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a b s t r a c t

A new approach for the description of phenomena of social aggregation is suggested. On
the basis of psychological concepts (as for instance social norms and cultural coordinates),
we deduce a general mechanism for social aggregation in which different clusters of
individuals canmerge according to cooperation among the agents. In their turn, the agents
can cooperate or defect according to the clusters’ distribution inside the system. The fitness
of an individual increases with the size of its cluster, but decreases with the work the
individual had to do in order to join it. In order to test the reliability of such a new approach,
we introduce a couple of simple toy models with the features illustrated above. We see,
from this preliminary study, how cooperation is the most convenient strategy only in the
presence of very large clusters, while on the other hand it is not necessary to have one
hundred percent of cooperators for reaching a totally ordered configuration with only one
megacluster filling the whole system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The study of the evolution of social systems is a topic nowadays attracting the interest of researchers from different
domains such as physics, psychology and mathematics. In fact, an interdisciplinary approach provides a more powerful
way to understand and model such complex systems [1]. One important issue within this field is the understanding
of the phenomena of social aggregation, as for instance urbanization, cultural clusterization and imitative processes in
econophysics.

The classical approach of sociophysics is by means of Statistical Mechanics: the system under analysis is considered in a
thermodynamicalway, i.e. it is seen as composed by a great number of identical elementary units and, starting from the rules
governing themicroscopical dynamics of individuals, the general behavior atmacroscopical level is achieved. Consequently,
this methodology is very useful in those systems whose peculiarity is produced by statistical laws rather than by specific
microscopic details [2–7].

On the other hand, a different approach is also possible, by means of the analysis of cooperative behaviors, in particular
the study of the emergence of cooperation in systems of generic agents [8–10], in financial markets [11] or in academic
networks [12]. The main theoretical scaffolding to face such issues is borrowed from game theory, largely used in
econophysics, which focuses on the evolution of the strategies that agents use during their interactions [13,14].

Social norms, beliefs, attitudes and opinions are also concepts which have attracted the interest of researchers from a
great number of different fields [15–18]. Certainly, it is quite hard to define explicitly those objects, but reaching a reliable
representation of them is a required step in order to implement models for social dynamics. Psychology and sociology are
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useful tools to provide definitions for concepts like the previous ones, butwhatwe need here is just an operational definition
in order to make our models useful.

On the onehand, sharing the samebeliefs, attitudes, opinions and in general social norms,means to use the same ‘‘cultural
coordinates’’ to communicate, enhancing the process of ‘‘social meaning negotiation’’ [19], defined as the interaction of two
individuals who do not share the same lexicon or meanings, and increasing the probability to converge to the same ‘‘social
cluster’’. On the other hand, social fragmentation can be viewed also as the result of this same process [19]. Moreover, social
norms are objects intrinsically linked together and there is a natural resistance to changing cultural coordinates because it
is possible to see them as the product of well-established neural circuits and because frequently a change would cause a
cascade effect on the others. Thus, importing a psychological representation of cultural coordinates (CC) means at least to
take into consideration three main characteristics:

• CCs are hard to change.
• People who have the same CC belong to the same cultural cluster.
• The degree of cultural separation among agents, that is how much their social norms are different, can be defined as a

sort of ‘‘distance’’ in the abstract space of the CC.

The last crucial ingredient we have to consider here is the role of the environment on the negotiation strategies. Indeed,
from a sociological point of view, it is well-known that belonging to a big cultural cluster (i.e. sharing the same CC with
a great amount of people) increases the individual fitness [20,21]. Consequently the macroscopic features of a population
influence the probability of changing its own CC to increase the size of the group.

Finally, the main role of social sciences in this challenge is to link in an ecological way the microscopic dynamics (i.e. the
evolution strategy of an individual) with the macroscopic phenomenology (i.e. the state of the whole system).

2. Social aggregation and game theory

The purpose of this paper is to study the phenomena of social aggregation trying to unify the statistical mechanical
approach with the game-theoretical one, and using the psychological concepts depicted in the Introduction. More precisely,
we want to write downmodels whose microscopical dynamics is defined starting from the payoff matrix of each individual
(or player, or agent: in the following wewill use these terms with the samemeaning). The payoff matrix tells us the gain (or
loss) of a player after an interaction according to the strategies used by itself and its opponent (we consider only two-body
interactions so that if the possible strategies areM , wewill have anM×M payoffmatrix— see in the next paragraph), and the
outcomeof such an interactionwill determine the followingdynamics. In otherwords, in ourmodels the interactionbetween
two individuals will be determined (also) by their payoff matrix, and in their turn the payoff matrices of the individuals
will evolve according to the dynamics. The details of the dynamics, i.e. the payoff matrix, will be determined on the basis
of psycho-sociological considerations. We stress that our aim is just to suggest a new methodology, therefore the models
introduced here have the minimum amount of refinement required for such a purpose.

