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Symmetry considerations dominate modern fundamental physics, both in
quantum theory and in relativity. Philosophers are now beginning to
devote increasing attention to such issues as the significance of gauge
symmetry, quantum particle identity in the light of permutation symmetry,
how to make sense of parity violation, the role of symmetry breaking, the
empirical status of symmetry principles, and so forth. These issues relate
directly to traditional problems in the philosophy of science, including the
status of the laws of nature, the relationships between mathematics,
physical theory, and the world, and the extent to which mathematics
suggests new physics.

This entry begins with a brief description of the historical roots and
emergence of the concept of symmetry that is at work in modern science.
It then turns to the application of this concept to physics, distinguishing
between two different uses of symmetry: symmetry principles versus
symmetry arguments. It mentions the different varieties of physical
symmetries, outlining the ways in which they were introduced into
physics. Then, stepping back from the details of the various symmetries, it
makes some remarks of a general nature concerning the status and
significance of symmetries in physics.
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1. The Concept of Symmetry

The term “symmetry” derives from the Greek words sun (meaning ‘with’
or ‘together’) and metron (‘measure’), yielding summetria, and originally
indicated a relation of commensurability (such is the meaning codified in
Euclid’s Elements for example). It quickly acquired a further, more
general, meaning: that of a proportion relation, grounded on (integer)
numbers, and with the function of harmonizing the different elements into
a unitary whole. From the outset, then, symmetry was closely related to
harmony, beauty, and unity, and this was to prove decisive for its role in
theories of nature. In Plato’s Timaeus, for example, the regular polyhedra
are afforded a central place in the doctrine of natural elements for the
proportions they contain and the beauty of their forms: fire has the form of
the regular tetrahedron, earth the form of the cube, air the form of the
regular octahedron, water the form of the regular icosahedron, while the
regular dodecahedron is used for the form of the entire universe. The
history of science provides another paradigmatic example of the use of
these figures as basic ingredients in physical description: Kepler’s 1596
Mysterium Cosmographicum presents a planetary architecture grounded
on the five regular solids.
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From a modern perspective, the regular figures used in Plato’s and
Kepler’s physics for the mathematical proportions and harmonies they
contain (and the related properties and beauty of their form) are symmetric
in another sense that does not have to do with proportions. In the language
of modern science, the symmetry of geometrical figures — such as the
regular polygons and polyhedra — is defined in terms of their invariance
under specified groups of rotations and reflections. Where does this
definition stem from? In addition to the ancient notion of symmetry used
by the Greeks and Romans (current until the end of the Renaissance), a
different notion of symmetry emerged in the seventeenth century,
grounded not on proportions but on an equality relation between elements
that are opposed, such as the left and right parts of a figure. Crucially, the
parts are interchangeable with respect to the whole — they can be
exchanged with one another while preserving the original figure. This
latter notion of symmetry developed, via several steps, into the concept
found today in modern science. One crucial stage was the introduction of
specific mathematical operations, such as reflections, rotations, and
translations, that are used to describe with precision how the parts are to
be exchanged. As a result, we arrive at a definition of the symmetry of a
geometrical figure in terms of its invariance when equal component parts
are exchanged according to one of the specified operations. Thus, when
the two halves of a bilaterally symmetric figure are exchanged by
reflection, we recover the original figure, and that figure is said to be
invariant under left-right reflections. This is known as the
“crystallographic notion of symmetry”, since it was in the context of early
developments in crystallography that symmetry was first so defined and
applied.[1] The next key step was the generalization of this notion to the
group-theoretic definition of symmetry, which arose following the
nineteenth-century development of the algebraic concept of a group, and
the fact that the symmetry operations of a figure were found to satisfy the
conditions for forming a group.[2] For example, reflection symmetry has

Katherine Brading, Elena Castellani, and Nicholas Teh

Winter 2017 Edition 3



now a precise definition in terms of invariance under the group of
reflections. Finally, we have the resulting close connection between the
notion of symmetry, equivalence and group: a symmetry group induces a
partition into equivalence classes. The elements that are exchanged with
one another by the symmetry transformations of the figure (or whatever
the “whole” considered is) are connected by an equivalence relation, thus
forming an equivalence class.[3]

The group-theoretic notion of symmetry is the one that has proven so
successful in modern science. Note, however, that symmetry remains
linked to beauty (regularity) and unity: by means of the symmetry
transformations, distinct (but “equal” or, more generally, “equivalent”)
elements are related to each other and to the whole, thus forming a regular
“unity”. The way in which the regularity of the whole emerges is dictated
by the nature of the specified transformation group. Summing up, a unity
of different and equal elements is always associated with symmetry, in its
ancient or modern sense; the way in which this unity is realized, on the
one hand, and how the equal and different elements are chosen, on the
other hand, determines the resulting symmetry and in what exactly it
consists.

The definition of symmetry as “invariance under a specified group of
transformations” allowed the concept to be applied much more widely, not
only to spatial figures but also to abstract objects such as mathematical
expressions — in particular, expressions of physical relevance such as
dynamical equations. Moreover, the technical apparatus of group theory
could then be transferred and used to great advantage within physical
theories.[4]

When considering the role of symmetry in physics from a historical point
of view, it is worth keeping in mind two preliminary distinctions:
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The first is between implicit and explicit uses of the notion.
Symmetry considerations have always been applied to the description
of  nature, but for a long time in an implicit way only. As we have
seen, the scientific notion of symmetry (the one we are interested in
here) is a recent one. If we speak about a role of this concept of
symmetry in the ancient theories of nature, we must be clear that it
was not used explicitly in this sense at that time.
The second is between the two main ways of using symmetry. First,
we may attribute specific symmetry properties to phenomena or to
laws (symmetry principles). It is the application with respect to laws,
rather than to objects or phenomena, that has become central to
modern physics, as we will see. Second, we may derive specific
consequences with regard to particular physical situations or
phenomena on the basis of their symmetry properties (symmetry
arguments).

2. Symmetry Principles

The first explicit study of the invariance properties of equations in physics
is connected with the introduction, in the first half of the nineteenth
century, of the transformational approach to the problem of motion in the
framework of analytical mechanics. Using the formulation of the
dynamical equations of mechanics due to W. R. Hamilton (known as the
Hamiltonian or canonical formulation), C. G. Jacobi developed a
procedure for arriving at the solution of the equations of motion based on
the strategy of applying transformations of the variables that leave the
Hamiltonian equations invariant, thereby transforming step by step the
original problem into new ones that are simpler but perfectly equivalent
(for further details see Lanczos 1949).[5] Jacobi’s canonical transformation
theory, although introduced for the “merely instrumental” purpose of
solving dynamical problems, led to a very important line of research: the
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general study of physical theories in terms of their transformation
properties. Examples of this are the studies of invariants under canonical
transformations, such as Poisson brackets or Poincaré’s integral invariants;
the theory of continuous canonical transformations due to S. Lie; and,
finally, the connection between the study of physical invariants and the
algebraic and geometric theory of invariants that flourished in the second
half of the nineteenth century, and which laid the foundation for the
geometrical approach to dynamical problems. The use of the mathematics
of group theory to study physical theories was central to the work, early in
the twentieth century in Göttingen, of the group whose central figures
were F. Klein (who earlier collaborated with Lie) and D. Hilbert, and
which included H. Weyl and later E. Noether. We will return later in this
section to Weyl (see Sections 2.1.2, 2.2, 2.5) and Noether (see Section
2.1.2). For more details on these developments see Brading and Castellani
(2007).

