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Abstract. Researches of neural mechanism of time perception is one
of the fastest growing areas of neuroscience. The visual system presents
several examples of timing mechanisms. Its activity is characterized by
a complex network of synchronized elements which cooperate together.
Some authors recently proposed that neural circuits should be inherently
capable of temporal processing as a result of the natural complexity of
cortical networks coupled with the presence of time-dependent network
properties. We present an adaptive feedback model which, through a
temporal-to-spatial transformation is able to explain recent experiments
on the relationships between vision and time/space perception.

1 Introduction

A fundamental question about the perception of time is whether the neural
mechanisms underlying temporal judgments are universal and centralized in the
brain or modality specific and distributed. Some authors have recently hypoth-
esized that the temporal scaling of visual experience and the temporal tuning
properties of certain visual neurons may be linked [?]. The apparent duration
of a dynamic stimulus can be manipulated in a local region of visual space by
adapting to oscillatory motion or flicker [?]. Perceived time is compressed when
stimuli are flashed shortly before or after the onset of a saccadic eye movement
[?]. Neurons in visual areas of primate parietal cortex have reduced latencies
to visual stimulation at the time of a saccade [?]. Recently one class of mod-
els, called state-dependent networks, has been developed in order to demonstrate
that a neural circuits can be inherently capable of temporal processing as a result
of the natural complexity of cortical networks coupled with the presence of time-
dependent network properties [?]. We present an adaptive feedback model which
we show to provide a possible explanation of recent experiments and insightful
clues in order to elucidate the relationships between stimulus neural encoding
and time/space perception [?]. Our model can be defined as an adaptive feed-
back model because it changes the strength of network connections during its
activity in order to adapt to the changing contexts during the process; modifyng
retroactively its sensitivity to the subsequent stimuli.
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Brain timing and time Perception

From a neuropsychological point of view, interval timing in the range of mil-
liseconds to minutes is affected in a variety of neurological populations involving
disruption of the frontal cortex, hippocampus, basal ganglia and cerebellum. The
conclusion is that representation of time depends on the integration of multiple
neural systems [?].Models of time perception all agree that temporal information
is processed in many ways: it is remembered, compared to other temporal infor-
mation, and used in the production of motor outputs. Researchers have had great
difficulty in pinning timing-related activity in the brain to any specific type of
function. This is largely because most of the time measurement tasks draw upon
more than one process, making it difficult to tease the various components apart
[?]. Johnston et al. has shown that apparent duration of a dynamic stimulus
can be manipulated in a local region of visual space by adapting to oscillatory
motion or flicker [?]. This implies spatially localized temporal mechanisms in
duration perception. The authors have not found concomitant changes in time
of onset or offset of the test pattern, demonstrating a direct local effect on the
time duration perception rather than an indirect effect on the time course of
neural processing. Moreover many perceptive tasks do not require explicit en-
coding of time: perception of visual motion, for example, relies on the output of
spatio-temporally tuned neurons rather than on independent estimates of space
and time. While there is good evidence about different clocks for different in-
terval lengths, some recent evidences point clearly to the existence of visually
based timing mechanism [?]. Finally one of the most up to date experimental
result concerns the existence of a large contrast effects in the discrimination
of short temporal intervals. Della Rocca et al. examined the effect of temporal
distractors on interval discrimination. Subjects compared the duration of the
second interval in a three-flash sequence with the interval between a two-flash
sequence. For short durations, the presence of the irrelevant distractor interval
affected the apparent duration of the test duration in a contrasting manner:
short distractors caused it to appear longer, and vice versa. For very short probe
durations (< 100ms) the effect was large, changing the perceived duration by up
to a factor of two. For longer probe durations the effect of distractors reduced
steadily, to no effect for durations greater than 500 ms. The results for visual
flashes, auditory tones, and brief vibrations were similar, implying the existence
of two mechanisms for timing brief events, one for short intervals (less than 500
ms), and another for longer intervals, and that the transition between the two
is gradual [?]. One hypothesis drawn from the previous evidences is that cere-
bral circuits are inherently able to rescale durations in a proportional manner
and compensate for the error differences generated by the cerebellum. With the
motivation of modeling some of these experimental findings, we organize the
paper as follows. In the next section we provide a description of the reasoning
and mathematical formulation of the model. In section results we discuss the
extensive simulations we have performed. Then the following section reports on
conclusions. The software used for the model is available upon request from the
first author.
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2 The Model