The starting point is the phenomenological consideration that for a human being it is in general more convenient to
belong to a big group than to a small one, even though moving to join a big group can have a cost in terms of fitness (that is,
somehow it implies a loss). Then, let us consider a system of N agents where every agent belongs to a cluster. Each cluster
represents a group of individuals who share the same cultural coordinates. From a psychological point of view we have to
consider two main assumptions. First, we assume that every agent has the advantage of belonging to a group which is as
big as possible. Nevertheless, at the same time an agent tends to maintain his CC (so that it has to pay a cost in order to
change them). On the basis of such considerations we can state that the fitness of an individual increases with the number
of other individuals sharing its same social norms, i.e. with the size of its cluster. On the other hand, the fitness decreases
according to an ‘‘economic criterion’’, that is according to the work the individual accomplished in order to merge with its
actual group. In practice, when a player i meets an opponent j from a stranger cluster, its payoff matrix is

Â = {Aκλ} =


w1(mj) −

w2(dij)
2

w1(mj − mi + 1) − w2(dij)
w1(1) 0


(1)

where the indices κ, λ can indicate the strategies C , ‘‘cooperation’’ (availability to join the opponent’s group), or D,
‘‘defection’’ (that is ‘‘no cooperation’’), while mi is the population of the cluster of the player i, mj the population of the
opponent’s cluster, and dij is the distance (in the CC space) between the two clusters. Finally, the function w1(m) is the
fitness contribution of m individuals, and w2(d) is the work (i.e. the loss of fitness) an agent has to bear to cover a distance
equal to d: for what is stated above, both are positive increasing functions of their arguments. As one can see, we chose the
simplest case of only two pure strategies (C and D), in order to deal with a simple 2 × 2 payoff matrix.

The meaning of Eq. (1) is then the following: when a player adopting the strategy C (i.e. a ‘‘cooperator’’) meets another
cooperator, its payoff will be given by the element A11 of the payoff matrix: indeed they put in common their CC, and this
is equivalent to the merging of their groups into one, and moreover we assume that they ‘‘meet in the middle’’, so that the
work spent is half of that due to the original distance between them. If the opponent does not cooperate (i.e. is a ‘‘defector’’),
the first player has to cover the entire distance dij to gain the CC of the opponent’s cluster, and it will lose contact with its
original group, gaining the payoff given by the matrix element A12. On the contrary, if the first player does not cooperate
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(but the opponent does) it will not spend anything but gain for its group only the presence of the second player (A21 = 1).
Finally, if two defectors meet, nothing will happen (A22 = 0). Of course, it is meant that only players from different clusters
can meet, or equivalently, that when two players from the same group meet, nothing happens.

It must be noticed that the property of the clusters to merge when two cooperators meet is a strong assumption.
Anyway, there are many situations in which this assumption is quite realistic. For example, let us consider the spreading
of technological or cultural advances through different populations: when an individual meets from a stranger group a
new technique useful to face successfully some not yet resolved problem, presumably he will import that into his original
social cluster. If the new technique improves appreciably the fitness of the population, then it will soon become a common
knowledge of all the members, and under this aspect the two clusters have merged together. Similar processes can happen
for other cultural instances, as for example languages, religions and traditions. Finally, we stress the fact that the goal of
this paper is just to present a couple of simple toy models in order to show how this new approach should work. Thus, the
models we are going to present in the following sections, both developed starting from Eq. (1), are very simple and deserve
to be improved in the future.

At last, for sake of simplicity we adopt for the fitness functions w1(m) and w2(d) the simplest possible shape, that is, we
assume them to be proportional to the population and to the distance, respectively. Moreover, to make easier calculations,
we set equal to 1 the proportionality constants (⇒ wi(x) = x), so that the payoff matrix gets the general form

Â =


mj −

dij
2

mj − mi + 1 − dij
1 0


. (2)

We stress the fact that choosing the direct proportionality between the fitness functions w1 and w2 and their argumentsm
and d, respectively, is due to the search for simplicity (the intuitive principles ‘‘a group two times bigger helps me twice’’
and ‘‘reaching a group two times farther costs twice’’ are understood); different behaviors (as for instance logarithmic or
power law ones) could actually also be taken into consideration, but, for what we stated in the beginning of this section, at
least as a first approximation we think our choice can be fully satisfactory.

