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GLOBAL IN TIME SOLUTION TO THE KELLER-SEGEL MODEL OF
CHEMOTAXIS.

M. PRIMICERIO∗ AND B. ZALTZMAN†

Abstract. We consider the Keller-Segel model of chemotaxis in the radial-symmetric two-
dimensional case. The blow-up occurs if the size of the initial datum is greater than some threshold.
We define the continuation of the solution after its blow-up and provide two ways of regularizing
the problem that look quite natural and converge to the solution. Finally, we show that if the size
of the initial datum is less than threshold, than all the mass diffuses to the infinity for infinite time
whereas, if it is greater than threshold, then all the initial mass concentrates asymptotically in the
origin.

Key words. chemotaxis, blow-up.

AMS subject classification. 35J55, 35K50, 35M10, 35R25, 92C45

1. Introduction. Blow-up of solutions to the system of partial differential equa-
tions modelling chemotaxis has been investigated recently by several authors (see e.g.
[1]–[10]and e.g. [11] and the literature quoted there for analogous models related to
gravitational collapse). But also in the case of the basic Keller–Segel model [12] some
problems have received only partial answer. Referring to that model and confining
to a two-dimensional radial-symmetric problem in an infinite domain, we will try to
contribute to a better understanding of this mathematical phenomenon.

Just for the sake of completeness, let us recall the biological motivation of the
model. A living population moves according to a diffusional mechanism and to the
stimulus provided by a chemical substance produced by the population itself. The
latter acts in the sense that population tends to migrate where higher concentration
of the substance is found. Thus, the basic model consists of two partial differential
equations for the concentrations of the chemical substance and of the population
respectively.

In all radial-symmetric problems, Keller-Segel system can be reduced to a single
equation for a suitable mass function; this equation shows clearly that the phenomenon
is the combination of diffusion and nonlinear convection. When the latter prevails,
blow-up occurs, whereas when diffusion provides sufficiently strong dissipation, no
singularity appears for the concentration.

This balance is dependent on the number of dimensions, so that in one space
dimension there is no blow-up and eventually the equation is a Burger’s equation.
In three dimensions blow-up occurs for any size of initial datum, while in the two-
dimensional case either the diffusion term or nonlinear convection can be dominant
depending on the size of initial datum.

Let us focus our attention to the two-dimensional radial-symmetric situation. In
case of blow-up (which will occur in the center for symmetry reasons) some additional
questions arise. If the initial mass exceeds the threshold value, is it possible to char-
acterize the fraction that ”collapses”in a delta function in the origin, at the blow-up
instant?

Will it be 100% of the initial mass or will it be related to the threshold value
as some authors claim ([13], [14])? Is there any way of continuing the solution after
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blow-up? If yes, how will the blow-up develop in time (e.g. can it ”melt out ”)? How
will be the asymptotic behaviour? Can a regularization be performed so that this
continuation can be actually computed?

In Section 2 of this paper we deal with classical solutions and we characterize
cases of blow-up by a comparison technique using as a barrier the only nontrivial
asymptotic solution. In Section 3 we define continuation of the classical solutions
beyond blow-up time T0. This definition, although analogous to the usual definition
of generalized solution, is in fact non-trivial because, although allowing finite mass
to concentrate in the origin after T0 (without prescribing its amount as a function of
time) identifies the solution uniquely. Moreover, two way of regularizing the problem
are provided that look quite natural and they are shown to converge to the solution.

Finally, in Section 4 we analyze in more detail the solution after blow-up and its
asymptotic behaviour. We outline a feature distinguishing the diffusion-dominated
case (no blow-up) from the convection-dominated case. In the former case all the
mass is diffused to infinity, while in the latter the mass concentrated at the origin is
changing in time and tends asymptotically to the total initial mass, i.e. the ”delta-
function” absorbs all of the mass in infinite time.

The case in which the initial mass is exactly equal to the critical value is the only
one in which a non-trivial asymptotic solution exists, and is easily predictable to be
unstable.

2. Classical solution. The two-dimensional radial-symmetric problem we will
consider is the following,

rut = (νrur − rupr)r , r > 0, t > 0, (2.1)
(rpr)r = −ru, r > 0, t > 0, (2.2)

with initial condition

u(r, 0) = u0(r), r > 0, (2.3)

where u0(r) will be assumed such that

lim
r→∞

u0(r)r2+α = 0, (2.4)

for some α > 0, so that the total initial mass

M̂ = 2π

∫ ∞

0

ru0(r)dr (2.5)

is finite.
We define the mass function M(r, t) as

M(r, t)
def
= 2π

∫ r

0

ρu(ρ, t)dρ. (2.6)

