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Abstract. The estimation of chlorophyll concentration in marine waters is fundamental for a
number of scientific and practical purposes. Standard ocean color algorithms applicable to mod-
erate resolution imaging spectroradiometer (MODIS) imagery, such as OC3M and MedOC3, are
known to overestimate chlorophyll concentration ([CHL]) in Mediterranean oligotrophic waters.
The performances of these algorithms are currently evaluated together with two relatively new
algorithms, OC5 and SAM_LT, which make use of more of the spectral information of MODIS
data. This evaluation exercise has been carried out using in situ data collected in the North
Tyrrhenian and Ligurian Seas during three recent oceanographic campaigns. The four algorithms
perform differently in Case 1 and Case 2 waters defined following global and local classification
criteria. In particular, the mentioned [CHL] overestimation of OC3M andMedOC3 is not evident
for typical Case 1 waters; this overestimation is instead significant in intermediate and Case 2
waters. OC5 and SAM_LT are less sensitive to this problem, and are generally more accurate in
Case 2 waters. These results are finally interpreted and discussed in light of a possible operational
utilization of the [CHL] estimation methods. © 2012 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063565]
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1 Introduction

Monitoring chlorophyll a concentration ([CHL]) in marine waters is fundamental for a number
of scientific and practical purposes. [CHL] estimates are essential for studying marine ecosystem
dynamics, for simulating marine primary production, for evaluating the effect of environmental
changes, etc. Optical remote sensing data acquired by satellite systems provide a unique oppor-
tunity to assess [CHL] over large areas in the surface layer of the ocean with high temporal
frequency.1,2 The color of the ocean is in fact determined by the interactions of the incident
light with substances or particles present in the water.

The most significant, optically active constituents are partitioned for convenience in three
categories: phytoplankton, a group of free-floating photosynthetic organisms including other
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microscopic organisms which have a minor influence on optical properties (zooplankton,
heterotrophic bacteria, and viruses);3 non-algal particles (NAP), suspended detrital material
of organic and inorganic nature; and colored dissolved organic matter (CDOM), dissolved
compounds derived by the disruption of organic matter.3,4 The main phytoplankton pigment,
often taken as an index of phytoplankton biomass, is chlorophyll a, which shows two absorption
maxima in the blue and the red.5 Phytoplankton backscattering coefficients are extremely low.6

NAP absorption follows a decreasing exponential function of wavelength, with a consequent
maximum in the blue.7 NAP backscattering is generally remarkable and is a major source of
sea backscattering.8 CDOM absorption is also notable and follows a decreasing trend with
wavelength,9 while CDOM backscattering is negligible.

The use of ocean color to estimate [CHL] in surface waters is complicated by interactions
among optically active seawater constituents. The partly common absorption and scattering
properties of the three main constituents, in fact, tend to create ambiguous spectral situations
especially when they are at similar low concentrations in seawater.10 This issue can be dealt with
by applying the optical classification scheme introduced by Morel and Prieur4 and Gordon and
Morel.11 The classification is based on the role of phytoplankton in determining the optical
properties of the waters, that are partitioned into Case 1 or Case 2.

By definition, Case 1 waters are those waters in which phytoplankton, with their accompa-
nying and covarying retinue of material of biological origin, are the principal agents responsible
for variations in optical properties of the water. Case 2 waters are influenced not only by
phytoplankton and related particles (namely related colored dissolved organic matter and detritus
degradation products),12 but also, by NAP and CDOM, that vary independently of phytoplank-
ton.3,13 The variegation within Case 2 waters is large, because the concentrations as well as the
specific inherent optical properties of CHL, NAP, and CDOM are subject to potentially large and
independent variations.14

The relationships between optical substances on which this classification is based have
important consequences on the functioning of empirical and semi-empirical algorithms
which estimate [CHL] from data taken by multi-spectral, narrow-band satellite sensors such
as SeaWiFS and moderate resolution imaging spectroradiometer (MODIS). Most of these algo-
rithms, in fact, use the single-variable approach, which fails in Case 2 waters, where the estima-
tion of [CHL] requires a more thorough characterization of all optically active seawater
components.15 Moreover, these algorithms are only as good as the in situ and satellite observa-
tions they are based on, and also depend on how representative these data are of the environment
or bio-optical provinces where the algorithms are to be applied.16 Consequently, algorithms
which have been developed for global applications are generally inaccurate in Case 2 waters,
as well as in Case 1 waters with area-specific optical signatures.17,18

Several evaluation and validation exercises carried out in various regional oceanic areas
have confirmed that new revised algorithms are necessary.15,19,20 This is typically the case for the
Mediterranean Basin, the optical properties of which are peculiar compared to those of other seas.
Lee and Hu21 suggested that this peculiarity is due to the presence of an unusually high CDOM
content. This hypothesis was supported by Morel and Gentili,22 who showed that the absorption
coefficient of CDOM at 443 nm is about twice the value observed in the nearby Atlantic Ocean
at the same latitude with similar trophic conditions. As a consequence, in the Mediterranean
Sea, global algorithms generally lead to a significant overestimation of [CHL].23–27

The current work focuses on this issue concerning the Ligurian and North Tyrrhenian Seas.
This is the study area of the EU funded Sistema integrato per il MOnitoraggio e il controllo
dell'ambiente MARino (MOMAR) project (http://www.mo-mar.net/), which coincides with
the Cetacean Sanctuary and includes oceanic and neritic waters and the outlets of important
rivers: Arno, Serchio, and Magra. Such environmental differentiation adds to the mentioned
Mediterranean peculiarity and renders the area particularly critical for the application of
[CHL] algorithms. The paper evaluates the local performances of a set of empirical and
semi-analytical algorithms using a data set of seawater samples and MODIS imagery taken dur-
ing the last three years. Four algorithms are considered which have a specific interest for the
study area. The global OC3M28,29 and MedOC330 algorithms (regionally tuned to the North
Western Mediterranean Sea), which are commonly applied in the study area despite the fact
that they are only suited for Case 1 waters.25,31,32 OC5 algorithm, which, although more specific
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for Atlantic waters (Bay of Biscay and the English Channel), performs well also in other
areas.33–35 The semi-analytical SAM LT algorithm36 is locally tuned for the coastal Ligurian
and North Tyrrhenian Sea areas.