On the above approach, the equations or expressions of physical interest
are already given, and the strategy is to study their symmetry properties.
There is, however, an alternative way of proceeding, namely the reverse
one: start with specific symmetries and search for dynamical equations
with such properties. In other words, we postulate that certain symmetries
are physically significant, rather than deriving them from prior dynamical
equations. The assumption of certain symmetries in nature is not, of
course, a novelty. Although not explicitly expressed as symmetry
principles, the homogeneity and isotropy of physical space, and the
uniformity of time (forming together with the invariance under Galilean
boosts “the older principles of invariance” — see Wigner 1967,[6] pp. 4–
5), have been assumed as prerequisites in the physical description of the
world since the beginning of modern science. Perhaps the most famous
early example of the deliberate use of this type of symmetry principle is
Galileo’s discussion of whether the Earth moves in his Dialogue
concerning the two chief world systems of 1632. Galileo sought to
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neutralize the standard arguments purporting to show that, simply by
looking around us at how things behave locally on Earth — how stones
fall, how birds fly — we can conclude that the Earth is at rest rather than
rotating, arguing instead that these observations do not enable us to
determine the state of motion of the Earth. His approach was to use an
analogy with a ship: he urges us to consider the behaviour of objects, both
animate and inanimate, inside the cabin of a ship, and claims that no
experiments carried out inside the cabin, without reference to anything
outside the ship, would enable us to tell whether the ship is at rest or
moving smoothly across the surface of the Earth. The assumption of a
symmetry between rest and a certain kind of motion leads to the prediction
of this result, without the need to know the details of the laws governing
the experiments on the ship. The “Galilean principle of relativity”
(according to which the laws of physics are invariant under Galilean
boosts, where the states of motion considered are now those of uniform
velocity) was quickly adopted as an axiom and widely used in the
seventeenth century, notably by Huygens in his solution to the problem of
colliding bodies and by Newton in his early work on motion. Huygens
took the relativity principle as his 3rd hypothesis or axiom, but in
Newton’s Principia it is demoted to a corollary to the laws of motion, its
status in Newtonian physics therefore being that of a consequence of the
laws, even though it remains, in fact, an independent assumption.

Although the spatial and temporal invariance of mechanical laws was
known and used for a long time in physics, and the group of the global
spacetime symmetries for electrodynamics was completely derived by H.
Poincaré [7] before Einstein’s famous 1905 paper setting out his special
theory of relativity, it was not until this work by Einstein that the status of
symmetries with respect to the laws was reversed. E. P. Wigner (1967, p.
5) writes that “the significance and general validity of these principles
were recognized, however, only by Einstein”, and that Einstein’s work on
special relativity marks “the reversal of a trend: until then, the principles
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of invariance were derived from the laws of motion … It is now natural
for us to derive the laws of nature and to test their validity by means of the
laws of invariance, rather than to derive the laws of invariance from what
we believe to be the laws of nature”. In postulating the universality of the
global continuous spacetime symmetries, Einstein’s construction of his
special theory of relativity represents the first turning point in the
application of symmetry to twentieth-century physics.[8]

2.1 Relativity

2.1.1 The special theory of relativity

Einstein’s special theory of relativity (STR) is constructed on the basis of
two fundamental postulates. One is the light postulate (that the speed of
light, in the “rest frame”, is independent of the speed of the source), and
the other is the principle of relativity. The latter was adopted by Einstein
explicitly as a means of restricting the form of the laws, whatever their
detailed structure might turn out to be. Thus, we have the difference
between a “constructive” and a “principle” theory: in the former case we
build our theory based on known facts about the constitution and
behaviour of material bodies; in the latter case we start by restricting the
possible form of such a theory by adopting certain principles.[9]

The principle of relativity as adopted by Einstein (1905, p. 395 of the
English translation) simply asserts that:

This principle, when combined with the light postulate (and certain other
assumptions), leads to the Lorentz transformations, these being the

The laws by which the states of physical systems undergo changes
are independent of whether these changes of states are referred to
one or the other of two coordinate systems moving relatively to
each other in uniform translational motion.
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transformations between coordinate systems moving uniformly with
respect to one another according to STR. According to STR the laws of
physics are invariant under Lorentz transformations, and indeed under the
full Poincaré group of transformations. These transformations differ from
the Galilean transformations of Newtonian mechanics. H. Minkowski
reformulated STR, showing that space and time are part of a single four-
dimensional geometry, Minkowski spacetime. In this way, the Poincaré
group of symmetry transformations is part of the structure of spacetime in
STR, and for this reason these symmetries have been labelled “geometric
symmetries” by Wigner (1967, especially pp. 15 and 17–19).

There is a debate in the literature concerning how the principle of
relativity, and more generally the global space-time symmetries, should be
understood. On one approach, the significance of space-time symmetries is
captured by considering the structure of a theory through transformations
on its models, those models consisting of differentiable manifolds
endowed with various geometric objects and relations (see Anderson,
1967, and Norton, 1989). According to Brown and Sypel (1995) and
Budden (1997), this approach fails to recognise the central importance of
effectively isolated subsystems, the empirical significance of symmetries
resting on the possibility of transforming such a subsystem (rather than
applying the transformation to the entire universe). For further
developments in this debate, including applications to local symmetries
and to gauge theories, see Kosso (2000), Brading and Brown (2004),
Healey (2007), Healey (2009), Greaves and Wallace (2014), Friederich
(2015), Rovelli (2014) and Teh (2015, 2016).

The global spacetime invariance principles are intended to be valid for all
the laws of nature, for all the processes that unfold in the spacetime. This
universal character is not shared by the physical symmetries that were next
introduced in physics. Most of these were of an entirely new kind, with no
roots in the history of science, and in some cases expressly introduced to
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describe specific forms of interactions — whence the name “dynamical
symmetries” due to Wigner (1967, see especially pp. 15, 17–18, 22–27,
33).

2.1.2 The general theory of relativity

Einstein’s general theory of relativity (GTR) was also constructed using a
symmetry principle at its heart: the principle of general covariance. Much
ink has been spilled over the significance and role of general covariance in
GTR, including by Einstein himself.[10] For a long time he viewed the
principle of general covariance as an extension of the principle of
relativity found in both classical mechanics and STR, and this is a view
that continues to provoke vigorous debate. Norton (2003) discusses the
“Kretschmann objection” to the physical significance of general
covariance. On invariance versus covariance, see Anderson (1967), Brown
and Brading (2002), and Martin (2003, Section 2.2). What is clear is that
the mere requirement that a theory be generally covariant represents no
restriction on the form of the theory; further stipulations must be added,
such as the requirement that there be no “absolute objects” (this itself
being a problematic notion). Once some such further requirements are
added, however, the principle of general covariance becomes a powerful
tool. For a recent review and analysis of this debate, see Pitts (2006).

In Einstein’s hands the principle of general covariance was a crucial
postulate in the development of GTR.[11] The diffeomorphism freedom of
GTR, i.e., the invariance of the form of the laws under transformations of
the coordinates depending smoothly on arbitrary functions of space and
time, is a “local” spacetime symmetry, in contrast to the “global”
spacetime symmetries of STR (which depend instead on constant
parameters). For a discussion of coordinate-based approaches to the
diffeomorphism invariance of General Relativity, see Wallace
(forthcoming), and for more on the physical interpretation of this
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invariance, see Pooley (2017). Such local symmetries are “dynamical”
symmetries in Wigner’s sense, since they describe a particular interaction,
in this case gravity. As is well known, the spacetime metric in GTR is no
longer a “background” field or an “absolute object”, but instead it is a
dynamical player, the gravitational field manifesting itself as spacetime
curvature.

The extension of the concept of continuous symmetry from “global”
symmetries (such as the Galilean group of spacetime transformations) to
“local” symmetries is one of the important developments in the concept of
symmetry in physics that took place in the twentieth century. Prompted by
GTR, Weyl’s 1918 “unified theory of gravitation and electromagnetism”
extended the idea of local symmetries (see Ryckman, 2003, and Martin,
2003), and although this theory is generally deemed to have failed, the
theory contains the seeds of later success in the context of quantum theory
(see below, Section 2.5).

Meanwhile, Hilbert and Klein undertook detailed investigations
concerning the role of general covariance in theories of gravitation, and
enlisted the assistance of Noether in their debate over the status of energy
conservation in such theories. This led to Noether’s famous 1918 paper
containing two theorems, the first of which leads to a connection between
global symmetries and conservation laws, and the second of which leads
to a number of results associated with local symmetries, including a
demonstration of the different status of the conservation laws when the
global symmetry group is a subgroup of some local symmetry group of the
theory in question (see Brading and Brown, 2003).