Then (2.1), (2.2) reduces to the single equation

Mt = νr

[
Mr

r

]

r

+
MMr

2πr
, r > 0, t > 0. (2.7)
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Next, define

s ≡ r2

2
, (2.8)

M(s, t) = M(
√

2s, t) = 2π

∫ √
2s

0

ρu(ρ, t)dρ. (2.9)

Then, (2.7) becomes

Mt = 2νsMss +
1
2π

MMs, s > 0, t > 0, (2.10)

and (2.3) gives

M(s, 0) = M0(s) ≡ 2π

∫ √
2s

0

ρu0(ρ)dρ, (2.11)

so that

lim
s→∞

M0(s) = M̂. (2.12)

Our first aim is to discuss the solvability of the following
Problem 2.1. Given a bounded nondecreasing function M0(s) ∈ C1([0,∞)),

M0(0) = 0, find T > 0 and a bounded function M(s, t) ∈ C([0,∞) × [0, T )) ∩
C2,1((0,∞)× (0, T )) satisfying





Mt = 2νsMss + 1
2π MMs, s > 0, t ∈ (0, T ),

M(s, 0) = M0(s), s > 0,
M(0, t) = 0, t ∈ (0, T ).

(2.13)

M(s, t) will be called classical solution to the problem and interval (0, T0), T0 =
sup{T}, finite or infinite, will be called maximal interval of existence.

First we state the following
Proposition 2.2. Any solution of Problem 2.1 is such that

0 ≤ M ≤ M̂, s > 0, t ∈ (0, T0), (2.14)

Ms(s, t) ≥ 0, s > 0, t ∈ (0, T0). (2.15)

Proof. Straightforward application of maximum principle [15] yields inequalities
(2.14). On the other hand U = Ms satisfies

Ut = 2νsUss +
(

2ν +
1
2π

)
Us +

1
2π

U2. (2.16)

Moreover, U(0, t) > 0 since M attains its minimum on s = 0. Since U(s, 0) ≥ 0,
maximum principle gives (2.15).

Next, we prove the following result on monotone dependence upon data.
Lemma 2.3. Let M1, M2 be classical solutions of (2.13) corresponding to data

M10(s) and M20(s) respectively, let T01 and T02 be their respective maximal interval
of existence, and let T̃0 = min (T01, T02). Then, if

M10(s) ≤ M20(s), s > 0, (2.17)
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then

M1(s, t) ≤ M2(s, t), s > 0, t ∈ (0, T̃0). (2.18)

Proof. Consider

V (s, t) = M2(s, t)−M1(s, t), s > 0, t ∈ (0, T̃0),

and note that

Vt = 2νsVss +
M1 + M2

4π
Vs +

V

s
(M1 + M2)s , s > 0, t ∈ (0, T̃0). (2.19)

Note that V is nonnegative for t = 0, s > 0 because of (2.17) and vanishes on s = 0.
In addition, the coefficient of V in (2.19) is nonnegative because of (2.15). Hence
(2.18) follows by maximum principle (consider e.g. approximation V ε whose data are
V ε(s, 0) = V (s, 0) + ε, V ε(0, t) = ε and prove that V ε can never reach the minimum
value ε/2).

Essentially by the same arguments, we can prove
Lemma 2.4. Let M solve Problem 2.1. Then the following implications hold:

M ′′
0 (s) ≤ 0 in R+ =⇒ Mss(s, t) ≤ 0 in R+ × (0, T ), (2.20)

4πνsM ′′
0 (s) + M0(s)M ′

0(s) ≥ 0 in R+ =⇒ Mt(s, t) ≥ 0 in R+ × (0, T ), (2.21)

4πνsM ′′
0 (s) + M0(s)M ′

0(s) ≤ 0 in R+ =⇒ Mt(s, t) ≤ 0 in R+ × (0, T ). (2.22)

Proof. The proof is based again on maximum principle applied to Mss and to Mt.
It is just necessary to approximate M by the solution Mα of approximated equations

Mαt = 2ν(s + α)Mαss +
1
2π

MαMαs

so that Mαss(0, t) exists and vanishes on s = 0.
Investigating stationary solutions to (2.10) will prove to be an useful tool in the

sequel. We prove the following
Proposition 2.5. Equation (2.10) admits nonconstant stationary solutions

M(s) of finite mass M̂ only if

M̂ ∈ (4πν, 8πν]. (2.23)

If M̂ = 8πν, then M(s) has the form

M(s) = 8πν
s

s + β
, (2.24)

for arbitrary β > 0.
If M̂ ∈ (4πν, 8πν), then M(s) has the form

M(s) =
M̂sγ + δN0

sγ + δ
, (2.25)

where N0 = 8πν − M̂ ∈ (0, 4πν), γ = M̂/(4πν) − 1 and δ is an arbitrary positive
constant.
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Proof. By direct computation we have

sM
′
+

1
8πν

M
2 −M − 1

8πν
M̂2 + M̂ = 0,

since assumption (2.4) implies lims→∞ sM
′

= 0. On the other hand, M < M̂ and
M
′ ≥ 0 yield M̂ > 4πν and, consequently, lims→0+ sM