The paper is organized as follows. First, the basic features of the four algorithms examined
are briefly introduced. The main characteristics of the study area are then presented, followed by
a description of the collection and analysis of the seawater samples. Next, the methodologies
used to assess the performances of the four [CHL] algorithms in Case 1 and Case 2 waters are
presented. Finally, the results obtained are illustrated and discussed.

2 Chlorophyll Retrieval Algorithms Examined

There are many examples of both empirical and semi-analytical algorithms applicable to optical
satellite imagery for chlorophyll concentration retrieval:25,30 the following paragraphs describe
the basic features of the four algorithms currently examined.

2.1 OC3M and MedOC3

The OC3M algorithm is a member of the OC* family of algorithms. They were developed glob-
ally using an in situ data set consisting of both Case 1 and Case 2 waters with the approximate
range of 0.01 < ½CHL� < 75 mgm−3. The algorithm, which is based on a Case 1 assumption, is
a fourth degree polynomial regression between log-transformed [CHL] and log-transformed
maximum band ratio (MBR) of remote sensing reflectances (Rrs):29

½CHL� ¼ 10C0þC1RþC2R2þC3R3þC4R4

; where R ¼ log10

�
Rrs 443 > Rrs 488

Rrs 547

�
: (1)

The blue/green ratio has the advantage of normalizing internal and external conditions (scattering
coefficient variability, geometry, incident radiance at the surface). The MBR has the additional
advantage of maintaining the highest possible satellite sensor signal-to-noise ratio over a three-
orders-of—magnitude in the chlorophyll concentration.28 Chlorophyll a retrievedbyOC3M is one
of the MODIS standard products (Level 2), distributed by the NASA on the Ocean Color website
(http://oceancolor.gsfc.nasa.gov/). The OC3M coefficients used are OC3Mv5, v5 standing for the
version of the NOMAD (NASA bio-Optical Marine AlgorithmData set) dataset used to derive the
algorithms.37 NOMAD dataset includes coincident observations of spectral water-leaving
radiances, surface irradiances, diffuse downwelling tion coefficients, and chlorophyll a concen-
trations, along with relevant metadata. The v5 coefficients are unpublished results provided by
J. E. O’Reilly (lead for the OC2, OC3M, and OC4 algorithms).

The MedOC3 bio-optical algorithm30 is based, like OC3M, on a fourth-power polynomial
regression between log-transformed [CHL] and log-transformed MBR [Eq. (1)]. This algorithm
was calibrated on a representative open-water bio-optical dataset collected in the Mediterranean
area, and is declared to match the requirements of unbiased satellite chlorophyll estimation.30

The coefficients used in the OC3M and MedOC3 algorithms are reported in Table 1.

2.2 OC5

The OC5 algorithm was proposed by Ifremer (Institut Français de Recherche pour l’Exploitation
durable de la Mer).33 This algorithm was developed to correct for the [CHL] overestimation
brought by the standard OC3M algorithm specifically in the Bay of Biscay and the English

Table 1 Coefficients used for the OC3M and MedOC3 algorithms.

C0 C1 C2 C3 C4

OC3M 0.225400 −2.63540 1.80710 0.0063000 −1.29310

MedOC3 0.380 −3.688 1.036 1.616 −1.328
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Channel coastal areas. In these areas, [CHL] estimated by OC3M appeared to be higher than the
concentrations actually found by in situ measurements, particularly from late summer to early
spring, when optical properties are dominated by CDOM and NAP.33 The effect of NAP back-
scattering on the ratios used as inputs in OC3M is revealed by the 547 nm channel, whereas
possible atmospheric over-correction and the absorption of CDOM and non-algal particles are
indicated by the 412 nm channel. Based on a dataset originally collected in the English Channel
and on the continental shelf of the Bay of Biscay, to which some data on the north-western
Mediterranean have been added recently,34 a parameterization of the relationship between
the OC3M ratio and the 412 nm and 547 nm bands has been empirically proposed for different
[CHL]. The application of a lookup table, relating triplets (OC3M band ratio, 412 nm, and
547 nm bands) to [CHL], provides realistic concentration maps.33 The OC5 algorithm is
expected then to perform well both in Case 1 and Case 2 waters.

2.3 SAM LT

The SAM LT algorithm, recently proposed by Maselli et al.,36 is based on the simulation of
remote sensing reflectance, Rrssim through the following equation:

Rrssim ¼ 0.051 ·
bbwþ ½CHL� · bb�PH þ ½SS� · bb�NAP

awþ ½CHL� · a�PH þ ½SS� · a�NAP þ ½YS� · a�YS
; (2)

where [CHL], [SS], and [YS] are the concentrations of chlorophyll, NAP, and CDOM, respec-
tively; aw is the absorption coefficient of pure seawater; a�PH, a�NAP, and a�YS are the specific
absorption coefficients of phytoplankton NAP and CDOM; bbw is the backscattering coefficient
of pure seawater; and b�bPH and b�bNAP are the specific backscattering coefficients of phyto-
plankton and non algal particles.

The algorithm simulates a wide range of reflectances by varying the concentrations of the
three optically active constituents within Eq. (2). Next, a comparative analysis of measured,
Rrsmeas, and simulated remote sensing reflectances, Rrssim, is performed in order to look for
a minimum of a specific error function. This function is based on the cosine of the angle between
the standardized vectors of measured and simulated reflectances, cos θM;S. cos θM;S is equivalent
to the correlation coefficient and measures the similarity in shape between the two reflectance
vectors without detecting spectral amplitude differences. In this way, the algorithm is insensitive
to amplitude variations of the measured reflectances, which may be due to the presence of sea-
water constituents with variable spectral properties and/or to inaccurate atmospheric correction
of the satellite data.36 Since all specific coefficients of absorption and backscattering coefficients
used in Eq. (2) are obtained from a bio-optical survey of the Ligurian and North Tyrrhenian Seas,
the algorithm has intrinsically a local validity.