2.2 Symmetry and quantum mechanics

The application of the theory of groups and their representations for the
exploitation of symmetries in the quantum mechanics of the 1920s
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undoubtedly represents the second turning point in the twentieth-century
history of physical symmetries. It is, in fact, in the quantum context that
symmetry principles are at their most effective. Wigner and Weyl were
among the first to recognize the great relevance of symmetry groups to
quantum physics and the first to reflect on the meaning of this. As Wigner
emphasized on many occasions, one essential reason for the “increased
effectiveness of invariance principles in quantum theory” (Wigner, 1967,
p. 47) is the linear nature of the state space of a quantum physical system,
corresponding to the possibility of superposing quantum states. This gives
rise to, among other things, the possibility of defining states with
particularly simple transformation properties in the presence of
symmetries.

In general, if G is a symmetry group of a theory describing a physical
system (that is, the dynamical equations of the theory are invariant under
the transformations of G), this means that the states of the system
transform into each other according to some “representation” of the group
G. In other words, the group transformations are mathematically
represented in the state space by operations relating the states to each
other. In quantum mechanics, these operations are implemented through
the operators that act on the state space and correspond to the physical
observables, and any state of a physical system can be described as a
superposition of states of elementary systems, that is, of systems the states
of which transform according to the “irreducible” representations of the
symmetry group. Quantum mechanics thus offers a particularly favourable
framework for the application of symmetry principles. The observables
representing the action of the symmetries of the theory in the state space,
and therefore commuting with the Hamiltonian of the system, play the role
of the conserved quantities; furthermore, the eigenvalue spectra of the
invariants of the symmetry group provide the labels for classifying the
irreducible representations of the group: on this fact is grounded the
possibility of associating the values of the invariant properties
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characterizing physical systems with the labels of the irreducible
representations of symmetry groups, i.e. of classifying elementary
physical systems by studying the irreducible representations of the
symmetry groups.

2.3 Permutation symmetry

The first non-spatiotemporal symmetry to be introduced into
microphysics, and also the first symmetry to be treated with the techniques
of group theory in the context of quantum mechanics, was permutation
symmetry (or invariance under the transformations of the permutation
group). This symmetry, “discovered” by W. Heisenberg in 1926 in relation
to the indistinguishability of the “identical” electrons of an atomic system,
[12] is the discrete symmetry (i.e. based upon groups with a discrete set of
elements) at the core of the so-called quantum statistics (the Bose-Einstein
and Fermi-Dirac statistics), governing the statistical behaviour of
ensembles of certain types of indistinguishable quantum particles (e.g.
bosons and fermions). The permutation symmetry principle states that if
such an ensemble is invariant under a permutation of its constituent
particles then one doesn’t count those permutations which merely
exchange indistinguishable particles, that is the exchanged state is
identified with the original state (see French and Rickles, 2003, Section 1).

Philosophically, permutation symmetry has given rise to two main sorts of
questions. On the one side, seen as a condition of physical
indistinguishability of identical particles (i.e. particles of the same kind in
the same atomic system), it has motivated a rich debate about the
significance of the notions of identity, individuality, and
indistinguishability in the quantum domain. Does it mean that the quantum
particles are not individuals? Does the existence of entities which are
physically indistinguishable although “numerically distinct” (the so-called
problem of identical particles) imply that the Leibniz’s Principle of the
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Identity of Indiscernibles should be regarded as violated in quantum
physics? On the other side, what is the theoretical and empirical status of
this symmetry principle? Should it be considered as an axiom of quantum
mechanics or should it be taken as justified empirically? It is currently
taken to explain the nature of fermionic and bosonic quantum statistics,
but why do there appear to be only bosons and fermions in the world when
the permutation symmetry group allows the possibility of many more
types? French and Rickles (2003) offer an overview of the above and
related issues, and a new twist in the tale can be found in Saunders (2006).
Saunders discusses permutation symmetry in classical physics, and argues
for indistinguishable classical particles obeying classical statistics. He
argues that the differences between quantum and classical statistics, for
certain classes of particles, therefore cannot be accounted for solely in
terms of indistinguishability. For further discussion and references see
French and Krause (2006), Ladyman and Bigaj (2010), Caulton and
Butterfield (2012), and the related SEP entry identity and individuality in
quantum theory.

2.4 C, P, T

Because of the specific properties of the quantum description, the discrete
symmetries of spatial reflection symmetry or parity (P) and time reversal
(T) were “rediscovered” in the quantum context, taking on a new
significance. Parity was introduced in quantum physics in 1927 in a paper
by Wigner, where important spectroscopic results were explained for the
first time on the basis of a group-theoretic treatment of permutation,
rotation and reflection symmetries. Time reversal invariance appeared in
the quantum context, again due to Wigner, in a 1932 paper.[13] To these
was added the new quantum particle-antiparticle symmetry or charge
conjugation (C). Charge conjugation was introduced in Dirac’s famous
1931 paper “Quantized singularities in the electromagnetic field”.
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The discrete symmetries C, P and T are connected by the so-called CPT
theorem, first proved by Lüders and Pauli in the early 1950s, which states
that the combination of C, P, and T is a general symmetry of physical
laws. For philosophical reflections on the meaning and grounding of the
CPT theorem see Wallace (2009) and Greaves (2010). A discussion of the
proofs of the theorem, both within the standard quantum field theory
framework and the axiomatic field theory framework, is provided in
Greaves and Thomas (2014).

The laws governing gravity, electromagnetism, and the strong interaction
are invariant with respect to C, P and T independently. However, in 1956
T. D. Lee and C. N. Yang pointed out that β-decay, governed by the weak
interaction, had not yet been tested for invariance under P. Soon
afterwards C. S. Wu and her colleagues performed an experiment showing
that the weak interaction violates parity. Nevertheless, β-decay respects
the combination of C and P as a symmetry. In 1964, however, CP was
found to be violated in weak interaction by Cronin and Fitch in an
experiment involving K-mesons. This implied, in virtue of the CPT
theorem, the violation of T-symmetry as well; since then, there have been
direct observations of T-symmetry violation, as reported by e.g., CPLEAR
Collaboration (1998). For a careful analysis of the underlying assumptions
working in the assessment of T-violation see Roberts (2015) and Ashtekar
(2015). The philosophical puzzle is how we can come to know this time
asymmetry, given that we cannot truly ‘reverse’ time. Roberts proposes
three templates for explaining how this is possible, drawing in particular
on a version of Curie’s principle. By contrast, Gołosz (2016) argues that
this asymmetry should be understood as applying to a physical process,
rather than to time itself. A yet more basic question is that of what time
reversal symmetry actually means. On the philosophical debate on this
point, see Roberts (2017) and references therein.
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The existence of parity violation in our fundamental laws has led to a new
chapter in an old philosophical debate concerning chiral or handed objects
and the nature of space. A description of a left hand and one of a right
hand will not differ so long as no appeal is made to anything beyond the
relevant hand. Yet left and right hands do differ  — a left-handed glove
will not fit on a right hand. For a brief period,  Kant saw in this reason to
prefer a substantivalist account of space over a relational one, the
difference between left and right hands lying in their relation to absolute
space. Regardless of whether this substantivalist solution succeeds, there
remains the challenge to the relationalist of accounting for the difference
between what Kant called “incongruent counterparts” — objects which are
the mirror-image of one another and yet cannot be made to coincide by
any rigid motion. The relationalist may respond by denying that there is
any intrinsic difference between a left and a right hand, and that the
incongruence is to be accounted for in terms of the relations between the
two hands (if a universe was created with only one hand in it, it would be
neither left nor right, but the second hand to be created would be either
incongruent or congruent with it). This response becomes problematic in
the face of parity violation, where one possible experimental outcome is
much more likely than its mirror-image. Since the two possible outcomes
don’t differ intrinsically, how should we account for the imbalance? This
issue continues to be discussed in the context of the substantivalist-
relationalist debate. For further details see Pooley (2003) and Saunders
(2007).

