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bstract

Several abnormalities of the shape of lung fields (depression and flattening of the diaphragmatic contours, increased retrosternal space)
re indicative of emphysema and can be accurately imaged by digital chest radiography. In this work, we aimed at developing computational
escriptors of the shape of the lung silhouette able to capture the alterations associated with emphysema. We analyzed two-sided digital chest
adiographs from a sample of 160 patients with chronic obstructive pulmonary disease (COPD), 60 of which were affected by emphysema,
nd from 160 subjects with normal lung function. Two different description schemes were considered: a first one based on lung-silhouette
urvature features, and a second one based on a minimal-polyline approximation of the lung shape. Both descriptors were employed to
ecognize alterations of the lung shape using classifiers based on multilayer neural networks of the feed-forward type.

Results indicate that pulmonary emphysema can be reliably diagnosed or excluded by using digital chest radiographs and a proper computa-
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provided by Florence
ional aid. Two-sided chest radiographs provide more accurate discrimination than single-view analysis. The minimal-polyline approximation
rovided significantly better results than those obtained from curvature-based features. Emphysema was detected, in the entire dataset, with
n accuracy of about 90% (sensitivity 88%, specificity 90%) by using the minimal-polyline approximation.

2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Pulmonary emphysema is defined as an abnormal, per-
anent enlargement of the airspaces distal to the termi-

al bronchioles with destruction of their walls [1]. Since
mphysema is a structural pulmonary abnormality, its recog-
ition is based on tests that reflect lung structure rather than
unction. High-resolution computed tomography (HRCT)
s currently the most accurate imaging technique for diag-
osing emphysema in vivo [2]. Extensive use of this tech-

ique seems, however, unwarranted due to the high cost
nd substantial radiation burden to the patient. On the other
and, conventional chest radiography is far less expensive

∗ Corresponding author. Tel.: +39 0503153480; fax: +39 0503152166.
E-mail address: coppini@ifc.cnr.it (G. Coppini).
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han HRCT and entails a much lower effective radiation
ose.

Radiographic abnormalities suggestive of emphysema are,
n general, of two types: those related to hyperinflation
depression and flattening of the diaphragmatic contours,
ncreased retrosternal space), and those related to the dis-
ribution of destructive lesions and concomitant changes in
he vascular pattern [3]. Recognition of the latter changes is
ifficult and often results in large interobserver variability
4]. Conversely, signs of lung hyperinflation are more easily
etectable even by less experienced physicians [4]. Correct
ecognition of emphysema on chest radiograph depends not

nly on the physician’s expertise but also on the film quality.
or example, an overexposed film makes the evaluation of
ascular abnormalities nearly impossible. On the other hand,
grossly underexposed film may preclude the evaluation of

s reserved.

https://core.ac.uk/display/301565197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:coppini@ifc.cnr.it
dx.doi.org/10.1016/j.medengphy.2006.02.001


ineerin

t
n

d
a
l
o
a
[
r
p
t

d
t
a
s
e
w
w
c
a
n
n

2

2

a
a
f
i
s

2

(
2

h
2
r
e
p

c
I
u
T
t
t
[
t
h
r
n
a
e

p
i
t

2

t
c
m
o
t
a
s

2

p

T
C

S

S

G. Coppini et al. / Medical Eng

he diaphragmatic contours and of the width of the retroster-
al space.

Most of the above technical limitations are overcome by
igital chest radiography, an imaging modality that is now
vailable in most hospitals [5]. This technique features excel-
ent density resolution and enhanced dynamic range, and
ffers the opportunity of image processing and quantitative
nalysis not available in conventional film-based technology
5]. The relevance of quantitative analysis in digital chest
adiography is enlightened by the recent advances of Com-
uter Aided Diagnosis (CAD) systems in different clinical
asks [6].

The present study was aimed at developing computational
escriptors of the shape of the lung silhouette able to capture
he alterations associated with emphysema. To this end, we
nalyzed two-sided digital chest radiographs from a large
ample of patients with chronic obstructive pulmonary dis-
ase (COPD) and from an equally sized sample of subjects
ith normal lung function. Two different description schemes
ere considered: a first one that was based on lung-silhouette

urvature, and a second one relied on a minimal-polyline
pproximation. Both descriptors were employed to recog-
ize alterations of lung shape related to emphysema using
eural-networks-based classifiers.

. Methods

.1. Sample

The study sample included 320 subjects of whom 160 had
firm clinical diagnosis of stable COPD and 160 were age-

nd sex-matched smokers, or ex-smokers, with normal lung
unction tests. The sample was part of a larger cohort enrolled
n a case-control study that was aimed at assessing genetic
usceptibility to the development of COPD [7].

