the fine chemicals 

industry is much higher than in the commodities industry, and it makes 

necessary the adoption of environmentally more friendly catalytic methods to 

substitute the stoichiometric ones. Catalysis should play a crucial role in the 

development of cleaner methods for fine chemicals production. 

 

1.4. CATALYSIS ROLE IN THE SYNTHESIS OF FINE CHEMICALS  

The term “catalysis” was introduced as early as 1836 by Berzelius.11 But was 

Ostwald who gave to the theory of catalysis its modern form, formulating in 

1894 a definition that is still valid today: “a catalyst accelerates a chemical 

reaction without affecting the position of the equilibrium”.12 Apart from 

accelerating reactions, catalysts have another important property: they can 

influence the selectivity of chemical reactions. Industrially, this targeted reaction 

control is often even more important than the catalytic activity.10 

Nowadays, catalysis is one of the most active research areas in chemistry and 

the key for the innovation in chemical industrial processes, having a big 

influence on many aspects of a chemical process (see Fig 1.3.). According to 

some estimates,13 catalysts are used in 90% of the world’s chemical processes 

with 60% of all commercially produced chemical products requiring catalysts at 

some stage of their manufacture. 
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Fig. 1.3. Catalysis behind sustainable energy and chemicals.
14

 

As was shown in the previous section, one of the biggest problems in fine 

chemicals industry is the large amount of waste generated. This waste consists 

primarily in inorganic salts and it is a direct consequence of the use of 

stoichiometric inorganic reagents.15 Many of these reagents are polluting, 

moreover, they contain many atoms that are not incorporated in the final 

products and therefore, must be disposed of. This is not only bad for the 

environment, but also very costly. Examples are stoichiometric reductions with 

metals (Na, Mg, Zn, Fe) and metal hydride reagents (LiAlH4, NaBH4); oxidations 

with permanganate, manganese dioxide and chromium (VI) reagents; and a wide 

variety of reactions such as sulfonations, nitrations, halogenations or Friedel-

Crafts acylations that employ stoichiometric amounts of mineral acids (H2SO4, 

HF, H3PO4) and Lewis acids (AlCl3, ZnCl2, BF3). The solution is evident: 

replacement of old stoichiometric methodologies with cleaner catalytic 

alternatives.16 Indeed, a major challenge in fine chemicals manufacture is to 

develop processes based on H2, O2, H2O2, CO, CO2 and NH3 as the direct source 

of H, O, C and N. Catalytic hydrogenation, oxidation and carbonylation are good 

examples of highly atom efficient, low-salt processes.17 Catalysis is the key to 

increase selectivity, it can improve yield and cut down reactions steps in the 

characteristic multi-step synthesis of fine chemicals.  
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The suitability of catalysts for an industrial process depends mainly on its 

activity, selectivity and stability.10 

 Activity is a measure of how fast the reaction proceeds in the presence of 

the catalyst. It can be evaluated through the turnover frequency (TOF) 

parameter. It quantifies the ratio of moles of reactant converted per mole of 

catalyst per unit of time.  

TOF    =  

converted moles of substrate

moles of catalyst used x time

=   [time -1] Eq. 1.1.

 

For most relevant industrial applications the TOF is in the range 10-2-102 s-1. 

In the case of flow processes, besides the activity of the catalyst, it is 

necessary to calculate its productivity which, in general, is given relative to the 

catalyst mass or volume, so that reactors of different size or construction can 

be compared with one another. This quantity is known as the space–time 

yield (STY):18 

Eq. 1.2.STY   =  
mass of product obtained

Vreactor x time
 

 The selectivity of a reaction is the fraction of starting material that is 

converted into the desired product. 

Eq. 1.3.Selectivity =  
moles of desired product

converted moles of substrate
 

Industrially, a high selectivity is essential from both economical and ecological 

point of views. 

 The chemical, thermal and mechanical stability of a catalyst determines its 

lifetime. Catalyst stability is influenced by numerous factors including 
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sintering, decomposition, modification of the active sites, attrition, coking or 

poisoning. It can be calculated in terms of turnover number (TON), which 

specifies the maximum use that can be made of a catalyst.  

TON = TOF [time-1] x lifetime of the catalyst [time] Eq. 1.4.
 

For industrial applications the TON is in the range 106-107. 

Suitability of a catalyst for a particular process, is usually decided considering 

the following order of priority: Selectivity > Stability > Activity. 

The great variety of catalysts known today can be classified according to 

different criteria.19 Usually, they are considered homogeneous or heterogeneous, 

depending on whether they exist in the same or different phase than reagents 

and products. Biocatalysts (enzymes) are often seen as a separate group. 

 Homogeneous catalysis takes place when catalyst, reactants and products 

are in the same phase (usually liquid). Homogeneous catalysts are generally 

well-defined chemical compounds which, together with the reactants, are 

molecularly dispersed in the reaction media. Examples are mineral acids and 

transition metal complexes. 

 Heterogeneous catalysis takes place when catalyst, reactants and products 

are in different phases. Generally, the catalyst is a solid and the reactants are 

gas or liquids. When a homogeneous catalyst is attached to a solid 

(supported catalysts) is considered part of this group.  

 Biocatalysis is a rather special case, somewhere between homogeneous 

and heterogeneous catalysis. In most cases, the biocatalyst is an enzyme; 

protein molecules of colloidal size that catalyze the reactions in living cells.  

Table 1.3. shows a summary with the main advantages and disadvantages of 

homogeneous and heterogeneous systems. 
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Table 1.3. Schematic comparison between homogeneous and heterogeneous catalysts. 
      

  Homogeneous Heterogeneous 

Form metal complex 
solid, often metal or metal 

oxide 

Activity high variable 

Selectivity high variable 

Thermal stability often decomposes <100ºC high 

Reaction conditions mild drastic 

Lifetime variable long 

Poisoning low high 

Diffusion problems none possible 

Recycling difficult (expensive) easy 

Recovery difficult  easy 

Variation of steric and 

electronic properties 
possible difficult 

Intelligibily of the 

mechanism 
possible difficult 

 

Currently, catalytic synthesis of fine chemicals is largely dominated by 

homogeneous phase systems, which adds environmental issues to the overall 

procedures.2b,20 The immobilization of chemical catalysts onto solid, insoluble 

support materials offers significant benefits in terms of ease of reuse of the 

precious catalysts, clean catalyst separation as well as integration in existing 

reactor equipments.21 Due to this, chemical industry has a great preference for 

solid catalysts for both economical and environmental reasons, provided that: i) 

they are easily accessible in the requested amount at competitive costs, ii) show 

significant operationally advantages over the corresponding homogeneous 

systems and iii) their scope and limitations are known.22 However, further efforts 

are necessary in the design of new heterogeneous catalysts to reach competitive 

activity and selectivity values compared to homogeneous ones. 
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1.5. HETEROGENEOUS CATALYSIS 

In the last two decades, with the advancement in green chemistry, 

heterogeneous catalysis has moved into the fine chemicals and pharmaceuticals 

industry.23 There has been a considerable amount of research carried out in the 

development of new catalytic systems featured by high activity and selectivity, 

characteristic from homogeneous catalysis, and ease of recovering and recycling 

typical from heterogeneous catalysts, filling like this the gap between these two 

worlds. One of the strategies adopted has been the heterogenization of 

homogeneous systems. Therefore, solid catalysts can be divided into 

bulk/unsupported catalysts and impregnated/supported catalysts.24 

 Unsupported catalysts are typically (mixed) metals or oxides where the 

entire catalyst is made of active material. Some examples are zeolites (acid) or 

Raney catalysts. 

 Supported catalysts are commonly used in the case of precious metals or 

unstable compounds. They are also known as heterogenized catalysts. The 

active metal precursor (metal salt, organometallic complex, coating powder) is 

deposited on a porous bulk support. The support can be an oxide (e.g. silica, 

titania, alumina or ceria), an activated carbon, or even an organic or hybrid 

polymer resin. Examples include Pd/C hydrogenation catalysts25 or 

Pt/Sn/Al2O3 dehydrogenation catalyst.26 From now on, all the attention will be 

paid to this kind of catalysts considering that the catalytic system developed 

in the present thesis belong to the mentioned group.  

There are different synthetic protocols for preparing supported catalysts, they 

are summarized in Scheme 1.1.22a,27 
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Scheme 1.1. Preparation methods for supported catalysts.  

 Chemical Vapor Deposition (CVD): Catalyst preparation can be conducted 

by vaporizing a suitable precursor and adsorbing it on the support material. 

Subsequently, as a result of a surface reaction with or without a co-reactant, 

the adsorbate is transformed to the catalytically active specie. The key to 

controlling metal’s dispersion is the understanding of the relationship 

between the precursor properties and the surface reactivity. 

 Impregnation: Several impregnation methods may be used:  

 (i) by immersion (dipping) where the calcined support is immersed in an 

excess of solution containing the metal compound. The solution fills the pores 

and is also adsorbed on the support surface. The excess volume is drained off.   

 (ii) by incipient wetness: a solution containing the metal compound and 

having a volume equal or slightly less than the pore volume of the support is 

added to a porous solid. Capillary action draws the solution into the pores, 

keeping the metallic compound exclusively into them. Then, the impregnated 

support is dried and calcined.  

 (iii) difussional: the support is saturated with water or acid solution and 

then immersed into the aqueous solution containing the metal compound. 

 Anchoring or grafting is a process in which stable, covalent bonds are 

formed between a homogeneous transition metal complex and an inert 

polymer or inorganic support. The aim is to combine the potential versatility 
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and selectivity of homogeneous catalysts with the practical advantages of a 

solid material. There is a chemical reaction between functional groups (e.g. 

hydroxyl groups in silica materials) on the surface of the support and an 

appropriately selected inorganic or organometallic compound of the active 

element (e.g. terminal triethoxysilane groups). 

 Ion exchange: The metal ions are deposited by ion exchange onto a 

support that can be inorganic (zeolites) or organic (functionalized resins), and 

then reduced. Well-dispersed materials are obtained. The metal loading is 

restricted by the ion exchange capacity of the support utilized. 

 Entrapment or ‘Ship in a bottle’: In both cases, the catalyst gets occluded 

within the pores of a solid support and cannot diffuse out. However, the 

synthetic approach is different; while the entrapment strategy consists in 

synthesizing the inorganic support starting from a solution that contains the 

homogeneous catalyst, in the ship in a bottle method the catalyst is built 

inside the pores of a pre-existing support.  

Many supports can be used as carrier material. They are featured by chemical 

nature, morphology, surface area, pore volume, pore size distribution, particle 

size, corrosion resistance, acid-base properties and ability to give rise to metal-

support interaction. The support plays an active role in the catalytic reaction, 

thus in order to make a catalyst feasible and effective for a specific application, 

attention must be paid to: i) reduction the amount of expensive active metal 

loading, ii) increase the metal dispersion, iii) stabilization of metal particle size, 

iv) improvement of mechanical resistance, v) generation of additional active sites 

leading to bifunctional catalysts. 

Catalysts in which the active component is a metal are much used in fine 

chemical industry, generally to perform hydrogenations28,29 and oxidations.29,30 

When the metal precursor has been deposited onto a support, the catalyst can 
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be activated by further reduction obtaining afterwards supported metal 

nanoparticles (MNPs)  

1.5.1. METAL NANOPARTICLES IN HETEROGENEOUS CATALYSIS  

Metal nanoparticles, with their unique optical and catalytic properties, have 

attracted substantial attention over the past few decades.31 At least one 

dimension of these nanomaterials is in between 1 and 100nm, being this the 

reason to exhibit unusual chemical and physical properties different from those 

of the bulk material or of the atoms.32 One of the important factors of the 

nanosize regime is the presence of a large percentage of atoms at the surface 

(high surface area to volume ratio), what enhances its catalytic activity.33 In 

addition, the concentration of low coordinated sites (defect sites) is relatively 

abundant. These sites usually show low activation barrier,34 so nanoparticles can 

easily undergo aggregation, hence the need to be stabilized by ligands, 

surfactants or by the support where they are immobilized on. On the other hand, 

when nanoclusters are deposited on surfaces, their physical and chemical 

properties are strongly dependent not only on their particle size and chemical 

composition, but also on the structure of the surface and that of the 

metal/substrate interface. 

In fine chemicals industry, when Raney type catalysts do not have the 

required activity and selectivity, the employment of precious metals is needed.35 

Because of the high price of precious metals, the use of nanoparticles represents 

a clear advantage, since larger metallic surfaces than in bulk materials can be 

obtained.  

The acceleration of a chemical reaction by solid catalysts proceeds at the 

surface of the catalyst. The catalytic activity is generally proportional to the 

surface area of the nanoparticle per unit volume, however, the species involved 
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must get to and from the surface, and thus the diffusion phenomenon must be 

also considered (see Fig. 1.4.). 

active 

site

Molecular 
adsorption

Disociative
adsorption

Surface 
diffusion

Surface 
reaction

Product
desorption

 

Fig. 1.4. Steps involved in a chemical reaction catalyzed by supported MNPs. 

For supported metal nanoparticles, the term dispersion refers to the ratio of 

the number of metal atoms on the surface to the total number of metal atoms 

within the nanoparticle.36 As shown in Fig 1.5., in an 8-atom cluster all the atoms 

are on the surface, nevertheless, the dispersion declines rapidly with increasing 

cluster size and so the surface area on which the reaction is carried out.  

 

Fig. 1.5. Evolution of the dispersion as a function of n for cubic clusters up to n=100 (N=10
6
). 

The structure of the first four clusters is displayed.
37
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Precious metals need to be employed as very small particles with most of the 

metal atoms in the surface, which calls for metal dimension of ca 2 to 5nm and 

metal loading usually less than ca 3 wt%. 

Solid MNPs-based catalysts are largely employed in everyday life processes, 

including pollutants abatement, processing of raw materials, synthesis of base 

organic chemicals and energy production.38 Some examples are the synthesis of 

ammonia with iron nanoparticles supported on inorganic oxides like Al2O3, MgO, 

CaO, K2O;39 platinum nanoparticles supported onto alumina/silica for 

hydrocarbon cracking;40 or palladium nanoparticles onto organic polymers for 

the synthesis methyl isobutyl ketone and methyl-tert-butyl ether.41 However, 

MNPs for application in regio-, chemo-, stereo- or enantioselective catalysis on 

large scale are far less developed.42 Indeed, despite the aforementioned 

favorable opportunities, MNP catalysts have not yet found broad opportunities 

in complex molecule synthesis, with few applications thus far limited to cross-

couplings and oxidations/reductions. Processes are in place with the 

hydrogenation of alkynes by the Pd Lindlar-type catalysts,43 and for the 

production of the herbicide ProsulfuronTM and the sunscreen agent 2-ethylhexyl-

p-methoxy-cinnamate by the Pd Heck reaction.44 

Nevertheless, all preparation methods for supported MNPs suffer from one or 

more drawbacks, including lack of reproducibility and/or complex synthetic 

procedure. Moreover, the routes described in the literature normally use organic 

solvents, hazardous reagents (NaBH4, hydrazine), stabilizing agents or harsh 

conditions. In order to make their industrial application acceptable, more 

sustainable methods for MNPs synthesis than those currently used are thus 

required. The need of routes involving minimal reagents and mild conditions has 

been already mentioned (see Section 1.3.). 
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1.5.2. ION EXCHANGE RESINS AS SUPPORTS FOR MNPs 

Ion exchange resins are polymers that are capable of exchanging particular 

ions within the polymer with ions in a solution that is passed through them. 

These exchanges take place without any physical alteration to the ion exchange 

material. The basic chemical structure of ion exchangers is the same for most of 

them. They are quite often formed by polystyrene-divinylbenzene (PS-DVB) 

cross-linked frameworks, with different kind and degree of functionalization, 

cross-linking degree, specific surface area and porosity.45 Some examples of 

different functionalized ion exchange resins are shown in Scheme 1.2. 

 

Scheme 1.2. Examples of ion exchange resins with different functionalization, a strongly 

acidic sulphonated polystyrene cation exchange resin (left) and a strongly basic quaternary 

ammonion anion exchange resin. 

The resins are commercially prepared as spherical beads with a solid 

appearance.46 The beads have either a dense internal structure with no discrete 

pores (gel resins, also called microporous resins) or a porous, multichannelled 

structure (macroporous or macroreticular resins). A simplified comparison 

between the gel-type and macroreticular resins at different scales, from micro- 
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to nanometric scale, is depicted in Fig. 1.6. As shown in the figure, level 1 

represents the dry materials. Level 2 is a representation of the microporous 

swollen materials at the same linear scale; swelling involves the whole polymeric 

mass in the gel-type resin and the macropore walls in the macroreticular resin. 

The morphology of the swollen polymer mass is similar in both gel-type and 

macroreticular resins (level 3). In the smallest scale, level 4, nanopores are 

formed by the void space surrounding the polymeric chains.47 

 

Fig. 1.6. Schematic representation of the micro- and nanoscale morphology of gel-type (a) 

and macroreticular (b) resins. (Reprinted from reference [48]) 

The crucial feature of cross-linked functional polymers (CFP) is that they swell, 

to variable extent, when put in contact with some liquids. For this reason, their 

ability to accomplish a chemical task is limited only to their swollen state.49 
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These synthetic resins were initially used for purifying water and other 

applications including separating out some elements. The affinity of the 

functionalized resins for ions varies with the ionic size and charge of the ion, as 

example, for sulphonic acid resins the affinity is greatest for large ions with high 

valence (for dilute solutions, the order of affinity for some common cations is: 

Hg2+<Li+<Na+<<<Al3+<Fe3+). However, the ready availability of these materials 

attracted the attention of chemists interested into chemical synthesis and 

processing, from both the academia and the industry. By the mid seventies, the 

catalytic potential of CFPs based on PS-DVB skeleton was demonstrated in 

heterogeneous acid catalysis,50 and nowadays a few industrial processes 

catalyzed by CFP-based catalysts are in operation (see Table 1.4.), from them by 

far the most important one is the synthesis of MTBE (total capacity plant about 

20 x 106 tons per year).51,52 

Table 1.4. Selection of industrial acid-catalyzed reactions promoted by CFPs. 
      

 Product Reagents Catalyst  

Alifatic esters Carboxylic acids + olefins N.A. 
a
 

Acrylic esters Acrylic acid + olefins N.A. 

Isopropanol Propene + water Macroreticular, 8–10% DVB
b
 

Bisphenol A
c
 Phenol + acetone Gel-type, modified with cysteamine

d
 

o-Phenylphenol
e
 Cyclohexanone Macroreticular 

Phenol alkylates Phenol + olefins Macroreticular 

1-Butene oligomers Isobutene Powdered, diameter ca. 30 m 

MTBE
f
 Methanol + isobutene Macroreticular 

a
 Not available. 

b
 Divinylbenzene. 

c
 2,2-di(4-hydroxy)phenylpropane. 

d 
The –SH function 

serves as the co-catalyst. 
e
 Via dianone, 2-(1-cyclohexenyl)-cyclohexanone. 

f
 Methyl t-butyl 

ether. 

 

But in spite of the scientific novelty and of potential further technological 

breakthroughs shown for these polymeric supports, the concept of CFPs-

supported heterogeneous metal catalysts has not been very successful. Besides a 

few patents issued to Bergbau Chemie53 and to Mobil Oil54 describing the use of 
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CFPs as supports for metal nanoclusters and as carriers for heterogenized metal 

complexes respectively, not many papers have been published on this subject.  

Nevertheless, in the last ten years, research in this field has clearly accelerated 

with main contributions from Corain and associates55 and from Ley’s group in 

Cambridge.56 Development of Ley’s work has even led to the commercialization 

of the micro-encapsulated PdII and Pd0-EnCat catalysts.57 

One of the possible reasons why CFPs have not been much explored as 

catalysts supports can be the higher price with respect to conventional inorganic 

supports. This is clearly a disadvantage where the catalyst’s price is a major 

processing cost, due to low added value of the product and/or to the huge 

catalyst’s loads typical of large-scale production. However, fine chemicals are 

usually organic substances of relatively low thermal stability and are synthesized 

under mild to moderate conditions, which are compatible with the employment 

of cross-linked polymers as supports for metal catalysts. In this perspective the 

use of CFPs as catalytic supports is economically feasible. The (industrial) 

synthesis of fine chemicals is typically carried out on a relatively small scale and 

the products have generally a high added value. These circumstances can make 

the catalyst cost acceptable even for relatively expensive ones. 

In conclusion, the scope of polymeric supports in heterogeneous metal 

catalysis has been steadily expanding in recent years and it is expected that it 

will be even more so in the close future, with predictable scientific and 

technological breakthroughs. 
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1.6. FLOW CATALYSIS  

It has been mentioned several times along this Introduction chapter the need 

of developing greener and safer chemical processes for the large scale 

production of fine chemicals. The first approach would be the use of selective 

catalysts instead of stoichiometric reagents, which reduces the large amounts of 

waste generated, characteristic from fine chemicals manufacture (high E factors). 

In a second step, the substitution of homogeneous catalysts (extensively used in 

industry) by heterogeneous ones, offers significant benefits in terms of clean 

separation and reuse of the precious catalyst. An additional value is the use of 

MNPs catalysts supported onto insoluble materials. So then, the final step in this 

race would be the use of the cited supported catalysts in continuous flow mode 

instead of batchwise. Use of continuous-flow reactors allow reactions to be 

carried out with greater efficiency and much lower energy and space 

requirements compared to the corresponding batch processes. Basically, in a 

continuous process, reactants flow through a catalytic “chamber” where they 

react to form the desired products that subsequently leave that chamber to be 

collected. The continuous removal of the reaction products also enhances the 

catalyst’s lifetime and minimizes the purification procedures. Of course, this is an 

easy way to describe the situation, in practice, is not that simple. 

Nowadays, flow chemistry, an old process concept for industry, has reached 

chemical laboratories, being conducted in miniaturized apparatuses in the 

laboratory.58 Common miniaturized bench-size flow devices can be classified 

depending on the inner diameter of the tubes/channels that form the reactor in: 

 Micro flow reactors: 10-500 m i.d. 

 Mini (meso) flow reactors: 500 m to several mm i.d. 

A comparative chart explaining the main advantages and disadvantages of 

these two systems is shown in Table 1.5. 
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Table 1.5. Micro versus mini (meso) flow reactors. 

    

Microfluidic Minifluidic 

 
high heat transfer surface to 

product volume ratios 
X lower heat transfer surface 

 good heat transfer capabilities  X poor heat transfer capabilities 

X 
micro channels suffer from 

restricted flow capacity 
 improved flow capacities 

X high pressure drop  lower pressure drop 

X tendency to block  no blocking of channels 

 
ideally suited for optimizing 

reactions conditions  
 

preparation of multigram to 

multikilogram quantities 

 efficient mixing  
possibility to work with packed 

bed reactors 

 

In both cases, continuous flow reactors show several advantages comparing 

to batch processes in terms of safety, scale production, and scale-up issues. The 

excellent heat and mass transfer properties, together with efficient mixing of 

miniaturized flow devices have made them ideal tools for carrying out i) highly 

exothermic reactions that if performed in batch mode it could be unsafe or 

unfeasible due to thermal decomposition of the products, ii) synthesis using 

hazardous reagents, or iii) creation of highly reactive intermediates.59 On the 

other hand, continuous flow reactors are generally smaller than batch reactors 

but in an ideal setup and under optimized conditions, they are able to produce 

bigger amount of product in a given time than an analogous batch reactor.60 

Furthermore, reaction parameters such as temperature, concentration, 

composition of reactants established for a small scale process can directly be 

transferred to larger flow reactors, without the need for substantial re-

optimization.61  
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In addition to simple tube-like hollow reactors, packed bed reactors have 

lately seen application in the synthesis of drug chemicals. These fix bed reactors 

are often functionalized with heterogeneous supported catalysts, but one must 

be aware that when packing is irregular they show uncontrolled fluid dynamics 

which results in poor efficiency due to hot spot formation, stagnation zones and 

broad residence time distribution. 

Working under flow conditions offers other possibilities such as multi-step 

synthesis by using linearly link flow reactors, thereby minimizing work-up and 

isolation protocols, multicomponent reactions or photochemical synthesis.62 In 

any case, even if it cannot be assured that it will solve the current problems in 

the pharmaceutical sector, flow technology is a powerful tool that has to be 

taken into account and correctly evaluated when new catalytic systems are 

developed.  

 

1.7. MOTIVATION AND AIM OF THE WORK  

The development of sustainable routes for the large scale production of fine 

chemicals, i.e. cost-effective and environmentally friendly, is one of the major 

current concerns at the industrial level. Highly active and selective catalysts may 

significantly contribute to solve the problem, however, their elaboration often 

ends up being very sophisticated and expensive. Moreover, catalytic synthesis of 

fine chemicals is still largely dominated by homogeneous phase systems, which 

adds environmental issues on the overall procedures. Among the strategies 

proposed to achieve low-impact processes, the immobilization of chemical 

catalysts onto insoluble support materials offers significant benefits in terms of 

ease of reuse of the precious catalysts, clean catalyst separation as well as 

integration in reactor equipments. Due to this, chemical industry has a great 

preference for solid heterogeneous catalysts. On the other hand, use of 
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continuous-flow reactors represents a considerable added value in this regard, 

as they allow reactions to be carried out with greater efficiency and much lower 

energy and space requirements compared to the corresponding batch 

processes, in addition, continuous removal of the reaction products enhances 

the catalyst’s lifetime and simplifies the purification procedures.  

The present work aims to overcome this challenging task by developing a 

simple and green method, devoid of harsh conditions or polluting agents and 

based on commercial products, for the synthesis of solid-supported catalysts 

easily integrated in both batch and flow reactor equipments. These catalysts will 

be deeply explored and optimized for the preparation of chemicals whose 

synthesis requires highly selective processes (pharmaceuticals, agrochemicals, 

fragrances). The project will contribute to fill the gap between the potential of 

heterogeneous catalysis and the application to sustainable production of fine 

chemical compounds. 
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Description of Experimental Techniques Used 

 

 

2.1. OVERVIEW 

The aim of this chapter is to briefly explain the experimental techniques that 

have been used to carry out a thorough characterization of the synthesized 

supported catalysts, likewise the equipments used in other sections of the current 

study such as catalytic testing are described. Explanation of continuous flow 

reactors and the chemical reactors used for medium/high pressure experiments in 

batch conditions is also provided. General notions are given with focus on most 

important aspects for the present work. 
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2.2. CATALYSTS CHARACTERIZATION TECHNIQUES 

After nanoparticles are successfully synthesized, the first necessary step before 

any further application is characterization. Because of the small size of 

nanoparticles (< 100 nm), some conventional characterization techniques are no 

longer applicable. Judicious selection of characterization techniques is required 

for obtaining meaningful evaluation of nanoparticles on hand. Characterization of 

nanoparticles generally includes the following aspects: size, shape, morphology, 

crystal structure and composition. Each aspect can be characterized by multiple 

techniques, Table 2.1. summarizes the techniques that have been used in this 

study.1  

Table 2.1. Nanoparticle characterization techniques. 
 

Characteristics Techniques 

Size, shape, 

morphology 
 Dynamic light scattering (DLS)  

Microscopy 

  Optical microscopy 

 
 Environmental Scanning Electron Microscopy (ESEM) 

 
 Transmission Electron Microscopy (TEM) 

 
 Scanning Transmission Electron Microscopy (STEM) 

X-ray 

 
 X-ray diffraction (XRD) 

 
 Small angle X-ray scattering (SAXS) 

 
  

Crystal structure  X-ray diffraction  

 

 Transmission electron Microscopy 

 
  

Composition  Energy dispersive X-ray Spectroscopy (EDS) 

  

 Inductively Coupled Plasma - Optical Emission 

Spectroscopy (ICP-OES) 

 

Regarding the final catalyst, the location where the nanoparticles are placed in 

the support material, as well as its morphology, are other important parameters 

to study because of their potential influence in the catalysts efficiency. Next, the 

different techniques used for the characterization of the supported metal 
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nanoparticles (MNPs) and the final catalyst are described in detail, as well as the 

specific equipment employed for the analyses.  

2.2.1. MICROSCOPIC TECHNIQUES 

Microscopy is the discipline that uses microscopes to view objects. A 

microscope is an instrument that produces enlarged images of small objects, 

allowing the observer an exceedingly close view of minute structures at a scale 

convenient for examination and analysis. An image may be enlarged by many 

wave forms, including visible light, acoustic, X-ray, or electron beam, and be 

received by direct or digital imaging or by a combination of these methods. The 

magnifying power of a microscope is an expression of the number of times the 

object being examined appears to be enlarged and is a dimensionless ratio. It is 

usually expressed in the form 10× (for an image magnified 10-fold). The 

resolution of a microscope is a measure of the smallest detail of the object that 

can be observed.2 Even though microscopy is the most straightforward technique 

for nanoparticle characterization, it is limited to only offering two dimensional 

projections of three dimensional objects.  

2.2.1.1. Optical microscopy 

The optical microscope, often referred to as the "light microscope", is a type of 

microscope that uses visible light and a system of lenses to magnify images of 

small samples. Optical microscopes can be simple, consisting of a single lens, or 

compound, consisting of several optical components in line. Single-lensed simple 

microscopes can magnify up to 300×, while compound microscopes can magnify 

up to 2000×. Images can be captured by photography through a microscope, a 

technique known as photomicrography.  