3 Study Area

The study area corresponds to the Ligurian Sea and the North Tyrrhenian Sea (Fig. 1). The
Ligurian Sea is characterized by two strong and variable currents, the Western Corsican Current
and the Eastern Corsican Current; the latter also affects the North Tyrrhenian Sea. These currents
join and give birth to the Northern Current which describes a cyclonic circulation along the
Liguro-Provençal front. Especially during the cold season, a high mesoscale activity associated
with meanders in the northern current, eddy formation, or displacements in the Ligurian-
Provençal front can be observed.38 Water exchange generally occurs from the Tyrrhenian toward
the Ligurian Sea, especially in winter and spring.

The Northwestern Mediterranean Basin, which includes the Ligurian Sea and the northern
part of the Tyrrhenian Sea, shows [CHL] ranging between 0.03 and 1.5 mgm−3 during the
year.39,40 Very low concentrations are found in winter (<0.08 mgm−3), while an intense
bloom occurs in spring, when the surface layer stabilizes. The spring bloom, which starts at
the end of February and ends at the beginning of May, has a variable intensity from year to
year, and shows the highest seasonal [CHL] values. From June to August, [CHL] is lower
than in winter.1 Sometimes an intense autumn bloom occurs, when the thermocline is
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progressively eroded.1 The annual cycle of phytoplankton biomass can therefore be character-
ized by two maxima in spring and in fall, or by an unique bloom from fall to late spring.39 In the
northern part of this sea, [CHL] reaches up to 1.5 mgm−3 while in the southern portion [CHL]
does not exceed 1 mgm−3 during late winter—beginning of spring maxima. Near the coast and
in the largest river mouths [CHL] can be higher than 5 mgm−3.41 In these eutrophic areas [CHL]
rarely drops below 1 mgm−3, and the regularity of the phytoplankton temporal cycle can fail.39

In summary, the study area includes both neritic (the aquatic environment overlying the sub-
littoral zone, 0 to 200 m) and oceanic environments. Even neritic zones generally behave like
Case 1 waters.39 Case 2 waters prevail in coastal areas, especially near sandy littorals and river
mouths where the suspended detrital particles and dissolved organic matter are determinant for
light attenuation. In particular, turbid waters can be found frequently at the Arno river plume,
which runs towards north along the coast.

The water optical characteristics in the whole study area are complex, because in this area
phytoplankton absorption coefficients at 440 nm are similar to those of NAP and CDOM;
phytoplankton is generally not the predominant optical component; and [CHL] is significantly
correlated with the concentrations of the other optically active constituents.3,42 Further details on
the optical properties of the area can be found in Nuccio et al.42

4 Collection and Analysis of In Situ Data

4.1 Collection of Sea Data

Three oceanographic cruises were conducted in the NorthTyrrhenian and Ligurian Seas (Fig. 1):
two were carried out by NURC (NATO Undersea Research Centre) on board NR/V Alliance, in
March 2009 (BP09), and in August through September 2010 (REP10); and one was carried out
by Laboratorio di Ecologia e Fisiologia Vegetale, Dipartimento di Biologia Evoluzionistica, Uni-
versity of Florence, in July 2010, within the framework of the EU funded MOMAR project.

Table 2 summarizes the main features of the three oceanographic campaigns. BP09 and
REP10 were conducted in the North Tyrrhenian and Ligurian Seas, with focus on the Arno
river mouth and across the front of the Northern Current areas. In addition, sampling was
also performed off the French coast nearby the Boussole Optical Buoy (http://www.obs-vlfr
.fr/Boussole/). The MOMAR campaign concerned three transects perpendicular to the Tuscany

Fig. 1 Color map of the study area showing on the sea a color composition (RGB ¼ bands9, 11
and 14) of a MODIS image (March 17, 2009) taken during the first study campaign (BP09), with
indication of all sample points, and on the land a chromatic representation of orography with the
main rivers superimposed.
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coastline: three stations, at 3 (coastal), 10, and 30 km from the coastline were sampled for each
transect (Fig. 1).

For most of these stations water samples were taken using Niskin bottles at different depths,
from surface to around 100 m, according to the water column conditions: after collecting one
surface sample, deeper sample depths were chosen taking into consideration seafloor depth and
fluorescence peak depth. In all cases, however, only surface samples were taken into considera-
tion for comparison with satellite [CHL] estimates.

Optical measurements were collected only when the atmospheric conditions were appropri-
ate. Reflectance spectra were thus measured for 23 samples of BP09, 9 samples of MOMAR and
15 samples of Rep10. In the BP09 and Rep10 cruises reflectance measurements were taken by a
Satlantic Hyper Pro II radiometer package. This is a free–falling profiler configured with two
different hyper spectral radiometric sensors measuring downwelling irradiance and upwelling
radiance, and a reference radiometric ‘in air’ solar irradiance sensor.43 The water-leaving
radiance at nadir was obtained from the below surface radiance as:3

Lw ¼ Luð0−Þ
1 − ρðθÞ

n
; (3)

where ρðθÞ is the Fresnel reflection coefficient for the water-air interface, and n is the refractive
index of seawater. For the comparison with satellite data, remote sensing reflectance (Rrs) was
obtained from Lw values using the formula:4

Rrs ¼ Lw

Es
: (4)