.2. Chest radiography
Posteroanterior and lateral digital chest radiographs
Thorax 2000, IMIX, Finland) were obtained at a standard
-m focus-to-detector distance with the patients upright,

t
p
d
l

able 1
riteria for radiographic diagnosis of emphysema

igns in the posteroanterior chest radiograph
Depression and flattening of the diaphragm with blunting of costophrenic angle

The body build of the subject should also be considered. In a short, stocky sub
the 10th rib posteriorly.

Irregular radiolucency of the lung fields: This manifestation is the result of the ir

igns in the lateral chest radiograph
Abnormal retrosternal space: This is defined as a space showing increased rad

anterior margin of the ascending aorta.

Flattening or even concavity of diaphragmatic contours: A useful index of this
most patients with emphysema, this junction is more readily seen than in subje
g & Physics 29 (2007) 76–86 77

olding their breath at full inspiration. Each radiograph was
000 × 2000 pixels (198 �m per pixel), with a dynamic
ange of 12 bits. Images were obtained by the acquisition
quipment in standard operational conditions, and no further
ost-processing was applied.

Chest radiographs were examined by two independent
hest physicians for the presence or absence of emphysema.
n evaluating emphysema, four radiographic criteria were
sed that were originally introduced by Sutinen et al. [3].
he radiographic criteria are described in Table 1. According

o Sutinen et al., the diagnosis of emphysema is made when
he chest radiographs reveal any two or more of these criteria
3]. In the original report [3], emphysema was correctly iden-
ified in ante-mortem chest films of 82% of the patients who
ad autopsy proven emphysema. By contrast, all of the chest
adiographs corresponding to the patients with structurally
ormal lungs were rated as normal. In that study, the over-
ll accuracy of chest radiography in diagnosing or excluding
mphysema was 90% [3].

According to the above criteria, 60 of the 160 COPD
atients were consistently rated by the two readers as hav-
ng emphysema. All the subjects with normal lung function
ests had no evidence of emphysema on chest radiographs.

.3. Description of lung shape

Morphological alterations of the lung silhouette related
o hyperinflation (diaphragm flattening, blunting of
ostophrenic angles, abnormal retrosternal space) are the
ost prominent radiographic abnormalities that can be

bserved in patients with emphysema. It is worth noting that
he decision rule for radiological diagnosis of emphysema
ctually implies the presence of at least one sign of lung
hape alteration.

.3.1. Lung silhouette
In both the posteroanterior and lateral views an expert

hysician (not aware of the patient’s diagnosis) interactively

raced the lung field boundaries, according to the following
rocedure. The chest radiographs had the identification
ata removed, and were randomly assigned. The observer
ocated a small set of knot points (typically about 25 knots).

s: The actual level of the diaphragm is not as significant as the contour.
ject, this sign might be positive even if the diaphragm were at the level of

regularity in distribution of the emphysematous tissue destruction.

iolucency and measuring 2.5 cm or more from the sternum to the most

change is the presence of a 90◦ or larger sternodiaphragmatic angle. In
cts with normal chests.
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Fig. 1. Posteroanterior (left) and later

fterwards, using a basis of cubic splines, the contour of the
ung areas was drawn. Examples are given in Figs. 1 and 2
hat refer to chest radiographs from a normal subject and

patient with emphysema, respectively. The overall time
equired to delineate the lung boundary in a pair of chest
adiographs is, on the average, 3 min. It must be pointed out
hat the needed set of knots is unambiguously identifiable
n the imaged anatomy. In particular, we observed that
uctuations less than five pixels might alter knot positioning:
range of fluctuations that does not affect the descriptors of

he lung shape adopted in this work.

The analysis of the mediastinal contours is not relevant for

mphysema characterization (see Table 1). Therefore, to our
ims, in the posteroanterior view, we merged the pulmonary
ontours of both the lungs not taking the mediastinum borders

a
a
m
t

Fig. 2. Posteroanterior (left) and lateral (right) rad
t) radiographs from a normal subject.

nto account, as shown in Fig. 3 (left). In the lateral view, the
ontour traced by the physician was directly utilized (see the
ight panel of Fig. 3).