′
= 0. Then (2.24), (2.25)

follow at once. Note that in (2.24)

1
β

=
M
′
(0)

8πν
=

u(0)
4ν

, (2.26)

and that in (2.25)

M(0) = N0, (2.27)

whereas (2.24) is the only form of nontrivial stationary solution having M(0) = 0.
We also have

Proposition 2.6. Let

M∞(t) = 2π

∫ ∞

0

ru(r, t)dr = lim
s→∞

M(s, t). (2.28)

Then it is

M∞(t) = M∞(0) = M̂, ∀t ∈ (0, T0). (2.29)

Proof. Let Q(s, t) solve the linear problem

Qt = 2νsQss, s > 0, t ∈ (0, T ), (2.30)
Q(s, 0) = M0(s), s > 0, Q(0, t) = 0, t ∈ (0, T ). (2.31)

It is immediately seen that

M(s, t) ≥ Q(s, t), s > 0, t ∈ (0, T ). (2.32)

But it is also true that

lim
s→∞

Q(s, t) = lim
s→∞

Q(s, 0) = M̂. (2.33)

Indeed, it is easy to get (2.33) writing the problem solved by Qs (possibly using the
approximations as in the proof of Lemma 2.4) and integrating it over any rectangle
R+ × (0, t)). At this point, (2.33) and (2.14) yield (2.29).

Now, we state and prove the main result of this section.
Theorem 2.7. If

M̂ ≤ 8πν, (2.34)

then Problem 2.1 is uniquely solvable and T0 = ∞.
If on the contrary

M̂ > 8πν, (2.35)
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then Problem 2.1 is uniquely solvable , T0 is finite and

lim
t→T0−

M(s, t) ≥ 8πν, ∀s ∈ R+. (2.36)

Proof. Local existence is rather standard. Uniqueness for a given T is a corollary
of Lemma 2.3. We also note that as long as

lim
s→0+,
t→T−

M(s, t) = 0

(i.e. as long as u(0, t) is finite) the solution can be continued beyond T .
First, we prove the theorem when

M̂ < 8πν. (2.37)

Indeed, the stationary solution (2.24) is uniformly and monotonically convergent to
8πν in any closed subset of R+ when β → 0. Hence, for sufficiently small β, M0(s) ≤
M(s). Therefore, Lemma 2.3 enables us to claim that

M(s, t) ≤ M(s) in R+ × (0, T ) (2.38)

and thus the solution can be continued beyond any T > 0.
Next, we prove that the same is true also when

M̂ = 8πν. (2.39)

Let

ũ = max(8πν,max
[0,1]

M ′
0(s)), (2.40)

and define

v0(s) =
{

ũs, s ∈ [0, 8πν/ũ],
8πν, s > 8πν/ũ.

(2.41)

If v(s, t) is the solution of Problem 2.1 with initial datum v0(s) and (0, T̃ ) is its
maximal interval of existence, Lemma 2.3 ensures that M(s, t) ≤ v(s, t) in their
common interval of existence and that T0 ≥ T̃ . So, to complete the proof of the first
statement of the theorem we only need to prove that T̃ = +∞.

To this end, let ε > 0 and let Pε be the solution of the following problem

Pεt = 2νεPεss +
1
2π

PεPεs, s > 0, t ∈ (T̃ /2, T̃ ),

Pε(s, T̃ /2) = v(s, T̃ /2), s > 0,

Pε(0, t) = 0, t ∈ (T̃ /2, T̃ ).

Since vss ≤ 0 in R+ × (0, T̃ ) (recall (2.20) after proper smoothing of v0(s)). we have
that

v(s, t) ≤ Pε(s, t) in R+ × (T̃ /2, T̃ ). (2.42)
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Consider the nonlinear wave propagation equation

Pt =
1
2π

PPs, in R+ × (T̃ /2, T̃ ),

P (s, T̃ /2) = v(s, T̃ /2), s > 0,

Pε(0, t) = 0, t ∈ (T̃ /2, T̃ ).