3. Static homogeneous model

As a first step our study, we analyze an oversimplified static model, which we call the ‘‘static homogeneous model’’
(SHM): we assume that the system is always perfectly homogeneous, so that all the players obey the same payoff matrix.
More precisely, we consider a system made up of a great number of identical clusters, each one of the same size m and at
the same distance from each other: dij = 2x(1 − δij). Moreover, we consider such a distance 2x big enough to consider the
fitness contribution of one individual negligible with respect to the work needed to cover it: 2x ≫ 1 (anyway, as it is easy to
verify, this approximation does not change appreciably the physics of the model). So, the payoff matrix Â of Eq. (2) becomes

ÂH =


1 + ε −2x
1 0


(3)

where ε = m− x− 1 (this will turn out to be the crucial parameter of the SHM). Of course it is always x > 0. Now, we want
just to understand which is the rational strategy the agents should adopt when meeting foreigners (interactions between
players of the same clusters are not taken into account), in the given configuration, neglecting any possible time evolution.

Given p(t) the density of cooperators, its behavior is given by replicator equation [22,23]

ṗ
p

= fC − ⟨ÂH⟩ (4)

where fC is the averaged payoff of a cooperator and ⟨ÂH⟩ the averaged payoff of a generic player. We have to stress the
fact that we consider this system as frozen, and the time evolution given by the previous equation must be seen just as a
mathematical trick in order to discover the Nash equilibria of the matrix (3). Explicitly, the replicator equation becomes

dp
dt

= (2x + ε) · p(1 − p)(p − ω) (5)

with

ω =
2x

2x + ε
. (6)

The Nash equilibria of Eq. (5) are in general the roots of the polynomial at the right side:
pE1 = 0 (no cooperators)

pE2 = 1 (all cooperators)

pE3 = ω (mixed equilibrium).

(7)



D. Vilone, A. Guazzini / Physica A 390 (2011) 2716–2727 2719

ε

pE

"m
o

re
 s

ta
b

le
"

"m
o

re stab
le"

unstable

0 1

Fig. 1. Phase diagram of the equilibria of the system described by Eq. (5). For ε > 0 the continuous lines at pE = 0 and pE = 1 represent the (pure) stable
Nash equilibria, the dotted line represents the (mixed) unstable Nash equilibrium pE = ω = 2x/(2x + ε). For m → (x + 1)+ , i.e. ε → 0+ the unstable
equilibrium collapses on pE = 1, while form → +∞, i.e. ε → +∞ it collapses on pE = 0: in this limit only the all-cooperators configuration is stable. For
ε < 0 pE1 remains stable, whilst pE2 is unstable: there is actually a bifurcation in (pE , ε) = (1, 0).

In order to understand the phenomenology, it is important to find also the stability of the equilibria given in Eq. (7). The
explicit evaluation of the stability is left in Appendix, here we just give the results obtained.
CASE ε < 0 — The payoff matrix is here a Prisoner’s Dilemma one. This condition is equivalent to m < x + 1: the distance
among clusters is high enough that the work needed tomerge with another group is always greater than themaximum gain
possible in case of cooperation. Thus, in this case the Nash equilibrium pE1 = 0 is the only one which is stable: pE2 = 1 is
unstable and pE3 is not physical, since ω > 1.
CASE ε > 0 — Nowwe have a Stag Hunt payoff matrix. In this case all the three equilibria given in Eq. (7) are physical. More
precisely, pure equilibria pE1 and pE2 are stable, while the mixed equilibrium pE3 is unstable. Because now it ism > x + 1, the
gain in fitness in case of mutual cooperation is bigger than the loss due to the distance, so that the stable equilibrium pE2
is perfectly understandable. The fact that the equilibrium pE1 is stable also in this case could be a little bit surprising, but a
deeper analysis of the situation gives back a more intuitive picture: the basin of attraction of equilibrium pE2 increases form
(and then ε) increasing, while at the same time the basin of pE1 decreases, disappearing in the limit ε → +∞. In this sense,
we could state that for great values of ε the equilibrium pE2 is somehow ‘‘more stable’’ than pE1 , and viceversa for small values
of ε. More precisely, the basin of attraction of pE2 becomes bigger than the basin of pE1 (that is, the all-cooperators equilibrium
becomes ‘‘more stable’’ than the no-cooperators one), when it ism > 3x + 1. A phase diagram of the SHC is given in Fig. 1.

Despite its roughness, this simple model allows us to draw some preliminary conclusions. In particular, it seems to be
clear that cooperation is an advantageous strategy only when the size of the clusters is much bigger than their averaged
distance. In the next section we will improve our investigation by means of the dynamical homogeneous model.