.3.1.1. Curvature-based description. The curvature of a
lane curve is a commonly used descriptor of bidimensional
hapes. Let r(s) = (x(s), y(s)) be the parametric equation of
he boundary, where s is the related curvilinear abscissa. By
irtue of the Frenet-Serret theorem, the curvature κ(s) identi-
es the shape of the curve r(s), apart from a rigid motion. In
articular, κ(s) is well suited to locate different feature points:

s an example, a steep change of κ(s) is usually related to an
brupt bending of the curve. Similarly, a peak in κ(s) is com-
only due to a sudden change of the curve tangent and signals

he presence of a cusp-like angular feature.

iographs from a subject with emphysema.
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Fig. 3. The lung zone silhouette in postero

We utilized the curvature of lung silhouette both to recog-
ize landmarks points useful to segment the silhouette into
natomically meaningful sections, and to describe the shape
f each segment. To compute κ(s) we utilized the equation:

(s) = x′(s)y′′(s) − x′′(s)y′(s)

(x′(s)2 + y′(s)2)
3/2

here (x′(s), y′(s)), and (x′′(s), y′′(s)) are the first and second
erivative of (x(s), y(s)) with respect to s, respectively. They
ere estimated through the convolution of (x(s), y(s)) with the
erivatives of a Gaussian kernel Gσ(s), being σ the standard
eviation, according to the equations:

x′(s) = G′
σ(s) ⊗ x(s), x′′(s) = G′′

σ(s) ⊗ x(s)

y′(s) = G′
σ(s) ⊗ y(s), y′′(s) = G′′

σ(s) ⊗ y(s)

Gaussian-regularized derivatives were adopted to deal
ith ill-posedeness of differential operators [8]. In addition,
he variability of the operator in contour tracing may intro-
uce an additional source of noise. For these reasons, the
alue of σ was set to 8 pixel units (about 1.6 mm). Such a
alue ensured adequate regularization of differential opera-

e

(
L

ig. 4. The curvature of a typical lung boundary in the posteroanterior view is plotted
he curvature of a typical lung boundary in the lateral view is given in the right pan
r and lateral projections (normal subject).

ors without undesired smoothing effects. In Fig. 4 typical
lots of κ(s) are drawn for both the posteroanterior and the
ateral views. The peaks due the diaphragmatic borders (BPA,

PA and BLL, CLL in posteroanterior and lateral projections,
espectively) are quite evident in both cases.

The BPA points and CPA are utilized to segment the lung
oundary (see Fig. 5). To this end, the apex APA is located as
he boundary point farthest from the line segment BPACPA.
fterward, the lung silhouette is split into three segments:

eft γPA1 , right γPA2 , and diaphragmatic γPA3 for the pos-
eroanterior view. Similarly, for the lateral view, the points
LL, BLL, CLL are similarly located and the posterior γLL1 ,
nterior γLL2 , and diaphragmatic γLL3 tracts are defined.

To describe the shape of each region in both the posteroan-
erior and the lateral, views, we computed the bending energy
γi of the related curve segment γ i:

∫
2

γi =
γi

κ(s) ds, i = 1, 2, 3

for the sake of simplicity, the projection labels, PA and
L have been dropped). The bending energy is a classical

in the left panel; BPA and CPA identify the diaphragmatic angles. Similarly,
el; BLL and CLL identify the diaphragmatic angles.
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Fig. 5. Segmentation of the lung silhouette into

easure of the curve deflection and has often been used to
odel biological shapes (see for example [9]). In the case of a

traight line eγ is null and it increases with the curve bending.
oundary changes in patient affected by emphysema should
lter eγ as compared to normal subjects.

In addition we estimated the amplitude of the angles α1,
2, and α3 (see Fig. 6) which are prominent characteristics
f the shape of the lung boundary: in the presence of emphy-
ema one usually expects that the diaphragmatic angles be
arkedly widened (see Table 1). To summarize, for each

adiographic projection we extracted a vector of six shape
eatures:

κ = eγ1 , eγ2 , eγ3 , α1, α2, α3
.3.1.2. Minimal-polyline description. In a second approach
o lung shape description we relied on the extraction of a
iscrete set of feature points. Given the nature of the problem
t hand, one has mainly to capture alterations of the points

c
p

b

Fig. 6. Angular features in postero
cal regions in posteroanterior and lateral views.

hat, in each anatomical segment, exhibit maximal bending
roperties.

To this end, starting from the three feature points (A, B,
) previously defined, we approximated the lung contour (in
oth views) with a six-point polyline.

In particular, we located three further key-points (P, Q,
) (see Fig. 7) by means of an algorithm based on the mini-
ization of the maximum approximation error. Details of the

lgorithm are given in the Appendix A. The traced silhouette
s thus replaced by the discrete point set (A, R, C, P, B, Q).

The shape of each segment of the lung boundary is there-
ore defined by the shape of one of the triangles:

1 = BQA, T2 = ARC, T3 = BPC

onsequently, alterations of the lung shape are referred to the

hanges of the shape of three triangles for each radiographic
rojection.