The problem is solvable, since v′(s, T̃ /2) > 0, and such that

P (s, t) < 8πν, in R+ × (T̃ /2, T̃ ). (2.43)

Using (2.42) and its limit for ε → 0 and (2.43) we have that, for any t ∈ (T̃ /2, T̃ ), it
is

v(s, t) < 8πν, s > 0,

and taking t as a new initial time we are back in the case studied above.
To conclude the proof of the theorem we have to consider case in which (2.35)

holds.
Define

G(t) =
∫ ∞

0

r3u(r, t)dr, t ∈ (0, T ). (2.44)

Multiply equations (2.1) and (2.2) by r3 and integrate over R+. After integration by
parts we find

Gt =
M̂

2π
(8πν − M̂), t ∈ (0, T0), (2.45)

where (2.29) has been taken into account.
Since G(t) ≥ 0 in (0, T0) it is clear that

T0 ≤ 2πG(0)

M̂(8πν − M̂)
, (2.46)

thus excluding global existence of classical solution when (2.35) holds.
To prove (2.36), assume that for a given s0 > 0, there exists δ > 0 such that

M(s0, T0) = lim
t→Tˆ0−

M(s0, t) = 8πν − 2δ. (2.47)

Therefore, for some σ > 0

M(s0, t) < 8πν − δ, t ∈ (T0 − σ, T0),

and hence (recall Ms ≥ 0)

M(s, T0 − σ) ≤ 8πν − δ, s ∈ [0, s0]. (2.48)

But this would imply the possibility of defining M(s) as in (2.24) with sufficiently
small β > 0 so that

M(s, T0 − σ) ≤ M(s), s ∈ R+. (2.49)
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By Lemma 2.3

M(s, T0) ≤ M(s) (2.50)

and thus we find that contradicting (2.36) will imply that (0, T0) is not the maximal
interval of existence of classical solution.

Remark 2.8. Note that (2.36) only gives a lower bound for the exact value of
”blow-up mass”. To find the exact value of M(0+, T0−) is still an open problem in
our knowledge. Partial answer is given by Herrero and Velazquez [4], [5] where an
example is provided (for a slightly different version of the Keller-Segel model) where
the blow-up mass is exactly 8πν. This shows in any case that estimate (2.36) is sharp.

3. Global in time solutions. We state
Problem 3.1. Given a bounded nondecreasing function M0(s) ∈ C1([0,∞)),

M0(0) = 0, such that M̂ > 8πν, let T0 be the maximum interval of existence of
the classical solution. We look for a bounded nondecreasing function M defined on
R+ × (0,∞) and such that ∀T > 0





Mt = 2νsMss + 1
2π MMs, s > 0, t ∈ (0, T ),

M(s, 0) = M0(s), s > 0,

M(0, t) =
{

0, t < T0,
≥ 0, t > T0,

t ∈ (0, T ).
(3.1)

M(s, t) will be called global-in-time solution to our problem.
Remark 3.2. The global solution is obtained by ”glueing” a smooth classical

solution and a singular (at r = 0) solution at the blow-up instant t = T0.
As a preliminary, we note that classical results on parabolic equations yield the

following
Proposition 3.3. For any global-in-time solution we have M ∈ C∞(R+ ×

(0, T )).
Let us prove that blow-up singularity never ”melts” in a sense that
Lemma 3.4. For any global-in-time solution we have

M(s, t) ≥ 8πν for all s > 0, t ≥ T0. (3.2)

Proof. Using Proposition 3.3 we find

Mt = 2νsMss +
1
2π

MMs, s > 0, t > T0, (3.3)

M(s, T0) ≥ 8πν, s > 0, (3.4)
M(0, t) ≥ 0, t > T0. (3.5)

Applying Lemma 2.3 we obtain that

M(s, t) ≥ M(s) in R+ × (T0,∞) (3.6)

where M(s) is any stationary solution defined by (2.24). Since the stationary solutions
are uniformly and monotonically convergent to 8πν in any closed subset of R+ when
β → 0, (3.6) yields the estimate (3.2).

Next, we prove uniqueness of the global-in-time solutions.
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Theorem 3.5. Let M1 and M2 be continuations of the same classical solution
beyond T0. Then M1 = M2 in R+ × (T0, T ).

Proof. Integrating the equation

2ν(sMs)s = Mt − 1
4π

[
M2 − 8πνM

]
s

in s and t, we find for any global-in-time solution

sMs ∈ L∞(0,∞; L1(0, T )) for all T > 0. (3.7)

Define

N(s, t) = M1(s, t)−M2(s, t). (3.8)

Because of Proposition 3.3

Nt = 2ν(sNs)s +
1
4π

(N(M1 + M2 − 8πν))s (3.9)

is satisfied in R+ × (T0, T ).
Moreover,

N(s, T0) = 0 in R+. (3.10)

Multiply (3.9) by fγ (N(s, t)) , where fγ(N) are smooth approximations of sgn(N) :

fγ(N) =
N√

N2 + γ
, γ > 0. (3.11)

Then, for any δ > 0, integrate on (δ,+∞). After integration by parts the following
inequality is obtained

d

dt

∫ ∞

δ

sN2

√
N2 + γ

ds ≤ 2ν
[−s2fγNs

] |s=δ + 2ν

∫ ∞

δ

fγNds− (3.12)

− 1
4π

[Nfγ (M1 + M2 − 8πν)] |s=δ − 1
4π

∫ ∞

0

N (M1 + M2 − 8πν)
∂fγ

∂s
sds−

− 1
4π

∫ ∞

0

N (M1 + M2 − 8πν) fγds.