We have modeled a key mechanism for the encoding of the temporal charac-
teristics of the neural visual stimuli. Our inspiration originates from works on
neural and visual timing. Several hypothesis of time measuring systems, pecu-
liar to neural circuits, demonstrates integration (synchronization) enables both
the evaluation of different time scales and the binding between different sen-
sorial/cognitive modalities. There is a general belief on the hypothesis of the
existence of a representation of temporal information relative to visual stimuli.
The fundamental elements of the representation of visual information should be
able to encode temporal information similarly to the other characteristics of the
percept (color, frequency, brightness). In a recent paper, Buonomano proposed
that short-term plasticity and dynamic changes in the balance of excitatory-
inhibitory interactions may underlie the decoding of temporal information, that
is, the generation of temporally selective neurons [?]. He first showed that it is
possible to tune cells to respond selectively to different intervals by changing
the synaptic weights of different synapses in parallel. Short-term plasticity is a
usage-dependent change in synaptic strength on the time scale of millisecond
to seconds and is observed in almost every synapse types of the central ner-
vous system. Each type of synapse has its own specificity with respect to this
property. When stimulated a few times within a second, some synapses show
facilitation, others depression or else complex sequences of facilitatory and de-
pressing changes [?].

Behavior of a chain of neurons: the neural delay chain

A neuron that responds to a vertical bar or a 1 kHz tone must receive functional
inputs from the appropriate sensory neurons in the retina or cochlea, while tem-
poral information refers to stimuli defined by the temporal structure of active
sensory neurons. If a bar of light is present for 50 or 100 msec, in both cases
the same groups of retinal ganglion cells are active. Similarly, if two brief 1 kHz
tones are separated by 50 or 100 msec, the same population of hair cells will be
active. Thus, for neurons to respond selectively to a 50 or 100 msec stimulus,
an additional process such as a temporal to spatial transformation must occur.
Several experimental evidences suggest that the neural signal encode ”time re-
lated properties” by changing the state of the network’s connections. Thus the
key mechanism could rely with the propagation of the signal in the earlier states
of the neural encoding process (! 1 sec). This networks could be regarded as
”neural delay chain”, and be represented by a neural network where the signals
propagates from the primary perceptive circuits. It is possible to identify a sys-
tem characterized by computationally well-definable elements which represent
the neural delay chain. In such system the microscopic elements may be charac-
terized following the formalism of the neural networks typified by synapses with
long -term plasticity, which tend to synchronize their activity. Consequently the
activity may be treated at numerical level as continuous value instead of con-
sidering the discharge frequency of the single nodes. Therefore each node may
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be characterized by an activation value between 0 and 1 which represents the
synchronization level of the node’s neurons. Each node is connected through ori-
ented synapses to the following node. Due to the short term plasticity property
of synapses it is possible to represent their level of strengthening and their status
after the passage of the neural spike. Figure ?? shows the effects of a propaga-
tion of a neural signal along a neural delay chain. In the upper part of the figure
the ordinate represents the activity of the node, while in lower part the ordinate
indicates each synaptic weight along the chain. The abscissa represents the neu-
ral chain which carry out the role of a temporal buffer where the propagation
of the neural signal encodes time information about the stimulus. The elements
(xi), defined simply ”nodes”, represent thus populations of neurons, and the ac-
tivation value associated to each node (∈ [0 , 1]) represents the synchronization
status of the node’s neurons network. This approach allows to study a neural
delay chain using a continuous representation of the neural signal. The status
of the connections of the node is explicitly taken into account the status of the
connections of the nodes (ai). The neural spike generated by the visual stim-
ulus propagates along the chain, encoding the temporal information about the
stimulus. The activation state of this network could be read by output neurons
in order to assess the duration of a stimulus or of an interval, as it happens for
distances between objects and their size. In this way we obtain in our model a
temporal to spatial transformation.

Fig. 1. The neural spike of the visual stimulus propagates along the neural delay chain
(from left to the right) and encodes implicitly the time information about the stimulus.
The activation state of this neural network is read out by specific neurons which assess
the duration of a stimulus or of an interval, the same as it happens for distances among
objects and their size.

We model a neural network where each node (x) is characterized by an ac-
tivity value (i.e. the state of synchronization) between 0 and 1. Each node has
excitatory synapses (a) toward the following one. Synapses evolve their weight
dynamically according to the connected nodes’ activity. The coupled dynamical
equations which describe the system evolution are characterized by three control
parameters: A synaptic weight decay factor (α), a learning factor (γ) which rules
the synapses weight increment due to its activity, and a parameter which links
the wave propagation velocity with the synaptic weight (θ). Each node within
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the delay chain must possess an activation function temporally correlated to the
one of the preceding node. In this sense its activation must be proportional to the
activation of the previous node properly weighted by the connection (aij). Fur-
thermore this equation determines the speed of the neural impulse as a function
of θ, as shown by the Figure ?? where the normalized wave velocity is indicated
in the ordinate as a function of a fixed synaptic weights characterizing the neural
delay chain. Specifically the value of activation of the node at the position i+1
at the time t+1 can be written as follows:

xt+1
i+1 = xt

i + (at
i)