Each segment of the lung boundary is characterized
y computing, in the corresponding triangle, the following

anterior and lateral views.
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Fig. 7. Polyline approximation of lung

umerical features:

normalized area : ain = ai

aLUNG

height ratio : rihb
= hi

bi

base ratio : ribb
= bi1

bi

here ai is the area of the ith triangle, aLUNG the area of
he silhouette in the considered projection, hi the height,
i the length of the related base, bi1 measures the projec-
ion on the basis of the triangle side nearest to the apex
right, left, anterior and posterior segments), or the left-
ost point for the diaphragmatic segments (see Fig. 7). The

ormalized area (in all cases we have 0 < ain < 1) is a mea-
ure of the size of each triangle with respect to the overall
ung-silhouette area. In emphysematous patients its value is
xpected to decrease in the diaphragmatic region whereas it
ay increase for the anterior segment in the lateral view, as
ell as in right and left segments in the posteroanterior one.
he height–base ratio (in our cases 0 < ri < 1) estimates the
mount of bending of each segment. It measures the zone
f maximum bending of a given anatomical segment. The
ase ratio (0 < ri < 1) gives the position where the maxi-
um bending is reached with respect to base length. For each

adiographic projection we extracted a vector of nine shape
eatures:

poly = a1n , a2n , a3n , r1hb
, r2hb

, r3hb
, r1bb

, r2bb
, r3bb

.

.4. Neural network training and testing
To evaluate the discriminating power of the two previous
eature sets, we studied the following classification tasks:

(C1) recognition of emphysema patterns in the whole
dataset;

g
f
v
a
t

tte in posteroanterior and lateral views.

(C2) recognition of emphysema patterns in the sample of
patients with COPD.

In both instances, we utilized the two sets of pattern vec-
ors fκ, fpoly separately. Moreover, we tested the role of each
rojection by using (i) the parameters from both the pos-
eroanterior and lateral views, (ii) the parameters from each
ingle view separately.

To implement pattern recognition processes, we utilized
ulti-layer neural networks of the feed-forward type. It

hould be considered that, by using networks of adequate
omplexity, one is usually able to implement complex cate-
orizations such as those that often occurs in medical diag-
osis [10]. One advantage of such classifiers is that they
an estimate the posterior probabilities required for Bayesian
nference without the need for prior assumptions about the
nderlying probability distributions [10]. In addition, multi-
ayer networks remain a popular neural classifier, which has
een used successfully in a wide range of applications [11],
ncluding CAD systems in chest radiography [12,13].

Fig. 8 shows the typical configuration used here to solve
oth C1 and C2. All the hidden units have logistic sigmoid
ctivation functions, whereas the output units have linear acti-
ation functions.

According to this scheme, several networks with different
omplexity were trained. As the activation functions were
ept fixed, topology was the main factor affecting network
omplexity. Topology was varied according to: (a) the used
et of shape features (fκ or fpoly), (b) the number of consid-
red radiographic views, (c) the number of hidden layers, and
d) the number of units in each hidden layer. The number of
nput units is fixed by the feature set and the number of radio-
raphic views used for the analysis. The curvature features

κ imposes six units per each view, whereas nine units per
iew are needed when using fpoly. As to the hidden layers,
ll the experiments were performed employing both one and
wo hidden layers each with a varying number of units. In
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ig. 8. Configuration of multilayer neural networks.The input shape featuth
onsidered. Each of two output units provides an estimate of the probability

oth the classification problems C1 and C2, the input must be
ssigned either to the “emphysema” category or to the “no-
mphysema” category. Consequently, two output units are
sed in all cases. The activation value of the first output unit
stimates posterior probability of the input pattern belong-
ng to the class “emphysema”. Similarly, the second output
nit approximates posterior probability of the input pattern
elonging to the category “no-emphysema”. This choice is
he classical 1-of-c encoding (c = 2), the actual category of
ach input pattern is decided by looking at the output unit
ith the maximum activation [10]. In Table 2 we summarize

he different topologies of the networks experimented in this
ork.
To train the networks we utilized a 10-fold cross-validation

rocedure. Cross-validation has the well-known advantage of
sing the entire dataset both in training and testing phases.
n our case, the dataset was randomly split into 10 segments,
ach containing 16 normal subjects, 10 COPD patients, and 6
OPD patients with emphysema. In this way, for each exper-
ment, we obtained 10 neural networks, each trained using
segments of the dataset and validated on the remaining

ata segment. Training of each single network was carried

f
a
l

able 2
ummary of the network topologies adopted in our experiments

xperiment Views Feature-set Inp

1 Posteroanterior or lateral fκ 6
fpoly 9

Posteroanterior and lateral fκ 12
fpoly 18

2 Posteroanterior or lateral fκ 6
fpoly 9

Posteroanterior and lateral fκ 12
fpoly 18

n C1 recognition of emphysema in all dataset is considered, in C2 recognition of e
n be either fκ or fpoly. Networks having both one or two hidden layers were
ut belongs to the classes “emphysema” and “no-emphysema”, respectively.