2.5 Gauge symmetry

The starting point for the idea of continuous internal symmetries was the
interpretation of the presence of particles with (approximately) the same
value of mass as the components (states) of a single physical system,
connected to each other by the transformations of an underlying symmetry
group. This idea emerged by analogy with what happened in the case of
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permutation symmetry, and was in fact due to Heisenberg (the discoverer
of permutation symmetry), who in a 1932 paper introduced the SU(2)
symmetry connecting the proton and the neutron (interpreted as the two
states of a single system). This symmetry was further studied by Wigner,
who in 1937 introduced the term isotopic spin (later contracted to isospin).
The various internal symmetries are invariances under phase
transformations of the quantum states and are described in terms of the
unitary groups SU(N). The term “gauge” is sometimes used for all
continuous internal symmetries, and is sometimes reserved for the local
versions (these being at the core of the Standard Model for elementary
particles).[14]

The phase of the quantum wavefunction encodes internal degrees of
freedom. With the requirement that a theory be invariant under local
gauge transformations involving the phase of the wavefunction, Weyl’s
ideas of 1918 found a successful home in quantum theory (see
O’Raifeartaigh, 1997). Weyl’s new 1929 theory was a theory of
electromagnetism coupled to matter. The history of gauge theory is
surveyed briefly by Martin (2003), who highlights various issues
surrounding gauge symmetry, in particular the status of the so-called
“gauge principle”, first proposed by Weyl. The main steps in development
of gauge theory are the Yang and Mills non-Abelian gauge theory of 1954,
and the problems and solutions associated with the successful
development of gauge theories for the short-range weak and strong
interactions.

The main philosophical questions raised by gauge theory all hinge upon
how we should understand the relationship between mathematics and
physics. There are two broad categories of discussion. The first concerns
the gauge principle, already mentioned, and the issue here is the extent to
which the requirement that we write our theories in locally-symmetric
form enables us to derive new physics. The analysis concerns listing what
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premises constitute the gauge principle, examining the status of these
premises and what motivation might be given for them, determining
precisely what can be obtained on the basis of these premises, and what
more needs to be added in order to arrive at a (successful) physical theory.
For details see, for example, Teller (2000) and Martin (2003).

The second category concerns the question of which quantities in a gauge
theory represent the “physically real” properties. This question arises
acutely in gauge theories because of the apparent failure of determinism.
The problem was first encountered in GTR (which in this respect is a
gauge theory), and for further details the best place to begin is with the
literature on Einstein’s “hole argument” (see Earman and Norton, 1987;
Earman, 1989, Chapter 9; and more recently Norton, 1993; Rynasiewicz,
1999; Saunders, 2002; and the references therein). In practice, we find that
only gauge-invariant quantities are observables, and this seems to rescue
us. However, this is not the end of the story. The other canonical example
is the Aharanov-Bohm effect, and we can use this to illustrate the
interpretational problem associated with gauge theories, sometimes
characterized as a dilemma: failure of determinism or action-at-a-distance
(see Healey, 2001). Restoring determinism depends on only gauge-
invariant quantities being taken as representing “physically real”
quantities, but accepting this solution apparently leaves us with some form
of non-locality between causes and effects.

Furthermore, we face the question of how to understand the role of the
non-gauge-invariant quantities appearing in the theory, and the problem of
how to interpret what M. Redhead calls “surplus structure” (see Redhead,
2003). For further detail on this topic, see Belot (1998), Nounou (2003),
Weatherall (2016), and Nguyen, Teh, & Wells (forthcoming). For an
approach to these questions using the theory of constrained Hamiltonian
systems, see also Earman (2003b) and Castellani (2003, 2004). For an
intuitive characterization of gauge symmetry, one that is more general than
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the Lagrangian and Hamiltonian formulations of theories using which
gauge symmetry is usually expressed, see Belot (2008). How best to
interpret gauge theories is an open issue in the philosophy of physics.
Healey (2007) discusses the conceptual foundations of gauge theories,
arguing in favour of a non-separable holonomy interpretation of classical
Yang-Mills gauge theories of fundamental interactions. Catren (2008)
tackles the ontological implications of Yang-Mills theory by means of the
fiber bundle formalism. Useful references are the Metascience review
symposium on Healey (2007) (Rickles, Smeenk, Lyre and Healey, 2009),
and the “Synopsis and Discussion” of the workshop “Philosophy of Gauge
Theory,” Center for Philosophy of Science, University of Pittsburgh, 18–
19 April 2009 (available online).

2.6 Dualities

Thus far, we have been discussing symmetries which act on the space of
states of a physical theory. In recent years, much discussion within physics
and philosophy has centered on certain kinds of symmetries that act on the
space of theories. When such symmetries are interpreted as realizing an
“equivalence” (which sense is itself something that requires philosophical
work to explicate) between two theories, the theories are typically said to
be related by a “duality symmetry” (and if we are speaking of “symmetry”
in the strict sense of an automorphism, then such dualities are called “self-
dualities”).

The dualities playing a central role in contemporary physics are of various
types: dualities between quantum field theories (like the generalized
electric-magnetic duality), between string theories (such as T-duality and
S-duality), and between physical descriptions which are, respectively, a
quantum field theory and a string theory, as in the case of gauge/gravity
dualities (on the various types of dualities and their significance in
physics, see Castellani and Rickles (eds.), 2017). Historically, the first
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relevant dualities to be used in physics were electric-magnetic duality,
momentum-position duality (via Fourier transform) – wave-particle
duality in the QM context – and the Kramers-Wannier duality of the two-
dimensional Ising model in statistical physics.

In general, because dualities are transformations between theories, their
implications are more radical than those of symmetry transformations.
While symmetries are mapping between the solutions of the same theory,
different theoretical descriptions can have very different interpretations in
terms of objects, properties, degrees of freedom, and spacetime
frameworks. Thus, dualities naturally offer a new and interesting
viewpoint on many traditional issues in the philosophy of science, such as
a) reduction, emergence, and fundamentality; b) theoretical equivalence
and underdetermination; and c) realism versus anti-realism.

Within the philosophical literature, work relating symmetries to dualities
generally responds to one of the following three questions:

What is an appropriate formal framework for understanding the inter-
theoretic relationship realized by duality symmetries? Within the
context of quantum gauge/gravity duality, a rudimentary framework
for doing so was sketched in de Haro, Teh, and Butterfield (2017) and
then further developed in de Haro and Butterfield (2017) for the case
of bosonization dualities. And within the far simpler context of
classical mechanics, Teh and Tsementzis (2017) explore the use of
the quintessential symmetry of classical phase space (viz.
symplectomorphisms) to relate Hamiltonian and Lagrangian theories,
and proceed to discuss how can use this framework as a toy model
for thinking about more sophisticated dualities.
What is the relationship between the local symmetry of a theory and
the symmetries of its dual theory? One reason that this question is
pressing is that (as we mentioned in Section 2.5), local symmetries
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are typically regard as “surplus” or “redundant” structure of a theory;
thus one might hope to be able to construct a dual theory that does
not contain such surplus structure. Indeed, it was conjectured in
Polchinski and Horowitz (2009) that for gravity/gauge duality, the
local symmetries (i.e. the diffeomorphisms) of the bulk theory will
always be “invisible” from the perspective of its dual boundary
theory. However, de Haro, Teh, and Butterfield (2017) argue that this
conjecture is not true in full generality: there is a special class of
diffeomorphisms which do not vanish in the boundary theory, but
instead correspond to conformal transformations of the boundary
CFT.
Should duality symmetries themselves by understood as a certain
kind of “gauge symmetry”, thus explaining why we should treat dual
theories as “physically equivalent”? On this question, Read (2016)
undertakes the task of using the “hole argument” as a lens with which
to compare string-theoretic dualities with (intra-theory) gauge
symmetries.

3. Symmetry Arguments

Consider the following cases.

Buridan’s ass: situated between what are, for him, two completely
equivalent bundles of hay, he has no reason to choose the one located
to his left over the one located to his right, and so he is not able to
choose and dies of starvation.
Archimedes’s equilibrium law for the balance: if equal weights are
hung at equal distances along the arms of a balance, then it will
remain in equilibrium since there is no reason for it to rotate one way
or the other about the balance point.
Anaximander’s argument for the immobility of the Earth as reported
by Aristotle: the Earth remains at rest since, being at the centre of the
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spherical cosmos (and in the same relation to the boundary of the
cosmos in every direction), there is no reason why it should move in
one direction rather than another.

What do they have in common?