Rrs values can be directly compared with the MODIS products.44

In the MOMAR cruises a calibrated spectroradiometer (LI-1800 UW, LI-COR instruments)
was used to determine spectral irradiance at discrete depths determined by an external sensor.
Downward and upward spectral irradiances were measured over the 350 to 750 nm range with a
resolution of 1 nm. The measurements were taken around local noon with two separate casts; if
necessary, the data were corrected for changes in surface solar irradiance during the measure-
ment. Solar irradiance was monitored by a cosine collector PAR sensor (PNF, Biospherical
Instrument, or LI-192SA, LI-COR Instruments). The whole collection and processing metho-
dology was carried out following Morel et al.45 Irradiance reflectance was finally converted to
Rrs by the method described in Lee et al.46

4.2 Determination of [CHL]

The collected water samples were analyzed for chlorophyll a concentration by high-performance
liquid chromatography (HPLC) method in the case of the BP09 and MOMAR campaigns, and
by spectrofluorometric method in the case of the REP10 campaign. More particularly, the BP09
and REP10 samples were analyzed following the procedure protocol defined in Mueller et al.47

Table 2 Main features and relevant [CHL] statistics of the three oceanographic campaigns
currently considered.

Campaign Period
Number of
stations

[CHL]
Average
(mg

mgm−3)

[CHL]
Standard
deviation
(mgm−3)

[CHL] minimum
(mgm−3)

[CHL] maximum
(mgm−3)

BP09
(NURC)

14–23 March 2009 33 1.011 0.712 0.396 2.837

MOMAR
(University
of Florence)

19–22 July 2010 9 0.126 0.076 0.045 0.311

REP10
(NURC)

19 August–3
September 2010

21 0.298 0.536 0.050 1.899
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Samples were collected on GF/F filters, 25 mm for spectrofluorescence and 47 mm for HPLC.
The BP09 samples were stored in liquid nitrogen and then shipped to Analytical Services HPL-
UMCES (Cambridge, MD, US) for analysis; the REP10 samples were analyzed onboard after
the required extraction time (24 hours). Due to the proven underestimation of the real chlorophyll
a content caused by the spectrofluorometric method, the REP10 [CHL] data were corrected by
applying the linear regression coefficients obtained from the analysis of spectrofluorometric and
HPLC data of more than 250 samples taken by NURC.48

The MOMAR samples were analyzed according to Vidussi et al.49 and Barlow et al.50 after
modifications of elution times and using β8 APO CAROTENAL as an internal standard. Pig-
ment concentrations were computed according to Mantoura and Repeta.51 [CHL] represent the
sum of concentrations of chlorophyll a, chlorophyllide a, and divinyl-chlorophyll a if present.

5 Processing of Remote Sensing Data

5.1 Selection and Preprocessing of MODIS Images

Twenty-four MODIS-AQUA Level-2 files, containing all or part of the study area and corre-
sponding to the sampling days of the three cruises, were acquired from the online OBPG
Data Processing System (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl). All data have about
1 km2 spatial resolution at nadir, and the images are already corrected for the atmospheric effect.
The following MODIS AQUA standard products were selected: Rrs_412, Rrs_443, Rrs_488,
Rrs_531, Rrs_547 and Rrs_667, as inputs for OC3M, MedOC3, OC5, and SAM LT algorithms.

5.2 Estimation and Evaluation of [CHL]

The four algorithms described were first applied to the Rrs images in order to produce relevant
[CHL] maps, which were analyzed visually. The Rrs values corresponding to all [CHL] samples
were then extracted from 3 × 3 pixel windows centered around each station and compared to the
available in situ reflectance measurements by using the mean bias and root mean square errors
(MBE and RMSE, respectively).

The extracted Rrs values were converted into [CHL] estimates applying the four algorithms.
In all cases regression analyses were carried out to compare the in situ and remotely sensed
[CHL] estimates, and the corresponding accuracies were evaluated using various statistics.
The coefficient of determination (R2), the intercept (a) and the slope (b) of the linear regression
between measured and estimated [CHL] were computed together with the root mean square
error (RMSE) and the mean bias error (MBE). The last two statistics were calculated as
Eqs. (5) and (6):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðMeasi − EstiÞ2

N

r
(5)

MBE ¼
P

N
i¼1 Esti −Measi

N
: (6)

A further analysis was carried out by classifying the available samples into Case 1 and 2
waters according to the two optical rules proposed by Lee and Hu.21 The two rules are
based on bio-optical models for Case 1 waters, developed as an inclusive and quantititive
Case 1 criterion for remote sensing applications. Specifically, these rules define optical Case
1 water relations between chlorophyll a and CDOM and chlorophyll a and NAP. The two
rules were applied to the sample Rrs spectra in a restrictive way, i.e., samples were considered
to belong to Case 1 waters when satisfying both rules; while they were considered to belong to
Case 2 waters when both these rules were not satisfied. The same objective was pursued by apply-
ing another water classification algorithm locally tuned for the Western Mediterranean basin. The
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algorithm is based on the estimation of the spectral angle similarity between sample MODIS Rrs
spectra and reference spectra defined by Eq. (2) using absorption and backscattering coefficients
characteristic of Western Mediterranean open waters.31 In this case also the classification of the
available samples into Case 1 and 2 water types was carried out using restrictive criteria, i.e., water
samples were considered to belong to Case 1 waters when the cosine of the minimum spectral
angle between sample and reference Case 1 spectra was higher than 0.95 and were considered to
belong to Case 2 waters when this cosine was lower than 0.6 (see Ref. 31 for details).

6 Results

6.1 [CHL] of the Sea Samples

The three cruises were conducted during times of the year when maximum (spring) and mini-
mum (summer) chlorophyll concentrations generally occur in this area.39 Summary statistics of
the [CHL] found during the three cruises are provided in Table 2.

The BP09 cruise was conducted in the Ligurian Sea, which normally shows oceanic water
characteristics during most of the year. The campaign coincided with a typical spring algal
bloom; accordingly, the highest [CHL] values (around 1.0 mgm−3) were found during this cam-
paign in terms of all [CHL] statistics considered. The highest [CHL] (2.837 mgm−3) was found
in the oceanic station located in the proximity of a mesoscale cyclonic eddy. The stations located
near the Arno river plume also showed high [CHL] (still around 1.0 mgm−3), due to the
influence of the river discharge.