Now, integrate in t, take the limit γ → 0 let δ tend to zero and apply (3.7) to obtain
∫ ∞

0

s|N(s, t)|ds ≤ − 1
4π

∫ ∞

0

|N | (M1 + M2 − 16πν) ds, t ∈ (T0, T ), (3.13)

and making use of Lemma 3.3 completes the proof.
To prove existence, we will use a monotonicity argument based on two different

types of regularization.
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(i) First, we regularize the Keller-Segel model as we did in [16], [17], i.e. by
assuming that the coefficient of chemotactic response vanishes when concentration of
cells exceeds a threshold value (maximum packing). The regularized problem takes
the form

ruε
t =

(
νruε

r −H

(
1
ε
− uε

)
ruεpε

r

)

r

, r > 0, t > 0, (3.14)

(rpε
r)r = −ruε, r > 0, t > 0, (3.15)

uε(r, 0) = u0(r), r > 0. (3.16)

In (3.11) H is the Heaviside graph.
(ii) Alternatively, regularization will be based on the assumption that the co-

efficient of chemotactic response vanishes for r < ε, so that the problem takes the
form

ruε
t = (νruε

r −H (r − ε) ruεpε
r)r , r > 0, t > 0, (3.17)

(rpε
r)r = −ruε, r > 0, t > 0, (3.18)

uε(r, 0) = u0(r), r > 0. (3.19)

In both cases (i) and (ii), by sending ε to zero we will obtain the classical solution
for T < T0 and its continuation beyond T0.

We start with approach (i). Through the same steps used to obtain (2.10), we
get for ε < ε0 = 2π/ supM ′

0

Mε
t = 2νsMε

ss +
1
2π

H

(
2π

ε
−Mε

s

)
MεMε

s , s > 0, t > 0, (3.20)

Mε(s, 0) = M0(s), s > 0. (3.21)

Thanks to the cutting effect on the nonlinear term, existence of a unique global
solution (3.17), (3.18) such that

Mε(0, t) = 0, t > 0. (3.22)

The following comparison result is immediately found
Lemma 3.6. The solution of (3.20)–(3.22) is such that

Mε(s, t) ≥ Q(s, t), s > 0, t > 0, (3.23)

where Q solves (2.30), (2.31) for an arbitrary T > 0.
Next, we prove
Lemma 3.7. Assume

M ′′
0 ≤ 0, s > 0. (3.24)

Then

Mε
ss ≤ 0, a.e. s > 0, t > 0. (3.25)

10



Moreover, for two different initial data M10, M20 satisfying (3.24) it is

M10(s) ≥ M20(s) =⇒ Mε
1 (s, t) ≥ Mε

2 (s, t). (3.26)

Proof. We apply the argument of Lemma 2.4 in the domain where Mε
s < 2π/ε.

To prove (3.26), note that when (3.25) holds then

H

(
2π

ε
−Mε

s

)
= H

(
2πs

ε
−Mε

)
. (3.27)

Then , we approximate H in L2 by smooth monotonic functions Hn and we
are reduced to prove (3.26) for the corresponding smooth solutions M̃ε

1 , M̃ε
2 . But

this follows from the maximum principle applied to the difference Ñ = M̃ε
1 − M̃ε

2 ,

Ñ(s, 0) ≥ 0 that satisfies

Ñt = 2ννÑss +
1
2π

H(1)
n Mε

1 Ñs +
1
2π

H(1)
n Mε

2sÑ +
1
2π

Hn(v)ÑMε
2Mε

2s, s > 0, t > 0,

(3.28)
where

H(1)
n = Hn

(
2πs

ε
−Mε

1

)
and v ∈

(
Mε

1 −
2πs

ε
,Mε

2 −
2πs

ε

)
.