This technique was used for the characterization of the bead-shaped polymer 

used as support for the immobilization of metal nanoparticles (MNPs). The optical 

microscope used to acquire the images was a Nikon Eclipse E600, equipped with 

http://www.britannica.com/EBchecked/topic/4013/acoustic-microscope
http://www.britannica.com/EBchecked/topic/650351/X-ray
http://www.britannica.com/EBchecked/topic/183490/electron-beam
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Lens_(optics)


Chapter 2 

34 

 

a 12 V 100 W LL halogen lamp. The images were acquired in reflectance mode 

using fibers optic as source. The magnification of the observations was in the 

range 1–20X. The software for the acquisition was Nikon ACT-1. 

2.2.1.2. Electron microscopy 

Alternatives to optical microscopy which do not use visible light but a beam of 

electrons in the image formation include scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). Historically, electron microscopes were 

developed due to the limited image resolution of optical microscopes, which is 

imposed by wavelength of visible light. Electron microscopes use electrons to 

illuminate a specimen and because electrons have a much smaller wavelength 

than light (0.02 Å and 4000 Å respectively) these microscopes can show much 

smaller structures.3  

Electrons are one type of ionizing radiation, which is the general term given to 

the radiation capable of removing the tightly bond, inner-shell electrons from the 

attractive field of the nucleus by transferring some of its energy to individual 

atoms in the specimen. One of the advantages of using ionizing radiation is that a 

wide range of secondary signals arises from the specimen which can be collected 

by different types of detectors and analyzed to give different information about 

the sample. Some of these signals are summarized in Fig. 2.1.  

http://en.wikipedia.org/wiki/Scanning_electron_microscopy
http://en.wikipedia.org/wiki/Transmission_electron_microscopy
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Fig. 2.1. Signals generated when a high-energy beam of electrons interacts with a thin 

specimen.  

2.2.1.2.1. Environmental Scanning Electron Microscopy and Energy dispersive X-

ray Spectroscopy 

Environmental scanning electron microscope (ESEM) is a unique modification 

of the conventional scanning electron microscopy (SEM). While SEM operates 

with a modest vacuum ( 10-3 Pa), ESEM is able to operate with gas pressures 

ranging between 10 Pa and 2700 Pa in the specimen chamber. This relaxed 

vacuum environment allows the examination of wet, oily and dirty specimens.  

ESEM utilizes a gaseous secondary electron detector (GSED) that takes 

advantage of the gas molecules in the specimen chamber. The primary electron 

beam, operating between 10 kV and 30 kV, is generated from tungsten, 

lanthanum hexaboride, or field emission electron guns. When a primary electron 

beam strikes a specimen, it generates both backscattered and secondary 

electrons (see Fig 2.1.) that are collected for imaging of the sample topography. 

Backscattered electrons are energetic and are collected by a line-of-sight 

detector. The secondary electrons are low-energy and, as they emerge from the 

specimen, are accelerated towards the GSED by the electric field set up between 

the positive bias on the GSED and the grounded specimen stage. Conductive 

http://www.britannica.com/EBchecked/topic/1434429/environmental-scanning-electron-microscope-ESEM
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coatings or low-voltage primary beams are needed to prevent surface charging 

under the electron beam.  

Qualitative/Quantitative Analysis: In addition to the image-producing 

backscattered and secondary electrons that are generated when a primary beam 

strikes a specimen, there are also electron beam interactions that results in the 

generation of X-rays from the interaction volume (see Fig. 2.1.). The energy of the 

resulting X-rays is representative of the chemical composition within the 

interaction volume and can be measured by Energy dispersive X-ray Spectroscopy 

(EDS), considered a qualitative method of compositional analysis. X-ray counts are 

plotted as a function of their energy, and the resulting peaks can be identified by 

element and line with standard X-ray energy tables.  

ESEM can provide useful information about solid surfaces, in terms of 

composition and imaging, in a way that the conventional electron microscope 

cannot.4  

In this Thesis, the above explained techniques were used for characterization of 

polymer supported nanoparticles made of palladium, rhodium, and gold; metal 

dispersion within the beads, composition and morphology of the support were 

also analyzed. ESEM measurements were performed on a FEI Quanta 200 

microscope operating at 25 KeV accelerating voltage in the low-vacuum mode (1 

torr) and equipped with an EDAX Energy Dispersive X-ray Spectrometer (EDS). X-

ray maps were acquired on the same instrument using a 512x400 matrix, 25 KeV 

accelerating voltage and 350 m horizontal full width. 

2.2.1.2.2. Transmission Electron Microscopy and Scanning Transmission Electron 

Microscopy 

Transmission electron microscopy is used to reveal sub-micrometre, internal 

fine structure in solids. The amount and scale of the information which can be 

extracted by TEM depends critically on four parameters; the resolving power of 
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the microscope (usually smaller than 0.3 nm); the energy spread of the electron 

beam (often several eV); the thickness of the specimen (typically about 100 nm), 

and the composition and stability.5  

TEM uses transmitting electrons to obtain high magnification images of 

nanoparticles and measure particle size, shape and morphology. Since electrons 

are accelerated at a much higher voltage (100-400 KeV) than in SEM, the electron 

beam can be focus on a very small region to obtain high resolution images of 

nanoparticles (magnifying powers of more than 1,000,000×). The thin specimen is 

placed on a metal grid with carbon coating, by taking advantage of the contrast 

between the images of the nanoparticles and the carbon coating of the metal 

grid, nanoparticles can be quantified in size, size distribution and shape. In any 

case, both SEM and TEM techniques cannot distinguish composite nanoparticles 

if the image contrast from different compositions is small or if one composition 

fully coats the core particles of another composition.1  

A scanning transmission electron microscope (STEM) is a type of electron 

microscopy in which the electron beam is focused into a narrow spot which is 

scanned over the sample, combining some working principles of TEM and SEM 

microscopes. The scanning of the beam across the sample makes STEM suitable 

for analysis techniques such as mapping by energy dispersive X-ray (EDX) 

spectroscopy, electron energy loss spectroscopy (EELS) and annular dark-field 

imaging (ADF). These signals can be obtained simultaneously, allowing direct 

correlation of image and quantitative data. Moreover, by using a STEM and a 

high-angle detector, it is possible to form atomic resolution images where the 

contrast is directly related to the atomic number (z-contrast image).  

In the current research, TEM was used for size and size distribution 

characterization of polymer supported nanoparticles made of palladium, rhodium 

and gold while STEM techniques were used to characterize the polymer 
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supported colloidal Pd NPs synthesized in Chapter 6. TEM measurements were 

carried out using either a CM12 PHILIPS instrument at 100 keV accelerating 

voltage or a Leo 922 transmission electron microscope operating at 200 kV 

voltage, equipped with a built-in omega filter for electron energy loss 

spectroscopy (EELS). STEM analyses were performed in a Tecnai 20 microscope 

operating at 200 kV, equipped with Bright Field and Annular Dark Field modes. 

Samples were prepared by crushing the catalysts in an agate mortar, followed 

by sonication in ethanol and deposition of the supernatant onto a graphite grid. 

Statistical nanoparticle size distribution analysis was typically carried out on 200-

300 particles. 

2.2.2. X-RAY TECHNIQUES 

The use of X-ray methods in the field of materials analysis is now entering its 

seventh decade. X-ray photons are a form of electromagnetic radiation produced 

following the ejection of an inner orbital electron and subsequent transition of 

atomic orbital electrons from states of high to low energy. When a 

monochromatic beam of X-ray photons falls onto a given specimen three basic 

phenomena may result, namely absorption, scatter or fluorescence. The 

coherently scattered photons may undergo subsequent interference leading in 

turn to the generation of diffraction maxima. These three basic phenomena form 

the bases of three important X-ray methods: the absorption technique, which is 

the basis of radiographic analysis; the scattering effect, which is the basis of X-ray 

diffraction (XRD); and the fluorescence effect, which is the basis of XRF 

spectrometry.6 

2.2.2.1. X-ray powder diffraction  

X-ray powder diffraction (XRD), which derives its name from the fact that the 

specimen is typically in the form of a microcrystalline powder, is a rapid analytical 

technique primarily used for phase identification of a crystalline material that can 
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provide useful information on the crystal phase, lattice constant and average 

particle size of nanoparticles.7  

X-ray diffraction is based on constructive interference of monochromatic X-

rays and a crystalline sample. These X-rays are generated by a cathode ray tube, 

filtered to produce monochromatic radiation, collimated to concentrate, and 

directed toward the sample. The interaction of the incident rays with the sample 

produces constructive interference (and a diffracted ray) when conditions satisfy 

Bragg‟s Law (nλ=2dsin θ).  

d



2

d sin 



Incident X-Ray
Diffracted X-Ray









 

Fig. 2.2. Scheme of X-Ray diffraction from a cubic crystal lattice.  

This law relates the wavelength of the X-rays () to the diffraction angle () and 

the spacing (d) of atomic planes.8 These diffracted X-rays are then detected, 

processed and counted. By scanning the sample through a range of 2θ angles, all 

possible diffraction directions of the lattice should be attained due to the random 

orientation of the powdered material. Powder diffraction data are usually 

presented as a diffractogram in which the diffracted intensity is shown as function 

of the scattering angle 2θ. Each peak corresponds to diffraction from a particular 

set of interatomic planes whose spacing may be calculated from the Bragg 

equation, since we use X-Rays of known wavelength. This allows identification of 

the crystalline material because each one has a set of unique d-spacings.9  
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The XRD method is suitable to determine: 

 crystal structures by analyzing the position and intensities of the diffraction 

peaks 

 nanoparticle size by analyzing the peak profile (nanoparticles up to 

100nm)10  

In this study XRD was used for size characterization of polymer supported 

nanoparticles made of palladium and rhodium. XRD spectra were recorded with a 

PANanalytical XPERT PRO powder diffractometer, employing CuKα radiation 

(λ=1.54187 Å), a parabolic MPD-mirror and a solid state detector (PIXcel). The 

samples were subjected to measurement without grinding and prepared on a 

silicon wafer (zero background) that was rotating (0.5 rotations per second) 

during spectra acquisition. All XRD spectra were acquired at room temperature in 

a 2θ range from 4 to 95º, applying a step size of 0.0263º and a counting time of 

77.5 seconds. 

2.2.2.2. Small angle X-ray scattering 

Small-angle X-ray scattering (SAXS) is a reliable and economic method for 

analyzing nanostructured materials. SAXS yields information such as particle sizes 

and size distributions, shape and orientation distributions in liquid, powders and 

bulk samples.11 Any scattering process is characterized by a reciprocity law, which 

gives an inverse relationship between particle size and scattering angle. Particle 

dimensions (from 1 to 100 nm) are enormously large compared to the X-ray 

wavelength (e.g. the most frequently used CuK line of 1.54 Å) which makes the 

angular range of observable scattering correspondingly small.12 

Conventional SAXS data (1D), collected by a point detector, such as a Kratky 

camera, are a curve of the scattered intensity versus the scattering angle. This 

kind of SAXS data can be used for samples either with isotropic structure or with 
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a particular orientation. SAXS data measured by two-dimensional detectors (2D) 

can reveal anisotropic features from specimens, such as from polymers, fibrous or 

layered materials, single crystals, and biomaterials.  

The physical principle that rules SAXS technique is the observation of the 

coherent scattering from a sample as a function of the electron distribution in the 

sample. SAXS shows scattering angle (2) range from 0º up to roughly 2º or 3º. In 

a two-dimensional SAXS system, the scattered X-rays are measured in all 360º 

azimuthal angles simultaneously. The X-ray source used for SAXS can be a sealed 

tube or rotating anode generator (RAG). Small focal spots with high specific 

power loading on the target is preferred since long beam path, low divergence, 

and small beam size are typically required for SAXS, this is why collimation is the 

most critical part of a SAXS system since it defines the size, shape, and divergence 

of the X-ray beam. It also determines the resolution of a SAXS system. 

Fig. 2.3. Schematic representation of a SAXS set up. 

In this work SAXS was used for size characterization of polymer supported 

palladium nanoparticles (Chapter 3). SAXS measurements were performed on a 

Hecus X-ray System GMBH Graz S3micro equipped with an ultra brilliant point 

microfocus source Gemix-Fox 3D (Xenoxs, Grenoble). The impinging radiation was 

the 1.54 Å CuK. The scattered X-rays were detected by a two-dimensional 

position sensitive detector with a sample-to-detector distance of 273 mm. The 

primary beam was masked by a 2 mm W filter, positioned so that the region of 

q

X-Ray: =0.1-0.2nm
q= 4 sin /

: wavelength

2: scattering angle
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scattering vectors q [Å-1] was in the range 0.008<q<0.54. Here q has a modulus of 

(4/)sin(/2) with  the X-Ray wavelength and  the scattering angle. Samples 

were contained in a paste cell holder. The sample thickness was varied to have a 

transmittance around 0.8, measured as the area of the primary beam transmitted 

through the sample holder and a 1 mm Ni filter, without and with the sample. All 

measurements were collected at room temperature and with X-Ray source power 

of 12 W. The scattering profile was modelled with the empirical multiple level fit 

method developed by Beaucage, stopped at the second level plus a background 

term, to account for primary particles and their clusters. In order to be safely 

compared, the reduced data were normalized taking into account the acquisition 

time, the transmission and the source power. 

2.2.3. DYNAMIC LIGHT SCATTERING 

Dynamic light scattering (DLS) is a scattering method very useful for size and 

size dispersion analysis of colloidal suspensions. DLS uses visible light to hit the 

specimen and then measures the intensity autocorrelation function of light 

scattered from an ensemble of nanoparticles in solution. The particle size 

obtained is the hydrodynamic size and includes the ligand organic shell, so it will 

be larger than that observed in TEM which only visualizes the inorganic 

nanoparticle core. This is a useful technique to verify the organic shell thickness.13  

This technique has been used to characterize colloidal palladium nanoparticles 

synthesized in Chapter 6 by using a Zetasizer Nano-S (Malvern) instrument in 

order to evaluate the average size of the stabilized particles in suspension.   

2.2.4. INDUCTIVELY COUPLED PLASMA-OPTICAL EMISSION 

SPECTROMETRY  

Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES), also 

referred to as Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-

AES), is an analytical technique used for the detection of trace metals. Inductively 
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Coupled Plasma (ICP) methods have been widely used and have become very 

popular especially because of the possibility of multi-element analysis and their 

wide range of applications. By definition, plasma is a conducting gaseous mixture 

containing a significant concentration of cations and electrons. Argon ions, once 

formed in plasma, are capable of absorbing sufficient power from an external 

source (Radio Frequency) to maintain the temperature at a level at which further 

ionization sustains the plasma indefinitely. The argon plasma can reach 

temperatures as high as 10000 K.14  

ICP-OES is based on the measurement of the light emitted by the elements 

that are part of a sample. Samples in solution are nebulized to produce an 

aerosol of fine droplets. A spray chamber is used to select only the smallest 

droplets for analysis. The selected droplets are swept into the centre of the 

plasma by an argon stream. The high temperature of the plasma supply energy 

to: vaporize solvent, eliminate sample matrix components and elevate atoms to 

their excited states. As atoms leave the plasma and cool, they relax leading to 

emission of light. The wavelengths of the emitted light are characteristic of the 

elements present, and the intensity proportional to their concentrations.15 ICP-

OES limits of detection for many metals lie in the range 1-100 ng/ml (ppb).16 

In the developed work, this technique was used for the determination of metal 

content in the resin-supported catalyst as well as in the heterogeneous catalysis 

solutions to control the presence of leached metal. The measurements were done 

with a Varian 720ES instrument coupled with an autosampler Agilent SP3 at a 

sensitivity of 0.500 ppm for solid samples. Each resin-supported sample (50-100 

mg) was treated in a microwave-heated digestion bomb (Milestone, MLS-200, 20 

min.@ 220 °C) with concentrated HNO3 (1.5 mL), 98% H2SO4 (2 mL), and 0.5 mL of 

H2O2 30%. After filtration, the solutions were analyzed. For the recovered 

solutions after catalysis, they were analyzed directly after 1:5 dilution in 0.1 M HCl. 
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2.3. GAS CHROMATOGRAPHY 

Gas Chromatography (GC) is a common type of chromatography used in 

analytical chemistry for separation and analysis of volatile compounds.17 The basic 

operating principle of GC involves volatilization of the sample in a heated inlet or 

injector of a gas chromatograph, followed by separation of the components of 

the mixture in a specially prepared column. Only those compounds that can be 

vaporized without decomposition are suitable for GC analysis. If the sample is 

non-volatile the techniques of derivatization and pyrolysis GC can be utilized. 

A carrier gas (referred to as the mobile phase), usually an inert gas such as 

nitrogen or helium, is used to transfer the sample from the injector, through the 

column, and into the detector. The vast majority of columns used today are 

capillary tubes with a stationary phase coated on the inner wall. Separation of the 

components is determined by the distribution of each component between the 

mobile phase and the stationary phase. A component that spends little time in 

the stationary phase will elute quickly. After elution from the column, each 

component still in the carrier gas flows into a detector.18,19   

In the current work GC analyses were extensively used in catalytic experiments 

to analyse conversion and selectivity after reaction. The analyses were performed 

with different equipments; Shimadzu GC-17A Gas Chromatograph equipped with 

a flame ionization detector and 50.0 m (0.25 mm ID, 0.25 µm FT) Lipodex-E type 

column, Shimadzu GC-2010 Gas Chromatograph equipped with a flame 

ionization detector and 30.0 m (0.25 mm ID, 0.25 µm FT) Varian VF-WAXms type 

column and SPB-1 type column.  

 

 

 

http://en.wikipedia.org/wiki/Chromatography
http://en.wikipedia.org/wiki/Analytical_chemistry
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2.4. GAS CHROMATOGRAPHY / MASS SPECTROMETRY 

Gas chromatography / mass spectrometry (GC/MS) is the most ubiquitous 

analytical technique for the identification and quantification of organic 

substances in complex matrices. It is the synergetic combination of two powerful 

microanalytical techniques. The gas chromatography separates the components 

of a mixture in time, and the mass spectrometer provides information that aids in 

the structural identification of each component. The advantage is that after 

component separation, mass spectra of individual substances can be obtained for 

qualitative and quantitative purposes. GC/MS can provide a complete mass 

spectrum from a few femtomoles of an analyte; ideally this spectrum gives direct 

evidence for the nominal mass and provides a characteristic fragmentation 

pattern or “chemical fingerprint” that can be used as the basis for identification 

along with the gas chromatograph retention time.18 

In this Thesis GC/MS analyses were performed on two different equipments; 

Shimadzu QP2010S spectrometer equipped with a 30.0m (0.25 mm ID, 0.25 m 

FT) Varian VF-WAXms capillary column, and Shimadzu QP5000 equipped with a 

30.0m (0.25 mm ID, 0.25 m FT) WCOT fused silica capillary column coated with 

CP-Wax 52CB. 

 

2.5. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique that relies on 

the magnetic properties of the atomic nucleus. When placed in a strong magnetic 

field, certain nuclei resonate at a characteristic frequency (resonant frequency) in 

the radio frequency range of the electromagnetic spectrum. Slight variations in 

this resonant frequency give us detailed information about the molecular 

structure in which the atom resides.20 Many of the most common elements found 
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in organic molecules (H, C, N, P) have at least one isotope that is a NMR active 

nucleus (when either the atomic number or the atomic mass is odd, or both are 

odd, the nucleus has magnetic properties and is said to be spinning, e.g. 1H, 13C, 

15N, 31P). These isotopes behave as if the positively charged nucleus was spinning 

on an axis. The spinning charge creates a magnetic field so, when placed in a 

strong external magnetic field, the magnetic nucleus try to align with it.21  

The resonant frequency is not only a characteristic of the type of nucleus but 

also varies slightly depending on the position of that atom within a molecule. This 

subtle variation, in the order of one part in a million, is called the chemical shift () 

and provides detailed information about the structure of molecules. Different 

atoms within a molecule can be identified by their chemical shift. A graph of the 

resonant frequencies over a very narrow range of frequencies centered on the 

fundamental resonant frequency of the nucleus of interest is called spectrum, and 

each peak in the spectrum represents a unique chemical environment within the 

molecule being studied. 

About one half of micromole of a pure molecule in 0.5 ml of solvent is required 

for this non-destructive test. The intensity of NMR signals is directly proportional 

to concentration. Only X-ray crystallography can give a comparable kind of 

detailed information on the precise location of atoms and bonds within the 

molecule. 

NMR spectroscopy was used in the characterization of products after catalytic 

reactions when detection by GC was not possible. 1H and 13C{1H} NMR spectra 

were recorded on a Bruker Avance DRX-400 spectrometer operating at 400.13 

and 100.61 MHz, respectively. Chemical shifts are relative to tetramethylsilane as 

external reference. 
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2.6. CHEMICAL REACTOR EQUIPMENTS 

A chemical reactor is an equipment unit where chemical transformations take 

place to generate a desirable product at a specified production rate, using a given 

chemistry. The reactor configuration and its operating conditions are selected to 

achieve certain objectives such as maximizing the profit of the process, 

minimizing the generation of pollutants, while satisfying several design and 

operating constraints (safety, controllability, availability of raw materials, etc). 

Usually, the performance of a chemical reactor plays a pivotal role in the 

operation and economics of the entire process.22 

2.6.1. BATCH REACTORS 

A batch reactor, as its name states, is a non-continuous and perfectly mixed 

closed vessel where a reaction takes place.23 Reactants are charged to the system, 

rapidly mixed, and rapidly brought up to the temperature so that operating 

conditions are well defined. Batch reactors are the most common type of 

industrial reactor, heat and mass transfer limitations may emerge upon scale-up 

but are rarely important in the laboratory. A batch reactor has no input or output 

of mass after the initial charging. The amounts of individual components can 

change due to reaction but not due to flow into or out of the system.24 

Batch reactors were extensively used during this Thesis for testing the 

developed catalysts. Reactions under a controlled pressure of hydrogen were 

performed using either a non-metallic Büchi Miniclave® (up to 10 bar and 50 mL 

internal volume) or a stainless steel autoclave (up to 80 bar and 20 mL internal 

volume) constructed at ICCOM-CNR (Firenze, Italy) and equipped with a magnetic 

stirrer, a Teflon® inset and a pressure controller for high pressures. The use of 

inert reactors for the catalytic tests ensures that no catalytic contributions come 

from their metallic components. 
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Fig. 2.4. Stainless steel autoclave constructed at ICCOM-CNR (left) and non-metallic Büchi 

Miniclave® (right). 

2.6.2. CONTINUOUS FLOW REACTORS 

Flow reactors, also known as continuous reactors, function with a reaction 

media being “carried” in a flowing stream through a reactor. In order to maintain 

the desired stoichiometry, reagents are continuously fed into the reactor, traverse 

through the reaction zone and exit as a continuous stream of product(s). This 

reactor configuration is used widely in the chemical industry and is now finding 

application in new areas of pharmaceutical industry. Flow reactors are designed in 

a variety of shapes, lengths, diameters and materials of construction.25 The 

potential benefits of continuous reactors are increased reaction rates, solventless 

reactions, enhanced mixing and the ability to effectively remove heat produced 

by the reaction, due to increased heat transfer capacity and defined concentration 

profiles. The ability to control residence time within the reaction zone allows for 

greater control of products distributions and operating conditions. A further 

advantage is that miniaturized flow reactors can be designed to have reduced 

reactor volumes, physical footprint and energy requirements when compared 

with their batch reactor counterparts. Miniaturized flow reactors are referred to as 

nano-, micro-, meso-, macro- (mm) scale reactors, depending on their dimension, 
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being microfluidic (i.d. 10-500 m) and mesofluidic (500 m-several mm i.d) 

reactors, the most used bench-sized flow devices.26 

In this Thesis, catalytic flow hydrogenations were carried out using a packed-

bed mesofluidic flow reactor constructed at Istituto di Chimica dei Composti 

Organo Metallici, Firenze (Italy) shown in Scheme 2.1. 

H2

N2

Solvent Substrate
solution

B

B B

B

A

A
C

C

C

D
E

F

G

H P

Products

L

M

N

A  - Pressure reducing regulator
B  - 3 way switching valve
C  - Shutoff ball valve
D  - In-line filter
E  - Flow controller
F  - Pressure meter
G  - Check valve
H  - Mixing tee
L   - HPLC pump
M  - Reactor
N  - By-pass
P  - Back pressure regulator

 

Scheme 2.1. Schematic view (top) and image of the core (bottom) of the continuous-flow, 

high-pressure reactor system used. 

The system was designed to allow for a simultaneous flow of substrate solution 

and hydrogen gas (up to 40 bar pressure) through a reactor tube containing the 
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heterogeneous catalyst. The reactor was completely inert, as all wet parts were 

made of PEEK, PFA or PFTE. The flow of the substrate solution was regulated by 

an Alltech® model 426 HPLC pump in PEEK. A constant flow of hydrogen gas was 

adjusted by a flow controller BRONKHORST HI-TEC model F200CV-002-RGD-11-

V-MFC. The hydrogen pressure in the reactor was monitored by a BRONKHORST 

HI-TEC P502C-AGD-11-V-6K0R-EPC meter. The concurrent flows of gas and liquid 

were driven through a T-shaped PEEK mixer to ensure efficient gas dispersion. 

The mixed hydrogen-substrate solution stream was introduced in the reactor 

through a 6-port Rheodyne mod. 9060 switching valve in PEEK. The solid catalyst 

was pre-packed into a commercial 3 mm inner diameter Omnifit® glass column, 

equipped with 10m PE frits at the entrance of the catalyst bed to ensure an 

optimum flow distribution.  
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Polymer Supported Metal Nanoparticles:  

Synthesis and Optimization 

 

3.1. OVERVIEW 

This chapter describes the experimental work carried out, particularly it covers 

the synthesis and characterization of polymer supported metal nanoparticles 

used as catalysts in hydrogenation and oxidation reactions. With the aim of 

designing the optimized methodology that leads to a catalytic system featured by 

the highest activity and stability, an in depth investigation was accomplished. 

Resin supported Pd based catalysts and the hydrogenation of probe substrates 

were taken as point of reference to evaluate the effect that several modifications 

related to the support and the activation of the catalytic species could have on 

the final performance of these systems. The standardized method was then 

extended to the synthesis of other noble metal nanoparticles such as rhodium 

and gold.  
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3.2. INTRODUCTION 

The research in the field of fine chemicals synthesis by solid supported metal 

nanoparticles (MNP) catalysts attracts increasing interest due to the possibility to 

couple high activity with ease of preparation, catalyst reuse and continuous 

processing, 1 , 2  thus offering a green and cost-effective alternative to 

homogeneous and conventional heterogeneous catalysts in an industrial segment 

blemished by the highest E-factors.3,4  

A variety of porous materials have been used as the support media for the 

preparation of catalytic active nanoparticles made of noble metals, with Ru, Rh, 

Pd, Pt and Au being the most studied. Much attention has been paid to inorganic 

supports; metal oxides like silica, alumina, titania or ceria are commonly 

employed.5 In the field of organic supports, powder activated charcoal base-

catalysts have become very popular,6 nevertheless the use of ion exchange resin 

has been somewhat less studied, maybe owing to the fact that the work 

mechanism in the swollen state is not well known yet. 

The proposal of cross-linked functional polymers as supports for metal 

nanoparticles to be employed in catalysis dates back to 1968, when Wöllner and 

Neir patented the use of cross-linked strongly acidic polymers as acidic supports 

for Pd0 nanoparticles.7 This preparation gave rise to a bifunctional catalyst (Bayer 

catalysts OC 1038) with acid and metal centres that was used for the 

chemoselective synthesis of the industrial solvent methyl isobutyl ketone (MIBK) 

from acetone and dihydrogen (Scheme 3.1.), with a global production of several 

million kilograms per year.8 
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Scheme 3.1. Schematic representation of the one-pot synthesis of MIBK. 

The scientific community didn‟t dedicate too much effort to the study of these 

systems as demonstrated by the few publications in next years. Some examples 

are Pt0 supported on a macroreticular sulphonic resin for the chemoselective 

synthesis of acteone,9 Pd0 supported on polybenzimidazole for the reduction of 

aliphatic and aromatic nitrocompounds, 10  or Pt0 and ultrafine Rh particles 

immobilized on a polyacrylamide for the hydrogenation of functional olefins.11 

Lately, the promising catalytic use of gold has brought some examples of Au NPs 

supported onto ion exchange resins with different functionalities for their use in 

oxidation reactions. 12 Except for the pioneering work of Corain on the 

immobilization and characterization of Pd0 nanoclusters onto gel-type functional 

polymers,13 and the use of Amberlyst®-supported systems,14 ion-exchange resins 

were poorly explored as far as catalysts production and reuse is concerned.7,15   

In general terms, purification and separation processes likely still represent the 

most important industrial application of ion-exchange resins at present. However, 

the number of industrial processes developed in the recent years based on metal 

catalysts supported on resins indicates this as an emerging class of catalysts. 