The MOMAR campaign was conducted in three transects in front of Tuscany region during
summer, when chlorophyll concentration is low even in coastal stations (around 0.1 mgm−3).

The REP10 cruise was carried out in the same area as BP09, but in summer. The largest part
of the samples were taken in open sea stations and show low chlorophyll concentrations (around
0.1 mgm−3), similar to those of the MOMAR campaign. Only two stations located in front of the
Arno River mouth show high [CHL] which coincides with the maximum (around 1.9 mgm−3)
reported in Table 2.

6.2 Rrs Spectra of the Sea Samples

The per-band statistics which summarize the differences between Rrs spectra measured in situ
and obtained fromMODIS imagery are shown in Table 3. The largest differences are found in the
blue range, and particularly in the 412 and 443 bands, which show MODIS Rrs data values
greatly overestimated. Conversely, the red bands are variably underestimated. The largest of

Table 3 Results of the comparison between Rrs measured in situ and derived from MODIS
imagery. The number of samples considered is 23 for BP09, 9 for MOMAR and 15 for REP10.

MODIS band In situ Rrs average Rrs MBE Rrs RMSE

412 0.00440 0.00138 0.00404

443 0.00455 0.00094 0.00334

469 0.00466 0.00048 0.00301

488 0.00469 0.00030 0.00276

531 0.00331 0.00019 0.00167

547 0.00300 −0.00003 0.00147

555 0.00273 −0.00017 0.00139

645 0.00044 −0.00053 0.00233

667 0.00028 −0.00013 0.00036

678 0.00027 −0.00011 0.00034
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the errors occur in the first two blue bands (RMSE around 0.004, MBE around 0.001), and can
be mostly attributed to the strong atmospheric effect which affects these wavelengths. The nega-
tive MBE at the highest wavelengths can instead be attributed to an overcorrection of the signal
for the atmospheric effect. The MODIS spectra of some samples show negative Rrs values at the
lowest and highest wavelengths; these values have been retained in order to evaluate the robust-
ness of the four algorithms to these error sources.

In general, the samples collected during the three cruises show diversified optical features
which are related to relevant different eco-biological marine conditions. With regard to the BP09
data, the Rrs spectra of most samples are characterized by strong and broad maxima in the green
band, related to high levels of phytoplankton biomass. The Rrs spectra of three samples show
much lower maxima. Two typical examples of these spectra measured in situ and extracted from
MODIS imagery are shown in Fig. 2(a); CTD13 represents the first group of samples, while
CTD51 represents the latter one. CTD13 is classified as Case 2 water both by Lee and Hu21

(Lee rules) and Massi et al.31 rules (Massi rules), while CTD51 is classified as Case 1 water
by Lee rules and is unclassified by Massi rules. The MODIS spectra are significanlty different
from those measured in situ, especially for the blue bands. The spectral features of the first
sample (CTD13) clearly reflect a high phytoplankton biomass associated to a significant pre-
sence of UV-blue absorbing material; both these features are attenuated for CTD51. Three
samples were taken in the turbid waters of the Arno river plume and are similar to CTD24,
[Fig. 2(a)]. These samples show a wide green Rrs maximum and are classified as Case 2
water by both Lee rules and Massi rules.

The largest part of the MOMAR samples shows Rrs spectral signatures similar to those of
Fig. 2(c), indicative of the relatively low chlorophyll concentrations which are typical of this
campaign. MODIS Rrs deviates from in situ Rrs all over the spectrum for the first sample
(SR10) and particularly in the blue region for the second sample (T3). Both samples show a
clear and wide Rrs maximum in the blue region, a sharp decrease in the green and values around
zero in the red. These samples have generally low phytoplankton biomass. The SR10 sample was
classified as Case 2 water by the Lee rules, and unclassified by the Massi rules; the T3 sample
remained unclassified by both criteria.

The Rrs spectra taken during the REP10 cruise show more diversified spectral features
[Fig. 2(b)]. Only one MODIS Rrs spectrum is shown in this case (CTD3), which has a
shape very similar to that derived from in situ data, and is classified as Case 2 water by Lee
rules and as Case 1 water by Massi rules. This spectrum is typical of open sea waters with
Rrs 440∕Rrs 412 ratio higher than l, likely due to the dominance of phytoplankton over
CDOM and NAP; these are the most typical Case 1 water conditions. Most of the other
Rep10 spectra resemble that of the CTD41 sample, which is in turn similar to those of the
MOMAR cruise. All these spectra show a wide maximum in the blue region, a Rrs decrease
in the green, and very low Rrs values in the red. The Rrs spectrum of the station influenced by the
Arno river plume (sample CTD44) has an evident and wide green Rrs maximum and a secondary
maximum in the blue band. This station is characterized by very high [CHL] (1.899 mgm−3),
which is probably associated with the significant presence of NAP and CDOM. Both CTD41 and
CTD44 samples are classified as Case 2 waters by Lee rules and unclassified by Massi rules.