Now we consider the following nonlinear wave propagation problem

Pt =
1
2π

PPs, in R+ ×R+, (3.29)

P (s, 0) = M0(s), s > 0. (3.30)

Note that P (s, t) is the limit of the solutions to the following family of problems for
Burgers equations

Pnt =
1
n2

Pnss +
1
2π

PnPns in R+ ×R+, (3.31)

Pn(s, 0) = M0(s), s > 0, (3.32)
Pn(0, t) = 0, t > 0. (3.33)

We can prove the following comparison lemma
Lemma 3.8. If (3.24) holds, then

Mε(s, t) ≤ P (s, t), s > 0, t > 0. (3.34)

Proof. We note that Mε is the limit of Mε
n solving

Mε
nt = 2ν

(
s +

1
n2

)
Mε

nss +
1
2π

H

(
2π

ε
−Mε

ns

)
Mε

nMε
ns, in R+ ×R+, (3.35)

Mε
n(s, 0) = M0(s), s > 0, (3.36)

Mε
n(0, t) = 0, t > 0. (3.37)

Recalling (3.21), we note that Mε
n ≤ Pn by maximum principle and hence (3.24) is

obtained letting n →∞.
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We also have

(sMε
s )s = Mε

s +
1
2ν

(
Mε

t −
1
2π

HMεMε
s

)
,

and hence, for any T > 0

∫ T

0

sMε
s dt ≤ M̂

(
1 +

1
4πν

)
T +

sM̂

2ν
(3.38)

and condition (i) in Problem 3.1 is fulfilled uniformly with respect to ε > 0.
At this point we are in position of proving
Theorem 3.9. Assume (3.24) holds. Then the limit of the solutions of (3.20)–

(3.22) as ε tends to zero coincides with the classical solution in (0, T0) and provides
its unique continuation beyond T0.

Proof. Because of (3.27) H is nonincreasing both with respect to ε and to M so
that

ε1 < ε2 =⇒ Mε1 ≤ Mε2 in R+ ×R+. (3.39)

¿¿From (3.39) we have that a function µ(x, t) exists such that

µ(s, t) = lim
ε→0

Mε(s, t), s > 0, t > 0. (3.40)

It is easy to check that µ fulfills conditions in the statement of Problem 3.1
and is smooth in R+ × R+. Next, compare Mε with the (classical) solution M(s, t)
of Problem 2.1 in its maximal interval of existence. Noting that H ≤ 1, we have
Mε(s, t) ≤ M(s, t), s > 0, t ∈ (0, T0) and passing to the limit

µ(s, t) ≤ M(s, t), s > 0, t ∈ (0, T0). (3.41)

But this means that µ(0, t) = 0 in (0, T0) and hence (µ) solves Problem 2.1 and its
maximal interval of existence contains (0, t0), since classical solution is unique

µ(s, t) = M(s, t), s > 0, t ∈ (0, T0). (3.42)

The use of the uniqueness beyond blow-up (Theorem 3.5) completes the proof.
Now we consider the regularization (ii) with the aim of avoiding assumption (3.21).

In this case we denote by Mε the solution of

Mε
t = 2νsMε

ss +
1
2π

H

(
s− ε2

2

)
MεMε

s , s > 0, t > 0, (3.43)

Mε(s, 0) = M0(s), s > 0, (3.44)
Mε(0, t) = 0, t > 0. (3.45)

We proceed as in proving Lemmas 3.5 and 3.7 and obtain the uniform estimates
Lemma 3.10. The approximating solutions are bounded from below by the diffusion-

dominated problem and from above by the nonlinear wave propagation problem:

Q(s, t) ≤ Mε(s, t) ≤ P (s, t), s > 0, t > 0. (3.46)

Moreover Mε depends monotonically on the initial datum.
12



Proof. No major changes are needed in proofs of Lemmas 3.5 and 3.7. Remark
that in the present case we do need assumption (3.24) since ”cutting” in (3.44) does
not depend on Mε.

Theorem 3.11. The limit of the solutions to the approximating problems (3.43)–
(3.45) is the global-in-time solution to the problem 3.1.

Proof. The proof is a slight modification of that of Theorem 3.8 and is based on
the use of the monotonic dependence of the solutions on ε > 0.

Finally, let us generalize the statements of Lemma 2.4 to the global-in-time solu-
tions.

Lemma 3.12. Let M be the global-in-time solution to the Problem 3.1. Then the
following implications hold:

M ′′
0 (s) ≤ 0 in R+ =⇒ Mss(s, t) ≤ 0 in R+ × (0,∞), (3.47)

4πνsM ′′
0 (s) + M0(s)M ′

0(s) ≥ 0 in R+ =⇒ Mt(s, t) ≥ 0 in R+ × (0,∞). (3.48)

Proof. Similarly to the proof of Lemma 2.4, we obtain the implications (3.47),
(3.48) for the approximating problem (3.43)–(3.45). Sending the regularization pa-
rameter to 0 we complete the proof.