These applications include the synthesis of methyl tert-butyl ether MTBE (EC 

Erdölchemie Process), the reduction of dioxygen level in water from ppm to ppb 

(Bayer catalysts K 6333 and VP OC 1063), and etherification-hydrogenation of 

mixtures of insaturated hydrocarbons to give blends of alkanes and branched 

ethers for the manufacture of green petrol without lead (BP Etherol Processs). 

Biffis et al.16 described a chemoselective catalyst for the hydrogenation of 2-ethyl-
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anthraquinone (EAQ) to 2-ethylanthrahydroquinone (EAHQ), which is a key step 

in the current industrial synthesis of hydrogen peroxide. 

Compared to other solid supports for catalytically active species, ion exchange 

resins show several inherent advantages. In fact, they are: 

 commercial, low cost products 

 available in several chemical and physical modifications 

 able to stabilize MNPs due to the dual effect of charged functional groups 

(electrostatic stabilization) and porosity (steric stabilization)17 

 reasonably resistant from a chemical, mechanical and thermal point of view 

 easy to handle 

 easily integrable in reactor equipments. 

Particularly, low-cross linked resins (typical 0.5 - 4 % crosslinkage) develop a 

microporous (gel) structure when swollen in the appropriate solvent, which makes 

them particularly suitable to accommodate nano-sized metal particles.18 

Prompted by the above considerations and by the experience of the group in 

this research field, 19  it was carried out an in-depth investigation on the 

performance of heterogeneous catalysts based on palladium nanoparticles 

embedded into gel-type ion-exchange resins, and the factors affecting this, 

whose results are shown in following sections.  
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3.3. PREPARATION OF POLYMER-SUPPORTED PALLADIUM 

CATALYSTS 

A sketch of the ion-exchange resins used in this work is reported in Scheme 

3.2. The resins were gel type (2% divinylbenzene as cross-linker), either strong 

cation-exchange (i.e. containing sulfonic groups, DOWEX® 50WX2) or strong 

anion-exchange (trimethylbenzyl ammonium group, DOWEX® 1X2), and with 

bead dimensions ranging from 38 to 300 m. All resins were commercially 

available at low-cost (from 0.1 to 0.7 €/g). Strong cation-exchange resins were 

used in their protonated form as manufactured, or converted into the parent 

lithium salt,20 in order to suppress acid-catalyzed side reactions (see Chapter 4 / 

Section 4.4.3.) when used as support (e.g. acetalizations, dehydrations, 

condensations, transesterifications).21 

 

Scheme 3.2. Sketch of the resin used. 

The resins were metallated to palladium(II) species by a straightforward ion 

exchange procedure involving stirring of the resin in the presence of an 

appropriate amount of palladium salt in water. The salts employed are listed in 

Table 3.1. 

Table 3.1. Palladation of ion-exchange resins. 
        

Metal precursor Price (€/g) 
Metal Loading 

[wt%] 

Metal 

Uptake (%) 

Pd(NO3)2 65 1.00 67 

[Pd(CH3CN)4(BF4)2] 170 1.25 89 

K2PdCl4 40 1.00 92 
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Pd(NO3)2 and [Pd(CH3CN)4(BF4)2] were employed in conjunction with cation 

exchange resins and K2PdCl4 with anion exchange resins. A typical [mmol Pd] / 

[meq ion exchange capacity] ratio of (1 / 33) was used to afford 1 and 1.25 wt%  

Pd loading, corresponding to different metal uptake depending on the precursor 

used, in any case fully compared with that of previously reported systems.22  

The metallated resins were then converted into palladium(0)-containing 

polymers using different procedures: i) isolation after reduction with NaBH4 in 

water, ii) isolation after reduction with H2 in methanol, iii) generation in-situ under 

the conditions of catalytic hydrogenations; i.e. 0.8-1 bar H2, methanol, excess of 

substrate, room temperature. The synthetic procedure for the preparation of the 

isolated species is shown in Fig. 3.1., both for cationic and anionic exchangers. 

Irrespective of the synthetic method, XRD and TEM analyses showed the presence 

of Pd0 nanoparticles into the polymers (see Section 3.4). 

Importantly, the in-situ synthesis of supported Pd NPs was possible only in the 

case of Pd2+ onto strong cation-exchange resins. Indeed, no appreciable 

reduction of resin-PdCl4
2- species by H2 in methanol was detected within 

reasonable timeframes.23 This finding is consistent with the higher reduction 

potential of “naked” Pd2+ ions as compared to PdCl4
2- anions.24 

Previously reported methods for the preparation of supported Pd NPs onto 

cation-exchange resins involved the isolation of the product after a two-step 

metallation / reduction procedure, either by thermal reduction of immobilized 

[Pd(NH3)4]
2+ ions (eventually followed by high temperature treatment with H2 or 

NaBH4),
14a,b,25 or by sodium borohydride reduction of immobilized Pd(OAc)2.

26 
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Fig. 3.1. Scheme of the synthetic procedure for the preparation of supported palladium 

nanoparticles onto cation-exchange resins (top) and anion-exchange resins (bottom).  

Table 3.2. lists all the resin-supported Pd0 species prepared in the present 

work. The catalysts have been named with the label [Pd/D(X) “preparation” “n”] 

where D is Dowex resin, X is the ionic form of the resin (H : protonated, Li : 

lithiated, Cl : chlorated), “preparation” means when the active specie has been 

formed (pre: prior to use -isolated-, in: in situ, under catalytic conditions) and “n” 

is the catalyst number. 
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Table 3.2. Supported palladium catalysts prepared. 

             

Abbrev. 
Catalyst     

label 

Resin (exchanger, 

ionic form, mesh) 
Metal precursor Preparation method  

Pd
a
 

wt% 

Pd/D(Li) 

pre 

Pd/D(Li) pre 1 Sulfonic, Li
+
, 50-100 Pd(NO3)2 Isolated, NaBH4 in H2O 1.2 

Pd/D(Li) pre 2 
 

Pd(NO3)2 Isolated, H2 in CH3OH 1.2 

 
Pd/D(Li) pre 3 

 
Pd(NO3)2 Isolated, H2 in CH3OH 5.0 

  Pd/D(Li) pre 4   Pd(CH3CN)4(BF4)2] Isolated, H2 in CH3OH 1.2 

Pd/D(H) 

pre 

Pd/D(H) pre 5 Sulfonic, H
+
, 50-100 Pd(NO3)2 Isolated, H2 in CH3OH 1.3 

Pd/D(H) pre 6   Pd(CH3CN)4(BF4)2] Isolated, H2 in CH3OH 1.2 

Pd/D(Cl) 

pre 
Pd/D(Cl) pre 7 

Trimethylbenzyl 

ammonium, 

 Cl
-
, 50-100 

K2PdCl4 Isolated, NaBH4 in H2O 1.1 

Pd/D(Li) 

in 

Pd/D(Li) in 8 Sulfonic, Li
+
, 50-100 Pd(NO3)2 Prepared in situ

b
 1.3 

Pd/D(Li) in 9 
 

Pd(NO3)2 Prepared in situ
b
 5.1 

 
Pd/D(Li) in 10 

 
Pd(CH3CN)4(BF4)2] Prepared in situ

c
 1.3 

  Pd/D(Li) in 11 Sulfonic, Li
+
, 200-400 Pd(NO3)2 Prepared in situ

b
 1.1 

Pd/D(H) 

in 

Pd/D(H) in 12 Sulfonic, H
+
, 50-100 Pd(NO3)2 Prepared in situ

b
 1.5 

Pd/D(H) in 13   Pd(CH3CN)4(BF4)2] Prepared in situ
c
 1.2 

a  
wt% Pd loading from AAS. 

b 
0.8 bar H2, CH3OH, excess of substrate, rt. 

c 
1

 
bar H2, CH3OH, excess of 

substrate, rt. 

 

 

3.4. CHARACTERIZATION OF POLYMER-SUPPORTED 

PALLADIUM CATALYST 

All Pd-containing resins were characterized in the solid state by a combination 

of microscopic and scattering techniques employing the equipments described in 

Chapter 2. Palladium loading was obtained from ICP-OES (Table 3.2.). The 

appearance of the ion-exchange resins before and after palladiation and 

reduction is shown in the optical microscope images reported in Fig. 3.2. 
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a) b)

c)

2

d)

 

Fig.3.2. a) Dowex 50WX2: R-SO3
-
 H

+
 (H

+
, 200-400 mesh); b) R-SO3

-
Li

+
/Pd

2+
 ( 200-400 mesh, 1 

wt% Pd); c) R-SO3
-
Li

+
/Pd

2+
 ( 50-100 mesh, 1 wt% Pd); d) R-SO3

-
Li

+
/Pd

0
 ( 50-100 mesh, 1 wt% Pd). 

ESEM analysis showed that the resin beads are not affected by metallation, 

reduction or use in catalysis, since no signs of breakage or cracking were detected 

anyhow. This fact justifies the intact recovery of the resins at any preparations 

stage and after their use in successive catalytic runs. A typical ESEM image of the 

lithiated resin before, D(Li), and after metallation, Pd/D(Li) pre, are reported in Fig. 

3.3. EDS maps recorded on sections of Pd-containing beads proved the metal to 

be evenly distributed within the solid support. A representative example is shown 

in Fig. 3.4. in which palladium, carbon and sulphur maps are reported for 

comparison. This evidence indicates that the solvent diffuses thoroughly into and 

out the bead during the immobilization procedure, thus allowing good site 

accessibility to all soluble reactants.27 Consistently with previous reports, no 

significant depletion of the metal was observed within the support upon 

reduction or use of the Pd-resins in catalysis, at least for resins with 1 and 1.25 

wt% metal loading.28 
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---50.0m---
---100.0m--

 

Fig. 3.3. ESEM image (secondary electrons). (left) DOWEX® 50WX2 after lithiation D(Li); and 

(right) after subsequent metallation D/Pd(Li) pre, (Li
+
, 50-100 mesh, Pd(NO3)2, 1 wt% Pd, H2 

reduction, before use in catalysis).  

 

Fig. 3.4. (left) ESEM image (1 torr, 25 KeV, 800 magnifications) and EDS maps of an equatorial 

section of D/Pd(Li) pre catalyst bead (Li
+
, 50-100 mesh, Pd(NO3)2, 1 wt% Pd, H2 reduction). Top 

left: secondary electrons image; top right: carbon map (C K1); bottom left: sulphur map (S K1); 

bottom right: palladium map (Pd L1). (Right) EDS microanalysis; X-ray counts are plotted as a 

function of their energy, the present elements are identified. 

The size of Pd NPs was determined by TEM, XRD and SAXS analysis. Table 3.3. 

summarizes the average values obtained on representative samples prepared 

under the conditions described in the Experimental Section, before and after use 

in catalysis. TEM measurements were generally consistent with those obtained 

from XRD and SAXS, within the experimental errors. Embedded spheroidal Pd 

NPs, with a mean diameter of 3.4 and 3.2 nm were observed by TEM, on samples 

recovered after catalytic hydrogenation when [Pd(CH3CN)4(BF4)2] and Pd(NO3)2 
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were used as metal precursors respectively. According to the reducing agent, 

nanoparticles sizes of 3.7 and 5.3 nm (TEM), were found on samples isolated after 

H2 and NaBH4 treatment respectively. Typical TEM images and the corresponding 

NPs size distribution are shown in Fig. 3.5. and in Fig. 3.6. 

Table 3.3. Size of the supported Pd NPs prepared.
a
 

                    

Catalyst 

  
Reducing 

agent 

Before catalysis   After catalysis
b
 

Pd precursor TEM XRD SAXS   TEM XRD SAXS 

Pd/D(Li) in [Pd(CH3CN)4(BF4)2] H2 - - - 
 

3.4 2.5 2.7 

Pd/D(Li) in Pd(NO3)2 H2 - - - 
 

3.2 3.3 3.1 

Pd/D(Li) pre Pd(NO3)2 H2 
c
 3.7 2.2 2.6 

 
3.9 3.4 3.6 

Pd/D(Li) pre Pd(NO3)2 NaBH4 5.3 3.8 4.0 
 

6.0 4.8 4.8 

a
 Diameter in nm. SAXS data report the geometrical diameters. Resin type: sulfonic, Li

+
, 50-

100 mesh, 1 wt% Pd. 
b 

Reaction conditions: methanol, rt, substrate 2 : Pd =220:1 molar 

ratio, H2 flow pressure 0.8bar, substrate concentration 0.17M, after 5 cycles of complete 

substrate conversion. 
c
 H2 flow, pressure 0.8bar. 

 

10 nm10 nm 10 nm

 

Fig 3.5. TEM images of supported Pd NPs obtained from Pd(NO3)2 and H2 reduction (Table 

3.3): (left) Pd/D(Li) in, (center) Pd/D(Li) pre before use in catalysis, (right) Pd/D(Li) pre recovered 

after catalysis. 
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Fig. 3.6. Size distribution from TEM analysis of resin-embedded Pd NPs, before and after use 

in catalysis (1 wt% Pd/D(Li), 50-100 mesh, Pd(NO3)2, H2 reduction). 

With regard to palladium precursor, no significant differences have been 

noticed in the particle mean diameter (Table 3.3.). On the other hand, Fig. 3.7. 

shows the size distribution of Pd NPs starting from [Pd(CH3CN)4(BF4)2] with 90% 

of the nanoparticles concentrated in the range (2 - 5 nm), unlike Pd(NO3)2 that 

leads to the formation of 42% of the clusters within the range of (2.5 - 3.5nm). 

The corresponding XRD pattern that can be seen too in Fig 3.7., shows one 

diffraction peak at a 2 theta value of 39.95° which corresponds to a reflection 

caused by the plane (111) of Pd. The peak is broad and poorly defined, as befits 

the size of small particles. Due to the low amount of palladium (1.25 wt%), 

diffraction peaks at 46.80° and 67.90° (less intense) corresponding to (200) and 

(220) planes are not detected. The interplanar spacing calculated from the 

diffractogram applying Bragg‟s Law is 0.225nm, indicating that the crystal 

structure of Pd nanoparticles is face-centered cubic, according to previously 

published works.29 
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Fig 3.7. (left) TEM image of 1.25 wt% Pd/D(Li) in catalyst (50-100 mesh, [Pd(CH3CN)4(BF4)2] 

precursor,) recovered after catalysis, (center) Size distribution from TEM analysis, (right) XRD 

diffractogram form the same catalysts. 

XRD analyses allowed to notice that Pd NPs dimension is affected by the 

exchanger group contained in the stabilizing polymer. The cationic exchange 

resin can accommodate clusters 20% smaller than the anionic resin. It must be 

considered that a different exchanger group also implies different ionic form and 

palladium precursor. Regarding palladium loading, the mean diameter of the 

particles is not significantly affected. Fig 3.8. shows the diffractograms obtained 

from different samples with the corresponding values collected in Table 3.4. 

 

 

 

 

Fig. 3.8. XRD diffractograms for supported Pd NPs samples indicated in Table 3.4. 

 

Table 3.4. Size of the supported Pd NPs according to XRD measurements. 
          

Diameter (nm) 

Exchanger group    Palladium loading 

Cationic
a
 Anionicb   1 wt%

c
 5 wt%

d
 

3.8 4.5   2.2 2.5 

a
 Pd/D(Li) pre 1, 

b
 Pd/D(Li) pre 7, 

c
 Pd/D(Li) pre 2, 

d
 Pd/D(Li) pre 3 
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A representative example of SAXS spectrum is reported in Fig. 3.9. in which the 

excess of Pd/D(Li) pre scattering intensity with respect to the scattering due to the 

unmetallated resin is plotted. A pattern is clearly observable which can be 

ascribed to the higher electron density of the Pd nanoparticles with respect to the 

matrix they are dispersed in. The scattered spectrum is characterized by a low-q 

clustering part and an intermediate to high-q part, attributable well-defined 

primary particles. The profile was fitted with a model function in which the 

variable parameters are the geometrical radius of the primary spherical particles 

and the polydispersity (see „Experimental‟). 30  Within these assumptions, the 

medium-high q part of the spectra was very well interpreted yielding e.g. a radius 

of 1.3 nm for the Pd/D(Li) pre samples obtained by H2 reduction, in very good 

agreement with TEM and XRD results. 

 

Fig 3.9. SAXS differential spectra of Pd/D(Li) pre resin (Li
+
, 50-100 mesh, Pd(NO3)2, 1 wt% Pd,  

H2 reduction) before (○) and after (∆) use in catalysis, obtained by subtraction of the scattering 

intensity due to the metal-free matrix. Solid lines represent the best-fit data. 

The SAXS spectra are consistent with the coagulation of the primary particles 

(e.g. from 2.6 to 3.6 nm), but they also allow highlighting further subtle structural 

differences. Indeed, the degree of aggregation of the primary particles into 

clusters, clearly evidenced by the low-q upturn observed before catalysis, 

diminishes as a consequence of the Pd NPs enlargement after catalyst use (Fig. 
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3.9). Growth of polymer-supported Pd nanoparticles upon use in catalysis was 

previously demonstrated by EXAFS measurements.31 

The dimensional data obtained confirm that ion-exchange resins are able to 

stabilize small Pd NPs with a narrow size distribution. The values are in overall 

agreement with those on comparable gel-type functionalized polymers, 32 taking 

into account that dimensions, distribution and dispersion of Pd NPs are strongly 

dependent from the synthetic experimental conditions (temperature, 

concentration of the reducing agent), with metal crystallites obtained by 

hydrogen reduction usually smaller than those prepared by sodium 

borohydride.33 On the contrary, there are other factors that seem not to have a 

great influence, i.e. metal precursor and metal loading.  

On the basis of the data reported in Table 3.3. and from previous arguments, it 

can be confirmed the incipient Pd NPs generated under catalytic conditions are 

smaller than those obtained in the corresponding Pd0-resin by pre-reduction. It 

could be speculate that an “excess of substrate stabilizing effect” might be 

responsible for the restricted growth of Pd nanoparticles under in situ 

conditions.34 

In the next section, a deep study of the performance of the catalysts 

synthesized and characterized will be carried out. The hydrogenation reaction of 

reference substrates will be used as a model reaction to gain insights into the 

system that will help to the election of the best catalytic system in terms of 

activity and stability.  
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3.5. ANALYSIS OF PARAMETERS THAT INFLUENCE THE 

CATALYSTS PERFORMANCE 

The great variety of Dowex® polymeric resins and the additional variations 

that can be introduced in the synthesis of catalytic active species allowed for the 

preparation of a whole set of catalysts (Table 3.2.). In order to evaluate how these 

modifications could affect the final effectiveness of the catalyst, hydrogenation 

reactions of the probe substrates shown in Scheme 3.3. were carried out.  

 

Scheme 3.3. Sketch of the probe substrates tested in hydrogenation reactions. 

All supported catalysts prepared were highly active in hydrogenation reactions 

under very undemanding conditions, i.e. room temperature, (0.8 - 1) bar H2 

pressure, albeit with remarkable differences depending on the catalyst 

preparation method. The catalysts could be quantitatively recovered by simple 

decantation and reused by addition of identical amounts of substrate solution 

under hydrogen. In order to estimate the activity and stability of the different 

catalysts upon recycling, few experiments were carried out in this respect.  
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3.5.1. PREPARATION METHOD 

The Pd0-containing resins were used as catalyst precursors in hydrogenation 

reactions under batch conditions, either as isolated, pre-reduced species or 

prepared in-situ. In the latter case, the PdII-resins were directly added to the 

substrate solution under nitrogen, before the mixture was exposed to the desired 

H2 pressure, which was taken as the start time of the catalytic reaction. Regardless 

the substrate, the isolated catalysts Pd/D(Li) pre were more active when Pd NPs 

were obtained by H2 reduction instead of by NaBH4 treatment. Representative 

results are reported in Table 3.5. for the hydrogenation of methyl 2-

acetamidoacrylate 1. This finding is consistent with the smaller dimensions, hence 

with the higher surface area, of the particles synthesized using hydrogen 

compared to those obtained from borohydride (see Table 3.3)35 Minor differences 

in activity were observed for the catalysts obtained by reduction under a static 

atmosphere or by a flow of hydrogen, nevertheless the latter procedure was 

significantly simpler (see Experimental Section). No catalytic activity was shown by 

the H2-stable PdII-anionic resins. 

Table 3.5. Activity of the pre-reduced catalysts Pd/D(Li) pre in the hydrogenation of 1.
a
 

        

Catalyst Reducing agent Yield (%) TOF (h
-1

) 
b
 

Pd/D(Li) pre 1 NaBH4 56.3 767 

Pd/D(Li) pre 2 H2 
c
 87.4 1180 

a
 Reaction conditions: methanol, r.t., substrate : Pd = 450 : 1 molar ratio, H2 pressure 0.8 

bar, substrate concentration 0.17 M, 1 wt% Pd/D(Li) catalyst (50-100 mesh, Pd(NO3)2 

precursor), 20 min. 
b
 TOF = mol product / mol Pd x h. 

c
 2 bar static atmosphere. 

 

Most importantly, under the same reaction conditions, the activity of the in situ 

prepared catalysts Pd/D in was invariably higher than that of the corresponding 

pre-reduced Pd0 species Pd/D pre. This trend is graphically represented in Fig. 

3.10 that reports the catalytic results obtained in the hydrogenation of 1 using 

Pd/D type catalysts. 
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Fig. 3.10. Hydrogenation reaction of 1 using 1.25 wt% Pd/D catalysts (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: methanol, r.t., substrate : Pd = 250 : 1 molar 

ratio, H2 pressure 1 bar, substrate concentration 0.17 M. 

Although it cannot be given a definitive explanation for the above behaviour 

with regard to pre-reduced and in situ formed catalysts (Pd/D pre, Pd/D in), one 

could hypothesize that the dimension of the Pd particles may play a role. Indeed, 

assuming the smaller size of the Pd NPs formed under catalytic conditions (see 

Section 3.4. / Table 3.3.), a more active Pd nanocatalyst can be rationalized in that 

case. On the other hand, despite the time required to reduce supported Pd2+ to 

Pd0, no induction period was observed in hydrogenation reactions for Pd/D in 

catalysts.36,37 The representative example reported in Fig. 3.10. indicates that when 

Pd/D in catalysts are used, Pd reduced species featured by very high catalytic 

activity must be in operation since the early hydrogenation reaction stages,  albeit 

in minimal amounts. Indeed, previous reports claim that functionalized polymers 

are able to stabilize monovalent or mixed-valence metastable Pd species whose 

reactivity is higher than that of conventional Pd0.38 These species are often 

referred as “Pd+” or “Pd clusters”.39 It may be assumed that the fast, partial 

reduction of Pd2+ to the catalytically active metastable Pd+ species is actually 

responsible for both the absence of induction period and for the enhanced 

activity of the in situ prepared catalysts, compared to that of the pre-reduced 

catalysts.25  
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In order to analyze the activity and stability of Pd/D type catalysts upon 

recycling, the hydrogenation of methyl benzoylformate 2 was preformed. Fig 

3.11. reports the data obtained for the first six cycles.  
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Fig. 3.11. Hydrogenation of 2; recycle of 1 wt% Pd/D catalyst (50-100 mesh, Pd(NO3)2 

precursor). Reaction conditions: methanol, rt, H2 pressure 0.8 bar, substrate : Pd = 220:1 molar 

ratio, substrate concentration 0.17M, duration of each cycle 20min. Selectivity to 2a > 99.5%. No 

Pd detected in solution by ICP-OES. (left) comparison between Pd NPs formed in situ Pd/D(Li) in 

(●) and prior to use Pd/D(Li) pre (▲), catalysts obtained by 2bar H2 reduction; (right) comparison 

between protonated form Pd/D(H) in () and lithiated form Pd/D(Li) in (●). 

A perusal of the recycle data disclosed in Fig 3.11. shows  that: i) irrespective of 

the cycle, the in-situ prepared catalysts were invariably more active than the 

corresponding isolated, pre-reduced species, ii) the in-situ catalysts showed 

pretty constant activity upon recycle, whereas the isolated catalysts slowly 

deactivated. In short, supported Pd catalysts obtained under catalytic conditions 

are not only more reactive, but also more stable, compared to the corresponding 

pre-reduced species. Quantitative data on the deactivation of functional polymer-

supported Pd catalysts are rather poor in the literature.40 Activity decay of pre-

reduced catalysts upon recycle can be tentatively ascribed to the agglomeration 

of Pd NPs during catalysis (see e.g. Table 3.3).41 Nevertheless, deactivation due to 

degradation of the polymeric support or to metal leaching in solution can be 

ruled out under the present experimental conditions.14b,42 An explanation for the 

better reusability of the in-situ formed catalysts is not evident, though a 
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possibility is that the resin-Pd2+ ions act as a “reservoir” of the highly active Pd+ 

species which are continuously “fed” to the catalysts. The process takes place in 

presence of the substrate, which further prevents NPs agglomeration. From a 

different point of view, it could be said that a slow nucleation of Pd0 seeds occurs 

in the presence of the substrate, resulting in a constant catalyst activity upon 

recycle, compared to preformed Pd0.43,44 

3.5.2. IONIC FORM  

Palladium was immobilized onto strong cation exchange resins in both 

protonated and lithiated form. The performance of Pd-based catalysts supported 

onto the lithiated resin Pd/D(Li) was invariably higher than that of the analogous 

catalysts supported onto the protonated resin Pd/D(H), specially in the 

hydrogenation of 1, whose results are reported in Fig 3.10. 

Compared to the corresponding protonated or pre-reduced species, the 

benchmark D/Pd lithiated catalyst showed up to 4 times higher efficiency under 

the same experimental conditions, thus confirming the beneficial effect of the 

resin lithiation and the generation of the active species under catalytic conditions. 

The contribution of homogeneous-phase catalysts can be ruled out, as neither 

was detected Pd leached in solution by ICP-OES, nor catalytic activity of the 

solutions recovered after catalysis (Maitlis test,45 see Experimental Section).46 

Regarding the activity of Pd NPs immobilized onto strong cation-exchange 

resins bearing either H+ or Li+ counterions, from the experimental data showed in 

Fig. 3.10., it can be concluded that lithiated resin-supported catalysts resulted to 

be more active compared to the corresponding protonated derivatives. Unlike 

previous observations on the hydroxylation of benzene by Amberlyst-supported 

Pd catalysts, no acceleration effects by the acid sites were detected.14c,d,47 The 

higher efficiency of Li+ resins can be attributed to their better swelling because of 

the high solvation of lithium.20,48 
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With regard to the stability of the catalyst according to the ionic form when 

cation exchange resins are used, Fig. 3.10. shows that lithiated resin-supported 

catalysts were not only more active but also more stable upon recycle, significant 

lower conversions and an activity decay by ca. 50% after 6 cycles were observed 

for the H+ resin. Catalyst deactivation using protonated resins, at least for the 

hydrogenation of 2, may be ascribed to catalysts poisoning due to the 

degradation of acid sensitive substrates. Indeed, the use of protonated resins 

resulted in significant amounts of by-products due to concurrent solid acid-

catalyzed reactions, e.g. formation of ketals, acetals (Chapter 4 / Section 4.4.3.). 

This behaviour was exploited by others to engineer multifunctional solid 

catalysts.14,49,50 Based on our results, the presence of acidic groups was not a 

requisite for Pd-catalyzed hydrogenation reactions. By contrast, use of lithiated 

resins allowed for the obtainment of the desired products with higher 

selectivities. 

3.5.3. BEAD DIMENSION 

Hydrogenation experiments were scrutinized using catalysts embedded in 

resins of bead size 50-100 and 200-400 mesh. The results obtained for the recycle 

of Pd/D(Li) in catalysts in the hydrogenation of 2 under the same reaction 

conditions, are reported in Fig. 3.12. as example. Use of smaller beads invariably 

resulted in higher productivity, thus indicating that the kinetic of the 

hydrogenation reaction is affected by internal mass transfer limitations, i.e. by the 

diffusion inside the beads.51 Despite of this result, resins of larger size were 

preferably used in the present work, due to their easier separation and reuse. 
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Fig. 3.12. Hydrogenation of 2: reuse of 1 wt% Pd/D(Li) in catalysts (Pd(NO3)2 precursor) using 

Dowex with different bead size. Reaction conditions: methanol, H2 pressure 0.8 bar, r.t, substrate 

: Pd = 220 : 1 molar ratio, substrate concentration 0.17 M, orbital stirring 150 rpm. () 50-100 

mesh, () 200-400 mesh. TOF (h
-1

) at 90% conversion. Selectivity to 2a > 99.5 %. 

3.5.4. EXCHANGER GROUP 

Palladium NPs supported onto ion-exchange resins with either cationic 

(sulfonic) or anionic (trimethylbenzyl ammonium) functionalities were tested as 

catalysts under the same experimental conditions. The analysis was limited to 

catalysts obtained after NaBH4 reduction to keep identical additional parameters. 

In no case the anionic resin- catalysts showed higher activities compared to the 

cationic-supported counterparts, as is shown in Fig 3.13.  
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Fig 3.13. Hydrogenation of 2 by cation and anion-exchange resins-supported Pd
0
 catalysts. 

