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We investigate experimentally and theoretically the dynamical properties of a Mott insulator in

decoupled one-dimensional chains. Using a theoretical analysis of the Bragg excitation scheme, we

show that the spectrum of interband transitions holds information on the single-particle Green’s function

of the insulator. In particular, the existence of particle-hole coherence due to quantum fluctuations in the

Mott state is clearly seen in the Bragg spectra and quantified. Finally, we propose a scheme to directly

measure the full, momentum-resolved spectral function as obtained in the angle-resolved photoemission

spectroscopy of solids.
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The observation of the superfluid (SF) to Mott insulator
(MI) transition of bosons in optical lattices [1] has received
considerable attention as a paradigmatic example of a
quantum phase transition driven by interactions. The prop-
erties of lattice bosons in this strongly correlated regime
have been probed using several methods [2–10]. For ex-
ample, time-of-flight experiments were used to study the
development of spatial first-order coherence over increas-
ing length scales inside the Mott state upon approaching
the transition to the SF state [3]. In a quantum system, the
emergence of such spatial correlations must go hand in
hand with increasing temporal correlations. Near the quan-
tum critical point, the precise relation between the two is
determined by the dynamical critical exponent of the tran-
sition (see, e.g., Ref. [11]). Away from the transition,
where critical properties are not yet apparent, the temporal
first-order coherence lends insight on the nature of the
quasiparticle excitations of the strongly correlated state.

So far, however, most of the dynamical experiments in
the Mott regime using schemes of lattice modulation and
Bragg spectroscopy have focused on excitation frequencies
matching transition within the lowest-energy Bloch band
[2,7]. In this case, the external perturbation is coupled to
density fluctuations, and in the linear response regime, the
absorption spectrum is directly related to the dynamical
structure factor Sðq;!Þ of collective excitations, or
particle-hole spectra [12–14].

In this Letter, we show how interband Bragg spectros-
copy [7,15] supplemented by a theoretical model of the
Mott insulator, can be used to extract properties of single-
particle excitations in the many-body state. We then suggest
a refined approach for directly measuring the single-particle
Green’s function in a model-independent way.

The MI state is realized in decoupled one-dimensional
(1D) chains of interacting bosons, as represented in
Fig. 1. We excite the system with two simultaneous laser
pulses (Bragg beams) that induce an energy transfer

@! ¼ @ð!1 �!2Þ (!1;2 being the laser beams frequen-

cies) and a momentum transfer @q ¼ @q1 � @q2 ¼ @qex
along the axis of the 1D chains (q1 and q2 being the wave
vectors of the Bragg photons). We measure the energy
absorption spectrum Dð!Þ at a fixed momentum transfer
q & �=a, where a is the periodicity of the lattice along the
chains. We show how, with the precise knowledge of the
particle dispersion in the high band [16,17], it is possible to
obtain information about quasiparticle structure and dy-
namics in the MI. Moreover, a refined scheme would give
access to a momentum-resolved absorption rate Dðk;!Þ,
which we show is directly related to the single-particle
spectral function Aðk;!Þ in the lowest-energy band.
From the latter, one obtains the Green’s function (GF) of
the MI, lending information on both spatial and temporal

FIG. 1 (color online). An array of 1D gases created by a 2D
optical lattice is driven into the MI state by a third (OL) in theOx
direction. The energy band structure in the 1D lattice is depicted
on the left with red solid lines. The lowest band corresponds to
particles in the MI, and above it are the higher single-particle
energy bands. Two laser beams (Bragg beams, green arrows)
excite the initial MI by transferring a particle to a high-energy
band and leaving a hole in the many-body state.

PRL 109, 055301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

0031-9007=12=109(5)=055301(5) 055301-1 � 2012 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301565657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.109.055301


coherence of quasiparticles. Such a measurement is analo-
gous to angle-resolved photoemission spectroscopy used in
solid-state [18], recently extended to ultracold gases
through Raman [19,20] and rf spectroscopy [21].

We start by briefly describing the experimental setup
used to obtain the interband spectra (details can be found in
[7,22]). We load a Bose-Einstein condensate of 87Rb in a
3D optical lattice at the wavelength �L ¼ 830 nm. The
amplitudes Vi of the lattices along each axis i ¼ x, y, z are
expressed in units of the recoil energy ER ¼ h2=ð2m�2

LÞ,
Vi ¼ siER, where m denotes the mass of 87Rb. The optical
lattices are ramped up to their final values si with an
exponential ramp of duration 140 ms and time constant
30 ms. Two lattice amplitudes (sy ¼ sz ¼ 35) are fixed to

create an array of 1D chains. The amplitude of the third
lattice sx is varied to tune the ratio between the onsite
interaction energy U and the tunneling amplitude J1 be-
tween Wannier states of the lowest Bloch band in each 1D
MI chain from U=2J1 ’ 7 to U=2J1 ’ 42.