ut minimizing the sum-of-squares error function. To this
nd error back-propagation using stochastic on-line weight
pdate was employed [10]. To increase convergence rate,
daptive learning-rate (initial value 0.1) and momentum term
0.9) were included [10]. Moreover, to minimize the risk of
eing trapped in local minima, all the training procedures
ere repeated 10 times starting with different random initial-

zation of networks weights. Only the best network, defined
s the one providing the largest number of correct classifi-
ations, was retained. In any case, convergence of training
as assumed to occur when the error on the test set begins to

ncrease, or stabilizes. Training was carried out using a pro-
rietary software running on a computer equipped with an
MD Athlon processor clocked at 2 GHz and 1 Gbyte RAM.
he observed training time for a single network ranged from
bout 1 × 102 to 5 × 102 s, depending on network complex-
ty. A complete cross-validation run took approximately from
× 104 to 5 × 104 s, as the network complexity increases.

Several parameters can be used to evaluate system per-

ormances. Among these we decided to adopt classification
ccuracy, sensitivity, and specificity that were defined as fol-
ows. Let P be the number of positive cases and N the number

ut units 1st hidden layer 2nd hidden layer (when used)

3, 4, 5, 6, 7, 8, 9 3, 4, 5
4, 5, 6, 7, 8, 9, 10 3, 4, 5, 6, 7, 8

6, 7, 8, 9, 10 4, 5, 6, 7, 8
8, 9, 10, 11, 12 4, 5, 6, 7, 8, 9, 10

3, 4, 5, 6, 7, 8, 9 3, 4, 5
4, 5, 6, 7, 8, 9, 10 4, 5, 6, 7, 8

6, 7, 8, 9, 10 6, 7, 8
8, 9, 10, 11, 12 7, 8, 9, 10

mphysema is done in the sample of patients with COPD.
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f negative ones, for each of the 10 networks the quantities
ere computed:

TP = True positives

P
, TN = True negatives

N

FP = False positives

N
, FN = False negatives

P

The true positive rate, TP, and the true negative rate, TN,
re the sensitivity and specificity, respectively. The accuracy,
efined as the rate of correct classifications (CC), was com-
uted by:

C = True positives + True negatives

P + N

The latter parameter may be sensitive to differences
etween the numbers of positives and negatives so that, for
xample, an increased specificity may affect CC more than an
ncreased sensitivity. However, the availability of sensitivity
nd specificity values helps to overcome possible drawbacks
f using accuracy alone.

The overall classification performances were estimated by
veraging the performances of the 10 networks.

. Results

.1. Shape features

Table 3 shows the average values of the curvature-based
arameters as computed in normals, patients with COPD and
atients with COPD and emphysema, respectively. As indi-

ated in the Table 3, the diaphragmatic angles, as measured
n the posteroanterior and lateral views, were substantially
ider in patients with COPD than in normal subjects. Con-
ersely, no significant differences were found among the three

c
i
p
a

able 3
urvature-based feature-set: data are means ± standard deviation

iew Patient group α1

osteroanterior Normals 31.62 ± 8.6
COPD 38.70 ± 19.
Emphysema 46.94 ± 13.

ateral Normals 49.78 ± 12.
COPD 55.34 ± 15.
Emphysema 69.91 ± 16.

Bending energy eγ (�m−1)

eγ1

osteroanterior Normals 5.81 × 10−4 ± 1.01 × 10−4

COPD 5.48 × 10−4 ± 1.06 × 10−4

Emphysema 5.68 × 10−4 ± 1.22 × 10−4

ateral Normals 6.20 × 10−4 ± 3.08 × 10−4

COPD 5.07 × 10−4 ± 2.79 × 10−4

Emphysema 3.25 × 10−4 ± 1.95 × 10−4

n the top panel, α1 and α2 are the diaphragmatic angles, and α3 is the apical ang
nergies of the related anatomical segments (see also Fig. 5).
g & Physics 29 (2007) 76–86 83

roups, for what concerns the width of the apical angles. The
ending energy values of the anatomical segments in the pos-
eroanterior view showed a rather uniform decrease in COPD
ith respect to normals.
A different behaviour was observed in emphysema, right

nd left segments having a bending-energy value intermedi-
te between normal subjects and COPD patients. Conversely
he bending-energy of the diaphragmatic segments was the
owest in patients with emphysema. The energy parameters
omputed for the lateral view were lower in COPD patients
s compared to normal subjects. The values for emphysema
atients suggest that lateral views tend to be “more symmet-
ic”, being the bending energy of the anterior segment similar
o that of the posterior segment. In addition, an increased
ending of the anterior segment seems to be present on the
verage. As to the diaphragm segment a markedly reduced
nergy was observed.