4. Fine structure of the solution after its blow-up. We begin with a con-
sideration of the long-time asymptotic behaviour of the global-in-time solution. First,
let us consider the case of the subcritical initial datum:

Lemma 4.1. If

M̂ < 8πν, (4.1)

then

lim
t→∞

M(s, t) = 0 for all s ≥ 0. (4.2)

Proof. We define an upper barrier as a solution M+(s, t) to the Problem 2.1 with
the following initial datum

M+(s, 0) =

{
8πν s

s+β1
, s ≤ s0 =

cMβ

8πν−β1cM ;

M̂, s > s0.
(4.3)

Here, β1 > 0 is such that

M0(s) ≤ M+(s, 0) for all s ≥ 0. (4.4)

Applying Lemma 2.4 we find

M+t(s, t) ≤ 0 for all s ≥ 0 and t > 0, (4.5)

and, thus, the function M+ converges in time to the respective stationary solution of
the Problem 2.1. Then Proposition 2.5 together with condition M+(0) = 0 yields

lim
t→∞

M+(s, t) = 0 for all s ≥ 0. (4.6)

Using the inequality (4.4) and Lemma 2.3 we obtain that M(s, t) ≤ M+(s, t) and
complete the proof of the statement (4.2).
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Next, we consider the regularized problem (3.17)–(3.19) with total mass M̂ > 8πν.
Proposition 4.2. If

M̂ > 8πν, (4.7)

then

lim
t→∞

Mε(s, t) = Mε
∞(s), (4.8)

where Mε is a solution to the regularized problem (3.17)–(3.19) and Mε
∞(s) is the

stationary solution of the problem (3.17)–(3.19)i.e.:




Mε
∞(s) =

√
M̂2 − 8πνM̂

(
2s
ε2

)
, 0 ≤ s ≤ ε2

2cM−Mε
∞(s)cM+Mε∞(s)−8πν

=
cM−
√cM2−8πνcMcM+

√cM2−8πνcM−8πν

(
2s
ε2

)1−cM/(4πν)
, ε2

2 ≤ s
(4.9)

Proof. We start the proof with one more comparison of the solution Mε with a
lower-barrier solution M−(s, t) to the problem (3.17)–(3.19). We define the initial-
value of the lower barrier solution as the following stationary subsolution to the (3.17)–
(3.19) corresponding to the total mass M̂− = M̂ − δ:





M−(s, 0) =
√

M̂− − 8πνM̂−s, s ≤ s0cM−−M−(s,0)cM−+M−(s,0)−8πν
=

cM−−
qcM2

−−8πνcM−cM−+
qcM2

−−8πνcM−−8πν

(
s
s0

)1−cM−/(4πν)

, s0 ≤ s
(4.10)

Since

2νsM−ss +
1
2π

H

(
s− ε2

2

)
M−M−s ≥ 0

for any s0 > ε2/2, applying Lemma 3.12 we obtain that ∂
∂tM− ≥ 0 and, hence,

M−(s, t) converges in time to the following stationary solution M∞
− (s)





M∞
− (s) =

√
M̂2− − 8πνM̂−

(
2s
ε2

)
, 0 ≤ s ≤ ε2

2cM−−M∞cM−+M∞−8πν
=

cM−−
qcM2

−−8πνcM−cM−+
qcM2

−−8πνcM−−8πν

(
2s
ε2

)1−cM−/(4πν)
, ε2

2 ≤ s

Since Mε
s (s, t) > 0 for any t > 0, for any δ > 0 we find the value of s0 > 0 such

that Mε(s, 1) ≥ M−(s, 0) and comparing the functions Mε(s, t + 1) and M−(s, t) we
deduce that

limt→∞Mε(s, t) ≥ M∞
− (s), 0 ≤ s. (4.11)

Next we apply the comparison of Mε(s, t) with an upper barrier M+(s, t).We define
the initial value M+(s, 0) as the following stationary supersolution to the (3.17)–(3.19)
corresponding to the total mass M̂+ = M̂ + δ:





M+(s, 0) =
√

M̂+ − 8πνM̂+s, s ≤ s1cM−−M+(s,0)cM−+M+(s,0)−8πν
=

cM+−
qcM2

+−8πνcM+cM++
qcM2

+−8πνcM+−8πν

(
s
s 1

)1−cM+/(4πν)
, s1 ≤ s

(4.12)
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Since

2νsM+ss +
1
2π

H

(
s− ε2

2

)
M+M+s ≤ 0

for any s0 < ε2/2, applying Lemma we obtain that ∂
∂tM+ ≤ 0 and, hence, M+(s, t)

converges in time to the following stationary solution M∞
+ (s)

M∞
+ (s) =

√
M̂2

+ − 8πνM̂+

(
2s

ε2

)
, 0 ≤ s ≤ ε2

2
;

M̂+ −M∞

M̂+ + M∞ − 8πν
=

M̂+ −
√

M̂2
+ − 8πνM̂+

M̂+ +
√

M̂2
+ − 8πνM̂+ − 8πν

(
2s

ε2

)1−cM+/(4πν)

,
ε2

2
≤ s.