4. Dynamical homogeneous model

The main feature of the SHM is that the system is frozen, i.e. does not evolve in time: we set it in a given configuration
(a great number of equal clusters of the same size and at the same distance from each other) and wonder which is the most
rational strategy agents should adopt in order to improve their own fitness, without making them ‘‘play the game’’ for real.
What we want to do now is to write down a model with the general properties stated in Section 2, which can also evolve
dynamically in time. For this purpose, we are now going to introduce the ‘‘dynamical homogeneous model’’ (DHM).

DHM is implemented as follows. At t = 0 we divide a system of N individuals into clusters each one of size m0, so that
we have initially N/m0 clusters of the same size (we always set N as a multiple ofm0). Every generic cluster i is identified by
a natural variable gi ∈ {1, 2, . . . , N

m0
}: then, the distance between two agents belonging to the clusters j and k respectively

will be djk = |gj − gk| (notice that with such aA definition the distance is a discrete variable too). Moreover, each agent
has a default strategy (cooperative or not cooperative), picked up randomly, so that the initial density of cooperators is ϱ0.
The dynamics works in this way: at each elementary step two different agents, i and j, are drawn. If they belong to the same
cluster, nothing happens. Otherwise, they ‘‘play the game’’ according to the payoffmatrix (2) and their actual strategy: if both
players cooperate, their clusters merge (the smallest is absorbed by the biggest one); if one player defects, the cooperator
leaves its cluster and joins the opponent’s one; if nobody cooperates, nothing happens. After the game, a player computes
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Fig. 2. Plot of the behavior of the cooperators density (tick line) and of the averaged size of the survived clusters divided by N (dashed line) for a DHM
system with N = 3024, m0 = 4 and tmax = 500 time units. Data averaged after 25 simulations. The three different dynamical regimes are clearly
distinguishable.

what it would have gained if it had adopted the other strategy (remaining fixed the strategy of the opponent). If such virtual
payoff is greater than the real one, the player will change its strategy at the next interaction. For simplicity, in order to have
easier simulations, even though the payoff is always calculated by means of the matrix (2), in case of two clusters merging
(when a pair of cooperators from different groups meet), the smallest group enters the biggest one: in practice, they spend
fitness as ‘‘meeting in the middle’’, but in fact, it is the small cluster to reach the big one in its position. Time is measured in
Monte Carlo steps, so that on average every agent interacts once per time unit. We accomplished all our simulations with
ϱ0 = 1/2 and for several values ofm0 and N .

In Fig. 2 we report the typical behavior of the DHM for a particular choice of the parameters (N = 3024,m0 = 4). This
figure well summarizes the phenomenology of our model. We can clearly distinguish three different dynamical regimes: at
early times we have Regime I, that we also call ‘‘exponential decay regime’’ for reasons we will soon explain, then we find a
steady-state regime or Regime II, and finally we have Regime III, in which the system rapidly reaches a frozen state: we are
going to study them separately in the following subsections.

Before analyzing in details the three dynamical regimes, it is convenient towrite down the equations ruling the evolution
of the main quantities which characterize the state of the system. Concerning the cooperators density, which will be here
indicated by ϱ(t), starting from the payoff matrix Â written in Eq. (2), it is easy to see that its time evolution must be ruled
by the equation

dϱ
dt

=


N − mi

N
[−2βijϱ

2
+ (1 − βij − αij)ϱ(1 − ϱ) + 2(1 − αij)(1 − ϱ)2]


i,j

(8)

where i is an agent randomly extracted, j another agent randomly extracted not belonging to the same cluster of i,mi the size
of the cluster of i, βij the probability thatmj−dij/2 is smaller than one, αij the probability that the quantitymj−mi+1−dij is
smaller than zero. Finally, the symbol ⟨·⟩i,j means of course the average over every possible couple i, j (with i and j belonging
to different clusters). Analogously, the time evolution of the averaged size of the survived clusters,m(t), will be given by

dm
dt

=


mi(N − mi)

N2
· mjϱ

2

i,j

. (9)

4.1. Exponential decay regime

At the very early stages of the dynamics, we can assume that the payoff matrix of each agent (when interacting with
foreigners) has the form

Â0 =


m0 −

dij
2

1 − dij
1 0


(10)

with m0 ≃ mi ∀i and, as we have already stated, dij = |gi − gj|. In such a case we have βij = β ∀i and αij = 1 ∀i, j: in the
limit N ≫ mi (we will treat the case ofm0 equal to a finite fraction of N in Section 4.4) Eqs. (8) and (9) become

ϱ̇(t) = −βϱ(ϱ + 1) (11)

and

ṁ(t) =
m2ϱ2

N
(12)
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Fig. 3. Plot of the initial behavior of the cooperators density as a function of time form0 = 1, N = 10,000 after 100 simulations. The empty circles are the
numerical data, the full line is the exponential fit ∼ exp(−βt), with β = 0.99 ± 0.01.
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Fig. 4. Plot of the initial behavior of the cooperators density as a function of time for m0 = 4, N = 800 (triangles), N = 3024 (squares) and N = 10,000
(circles) after 100 simulations. The full line is the exponential fit ∼ exp(−βt) for N = 10,000, with β = 0.97 ± 0.01.