6.3 MODIS [CHL] Estimates

The visual examination of the satellite derived [CHL] maps in comparison with the original
Rrs images allows a preliminary assessment of the performances of the four algorithms. As
an example, the four [CHL] maps obtained from the MODIS image of Fig. 1 are shown in
Fig. 3(a) to 3(d): the maps correpond to a time of algal bloom during BP09 campaign
(March 17, 2009). The color composition clearly shows two different types of water masses
where the presence of optically active constituent is evident (Fig. 1). The former type corre-
sponds to the open sea gyres in the north and southeast of the study area, which are characterized
by green-yellow constituents; the latter type corresponds to the coastal areas of Tuscany, which
show an almost white color. The Arno river plume, in the North of the Tuscany coast, shows
intermediate spectral features.
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OC3M and MedOC3 algorithms yield high [CHL] estimates for the open sea gyres in the
north and southeast of the study area, as well as for most coastal zones of Tuscany [Fig. 3(a) and
3(b)]. This means that these algorithms do not differentiate green-yellow waters, likely domi-
nated by phytoplankton, from uniformly brighter coastal waters, presumably dominated by non-
organic materials. Such a tendency is attenuated by the OC5 algorithm, which yields lower

Fig. 2 MODIS Rrs spectra of representative points taken during the three cruises (a ¼ BP09,
b ¼ MOMAR, c ¼ REP10). The solid lines indicate the Rrs measured in situ, the dotted lines
those obtained from MODIS data.
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[CHL] estimates particularly for Tuscany coastal waters [Fig. 3(c)]. The locally tuned SAM LT
algorithm provides low [CHL] estimates for these areas [Fig. 3(d)], which correspond to high
concentrations of non-organic materials (maps not shown).

These findings are mostly confirmed by the statistical comparison of Fig. 4(a) to 4(d).
In general, the [CHL] estimates obtained by all algorithms are significantly correlated with
relevant measurements at the 99% confidence level. These algorithms, however, show different
levels of accuracy.

The coefficients of determination are moderate for all algorithms. The RMSE is rather high
for MedOC3 and OC3M, while it is good for OC5 and SAM. The reason for this pattern can be
undersood looking at MBE, which indicates that both OC3M and MedOC3 strongly overesti-
mate [CHL]. Accordingly, the regression slopes are significantly higher than one at the 95% and
99% confidence levels for OC3M and MedOC3, respectively. This is mostly due to the parti-
cularly great [CHL] overestimation of several BP09 samples.

OC5 produces a slight and not significant [CHL] underestimation, and gives good perfor-
mance both in Case 1 and Case 2 waters. This algorithm overestimates [CHL] for three samples
belonging to BP09 which were taken in turbid waters at the Arno river plume. The mean in situ
[CHL] value of these three samples is around 1 mgm−3, while OC5 shows an average value
around 3 mgm−3. The three stations show a spectral signature similar to CTD24 [Fig. 2(a)]
and are classified as Case 2 waters both by Lee and Hu21 and Maselli et al.36 rules.

The SAM LTalgorithm generally underestimates [CHL]. This algorithm is scarcely sensitive
to low chlorophyll concentrations and gives the lowest [CHL] values for all stations around the

Fig. 3 Estimated [CHL] maps corresponding to the MODIS image of Fig. 1 (17 March 2009)
obtained by the four algorithms considered (a ¼ OC3M, b ¼ MedOC3, c ¼ OC5, d ¼ SAM).
The scale is common for all maps.
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Boussole Optical Buoy and in the offshore stations in front of the Italian coast. In this case,
[CHL] is particularly overestimated for the CTD13 and CTD22 samples, both belonging to
the BP09 cruise.

Table 4 summarizes the results obtained by applying the optical classification rules of Lee
and Hu,21 and Maselli et al.,36 to the samples taken during the three cruises. The mean chlor-
ophyll concentrations measured and estimated by the four algorithms in Case 1 and 2 waters are
summarized in the bar plot of Fig. 5. The Lee and Hu criterion identifies 15 Case 1 water

Fig. 4 Scatter plots of the [CHL] measured and estimated (63 samples) by the four algorithms
examined, with relevant accuracy statistics. All correlations are statistically different from zero
at the 99%.

Table 4 Number of samples and relevant mean [CHL] found by the application of the two optical
classification criteria, Lee and Hu21 andMaselli et al.36 to the data of the three cruises (total number
of stations: 33—BP09, 9—MOMAR, 21—REP10).

Lee and Hu21 Massi et al.31

Case 1 Case 2 Case 1 Case 2

Campaign [CHL]
average
(mgm−3)

N. of
stations

[CHL]
average
(mgm−3)

N. of
stations

[CHL]
average
(mgm−3)

N. of
stations

[CHL]
average
(mgm−3)

N. of
stations

BP09 0.886 4 1.016 17 — — 1.231 11

MOMAR 0.100 6 0.208 2 0.100 6 — —

REP10 0.465 5 0.723 12 0.111 14 — —
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samples, showing a relatively high [CHL] average (0.43 mgm−3). This is mainly due to the
inclusion of two samples, the first taken during the 2009 spring bloom in the Ligurian gyre
[REP10 CTD51, Fig. 2(b)] and the second taken in summer 2010 near the Arno river
mouth [BP09 CTD44, Fig. 2(a)]. These two samples show [CHL] close to 2 mgm−3 and spectral
signatures atypical for Case 1 waters. Both samples, in fact, show a green Rrs peak, which is
more evident for CTD44 [Fig. 2(b) and 2(a)]. The comparison with the only available Rrs spec-
trum measured in situ [sample CTD51, Fig. 2(a)] indicates that these spectral shapes are not due
to inaccurate atmospheric correction of the MODIS data. In any case, the Rrs of these samples in
the blue region is relatively high, which reduces the [CHL] estimated by all four algorithms and
yields underestimated [CHL] averages. These underestimations are not statistically significant
due to the large standard errors caused by averaging the [CHL] of the two anomalous samples
with that of the others, which have much more oligotrophic features. If these two peculiar sam-
ples are excluded, the mean CHL concentrations become only slightly higher than those obtained
by applying the locally tuned Maselli et al.36 classification. The latter classification significantly
enlarges the number of samples attributed to Case 1 waters (20) while strongly restricting both
[CHL] averages and dispersions. The mean [CHL] is marginally overestimated by OC3M and
OC5 and is significantly underestimated by MedOC3 and SAM LT.