The Bragg beams are derived from a laser at 780 nm,
detuned by �200 GHz from the D2 line of 87Rb. In this
work we fix q ¼ 0:96ð3Þ�=a, and we measure the amount
of excitations induced by the Bragg beams as a function of
their frequency difference !. The measured quantityDð!Þ
is the mean square width of the zero-momentum peak in a
phase-coherent lattice gas obtained after lowering the 3D
optical lattices. Timing and details of the experimental
procedure can be found in [22], in particular the way
Dð!Þ is rescaled with the parameters of the Bragg beams
to allow a relative comparison of the different spectra.
In [22], we also verified that Dð!Þ is proportional to the
energy transferred to the gas so that it can be written as
Dð!Þ ¼ C!Sðq;!Þ, where C is a constant independent of
the lattice strength [23].

In Fig. 2(a), we show an example of the spectra obtained
for lattice of amplitude sx ¼ 9 at frequencies resonant with
transitions to the second and third Bloch bands. The total
spectral weight W ¼ R

d!Dð!Þ of transitions to the third

band as a function of sx is shown in Fig. 2(b). The sup-
pression of spectral weight is due to reduction of the matrix
element, or Frank-Condon overlap, between wave func-
tions of the two bands with increasing lattice strength. The
distribution of spectral weight within each band is primar-
ily determined by two factors: (i) the density of final states
(DOS) in that band and (ii) the particle-hole coherence in
the Mott ground state driven by quantum fluctuations about
the classical state with precisely n (integer) particles on
each site. The peaks seen at the band edges, for example,
are the result of the divergent DOS there. Furthermore, we
quantify the asymmetry of the spectra about the band
centers through the skewness (third moment) [24] of
Sðq;!Þ. This is shown in Figs. 2(c) and 2(d) for the second
and third band as a function of sx. A positive skewness
corresponds to an imbalance toward lower energies. Using
a theoretical model, we shall relate the skewness, and its

variation with band index and lattice amplitude, to the
particle-hole coherence in the Mott state.
The Bragg perturbation couples to the particle density

and, in the linear response regime, the excitation rateDð!Þ
is directly related to the dynamic structure factor

Sðq;!Þ ¼ X
m

jhmj�qj0ij2�ð!�!m0Þ ¼ Im½�ðq;!Þ�; (1)

where �q is the density operator at momentum q [25]. The

sum runs over excited states, and @!m0 is the associated
excitation energy.
The response function �ðq;!Þ is represented graphi-

cally by the bubble diagram in Fig. 3(a): (i) the vertex
describes the coupling of the Bragg beams to the density
operator �q; (ii) the full line is the GF of the hole produced

in the lowest band by the Bragg excitation; (iii) the dashed
line represents the GF of the particle excited to the nth
band; (iv) the filled area is the T-matrix for scattering of the
upper-band particle with the hole in the lowest band. We
explain how we evaluate each part of the diagram, showing
that for excitations to the higher bands the contribution of
the final-state interaction can be neglected; hence, the
process can be well described by the bare bubble shown
in Fig. 3(c). Since without this interaction the propagation

FIG. 2 (color online). Interband Bragg spectra. (a) Energy
absorption rate Dð!Þ over the energy range of the second and
third Bloch band for a Bragg momentum transfer q ¼ 0:96�=a
and for a lattice depth sx ¼ 9. The (blue and green) dots are the
experimental data with error bars indicating statistical uncertain-
ties after averaging over four to five experimental acquisitions;
the black lines are the theoretical predictions for Dð!Þ.
(b) Integrated spectral weight W in the third band. (c) and
(d) Skewness (third moment) of Sðq;!Þ in the second (c) and
third (d) band. The measured values are compared to the theo-
retical prediction including particle-hole coherence (thick lines)
and to the contribution of the single-particle density of states
alone (thin lines). The shaded area indicates the systematic
uncertainty in determination of sx in the experiment.
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of the upper band particle can be calculated as the one of a
free particle, the experiment effectively probes the remain-
ing unknown which is related to the single-particle GF.