whose solutions are, respectively

ϱ(t) =
ϱ0e−βt

1 + ϱ0(1 − e−βt)
≃ ϱ0e−βt (13)

and

m(t) =
4Nβm0

4Nβ − m0(1 − e−2βt)
. (14)

Now, given d = ⟨dij⟩i,j, in this regime it is β = Pr(m0 − d/2 < 1), and this probability depends in general on m0 and N .
Anyway, it is straightforward to understand that β(m0 = 1) = 1 ∀N , and that limN→+∞ β(m0) = 1 ∀m0. On the basis of
these considerations, we expect an exponential decay of ϱ(t) at the early stages of dynamics, with coefficient β equal to one
form0 = 1, and tending to one for increasing values of the size N of the entire system ifm0 > 1. This fact is fully confirmed
by Figs. 3 and 4.

Regarding the averaged size of survived clusters, we see from Eq. (14) that, while it remains valid,m(t) is bigger thanm0
and smaller than the quantity

m∞
=


1
m0

−
1

4Nβ

−1

≃ m0


1 +

m0

4Nβ


≃ m0

so that m(t) is practically constant during this regime: a proof of the last statement is given already in Fig. 2, where it is
clear how m(t) is a quasi-constant in the initial stages of the dynamics. More precisely, it is a quasi-constant apart a small
initial increase due to the interactions among cooperators during the very early times of the dynamics, and indeed such an
increase vanishes in the limit ρ0 → 0+ (see Fig. 5). It must be noticed that, because for every survived cluster k it must be
mk > 0, and we are dealing with small values of m0, this means that the cluster’s distribution inside the system remains
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Fig. 5. Initial increasing (up to tmax = 10) of averaged clusters size (divided byN), for a systemwithN = 3024, m0 = 2 and ρ0 = 0.5 (full line), ρ0 = 0.25
(dashed line), ρ0 = 0.125 (dotted line); data averaged over 25 different simulations. The small increasing step (m(tmax)/m0 ∼ 1.3 for ρ0 = 0.5) takes
place at the very early stages (until tmax ≃ 3), and rapidly decreases with ρ(0) decreasing.

rather close to the initial one (see also Fig. 7). Moreover, we emphasize the fact that the quantitym∞ is just a limit superior
ofm(t) during the exponential decay regime, and not a value that the averaged size can effectively reach.

The exponential decay regime will last until the cooperator’s density is not too small: we expect actually that it should
end when ϱ becomes of the order of N−1. From Eq. (13) we gain

ϱ0e−βt∗
≈

1
N

H⇒ t∗ ≈
1
β

log(ϱ0N). (15)

For the case depicted in Fig. 3 (β = 1, ϱ0 = 0.5, N = 10,000), previous relation gives t∗ ≈ 8.5, in good agreement
with the numerical data. For values ofm0 greater than 1, the evaluation of t∗ directly from Eq. (15) is more delicate because
in this case also the quantity β depends in its turn on N , and moreover there are bigger fluctuations in the system (when
two cooperators meet their groups merge, and this causes bigger fluctuations in the cluster’s distribution as m increases);
however the relation t∗ ∝ log(N) is valid ∀m0, as we will see in Section 4.2. Therefore, for N → +∞ this regime never
ends: ϱ(t) → 0 and, from Eq. (14), we find m(t) ≃ m0 = const. Then, in the thermodynamical limit (when m0 ≪ N for
every finitem0) we have a similar result of the SHM, where the unique (stable) Nash equilibrium is the complete absence of
cooperators. On the other hand, this is coherent with the fact that, if we set the system ab initio with ϱ0 = 0, nothing will
ever happen.

4.2. Steady state

Once, for finite values of N , the cooperator’s density became very small and the system left Regime I, the Eq. (11) was
therefore not valid any more. Indeed, in this case almost every interaction will be between two defectors, so that Eq. (8)
becomes

ϱ̇(t) ≃ −2(1 − α)(1 − ϱ)2 (16)
where we took into account that from Eq. (14) the cluster’s distribution is practically the initial one, and then we assumed
again N ≫ mi and αij = α ∀i, j. But, as we have just said, the cluster’s density is still almost equal to the initial one, so that
it must be also α = Pr(1 − d < 0) ≃ 1, from which

ϱ̇(t) ≃ 0 H⇒ ϱ(t) ≃ ϱss = const. (17)
In Fig. 6 we can see this behavior for the case N = 3024 and m0 = 2; in Fig. 7 we show instead how the majority of the
agents remains in the initial cluster also during this second dynamical regime.