For any δ > 0, we find sufficiently small s1 > 0 such that Mε(s, 0) ≤ M+(s, 0) and,
thus comparing solutions Mε(s, t) and M+(s, t) we obtain that Mε(s, t) ≤ M+(s, t)
and thus

lim
t→∞

Mε(s, t) ≤ M∞
+ (s), 0 ≤ s. (4.13)

Taking the limit δ → 0 in the estimates (??), (4.13) completes the proof.
Lemma 4.3. If

M̂ > 8πν,

then

lim
t→∞

M(s, t) = M̂, ∀s ≥ 0. (4.14)

Proof. The proof is based on the comparison

M(s, t) ≥ Mε(s, t), s ≥ 0, t ≥ 0, ε > 0. (4.15)

Taking the limits t →∞, ε → 0 in the estimate (4.15) we obtain that

limt→∞M(s, t) ≥ M̂. (4.16)

Using the estimate M(s, t) ≤ M̂ for all s > 0, t > 0, we complete the proof.
Next, we prove the main result of this Section
Theorem 4.4. The mass M(0+, t) concentrated in the origin changes in the

interval
[
8πν, M̂

)
for all times after the blow-up instant and in the infinite time all

of the mass concentrates in the origin:

lim
t→∞

M(0+, t) = M̂. (4.17)

Proof. The estimate

M(0+, t) ≥ 8πν, t ≥ T0, (4.18)

follows immediately from Lemma 3.4. Applying the maximum principle to the equa-
tion (2.1) we obtain that Ms > 0 for all s > 0, t > 0 and, hence,

M(0+, t) < M̂, t ≥ 0. (4.19)
15



To prove the convergence (4.17) we use one more time the comparison of the global-in-
time solution M(s, t) with an appropriate lower-barrier solution M−(s, t). We define
M−(s, t) as the global-in-time solution to the problem (3.1) initially equal to the
stationary solution of the same problem corresponding to higher diffusivity and lower
total mass:

M−(s, 0) =
(
M̂ − δ

) s

s + β
, (4.20)

where 0 < δ < M̂ − 8πν. The initial value M−(s, 0) is a stationary subsolution of the
problem (3.1):

2νsM−ss +
1
2π

M−M−s ≥ 0, s > 0, (4.21)

and, hence,

∂

∂t
M−(s, t) ≥ 0, s > 0, t > 0. (4.22)

Integrating the equation (3.1) in s we find

d

dt

∫ 1

0

M−(s, t)ds = 2νsM−s(s, t)|s=1
s=0+ +

1
4π

[
M2
− − 8πνM−

] |s=1
s=0+. (4.23)

Using the estimate (4.22) we find that

∂

∂s

(
2νsM−s +

1
4π

[
M2 − 8πνM

]) ≥ 0, s > 0, t > 0. (4.24)

The last inequality together with the monotonicity of M in s yields the existence of
the limit

A = lim
s→0+

sM−s(s, t). (4.25)

Since

1
ε

∫ ε

0

sM−s(s, t)ds = M−(ε, t)− 1
ε

∫ ε

0

M−(s, t)ds →
ε→0

0,

then A = 0 and using the equation (4.23) we obtain

d

dt

∫ 1

0

M−(s, t)ds >
1
4π

[
M2
− − 8πνM−

] |s=1
s=0+. (4.26)

Applying the monotonicity of the function M−(s, t) in t we find that

limt→∞
d

dt

∫ 1

0

M−(s, t)ds ≥ 1
4π

lim
t→∞

[
M2
− − 8πνM−

] |s=1
s=0+ ≥ 0,

and using Lemma 4. 3,we obtain that

limt→∞
d

dt

∫ 1

0

M−(s, t)ds ≥ M̂ − δ − 8πν

4π

(
M̂ − δ − lim

t→∞
M−(0+, t)

)
≥ 0. (4.27)
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Combining the last inequality with the estimate
∫ s

0
M−(s, t)ds ≤ M̂ − δ we deduce

that

lim
t→∞

M−(0+, t) = M̂ − δ. (4.28)

For any δ > 0, we find sufficiently large β > 0, such that

M(s, 1) ≥
(
M̂ − δ

) s

s + β
= M−(s, 0),

and, hence,

M(s, t + 1) ≥ M−(s, t), s > 0, t > 0. (4.29)

Taking the limit t →∞ in the inequality (4.29), we obtain that

limM(0+, t) ≥ M̂ − δ, (4.30)

for any δ > 0. Finally, sending δ to 0 in the inequality (4.30) we complete the proof.
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