First, these can all be understood as examples of the application of the
Leibnizean Principle of Sufficient Reason (PSR): if there is no sufficient
reason for one thing to happen instead of another, the principle says that
nothing happens (the initial situation does not change). But there is
something more that the above cases have in common: in each of them
PSR is applied on the grounds that the initial situation has a given
symmetry: in the first two cases, bilateral symmetry; in the third, rotational
symmetry. The symmetry of the initial situation implies the complete
equivalence between the existing alternatives (the left bundle of hay with
respect to the right one, and so on). If the alternatives are completely
equivalent, then there is no sufficient reason for choosing between them
and the initial situation remains unchanged.

Arguments of the above kind — that is, arguments leading to definite
conclusions on the basis of an initial symmetry of the situation plus PSR
— have been used in science since antiquity (as Anaximander’s argument
testifies). The form they most frequently take is the following: a situation
with a certain symmetry evolves in such a way that, in the absence of an
asymmetric cause, the initial symmetry is preserved. In other words, a
breaking of the initial symmetry cannot happen without a reason, or an
asymmetry cannot originate spontaneously. Van Fraassen (1989) devotes a
chapter to considering the way these kinds of symmetry arguments can be
used in general problem-solving.

Historically, the first explicit formulation of this kind of argument in terms
of symmetry is due to the physicist Pierre Curie towards the end of
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nineteenth century. Curie was led to reflect on the question of the
relationship between physical properties and symmetry properties of a
physical system by his studies on the thermal, electric and magnetic
properties of crystals, these properties being directly related to the
structure, and hence the symmetry, of the crystals studied. More precisely,
the question he addressed was the following: in a given physical medium
(for example, a crystalline medium) having specified symmetry properties,
which physical phenomena (for example, which electric and magnetic
phenomena) are allowed to happen? His conclusions, systematically
presented in his 1894 work “Sur la symétrie dans les phénomènes
physiques”, can be synthesized as follows:

a. A phenomenon can exist in a medium possessing its characteristic
symmetry or that of one of its subgroups. What is needed for its
occurrence (i.e. for something rather than nothing to happen) is not
the presence, but rather the absence, of certain symmetries:
“Asymmetry is what creates a phenomenon”.

b. The symmetry elements of the causes must be found in their effects,
but the converse is not true; that is, the effects can be more symmetric
than the causes.

Conclusion (a) clearly indicates that Curie recognized the important
function played by the concept of symmetry breaking in physics (he was
indeed one of the first to recognize it). Conclusion (b) is what is usually
called “Curie’s principle” in the literature, although notice that (a) and (b)
are not independent of one another.

In order for Curie’s principle to be applicable, various conditions need to
be satisfied: the causal connection must be valid, the cause and effect must
be well-defined, and the symmetries of both the cause and the effect must
also be well-defined (this involves both the physical and the geometrical
properties of the physical systems considered). Curie’s principle then
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furnishes a necessary condition for given phenomena to happen: only
those phenomena can happen that are compatible with the symmetry
conditions established by the principle.

Curie’s principle has thus an important methodological function: on the
one side, it furnishes a kind of selection rule (given an initial situation with
a specified symmetry, only certain phenomena are allowed to happen); on
the other side, it offers a falsification criterion for physical theories (a
violation of Curie’s principle may indicate that something is wrong in the
physical description).[15]

Such applications of Curie’s principle depend, of course, on our accepting
its validity, and this is something that has been questioned in the literature,
especially in relation to spontaneous symmetry breaking (see below, next
section). Different proposals have been offered for justifying the principle.
We have presented it here as an example of symmetry considerations
based on Leibniz’s PSR, while Curie himself seems to have regarded it as
a form of the causality principle. In current literature, it has become
standard to understand the principle as following from the invariance
properties of deterministic physical laws. According to this “received
view”, as first formulated in Chalmers (1970) and then developed in more
recent literature (Ismael 1997, Belot 2003, Earman 2002), Curie’s
principle is expressed in terms of the relationship between the symmetries
of earlier and later states of a system, and the laws connecting these states.
In fact, this is a misrepresentation of Curie’s original principle: Curie’s
focus was on the case of co-existing, functionally related features of a
system’s state, rather than temporally ordered cause and effect pairs. For a
discussion on such questions as to whether there is more that one “Curie’s
principle” and, independently of how it is formulated, what are the aspects
that make it so scientically fruitful, see Castellani and Ismael, 2016. As
regards the status of the principle, Norton (2016) argues that it is a
“truism”, on the grounds that whether the principle succeeds or fails
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depends on how one chooses to attach causal labels to the scientific
description. For Roberts (2013), Curie’s principle fails when the symmetry
is time reversal. Roberts (2016) claims that the truth of the principle is
contingent on special physical facts, and attributes to its failure an
important role in the detection of parity violation and CP violation (on this
point, see also Roberts, 2015, and Ashtekar, 2015).

4. Symmetry Breaking

A symmetry can be exact, approximate, or broken. Exact means
unconditionally valid; approximate means valid under certain conditions;
broken can mean different things, depending on the object considered and
its context.

The study of symmetry breaking also goes back to Pierre Curie. According
to Curie, symmetry breaking has the following role: for the occurrence of
a phenomenon in a medium, the original symmetry group of the medium
must be lowered (broken, in today’s terminology) to the symmetry group
of the phenomenon (or to a subgroup of the phenomenon’s symmetry
group) by the action of some cause. In this sense symmetry breaking is
what “creates the phenomenon”. Generally, the breaking of a certain
symmetry does not imply that no symmetry is present, but rather that the
situation where this symmetry is broken is characterized by a lower
symmetry than the original one. In group-theoretic terms, this means that
the initial symmetry group is broken to one of its subgroups. It is therefore
possible to describe symmetry breaking in terms of relations between
transformation groups, in particular between a group (the unbroken
symmetry group) and its subgroup(s). As is clearly illustrated in the 1992
volume by I. Stewart and M. Golubitsky, starting from this point of view a
general theory of symmetry breaking can be developed by tackling such
questions as “which subgroups can occur?”, “when does a given subgroup
occur?”
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Symmetry breaking was first explicitly studied in physics with respect to
physical objects and phenomena. This is not surprising, since the theory of
symmetry originated with the visible symmetry properties of familiar
spatial figures and every day objects. However, it is with respect to the
laws that symmetry breaking has acquired special significance in physics.
There are two different types of symmetry breaking of the laws: “explicit”
and “spontaneous”, the case of spontaneous symmetry breaking being the
more interesting from a physical as well as a philosophical point of view.

4.1 Explicit symmetry breaking

Explicit symmetry breaking indicates a situation where the dynamical
equations are not manifestly invariant under the symmetry group
considered. This means, in the Lagrangian (Hamiltonian) formulation, that
the Lagrangian (Hamiltonian) of the system contains one or more terms
explicitly breaking the symmetry. Such terms can have different origins:

(a) Symmetry-breaking terms may be introduced into the theory by hand
on the basis of theoretical/experimental results, as in the case of the
quantum field theory of the weak interactions, which is expressly
constructed in a way that manifestly violates mirror symmetry or parity.
The underlying result, in this case, is parity non-conservation in the case
of the weak interaction, first predicted in the famous (Nobel-prize
winning) 1956 paper by T. D. Lee and C.N. Yang.

(b) Symmetry-breaking terms may appear in the theory because of
quantum-mechanical effects. One reason for the presence of such terms —
known as “anomalies” — is that in passing from the classical to the
quantum level, because of possible operator ordering ambiguities for
composite quantities such as Noether charges and currents, it may be that
the classical symmetry algebra (generated through the Poisson bracket
structure) is no longer realized in terms of the commutation relations of
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the Noether charges. Moreover, the use of a “regulator” (or “cut-off”)
required in the renormalization procedure to achieve actual calculations
may itself be a source of anomalies. It may violate a symmetry of the
theory, and traces of this symmetry breaking may remain even after the
regulator is removed at the end of the calculations. Historically, the first
example of an anomaly arising from renormalization is the so-called chiral
anomaly, that is the anomaly violating the chiral symmetry of the strong
interaction (see Weinberg, 1996, Chapter 22).