As we can easily see, ϱ(t) is actually almost constant, just slightly increasing because of small fluctuations in the cluster’s
distributionwhichmake α not perfectly equal to one, but a very little bit smaller. On the other hand,m(t) keeps on behaving
as in the exponential decay regime. This can be seen by inserting Eq. (17) into (12), obtaining

ṁ(t) =
ϱ2
ss

N
m2(t) H⇒ m(t) ≃

m0N
N − m0ϱ2

sst
(18)

where we exploited again the fact that m(t) does not change too much during Regime I. Now, while the quantity m0ϱ
2
sst

remains much smaller than N , also m(t) remains close to m0 (see Figs. 2 and 6). However, once the relation m0ϱ
2
sst ≪ N

ceases to be true, the system exits from the steady state regime, because at this point m(t) ≫ m0 and the cluster’s
distribution is now quite different from the initial one: so, also the quantities αij in Eq. (8) become considerably smaller
than 1 and this changes dramatically the shape of ϱ(t) too, as shown in Fig. 2.
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Fig. 6. Plot of the cooperators density and of the normalized size of survived clusters for N = 3024 and m0 = 2 after 100 simulations. After the initial
decay, there is a clear steady state regime in which both ϱ(t) and m(t)/N remain almost constant.
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Fig. 7. Upper graph: cooperators density and averaged cluster size (divided by N) for a DHM system with N = 10,000 and m0 = 1 until tmax = 20 time
units (data averaged after 100 different simulations). Lower graph: density of ‘‘conservative sites’’, that is the sites which are still in the initial cluster, for
the same system of the upper graph. As one can see, after an initial drop, the majority of agents (about 60%) are still in their original group also during the
steady state regime.

Before starting the analysis of the subsequent regime, it is worth taking a look to the behavior of ϱss as a function of N
and m0. Form0 = 1, from Eq. (15) it has to be necessarily

ϱ0e−βt∗
≡ ϱss ∼

1
N

.

The same behavior is found for higherm0, as one can see in Fig. 8, so that we can conclude stating the relation

ϱss(N;m0) ∼ N−1
∀m0. (19)
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Fig. 8. Plot of the behavior of ϱss as a function of the system’s size N form0 = 3 (diamonds) andm0 = 4 (circles). The full lines are power-law fits ∼N−γ ,
with γ = 1.02 ± 0.02 (m0 = 4) and γ = 1.05 ± 0.01 (m0 = 3).
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Fig. 9. Plot of the behavior of tF as a function ofN form0 = 4 (stars) andm0 = 5 (circles); the dashed lines are power-law fitswith exponent δ = 0.83±0.02
and δ = 0.81 ± 0.02, respectively.

Of course, the last equation, together with (15), demonstrates also that the time t∗ for leaving Regime I is proportional to
log(N) for every value ofm0.

4.3. Frozen state

It is straightforward to understand that the steady state cannot last forever. Indeed, according to Eq. (18), the survived
cluster’s averaged size should diverge after a time t̄ given by

t̄ =
N

m0ϱ2
ss

∼ N3.

Anyway, it is obviously impossible that m → +∞, since of course m(t) ≤ N . In fact, the dynamics freezes well before this
time t̄: in Fig. 9 we report the behavior of the freezing time for a couple of values ofm0, from which it is possible to see that
the freezing time tF follows actually a power-law on N , but with exponent δ ≈ 0.8 instead of 3.

Herewewonder what kind of frozen state is finally reached by the system. Let us consider the general equation (9) ruling
over the evolution ofm(t). Assuming the sizes of survived clusters as independent from each other at every time, so that we
can write ⟨mimj⟩ = ⟨mi⟩⟨mj⟩ = m2

∀t , we obtain

dm
dt

=
m2(N − m)

N2
ϱ2(t). (20)

By integrating last relation, we find now

m(t)e−[N/m(t)]

N − m(t)
= K · exp

[∫ t

0
ϱ2(τ )dτ

]
(21)



D. Vilone, A. Guazzini / Physica A 390 (2011) 2716–2727 2725

t

ρ(
t)

m0 = 3, N = 1200
m0 = 5, N = 1200
m0 = 5, N = 3025

10–3

10–2

10–1

100

0 100 10001

Fig. 10. Plot of ϱ(t) as a function of time for some values of m0 and N , after 100 simulations. Every simulation ended in the completely ordered frozen
state; indeed the (not shown) shape ofm(t) for the values of parameters here reported is the same of Fig. 2, i.e. it is always mF/N = 1.

being K a suitable (positive) constant. Now, in the limit t → +∞, there is an instant tF (the freezing time we introduced
above) such that ϱ(t) = ϱ(tF )∀t ≥ tF , and given ϱF this cooperator’s density of the frozen state, from Eq. (21) it is clear that
there are only two possible final configurations:

• (A) — If we have ϱF
= 0 (no cooperators in the final state), then it must necessarily bemF < N , that is the frozen state is

disordered.
• (B) — If instead we have ϱF > 0 (finite fraction of cooperators in the final state), then the integral at right side diverges,

so that it must bemF
= N , thus the frozen state is ordered (i.e. only one survived cluster remains in the system).