θ(xt
i − Kx). (1)

The synapse must enforce itself very rapidly depending on the signal coming from
the preceding node and directed to the following one. The learning function of
these oriented synapses must therefore be very sensitive to the activation changes
of the following node and must be able as well to strengthen itself fast enough so
as to facilitate the propagation of the activation wave. In order to approximate
the non-linear features of the synaptic dinamics we use an hyperbolic tangent
([?]), whose weight grows as a function of the learning factor (γ) and the signal
intensity. Finally the parameter ε is here introduced to seed the dynamics and
so driving its initial regime. The value of synapse i at the time t+1 can be
computed as follows:

at+1
i = at

i + tanh(
(at

i − Ka)
(1 − Ka)

+ ε) · γ · (xt
i − Kx). (2)

In Figure ?? is reported the value of a synaptic weight after the passage
of neural signals with respect to the same value before the signal, for different
stimulus duration. The return of the synapse to the rest condition (i.e. when no
signals are exciting the synapse) should be sufficiently fast on its sensitiveness
and in order to increase the precision of the system in the resolution of different
signals. This dynamics can be modeled as follows:

at+1
i = at

i + α · (at
i − Ka). (3)

Since we are dealing with a symbolic representation of a biological system
it is appropriate to define minimum activity thresholds for the elements of the
system. So we will have a basic threshold of activity for the nodes (Kx) and a
rest value for the synapses (Ka).

Our model relies on the growing and decay dynamics of the synaptic weights,
and the interplay between these aspects and the propagation/diffusion of the
neural signals. Consequently for simplicity we have explicitly separate the decay
dynamics from the growing one.

{
if (xt

i − Kx) > 0 → equation ?? holds,
if (xt

i − Kx) = 0 → equation ?? holds,
The first equation determines the synapses behaviour when no signal is ar-

riving, in this case the decay rate is proportional both to the decay factor α
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(a)

(b)

Fig. 2. (a)-Synaptic weight increase for different stimulus lengths; (b)-Normalized wave
velocity for different values of the parameter which links the wave propagation velocity
with the synaptic weight (θ).

and to the value of the synaptic weight itself. The second equation model the
dynamics of synapses where a signal is arriving.

Numerical simulation

From the experimental data about the effects of a distractor on the perception
of the time intervals, the existence of three distinct regimes is pointed out [?].
One where the distractor is too far to interfere with the couple of stimuli; a
second where the distractor is very close to the first stimulus of the couple, thus
causing an apparent dilatation of the perceived interval between the subsequent
stimuli. Finally, a third regime where the distance of the distractor from the first
stimulus is intermediate between the other two cases, and where a contraction
of the perceived interval is observed. Our interpretation is that this phenomenon
is generated by the nonlinearities which characterize the functions of the wave
propagation, and of strengthening and relaxation of the network’s connections.
This interaction appears appropriate in certain regimes because it manages very
well to solve different stimuli through the amplification of the differences be-
tween distant stimuli. Yet in certain regimes the same mechanism shows some
constraints, among which there is the target of our model.

Following the experimental schema of Figure ??, we carried on numerical
simulations. The experimental setting is simple enough to generate large amount
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Fig. 3. In the experiment [?] simple visual stimuli were administered separated by in-
terval of several lengths. In the standard condition (left) only a target and reference
couples of stimuli were presented, while in the experimental condition (right) a distrac-
tor was administered before the first target stimulus. Interval between distractor and
first stimulus has been manipulated in order to elucidate its effects. Finally the esteem
of interval between target stimuli, obtained comparing it with the interval between
reference stimuli, for both conditions has been compared.

of data which can be used to estimate model parameters with high accuracy. The
model was composed by 20000 nodes and by the same number of synapses; we
considered α = 0.001, γ = 0.01, θ = 0.1, ε = 0.01, ka = 0.1, kx = 0.1, moreover
the length of stimulus has been fixed to 400 time steps. When the stimulus is
administered the chain is initialized setting the activation value of the first node
of the chain to 1. The first node remains at 1 for all the stimulus duration and
it is set to the rest value (kx) when no stimulus is arriving. Control parameters
have been varied between 1000 and 9000 time steps. The read-out process of
the intervals from the neural chain is composed by two phases.In the first step
those neuron which show the greater value of activation with respect to their
neighbours are detected and labelled ”local maxima”. Afterwards the ”distance”
(e.g. the number of nodes) between those maxima of activations is assumed as
the estimate of the target interval. The difference between the target interval
estimate in the standard condition and in the experimental condition has been
assumed as order parameter of the model.