Let us first consider the edge vertices which correspond
to the matrix element for the excitation of a particle from
the lowest to the upper band by the density operator. To
find this matrix element, we express the field operators in
terms of creation operators in Wannier states of the lattice

sites, so that �ðxÞ ¼ P
ij;nmw

�
mjðxÞwniðxÞbynibmj, where n,

m are band indices, i, j site indices, and wniðxÞ the respec-
tive Wannier functions. From now on, we assume that the
lattice is sufficiently deep that the overlap between
Wannier functions of neighboring sites can be neglected
in the density operator. In addition, we focus on the com-
ponent of the density operator that induces transitions from
the lowest to the nth band:

�nðqÞ ¼ ��F1nðqÞ
X
i

e�iqRibynib1i; (2)

where Ri is the position at site i, and �� the filling of the MI.
F1nðqÞ is the matrix element

F1nðqÞ ¼
Z

dxw1iðxÞe�iqxwniðxÞ � ð�iql0Þnffiffiffiffiffiffiffiffiffiffi
2nn!

p e�ððql0Þ2=4Þ:

(3)

To get a simple expression for the dependence of F1nðqÞ on
the lattice strength, we approximated the Wannier states

by those of a harmonic well with oscillator length l0 ¼
�=ð2�s1=4x Þ; however, for the comparison with experimen-
tal results, we use the exact Wannier functions [17].

To describe the hole propagation in the MI, we use the
generalized Bogoliubov theory [14,26], which accounts for
quadratic quantum fluctuations (i.e., virtual particles and
holes) about the classical (Gutzwiller) ground state. The

particle operator in the lowest band can be represented in
terms of the Bogoliubov quasiparticle and quasihole ex-

citations as bk ¼
ffiffiffiffiffiffiffiffiffi
fðkÞp ð�y

h;k þ �p;kÞ, which are a combi-

nation of an added particle (doublon) and removed hole on

the Mott background, e.g., �y
p;k ¼ ukp

y
k þ vkh�k and

fðkÞ ¼ ðuk � vkÞ2. The ground state is the vacuum of the

operators �p=h;k. Therefore, fðkÞ ¼ hbyk bki is simply the

momentum distribution. Accordingly, the single particle
Green’s function in the lowest Bloch band is given by:

G1ðk; i!Þ ¼ fðkÞ
i!�!pðkÞ þ

fðkÞ
�i!�!hðkÞ � Gp þGh:

(4)

!pðkÞ ½!hðkÞ� denotes the dispersion relation of a particle

[hole] in the lowest Bloch band. The momentum distribu-
tion fðkÞ stems from quasiparticle coherence factors, and
within the Bogoliubov theory it is

fðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J1

Jc
cosk

q : (5)

Here, Jc is the critical hopping strength at the Mott tran-
sition. We shall restrict ourselves to using the Bogoliubov
theory deep in the Mott insulator, where it provides a good
approximation of the single particle Green’s function [27].
In this regime, fðkÞ � 1þ 1

2 ðJ1=JcÞ cosk to leading order

in J1=Jc.
The GF of a single particle in the nth upper band is taken

to be that of a free particle with appropriate band disper-
sion ~!nðkÞ. We take into account a slightly renormalized
dispersion due to interaction with the background of filled
sites of the MI [28].
The interaction between the particle in the upper band

and the hole in the lowest band is included in the full
T-matrix [filled box in Fig. 3(a)]. In general, this leads to
a complicated sum of diagrams, including all possible
sequences of multiple collisions through the interaction

term U1nb
y
nibniðpy

i pi � hyi hiÞ. Here, we represented the
interaction in terms of actual particles and holes in the
classical ground state, where U1n is the interaction matrix
element between Wannier states of the lowest and the nth
band. The interaction looks more complicated when ex-
pressed in terms of the Bogoliubov quasiparticles and
quasiholes. However, the sum simplifies in the strong
lattice limit when vk � uk. Then, to leading order in vk, we
can include only the ladder diagrams shown in Fig. 3(b),
which are easily summed up as a geometric series [28]. The
result of the interaction, treated by the ladder summation,
is to induce a bound state between the upper band particle
and the hole in the MI [28]. For the experimental parame-
ters, the weight carried by this bound state (< 1%) is too
small to affect the measurements. We conclude that to an
excellent approximation, we can use the bare bubble dia-
gram shown in Fig. 3(c) to compute the structure factor.

FIG. 3. Response functions. (a) Diagram describing the Bragg
excitation in the linear response. The black squares describe the
coupling of the Bragg beams to the density fluctuations. The full
(dashed) lines denote the GF of a hole in the MI (of an upper
band particle). The gray area � stands for the final-state inter-
actions between the upper band particle and the MI hole. (b) In a
T-matrix approximation, the final state interaction gives rise to a
ladder diagram, where the wiggly lines denote the interaction
between the upper band particle and the hole. (c) In the absence
of final state interactions, the bare bubble describes the experi-
mental response.
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The structure factor computed from the bare bubble
diagram is given by

Sðq;!Þ ¼ ��2jF1nj2
Z dk

2�
Ahðk� q;!� ~!nðkÞÞ; (6)

where Ahðk;!Þ ¼ ���1ImGhðk;!þ i0þÞ is the hole
spectral function in the Mott insulator. In particular, the
spectral function obtained from the generalized
Bogoliubov theory of the Mott insulator is Ahðk;!Þ ¼
fðkÞ�½!�!hðkÞ�.