Configuration (A) is completely lacking in cooperators, so, in order to be frozen, the difference in size between two clusters
must be always less than their distance minus 1: in the opposite case, as one can see from the payoff matrix (2), there
would be players who could become cooperators after an interaction. On the other hand, Configuration (B) is pretty easy to
understand, since when the entire system is occupied by just one cluster, dynamics stops by definition. Now, in the steady
state regime, the cooperators density is so small that it is possible to get a fluctuation pushing the system in the disordered
frozen state, with no cooperators andmany clusters in it. If instead such a fluctuation does not happen, the normal dynamics
given by Eqs. (8) and (9), or evenmore simply by (21), will drive the system into the ordered frozen state, with a finite density
of cooperators, and one mega-cluster occupying the whole system. For these reasons we expect that the probability of the
system to end in the disordered frozen configuration increases with ϱss decreasing, i.e.with N increasing andm0 decreasing.
Actually, for m0 = 1 and after 1000 simulations, we observed the system ending in the ordered state only three times for
N = 100, just once for N = 200, and never for higher N . On the other hand for m0 ≥ 4, we never observed the system
falling in the disordered configuration, since in this case ϱss becomes small enough only at very high N , when the freezing
time is too big to be observed. Finally, the ratio between the number of times in which the frozen state is ordered over the
number in which it is ordered drops from 0.86 for N = 200 to 0.1 for N = 2000 in the case m0 = 2, and it is still 0.95 for
N = 3024 whenm0 = 3.

An interesting aspect of the ordered configuration is that the density of cooperators is in this case finite but less than
one: so, even though the disordered frozen state is just the Nash equilibrium pE1 = 0 of the SHM (see Section 3), the ordered
one is not the perfect counterpart of the analogous in SHM. That can be explained because when the system is very close
to the completely ordered state, the agents belonging to the biggest cluster have no interest in cooperation, so that most
of them will be defectors. This is shown in Figs. 2 and 10 where it is easy to see how the abundance of cooperators in the
frozen ordered state is always much smaller than 1/2 (remaining around 1/3). On the other hand, this is not a real Nash
equilibrium, since it does not exist in the thermodynamical limit.

4.4. Limit of very large initial clusters

Until now we have dealt with small values of the initial cluster’s size m0: more precisely, so far we have exploited the
thermodynamical limit supposing fixed m0 as N increases. Now, one could wonder what happens to the system if we set
insteadm0 = zN (with 0 < z < 1) before doing the limitN → +∞. Indeed, in the SHM, a transition between the phasewith
the unique stable Nash equilibrium pE1 and the phase with two stable equilibria (in particular the new one pE2) takes place
for m = x + 1, x being the half averaged distance among all clusters. An analogous transition in DHM somehow happens,
but in a rather trivial way: indeed, when m0 diverges (even remaining much smaller than N), a single interaction between
two cooperators will create a new cluster very much bigger than the others, thus the system will reach the ordered state
soon, typically after much less than 10 time units.
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5. Conclusions and perspectives

In this paper we have depicted some new ideas for the study and the understanding of the phenomena of social
aggregation in human communities. First, we suggested a theoretical treatment based on both statistical mechanics and
game theory. Secondly, a fundamental feature of our approach is the interplay between the inclination of every agent to
cooperate with others (in order to live in groups as big as possible), and an opposite attitude not to move away from the
actual group since joining a new one involves a work accomplished by the agent itself. This work, needed by an individual
when it associates to a stranger cluster, is interpreted as a ‘‘distance’’ in the abstract space of cultural coordinates: the more
two groups have different CC, the further they are from each other in this space, and the greater the amount of work an
individual must do to go from one cluster to the other. In order to test the reliability of this approach, we conceived a
couple of very simple toy models, both constructed with the general features described above, the first one being a pure
evolutionary population model, the second one an agent model with a well defined dynamics at a microscopical level.