Reaction conditions: methanol, H2 pressure 0.8 bar, r.t., substrate : Pd = 220 : 1 molar ratio, 

substrate concentration 0.17 M. 1 wt% Pd/D catalysts (50-100 mesh, NaBH4 reduction). () lithium 

sulfonate exchanger () trimethylbenzyl ammonium chloride exchanger. 
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The obtained result, the unavoidable use of NaBH4 and the need of a two-step 

synthetic procedure, induced us not to explore further the anionic resin-based 

catalysts. 

3.5.5. PALLADIUM LOADING 

Pd NPs supported onto cation exchange resins were prepared with different 

palladium loadings. Polymer supported catalysts with 1 and 5 wt% Pd loading 

were tested in the hydrogenation of 2 and methyl nicotinate 3, which results are 

presented in Table 3.6. The different loading did not make any distinction in the 

activity of the catalysts when keeping constant the ratio substrate/palladium, not 

even in the hydrogenation of the heteroaromatic compound where very similar 

conversions were reached under identical reaction conditions. These results, 

previously reported for palladium onto several supports,52 indicate that there is 

no significant change in the specific surface area of the Pd particles in this Pd-

loading range, what can be confirmed with the comparable dimensions of the 

clusters (see Fig. 3.8 and Table 3.4 for characterization) found for Pd NPs 

synthesized by  this method (see Section 3.3.). 

Table 3.6. Hydrogenation reactions of 2 and 3 by polymer supported Pd catalysts with 

different Pd content.
a
 

      

Pd loading (wt%) Conversion (%) 

 

 
[b] 

 

 
[c] 

 

1 33.4 26.9 

5 33.6 34.1 

a
 React. conditions: Pd/D(Li) catalysts (50-100 mesh, Pd(NO3)2 precursor), substrate : Pd 

= 230 : 1 molar ratio, substrate concentration 0.17 M.
 b

 Catalyst Pd/D(Li) in, r.t., H2 

pressure 0.8 bar, 5 min. 
c
 Catalyst Pd/D(Li) pre obtained by 2 bar H2 reduction, 40 C, H2 

pressure 4 bar, 24h. 
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3.6. OTHER FACTORS AFFECTING THE CATALYST ACTIVITY 

The effect of other factors such as the solvent and the H2 pressure in which the 

catalytic hydrogenation is performed was also evaluated. To this purpose, 

hydrogenation reactions using different solvents and pressures were performed 

in order to optimize the reaction conditions for the developed catalysts (Chapter 

4 / Section 4.3.)  

 

3.7. SYNTHESIS AND CHARACTERIZATION OF POLYMER 

SUPPORTED RHODIUM CATALYSTS 

After the deep study carried out to evaluate the impact that several 

modifications in the preparation method could have in the activity, stability and 

lifetime of polymer supported Pd catalysts, and established that the optimized 

synthesis entails the use of the cation exchange resin in the lithiated form with 

MNPs reduced in situ, under catalytic conditions, the developed method was 

broadened to other metals. Particularly, it was applied in the synthesis of polymer 

supported rhodium nanoparticles (Rh NPs). 

3.7.1. PREPARATION OF POLYMER SUPPORTED Rh CATALYSTS 

A sketch of the ion-exchange resin used in the immobilization of Rh NPs is 

reported in Scheme 3.2. The resin was gel type (2% divinylbenzene as cross-

linker), strong cation-exchange (containing sulfonic groups, DOWEX® 50WX2) 

and with bead dimensions ranging from 150 to 300 m. In a first step, strong 

cation-exchange resins were converted into the parent lithium salt, then 

metallated to rhodium(I) species by a straightforward ion exchange procedure 

involving stirring of the resin in the presence of an appropriate amount of 

rhodium salt in methanol. A typical [mmol Rh] / [meq ion exchange capacity] ratio 

of (1 / 33) was used to afford 1.4 wt% Rh loading corresponding to 100% metal 
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uptake. The metallated resins were then converted into rhodium(0)-containing 

polymers by reduction i) with 1 bar H2 in methanol or ii) in-situ under the 

conditions of catalytic hydrogenations; 1 bar H2, methanol, excess of substrate, 

room temperature. The synthetic procedure is shown in Fig. 3.16. The 

characterization of the catalyst by XRD and TEM techniques showed the presence 

of Rh0 nanoparticles into the polymers (see Section 3.7.2.). 

 

Fig. 3.16. Scheme of the synthetic procedure for the preparation of supported rhodium 

nanoparticles onto cation-exchange resins. 

Following the proposed route, the preparation of polymer supported 

nanoparticulated rhodium catalyst can be achieved by a two-step synthetic 

procedure. To date, there are no examples reported for the preparation of 

supported Rh NPs onto ion exchange resins and the examples where rhodium 

nanoparticles are immobilized onto polymeric supports are limited. Zahmakiran et 

al.53 have lately reported the one-step synthesis of polymer supported Rh NPs in 

organic medium, however the hazardous hydrazine is used as reducing agent of 

the rhodium(I) precursor. 

3.7.2. CHARACTERIZATION OF POLYMER SUPPORTED Rh CATALYSTS 

In identical way that the previous Pd based catalysts, all polymer supported 

Rhodium catalysts were characterized in the solid state by using the same 

microscopic and scattering techniques. Rhodium loading was analyzed by ICP-

OES obtaining a value of 1.4 wt% Rh.  
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EDS maps recorded on sections of Rh-containing beads showed the metal to 

be located mainly in the edge of the bead giving place to a perfect egg-shell 

distribution. A representative example is shown in Fig. 3.17. 

100m

RhS

 

Fig. 3.17. ESEM image (1 torr, 25 KeV, 800 magnifications) of an equatorial section of 1.4 wt% 

Rh/D(Li) catalyst (50-100 mesh). Top left: back scattered image; top right: secondary electrons 

image; bottom left: sulphur map (S K1); bottom right: rhodium map (Rh L1).  

A possible explanation to the peripherical distribution of rhodium within the 

bead could be related to the reduction step. Apparently, the reduction with H2 

would not be fast enough to prevent the diffusion of ions Rh+ already fixed inside 

the bead from the core towards the periphery of the resin particle, potentially 

pulled out by the Rh+ concentration gradient associated with the reduction of Rh+ 

to Rh0. In agreement with this, EDS microanalysis showed the concentration of 

rhodium inside the bead to be 10 times lower than in the edge. This phenomenon 

was also described by Corain and co-workers in the H2 reduction of Pd NPs 

supported on cationic exchange resins.27 

The size of Rh NPs was determined by TEM and XRD analysis, representative 

results are showed in Fig. 3.18. These results demonstrate that in the case of 

rhodium, NP‟s dimension is not affected by the formation of metallic rhodium in 

situ or prior to use. The corresponding XRD pattern shows one diffraction peak at 
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a 2 theta value of 41.50° which corresponds to a reflection caused by the plane 

(111) of Rh. The peak is broad and poorly defined, as befits the size of small 

particles. As previously mentioned for the palladium based catalysts, due to the 

low amount of rhodium (1.4 wt%) and the small nanoparticle size, no other 

diffraction peaks are detected. The interplanar spacing calculated from the 

diffractogram applying Bragg‟s Law is 0.217nm, indicating that the crystal 

structure of Rh nanoparticles is face-centered cubic, according to previously 

published works.54 
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Fig. 3.18. (left) TEM image of 1.4 wt% Rh/D(Li) catalyst, (center) Size distribution from TEM 

analysis, (right) XRD diffractogram form the same catalysts. 

However, data obtained from TEM and XRD were slightly different. A mean 

diameter of 7.4 nm was obtained for Rh NPs by TEM, while the size shown by XRD 

was 2.5 nm. The fact that Rh is mainly located in the edge of the bead could 

favour a possible aggregation of the nanoparticles that can be seen as a whole 

particle with TEM (a more local technique), but they contribute as single 

nanoparticles in XRD. In any case, the dimensional data obtained confirmed again 

that ion-exchange resins are able to accommodate small NPs.  

3.7.3. EFFECT OF THE FORMATION OF Rh NPs IN SITU 

As previously reported for Pd NPs (see Section 3.5.2), Rh NPs supported onto 

cation exchange resin turned out to be more active when nanoparticles are 

obtained in situ, under catalytic conditions, as can be corroborated with the 



Chapter 3 

80 

 

hydrogenation of 1, which results are shown in Fig. 3.19. From XRD 

characterization data, it was confirmed that whether NPs are formed in situ or 

pre-reduced, the mean size falls within the range (2.5 - 2.7 nm), moreover not 

aggregation of clusters was either detected during the catalytic reaction. 

Therefore, it cannot be resorted to the stabilizing effect by the substrate to 

explain the different performance in catalysis in this case. A hypothetical 

explanation could be the contribution of rhodium(I) species to hydrogenation 

process, which catalytic behavior has been extensively reported.55 Given that Rh 

NPs formed in situ are more efficient, the catalytic activity could be the result of 

two contributions: rhodium particles formed since the very beginning (ca. 10 min, 

see Experimental) and the rhodium(I) species not reduced yet, that working 

together give rise to a more active catalyst. 
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Fig. 3.19. Hydrogenation of 1 with 1.4 wt% Rh/D(Li) catalyst (50-100 mesh). Reaction 

conditions: methanol, rt, H2 pressure 1 bar, substrate : Pd = 250:1 molar ratio, substrate 

concentration 0.17M. No Rh detected in solution by ICP-OES. (●) catalyst formed in situ Rh/D(Li) 

in, () catalyst formed prior to use Rh/D(Li) pre. 
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3.8. SYNTHESIS AND CHARACTERIZATION OF POLYMER 

SUPPORTED GOLD CATALYSTS 

Having established the validity of the method to immobilize and stabilize metal 

nanoparticles, it was applied in the synthesis of gold nanoparticles. In this case, 

anion exchange resins were used for metallation and subsequent reduction with 

NaBH4 due to the stability of the supported gold (III) species to molecular 

hydrogen. 

3.8.1. PREPARATION OF POLYMER SUPPORTED Au CATALYSTS 

A sketch of the ion-exchange resin used is reported in Scheme 3.2. The resin 

was gel type (2% divinylbenzene), strong anion-exchange (trimethylbenzyl 

ammonium group, DOWEX® 1X2), and with bead dimensions ranging from 150 

to 300 m. The resin was metallated to gold(III) species by a straightforward ion 

exchange procedure involving stirring of the resin in the presence of an 

appropriate amount of gold salt in water. A [mmol Au] / [meq ion exchange 

capacity] ratio of (1 / 100) was used to afford 0.7 wt% Au loading corresponding 

to 100% metal uptake. The metallated resins were then converted into gold(0)-

containing polymers by reduction with NaBH4 in water. The synthetic procedure is 

shown in Fig. 3.20.  

 

Fig. 3.20. Scheme of the synthetic procedure for the preparation of supported gold 

nanoparticles onto anion-exchange resins. 
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3.8.2. CHARACTERIZATION OF POLYMER SUPPORTED Au CATALYSTS 

Au supported catalysts were characterized by TEM (Fig. 3.21.) with a mean 

diameter showed by this technique of 4.4 nm. Regarding the size distribution, 

45% of the nanoparticles were smaller than 4 nm, what means than more than 

50% were over the critical size of gold nanoparticles for catalytic applications.56 
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Fig. 3.21. (left) TEM image of 0.7 wt% Au/D(Cl) pre (right) Size distribution from TEM analysis,  

 

3.9. CONCLUSIONS 

A synthetic strategy was developed for the preparation of metal nanoparticles 

supported onto ion exchange resins used as heterogeneous catalysts for 

hydrogenation and oxidation reactions. The process is featured by simplicity and 

versatility, what makes it easily applicable to different resins and metals. 

A systematic investigation was carried out showing that an appropriate 

selection of starting materials (cation exchange resin, lithiated form, simple metal 

cations) allows for the preparation of polymer supported Pd or Rh hydrogenation 

catalysts with no need nor benefits of pre-reduction steps.  

The proposed synthetic method fulfils many of the requirements for catalysts 

utilized in the fine chemicals industry: 
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 it uses cheap and commercially available materials (ion-exchange resins), 

 the solid catalyst is directly generated in one-pot in the flask used for the 

catalytic reaction, with no need of pre-reduction nor isolation steps, 

 the procedure is “green” and easy, requiring H2 as clean reagent and 

avoiding any excess of hazardous reducing agent (borohydrides, hydrazine), 

harsh or long conditioning steps, toxic stabilizers or elaborate apparatuses, 

 durable hydrogenation catalysts are obtained featuring better performance 

in terms of activity and stability, compared to the corresponding pre-

reduced species, 

 the catalyst does not require any particular care of handling or storage. 

Compared to commercial Pd/C catalysts, the devised system offers the clear 

advantages of a lower-impact process,57 and the easiness of recycling. Since Pd/C 

is usually provided as a powder, it is very difficult to reuse it in practice, while it 

may also clog or poison the reactor used. 

Notably, the synthetic approach described, while satisfying most Principles of 

Greener Nanomaterial Production,58 affords a solid catalyst whose metal leach 

accomplish to the specification limits for residues of metal catalysts according to 

EMEA.59 

 

3.10. EXPERIMENTAL  

General information 

Unless otherwise stated, all reactions and manipulations were routinely 

performed under nitrogen atmosphere by using standard Schlenk techniques. 

DOWEX® 50WX2 - 100 (H+ form, 2% cross-linked, gel-type, 50-100 mesh [150-
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300 µm] bead size, 4.8 meq/g exchange capacity), DOWEX® 50WX2 - 400 (H+ 

form, 2% cross-linked, gel-type, 200-400 mesh [38-75 µm] bead size, 4.8 meq/g 

exchange capacity) strong cation-exchange resins and DOWEX® 1X2 - 100 (Cl- 

form, 2% cross-linked, gel-type, 50-100 mesh [150-300 µm] bead size, 3.5 meq/g 

exchange capacity) strong anion-exchange resin were obtained from Aldrich. The 

palladium precursors Pd(NO3)2, [Pd(CH3CN)4(BF4)2], K2PdCl4 were also obtained 

from Aldrich, while the rhodium precursor [Rh(NBD)2](BF4) was procured from Alfa 

Aesar, all of them were used as received without any further purification.  

The synthesized catalysts were characterized by using the different techniques 

explained in detail in Chapter 2. ESEM (Environmental Scanning Electron 

Microscopy) was utilized to assess the stability of the polymer, whilst EDS (Energy 

Dispersive X-ray Spectrometer) helped to observe the distribution of metal within 

the bead as well as to analyse qualitatively the composition. TEM (Transmision 

Electron Microscopy), XRD (X-ray Diffraction) and SAXS (Small-Angle X-ray 

Scattering) were used to evaluate the dimension of the clusters, while the size 

distribution was investigated by TEM. Reactions under a controlled pressure of 

hydrogen were performed using either a non-metallic Büchi Miniclave® (up to 10 

bar) or a stainless steel autoclave constructed at ICCOM-CNR (Firenze, Italy) 

described in Chapter 2. The catalytic solutions were analyzed by GC and GC-MS 

equipments. The metal content in the resin-supported catalysts was determined 

by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry). This 

technique was also applied for the quantification of leached metal content in the 

heterogeneous catalysis solutions recovered after reaction. 

Preparation of the resins 

The following operations were performed in air atmosphere. The commercial 

resins were washed prior of use to remove incidental impurities. 20 g of cation 

exchange resin were washed with refluxing deionised water for 2 h and with 

refluxing methanol for 1 h using a Soxhlet apparatus. After cooling down to room 
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temperature, the resin was washed sequentially with dichloromethane (3 x 100 

ml), methanol (3 x 100 ml) and diethyl ether (3 x 100 ml). Then, it was dried in a 

stream of nitrogen and stored under nitrogen. 

Preparation of polymer supported MNPs 

Palladium was immobilized onto the cationic resin in two different states; i) R-

SO3
-H+: commercial resin previously washed as abovementioned, ii) R-SO3

-Li+: 

commercial resin previously washed as abovementioned and subsequently 

treated with lithium hydroxide. Henceforth, palladation and reduction steps 

follow the same procedure. 

Lithiation of strong cation-exchange resin R-SO3
-H+: 5 g of the protonated 

form of the commercial resin purified as above were added to a 1M solution of 

lithium hydroxide (150 ml) in air atmosphere. The mixture was stirred at 150 rpm 

at room temperature for 24 h using an orbital stirrer. The resin obtained was 

placed in a glass filter and washed repeatedly with deionised water (3 x 100 ml) 

until neutral pH of the washings. Then, it was washed with methanol (3 x 100 ml) 

and diethyl ether (3 x 100 ml) and dried in a stream of nitrogen. The lithiated resin 

R-SO3
-Li+obtained as white beads was stored under nitrogen.  

Polymer Supported Palladium (II) species: In a typical procedure, 1 g of dry 

cation-exchange resin (R-SO3
-H+ or R-SO3

-Li+) was added into a flask containing a 

degassed solution of i) palladium nitrate dihydrate (38.7 mg, 0.145 mmol, ratio 

Pd/sulfonic groups = 1/33) in deionized water (55 ml), or ii) 

tetrakis(acetonitrile)palladium(II) tetrafluoroborate (64 mg, 0.145 mmol, ratio 

1/33, 55ml deionized H2O). The mixture was stirred at room temperature for 24 h 

using an orbital stirrer. The resin obtained was transferred into a glass filter via a 

Teflon tube under nitrogen and washed sequentially with deionised water (3 x 50 

ml), methanol (3 x 50 ml) and diethyl ether (3 x 50 ml) before being dried in a 

stream of nitrogen overnight. The palladiated resins obtained as orange (R-SO3
-
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Li+/Pd2+) and brownish (R-SO3
-H+/Pd2+) beads were stored under nitrogen in the 

dark. ICP-OES analysis showed the resins to contain an average loading of 1 wt% 

Pd (67% metal uptake when Pd(NO3)2 2H2O was used as precursor) and 1.25 wt% 

Pd (89% metal uptake for [Pd(CH3CN)4(BF4)2] ). A similar procedure was adopted 

for the preparation of the resins with a 5 wt% Pd loading, except that 1 g of dry 

resin was added to a solution of palladium nitrate dihydrate (159.8 mg, 0.600 

mmol, ratio Pd/sulfonic groups = 1/8) in deionised water (100 ml). In the case of 

the anion-exchange resin, 1 g of dry chlorinated resin was added to a solution of 

potassium tetrachloropalladate (II) (34.6 mg, 0.106 mmol, ratio Pd/ammonium 

groups = 1/33) in deionized water (50 ml). The resin was then treated as 

previously described, to afford the palladiated orange resin with 1 wt% Pd 

loading corresponding to 92% metal uptake. The metallated resin was stored 

under nitrogen in the dark. 

Polymer Supported Rhodium (I) species: In a typical procedure, 1 g of dry 

cation-exchange resin (R-SO3
-Li+) was added into a flask containing a degassed 

solution of bis(norbornadiene)rhodium(I) tetrafluoroborate (54.4 mg, 0.145 mmol, 

ratio Rh/sulfonic groups = 1/33) in methanol (55 ml). The mixture was stirred at 

room temperature for 24 h using an orbital stirrer. The resin obtained was 

transferred into a glass filter via a Teflon tube under nitrogen and washed 

sequentially with deionised water (3 x 50 ml), methanol (3 x 50 ml) and diethyl 

ether (3 x 50 ml) before being dried in a stream of nitrogen overnight. The Rh 

content resin obtained as pale yellow beads (R-SO3
-Li+/Rh+) was stored under 

nitrogen in the dark. ICP-OES analysis showed the resin to contain an average 

loading of 1.4 wt% Rh which indicates 100% of metal uptake. 

Polymer Supported Metal (0) species: four different methods were used. a) 

Reduction with NaBH4: solid NaBH4 (55.0 mg, 1.45 mmol) was slowly added to 

0.5 g of 1 wt% palladium(II)-resin in 30 ml of deionized water at 0 °C. The resin 

became immediately black. The suspension was then stirred at 160 rpm at room 
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temperature for 3h, using an orbital stirrer. The resin obtained was transferred 

into a glass filter via a Teflon tube under nitrogen and washed with deionized 

water (5 x 75 ml), methanol (3 x 75 ml) and diethyl ether (3 x 75 ml), and was 

dried in a stream of nitrogen overnight. The product, obtained as black beads, 

was stored under nitrogen in the dark. b) Reduction with a static atmosphere 

of H2: 0.5 g of metallated resin were placed into a non-metallic autoclave under 

nitrogen. 30 ml of methanol were then added via a Teflon tube under nitrogen. 

Nitrogen was replaced by hydrogen with three cycles 2 bar H2/ normal pressure, 

the autoclave was finally charged with 2 bar H2. The mixture was kept at room 

temperature for 1 h with orbital stirring at 160 rpm. The resin became slowly 

black. After that time, the autoclave was depressurized and the resin obtained 

was washed by decantation with degassed methanol (3 x 75 ml) and diethyl ether 

(3 x 75 ml), before it was dried in a stream of nitrogen for 2 h. The autoclave was 

then opened and the resin transferred into a glass filter where it was dried under 

a stream of nitrogen overnight. c) Reduction with a flow of H2: For the reduction 

in the absence of substrate, 50 mg of metallated resin was suspended in 12 ml of 

methanol under nitrogen. Hydrogen gas was bubbled at 1 bar at room 

temperature for 1 h under orbital stirring at 160 rpm. The resin became slowly 

black (ca. 20 min for Pd, ca. 10 min for Rh). After that time, the resin was whether 

c1) isolated or c2) immediately used in catalysis. In the first case (c1), the resin 

was transferred into a glass filter under nitrogen via a Teflon tube, it was washed 

with methanol (3 x 30 ml), diethyl ether (3 x 30 ml) and then dried in a stream of 

nitrogen overnight. The product, obtained as black beads, was stored under 

nitrogen in the dark. In the second case (c2), the methanolic solution was 

decanted and without further washing step, the substrate solution was added 

under H2 atmosphere. d) Reduction in-situ with an excess of substrate: 50 mg 

of resin supported metal (n+) were swollen in a methanolic solution of the 

substrate 0.17M contained into a flask, then a flow of 1 bar H2 was bubbled at 

room temperature for 1 h under orbital stirring at 160 rpm. The resin became 
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slowly black (ca. 20 min for Pd, ca. 10 min for Rh). 

Polymer Supported Gold (0) species In a typical procedure, 1 g of dry anion-

exchange resin (R-CH2NMe3
+Cl-) was added into a flask containing a degassed 

solution of sodium tetrachloroaurate(III) dehydrate (13.9 mg, 0.035 mmol, ratio 

Au/ammonium groups = 1/100) in deionized water (25 ml). The mixture was 

stirred at room temperature for 2 h using an orbital stirrer, the resin became wine 

colour. After that, the solution was removed to be analyzed by ICP-OES to 

determine Au loading (by difference) and a new solution of NaBH4 (39.7 mg, 1.05 

mmol) in 25 ml deionized water was added. From here on, it proceeded as 

abovementioned for NaBH4 reduction method. The Au content resin obtained as 

wine colour beads (R-CH2NMe3
+Cl-/Au0) was stored under nitrogen in the dark.  

Hydrogenation reactions in batch mode, catalyst recycling 

Low pressure:  All the hydrogenation reactions were performed in a 100 ml 

flask using very mild conditions at 1bar of H2 and room temperature. The 

experimental procedure shows slight differences depending on the catalytic 

specie used. a) Polymer Supported MNPs formed in excess of substrate: In a 

typical experiment,  50 mg of the resin supported metal (n+) specie was added 

into a flask containing a degassed solution of the substrate 0.17M. A flow of 

hydrogen gas was bubbled at 1 bar and 15 mL/min at room temperature, using 

an orbital stirrer at 160 rpm. This was taken as the start time of the reaction. The 

resin became slowly black (ca. 20 min.). After the desired time, the solution was 

completely removed under a stream of hydrogen using a gas-tight syringe. A 

sample of this solution (0.5 l) was used for GC (product yield), GC-MS (product 

identification) and ICP-OES analysis (metal leaching), while the remaining aliquot 

was used for the Maitlis test (catalyst leaching test, see below). A fresh solution of 

the substrate was then transferred under hydrogen via a gas-tight syringe into 

the flask containing the recovered supported catalyst. The mixture was stirred at 

160 rpm and room temperature under hydrogen flow and, after the desired time, 
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the mixture was treated as described above. The same recycling procedure was 

used in the subsequent hydrogenation cycles. After use in catalysis, the solid 

catalyst was washed with methanol (3 x 10 ml) and diethyl ether (3 x 10 ml), dried 

in a stream of nitrogen overnight and stored under nitrogen for later 

characterization. Catalyst leaching test: an additional portion of the substrate was 

added under hydrogen to the clear solution recovered after the first and 

subsequent cycles, hydrogen was then bubbled through the solution at room 

temperature for 1h and the mixture analyzed by GC for conversion measurement. 

b) Polymer Supported MNPs formed in absence of substrate: In a typical 

experiment, 50 mg of the resin supported metal (0) specie was added into a flask 

containing a degassed solution of methanol (12ml) and left it swollen. A portion 

of the substrate was added under N2 flow to reach a final concentration of 0.17M. 

A flow of hydrogen gas was then bubbled at 1 bar and 15 mL/min at room 

temperature under orbital stirrer at 160 rpm. This was taken as the start time of 

the reaction. After the desired time, the methanol solution was completely 

removed under a stream of hydrogen using a gas-tight syringe. From here on, it 

proceed as abovementioned.  

Medium/High pressure:  In a typical experiment, the supported catalyst 

precursor, either resin-Palladium(0) or resin-Palladium(II) (50 mg, ca. 1 wt% Pd ca. 

0.005 mmol of palladium), was placed under nitrogen into a metal-free autoclave. 

A degassed solution of substrate (1.04 mmol) in methanol (6 ml) was transferred 

under nitrogen via a Teflon tube into the autoclave. Nitrogen was replaced by 

hydrogen with three cycles pressurization/depressurization. The autoclave was 

finally charged with the desired pressure of hydrogen and then stirred at room 

temperature at 160 rpm, using an orbital stirrer. After the desired time, the 

reactor was depressurized and the solution was removed under a stream of 

hydrogen using a gas-tight syringe. From here on, it proceed as abovementioned. 
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Catalytic Reactions in Batch Mode 

 

 

4.1. OVERVIEW 

This chapter covers the analysis of the catalysts prepared in terms of activity, 

selectivity and reusability. Hydrogenation reactions of model substrates were 

performed with palladium and rhodium based systems evaluating their 

performance in reactions relevant to the synthesis of fine chemicals. A 

comparison with the state of art was also carried out, when possible. Selectivity to 

partial hydrogenation products of hydrocarbons with multiple C=C and/or CC 

bonds was studied with close attention to the synthesis of the leaf alcohol cis-3-

hexen-1-ol, since it is an important compound in the fragrance industry,1 and to 

the hydrogenation of 1,5-cyclooctadiene. The chemo-selectivity to double bond 

hydrogenation in the presence of other functional groups was also tested. Finally, 

the oxidation reaction of furfural was carried out to evaluate the activity of gold 

based catalyst.  
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4.2. INTRODUCTION 

The application of catalytic methods to the large-scale production of complex 

molecules, such as agrochemicals and pharmaceuticals, is continuously increasing 

due to a more environmentally concerned legislation.2 In order to achieve greener 

industrial processes, catalysts should be highly active, selective and recyclable 

under mild reaction conditions. In the special case of hydrogenation and 

oxidation reactions, the use of clean alternative reagents, i.e. hydrogen and 

oxygen respectively, can decrease the high E-factors that rule the fine chemicals 

sector.3. 

Catalytic hydrogenations in the fine chemicals industry are usually carried out 

with heterogeneous catalysts, whereas homogeneous catalysts are typically 

applied for highly selective transformations, particularly enantioselective 

reductions. Among the heterogeneous systems, palladium-based catalysts are the 

most versatile and widely applied.4 On the other hand, selective oxidation 

reactions constitute industrial core technologies for converting bulk chemicals 

into useful products.5 With the late discovery of gold as a very active catalyst,6 the 

use of gold based heterogeneous catalysts represents a very promising system 

for oxidation processes. 

One of the major problems in synthesis of fine chemicals is related to the 

chemo-, regio-, stereo- or enantio-selective transformation of organic molecules. 