3 Results

Numerical results are reported in Figure ?? and ??, on the vertical axis we put
the difference between the evaluation of the interval between the target stimuli in
presence of distractor, and the one in the control test. Moreover the abscissa and
the ordinate of Figure ?? show the temporal intervals between the target stimuli
(real gap) and between the distractor and the first target stimulus (distractor
gap).The distortion caused by the distractor on the target interval estimate is
qualitatively similar to [?]. When the distractor is near the first target stimulus
a dilatation of the target interval is detectable with respect to the standard con-
dition. The dilatation of perceived time is here caused by the different velocity
of propagation of the signals which encode target stimuli. The first target sig-
nal propagates more quickly than the second one because it finds still excited
synapses by the passage of the distractor stimulus. On the contrary for greater
values of the target interval, when the distractor is enough distant from the first
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(a)

(b)

Fig. 4. Difference of target interval estimation (TIE) between reference and experi-
mental conditions, indicated in the ordinate as ”Two conditions gap”, for different
values of real and distractor gap. (a)- Surface in figure shows the effects of real and
distractor gap on the TIE. (b)- Plot shows sections of the surface for different values
of the variable real gap.

stimulus, a compression of the target interval emerges Figure ??. Consequently
the compression is detectable when the second target signal encouters a medium
(i.e. the state of the synapses) more excited than the first one. Noteworthy, see
Figure ??, there are some appropriate values of the parameters of the model
depending on which the model reproduces the experimental findings of Rocca et
al [?]. In the model we observe that for extreme values of the distractor gap there
is no detectable difference in the evaluation of the temporal interval. It is also
interesting to note that for very low values of the distractor gap, i.e., when the
distractor is presented immediately before the first target stimulus in temporal
terms, the distortion in the precision of the evaluation of the interval between
the two condition considerably diverges independently from the interval to eval-
uate (real gap). Finally it is possible to notice an interesting phenomenon which
seems to provide confirmation of the qualitative phenomenology observed. In
fact, for appropriate values of control parameters (real and distractor gaps) we
achieve both the phenomenon of temporal compression and temporal dilatation.
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4 Extension to neuron columns

In our model the spikes travel along a chain of neurons. If one neuron in the
chain becomes damaged or dies, the entire chain becomes ineffective. Given that
neurons are dying during human aging, the natural selection has evolved mecha-
nisms to avoid significant loss in information processing ability. It is now known
the actual processors of the vision and other processes are cortical columns of
neurons. Abeles and followers have proposed that cortical activities are based on
two-dimensional neural networks whose connections are organised in a feedfor-
ward manner [?]. Localized waves of synchronous spiking activity travel along
a sequence neurons organised in layers or pools [?]. If the number of excited
neurons in a pool is above a threshold determined by the connectivity between
layers, the wave activity initiated at the first pool propagates from one pool to
the next, forming a synfire wave. The basic mechanism of trasmission relies on a
trade-off of excitatory and inhibitory connections between neurons in consecutive
pools; each neuron is receiving inputs by many neurons in the previous pool. The
firing activity along a chain may propagate in either an asynchronous (i.e. a sig-
nal that reaches a threshold firing rate in one pool will cause an elevation in the
firing rate in the next pool) or in a synchronous mode (i.e. a synchronous volley
in one pool will elicit a synchronous volley in the other after one synaptic delay).
Hertz showed that the only viable mode of transmission is the synchronous mode
[?]. With these properties in mind, we considered an extension of the model to
a single column of neuron and then to multiple columns. In the single column
we generated and interconnected randomly sets of neurons, considering both
inhibitory ad excitatory synapsis. The multiple column model considers the an-
gle differences between neurons belonging to different pools. Considering single
column neurons, we found results qualitatively similar to the single chain case.
Work in progress focuses on multiple column case.

5 Conclusion

We present the model that reproduces the qualitative phenomena which charac-
terized the experiment on using a distractor when measuring the visual timing
ability. The real effect under scrutiny is here explained by a non linear be-
haviour of the neuron delay chain activation on the waves propagation velocity.
The model could account also for the latency reduction found by Ibbotson et. al
[?], explaining it as a consequence of changes occurred in the network activation
state. Our model relies on local effects, because of the association of a neuron
delay chain with each receptive field of the visual areas. Work in progress focuses
on reproduce the real magnitude and time course of the considered phenomena.
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