With regard to Case 2 waters, the global Lee and Hu optical classification identifies more
samples than that of Massi et al. (31 versus 11). The mean [CHL] of the former is slightly lower
than that of the latter, but the estimation patterns of the four algorithms are very similar. OC3M
significantly overestimates [CHL], and this tendency is stronger for MedOC3. OC5 produces a

Fig. 5 Mean [CHL] measured by HPLC and estimated by the four algorithms examined for the
samples classified as Case 1 (a) and Case 2 (b) waters by the optical methods of Lee and Hu21

and Maselli et al.36 (the upper bars indicate the standard errors of the measurements/estimates;
�, �� ¼ estimates statistically different frommeasurements at the 95% and 99% confidence levels,
respectively).
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slight, not significant overestimation, while SAM LT yields marginal and not significant under-
and overestimations depending on the use of the two water type classification methods.

7 Discussion

The current experimental exercise relies on a series of [CHL] measurements collected during
three cruises in the Ligurian and North Tyrrhenian seas. The accuracy of these measurements is a
necessary prerequisite for the correct evaluation of different remote sensing based estimation
methods. As previously noted, HPLC and spectrofluorimetric methods provide different
[CHL] values due to the interference of chlorophyll b.52–55 The underestimation of the latter
method is therefore dependent on the chlorophyll b/chlorophyll a concentration ratio. In the
case of one campaign (REP10) this effect had to be corrected due to the lack of HPLC measure-
ments. The correction was performed by an empirical method which was tuned on representative
regional data and was demonstrated to have high statistical robustness.48 This issue must be
properly taken into consideration when comparing the current results to those obtained by pre-
vious investigations in the same area.25,56,57 These studies, in fact, used the spectrofluorimetric
method, which produces the mentioned variable [CHL] underestimation.

The in situ data collected during the three study campaigns confirm previous findings on the
environmental and optical complexity of the area examined. In these waters phytoplankton is
usually not the predominant optical component and shows absorption coefficients at 440 nm
similar to those of NAP and CDOM.42 At the same time [CHL] is significantly correlated
with the concentrations of the other optically active constituents. The concurrence of these
two characteristics increases the optical complexity of these waters.3 This is related to the exis-
tence of diversified oceanic, neritic, and coastal water masses, and to the presence of important
river plumes and mesoscale gyres in the Ligurian Sea. The operational optical classification
criterion of Morel58 puts most of these waters in an intermediate category between the two
basic water types. The waters of most neritic environments belong to Case 1, but contain sig-
nificant amounts of components other than phytoplankton, such as CDOM and NAP.39,42 Coastal
and river plume waters generally belong to Case 2, and show variable optical contributions from
phytoplankton, NAP and CDOM.

The comparison between in situ and MODIS reflectance values also confirms the results of
previous investigations. MODIS Rrs data are affected by errors which can be attributed to several
factors, such as spatial and temporal differences in image acquisition with respect to sea data
collection and geolocation and atmospheric correction inaccuracies.57 The last problem is par-
ticularly relevant in determining the largest Rrs errors found in the blue bands. These wave-
lengths, in fact, are most influenced by atmospheric scattering, which is difficult to simulate
and remove.57,59 This problem can deteriorate the performance of all [CHL] retrieval algorithms,
which heavily rely on blue Rrs values. Overcorrection of the atmospheric effect is also the likely
cause of the negative Rrs values found in the red bands, where the radiometric signal is very low.
This, however, has a minor effect on ocean color algorithms, which do not use, or use only
marginally, red wavelengths.

The optical variegation of the study environment and the inaccuracy of the MODIS imagery
differently affect the performances of the four [CHL] algorithms examined in Case 1 and 2
waters. With regard to the optical classifications applied, the global Lee and Hu algorithm is
sometimes inaccurate in the identification of Mediterranean Case 1 waters. This algorithm,
in fact, rejects some samples which show typical Case 1 water features and accepts a few samples
with dubious optical characteristics. This is likely caused by the application of fixed thresholds to
a limited number of spectral bands (4), which causes some problems when dealing with Med-
iterranean optical peculiarities. In order to cope with this issue, the classification proposed by
Maselli et al.36 is tuned with optical measurements representative for the Western Mediterranean
basin and utilizes the information of all ten MODIS bands in a fuzzy way. This allows a more
flexible characterization of Case 1 and 2 waters and, in particular, a restrictive identification of
samples surely belonging to the two water types.

The standard NASA algorithm for MODIS data (OC3M), based on the blue/green Rrs
ratio, is known to overestimate chlorophyll concentration in Mediterranean Case 1 waters
(above 70% for chlorophyll below 0.2 mgm−3).22,24,26,29 The regionally tuned MedOC3
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algorithm, which is based on the same Rrs ratio principle, is expected to be virtually unbiased
for the same waters.23 The current results only partly confirm these expectations. The samples
correctly identified as belonging to Case 1 waters show low mean [CHL], which is well
estimated by OC3M and underestimated by MedOC3. These findings are apparently in con-
trast with those of D’Ortenzio et al.23 and Volpe et al.,25 who indicated that standard ocean
color algorithms overestimate particularly for low [CHL] (<0.5 mgm−3). The inconsistency,
however, could be partly due to the previously mentioned application of different methods to
determine the reference [CHL] (i.e., HPLC versus spectrofluorometer). On the other hand, the
current results are in accordance with the fact that OC3M and MedOC3 were calibrated only
on Case 1 waters.29,30 More particularly, our results agree with the more recent findings of
Morel and Gentili, who showed that the peculiar CDOM absorption which characterizes Med-
iterranean waters has a negligible effect when ½CHL� < 0.25 mgm−3.22 Consequently, in these
conditions a global algorithm can work properly, while MedOC3 overcompensates the
expected [CHL] overestimation. The latter algorithm, in fact, provides [CHL] estimates lower
than OC3M for MBR > 1.4, which approximately corresponds to ½CHL� < 0.6 mgm−3, and
has an opposite behaviour above this [CHL] threshold.