Various types of hydrogenation reactions are required in several manufacturing 

processes towards valuable products in fine industry.7 For example, selective 

hydrogenation of hydrocarbons with multiple C=C and/or C≡C bonds to achieve 

partial hydrogenation products is a highly desired and challenging process in the 

pharmaceutical, agrochemical and petrochemical industries.8 Particularly, the 

stereo- and chemo- selective hydrogenation of alkenes and alkynes in the 

presence of other functional groups is of fundamental importance in the 

synthesis of food additives, flavors and fragrances.9,10 Partial hydrogenation 
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reactions are also crucial in industrial polymerization processes to achieve the 

complete elimination of alkynes and dienes from alkene feedstocks.11 

In general, a drawback in hydrogenation of alkynes by metal catalysts is 

overhydrogenation with formation of fully saturated alkane products, since the 

second hydrogenation step (alkene to alkane) is generally faster than the first 

(alkyne to alkene).12 However, as long as some of the starting alkyne remains in 

the reaction mixture, selectivity can be high since the alkynes bind more strongly 

to the metal surface.13 The most widely used and selective commercial catalysts 

for this reaction is the Lindlar catalyst, based on Pd supported on CaCO3 and 

doped with Pb.14 

Several papers have been published in which polymer supported catalyst were 

used in selective transformations. With regard to hydrogenation of ,-

unsaturated carbonyl compounds, J. Aumo et al reported a Pd polymer-

supported fiber catalyst used in the hydrogenation of citral, an important 

compound in the perfumery industry, finding the selectivity to citronellal (mono-

unsaturated ketone) to be higher than in the case of Pd/C catalyst.15 

The first example of a polymer-supported gold catalyst was provided by Shi, 

Deng et al,16 who used a cation exchange resin as a polymer support after pre-

treatment with NaOH for the impregnation with HAuCl4. The obtained catalyst 

was applied to the formation of urea and carbamates from amines using carbon 

monoxide and molecular oxygen. The most recent example of polymer-supported 

gold catalysts came from Kobayashi and co-workers,17 who developed recyclable 

polystyrene-based copolymer-microencapsulated gold nanocatalysts. They 

examined the oxidation of 1-phenylethanol under almost the same reaction 

conditions as employed by Corma and co-workers18 with Au/CeO2, and found  

the polymer catalysts to be 60% more active than the analogous metal oxide, 

highlighting the competitive alternative regarding to the support that polymers 

offer to the extensively used metal oxides. 
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In order to evaluate the performance of the developed catalysts in important 

reaction types for the synthesis of fine chemicals, hydrogenation and oxidation 

reactions of model molecules were studied. The proposed examples were 

carefully analysed and compared with similar systems already described in 

literature. 

 

4.3. OPTIMIZATION OF REACTION CONDITIONS 

To assure an ideal participation of the developed catalysts in hydrogenation 

reactions, the best reaction conditions were scrutinized. In this regard, the effect 

of the reaction media (solvent) and the H2 reaction pressure on the catalyst’s 

activity was analyzed.. Hydrogenations reactions with probe substrates, methyl 2-

acetamidoacrylate 1 and methyl benzoylformate 2 (Scheme 4.1.) were carried out 

to optimize the catalytic conditions for this kind of catalysts 

 

Scheme 4.1. Sketch of the probe substrates tested for optimization of the reaction conditions. 

4.3.1. SOLVENT 

A typical feature of ion-exchange resin-supported catalysts is that their activity 

is ruled by the swelling of the support in the reaction solvent.19 Accordingly, water 

or methanol are the most appropriate in the case of gel-type resins. It was 

investigated the catalytic activity and the reusability of the supported Pd species 
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catalyzing either in pure water, pure methanol or in a mixture methanol : water = 

3 : 1 (v/v). For further confirmation, the reaction was also performed in THF. 

Representative results for the hydrogenation of 1 and 2 are reported in Table 4.1. 

and Fig. 4.1, respectively.  

Table 4.1. Solvent effect in the hydrogenation of 1: activity and leaching test.
a
 

        

Solvent TOF (h
-1

)  

Conversion (%) 

Catalytic reaction  Recovered solution
b
 

H2O 624 69.3
c
 30.0

e
 

MeOH 1238 91.7
d
 0.0

f
 

THF 0 0.0 0.0 
a
 React. conditions: 1 wt% Pd/D(Li) in catalyst (50-100 mesh, Pd(NO3)2 precursor), r.t., 

substrate : Pd = 450 : 1 molar ratio, H2 pressure 0.8 bar, substrate concentration 0.17 M.
 b

 

Solution recovered after decantation of the catalyst and kept for 60 min under under 1 

bar H2 pressure. 
c
 30 min. 

d
 20 min.

 e 
1.8 ppm Pd in solution by ICP-OES. 

f 
No Pd detected 

in solution. 
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Fig. 4.1 Solvent effect in the hydrogenation of 2; catalyst recycle. Reaction conditions: H2 

pressure 0.8 bar, r.t., substrate : Pd = 220 : 1 molar ratio, substrate concentration 0.17 M, 1 wt% 

Pd/D(Li) pre catalyst (50-100 mesh, Pd(NO3)2 precursor, obtained by 2 bar H2 reduction), 

conversions > 93.5%. (●) solvent CH3OH, duration of each cycle 45min. () solvent CH3OH:H2O 3:1, 

duration of each cycle 60 min. 

Regardless of the substrate or the catalyst preparation method, the presence 

of water in the reaction solution invariably caused both a decrease in the catalyst 

activity and a loss of productivity upon reuse compared to pure methanol, 

moreover the solutions recovered after each cycle showed significant amounts of 

palladium leached (> 1 ppm), as well as a residual catalytic activity. This indicates 
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that the activity loss of the supported catalyst can be safely ascribed to the leach 

of catalytically active Pd species in solution in those cases. Deactivation of 

polymer-supported Pd catalysts due to dissolution of metal crystallites was 

previously reported for the hydrogenation of nitroaromatics as a consequence of 

oxidative side-reactions.20 With respect to THF, no activity was detected when 

used as a solvent,. The hydrophilic resin was not able to swell in the organic 

solvent what prevented the access to the catalytic sites within the micropores. 

4.3.2. H2 PRESSURE 

Hydrogenation reactions were carried out at different hydrogen pressures. 

Representative results for the hydrogenation of 2 are reported in Fig. 4.2. As a 

general observation, an increase of the H2 pressure in the range 1-8 bar caused an 

increase of the overall catalyst activity up to reach a plateau, whilst promoting the 

formation of fully hydrogenated species. In the case of the hydrogenation of 2 

using Pd/D(Li) in type catalysts, nearly constant conversions were obtained above 

ca. 4 bar, whereas the selectivity to the alcohol product 2a decreased from 96.6 to 

88.4%, on passing from 1 to 8 bar H2. A similar dependence from the total 

reaction pressure was previously described for the hydrogenation of cyclohexene 

by macroporous resin-supported Pd catalysts and attributed to mass transport 

limitation of gaseous H2.
21 

87

89

91

93

95

97

1 2 4 5 7 8

%

H2 pressure (bar)

Conversion

Selectivity to 2a2a

 

Fig. 4.2. Catalytic hydrogenations of 2 under 1 - 8 bar H2 pressure. Reaction conditions: 

methanol, 1 wt% Pd/D(Li) in catalyst (50-100 mesh, Pd(NO3)2 precursor), r.t., substrate : Pd = 250 : 

1 molar ratio, time 15 min, substrate concentration 0.1 M. 
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4.4. HYDROGENATION REACTIONS WITH Pd NPS  

Having established that the optimal reaction conditions for Pd/D type catalysts 

in hydrogenation reactions are methanolic solutions and H2 pressure of 1 bar, an 

in depth investigation was carried out with regard to activity and selectivity. 

4.4.1. HYDROGENATION OF C=C BONDS 

Carbon–carbon double bonds are among the more readily hydrogenated 

functional groups that may be converted to the corresponding saturated 

hydrocarbons under mild conditions (low hydrogen pressure and room 

temperature). In order to get a first evaluation of the activity of the catalysts 

developed in the present work, the hydrogenation of cyclohexene 4 was carried 

out (Table 4.2.).  

Table 4.2. Hydrogenation of cyclohexene 4 with Pd/D(Li) type catalysts.
a
  

                  
 

Entry Substrate Selectivity (%)
b
 Catalyst 

Ratio 

S/C 

t         

(h) 

Conv. 

(%) 

TOF       

(h
-1

)
c
  

4  

 

  
96.2 Pd/D(Li) in 350 1.5 99.4 234 

 

95.4 Pd/D(Li) pre 350 0.83 97.3 414 
 

a 
React. conditions: methanol, 1bar H2, r.t., 1.25 wt% Pd/D(Li) catalyst (50-100 mesh,  

[Pd(CH3CN)4(BF4)2] precursor) substrate concentration 0.17 M, 
b
 Selectivity to the product 

@ specified conversion. 
c 
TOF = mol product / mol Pd x h. 

 

 

Following the standardized procedure described in Chapter 3, Pd/D(Li) in type 

catalysts were initially used. However, the reaction rate was slower than expected, 

what induced to think that the possible coordination of Pd2+ species to the 

double bond prevents the reduction to Pd0, the catalytic active component of the 

solid catalyst. Indeed, differently from what previously noticed (see Chapter 3 / 

Section 3.5.1.), the activity for pre-reduced species was 50% higher than for in situ 

activated catalysts, what can be graphically seen in Fig. 4.3. 
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Fig. 4.3. Hydrogenation of cyclohexene 4 with 1.25 wt% Pd/D(Li) catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor). React. conditions: methanol, 1bar H2, r.t., substrate concentration 

0.17 M, substrate : Pd = 350 : 1 molar ratio. 

In addition to the expected formation of cyclohexane, small amounts of 

benzene ca. 4% were detected. This finding was previously reported for the 

palladium-catalyzed hydrogenation of cyclohexene, which was attributed to the 

disproportionation of cyclohexene to cyclohexane and benzene mediated by Pd, 

irrespective of the presence of hydrogen gas.22,23 

Rare examples are reported in the literature for the hydrogenation of 4 using 

comparable systems. P. Centomo et al.24 proposed a number of catalysts with Pd 

supported onto gel type, functional acrylic polymers. Using slightly harder 

conditions (5.5 bar H2) the sulfonic functionalized resin showed TOF of ca. 650h-1 

while the one with carboxylic groups gave TOF of ca. 430h-1. In any case, pretty 

comparable results with those obtained using the catalysts here presented. It 

should be notice that Pd immobilized onto different supports, namely carbon or 

metal oxides, has been reported with higher turnover frequency values.25 
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4.4.2. SELECTIVITY TO PARTIAL HYDROGENATION PRODUCTS. THE 

SPECIAL CASE OF 3-HEXYN-1-OL 

Selectivity in partial hydrogenation reactions to synthesize mono-enes is of 

fundamental importance in fine chemicals production. Due to its extraordinary 

chemoselectivity and activity, Pd, especially supported on carbon, is the most 

satisfactory and widely used catalyst compared to the other Group VIII transition 

metals Pt, Rh, Ru and Ni. Palladium catalyzes selectively the semi-hydrogenation 

of dienes to the mono-alkenes, being this the preferred pathway compared to 

complete saturation. However, besides this advantageous feature, one must be 

aware that Pd is able to catalyze competitive reactions such as cis/trans 

isomerization, double bond migration and it can induce hydrogenolysis of other 

functional groups, that can affect importantly the selectivity of the processes.  

The selectivity of Pd/D(Li) type catalysts in partial hydrogenation of 

hydrocarbons with multiple C=C or CC bonds under very mild conditions (1 bar 

H2 and r.t.) was demonstrated by performing the hydrogenation of 1,5-

cyclooctadiene (1,5-COD, 5), 1,5,9-dodecatriene (1,5,9-CDT, 6) and 3-hexyn-1-ol 

(7). Representative results are summarized in Table 4.3. The sketch of the tested 

substrates in catalytic reactions is reported in Scheme 4.2.  

The catalysts showed to be selective for partial hydrogenation with excellent to 

good selectivities to the mono-hydrogenated product. The reduction of 1,5-COD 

5 was achieved with 96.7% selectivity to the mono-ene 5a at 98.5% conversion, 

for 3-hexyn-1-ol 7, 98.1% of the alkene was obtained (98.1% of which was the cis-

isomer 7a) at 73.2% conversion. Minor amounts of fully hydrogenated products 

(5b, 7c <2.4%) were observed for both substrates. The hydrogenation of 1,5,9-

CDT 6 was slightly less selective producing the diene 6a (isomers mixture) with 

83.2% selectivity at 78.2% conversion. 
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Scheme 4.2. Sketch of the substrates tested in hydrogenation reactions of hydrocarbons with 

multiple C=C or C≡C bonds. 

 

Table 4.3. Hydrogenation reactions of hydrocarbons with multiple C=C or C≡C bonds by 

Pd/D(Li) type catalysts under batch conditions.
a
 

                

Entry Substrate Selectivity (%)
d
 

Ratio 

S/C 

t    

(h) 

Conv. 

(%) 

TOF 

(h
-1

)
e
 

5 
b
 

 

 
96.7 350 0.8 98.5 418 

6 
b
 

  
83.2 350 1.25 78.2 222 

7 
c
 

 
98.2 350 1.0 91.0 322 

a 
React. conditions: methanol, 1bar H2, r.t., 1.25 wt% Pd/D(Li) catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor). 
b
 Pd/D(Li) pre catalyst, substrate concentration 0.17 M, 

c 

Pd/D(Li) in catalyst, substrate concentration 0.19M. 
d
 Selectivity to the product @ 

specified conversion. 
e
 TOF = mol product / mol Pd x h. 
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As abovementioned, the coordination of Pd2+ to the double bounds hampers 

the formation of Pd NPs within reasonable timeframes. In fact, long induction 

times were observed in the hydrogenation of 5 using Pd/D(Li) in catalysts (18% 

conversion after 3 h), unlike Pd/D(Li) pre catalysts, as it can be seen from Fig. 4.4.  
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Fig. 4.4. Hydrogenation of 1,5-COD 5 with 1.25 wt% Pd/D(Li) catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor). React. conditions: methanol, 1bar H2, r.t., substrate concentration 

0.17 M, substrate : Pd = 350 : 1 molar ratio. 

It must be noted that in the first stages of the hydrogenation of 5, small 

amounts of isomerization product 1,4-COD are detected, that, however, 

disappear upon reaction progress (see Fig. 4.5.). A graphic representation of the 

hydrogenation of 6 is also shown in Fig. 4.5. where 6 and 6a (-diene) are mixtures 

of isomers. From the reaction progress it can be seen that the selectivity can be 

tailored, that is, if the reaction is stopped after 75 min., the selectivities to 6a and 

6b (-ene) are 83.2 and 13.9% respectively, highlighting the possibility of reducing 

mainly one double bond. However, if the desired product is cyclododecene 6b, an 

interesting chemical for the production of musk fragrances and perfumes with a 

woody note, one could further hydrogenate to increase the amount of this 

product, as the trend indicates, up to 35.7% if the reaction is stopped at 120 min. 
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Fig. 4.5. Hydrogenation of 1,5-COD 5 (left) and 1,5,9-CDT 6 (right) with 1.25 wt% Pd/D(Li) pre 

catalyst (50-100 mesh, [Pd(CH3CN)4(BF4)2] precursor). React. conditions: methanol, 1bar H2, r.t., 

substrate concentration 0.17 M. substrate : Pd = 350 : 1 molar ratio. 

Concerning the selective hydrogenation of alkynes, this reaction is of utmost 

importance in the synthesis of fine chemicals, such as food additives, flavours, 

fragrances, pharmaceutical or agrochemical substances.26 The main goal is to 

avoid overhydrogenation to C-C single bond and, in the case of non-terminal 

alkynes, is to obtain the highest possible conversion and selectivity to the (Z)-

alkene.27 The hydrogenation of 3-hexyn-1-ol is an industrially relevant process 

since cis-3-hexen-1-ol is the active component of leaf fragrance. Having 

established that the developed catalysts Pd/D(Li) in are efficient (TOF = 322 h-1) 

and selective for this reaction, the reusability of the catalyst in term of activity and 

selectivity upon recycling, was then evaluated (Fig. 4.6.). 
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Fig. 4.6. Recycle of Pd/D(Li) in catalyst in the hydrogenation of 7. left) TOFs (on overall 

conversion indicated in right figure) and Selectivity = 7a/(7a+7b)x100; right) Conversion upon 

recycling. Reaction conditions: methanol, 1.25 wt% Pd/D(Li) in catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor), substrate concentration 0.19M, r.t., 1 bar H2, substrate : Pd = 390 : 1 

molar ratio, time 26 min.  
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Fig. 4.7. Recycle of Pd/D(Li) in catalyst in the hydrogenation of 7. Conversion upon recycling. 

Reaction conditions: methanol, 1.25 wt% Pd/D(Li) in catalyst (50-100 mesh, [Pd(CH3CN)4(BF4)2] 

precursor), substrate concentration 0.17M, r.t., 1 bar H2, substrate : Pd = 350 : 1 molar ratio.  

Catalyst recovery and reuse was quantitatively possible by simple decantation, 

showing negligible activity and selectivity decay upon recycle. This is graphically 

shown in Fig. 4.6. and in Fig. 4.7., in which the catalyst performance and the 

reaction progress in the hydrogenation 7 upon recycle are reported, respectively. 
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Metal leaching in solution was below the ICP-OES detection limit in all cycles, 

while the absence of catalytic activity of the recovered reaction solutions proved 

that the catalyst was truly heterogeneous,28 thus ruling out the contribution of 

homogeneous species. The alkene selectivity was > 96.0% for all cycles, > 97% of 

which was the leaf alcohol cis-3-hexen-1-ol 7a. The catalyst retained > 95 % of its 

starting efficiency after ca. 2.6 h use, which corresponds to a TON of ca. 1700 for 

the product 7a. 

The leaf alcohol cis-3-hexen-1-ol 7a is manufactured with ca. 97% 

selectivity@99% conversion by a batch process using the Lindlar catalyst (5% Pd 

+ 2-3% Pb on CaCO3), with a production of about 400 t/y.29 Despite the slightly 

higher selectivity of the industrial process, the catalyst described in the present 

work provides clear advantages in terms of environmental impact, by avoiding 

potential contamination by toxic Pb, and reusability. The activities and/or the 

selectivities obtained in the hydrogenation of 7 using our catalysts also compare 

favourably with those reported for Pd onto charcoal and hydrotalcite.30 To this 

purpose, the commercial 5 wt% Pd/C was tested under similar reaction conditions 

(Fig. 4.8.)  
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Fig. 4.8. Hydrogenation of 3-hexyn-1-ol 7 with () 1.25 wt% Pd/D(Li) in (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor), substrate concentration 0.17M, substrate : Pd = 350 : 1 molar ratio, 

and () 5 wt% Pd/C, substrate concentration 0.5M, substrate : Pd = 250 : 1 molar ratio. Reaction 

conditions: methanol, r.t., H2 pressure 1 bar. Selectivity = 7a/(7a+7b)x100. 



Catalytic Reactions in Batch Mode 

107 

 

In no case, the commercial catalyst was more selective than Pd/D(Li) type 

catalyst which showed constant selectivity regardless the conversion, unlike Pd/C 

that exhibited high selectivity to the cis-isomer at low conversion but it decreased 

significantly as conversion increased. 

4.4.3. SELECTIVITY TO C=C IN THE PRESENCE OF C=O BONDS 

Selective hydrogenation of carbon–carbon double bonds in unsaturated 

carbonyl compounds plays an important role in the synthesis of fine chemicals on 

a multi-ton scale via heterogeneous catalysis.31 To this purpose, the 

hydrogenation reaction of various substrates combining alkene and carbonyl 

functionalities was performed, including benzylidenactone 8, isophorone 9 and 

carvone 10, whose results are summarized in Table 4.4. 

Table 4.4. Hydrogenation reactions of unsaturated carbonyl compounds by Pd/D(Li) type 

catalysts.
a
 

                

Entry Substrate Selectivity (%)
d
 

Ratio 

S/C 

t         

(h) 

Conv. 

(%) 

TOF       

(h
-1

)
e
 

 

8 
b
 

 

 

 
83.7 250 0.3 99.2 774 

9 
c
 

  
74.3 175 1.5 88.6 105 

10 
c
     45.3 175 1.0 95.3 169 

a 
React. conditions: methanol, substrate concentration 0.17 M. 

b
 1 wt% Pd/D(Li) in catalyst 

(50-100 mesh, Pd(NO3)2 precursor), 0.8 bar H2. 
c 

1.25 wt% Pd/D(Li) pre catalyst LiCl post-

treatment (50-100 mesh, [Pd(CH3CN4)(BF4)2 precursor), 1bar H2. 
d
 Selectivity to the product 

@ specified conversion. 
e
 TOF = mol product / mol Pd x h. 

 

From the data obtained, it can be confirmed the synthesized Pd/D(Li) type 

catalyst show good selectivities to the reduction of double bond in the presence 

of carbonyl groups reaching values as high as 83.7% in the case of 
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benzylidenacetone. This behaviour can be justified in terms of greater affinity of 

Pd for –C=C- than for -C=O- bonds.32 The selectivity drops for isophorone to 

74.3% and goes down to 45.3% for carvone hydrogenation. This loss of selectivity 

can be ascribed to the presence of different parallel reactions that will be 

explained below. 

The hydrogenation of benzylidenactone 8 (Scheme 4.3.) was performed for 

several rounds affording the C=C hydrogenation product 8a in ca. 84% constant 

yield upon recycle, together with ca. 10% saturated alcohol 8b and ca. 6 % of the 

fully hydrogenated product 8d (Fig. 4.9.). No traces of the C=O hydrogenation 

product 8c were detected and no amount of Pd leached in solution was detected 

by ICP-OES in any cycle. 

 

Scheme 4.3. Reaction scheme of the hydrogenation of benzylidenacetone 8. 
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Fig. 4.9. Recycle of 1 wt% Pd/D(Li) in catalyst (50-100 mesh, (Pd(NO3)2 precursor). in the 

hydrogenation of 8: TOFs (on overall conversion) and selectivities. Reaction conditions: methanol, 

r.t., H2 pressure 0.8 bar, substrate : Pd = 220 : 1 molar ratio, time 15 min. Selectivity = 

8a/(8a+8b+8c+8d)x100. 
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The hydrogenation of isophorone 9 (Scheme 4.4.) has been reported in the 

asymmetric version.33 Considering that asymmetric hydrogenation reactions are 

the further scope for this kind of catalysts, it was a meaningful substrate to start 

with. 

 

Scheme 4.4. Reaction scheme of the hydrogenation of isophorone 9 including all possible 

products; 9a: dihydorisophorone, 9b: homomenthol, 9c: : isophorol and the parallel reaction of 

acetilization to give 9d. 

As can be seen in Fig. 4.10. (left), the hydrogenation of isophorone with 

Pd/D(Li) in catalyst was 100% chemoselective to dihydroisophorone since no 

alcohols were detected at the first stage and neither after the consumption of the 

substrate, when the saturated ketone could undergo further hydrogenation. 

Nevertheless, an important amount of the acetal product 9d was found from the 

very beginning that reached up to. 40%. This acid-catalyzed side reaction was 

probably a consequence of a residual acidity coming from the support (see 

Chapter 3 / Section 3.3.) without forgetting that methanol was the solvent used in 

the reaction (Scheme 4.5.). In order to suppress the remaining acidity, an 

additional treatment with LiCl was done to the catalyst Pd/D(Li) pre prior to use, 

to remove all the protons by exchange with lithium. The results (Fig. 4.10., right) 

showed that indeed the formation of acetal decreased 37% in comparison with 

the catalyst without treatment. It should be noticed that acetilization side 
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reactions have been already reported for hydrogenation of ,-unsaturated 

carbonyl compounds when an alcohol is used as solvent.15  
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Fig. 4.10. Hydrogenation of isophorone 9 with 1.25 wt% Pd/D(Li) catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: methanol, r.t., substrate : Pd = 175 : 1 molar 

ratio, H2 pressure 1 bar, substrate concentration 0.17 M. (left) Pd/D(Li) in catalyst (right) Pd/D(Li) 

pre catalyst LiCl post-treatment. 

 

Scheme 4.5. Acid-catalyzed acetal formation mechanism. 

Regarding the activity of the catalyst, the reaction was slower for pre-reduced 

species (105 vs 45 min to reach total conversion), what corroborates again (see 

Section 3.5.1.) the beneficial effect of generating the active species under catalytic 
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conditions. Notwithstanding, the election of pre-reduced species this time was 

commitment since a washing with LiCl in the presence of Pd2+ would take them 

away from the polymer through ion exchange by lithium. 

The selective hydrogenation of isophorone 9 was previously reported by 

different groups in scCO2. Hitzler et al.34 performed the reaction with a palladium 

catalyst (5% Pd/Deloxan®) obtaining 100% of dihydroisphorone at complete 

conversion however, high reaction temperature (200°C) was required. On the 

other hand, T. Sato et al.35 presented two palladium catalysts; 5% Pd/C and 5% 

Pd/Al2O3, that allowed obtaining total selectivity to the saturated ketone but 

conversions did not go beyond 5 and 15% respectively and the pressure of 

hydrogen amounted to 10 bar. Recently, M. Lakshmi Kantam et al.36 have 

reported a nanopalladium catalyst (LDH-Pd0) that under mild conditions produces 

ketone with 94% yield after 2.5h. 

The last of the substrates studied in this section, carvone 10, represents a 

suitable probe molecule since it has three functional groups that are capable of 

being hydrogenated: a -C=O- group, and endocyclic -C=C- group and an 

exocyclic –C=C-. In the Scheme 4.6., all the possible routes that carvone can 

undergo during a hydrogenation process are presented. 

Carvone was nearly complete hydrogenated after 1 hour under very mild 

conditions (1 bar H2, r.t.) by using Pd/D(Li) pre catalyst LiCl post-treatment as in 

the previous example, so the formation of acetals could be avoided. The results 

are shown in Fig. 4.11. 
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Scheme 4.6. Reaction scheme of the hydrogenation of carvone 10 including all possible 

products; 10a: carvotanacetone, 10b: dihydrocarvone, 10c: carvomenthone, 10d: carveol, 10e: 

carvotanalcohol, 10f: dihydrocarveol, 10g: carvomenthol, and the competitive reaction of 

isomerisation to give carvacrol 10h. 

Analysis of the results obtained shows that increasing amounts of the 

unsaturated ketones (carvonacetone and dihydrocarvone) are initially produced 

from carvone and, as the reaction progresses, these unsaturated ketones are 

progressively transformed into the saturated ketone carvomenthone which is 

obtained as the main product at high conversion (45.3% selectivity @ 95.3% 

conversion). No traces of acetals were detected. Differently, there is a parallel 

reaction taking place responsible of the presence of carvacrol. Results show that 

Pd/D(Li) catalyst is selective to the exocyclic –C=C- bond of carvone at the first 

stage of the reaction, since 62% more carvotanacetone than dihydrocarvone was 

obtained. However, in a second step the hydrogenation of the endo and exo -
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C=C- containing compounds to give carvomenthone seems to be indistinctive as 

they both disappear at the same rate. Unsaturated alcohols were not detected at 

any stage and neither was carvomenthol, what indicates that the catalyst is 100% 

selective to –C=C- bond in the presence of carbonyl groups for the 

hydrogenation of carvone under the described catalytic conditions. Similar results 

were reported with a polymer supported palladium catalyst that showed higher 

selectivity (70% @ 100% conversion)37 and with Pd/SiO2 which showed lower 

selectivity (36%) for carvomenthone in favor of carvanacetone38. 
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Fig. 4.11. Hydrogenation of carvone 10 with 1.25 wt% Pd/D(Li) pre catalyst LiCl post-treatment 

(50-100 mesh, [Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: methanol, r.t., substrate : Pd = 

175 : 1 molar ratio, H2 pressure 1 bar, substrate concentration 0.17 M. (left) Evolution of 

conversion vs time for the different products (dihydrocarvone: isomers mixture). (right) Selectivity 

data for ketones and the isomerization product. 

As previously mentioned, the appearance of carvacrol is detected increasingly 

since early stages as a result of an isomerization process from carvone, 

maintaining an average height of 19%. This acid-catalyzed reaction usually 

performed at high temperature,39 which mechanism is shown in Scheme 4.7., has 

been already reported as parallel reaction in the hydrogenation of carvone with 
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palladium, e.g. M. M. Dell’Anna et al. found 30% of carvacrol at 100% conversion 

when a supported palladium catalyst was used.37,40  On the other hand, C. Gozzi et 

al. have recently published an example of Dowex type resin (sulfonic groups, H 

form) metal-free catalyzing the same process.41 In this particular case, the 

presence of carvacrol could be ascribed again to an unavoidable residual acidity 

of the support (see Chapter 3 / Section 3.3.), even after the washing with LiCl. 

 

Scheme 4.7. Mechanism of the acid-catalyzed isomerization of carvone 10 to carvacrol 10h. 

4.4.4. HYDROGENATION OF C=O BONDS 

Carbonyl compounds can be readily hydrogenated to alcohols under mild 

conditions (25–60 ºC and 1–5 atm). Usually, the precious metal used for 

catalyzing this reaction is Pt however, Rh and Ru are also utilized.42 Although Pd 

catalysts are barely employed, they have found utility in the selective 

hydrogenation of aromatic carbonyls which are initially reduced to their 

respective alcohols and under the proper conditions. The aromatic functionality 

of an aromatic ketone or aldehyde serves to activate the carbonyl bond, thereby 

allowing for its milder hydrogenation in the presence of commonly used metals 

or allowing Pd to catalyze the reaction.43 In fact, when C=O is not activated, as 

previously seen with isophorne, carvone or benzylidenacetone, Pd rarely 

hydrogenates in this position.  

Pd/D(Li) type catalysts were tested in the hydrogenation of -substituted 

aromatic carbonyl compounds (Scheme 4.8.) which results are reported in Table 

4.5. 
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Scheme 4.8. Reaction scheme of the hydrogenation of -substituted aromatic ketones; 

acetophenone 11, methyl benzoylformate 2, and trifluoroacetophenone 12. 