This is the formula we use to compare with the experi-
ment. However, to clearly reveal the two important factors
in the spectra, it is worth making another simplification.
In the regime of interest, of strong optical lattice, the
bandwidth of the hole in the lowest band can be neglected
compared to the dispersion of a particle in the excited band,
and we can take !hðkÞ ¼ !0. This leads to

Sðq;!Þ � ��2jF1nðqÞj2�nð!�!0Þfðknð!�!0Þ � qÞ;
(7)

�nð!Þ being the single particle DOS in the nth band and
knð!Þ the inverse function of the dispersion in that band
!nðkÞ.

In the limit of infinitely deep lattice fðkÞ ! 1, and the
observed line shape is determined solely by the single
particle DOS. With reduction of the lattice amplitude (in-
creased hopping), fðkÞ becomes more strongly peaked near
k ¼ 0 and, therefore, contributes more significantly to the
line shape. Specifically, it gives increased weight to fre-
quencies resonant with transitions that create a Mott hole
near k ¼ 0 and an excited nth band particle with quasimo-
mentum q. If we take q � �=a, as in the experiment, this
effect enhances the weight of transitions that create a
higher band particle near the Brillouin zone edge. From
the band structure shown in Fig. 1, it is clear that in this
way the momentum distribution skews the spectra of the
second band toward lower energies and those of the third
band toward higher energies. It should be noted, however,
that the single-particle DOS is itself not symmetric about
the band centers. In particular, for both the second and third
band, the peak of the DOS is skewed toward lower energies
(positive skewness). Therefore, the effect of coherence in
the Mott insulator is to increase the skewness of the second
band and decrease it in the third band spectra.

Using Eq. (6), we calculate the experimental observable
Dð!Þ ¼ C!Sðq;!Þ. The proportionality constant C is fixed
by matching the integrated spectral weight of excitations to
the third band W for a single value of the lattice strength
(sx ¼ 10). We use the same constant to compute the spec-
tra for all other lattice amplitudes and for all the bands.
In addition, we broaden the delta function in Eq. (6) to
effectively account for the trap-confining potential [29].

The spectrum obtained in this way is presented and
compared to the experimental results in Fig. 2(a) for sx ¼
9. Note that there are no free parameters except the overall

proportionality constant C which was calibrated once. We
attribute the relative shift of the spectra to the systematic
uncertainty in the actual lattice amplitude in the experi-
ment [30]. The calculated total weight of absorption W,
shown in Fig. 2(b), is in good agreement with the experi-
mental data. The reduction of W with increasing lattice
strength is due to suppression of the Frank-Condon
factor F1n.
As discussed above, the skewness of the structure factor

relative to that of the pure single particle density of states is
a direct measure of the quasiparticle coherence factor in
the Mott insulator. Figures 2(c) and 2(d) compare the
measured skewness [24] of Sðq;!Þ in the second and third
bands to that calculated from the theoretical spectra (thick
lines). Both are compared to the skewness of the single
particle DOS in the corresponding bands. As anticipated,
the actual skewness is consistently higher than the pure
DOS effect in the second band and lower than the DOS
effect in the third band, and this effect is observed in a
systematic way for different lattice amplitudes. This dis-
agreement of the experimental data with the single-particle
theory [31] is a clear indication of coherence effects inside
the MI.
To conclude, we have shown that the interband Bragg

absorption spectrum, in the linear response regime, gives
information on the single-particle Green’s function. In
particular, we have quantified the single-hole coherence
through analysis of the asymmetry of the spectra.
It is important to note that the structure factor is related,

through Eq. (6), to a rather complicated weighted sum over
the hole spectral function and is not proportional to the
spectral function itself. For this reason, input from a theo-
retical model of the Green’s function in the Mott insulator
was needed to extract a measure of the hole coherence. For
this we used a Bogoliubov-like theory that takes into
account zero-point fluctuations around the mean-field
Mott wave function. The nontrivial hole coherence stems
from these zero-point fluctuations.
It would be interesting to directly measure the single-

hole spectral function and, thereby, obtain quasiparticle
energies, coherence factors, and decay times in a model
independent way. We suggest that, in principle, this can be
done using a band-mapping technique [32]. By counting
how many particles are excited to a particular k state in the
upper band, we would eliminate the k integral in Eq. (6).
Then, the response function corresponding to the excitation
rate per final momentum k would be

S1nðq; k;!Þ ¼ ��2jF1nðqÞj2Ahðk� q;!� ~!nðkÞÞ: (8)

This theoretical description of the measurement process is
identical to the description of angle-resolved photoemis-
sion spectroscopy [33,34], a method that is currently used
extensively to measure the electronic spectral function of
interesting materials [18]. Our proposed scheme could also
be implemented on more complex many-body ground-
states in a lattice.
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