The same behaviour explains the different performances of the two algorithms in typical Case
2 waters, which are generally characterized by [CHL] higher than 0.6 mgm−3. OC3M produces
a remarkable [CHL] overestimation, which is even more evident with MedOC3. As expected, the
two algorithms particularly fail in distinguishing the optical contributions brought by chloro-
phyll and NAP in proximity of the continental shelf. In these cases, in fact, the latter constituent
determines decreased blue/green reflectance ratios which are interpreted as increased pigment
concentrations, thus leading to notable [CHL] overestimation.

The OC5 regional algorithm appears to be the most robust in all cases, producing only a
marginal [CHL] overestimation. Unlike OC3M and MedOC3, this algorithm was originally
tuned for both oceanic and coastal French Atlantic waters, which have typical chlorophyll con-
centrations higher than those of North Tyrrhenian and Ligurian waters, and different optical
characteristics. In spite of this, the OC5 version currently used is capable of providing quite
accurate [CHL] estimates also in Mediterranean Case 1 waters. This good estimation capability
can be partly attributed to the recent updating of the algorithm by the use of some data from the
French Mediterranean area.33 The same capability testifies to an intrinsic robustness of the algo-
rithm, likely linked to the consideration of additional spectral bands with respect to OC3M and
MedOC3. This is in accordance with the results of Tilstone et al.,35 who showed that OC5 is
accurate also in the Bay of Bengal (India).

The SAM LT regional algorithm further enhances this property by considering all spectral
information contained in all MODIS bands. This capacity is fundamental for the contempora-
neous estimation of all three optically active seawater constituents, which is particularly effective
in Italian coastal environments. In these coastal areas, which mostly correspond to Case 2 waters,
the algorithm is capable of discriminating between water masses dominated by pigments and
NAP, thus producing accurate [CHL] estimates.36 This algorithm, however, was tuned using
spectral measurements representative only of Tuscany coastal waters, and performs less well
in open sea areas having medium–low chlorophyll concentrations. Moreover, the calibration
was performed using data measured by the spectrofluorimetric method, which underestimates
[CHL] with respect to the currently applied HPLC procedure. This ensemble of factors could
explain the low sensitivity of the algorithm to low [CHL] levels.

8 Conclusions

The current study presents the application of four [CHL] algorithms to MODIS imagery taken
over the Ligurian and North Tyrrhenian seas. The [CHL] estimates obtained are evaluated versus
in situ measurements collected during three cruises. The results of the experiment can be
summarized as follows:

• The two standard ocean colour algorithms (OC3M and MedOC3), based on the blue/green
MBR, overestimate [CHL] particularly in turbid, eutrophic waters. This is partly expected,
since the two algorithms were calibrated in oceanic, oligotrophic waters.
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• OC5, which utilizes two additional MODIS bands, provides good [CHL] estimates in both
clear and turbid waters. This is remarkable, since the algorithm calibration was mostly
carried out in the Atlantic sea, taking into consideration only few Mediterranean samples.

• SAM LT, which utilizes all spectral information of MODIS imagery, yields better [CHL]
estimates in turbid waters, taking into account the presence of water masses differently
affected by NAP and CDOM. The current version of the algorithm, however, is poorly
sensitive to low [CHL] levels which are typical of oceanic waters.

An in-depth analysis of these results suggests that the found [CHL] overestimation of stan-
dard ocean color algorithms is associated with the presence of waters with intermediate optical
features, i.e., characterized by concentrations of accessory optically active constituents (mainly
CDOM) higher than expected for typical Case 1 waters. In other words, the [CHL] overestima-
tion of OC3M would not concern real Case 1 waters, but Case 1 waters with abnormal levels of
CDOM and, secondarily, NAP. These waters would correspond to the so called Not Case 1
waters of Lee and Hu,21 that are common in the Mediterranean basin. In such conditions, regio-
nal algorithms as MedOC3 can be efficient for medium-low [CHL] levels. In contrast, both
algorithms strongly overestimate [CHL] in Case 2 waters, which cover only a minor fraction
of the study area but have the greatest ecological and economic importance.

OC5 appears to be more robust either in Case 1 and in Case 2 waters [Fig. (4)], this is prob-
ably related to the two additional bands that are processed in addition to ratios used as inputs in
OC3M and MedOC3. Those bands are in fact sensitive to the contribution of NAP and CDOM.

The locally tuned SAM LT algorithm also utilizes more spectral information of MODIS
imagery than OC3M and MedOC3. The major advantages appear in Case 2 waters, especially
in the three stations overestimated by OC5 and represented by BP09 CDT24, while it is scarcely
sensitive to low-medium values of [CHL]. Such a limit can be explained considering that the
SAM LT algorithm is based on a minimization process that also estimates NAP and CDOM and
that can be less sensitive to small relative variation of [CHL], NAP, and CDOM in oligotrophic
waters. This suggests that these algorithms perform differently depending on the water class, and
that, however, further improvements would be necessary in light of a possible utilization for the
operational monitoring of Ligurian and North Tyrrhenian waters. The most straightforward
method to achieve this would be a recalibration of the MODIS OC3M and MedOC3 algorithms
over [CHL] samples representative of various local eco-physiological ocean conditions. This
would practically correspond to modifying the coefficients which modulate the effect of the
spectral ratios considered. Such a modification, however, can not correct for the demonstrated
incapability in distinguishing the spectral contributions of different seawater constituents, which
is most evident in continental coastal waters.

With regard to OC5, its effective recalibration over a wider and more representative number of
Western Mediterranean water samples is theoretically feasible, due to the nature of the algo-
rithm.33 In the case of the semi-analytical SAM LT method, a more complex modification is
needed to increase its sensitivity to small [CHL] variations which are typical of Case 1 waters.
This method is in fact based on the spectral simulation of sea water characteristics, which requires
the availability of representative absorption and scattering coefficients. A particular effort will
therefore be directed to collect this basic information for representative Case 1 Ligurian and
Tyrrhenian waters, thus improving the applicability of the method in wider oceanic areas.
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