 

Table 4.5 Hydrogenation reactions of aromatic ketones by Pd/D(Li) type catalysts.
a
 

              

Entry Substrate Selectivity (%)
b
 

t         

(h) 

Conv. 

(%) 

TOF       

(h
-1

)
c
 

11 

 

 

 

 

 

 

88.8 0.3 80.3 711 

2 
  

100.0 0.3 87.1 723 

12 
  

100.0 3.2 62.4 44 

a 
React. conditions: methanol, r.t., 1 wt% Pd/D(Li) in catalyst (50-100 mesh, Pd(NO3)2 

precursor), substrate concentration 0.17 M, substrate : Pd = 220 : 1 molar ratio, H2 

pressure 0.8 bar, 
b
 Selectivity to the product @ specified conversion. 

c
 TOF = mol 

product / mol Pd x h. 

 

Comparable activities were found for the hydrogenation of acetophenone 11 

and methyl benzoylformate 2 with TOF numbers in the range. 700-800 h-1. On the 

other hand, in the reduction of trifluoroacetophenone 12, an important decrease 

in the reaction rate was detected due to the high electrondrawing properties of 

the CF3 group.44 Small amounts of hemiacetal and acetal products were 

occasionally found in the hydrogenation reaction of 11. 

 

4.5. HYDROGENATION REACTIONS WITH Rh NPs 

Rhodium nanoparticles for catalytic applications are mostly used in 

hydrogenation reactions, and most particularly in olefin and alkyne 
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hydrogenation.45 In fact, supported Rh catalysts are the better systems for the 

total hydrogenation of benzene to cyclohexane.46 

In order to prove the efficiency of the synthetic procedure devised in the 

present work to produce effective precious metal supported catalysts, Rh/D(Li) 

type catalysts were tested in hydrogenation reactions. Table 4.6. summarizes the 

data obtained for some of the substrates previously studied. 

Table 4.6. Hydrogenation reactions by Rh/D(Li) type catalysts.
a
 

                

Entry Substrate Selectivity (%)
b
 

Ratio 

S/C 

t         

(h) 

Conv. 

(%) 

TOF       

(h
-1

)
c
 

1 

  

  100.0 300 1.3 95.2 218 

4 

 

 
100.0 250 1.2 92.2 185 

5 
  

21.9 250 7.6 97.3 32 

7 
  

55.0 100 2.3 94.3 40 

8 
  

90.9 250 4.7 97.4 52 

9 
  

78.1 100 1.0 92.5 96 

a 
React. conditions: methanol, r.t., substrate concentration 0.17 M, 1.40 wt% Rh/D(Li) in catalyst 

(50-100 mesh). 
b
 Selectivity to the product @ specified conversion. 

c
 TOF = mol product / mol Pd 

x h. 

 

In general, polymer supported rhodium nanoparticles showed to be less active 

in hydrogenations reactions than their homologous with palladium. However, 

some of the shortcomings seen with Pd NPs such as formation of benzene in the 

hydrogenation of 4, or competitive isomerization reaction in the case of 5, can be 
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avoided with rhodium, since no trace of these compounds was detected. With 

regard to selectivity, reactions catalyzed by rhodium were less selective in the 

partial reduction of multiple double/triple bonds with an important decrease of 

the mono-hydrogenated product; the mono-ene dropped from 96.7 to 21.9% in 

the hydrogenation of 5, while 55.0% of the alkene instead of 98.1% was obtained 

in the case of 7 On the other hand, chemo-selectivity to double bond was better 

for Rh NPs that showed a rise in the amount of the saturated ketone obtaining 

90.9% in the hydrogenation of 8 compared with the previously reported 83.7% 

with palladium (see Section 4.3.3.). 

The lower activity of supported Rh catalysts could be interpreted as a 

consequence of the peripherical distribution of the metal within the bead 

(Chapter 3 / Section 3.7.2.). It is difficult to justify the behaviour of these polymer 

supported rhodium catalysts in base of their average NPs size, as was previously 

done for their homologous palladium catalysts (Chapter 3 / Section 3.4.). Some 

examples found in the literature suggest contradictory conclusions, while in the 

hydrogenation of alkynes and arenes a negative particle size effect can be found, 

i.e. an increase in NPs size involved faster reactions;47,48 the hydrogenation of 

linear olefins seems to be insensitive to the structure, this is, not dependent of the 

NPs size.47 In addition, it is suspicious that in a very recent review on the shape 

dependent catalytic properties of metal nanoparticles no examples of rhodium 

were given.49 

Not many advantages were found for rhodium based catalysts in comparison 

with their palladium counterparts. For the given reactions in the described 

conditions, best performances were showed for the palladium catalysts in any 

case. In addition, the high price of rhodium should be taken into account, which is 

almost twice the price of the palladium and greatly increase the price of the final 

catalyst.50 However, polymer supported rhodium nanoparticles may be an 

alternative in procedures where side isomerization or dehydrogenation reactions 
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mean a problem for the overall process.51 Moreover, rhodium based systems are 

very useful in fine chemical synthesis when in the hydrogenation of ,-

unsaturated ketones, such as benzylidenacetone 8, high selectivity is required.52  

In any case, the above results have proved the feasibility of the synthetic 

procedure developed for the synthesis of palladium nanoparticles. As it has been 

shown, the method is general and should also serve for the production of other 

supported metal nanoparticles.  

 

4.6. OXIDATIONS REACTIONS WITH Au NPs 

Currently, the development of new tools to convert biomass into useful 

chemicals in an economically and environmentally friendly route represents a 

challenge for the scientific community.53 For example, furfural, that can be 

obtained from xyloses (C5 fraction), can be used in soil chemistry and as a 

building block in the production of Lycra. Additional transformations of this 

chemical are highly desired, such as the synthesis of alkyl furoates, which find 

application as flavour and fragrance components in the fine chemicals industry. 

To this purpose, the oxidation of furfural 13 (Scheme 4.9.) was carried out in 

the presence of the green oxidant molecular oxygen to check the activity of the 

synthesized polymer supported gold nanoparticles Au/D(Cl). Representative 

results are reported in Table 4.7. 

 

Scheme 4.9. Reaction scheme of the oxidation of furfural 13. 
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Table 4.7. Oxidation of furfural with Au/D(Cl) type catalysts.
a
 

 

        

Exp. Ratio                

S/C 

Conversion 

(%) 

Selectivity 

(%) 13a  

TOF                

(h
-1

)
b
 

1 500 28.3 100.0 8 

2 1000 22.6 97.7 13 

3 1500 23.5 97.8 21 

4 2000 18.8 98.8 22 

5 2500 21.4 98.9 31 
a 
React. conditions: methanol, 50˚C, substrate concentration 0.5 M, 

0.7 wt% Au/D(Cl) catalyst, CH3ONa 8% relative to furfural, Oxygen 

pressure 8 bar, time 17h, 300rpm. 
b
 TOF = mol product / mol Pd x h. 

 

The reaction was carried out at very mild conditions (50˚C and 8 bar O2) 

compared to those reported in literature,54 affording different molar ratio 

substrate/Au that ranged from 500 up to 2500. Regardless the ratio, the TOF 

obtained was regularly low, reaching values under 31 h-1. The low activity of these 

catalysts could be ascribed to the dimension of the gold nanoparticles that 

although they showed a mean size of 4.4 nm (Chapter 3 / Section 3.8.2), which is 

not overly big regarding gold catalysts, more than 50% of the NPs are larger 

Pinna et al. have very recently published a study on the oxidation of furfural that 

demonstrates the important role that gold cluster size plays in the reaction 

obtaining, among the different systems, the poorest catalytic behaviour for the 

bigger nanoparticles of ca. 4nm.55  

Apart from methyl furoate 13a, the only by-product found, in traces, was the 

alcohol 13c. In the presence of base additional reactions could occur, in fact, 

aldehydes with no -hydrogen undergo disproportionation in the presence of 

concentrated hydroxides via the Cannizzaro reaction. This observation has been 

also noticed by R. M. Krieger et al. in the gold-catalyzed oxidation of aldehydes in 

the presence of non-concentrated hydroxides what suggested Au surface to 

promote the reaction.56 The use of sodium alkoxide base in the above experiment 

would lead to the formation of esters in the Cannizzaro reaction rather than the 
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acid salts (Scheme 4.10.), increasing in this way the selectivity to the desired 

product. 

 

Scheme 4.10. Scheme of the Cannizzaro reaction: base-induced disproportionation of furfural. 

 

4.7. CONCLUSIONS 

Catalysts for the sustainable manufacture of fine chemicals on the industrial 

scale ought to be highly efficient and selective under smooth conditions, easily 

and effectively reusable. A deep investigation of the performance of Pd-based 

catalysts demonstrated that the developed systems fulfill the cited requirements.  

The best catalytic efficiency was observed in methanol under very mild 

conditions (room temperature, 0.8 - 1 bar H2 pressure). Besides being important 

from an industrial point of view, mild reaction conditions prevent the gradual 

deterioration of the support, often observed in functionalized polymers. 

Selective hydrogenation of hydrocarbons with multiple C=C and/or CC bonds 

to achieve partial hydrogenation products is a highly desired and challenging 

process, among others, in the pharmaceutical and agrochemical industries. In this 

sense, supported Pd NPs turned out to be highly selective obtaining 96.7% and 

83.2% of the mono-hydrogenated compound in the reduction of 1,5-COD and 

1,5,9-CDT respectively. In the particular synthesis of the leaf alcohol cis-3-hexyn-

1-ol, palladium based heterogeneous catalysts that produced 98.1% alkene, of 

which 98.1% was cis-isomer, represent a clear alternative to the classic Pd/C not 

only in terms of selectivity and recycling, but also regarding the recoverability of 
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the system owing to the fact that polymeric beads can be collected much easier 

than powders.  

The selective hydrogenation of C=C bonds in unsaturated carbonyl 

compounds plays also an important role in fine chemistry. Pd/D catalysts showed 

in most cases total chemo-selectivity to C=C bonds, however the overall 

selectivity was affected by acid-catalyzed side reactions due to a residual acidity 

in the support, what  could be minimized by washing the resin with LiCl prior to 

use, favouring this way the selectivity. 

In general, rhodium based catalysts behaved less efficiently than palladium 

counterparts; however, they could represent an alternative when competitive side 

reactions characteristic from Pd as isomerization or disproportionation must be 

completely avoided. On the other hand, chemo-selectivity to double bond in the 

presence of other functional groups was also better for Rh NPs in comparison 

with palladium. 

 

4.8. EXPERIMENTAL 

The details about preparation and characterization of the catalysts are reported 

in the experimental section of Chapter 3. All the chemicals used in hydrogenation 

and oxidation reactions were reagent grade commercial products and were used 

as received from Aldrich without further purification. GC and ICP-OES analysis of 

the recovered solutions after catalysis to determine the content of metal leached 

were performed on the equipments described in Chapter 2.  

Hydrogenation reactions, catalyst recycling 

All the hydrogenation reactions were performed in a 100 ml flask using very 

mild conditions at 1bar of H2 and room temperature. The experimental procedure 

shows slight differences depending on the catalytic specie used. a) Polymer 
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Supported MNPs formed in excess of substrate (Metal/D(Li) in): In a typical 

experiment, 50 mg of the resin supported metal (n+) specie was added into a 

flask containing a degassed solution of the substrate 0.17M. A flow of hydrogen 

gas was bubbled at 1 bar and 15 mL/min at room temperature, using an orbital 

stirrer at 160 rpm. This was taken as the start time of the reaction. The resin 

became slowly black (ca. 20 min.). After the desired time, the solution was 

completely removed under a stream of hydrogen using a gas-tight syringe. A 

sample of this solution (0.5 l) was used for GC (product yield), GC-MS (product 

identification) and ICP-OES analysis (metal leaching), while the remaining aliquot 

was used for the Maitlis test (catalyst leaching test, see below). A fresh solution of 

the substrate was then transferred under hydrogen via a gas-tight syringe into 

the flask containing the recovered supported catalyst. The mixture was stirred at 

160 rpm and room temperature under hydrogen flow and, after the desired time, 

the mixture was treated as described above. The same recycling procedure was 

used in the subsequent hydrogenation cycles. After use in catalysis, the solid 

catalyst was washed with methanol (3 x 10 ml) and diethyl ether (3 x 10 ml), dried 

in a stream of nitrogen overnight and stored under nitrogen for later 

characterization. Catalyst leaching test: an additional portion of the substrate was 

added under hydrogen to the clear solution recovered after the first and 

subsequent cycles, hydrogen was then bubbled through the solution at room 

temperature for 1h and the mixture analyzed by GC for conversion measurement. 

b) Polymer Supported MNPs formed in absence of substrate (Metal/D(Li) 

pre): In a typical experiment, 50 mg of the resin supported metal (0) specie was 

added into a flask containing a degassed solution of methanol (12ml) and left it 

swollen. A portion of the substrate was added under N2 flow to reach a final 

concentration of 0.17M. A flow of hydrogen gas was then bubbled at 1 bar and 

15 mL/min at room temperature under orbital stirrer at 160 rpm. This was taken 

as the start time of the reaction. After the desired time, the methanol solution was 

completely removed under a stream of hydrogen using a gas-tight syringe. From 
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here on, it proceed as abovementioned.  

Oxidation reactions 

A typical reaction mixture consisted of 0.8 mL of MeOH, 33.2 l of furfural 

(substrate solution 0.5M), 1.7 mg of NaOCH3 and the corresponding amount of 

0.7 wt% Au/D(Cl) catalysts leading to molar substrate/metal ratios from 500 to 

2500. The reaction mixtures were pressurized to 8 bar O2 and kept at 50ºC while 

stirring at 300 rpm for 17 h. The oxidations were performed in a high-throughput 

mode by means of a multi-reactor unit (TOP Industrie, France) containing 10 

mini-reactors. GC analyses were performed with the equipments described in 

Chapter 2. 
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Hydrogenation Reactions in Continuous Mode 

 

 

5.1. OVERVIEW 

In this Chapter continuous flow catalysis and reactors are introduced. The 

advantages of flow system compared to conventional heterogeneous phase 

batch setups are shortly explained, with regards to benefits in sustainable fine-

chemicals synthesis. Then, the application of polymer supported Pd NPs catalysts 

to the continuous partial hydrogenation of olefins with multiple double bonds 

and to the synthesis of cis-3-hexen-1-ol from semi-hydrogenation of 3-hexyn-1ol 

is performed in continuous flow. A comparison with the state-of-the-art in similar 

systems is also provided.  
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5.2. INTRODUCTION 

All along this Thesis, it has been pointed out several times that the need of 

development of sustainable routes for the large scale production of fine 

chemicals, i.e. cost-effective and environmentally friendly, is one of the major 

current concerns at the industrial level.1 During Chapters 3 and 4, it has been 

shown that highly active and selective catalysts may significantly contribute to 

solve the problem.2 Moreover, it has been mentioned that in order to achieve 

low-impact processes, the immobilization of chemical catalysts onto insoluble 

support materials offers significant benefits in terms of ease of reuse of the 

precious catalysts, clean catalyst separation as well as integration in reactor 

equipments.3 Due to this, chemical industry has a great preference for solid 

heterogeneous catalysts.4 Going a step further, the use of continuous-flow 

reactors represents a considerable added value in this regard, as they allow 

reactions to be carried out with higher productivity, much lower energy and space 

requirements, improved safety, less waste emission compared to the 

corresponding batch processes. Continuous removal of the reaction products also 

enhances the catalyst’s lifetime and simplifies the purification procedures.5 
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Fig. 5.1. Number of articles published containing the keywords showed in the legend from 

1995 to 2011 (data obtained from the database www.sciencedirect.com). 

http://www.sciencedirect.com/
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Due to this, there is an increasing interest in the scientific community for 

developing new continuous flow catalytic systems, as testified by the increasing 

number of related publications in last years (Fig. 5.1.). Besides the advantages 

found for continuous flow catalytic reactions, additional benefits can be obtained 

for heterogeneous hydrogenation reactions as a result of the high specific 

interfacial area of flow processing in gas–liquid–solid triphasic reactions.6 Owing 

to the large interfacial areas and the short path required for molecular diffusion in 

the very narrow channel space, very efficient gas–liquid–solid interaction, and 

thus hydrogenation, takes place, which is not attainable in normal batch systems.7 

An additional advantage of hydrogenation mini-reactor systems (Chapter 1 / 

Section 1.6.) is that the small hold-up reduces the damage potential of explosions 

and therefore conforms with the twelfth principle of green chemistry (inherently 

safer chemistry for accident prevention);8 an important consideration in 

hydrogenation reactions involving flammable hydrogen gas.  

Some similar polymeric based supports than the ones used in this Thesis have 

been employed for different continuous flow catalytic reactions. As example of 

continuous organocatalysis, Knoevenagel condensation and acylation reactions 

were carried out using modified methacrylate-based Amberzyme Oxirane resins, 

in both cases, microreactor productivity for the flow reactions was more than 3 

times greater than the batch reaction owing to the decreased dimensions of the 

reactor and better mixing.9 Cross-coupling reactions have been also explored 

under flow conditions using unsymmetrical salen-type Pd(II) and Ni(II) complexes 

immobilized onto a polystyrene–divinylbenezene cross-linked Merrifield resin.10,11 

While palladium catalysts were active in the Suzuki and Heck coupling reactions 

at elevated temperatures,10 the nickel catalyst was active in the Kumada coupling 

reaction at room temperature,11 but in both cases, the use of a mini-flow reactor 

system gave reasonable conversions and useful quantities of material were 

produced within minutes rather than overnight for discontinuous systems. Finally, 
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a wide number of enantioselective reactions have been described for Pericàs and 

co-workers12 by using packed-bed micro-reactors filled with functionalized 

polystyrene resins. 

However, the continuous flow selective hydrogenation of alkynes and dienes is 

dominated by inorganic support based catalysts6 and very few examples of 

organic supports have been applied in these reactions.13 The most similar 

supports used in continuous flow hydrogenation were some ion-exchangers 

containing quaternary ammonium groups, in which Ru(II) and Rh(I) complexes 

containing monosulfonated triphenylphosphine ligands were immobilized.13b 

These catalysts were studied in the hydrogenation of disubstituted alkynes at 

50ºC and 30 bar, giving the same selectivity observed in aqueous organic 

biphasic systems in batch conditions. In addition, the hydrogenation of trans-

cinnamaldehyde, acetophenone, and the isomerization of 1-octen-3-ol to octan-

3-one using the same catalysts was also demonstrated. 

Here, the effectiveness of the polymer containing Pd NPs catalyst developed 

during this thesis (Chapter 3) was evaluated in a continuous flow mini-reactor. 

The developed triphasic liquid/gas/solid system for selective hydrogenation 

reactions allows a fine control of gas and liquid contact times on Pd nanoparticles 

catalytic sites immobilized onto the polymeric resins.  

 

5.3. CATALYTIC HYDROGENATIONS IN FLOW MODE WITH Pd 

NPs 

The importance of selective partial hydrogenation reactions of hydrocarbons 

with multiple C=C or CC bonds in fine chemical industry has been already 

pointed out in this Thesis and, to this purpose, an in depth investigation was 

carried out to evaluate the activity and selectivity of Pd/D(Li) type catalysts in 
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batch conditions (Chapter 4 / Section 4.3.2.). Prompted by the ease of handling of 

the developed catalysts, their proved efficiency under mild conditions (1 bar H2 

and r.t.) and their confirmed stability upon recycling, it was decided to step 

forward and test the system under continuous-flow conditions. 

With this aim, a home-made apparatus was used (Chapter 2 / Section 2.6.2.) in 

which the substrate solution and the H2 gas flow simultaneously through the 

catalyst beads packed into a commercial tubular glass mini-reactor (Fig. 5.2.).15  

React. Prod.

H2  

Fig. 5.2. Schematic representation of hydrogenation reaction in continuous flow by using Pd 

NPs supported on Dowex resins. 

Having established the best catalyst performance for the hydrogenation of 

cyclooctadiene 5 and 3-hexyn-1-ol 7 in batch, we used these as probe substrates 

(Scheme 5. 1.) for the evaluation of productivity and selectivity in flow, by 

monitoring the reaction progress with time under constant (Fig. 5.2.) and variable 

(Fig. 5.3.) flow rates of solution and H2 gas.  

 

Scheme 5.1. Sketch of the substrates tested in hydrogenation in continuous flow mode. 

Before performing catalytic reactions, Pd/D(Li) in was packed into the mini-

reactor and reduced under a rate flow of 0.4 mL min−1 methanol and 0.8 mL min-1 

molecular hydrogen. The reactions were run under conditions comparable with 
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those of the batch experiments, resulting in excellent catalyst stability over 

prolonged reaction periods with no significant activity nor selectivity decay 

observed for more than 24 hours time on stream, neither Pd leached in solution 

detected by ICO-OES.  
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Fig. 5.2. Continuous-flow hydrogenation of 5 (left) and 7 (right) over Pd/D(Li) pre catalyst (50-

100 mesh, 45 mg, 1.25 wt% Pd, [Pd(CH3CN)4 (BF4)2] precursor). Conversion and selectivity vs. time 

on stream. React. condit.: 45 mg Pd/D(Li) pre, methanol, r.t., substrate concentration 0.2 M, fixed 

solution flow 0.2 mL min
-1

 and H2 0.8 mL min
-1

/ 2.5 bar. Selectivity Z-alkene = 7a/(7a+7b)x100, 

total (cis+trans) ene selectivity values were similar. 

The best compromise between conversion and selectivity for both substrates 

was obtained for residence times in the range 50-100 s and ca. 2.5 bar H2.
14 

Under these conditions, cyclooctene was obtained with ca. 97% selectivity@87% 

conversion (Fig. 5.2. left), that corresponds to a productivity of 395 h-1 (TOF) and 

1.30 kg l-1 h-1 (STY), and to an overall TON of 1700 after 4.7 h.15 The partial 

hydrogenation of 5 was previously accomplished using a pore-through-flow 

Pd@Al2O3 catalytic membrane reactor under 50 °C and 10 bar H2.
16 Similar 

selectivity/conversions were obtained, however STY was ca. one order magnitude 

lower and also periodic regeneration of the system at 250°C under H2 for 2h was 

required. 

The cis-mono-hydrogenation product of 7, the leaf alcohol 3-hexen-1-ol 7a, is 

an important ingredient in the fragrance industry,17 which is manufactured in ca. 

97% selectivity@99% conversion by a batch process using the Lindlar catalyst (Pd 
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on CaCO3 doped with Pb).18 The proposed flow system provided 7a with a 89% 

selectivity@75% conversion (Fig. 5.2. right), being (cis+trans) selectivity ca. 80%. 

This corresponds to a productivity of 352 h-1 (TOF) and 1.02 kg l-1 h-1 (STY), and to 

an overall TON of 1650 after 4.7 h. Despite the slightly higher selectivity of the 

industrial process, the system here described represents an alternative with clear 

benefits in terms of safety, environmental impact and productivity, also avoiding 

potential contamination by toxic Pb.19  
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Fig. 5.3. Continuous-flow hydrogenation of 5 (left) and 7 (right) over Pd/D(Li) pre catalyst (50-

100 mesh, 45 mg, 1.25 wt% Pd, [Pd(CH3CN)4 (BF4)2] precursor). Selectivity vs conversion diagram 

React. condit.: 45 mg Pd/D(Li) pre, methanol, r.t., fixed H2:substrate ratio=2.3, variable solution 

flow [0.1-0.4] mL min
-1

 and H2 [0.5-1.2] mL min
-1

. Selectivity = 7a/(7a+7b)x100, total (cis+trans) 

ene selectivity values were similar. 

To analyze the selectivity of the system at different conversions the yields 

towards monohydrogenated products were tuned by adjusting the H2 and the 

solution flow rates. Irrespective of the substrate, an increase of the solution flow 

rate (i.e. a decrease of the residence time while keeping a constant H2:substrate 

ratio=2.3) invariably led to an increase of selectivity in partial hydrogenation, 

which could be easily brought to 100 %, although with some conversion 

decrease.20 This is illustrated in Fig. 5.3. in which the selectivity/conversion 

diagram, obtained by varying the flow rate of the solution at fixed H2/substrate 

ratio, is reported. 
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Compared to the corresponding batch reactions (Table 5.1.) the Pd/D(Li) used 

in continuous flow reactor was ca. 50 times more productive in terms of STY and 

showed a similar selectivity/conversion relationship in the case of 5, and a worse 

selectivity performance in the case of 7. Indeed, the selectivity for 7 was more 

dependent from conversion than for 5 (see Fig. 5.3.), thus indicating that 5 is a 

much more sensitive substrate with respect to slight changes in the experimental 

conditions. 

Table 5.1. Comparison Pd/D(Li) type catalysts in batch and flow conditions. 
                

  

Mode 

1,5-COD [5] 
 

3-hexyn-1-ol [7] 

TOF 

(h
-1

) 

Conv 

(%) 

Select. 

[5a] (%) 

STY 

(kg l
-1

 h
-1

)  

TOF 

(h
-1

) 

Conv 

(%) 

Select. 

[7a] (%) 

STY 

(kg l
-1

 h
-1

) 

a
 Batch 350 98.5 96.7 0.02 

 
322 91.0 98.2 0.02 

b 
Flow 395 87.0 97.0 1.23 

 
352 74.9 89.0 1.06 

React. Cond.: methanol, r.t., 1.25 wt% Pd/D(Li) type catalysts (50-100mesh, [(Pd(CH3CN4)(BF4)2] 

precursor), 
a 

50 mg cat., subtrate concentration 0.17 M, molar ratio substrate:Pd = 350, H2 

pressure 1 bar; 
b 

45 mg cat., substrate concentration 0.2 M, solution flow 0.2 ml min
-1

, H2 flow 0.8 

ml min
-1

, H2 pressure 2.5 bar. 

 

In order to evaluate the efficiency of the developed system in comparison with 

other catalysts, three different supported Pd-based catalysts were tested in the 

continuous hydrogenation of 7 under similar reaction conditions: Pd-MonoSil21 

made of Pd NPs supported onto a macro/mesoporous silica monolith, the 

commercial Pd/C and Pd/TiO2 monolith22 made of Pd NPs supported onto a 

macro/mesoporous titania monolith. The obtained results are shown in Table 5.2. 

Pd NPs supported onto ion exchange resins were invariable more effective in 

terms of activity and selectivity. Similar behaviour was detected for Pd/TiO2 

monolith in terms of TOF and STY, nevertheless, polymeric based catalysts 

provided a higher selectivity at the same conversion in any case.22 Comparing to 

the packed bead reactor using a commercial Pd/C catalyst, a great difference was 

found with regard to the activity, being this catalyst ca. 10 times less active. A 
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possible explanation could be related with mass transfer limitations, unlike the 

polymeric beads, a powder can pack better inside the reactor and consequently 

cause higher resistance to the passage of fluid, in fact, H2 pressure increased up 

to 9 bars when Pd/C was used. With respect to selectivity, they showed similar 

values but for Pd/C the conversion was 15% and it has been already seen the 

strong dependence selectivity has from conversion. 

Table 5.2. Comparison with different supported Pd-based catalysts. Continuous flow 

hydrogenation of 3-hexyn-1-ol 7. 
          

Catalyst TOF (h
-1

) Conv (%) Select. [7a] (%) STY (kg l
-1

 h
-1

) 

a 
1.25 wt% Pd/D(Li) 352 74.9 89.0 1.06 

b 
1.30 wt% Pd-MonoSil 81 85.0 78.0 0.27 

c 
5.00 wt% Pd/C 27 15.0 89.0 0.24 

d 
0.24 wt% Pd/TiO2 monolith 350 61.0 87.0 0.93 

React. Cond.: methanol, r.t., 
a
 45 mg cat., substrate concentration 0.2 M, solution flow 0.2 

ml min
-1

, H2 pressure 2.5 bar, molar ratio H2:substrate = 2.4; 
b
 150 mg cat., 0.2 M, 0.15 ml 

min
-1

, 2.9 bar H2, molar ratio 2.8; 
c
 150 mg cat, 1 M, 0.15 ml min

-1
, 9 bar H2, molar ratio 1.2;

 

d
 140 mg cat., 0.2 M, 0.15 ml min

-1
, 2.3 bar H2, molar ratio 2.2. 

 

 

5.4. CONCLUSIONS 

A continuous flow catalytic system was implemented for the selective 

hydrogenation of hydrocarbons with multiple C=C and C≡C bonds to achieve 

partial hydrogenation products, very interesting compounds in the synthesis of 

fine chemicals.23 Polymer supported Pd NPs catalysts showed very good 

durability and efficiency under flow conditions with more than 24 h time on 

stream with neither loss of activity nor selectivity. Catalytic flow processes 

represent a convenient alternative to batch reaction in terms of productivity, 

safety, waste emission, purification, space and energy consumption. The catalyst 

was applied to the flow synthesis of the important leaf alcohol cis-3-hexen-1-ol 
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with significant benefits compared to the industrial process and with better 

productivities than the homologous discontinuous systems. The results obtained 

showed a relatively simple approach useful for the production of elaborate 

molecules, and thus for the long-term production of fine-chemicals. 