(c) Finally, symmetry-breaking terms may appear because of non-
renormalizable effects. Physicists now have good reasons for viewing
current renormalizable field theories as effective field theories, that is low-
energy approximations to a deeper theory (each effective theory explicitly
referring only to those particles that are of importance at the range of
energies considered). The effects of non-renormalizable interactions (due
to the heavy particles not included in the theory) are small and can
therefore be ignored at the low-energy regime. It may then happen that the
coarse-grained description thus obtained possesses more symmetries than
the deeper theory. That is, the effective Lagrangian obeys symmetries that
are not symmetries of the underlying theory. These “accidental”
symmetries, as Weinberg has called them, may then be violated by the
non-renormalizable terms arising from higher mass scales and suppressed
in the effective Lagrangian (see Weinberg, 1995, pp. 529–531).

4.2 Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) occurs in a situation where, given
a symmetry of the equations of motion, solutions exist which are not
invariant under the action of this symmetry without any explicit
asymmetric input (whence the attribute “spontaneous”).[16] A situation of
this type can be first illustrated by means of simple cases taken from
classical physics. Consider for example the case of a linear vertical stick
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with a compression force applied on the top and directed along its axis.
The physical description is obviously invariant for all rotations around this
axis. As long as the applied force is mild enough, the stick does not bend
and the equilibrium configuration (the lowest energy configuration) is
invariant under this symmetry. When the force reaches a critical value, the
symmetric equilibrium configuration becomes unstable and an infinite
number of equivalent lowest energy stable states appear, which are no
longer rotationally symmetric but are related to each other by a rotation.
The actual breaking of the symmetry may then easily occur by effect of a
(however small) external asymmetric cause, and the stick bends until it
reaches one of the infinite possible stable asymmetric equilibrium
configurations.[17] In substance, what happens in the above kind of
situation is the following: when some parameter reaches a critical value,
the lowest energy solution respecting the symmetry of the theory ceases to
be stable under small perturbations and new asymmetric (but stable)
lowest energy solutions appear. The new lowest energy solutions are
asymmetric but are all related through the action of the symmetry
transformations. In other words, there is a degeneracy (infinite or finite
depending on whether the symmetry is continuous or discrete) of distinct
asymmetric solutions of identical (lowest) energy, the whole set of which
maintains the symmetry of the theory.

In quantum physics SSB actually does not occur in the case of finite
systems: tunnelling takes place between the various degenerate states, and
the true lowest energy state or “ground state” turns out to be a unique
linear superposition of the degenerate states. In fact, SSB is applicable
only to infinite systems — many-body systems (such as ferromagnets,
superfluids and superconductors) and fields — the alternative degenerate
ground states being all orthogonal to each other in the infinite volume limit
and therefore separated by a “superselection rule” (see for example
Weinberg, 1996, pp. 164–165).
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Historically, the concept of SSB first emerged in condensed matter
physics. The prototype case is the 1928 Heisenberg theory of the
ferromagnet as an infinite array of spin 1/2 magnetic dipoles, with spin-
spin interactions between nearest neighbours such that neighbouring
dipoles tend to align. Although the theory is rotationally invariant, below
the critical Curie temperature Tc the actual ground state of the ferromagnet
has the spin all aligned in some particular direction (i.e. a magnetization
pointing in that direction), thus not respecting the rotational symmetry.
What happens is that below Tc there exists an infinitely degenerate set of
ground states, in each of which the spins are all aligned in a given
direction. A complete set of quantum states can be built upon each ground
state. We thus have many different “possible worlds” (sets of solutions to
the same equations), each one built on one of the possible orthogonal (in
the infinite volume limit) ground states. To use a famous image by S.
Coleman, a little man living inside one of these possible asymmetric
worlds would have a hard time detecting the rotational symmetry of the
laws of nature (all his experiments being under the effect of the
background magnetic field). The symmetry is still there — the
Hamiltonian being rotationally invariant — but “hidden” to the little man.
Besides, there would be no way for the little man to detect directly that the
ground state of his world is part of an infinitely degenerate multiplet. To
go from one ground state of the infinite ferromagnet to another would
require changing the directions of an infinite number of dipoles, an
impossible task for the finite little man (Coleman, 1975, pp. 141–142). As
said, in the infinite volume limit all ground states are separated by a
superselection rule. Ruetsche (2006) discusses symmetry breaking and
ferromagnetism from the algebraic perspective. Liu and Emch (2005)
address the interpretative problems of explaining SSB in nonrelativistic
quantum statistical mechanics. Fraser (2016) discusses SBB in finite
systems, arguing against the indispensability of the thermodynamic limit
in the characterization of SSB in statistical mechanics.
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The same picture can be generalized to quantum field theory (QFT), the
ground state becoming the vacuum state, and the role of the little man
being played by ourselves. This means that there may exist symmetries of
the laws of nature which are not manifest to us because the physical world
in which we live is built on a vacuum state which is not invariant under
them. In other words, the physical world of our experience can appear to
us very asymmetric, but this does not necessarily mean that this
asymmetry belongs to the fundamental laws of nature. SSB offers a key
for understanding (and utilizing) this physical possiblity.

The concept of SSB was transferred from condensed matter physics to
QFT in the early 1960s, thanks especially to works by Y. Nambu and G.
Jona-Lasinio. Jona-Lasinio (2003) offers a first-hand account of how the
idea of SSB was introduced and formalized in particle physics on the
grounds of an analogy with the breaking of (electromagnetic) gauge
symmetry in the 1957 theory of superconductivity by J. Bardeen, L. N.
Cooper and J. R. Schrieffer (the so-called BCS theory). The application of
SSB to particle physics in the 1960s and successive years led to profound
physical consequences and played a fundamental role in the edification of
the current Standard Model of elementary particles. In particular, let us
mention the following main results that obtain in the case of the
spontaneous breaking of a continous internal symmetry in QFT.

Goldstone theorem. In the case of a global continuous symmetry, massless
bosons (known as “Goldstone bosons”) appear with the spontaneous
breakdown of the symmetry according to a theorem first stated by J.
Goldstone in 1960. The presence of these massless bosons, first seen as a
serious problem since no particles of the sort had been observed in the
context considered, was in fact the basis for the solution — by means of
the so-called Higgs mechanism (see the next point) — of another similar
problem, that is the fact that the 1954 Yang-Mills theory of non-Abelian
gauge fields predicted unobservable massless particles, the gauge bosons.
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Higgs mechanism. According to a “mechanism” established in a general
way in 1964 independently by (i) P. Higgs, (ii) R. Brout and F. Englert,
and (iii) G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, in the case that
the internal symmetry is promoted to a local one, the Goldstone bosons
“disappear” and the gauge bosons acquire a mass. The Goldstone bosons
are “eaten up” to give mass to the gauge bosons, and this happens without
(explicitly) breaking the gauge invariance of the theory. Note that this
mechanism for the mass generation for the gauge fields is also what
ensures the renormalizability of theories involving massive gauge fields
(such as the Glashow-Weinberg-Salam electroweak theory developed in
the second half of the 1960s), as first generally demonstrated by M.
Veltman and G. ’t Hooft in the early 1970s. (The Higgs mechanism it at
the center of a lively debate among philosophers of physics: see, for
example, Smeenk, 2006; Lyre, 2008; Struyve, 2011; Friederich, 2013. For
a historical-philosophical analysis, see also Borrelli, 2012.)

Dynamical symmetry breaking (DSB). In such theories as the unified
model of electroweak interactions, the SSB responsible (via the Higgs
mechanism) for the masses of the gauge vector bosons is because of the
symmetry-violating vacuum expectation values of scalar fields (the so-
called Higgs fields) introduced ad hoc in the theory. For different reasons
— first of all, the initially ad hoc character of these scalar fields for which
there was no experimental evidence untill the results obtained in July 2012
at the LHC — some attention has been drawn to the possibility that the
Higgs fields could be phenomenological rather than fundamental, that is
bound states resulting from a specified dynamical mechanism. SSB
realized in this way has been called “DSB”.[18]

Symmetry breaking raises a number of philosophical issues. Some of them
relate only to the breaking of specific types of symmetries, such as the
issue of the significance of parity violation for the problem of the nature of
space (see Section 2.4, above). Others, for example the connection
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between symmetry breaking and observability, are particular aspects of the
general issue concerning the status and significance of physical
symmetries, but in the case of SSB they take on a stronger force: what is
the epistemological status of a theory based on “hidden” symmetries and
SSB? Given that what we directly observe — the physical situation, the
phenomenon — is asymmetric, what is the evidence for the “underlying”
symmetry? On this point, see for example Morrison (2003) and Kosso
(2000). In the absence of direct empirical evidence, the above question
then becomes whether and how far the predictive and explanatory power
of theories based on SSB provides good reasons for believing in the
existence of the hidden symmetries. Finally, there are issues raised by the
motivation for, and role of, SSB. See for example Earman (2003a), using
the algebraic formulation of QFT to explain SSB; for further philosophical
discussions on SBB in QFT in the algebraic approach, see Ruetsche
(2011), Fraser (2012), and references therein. Landsman (2013) discusses
the issue whether SBB in infinite quantum systems can be seen as an
example of asymptotic emergence in physics.