Table 4 reports the average value of the parameters
btained for the minimal-polyline feature set. In the pos-
eroanterior views, the normalized area an in COPD patients
xhibited a slight increase in both the lateral segments, and
modest decrease in the diaphragmatic segment. A similar
attern was observed in the emphysema group which featured
ore evident changes. As to the lateral view, the normalized

rea of the diaphragmatic segments was remarkably smaller
n patients with COPD, and even more in those with emphy-
ema than in normal subjects.

The height ratio rhb in the posteroanterior views showed
moderate increase in COPD patients, and this was more

vident in emphysema patients. The rhb parameter of
iaphragmatic regions decreases in COPD patients and more

onspicuously in emphysema patients. Values obtained
n the lateral views confirmed observations made in the
osteroanterior views—the diaphragmatic segment usually
ppearing very flattened in emphysema patients, and to a

α2 α3

4 33.95 ± 8.66 166.30 ± 4.77
28 37.64 ± 12.92 160.76 ± 3.58
60 47.45 ± 16.42 162.13 ± 4.46

91 73.72 ± 19.59 140.60 ± 7.82
36 82.11 ± 17.80 140.66 ± 9.26
14 91.27 ± 24.51 142.13 ± 7.74

eγ2 eγ3

5.92 × 10−4 ± 1.21 × 10−4 6.63 × 10−3 ± 1.22 × 10−4

5.48 × 10−4 ± 1.12 × 10−4 4.61 × 10−3 ± 1.39 × 10−4

5.91 × 10−4 ± 1.43 × 10−4 2.01 × 10−3 ± 2.42 × 10−4

2.89 × 10−4 ± 1.23 × 10−4 5.33 × 10−3 ± 1.31 × 10−4

3.07 × 10−4 ± 1.00 × 10−4 4.49 × 10−3 ± 1.41 × 10−4

3.35 × 10−4 ± 8.24 × 10−4 1.97 × 10−3 ± 1.52 × 10−4

le (see also Fig. 6). In the bottom panel, eγ1 , eγ2 and eγ3 are the bending
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Table 4
Polyline-based feature-set: data are means ± standard deviation

View Patient group T1 T2 T3

Normalized area an

Posteroanterior Normals 0.221 ± 0.030 0.218 ± 0.032 0.194 ± 0.047
COPD 0.225 ± 0.036 0.227 ± 0.035 0.174 ± 0.056
Emphysema 0.236 ± 0.031 0.232 ± 0.037 0.131 ± 0.047

Lateral Normals 0.223 ± 0.030 0.213 ± 0.032 0.132 ± 0.051
COPD 0.240 ± 0.030 0.254 ± 0.029 0.095 ± 0.060
Emphysema 0.250 ± 0.031 0.265 ± 0.032 0.050 ± 0.051

Height ratio rhb

Posteroanterior Normals 0.219 ± 0.023 0.220 ± 0.030 0.148 ± 0.033
COPD 0.223 ± 0.031 0.224 ± 0.030 0.132 ± 0.047
Emphysema 0.245 ± 0.030 0.247 ± 0.034 0.123 ± 0.044

Lateral Normals 0.261 ± 0.052 0.265 ± 0.061 0.165 ± 0.062
COPD 0.272 ± 0.058 0.285 ± 0.056 0.097 ± 0.074
Emphysema 0.322 ± 0.082 0.334 ± 0.071 0.051 ± 0.021

Base ratio rbb

Posteroanterior Normals 0.464 ± 0.022 0.481 ± 0.026 0.375 ± 0.019
COPD 0.448 ± 0.024 0.474 ± 0.028 0.360 ± 0.024
Emphysema 0.481 ± 0.020 0.482 ± 0.026 0.520 ± 0.021

Lateral Normals 0.221 ± 0.033 0.181 ± 0.025 0.486 ± 0.038
9 ± 0.027 0.172 ± 0.023 0.491 ± 0.033
2 ± 0.021 0.157 ± 0.022 0.505 ± 0.032

T of the triangles T1, T2 and T3 representing the lung silhouette (see also Fig. 7).
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Table 6
Detection of emphysema in the entire dataset using the posteroanterior pro-
jection alone

Feature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layer

f
f

L

j
n
l
i
f
c

COPD 0.21
Emphysema 0.18

he values of normalized area, height ratio and base ratio are given for each

inor extent in COPD patients. Values of base ratio rbb
uggest that, in emphysematous patients, maximum bend-
ngs of right and left segments (in the posteroanterior view)
nd anterior and posterior segments (in the lateral view)
end to move towards upper locations. In the diaphragmatic
egments such a maximum bending seems to be placed at
bout the center of the segments itself.