 

5.5. EXPERIMENTAL  

The details about preparation and characterization of the catalysts are reported 

in the experimental section of Chapter 3. All the chemicals used in hydrogenation 

reactions were reagent grade commercial products and were used as received 

from Aldrich without further purification. GC and ICP-OES analyses of the 

recovered solutions after catalysis to determine the content of metal leached 

were performed on the equipments described in Chapter 2 

Hydrogenation reactions in continuous flow mode. 

Catalytic flow hydrogenations were carried out using a home-made 

continuous-flow reactor system built at Istituto di Chimica dei Composti Organo 

Metallici and described in Chapter 2 / Section 2.6.2. At the outlet of the reactor, 

the product solution was collected for GC analysis and the excess amount of the 

hydrogen gas released to the atmospheric pressure. Commercially available H2 

(99.995%) was used as received. The catalyst was packed into the mini-reactor as 

Pd/D(Li) in and reduced under flow conditions with H2 in methanol previously to 

the catalytic reaction and without further isolation. 

In a typical experiment, 45mg of Pd/D(Li) in were packed into the commercial 

tubular glass mini-reactor (3 mm diameter x 25 mm length), then degassed 

methanol and molecular hydrogen were allowed to flow through the catalytic bed 

at a constant 0.4 mL min-1 and 0.8 mL min-1 rate respectively for 1h until the 

catalyst became black. After that, a degassed solution of substrate in methanol 
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(0.2 M) was allow to flow through the catalyst beads at a constant 0.2 mL min-1 

rate, together with a constant H2 flow of 0.8 mL min-1 at RT. This resulted in a H2 

pressure at the reactor inlet of ca. 2.5 bar (corresponding to a H2:substrate molar 

ratio of ca. 2.3), while the hydrogen gas was released at atmospheric pressure at 

the outlet of the reactor. Therefore, the pressure drop generated by the packed 

bed reactor was ca. 1.5 bar. The attainment of the steady state conditions (ca. 1 h 

after the activation of the catalyst) was taken as the reaction start time. The 

product solution was periodically analyzed for conversion by GC, while 12 mL h-1 

aliquots were continuously sampled for subsequent Pd leaching analysis by ICP-

OES.  
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Polymer Supported Colloidal Palladium Nanoparticles: 

Synthesis, Characterization and Hydrogenation Tests. 

 

6.1. OVERVIEW 

This Chapter initiates with a brief introduction to the topic of colloidal 

nanoparticles focusing on palladium nanocatalysts and supported colloids on 

organic materials and giving practical examples of the state of art. The study 

carried out is then described, which encompasses the synthesis and 

characterization of supported palladium catalysts starting from colloidal 

nanoparticles. The performance of the catalysts in terms of activity and selectivity 

was evaluated in the semi-hydrogenation of substituted acetylenes, an important 

reaction in fine chemistry to obtain cis-olefins, by using the previously studied 3-

hexyn-1-ol as model substrate. Finally, comparison with palladium colloids 

immobilized on different supports was also carried out 
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6.2. INTRODUCTION 

The term “colloid” refers to the suspension of a phase (solid or liquid) into a 

second phase, which neither settled not deposited spontaneously. This definition 

includes a large group of materials divided in polymer suspensions in solution, 

emulsions constituted by amphiphilic molecules in aqueous or organic mixture 

and dispersions of inorganic particles. For long time, the properties of inorganic 

colloids, and more precisely metal nanoparticles, have awoken great interest 

within the scientific community.1 The small size of the colloidal particles, usually in 

the nanometer scale, is responsible for their unique properties allowing a wide 

range of applications, among others, in the catalytic field.2 However, this 

nanometric scale makes metal nanoparticles unstable since they tend to 

agglomerate to reduce their surface tension; therefore the stabilization of metallic 

colloids is a crucial aspect to be considered.3  

Different synthetic methods have been described for the preparation of 

metallic nanoparticles, including physical and chemical approaches. In the first 

group, the mechanic subdivision of bulk metals yields dispersions with a very 

wide size distribution, usually not reproducible, while with chemical methods an 

easier control of the nanoparticles size can be achieved.4 In this sense, there are 

several chemical methods for the synthesis of colloidal suspensions leading to 

different size distributions: i) chemical reduction of transition metal salts,5 ii) 

thermal,6 photochemical,7 or sonochemical8 decomposition, iii) ligand reduction 

and displacement from organometallics,9 iv) metal vapour synthesis,10 and v) 

electrochemical reduction.11 However, whatever the method used, the presence 

of stabilizing ligands is required in order to prevent agglomeration, in this sense, 

linear polymers or surfactants such as tetraalkylammonium salts are usually 

employed. 



Polymer Supported Colloidal Pd NPs: Synthesis, Characterization & Hydrogenation tests 

143 

 

Among the chemical methods abovementioned, the most extensively used is 

the reduction of transition metals salts in solution. To obtain the colloidal 

materials by this generally simple procedure, there is a broad range of reducing 

agents that can be used including gases such as molecular hydrogen and carbon 

monoxide, hydrides, salts like sodium borohydride or sodium citrate or even 

oxidable alcohols that can act as both, solvent and reducing agent. Hirai and co-

workers12 have extensively used aqueous alcohols as reducing agents in the 

synthesis of colloidal transition metals such as Rh, Pt, Pd, Os, or Ir. All these 

colloidal suspensions were stabilized by organic polymers or oligomers such as 

polyvinylic alcohol (PVA), polyvinylpyrrolidinone (PVP), polyvinylic ether (PVE), or 

cyclodextrine. On the other hand, Tan et al.13 reported aqueous colloidal solutions 

of Au, Ag, Ir, Pt, Pd, Rh or Ru stabilized by PVA and prepared by hydrogen 

reduction of the corresponding chloride salts. Differently, Turkevitch et al 14 

synthesized colloidal suspensions of gold by using sodium citrate that acted as 

both reducing agent and ionic stabilizer. When borohydrides (NaBH4 or KBH4) are 

used, usually surfactants (anionic or cationic) and water-soluble polymers are the 

stabilizers utilized. As an example, Nakao and co-workers15 described the 

preparation of Ru, Rh, Pd, Pt, Ag, or Au nanoparticles stabilized by quaternary 

ammonium, sulfates, or poly(ethylene glycol). 

The catalytic application of colloidal suspensions presents several drawbacks 

with regard to separation from the reaction mixture and recycling. The 

immobilization of suspensions on solid insoluble supports may be a clear 

alternative for an easy recycling by simple filtration. However, the presence of 

surfactants or salts that can also be adsorbed on the surface may adversely affect 

the catalytic activity. Usually, the immobilization of metal colloids takes place by 

either adsorption or chemical bond to the support. In the first method, the most 

often used solid supports are activated carbon, silica, alumina, or other oxides 

such as TiO2 and MgO. The main advantage of this process is that generally, 
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regardless the support, the size of the colloidal nanoparticles does not change 

during the immobilization, differently from the most traditional prepared catalysts 

where the nanoparticles size is highly affected by the support. In this sense, Reetz 

et al.16 reported Pd colloids on alumina disks where alteration neither of structure 

nor of particle size was detected by TEM. Bönnemann et al.17 prepared a 

supported Pt-Pd colloid stabilized by quaternary ammonium salts by stirring the 

colloidal suspension in the presence of activated carbon. On the other hand, 

polymeric supports have been also used to heterogenized colloidal metals. 

Toshima et al.18 reported polymer-protected platinum and rhodium clusters 

immobilized on cross-linked polymers. Nakao and co-workers19 immobilized 

aqueous suspensions of Rh, Pd, Pt, Ag, or Au colloids stabilized by a wide range 

of surfactants on ion-exchange resins.  

No many further examples of colloidal nanocatalysts supported onto ion 

exchange resins can be found in the literature. However, as has been described 

and demonstrated for traditional supported metal nanoparticles in this Thesis, 

these materials show inherent advantages in their application as catalytic 

supports. For this reason, immobilization of palladium colloids onto ion exchange 

resins and testing of the resulting catalyst were carried out. 

 

6.3. SYNTHESIS OF COLLOIDAL SUPPORTED PALLADIUM 

CATALYSTS 

The preparation of the catalysts starts with the synthesis of colloidal palladium 

suspensions and the subsequent immobilization of the stabilized nanocatalysts 

onto Dowex resins. The resins used were gel type (2% divinylbenzene as cross-

linker), either strong cation-exchange (containing sulfonic groups, DOWEX® 

50WX2) or strong anion-exchange (trimethylbenzyl ammonium groups, DOWEX® 

1X2), and with bead dimensions ranging from 150 to 300 m. Strong cation-
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exchange resins were used in their protonated form as manufactured, or 

converted into the parent lithium salt.20 A sketch of the ion-exchange resins is 

reported in Chapter 3 / Scheme 3.2. 

The highly stable solution of Pd colloids, from here on referred to as c-Pd, was 

prepared through a commercialized route called NanoSelect.21 In this procedure, 

(hexadecyl)(2-hydroxyethyl)dimethylammonium (HHDMA) dihydrogenphosphate, 

a cationic ammonium surfactant (depicted in Scheme. 6.1), is used as both a 

stabilizing and a reducing agent in water.  

 

Scheme 6.1. Commercial ammonium surfactant [HHDMA] [H2PO4]. 

The alcohol function acts as an electron donor for the reduction of noble metal 

salts, with no additional reducing agent required, thus leading to the 

straightforward growth of Pd NPs. During the reduction of Pd(II) (in the form of 

Na2PdCl4) to Pd0, the surfactant adsorbs onto the surface of the preformed NPs, 

which stabilizes the colloidal particles in water. Bönnemann et al.22 described a 

similar system for the reduction of metal salts with tetraalkylammonium 

hydrotriorganoborates [NR4][BEt3H] in THF. In the reported process, both the 

stabilizing agent (the NR4
+ group) and the reducing group were also coupled in 

the same reagent.  

The resultant c-Pd, obtained as acidic aqueous solution of pH 3, were analyzed 

by Dynamic Light Scattering (DLS) to verify the mean diameter of the colloids was 

within the acceptable range of 40 – 50 nm; it must be taken into account that the 

colloids consist of a nanoparticle metal core surrounded by a shell of stabilizing 

agent, therefore, the actual size of the MNP is lower, as was proved by TEM (see 

Section 6.4.). After that, the nanocatalysts were deposited onto polymeric resins 
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differently functionalized (Table 6.1.) by mixing c-Pd with the heterogeneous 

support to achieve a theoretical loading of 0.5 wt% Pd.  

Table 6.1. Pd deposition on functionalized ion exchange resins. 
      

Resin Functional group Pd deposition 

Dowex 50WX2 –SO3
– 
H

+
 yes 

Dowex 50WX2 –SO3
– 
Li

+
 no  

Dowex 1 X 2 –CH2NMe3
+ 

Cl
–
 no 

 

The colloids were supported onto the resin by ion exchange mechanism (see 

Section 6.4.). In the case of the anionic resin, no exchange was possible and 

therefore, the attachment of the stabilized nanoparticles to the polymer did not 

happen. For the cationic resin, differences were found between the protonated 

and the lithiated form. While the colloids were immobilized onto the resin when 

the protonated form was used, in the case of the lithiated form not only the 

immobilization did not take place, but also the precipitation of palladium was 

detected. The presence of lithium somehow destabilized the colloid forcing the 

precipitation of palladium. 

Following the evidences, the cation exchange resin in the protonated form was 

utilized to prepare a set of catalysts, referred to as c-Pd/D(H) and summarized in 

Table 6.2., by changing the pH and the dilution ratio of the colloidal suspension. 

The metal content, analyzed by ICP-OES, indicated that the concentration of 

palladium affected the metal uptake, since solutions less concentrated led to 

higher metal uptake. No distinction was found with regard to the pH. P. T. Witte 

et al. have previously reported the immobilization of these colloids onto different 

supports, among them, activated carbon, titanium silicate, or different 

functionalized organic polymer fibers with the latest behaving in a very similar 

way to that above described.21,23 
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Table 6.2. Polymer supported c-Pd catalysts prepared. 
              

Catalyst     

label 
pH 

Dilution 

ratio  

% H2O     

(LOI)
 a
 

wt% Pd             

(dry catalyst) 
b
 

wt% Pd                     

(wet catalyst)
c
 

M uptake
d
 

(%) 

c-Pd/D(H) 1 3 - 22.6 0.16 0.12 24.8 

c-Pd/D(H) 2 3 1 19.7 0.21 0.17 33.8 

c-Pd/D(H) 3 3 3 21.1 0.24 0.19 37.8 

c-Pd/D(H) 4 7 1 8.9 0.19 0.17 34.6 

c-Pd/D(H) 5 10 3 9.0 0.20 0.18 36.4 
a
 Loss on ignition: Treatment at 105ºC for 1 h. 

b
 Pd content measured by ICP-OES in the dry 

sample. 
c
 Pd content calculated taken into account the amount of water present in the 

support 
d
 Percentage of metal in the catalyst regarding the theoretical amount (0.50 wt%). 

 

6.4. CHARACTERIZATION OF COLLOIDAL SUPPORTED 

PALLADIUM CATALYSTS 

The polymer supported Pd colloids were characterized in the solid state by a 

combination of microscopic and scattering techniques employing the equipments 

described in Chapter 2. Palladium loading was obtained from ICP-OES (Table 6.2.) 

STEM imaging showed the presence of palladium nanoparticles supported 

onto the resins. Representative pictures are shown in Fig. 6.1 and Fig 6.2. From 

STEM characterization, it can be seen that the size of supported Pd NPs was 

scarcely affected by the acid-base conditions or the dilution ratio of the 

immobilization process. For basic conditions (Fig. 6.1.) metal nanoparticles of 17.1 

nm mean diameter were found, with a size distribution a bit more spread than for 

Pd NPs supported under acid conditions (Fig 6.2.). The latest showed a mean size 

of 15.7 nm with 60% of the particles within the range (14-16 nm). 
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Fig. 6.1. STEM analysis of sample c-Pd/D(H) 5 (pH 10): a) High-Angle Annular Dark-Field 

image, b) nanoparticle size distribution determined from TEM, c) secondary electrons image of the 

same area and d) EDXS microanalysis.  
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Fig. 6.2. STEM analysis of c-Pd/D(H) 1 (pH 3): a-c) TEM images at different magnifications b) 

nanoparticles size distribution from TEM analysis and d) Elemental analysis by EDXS. 
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Regardless the acid-base conditions, TEM images showed aggregates of 

nanoparticles (small and big clusters), but also single nanoparticles were 

detected. According to the shape, most of Pd nanoparticles presented 

polyhedron geometries, usually octahedral and tetrahedral, prevailing over 

spheres. The adoption of polyhedral shapes has been already described for 

colloidal palladium nanoparticles of similar dimensions.24 

Some hypothesis has been done concerning the interaction system between 

nanoparticles, stabilizer and support. P. T. Witte et al. proposed a flexible 

mechanism in which a double layer of stabilizer, with polar groups directed 

inwards towards the metal and outwards towards the solution, surrounds the 

nanoparticle making these colloids soluble in water, and at the same time 

allowing the attachment to the support. A graphic representation is shown in 

Scheme. 6.2. 

 

Scheme 6.2. Proposed mechanism of stabilization of colloidal nanoparticles by means of a 

double layer of HHDMA and deposition on cation exchange resin support. Adapted from 

reference [23] 
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Nakao et al. reported a comparable system where an aqueous solution of 

stabilized colloids was supported onto ion exchange resins and they presumed 

similarly that free surfactant molecules contained in the sols first attach to the 

resin surface to give it a hydrophobic character to some extent.15,19 

It seems to be clear that the interaction of the colloids with the support was 

through the polar head groups of the stabilizer. The best interaction took place 

when negatively charged surface was easily available, as happened with the 

polymer functionalized with sulfonic groups (H form), on the contrary, the 

positively charged surface by quaternary ammonium groups generated an 

electrostatic repulsion that did not allow  the attachment (see Section 6.3.).  

 

6.5. HYDROGENATION OF 3-HEXYN-1-OL 

It was already mentioned in Chapter 4 the importance that partial 

hydrogenation of alkynes to obtain mono-enes has in fine chemicals industry 

and, to this purpose, the hydrogenation of 3-hexyn-1-ol has been extensively 

studied in this Thesis either in batch or flow conditions (Chapters 4 and 5).  

The synthesized polymer supported Pd colloids were tested in the 

hydrogenation of the substituted acetylene (Scheme 6.3) in order to evaluate the 

activity of these catalysts and the selectivity to the cis-olefin. 

 

Scheme 6.3. Reaction scheme of the hydrogenation of 3-hexyn-1-ol 7. 

In order to get a first evaluation of the activity of the catalysts, hydrogenation 

of 3-hexyn-1ol to the saturated alcohol was carried out (see Fig. 6.3.) The catalytic 

reaction was performed under mild conditions (3 bar of H2 and 30ºC) and the 
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progress of the hydrogenation was followed by measuring the volume of H2 

uptake. Full hydrogenation to hexanol 7c was achieved after absorption of 2.0 L 

H2, while the consumption of 1 L H2 led to the mono-hydrogenated product.  
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Fig 6.3. H2 uptake curves for hydrogenation of 3-hexyn-1-ol by c-Pd/D(H) type catalysts. 

React. Conditions: 96%EtOH, 30˚C, substrate concentration 0.38M, substrate : Pd = 3900:1 molar 

ratio, H2 pressure 3 bar, 1500rpm, time 90 min. 

As shown in Fig. 6.3., no notable differences were found in the first stage of the 

reaction with all the catalysts being very fast in the semi-hydrogenation reaction 

(< 20 min), unlike the overhydrogenation process, a slower reaction, that shown 

the catalysts immobilized under acid conditions to be faster than those at pH 7 

and 10. The results evidenced in any case the selectivity of these catalysts to the 

olefin since a significant decrease in the H2 uptake could be noticed after 1 L 

consumption. 

The hydrogenation was performed repeatedly under identical catalytic 

conditions and stopped immediately before 1 L H2 uptake to evaluate the 

selectivity at nearly full conversion. The results, reported in Fig. 6.4. and Table 6.3., 

proved the developed catalysts to be highly selective to the cis-isomer 7a. 
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Fig 6.4. H2 uptake curves for hydrogenation of 3-hexyn-1-ol by c-Pd/D(H) type catalysts. 

React. Conditions: 96%EtOH, 30˚C, substrate concentration 0.38M, substrate : Pd = 3900:1 molar 

ratio, H2 pressure 3 bar, 1500rpm.  

Table 6.3. Hydrogenation of 3-hexyn-1-ol 7 with c-Pd/D(H) type catalysts.
a
 

            

Catalyst 
time 

(min) 

Conv.        

(%) 

Select. 

Alkene  (%) 

Select.            

Z-Alkene (%)
b
 

TOF       

(h
-1

)
c
 

c-Pd/D(H) 1 0.24 99.8 96.5 92.2 16118 

c-Pd/D(H) 2 0.28 100.0 95.9 91.4 14195 

c-Pd/D(H) 3 0.25 97.0 97.6 94.2 15151 

c-Pd/D(H) 4 0.27 99.1 96.9 94.1 14510 

c-Pd/D(H) 5 0.28 97.2 97.6 94.8 13801 

a
 React. Conditions: 96%EtOH, 30˚C, substrate concentration 0.38M, substrate : Pd 

= 3900:1 molar ratio, H2 pressure 3 bar, 1500rpm. 
b
 Selectivity = 7a/(7a+7b)x100. 

c 
TOF (on overall conversion) = mol product / mol Pd x h 

 

Analyzing the results reported in Table 6.3, small differences with regard to 

selective partial hydrogenation were noticed. In general, with conversions over 

97%, the olefin 3-hexen-1-ol (7a + 7b) was obtained with more than 96% 

selectivity while the leaf alcohol 7a was within the range 91.4% – 94.8%. 

Concerning the activity of these catalysts (Fig. 6.4.), c-Pd/D(H) 1 synthesized 



Polymer Supported Colloidal Pd NPs: Synthesis, Characterization & Hydrogenation tests 

153 

 

without changing either pH or concentration of the original colloids, resulted to 

be the most active with a TOF of 16118 h-1.  

In order to evaluate the efficiency of the developed system in comparison with 

palladium colloids supported on different supports, the same reaction was 

performed under equal catalytic conditions with supported colloidal Pd NPs of 

similar dimensions, ca. 15 nm, immobilized on titanium silicate and activated 

carbon (see Table 6.4.). 

Table 6.4. Comparison different supports in the hydrogenation of 3-hexyn-1-ol 7.
a
 

            

Catalyst 
time 

(min) 

Conv.  

(%) 

Select. 

Alkene (%) 

Select.   

Z-Alkene (%)
d
 

TOF 

(h
-1

)
e
 

b
 0.12% c-Pd (15nm)/D(H) 1 0.24 99.8 96.5 92.2 16118 

c
 0.5% c-Pd (15nm) / C 0.31 94.6 95.5 94.9 13441 

c
 0.5% c-Pd (15nm) / TiS 0.28 96.4 96.5 95.5 12776 

a
 React. Conditions: 30˚C, substrate concentration 0.38M, substrate : Pd = 3900:1 molar 

ratio, H2 pressure 3 bar, 1500rpm. 
b
 methanol. 

c
 ethanol. 

d
 Selectivity = 7a/(7a+7b)x100. 

e 
TOF (on overall conversion) = mol product / mol Pd x h 

 

In spite of being also very active, in no case, c-Pd supported either on C or TiS 

showed higher activities than the new proposed c-Pd supported onto ion 

exchange resins. The higher activity of supported colloids in comparison with 

conventional supported metal NPs is related to the fact that they combine the 

advantages of heterogeneous catalysts in a near-homogeneous format.25 This 

behaviour was revealed during the present study as colloidal supported catalysts 

turned out to be ca. 20 times more active than the conventional catalysts 

previously described (Chapter 4 / Section 4.4.2.). Regarding the selectivity to the 

cis-olefin 7a, colloids supported onto ion exchange resins were slightly less 

selective than those supported on C and TiS (notice the selectivity data were 

recovered at slightly higher conversion). Comparing these nanocatalysts with the 

conventional polymer supported Pd NPs, the latest were invariably more selective 
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to the leaf alcohol with values around 98%. Nevertheless, the different conditions 

used for both supported c-Pd NPs and Pd NPs in the hydrogenation of 7 must be 

taking into account, since meticulous comparison is not possible. 

 

6.6. CONCLUSIONS 

A new catalytic system was developed by combining Pd colloids and their 

immobilization onto ion exchange resins. The supported nanocatalysts were 

prepared through the reduction-deposition method NanoSelect,21 and tested in 

the semi-hydrogenation of 3-hexyn-1-ol showing very good activities (TOF= 

16118 h-1) and selectivities to the cis-olefin (92.2%). Comparing with supported 

colloids on C or TiS, the efficiency of the developed catalysts was higher in terms 

of activity and very similar in terms of selectivity representing a suitable lead-free 

alternative to the Lindlar catalyst, the most used for the partial hydrogenation of 

substituted acetylenes. 

 

6.7. EXPERIMENTAL 

DOWEX® 50WX2 - 100 (H+ form, 2% cross-linked, gel-type, 50-100 mesh [150-

300 µm] bead size, 4.8 meq/g exchange capacity) strong cation-exchange resin 

and DOWEX® 1X2 - 100 (Cl- form, 2% cross-linked, gel-type, 50-100 mesh [150-

300 µm] bead size, 3.5 meq/g exchange capacity) strong anion-exchange resin 

were obtained from Aldrich. The palladium precursor Na2PdCl4 (aqueous solution) 

was obtained from BASF Rome. The cationic ammonium surfactant (hexa-decyl) 

(2-hydroxyethyl) dimethylammonium (HHDMA) dihydrogenphosphate was 

obtained from Sigma Aldrich. 
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The synthesized catalysts were characterized by using different techniques 

explained in detail in Chapter 2. STEM (Scanning Transmision Electron 

Microscopy) was used to evaluate the dimension and size distribution of the 

clusters. EDS (Energy Dispersive X-ray Spectrometer) helped to observe the 

distribution of metal within the bead as well as to analyse qualitatively the 

composition. Reactions under a controlled pressure of hydrogen were performed 

using a 250 mL stainless steel Premex autoclave. The catalytic solutions were 

analyzed by GC, products were identified by comparison with the commercially 

available compounds obtained from Sigma Aldrich. The metal content in the 

resin-supported catalysts was determined by ICP-OES (Inductively Coupled 

Plasma – Optical Emission Spectrometry). This technique was also applied for the 

quantification of leached metal content in the heterogeneous catalysis solutions 

recovered after reaction. 

Preparation of colloidal suspensions of Pd  

A solution of 15g HHDMA in 1 L water was heated at 60°C. Then, a solution of 

0.75g Pd (as Na2PdCl4) in 10 ml water was added. Upon mixing HHDMA and the 

palladium salt the colour change from yellow to red. The mixture was heated at 

80°C and stirred at this temperature for 2 h. After all, the dimension of the 

colloids was analyzed by Dynamic light scattering (DLS) 

Immobilization of the colloids onto the polymeric resins 

The commercial resins were washed prior to use as reported in the 

experimental section in Chapter 3. 

Colloids immobilized under acid conditions (pH = 3): 5g of dry cation-

exchange resin (R-SO3
-H+) were added into a becker containing the c-Pd, the 

mixture was stirred for 1h at room temperature. The resin obtained was 

transferred into a glass filter and washed sequentially with deionised water (3 x 50 

ml), methanol (3 x 50 ml) and diethyl ether (3 x 50 ml) before being dried in a 
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stream of nitrogen overnight. The polymer supported colloidal palladium, c-

Pd/D(H), was obtained as black beads  

Colloids immobilized under neutral and base conditions (pH = 7, pH = 10): The 

c-Pd was added into a becker, then NaOH 10% was added till the desired pH. 5g 

of dry cation-exchange resin (R-SO3
-H+) were added to the solution causing a 

decrease of the pH that was readjusted by adding again NaOH 10%. The mixture 

was stirred for 1h at room temperature and from here on it preceded as 

abovementioned.  

Hydrogenation reaction of 3-hexyn-1-ol 

All the hydrogenation reactions were performed in a 250 ml stainless steel 

autoclave and using mild conditions at 3 bar of H2 and 30ºC. In a typical 

experiment, the autoclave was charged with 50 mg of catalyst (dry weight) and 

100g 4.5 wt% 3-hexyn-1-ol in 96% ethanol, then the mixture was heated to 30˚C. 

Without stirring the autoclave was flushed with hydrogen and pressurized with 3 

bar of H2. The reaction was started by starting the stirring (1500rpm). After the 

desired time, the solution was completely removed and a sample of this solution 

(0.5 l) was used for GC (product yield and product identification). 



Polymer Supported Colloidal Pd NPs: Synthesis, Characterization & Hydrogenation tests 

157 

 

REFERENCES 

                                                           

 1  E. Roduner (Ed.), Nanoscopic Materials Size-Dependent Phenomena, RSC Publishing, 

Cambridge, 2006, pp. 239–262. 

 2  a) J. M. Thomas, Pure Appl. Chem, 60. 1988, 1517; b) W. Ostwald, Colloid-Z. 1, 1907, 291. 

 3  R. G. Finke, Metal Nanoparticles: Synthesis, Characterization and Applications, Chapter 2; D. L. 

Feldheim, C. A. Foss Jr., (Eds), Marcel Dekker, New York, 2002. 

 4  A. Roucoux, J. Schulz, H. Patin, Chem. Rev., 102, 2002, 3757. 

 5  T. Teranishi, M. Miyake, Chem. Mater., 10, 1998, 594. 

 6  K. Esumi, T. Tano, K. Meguro, Langmuir, 5, 1989, 268. 

 7  M. Michaelis, A. Henglein, J. Phys. Chem., 96, 1992, 4719. 

 8  N. A. Dhas, H. Cohen, A. Gedanken, J. Phys. Chem. B, 101, 1997, 6834. 

 9  J. S. Bradley, E. W. Hill, S. Behal, C. Klein, B. Chaudret, A. Duteil, Chem. Mater. 4, 1992, 1234. 

10  (a) H. Hahn, R. S. Averback, J. Appl. Phys., 67, 1990, 1113. (b) Y. Li, J. Liu, Y. Wang, Z. L. Wang, 

Chem. Mater., 13, 2001, 1008. 

11  M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 116, 1994, 7401. 

12  a) H. Hirai, Y. Nakao, N. Toshima, J. Macromol. Sci., Chem. A, 12, 1978, 1117; b) H. Hirai, Y. 

Nakao, N. Toshima, J. Macromol. Sci., Chem. A, 13, 1979, 727; c) A. Borsla, A. M. Wilhelm, H. 

Delmas, Catal. Today, 66, 2001, 389; d) H. Hirai, J. Macromol. Sci., Chem. A, 13, 1979, 633; e) 

H. Hirai, Makromol. Chem., Suppl. 14, 1985, 55; f) H. Hirai, Y. Nakao, N. Toshima, Chem. Lett. 

1978, 545; g) N. Toshima, M. Kuriyama, Y. Yamada, H. Hirai, Chem. Lett., 1981, 793; h) M. 

Komiyama, H. Hirai, Bull. Chem. Soc. Jpn. 56, 1983, 2833. 