SSB allows symmetric theories to describe asymmetric reality. In short,
SSB provides a way of understanding the complexity of nature without
renouncing fundamental symmetries. But why should we prefer symmetric
to asymmetric fundamental laws? In other words, why assume that an
observed asymmetry requires a cause, which can be an explicit breaking of
the symmetry of the laws, asymmetric initial conditions, or SSB? Note
that this assumption is very similar to the one expressed by Curie in his
famous 1894 paper. Curie’s principle (the symmetries of the causes must
be found in the effects; or, equivalently, the asymmetries of the effects
must be found in the causes), when extended to include the case of SSB, is
equivalent to a methodological principle according to which an asymmetry
of the phenomena must come from the breaking (explicit or spontaneous)
of the symmetry of the fundamental laws. What the real nature of this
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principle is remains an open issue, at the centre of a developing debate
(see Section 3, above).

Finally, let us mention the argument that is sometimes made in the
literature that SSB implies that Curie’s principle is violated because a
symmetry is broken “spontaneously”, that is without the presence of any
asymmetric cause. Now it is true that SSB indicates a situation where
solutions exist that are not invariant under the symmetry of the law
(dynamical equation) without any explicit breaking of this symmetry. But,
as we have seen, the symmetry of the “cause” is not lost, it is conserved in
the ensemble of the solutions (the whole “effect”).[19]

5. General Philosophical Questions

Much of the recent philosophical literature on symmetries in physics
discusses specific symmetries and the intepretational questions they lead
to. The rich variety of symmetries in modern physics means that questions
concerning the status and significance of symmetries in physics in general
are not easily addressed. However, something can be said in more general
terms and we offer a few remarks in that direction here, starting with the
main roles that symmetry plays in physics.

One of the most important roles played by symmetry is that of
classification — for example, the classification of crystals using their
remarkable and varied symmetry properties. In contemporary physics, the
best example of this role of symmetry is the classification of elementary
particles by means of the irreducible representations of the fundamental
physical symmetry groups, a result first obtained by Wigner in his famous
paper of 1939 on the unitary representations of the inhomogeneous
Lorentz group. When a symmetry classification includes all the necessary
properties for characterizing a given type of physical object (for example,
all necessary quantum numbers for characterizing a given type of particle),
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we have the possibility of defining types of entities on the basis of their
transformation properties. This has led philosophers of science to explore
a structuralist approach to the entities of modern physics, in particular a
group-theoretical account of objects (see the contributions in Castellani,
1998, Part II). The relation between symmetry, group and structure and its
exploitation in structuralist approaches, especially in the framework of
structural realism, is a much debated issue. See, for example, Roberts
(2011), French (2014) and Caulton (2015), and the SEP entry Structural
Realism.

Symmetries also have a normative role, being used as constraints on
physical theories. The requirement of invariance with respect to a
transformation group imposes severe restrictions on the form that a theory
may take, limiting the types of quantities that may appear in the theory as
well as the form of its fundamental equations. A famous case is Einstein’s
use of general covariance when searching for his gravitational equations.

The group-theoretical treatment of physical symmetries, with the resulting
possibility of unifying different types of symmetries by means of a
unification of the corresponding transformation groups, has provided the
technical resources for symmetry to play a powerful role in theoretical
unification. This is best illustrated by the current dominant research
programme in theoretical physics aimed at arriving at a unified description
of all the fundamental forces of nature (gravitational, weak,
electromagnetic and strong) in terms of underlying local symmetry groups.

It is often said that many physical phenomena can be explained as (more
or less direct) consequences of symmetry principles or symmetry
arguments. In the case of symmetry principles, the explanatory role of
symmetries arises from their place in the hierarchy of the structure of
physical theory, which in turn derives from their generality. As Wigner
(1967, pp. 28ff) describes the hierarchy, symmetries are seen as properties
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of the laws. Symmetries may be used to explain (i) the form of the laws,
and (ii) the occurrence (or non-occurrence) of certain events (this latter in
a manner analogous to the way in which the laws explain why certain
events occur and not others). In the case of symmetry arguments, we may,
for example, appeal to Curie’s principle to explain the occurrence of
certain phenomena on the basis of the symmetries (or asymmetries) of the
situation, as discussed in section 3, above. Furthermore, insofar as
explanatory power may be derived from unification, the unifying role of
symmetries also results in an explanatory role.

From these different roles we can draw some preliminary conclusions
about the status of symmetries. It is immediately apparent that symmetries
have an important heuristic function, indicating a strong methodological
status. Is this methodological power connected to an ontological or
epistemological status for symmetries?

According to an ontological viewpoint, symmetries are seen as a
substantial part of the physical world: the symmetries of theories represent
properties existing in nature, or characterize the structure of the physical
world. It might be claimed that the ontological status of symmetries
provides the reason for the methodological success of symmetries in
physics. A concrete example is the use of symmetries to predict the
existence of new particles. This can happen via the classificatory role, on
the grounds of vacant places in symmetry classification schemes, as in the
famous case of the 1962 prediction of the particle Omega- in the context
of the hadronic classification scheme known as the “Eightfold Way”. (See
Bangu, 2008, for a critical analysis of the reasoning leading to this
prediction.) Or, as in more recent cases, via the unificatory role: the
paradigmatic example is the prediction of the W and Z particles
(experimentally found in 1983) in the context of the Glashow-Weinberg-
Salam gauge theory proposed in 1967 for the unification of the weak and
electromagnetic interactions. These impressive cases of the prediction of
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new phenomena might then be used to argue for an ontological status for
symmetries, via an inference to the best explanation.

Another reason for attributing symmetries to nature is the so-called
geometrical interpretation of spatiotemporal symmetries, according to
which the spatiotemporal symmetries of physical laws are interpreted as
symmetries of spacetime itself, the “geometrical structure” of the physical
world. Moreover, this way of seeing symmetries can be extended to non-
external symmetries, by considering them as properties of other kinds of
spaces, usually known as “internal spaces”. The question of exactly what a
realist would be committed to on such a view of internal spaces remains
open, and an interesting topic for discussion.

One approach to investigating the limits of an ontological stance with
respect to symmetries would be to investigate their empirical or
observational status: can the symmetries in question be directly observed?
We first have to address what it means for a symmetry to be observable,
and indeed whether all symmetries have the same observational status.
Kosso (2000) arrives at the conclusion that there are important differences
in the empirical status of the different kinds of symmetries. In particular,
while global continuous symmetries can be directly observed — via such
experiments as the Galilean ship experiment — a local continuous
symmetry can have only indirect empirical evidence. Brading and Brown
(2004) argue for a different interpretation of Kosso’s examples,[20] but
agree with Kosso’s assessment that local symmetry transformations cannot
exhibit an analogue of the Galileo’s Ship Experiment. Against this view,
Greaves and Wallace (2014) and Teh (2016) have recently argued that
when suitably understood, local symmetries can indeed have direct
empirical significance (their argument turns on the possibility of using
asymptotically non-trivial local symmetries to construct Galileo’s Ship
scenarios for certain systems). In particular, Teh (2016) argues that this
phenomenon is responsible for the empirically significant symmetries of
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topological soliton solutions. On the other hand, Friederich (2015)
contends that on one plausible axiomatization of the schema introduced by
Greaves and Wallace, it is possible to deduce that local symmetries do not
have direct empirical significance.