.2. Recognition of emphysema patterns

Discrimination accuracy of emphysematous patients
termed Positives, 60 cases) from all the other cases (Neg-
tives, 260 cases) is given in Table 5, for the two feature-sets
κ and fpoly using both the posteroanterior and lateral views.
he number of units per layer of the related neural network
s also given. By using fκ, 249 ± 13.5 cases were correctly
lassified (43 ± 3.1 true positives and 206 ± 10.1 true nega-
ives). For the fpoly set, correct classifications were 289 ± 4.1
53 ± 1.2 true positives and 236 ± 2.4 true negatives).

able 5
etection of emphysema in the entire dataset using both the posteroanterior

nd lateral projections

eature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layers

κ 77.8 71.7 79.2 28.3 20.8 12-6-6-2

poly 90.3 88.3 90.7 11.7 9.3 18-8-6-2

he correct classification rate (CC) is given along with the true positive
TP), true negative (TN), false negative, and false positive rates, respectively.
he number of units per layer of the related neural network (NN) is in the

ightmost column.

t
2
p
v
2
a

T
D
a

F

f
f

L

κ 72.2 68.3 73.1 31.7 25.0 6-8-2

poly 80.3 76.7 86.1 23.3 18.8 9-6-5-2

abels are the same as in Table 5.

In order to evaluate the importance of each single pro-
ection in the recognition task, we trained a different set of
eural networks by using either the posteroanterior or the
ateral projections separately. The results obtained are given
n Tables 6 and 7, respectively. In particular, by using fκ
rom the posteroanterior view alone, 231 ± 15.2 cases were
orrectly classified (41 ± 4.2 true positives and 190 ± 12.2
rue negatives). For the fpoly set computed in the same view,
57 ± 7.4 correct classifications were obtained (46 ± 3.3 true
ositives and 211 ± 10.7 true negatives). With the lateral

iew alone, we had a number of correct assignments of
41 ± 13.7 (42 ± 3.2 true positives and 199 ± 11.1 true neg-
tives) by using fκ. For the fpoly set computed in the same

able 7
etection of emphysema in the entire dataset using the lateral projection

lone

eature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layer

κ 75.3 70.7 74.4 26.3 25.6 6-8-2

poly 81.9 83.3 81.5 16.7 18.5 9-6-5-2

abels are the same as in Table 5.
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Table 8
Detection of radiological emphysema in COPD patients using both the pos-
teroanterior and lateral projections

Feature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layer

fκ 81.9 76.7 85.0 23.3 15.0 12-8-4-2
fpoly 90.6 90.0 91.0 10.0 9.0 18-8-4-2

Labels are the same as in Table 5.

Table 9
Detection of radiological emphysema in COPD patients using the posteroan-
terior projection

Feature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layer
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κ 73.4 71.6 79.0 28.3 21.0 6-4-2

poly 81.2 80.0 82.0 20.0 18.0 9-6-3-2

abels are the same as in Table 5.

iew, 262 ± 6.2 cases were correctly classified (50 ± 2.1 true
ositives and 212 ± 3.1 true negatives).

The classification performances for both feature sets (fκ
nd fpoly) in recognising emphysema within the group of
atients with COPD (160 cases) are reported in Table 8. By
sing fκ, a number of 131 ± 6.1 correct classification was
btained (46 ± 1.5 true positives and 85 ± 4.2 true negatives).
or the fpoly set, 145 ± 5.0 cases were correctly classified
54 ± 1.0 true positives and 91 ± 4.4 true negatives).

Results obtained by employing either the posteroante-
ior or the lateral views alone are given in Tables 9 and 10,
espectively. As to the posteroanterior view, the feature-set fκ
ielded 122 ± 6.8 correct classifications (43 ± 2.3 true posi-
ives and 79 ± 4.2 true negatives). For the fpoly set computed
n the same view, 130 ± 5.6 cases were correctly classified
48 ± 2.8 true positives and 82 ± 3.9 true negatives). In the
ase of the lateral view alone, by using fκ, 128 ± 6.5 cases
ere correctly assigned to the related classes (45 ± 2.0 true
ositives and 83 ± 4.3 true negatives). For the fpoly set com-
uted in the same view, 136 ± 5.1 cases resulted correctly
lassified (50 ± 1.8 true positives and 86 ± 3.2 true nega-
ives).