13  C. K. Tan, V. Newberry, T. R. Webb, C. A. McAuliffe,  J. Chem. Soc., Dalton Trans., 1987, 1299 

14  J. Turkevitch, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 1951, 55. 

15  Y. Nakao, K. Kaeriyama, J. Colloid Interface Sci., 110, 1986, 82. 

16  M. T. Reetz, S. A. Quaiser, R. Breinbauer, B. Tesche, Angew. Chem., Int. Ed., 34, 1995, 2728. 

17  H. Bönnemann, W. Brijoux, R. Brinkmann, A. Schulze Tilling, T. Schilling, B. Tesche, K. Seevogel, 

R. Franke, J. Hormes, G. Köhl, J. Pollmann, J. Rothe, W. Vogel, lnorg. Chim. Acta, 270 1998, 95. 

18  N. Toshima, M. Ohtaki, T. Teranishi, React. Polym., 15, 1991, 135. 

19  Y. Nakao, K. Kaeriyama, J. Colloid Interface Sci., 131, 1989, 186. 

20  P. Barbaro, C. Bianchini, G. Giambastiani, W. Oberhauser, L. Morassi Bonzi, F. Rossi, V. Dal 

Santo, Dalton Trans., 2004, 1783. 

21  a) P. T. Witte, M. de Groen, R. M. de Rooij, P. Bakermans, H. G. Donkervoort, P. H. Berben, J. 

W. Geus, Stud. Surf. Sci. Catal., 175, 2010, 135; b) P. T. Witte (BASF NL), Patent 

WO2009096783 

22  H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joussen, B. Korall, Angew. Chem., Int. Ed. 

30, 1991, 1312. 

23  P. T. Witte,  S. Boland, F. Kirby,  R. van Maanen, B. F. Bleeker,  D. A. Matthijs de Winter, J.A. 

Post,  J.W. Geus, P. H. Berben, ChemCatChem, 2012, DOI: 10.1002/cctc.201200460 

24  J. A. Baeza , L. Calvo, M. A. Gilarranz , A. F. Mohedano, J. A. Casas, J. J. Rodriguez, J. Catal., 293 

2012, 85. 

25  K. Gude, R. Narayanan, J. Phys. Chem. C, 115, 2011, 12716. 



 



159 
 

 

 

 

 

 

Overall Conclusions 



Chapter 7 

160 
 

In the research work presented in this Thesis, a new method for the synthesis 

of precious metal catalysts supported onto insoluble polymers has been 

described. The strategy consists in the direct growth of metal nanoparticles within 

ion exchange resins under the conditions of catalytic hydrogenation. Featured by 

simplicity and versatility, the method proved to be applicable to different resins 

and metals allowing the preparation of both hydrogenation (Pd and Rh) and 

oxidation (Au) catalysts. 

An in depth investigation was carried out with palladium based catalysts to 

optimize the synthetic procedure, showing that an appropriate selection of 

starting materials (cation exchange resin, lithiated form, simple metal cations) 

allows for the preparation of polymer supported Pd or Rh hydrogenation 

catalysts with no need nor benefits of pre-reduction steps. Similarly, the best 

hydrogenation conditions for an optimal performance of these systems resulted 

to be methanol solvent, room temperature and atmospheric pressures. The 

proposed approach fulfils many of the requirements for the catalysts used in the 

fine chemicals industry: 

 it uses cheap and commercially available materials (ion-exchange resins), 

 the heterogeneous catalyst is generated in one-pot, 

 the procedure uses H2 as green reducing reagent and 

 the catalyst does not require any particular care of handling nor storage. 

Selective hydrogenation reactions are important processes in fine chemicals 

industry. To this regard, the Pd NPs based catalysts prepared during this work, 

showed to be highly selective in the partial hydrogenation of hydrocarbons with 

multiple C=C bonds, a highly desired and challenging reaction, providing nearly 

100% selectivity to the monoalkene product in the hydrogenation of 1,5-

cyclooctadiene. The catalysts showed total chemo-selectivity to C=C bonds in the 
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selective hydrogenation of unsaturated carbonyl compounds in most cases, with 

the overall selectivity being affected only by acid-catalyzed side reactions due to 

a residual acidity in the support, that could be minimized by washing the resin 

with LiCl prior to use.  

The special case of 3-hexyn-1-ol substrate was extensively studied during this 

Thesis, since the semi-hydrogenation product, the leaf alcohol cis-3-hexyn-1ol, is 

an important chemical in the fragrance industry. The hydrogenation was 

performed both under batch and flow conditions demonstrating the excellent 

stability, activity and selectivity of the supported Pd catalysts. In a similar 

approach, colloidal Pd NPs were immobilized onto ion exchange resins and tested 

in the hydrogenation reaction. A summary with the results obtained during this 

work for the different catalysts prepared is as follows: 

 In batch with Pd/D(Li): 98% cis-isomer @ 91% conversion (1bar H2, rt)  

  In flow with Pd/D(Li): 89% cis-isomer @ 75% conversion (2.5bar H2, rt) 

  In batch with c-Pd/D(H): 92% cis-isomer @ 99.8% conversion (3bar H2, 

30ºC)  

In addition, it was proved that these catalysts represent a convenient 

alternative to the conventional Pd/C catalyst not only in terms of selectivity and 

reuse, but also regarding the recoverability of the system owing to the fact that 

polymeric beads can be collected much easier than powders. On the other hand, 

they represent a suitable lead-free alternative to the Lindlar catalyst, the most 

used industrial catalyst for the partial hydrogenation of substituted acetylenes. 

Notably, the synthetic approach described, while satisfying most Principles of 

Greener Nanomaterial Production, affords a solid catalyst whose metal leach 

accomplish to the specification limits for residues of metal catalysts according to 

EMEA. 
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Synthesis”, 2012, Moscow, Russia. Best Poster Presentation Award. 

 

2. C. Moreno-Marrodan, P. Barbaro, F. Liguori, N. Linares, “Immobilization of 

metal nanoparticles onto ion exchange resins for production of fine chemicals”, 

International Symposium on Relations between Homogeneous and Heterogeneous 

Catalysis, 2011, Berlin, Germany. 
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“Preparation of Pd NPs onto solid supports for hydrogenation reactions and 

production of fine chemicals”, International Conference on Organometallic 

Chemistry, 2010, Taipei, Taiwan. 
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4. C. Moreno-Marrodan, P. Barbaro, F. Liguori, W. Oberhauser, A. Galarneau, 

“Pd NPs onto solid supports for hydrogenation & production of fine chemicals”, 

Marie Curie Actions International Conference, 2010, Turin, Italy. 
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Annex 2. List of Figures  

 

Chapter 1. Introduction 

Fig. 1.1. Difference between Sustainability and Green Chemistry. 

Fig. 1.2. Segmentation within the chemical industry. 

Fig. 1.3. Catalysis behind sustainable energy and chemicals. 

Fig. 1.4. Steps involved in a chemical reaction catalyzed by supported MNPs. 

Fig. 1.5. Evolution of the dispersion as a function of n for cubic clusters up to 

n=100 (N=106). The structure of the first four clusters is displayed. 

Fig. 1.6. Schematic representation of the micro- and nanoscale morphology of 

gel-type (a) and macroreticular (b) resins.  

 

Chapter 2. Description of Experimental Techniques Used 

Fig. 2.1. Signals generated when a high-energy beam of electrons interacts with a 

thin specimen.  

Fig. 2.2. Scheme of X-Ray diffraction from a cubic crystal lattice. 

Fig. 2.3. Schematic representation of a SAXS set up. 

Fig. 2.4. Stainless steel autoclave constructed at ICCOM-CNR (left) and non-

metallic Büchi Miniclave® (right). 

 

Chapter 3. Polymer Supported Metal Nanoparticles. Synthesis 

and Characterization 

Fig. 3.1. Scheme of the synthetic procedure for the preparation of supported 

palladium nanoparticles onto cation-exchange resins (top) and anion-exchange 

resins (bottom). 
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Fig.3.2. a) Dowex 50WX2: R-SO3
- H+ (H+, 200-400 mesh); b) R-SO3

-Li+/Pd2+ ( 

200-400 mesh, 1 wt% Pd); c) R-SO3
-Li+/Pd2+ ( 50-100 mesh, 1 wt% Pd); d) R-SO3

-

Li+/Pd0 ( 50-100 mesh, 1 wt% Pd). 

Fig. 3.3. ESEM image (secondary electrons). (left) DOWEX® 50WX2 after lithiation 

D(Li); and (right) after subsequent metallation D/Pd(Li) pre, ( Li+, 50-100 mesh, 

Pd(NO3)2, 1 wt% Pd, H2 reduction, before use in catalysis). 

Fig. 3.4. (left) ESEM image (1 torr, 25 KeV, 800 magnifications) and EDS maps of 

an equatorial section of D/Pd(Li) pre catalyst bead (Li+, 50-100 mesh, Pd(NO3)2, 1 

wt% Pd, H2 reduction). Top left: secondary electrons image; top right: carbon map 

(C K1); bottom left: sulphur map (S K1); bottom right: palladium map (Pd L1). 

(Right) EDS microanalysis; X-ray counts are plotted as a function of their energy, 

the present elements are identified. 

Fig 3.5. TEM images of supported Pd NPs obtained from Pd(NO3)2 and H2 

reduction (Table 3.3): (left) Pd/D(Li) in, (center) Pd/D(Li) pre before use in catalysis, 

(right) Pd/D(Li) pre recovered after catalysis. 

Fig. 3.6. Size distribution from TEM analysis of resin-embedded Pd NPs, before 

and after use in catalysis (1 wt% Pd/D(Li), 50-100 mesh, Pd(NO3)2, H2 reduction). 

Fig 3.7. (left) TEM image of 1.25 wt% Pd/D(Li) in catalyst (50-100 mesh, 

[Pd(CH3CN)4(BF4)2] precursor,) recovered after catalysis, (center) Size distribution 

from TEM analysis, (right) XRD diffractogram form the same catalysts. 

Fig. 3.8. XRD diffractograms for supported Pd NPs samples indicated in Table 3.4. 

Fig 3.9. SAXS differential spectra of Pd/D(Li) pre resin (Li+, 50-100 mesh, 

Pd(NO3)2, 1 wt% Pd,  H2 reduction) before (○) and after (∆) use in catalysis, 

obtained by subtraction of the scattering intensity due to the metal-free matrix. 

Solid lines represent the best-fit data. 

Fig. 3.10. Hydrogenation reaction of 1 using 1.25 wt% Pd/D catalysts (50-100 

mesh, [Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: methanol, r.t., substrate 

: Pd = 250 : 1 molar ratio, H2 pressure 1 bar, substrate concentration 0.17 M.  
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Fig. 3.11. Hydrogenation of 2; recycle of 1 wt% Pd/D catalyst (50-100 mesh, 

Pd(NO3)2 precursor). Reaction conditions: methanol, rt, H2 pressure 0.8 bar, 

substrate : Pd = 220:1 molar ratio, substrate concentration 0.17M, duration of 

each cycle 20min. Selectivity to 2a > 99.5%. No Pd detected in solution by ICP-

OES. (left) comparison between Pd NPs formed in situ Pd/D(Li) in (●) and prior to 

use Pd/D(Li) pre (▲), catalysts obtained by 2bar H2 reduction; (right) comparison 

between protonated form Pd/D(H) in () and lithiated form Pd/D(Li) in (●). 

Fig. 3.12. Hydrogenation of 2: reuse of 1 wt% Pd/D(Li) in catalysts (Pd(NO3)2 

precursor) using Dowex with different bead size. Reaction conditions: methanol, 

H2 pressure 0.8 bar, r.t, substrate : Pd = 220 : 1 molar ratio, substrate 

concentration 0.17 M, orbital stirring 150 rpm. () 50-100 mesh, () 200-400 mesh. 

TOF (h-1) at 90% conversion. Selectivity to 2a > 99.5 %. 

Fig 3.13. Hydrogenation of 2 by cation and anion-exchange resins-supported Pd0 

catalysts. Reaction conditions: methanol, H2 pressure 0.8 bar, r.t., substrate : Pd = 

220 : 1 molar ratio, substrate concentration 0.17 M. 1 wt% Pd/D catalysts (50-100 

mesh, NaBH4 reduction). () lithium sulfonate exchanger () trimethylbenzyl 

ammonium chloride exchanger. 

Fig. 3.16. Scheme of the synthetic procedure for the preparation of supported 

rhodium nanoparticles onto cation-exchange resins. 

Fig. 3.17. ESEM image (1 torr, 25 KeV, 800 magnifications) of an equatorial 

section of 1.4 wt% Rh/D(Li) catalyst (50-100 mesh). Top left: back scattered image; 

top right: secondary electrons image; bottom left: sulphur map (S K1); bottom 

right: rhodium map (Rh L1).  

Fig. 3.18. (left) TEM image of 1.4 wt% Rh/D(Li) catalyst, (center) Size distribution 

from TEM analysis, (right) XRD diffractogram form the same catalysts. 

Fig. 3.19. Hydrogenation of 1 with 1.4 wt% Rh/D(Li) catalyst (50-100 mesh). 

Reaction conditions: methanol, rt, H2 pressure 1 bar, substrate : Pd = 250:1 molar 
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ratio, substrate concentration 0.17M. No Rh detected in solution by ICP-OES. (●) 

catalyst formed in situ Rh/D(Li) in, () catalyst formed prior to use Rh/D(Li) pre. 

Fig. 3.20. Scheme of the synthetic procedure for the preparation of supported 

gold nanoparticles onto anion-exchange resins. 

Fig. 3.21. (left) TEM image of 0.7 wt% Au/D(Cl) pre (right) Size distribution from 

TEM analysis,  

 

Chapter 4. Catalytic Reactions in Batch Mode 

Fig. 4.1 Solvent effect in the hydrogenation of 2; catalyst recycle. Reaction 

conditions: H2 pressure 0.8 bar, r.t., substrate : Pd = 220 : 1 molar ratio, substrate 

concentration 0.17 M, 1 wt% Pd/D(Li) pre catalyst (50-100 mesh, Pd(NO3)2 

precursor, obtained by 2 bar H2 reduction), conversions > 93.5%. (●) solvent 

CH3OH, duration of each cycle 45min. () solvent CH3OH:H2O 3:1, duration of 

each cycle 60 min. 

Fig. 4.2. Catalytic hydrogenations of 2 under 1 - 8 bar H2 pressure. Reaction 

conditions: methanol, 1 wt% Pd/D(Li) in catalyst (50-100 mesh, Pd(NO3)2 

precursor), r.t., substrate : Pd = 250 : 1 molar ratio, time 15 min, substrate 

concentration 0.1 M. 

Fig. 4.3. Hydrogenation of cyclohexene 4 with 1.25 wt% Pd/D(Li) catalyst (50-100 

mesh, [Pd(CH3CN)4(BF4)2] precursor). React. conditions: methanol, 1bar H2, r.t., 

substrate concentration 0.17 M, substrate : Pd = 350 : 1 molar ratio. 

Fig. 4.4. Hydrogenation of 1,5-COD 5 with 1.25 wt% Pd/D(Li) catalyst (50-100 

mesh, [Pd(CH3CN)4(BF4)2] precursor). React. conditions: methanol, 1bar H2, r.t., 

substrate concentration 0.17 M, substrate : Pd = 350 : 1 molar ratio. 

Fig. 4.5. Hydrogenation of 1,5-COD 5 (left) and 1,5,9-CDT 6 (right) with 1.25 wt% 

Pd/D(Li) pre catalyst (50-100 mesh, [Pd(CH3CN)4(BF4)2] precursor). React. 
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conditions: methanol, 1bar H2, r.t., substrate concentration 0.17 M. substrate : Pd 

= 350 : 1 molar ratio. 

Fig. 4.6. Recycle of Pd/D(Li) in catalyst in the hydrogenation of 7. left) TOFs (on 

overall conversion indicated in right figure) and Selectivity = 7a/(7a+7b)x100; 

right) Conversion upon recycling. Reaction conditions: methanol, 1.25 wt% 

Pd/D(Li) in catalyst (50-100 mesh, [Pd(CH3CN)4(BF4)2] precursor), substrate 

concentration 0.19M, r.t., 1 bar H2, substrate : Pd = 390 : 1 molar ratio, time 26 

min.  

Fig. 4.7. Recycle of Pd/D(Li) in catalyst in the hydrogenation of 7. Conversion 

upon recycling. Reaction conditions: methanol, 1.25 wt% Pd/D(Li) in catalyst (50-

100 mesh, [Pd(CH3CN)4(BF4)2] precursor), substrate concentration 0.17M, r.t., 1 bar 

H2, substrate : Pd = 350 : 1 molar ratio.  

Fig. 4.8. Hydrogenation of 3-hexyn-1-ol 7 with () 1.25 wt% Pd/D(Li) in (50-100 

mesh, [Pd(CH3CN)4(BF4)2] precursor), substrate concentration 0.17M, substrate : 

Pd = 350 : 1 molar ratio, and () 5 wt% Pd/C, substrate concentration 0.5M, 

substrate : Pd = 250 : 1 molar ratio. Reaction conditions: methanol, r.t., H2 

pressure 1 bar. Selectivity = 7a/(7a+7b)x100. 

Fig. 4.9. Recycle of 1 wt% Pd/D(Li) in catalyst (50-100 mesh, (Pd(NO3)2 precursor). 

in the hydrogenation of 8: TOFs (on overall conversion) and selectivities. Reaction 

conditions: methanol, r.t., H2 pressure 0.8 bar, substrate : Pd = 220 : 1 molar ratio, 

time 15 min. Selectivity = 8a/(8a+8b+8c+8d)x100. 

Fig. 4.10. Hydrogenation of isophorone 9 with 1.25 wt% Pd/D(Li) catalyst (50-100 

mesh, [Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: methanol, r.t., substrate 

: Pd = 175 : 1 molar ratio, H2 pressure 1 bar, substrate concentration 0.17 M. (left) 

Pd/D(Li) in catalyst (right) Pd/D(Li) pre catalyst LiCl post-treatment. 

Fig. 4.11. Hydrogenation of carvone 10 with 1.25 wt% Pd/D(Li) pre catalyst LiCl 

post-treatment (50-100 mesh, [Pd(CH3CN)4(BF4)2] precursor). Reaction conditions: 

methanol, r.t., substrate : Pd = 175 : 1 molar ratio, H2 pressure 1 bar, substrate 
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concentration 0.17 M. (left) Evolution of conversion vs time for the different 

products (dihydrocarvone: isomers mixture). (right) Selectivity data for ketones 

and the isomerization product. 

 

Chapter 5. Hydrogenation Reactions in Continuous Mode 

Fig. 5.1. Number of articles published containing the keywords showed in the 

legend from 1995 to 2011 (data obtained from the database 

www.sciencedirect.com). 

Fig. 5.2. Schematic representation of hydrogenation reaction in continuous flow 

by using Pd NPs supported on Dowex resins. 

Fig. 5.2. Continuous-flow hydrogenation of 5 (left) and 7 (right) over Pd/D(Li) pre 

catalyst (50-100 mesh, 45 mg, 1.25 wt% Pd, [Pd(CH3CN)4 (BF4)2] precursor). 

Conversion and selectivity vs. time on stream. React. condit.: 45 mg Pd/D(Li) pre, 

methanol, r.t., substrate concentration 0.2 M, fixed solution flow 0.2 mL min-1 and 

H2 0.8 mL min-1/ 2.5 bar. Selectivity Z-alkene = 7a/(7a+7b)x100, total (cis+trans) 

ene selectivity values were similar. 

Fig. 5.3. Continuous-flow hydrogenation of 5 (left) and 7 (right) over Pd/D(Li) pre 

catalyst (50-100 mesh, 45 mg, 1.25 wt% Pd, [Pd(CH3CN)4 (BF4)2] precursor). 

Selectivity vs conversion diagram React. condit.: 45 mg Pd/D(Li) pre, methanol, r.t., 

fixed H2:substrate ratio=2.3, variable solution flow [0.1-0.4] mL min-1 and H2 [0.5-

1.2] mL min-1. Selectivity = 7a/(7a+7b)x100, total (cis+trans) ene selectivity values 

were similar. 
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Chapter 6. Polymer Supported Colloidal Palladium Nanoparticles: 

Synthesis, Characterization and Hydrogenation Tests  

Fig. 6.1. STEM analysis of sample c-Pd/D(H) 5 (pH 10): a) High-Angle Annular 

Dark-Field image, b) nanoparticle size distribution determined from TEM, c) 

secondary electrons image of the same area and d) EDXS microanalysis.  

Fig. 6.2. STEM analysis of c-Pd/D(H) 1 (pH 3): a-c) TEM images at different 

magnifications b) nanoparticles size distribution from TEM analysis and d) 

Elemental analysis by EDXS. 

Fig 6.3. H2 uptake curves for hydrogenation of 3-hexyn-1-ol by c-Pd/D(H) type 

catalysts. React. Conditions: 96%EtOH, 30˚C, substrate concentration 0.38M, 

substrate : Pd = 3900:1 molar ratio, H2 pressure 3 bar, 1500rpm, time 90 min. 

Fig 6.4. H2 uptake curves for hydrogenation of 3-hexyn-1-ol by c-Pd/D(H) type 

catalysts. React. Conditions: 96%EtOH, 30˚C, substrate concentration 0.38M, 

substrate : Pd = 3900:1 molar ratio, H2 pressure 3 bar, 1500rpm.  
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Table 1.3. Schematic comparison between homogeneous and heterogeneous 

catalysts. 

Table 1.4. Selection of industrial acid-catalyzed reactions promoted by CFPs. 
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Chapter 4. Catalytic Reactions in Batch Mode 

Table 4.1. Solvent effect in the hydrogenation of 1: activity and leaching test. 
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Table 4.2. Hydrogenation of cyclohexene 4 with Pd/D(Li) type catalysts. 
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bonds by Pd/D(Li) type catalysts under batch conditions. 

Table 4.4. Hydrogenation reactions of unsaturated carbonyl compounds by 

Pd/D(Li) type catalysts. 

Table 4.5 Hydrogenation reactions of aromatic ketones by Pd/D(Li) type catalysts. 

Table 4.6. Hydrogenation reactions by Rh/D(Li) type catalysts. 

Table 4.7. Oxidation of furfural with Au/D(Cl) type catalysts. 

 

Chapter 5. Hydrogenation Reactions in Continuous Mode 

Table 5.1. Comparison Pd/D(Li) type catalysts in batch and flow conditions. 

Table 5.2. Comparison with different supported Pd-based catalysts. Continuous 

flow hydrogenation of 3-hexyn-1-ol 7. 

 

Chapter 6. Polymer Supported Colloidal Palladium Nanoparticles: 

Synthesis, Characterization and Hydrogenation Tests 

Table 6.1. Pd deposition on functionalized ion exchange resins. 

Table 6.2. Polymer supported c-Pd catalysts prepared. 

Table 6.3. Hydrogenation of 3-hexyn-1-ol 7 with c-Pd/D(H) type catalysts. 

Table 6.4. Comparison different supports in the hydrogenation of 3-hexyn-1-ol 7. 
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Annex 4. List of Schemes  

 

Chapter 1. Introduction 

Scheme 1.1. Preparation methods for supported catalysts. 

Scheme 1.2. Examples of ion exchange resins with different functionalization, a 

strongly acidic sulphonated polystyrene cation exchange resin (left) and a 

strongly basic quaternary ammonion anion exchange resin. 

 

Chapter 2. Description of Experimental Techniques Used 

Scheme 2.1. Schematic view (top) and image of the core (bottom) of the 

continuous-flow, high-pressure reactor system used. 

 

Chapter 3. Polymer Supported Metal Nanoparticles. Synthesis 

and Characterization 

Scheme 3.1. Schematic representation of the one-pot synthesis of MIBK. 

Scheme 3.2. Sketch of the resin used. 

 

Chapter 4. Catalytic Reactions in Batch Mode 

Scheme 4.1. Sketch of the probe substrates tested for optimization of the 

reaction conditions. 

Scheme 4.2. Sketch of the substrates tested in hydrogenation reactions of 

hydrocarbons with multiple C=C or C≡C bonds. 

Scheme 4.3. Reaction scheme of the hydrogenation of benzylidenacetone 8. 

Scheme 4.4. Reaction scheme of the hydrogenation of isophorone 9 including all 

possible products; 9a: dihydorisophorone, 9b: homomenthol, 9c: : isophorol and 

the parallel reaction of acetilization to give 9d. 
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Scheme 4.5. Acid-catalyzed acetal formation mechanism. 

Scheme 4.6. Reaction scheme of the hydrogenation of carvone 10 including all 

possible products; 10a: carvotanacetone, 10b: dihydrocarvone, 10c: 

carvomenthone, 10d: carveol, 10e: carvotanalcohol, 10f: dihydrocarveol, 10g: 

carvomenthol, and the competitive reaction of isomerisation to give carvacrol 

10h. 

Scheme 4.7. Mechanism of the acid-catalyzed isomerization of carvone 10 to 

carvacrol 10h. 

Scheme 4.8. Reaction scheme of the hydrogenation of -substituted aromatic 

ketones; acetophenone 11, methyl benzoylformate 2, and trifluoroacetophenone 

12. 

Scheme 4.9. Reaction scheme of the oxidation of furfural 13. 

Scheme 4.10. Scheme of the Cannizzaro reaction: base-induced 

disproportionation of furfural. 

 

Chapter 5. Hydrogenation Reactions in Continuous Mode 

Scheme 5.1. Sketch of the substrates tested in hydrogenation in continuous flow 

mode. 

 

Chapter 6. Polymer Supported Colloidal Palladium Nanoparticles: 

Synthesis, Characterization and Hydrogenation Tests 

Scheme 6.1. Commercial ammonium surfactant [HHDMA] [H2PO4]. 

Scheme 6.2. Proposed mechanism of stabilization of colloidal nanoparticles by 

means of a double layer of HHDMA and deposition on cation exchange resin 

support.  

Scheme 6.3. Reaction scheme of the hydrogenation of 3-hexyn-1-ol 7. 
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Annex 5. Frequently Used Abbreviations 

 

Au/D(Cl) pre  Au NPs supported onto anion exchange resins reduced with NaBH4 

and isolated 

CFP  Cross-linked Functional Polymers. 

c-Pd/D(H) colloidal Pd NPs supported onto cation exchange resins (protonated 

form) 

DLS Dynamic Light Scattering. 

EDS Energy Dispersive X-ray Spectroscopy. 

ESEM Environmental Scanning Electron Microscopy. 

GC Gas Chromatography. 

GC/MS  Gas Chromatography / Mass Spectrometry. 

ICP-OES Inductively Coupled Plasma - Optical Emission Spectroscopy. 

MNPs  Metal Nanoparticles. 

NMR Nuclear Magnetic Resonance. 

NPs Nanoparticles. 

Pd/D(Cl) pre Pd NPs supported onto anion exchange resins reduced with NaBH4 

and isolated 

Pd/D(H) in Pd NPs supported onto cation exchange resins (protonated form) 

and reduced in situ under catalytic conditions 

Pd/D(H) pre Pd NPs supported onto cation exchange resins (protonated form) 

isolated  

Pd/D(Li) in Pd NPs supported onto cation exchange resins (lithiated form) and 

reduced in situ under catalytic conditions 

Pd/D(Li) pre Pd NPs supported onto cation exchange resins (lithiated form) 

isolated  

Rh/D(Li) in Rh NPs supported onto cation exchange resins (lithiated form) and 

reduced in situ under catalytic conditions 
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Rh/D(Li) pre Rh NPs supported onto cation exchange resins (lithiated form) 

isolated  

SAXS Small Angle X-ray Scattering. 

STEM Scanning Transmission Electron Microscopy. 

STY  Space to Time Yield parameter. 

TEM Transmission Electron Microscopy. 

TOF  Turnover Frequency parameter. 

TON  Turnover Number.  

wt% Percentage by Weight.  

XRD X-ray powder Diffraction. 
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The development of greener and more economical routes for chemicals

production is one of the major current concerns at industrial level. This is

particularly true in the fine chemicals sector, where the large amount of

waste produced contribute to the characteristic high E-factor (Kg waste/Kg

product). Catalysis may be the key to solve the problem provided that active

and selective catalysts are elaborated. These are the distinctive features of

homogeneous phase catalysts, which indeed dominate the sector. However,

they show severe drawbacks in terms of recovery and reuse of the precious

catalysts. The immobilization of chemical catalysts onto solid insoluble

supports offers significant benefits to this regard.

The present Thesis reports a simple one-pot strategy for the synthesis of

solid-supported metal catalysts based on ion-exchange resins, and in-situ

formed metal nanoparticles under mild catalytic hydrogenation conditions

(room temperature, 1 bar H2). The so-formed heterogeneous palladium

system was carefully characterized and tested in hydrogenations processes

for the synthesis of high added value chemicals. The catalyst showed high

activity and selectivity and could be readily reused several times with neither

detectable metal leaching in solution nor significant efficiency decay under

batch conditions. Application to the synthesis of the leaf alcohol cis-3-

hexen-1-ol was explored both under batch and continuous mode showing

significant advantages compared to established industrial process.
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