The direct observational status of the familiar global spacetime
symmetries leads us to an epistemological aspect of symmetries.
According to Wigner, the spatiotemporal invariance principles play the
role of a prerequisite for the very possibility of discovering the laws of
nature: “if the correlations between events changed from day to day, and
would be different for different points of space, it would be impossible to
discover them” (Wigner, 1967, p. 29). For Wigner, this conception of
symmetry principles is essentially related to our ignorance (if we could
directly know all the laws of nature, we would not need to use symmetry
principles in our search for them). Others, on the contrary, have arrived at
a view according to which symmetry principles function as
“transcendental principles” in the Kantian sense (see for instance Mainzer,
1996). It should be noted in this regard that Wigner’s starting point, as
quoted above, does not imply exact symmetries — all that is needed
epistemologically is that the global symmetries hold approximately, for
suitable spatiotemporal regions, such that there is sufficient stability and
regularity in the events for the laws of nature to be discovered.

There is another reason why symmetries might be seen as being primarily
epistemological. As we have mentioned, there is a close connection
between the notions of symmetry and equivalence, and this leads also to a
notion of irrelevance: the equivalence of space points (translational
symmetry), for example, may be understood in the sense of the irrelevance
of an absolute position to the physical description. There are two ways that
one might interpret the epistemological significance of this: on the one
hand, we might say that symmetries are associated with unavoidable
redundancy in our descriptions of the world, while on the other hand we
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might maintain that symmetries indicate a limitation of our epistemic
access — there are certain properties of objects, such as their absolute
positions, that are not observable. The view that symmetries are connected
with the presence of non-observable quantities in the physical description,
with the corollary that the empirical violation of a symmetry is intended in
the sense that what was thought to be a non-observable turns out to be
actually an observable, was particularly defended by one of the discover of
parity violation, T.D. Lee (see section 2.4). According to Lee (1981), “the
root of all symmetry principles lies in the assumption that it is impossible
to observe certain basic quantities” (p. 178). See on this (and, more
generally, on the relation between symmetry, equivalence and irrelevance)
Castellani (2003). Dasgupta (2016) defends an epistemic interpretation of
symmetry on a similar basis as Lee.

Finally, we would like to mention an aspect of symmetry that might very
naturally be used to support either an ontological or an epistemological
account. It is widely agreed that there is a close connection between
symmetry and objectivity, the starting point once again being provided by
spacetime symmetries: the laws by means of which we describe the
evolution of physical systems have an objective validity because they are
the same for all observers. The old and natural idea that what is objective
should not depend upon the particular perspective under which it is taken
into consideration is thus reformulated in the following group-theoretical
terms: what is objective is what is invariant with respect to the
transformation group of reference frames, or, quoting Hermann Weyl
(1952, p. 132), “objectivity means invariance with respect to the group of
automorphisms [of space-time]”.[21] Debs and Redhead (2007) label as
“invariantism” the view that “invariance under a specified group of
automorphisms is both a necessary and sufficient condition for
objectivity” (p. 60). They point out (p. 73, and see also p. 66) that there is
a natural connection between “invariantism” and structural realism.

Symmetry and Symmetry Breaking

38 Stanford Encyclopedia of Philosophy

Growing interest, recently, in the metaphysics of physics includes interest
in symmetries. Baker (2010) offers an accessible introduction, and
Livanios (2010), connecting discussions of symmetries to dispositions and
essences, is an example of this work.

To conclude: symmetries in physics offer many interpretational
possibilities, and how to understand the status and significance of physical
symmetries clearly presents a challenge to both physicists and
philosophers.
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3. An equivalence relation is a relation that is reflexive, symmetric and
transitive. For further details on the connection between symmetry,
equivalence and group in mathematics and physics, see Olver (1995).
Castellani (2003) is devoted to exploring the relevance of these
connections to the issue of the meaning of physical symmetries. On the
connection between groups and equivalence classes, when generalized to
groupoids, and, in general, for a discussion of the relation between the
concept of symmetry and its formalisms, see Guay and Hepburn (2009). A
thorough analysis of the relation between the notion of a symmetry of a
physical theory and that of the physical equivalence of two solutions or
models of such a theory is provided in Belot (2012).

4. A classic reference for the general theory of symmetric configurations is
Shubnikov and Koptsik 1974. An overview is provided also in Mainzer
1996. Further details of the material in this section can be found in
Castellani (2000, Chapters 1-3). Hon and Goldstein (2008) offers a
detailed historical study of the term ‘symmetry’ and the concepts
associated with it up to the early 1800s (on this book see Brading, 2010).

5. This is an example of a methodological use of symmetry properties: on
the basis of the invariance properties of the situation under consideration
(in this case, the dynamical problem in classical mechanics), a strategy is
applied for deriving determinate consequences. The underlying principle
is that equivalent problems have equivalent solutions. This type of
symmetry argument (see Section 3, below) is discussed also by van
Fraassen (1989, Chapter 10).

6. Wigner (1967) is a collection of twenty-four reprinted papers covering
several decades.

7. Whence the name ‘Poincaré group’ introduced later by Wigner, whereas
Poincaré himself named the group after Lorentz. Nowadays the name
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‘Poincaré group’ is reserved for the inhomogeneous Lorentz group; that is,
the Lorentz group plus spatial translations.

8. General relativity marks a further important stage in the development,
as we will see below.

9. An example of such a principle is the non-existence of perpetual motion
machines in thermodynamics.

10. For references see the literature on Einstein’s “hole argument”,
detailed in Section 2.5, below.

11. For more on Einstein’s route to GTR and the changing fortunes of
general covariance as one of his postulates, see Norton (1993). See also
the references on Einstein’s “hole argument” in Section 2.5, below.

12. The problem which led Heisenberg to introduce this symmetry (and
connect it with the statistical behaviour of quantum particles) in
Heisenberg (1926) was to obtain a quantum description of atomic systems
--- seen as ensembles of identical electrons subject to Coulomb interaction
--- in agreement with the spectroscopics results of the time.

13. In that paper, entitled “Über die Operation der Zeitumkehr in der
Quantenmechanik”, Wigner introduced time reversal invariance in order to
reinterpret results previously obtained by H. Kramers.

14. Subsequently, new symmetries acquired relevance in theoretical
physics, such as supersymmetry (the symmetry relating bosons and
fermions and leading, when made local, to the theories of supergravity),
and the various forms of duality used in today’s superstring theories.

15. See, for example, Mach’s discussion of the Oersted effect in his Die
Mechanik in ihrer Entwickelung historisch--kritisch dargestellt of 1883.
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16. Strocchi (2012) criticizes this too simplified description. See his paper
for a precise formulation and Strocchi (2008) for a thorough and rigorous
treatment of symmetry breaking in classical and quantum physics. Note
that there are both analogies and disanalogies between the classical and
quantum cases of SSB. These are the subject of discussion in the newly-
emerging philosophical literature on SSB, and include the role of
asymmetrical causes and the transition from a symmetrical to an
asymmetrical situation.

17. Another example from classical physics which is often used in the
literature to illustrate SSB is the case of a ball moving with no friction in a
hoop constrained to rotate with a given angular velocity. This case is
discussed in detail by Liu (2003).

18. Note that SSB was in fact first introduced in the DSB form. In the BCS
theory of superconductivity, as well as in the 1961 theory of broken chiral
symmetry by Nambu and Jona-Lasino, SSB is realized dynamically
through a fermion condensate. In the BCS theory, for example, the gauge
invariance of electromagnetism is spontaneously broken by pairs of
electrons that condense -- forming a bound state -- in the ground state of a
metal. Although DSB has not (so far) proved successful as an alternative
route to the problem raised by the Higgs fields in the Standard Model, it
has been applied with success to specific cases: for example, besides the
already mentioned case of the BCS theory, the current quantum field
theory of the strong interaction (quantum chromodynamics), in the
approximation that quark masses are very small, possesses chiral
symmetries that are spontaneously broken by a condensation of quark—
antiquark pairs. For a historical—philosophical analysis of the notion that
the Higgs boson is a composite particle, see Borrelli (2012).

19. Stewart and Golubitsky (1992), for example, speak of an “Extended
Curie's principle” to indicate this situation.
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20. Kosso’s analysis begins from a set of examples offered by ’t Hooft
(1980).

21. The significance of the notion of invariance and its group-theoretic
treatment for the issue of objectivity is explored in Born (1953), for
example. For more recent discussions see Kosso (2003) and Earman
([2002] 2004, Sections 6 and 7).
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