The results obtained with such toymodels suggest that cooperation is themost suitable strategy only in presence of very
big clusters, so that the gain in fitness of the individuals who join these big groups is greater than the distance they had to
cover to reach their new ‘‘accommodation’’. More precisely, using the language of game theory, we found that cooperation
is an evolutionary stable Nash equilibrium, when the averaged size of clusters is bigger enoughwith respect to the averaged
distance among them.

These models are of course a tough simplification of the real world, and contain some unsatisfactory features: in
particular, the property of the clusters tomergewhen two cooperators of themmeet is quite strong, and also the definition of
distance between clusters appears to be somehow arbitrary. Improving themodels in these aspects can be the goal of future
researches. Anyway, despite such problems, our results are qualitatively realistic for some important social phenomena
which involve human societies. Indeed, our results suggest that in an area occupied by a great deal of small communities,
distributed more or less uniformly, nobody is interested in moving from home to another community, since there is no real
difference among the communities, and a displacement would mean only a work to accomplish without any gain in fitness.
However, when some of these communities, because of a change in the external conditions, or for a simple fluctuation,
becomequite bigwith respect to the other ones, they assume the role of centers of attraction, destinations of the immigration
of people from anywhere, so that these centers reach soon the typical size of a metropolis. It is interesting to notice that
similar conclusions (i.e. the ability of bigger clusters to attract even more and more individuals until ending up dominating
the entire system) were achieved also by very different social aggregationmodels, as for example the one in Ref. [24], where
a diffusion-limited aggregation model for urban migration suggests a mechanism whereby a metropolitan area can reach
big dimensions. These aggregation mechanisms seem actually to be what really happened during several urbanization
phenomena through history, as for instance the ‘‘urban explosion’’ in the basin of the Mediterranean Sea around the XII
Century BC, or also in Western Europe during the Industrial Revolution. It is worth noticing that in this picture the merging
of two groups when only two cooperators interact is not so unrealistic, since presumably an immigrant will call and invite
to the big city his former fellow citizens. Moreover, in many cases this same dynamics is apparently at work when religions,
political parties, idioms or other kinds of social aggregations grow up inside a society. On the other hand, also finding the
exact shape of the payoff matrix (1) is not a trivial job: while in this work just an intuitive evaluation of its elements was
enough for our aim, for future studies a better knowledge of its elements will be fundamental in order to get models also
quantitatively more fitting with the real world. For such a purpose, more accurate and precise historical data are needed,
because distinguishing the exact behaviors of the fitness functions w1 and w2 (are they really directly proportional to their
arguments?) in processes of human social aggregation could be not so easy, and considering that the results of the models
are deeply infected by the shape of the fitness functions – for instance Eq. (8) and its consequences depend strongly on the
shape of w1 and w2 – makes us understand the importance of this aspect towards improving this kind of approach.

Finally, it is worth also mentioning the remarkable (and realistic) result that, as we saw in Section 4.3, it is not really
necessary that every individual has to cooperate in order to merge different clusters into one: on the contrary, the fraction
of cooperators can be less than 0.5 also in systems made up of only one big cultural cluster.

Of course, deeper studies and further interpretations are needed, but the fact that such oversimplifiedmodels give already
qualitatively reasonable results is very encouraging and suggests continuing with this kind of study.
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Appendix

In order to determine the stability of the Nash equilibria shown by Eq. (7) it is enough to integrate the replicator equation
given in (5), obtaining

p1−ω(1 − p)ω

|p − ω|
= G · exp[2x(ω − 1)t] (A.1)
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G being a positive integration constant. Now, solving explicitly in p the relation (A.1) is in general impossible, but if we define
the quantity Lω ∈ R as

Lω
.
= lim

t→+∞
exp[2x(ω − 1)t] (A.2)

it is easy to see that for −2x < ε < 0, that is ω > 1, we have Lω = +∞ and this implies necessarily p → 0+ (the exponent
1 − ω is naturally negative); on the other hand, for ε < −2x, that is ω < 0, it is Lω = 0, implying again necessarily p → 0+

(now the exponent 1 − ω is positive). So, it is proven that only pE1 is stable for ε < 0. Finally, for ε > 0, that is 0 < ω < 1, it
results Lω = 0, with both exponents ω and 1 − ω positive, implying that p can tend to 0+ or 1−, but not to pE3 = ω, which
is therefore unstable.

Regarding the evaluation of the size of the basins of attraction in the case ε > 0, we could effectively compute the
smallest fluctuation needed to escape from each of them. Anyway, it is for sure easier, watching Fig. 1, if we consider that
the unstable equilibrium pE3 is the separator between the two basins, so that the basin of stability of pE1 is of course of size
ω = 2x/(2x + ε), while the basin of pE2 has size 1 − ω = ε/(2x + ε). Besides, such basins will be equal for ε∗

= 2x, i.e. for
m∗

= 3x + 1.
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