To conclude this section, we would like to aware the reader
hat also the combined use of the two feature sets fκ and fpoly
as analyzed. As previously described for the case of a sin-
le feature set, we studied: the two classification problems

1 (recognition of emphysema in the entire dataset) and C2

recognition of emphysema in COPD patients); the use of
ingle or two-sided view, and the effects of ANN complex-
ty. Results parallel those obtained by using fpoly alone and

able 10
etection of radiological emphysema in COPD patients using the lateral
rojection

eature-set CC (%) TP (%) TN (%) FN (%) FP (%) NN units
per layer

κ 80.0 75.0 83.0 25.0 17.0 6-6-2

poly 85.6 83.3 86.0 16.7 19.4 9-6-4-2

abels are the same as in Table 5.
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herefore are not reported. Seemingly, curvature features do
ot add significant information to polyline features.

. Discussion and conclusion

The results of our study support that pulmonary emphy-
ema can be reliably diagnosed or excluded by using digital
hest radiographs and a proper computational aid. Actually,
ung contours can be reliably traced by using a small set
f knot points that can be clearly identified in the imaged
natomy. Moreover, the adopted analysis of the shape of the
ung silhouette exhibits a high discriminant power adequate
o assess emphysema in a dataset including COPD patients
nd subjects with normal lung function tests.

Data shown in previous section suggest several consid-
rations. First of all, the use of an adequate computational
escription is crucial. Even though values computed for fκ
nd fpoly (see Section 3) suggest that both feature-sets were
ensitive to emphysema-related abnormalities, classification
esults based on minimal-polyline features fpoly were sig-
ificantly better than those obtained from curvature-based
eatures fκ. As to the detection of emphysema in the entire
ataset using both the posteroanterior and lateral projections,
he polyline method provided an overall accuracy of about
0%, with 88% sensitivity and 90% specificity. When using
urvature method, accuracy was about 77% with sensitiv-
ty less than 72% and specificity about 79%. Classification
ased on single projections exhibited a significant perfor-
ance degradation for both methods as compared to two-

ided-based description. Accuracy decreased to about to 72%
sensitivity less than 69%, specificity 73%) using fκ com-
uted from posteroanterior radiograms, and to about 80%
sensitivity 77% and specificity 86%) using fpoly. In the case
f the lateral projection, for fκ the accuracy was 80% (sensi-
ivity 75%, specificity 83%), while for fpoly it was of about
5% (sensitivity 83.3%, specificity 86%). It is worth mention-
ng that fpoly always yielded better results than fκ, and that the
nalysis based on the lateral view alone was more accurate
han that based on the posteroanterior view alone. A reason-
ble explanation of the latter finding is that the lateral view
rovides a clear visualization of the retrosternal space that
s usually widened in patients with emphysema. Although
either fκ or fpoly feature-sets provide direct measurement
f the width of the retrosternal space, nonetheless widening
f the retrosternal space due to emphysema results in mor-
hological alterations (protrusion) of the anterior segment of
he lung silhouette. Proper shape features can capture such
bnormalities. Above considerations apply to the evaluation
f the emphysema in the group of patients with COPD.

In the present study, the diagnosis or exclusion of emphy-
ema was based on four explicit radiologic criteria that

ere validated against lung pathology [3]. Even though

hese criteria turned out to be very accurate, it is likely
hat mild emphysema may, in some instances, go undetected
n chest radiographs. Therefore, it would be appropriate
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Fig. 9. Computation

o further validate the computational descriptors described
ere in a new sample of patients using high-resolution
omputed tomography as reference diagnostic standard for
mphysema. In summary, computational descriptors of lung
hape, as derived from digital chest radiographs, are able
o detect emphysema with high degree of accuracy. Two-
ided chest radiographs provide more accurate discrimina-
ion than single-view analysis. Moreover, neural network
lassifiers allow the implementation of complex decision
rocesses and appear well suited to face the considered
ask.

ppendix A

The approximating polyline of the lung contour γ was
omputed by the following recursive algorithm [14]. Let A1
nd A2 be the starting and ending point, respectively, of the
urve γ , and Ai the intermediate points (see Fig. 9), then:

1) Draw the straight line through A1 and A2 and assume it
a approximating polyline g.

2) For each point Ai of the curve compute the distance di

from g.
3) Pick the curve point farthest from g and assume it as a

new feature point, replace the segment of with two line
segments.

4) Recursively apply the algorithm until the desired number
of points is reached (or some other stopping criterion is
met).

In the case considered, we approximated each segment
f the lung boundary by a three points polyline. One can
ook at initial straight line as a zeroth-order approximation of

he curve. In this view, we used a first-order approximation.
hough a more accurate curve representation could be uti-

ized by adding further key-points, the adopted scheme was
dequate for the problem at hand, being able to capture both

[

[

oximating polyline.

he size of each boundary segment, its maximal bending and
he position where such a bending is reached.
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